Science.gov

Sample records for adirondack class basalts

  1. Calcium Sulfate in Atacama Desert Basalt: A Possible Analog for Bright Material in Adirondack Basalt, Gusev Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    The Atacama Desert in northern Chile is one of the driest deserts on Earth (< 2mm/y). The hyper-arid conditions allow extraordinary accumulations of sulfates, chlorides, and nitrates in Atacama soils. Examining salt accumulations in the Atacama may assist understanding salt accumulations on Mars. Recent work examining sulfate soils on basalt parent material observed white material in the interior vesicles of surface basalt. This is strikingly similar to the bright-white material present in veins and vesicles of the Adirondack basalt rocks at Gusev Crater which are presumed to consist of S, Cl, and/or Br. The abundance of soil gypsum/anhydrite in the area of the Atacama basalt suggested that the white material consisted of calcium sulfate (Ca-SO4) which was later confirmed by SEM/EDS analysis. This work examines the Ca-SO4 of Atacama basalt in an effort to provide insight into the possible nature of the bright material in the Adirondack basalt of Gusev Crater. The objectives of this work are to (i) discuss variations in Ca-SO4 crystal morphology in the vesicles and (ii) examine the Ca-SO4 interaction(s) with the basalt interior.

  2. Geochemical affinities of a Late Precambrian basaltic dike, Adirondack Lowlands, Northern New York

    SciTech Connect

    Badger, R.L. . Dept. of Geology)

    1993-03-01

    Late Precambrian rifting and the opening of the Iapetus Ocean basin have produced a series of NE-trending basaltic dikes in the Adirondack Lowlands of New York. Twelve samples were taken from the largest of these dikes, a 14 km long body, in order to study the chemical variability along and across strike and to characterize the source region. The dike consists of an assemblage of plagioclase, Ti-rich clinopyroxene, magnetite/ilmenite and a hydrated phase that was probably olivine. All analyzed samples contain normative olivine, and most contain normative nepheline, indicative of alkalic affinities. Chemical variations are relatively minor, with generally as much variation occurring across strike (max. width 10m) as along strike. SiO[sub 2] varies from 43.9--45.0 wt%; TiO[sub 2]: 4.8--5.1 wt%; P[sub 2]O[sub 5]: 0.8--1.1 wt%; Ni: 55--79 ppm; Sr:P 300--600 ppm; Rb: 35--66 ppm; Y/Nb = 1.1; Zr/Nb = 8. Chondrite normalized REE patterns show strong LREE enrichment. Tectonic discrimination plots (Zr--Ti/100--Y[star]) are indicative of within plate magmatism, and plots of Y/nb vs. Zr/Nb suggest an enriched, OIB-type mantle plume source. Trace element characteristics suggest a genetic correlation with Late Precambrian, rift related magmas of the Ottawa Graben and of the eastern Adirondack Mountains and western Vermont.

  3. Formation of Fe/mg Smectite Under Acidic Conditions from Synthetic Adirondack Basaltic Glass: an Analog to Fe/mg Smectite Formation on Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-01-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (< 53 microns) of Adirondack rock class composition was exposed to pH 4 (acetic acid buffer) and N2 purged (anoxic) solutions amended with 0 and 10 mM Mg or Fe(II). Basaltic glass in these solutions was heated to 200 C in batch reactors for 1, 7, and 14 days. X-ray diffraction analysis of reacted materials detected the presence of phyllosilicates as indicated by a approx. 15.03-15.23Angstroms (001) peak. Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Angstroms (02l) and 1.54Angstroms (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200 C for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060

  4. Formation of Fe/Mg Smectite under acidic conditions from synthetic Adirondack Basaltic Glass: An Analog to Fe/Mg Smectite Formation on Mars.

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-12-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg-saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (< 53 μm) of Adirondack rock class composition was exposed to pH 4 (acetic acid buffer) and N2 purged (anoxic) solutions amended with 0 and 10 mM Mg or Fe(II). Basaltic glass in these solutions was heated to 200ºC in batch reactors for 1, 7, and 14 days. X-ray diffraction analysis of reacted materials detected the presence of phyllosilicates as indicated by a ~15.03-15.23Ǻ (001) peak. Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550°C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Ǻ (02l) and 1.54Ǻ (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200ºC for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060 peaks. Mössbauer analysis

  5. Adirondack's Inner Self

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectrum - the first taken of a rock on another planet - reveals the different iron-containing minerals that makeup the martian rock dubbed Adirondack. It shows that Adirondack is a type of volcanic rock known as basalt. Specifically, the rock is what is called olivine basalt because in addition to magnetite and pyroxene, two key ingredients of basalt, it contains a mineral called olivine. This data was acquired by Spirit's Moessbauer spectrometer before the rover developed communication problems with Earth on the 18th martian day, or sol, of its mission.

  6. Basaltic Soil of Gale Crater: Crystalline Component Compared to Martian Basalts and Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Schmidt, M.; Downs, R. T.; Stolper, E. M.; Blake, D. F.; Vaniman, D. T.; Achilles, C. N.; Chipera, S. J.; Bristow, T. F.; Crisp, J. A.; Farmer, J. A.; Morookian, J. M.; Morrison, S. M.; Rampe, E. B.; Sarrazin, P.; Yen, A. S.; Anderosn, R. C.; DesMarais, D. J.; Spanovich, N.

    2013-01-01

    A significant portion of the soil of the Rocknest dune is crystalline and is consistent with derivation from unweathered basalt. Minerals and their compositions are identified by X-ray diffraction (XRD) data from the CheMin instrument on MSL Curiosity. Basalt minerals in the soil include plagioclase, olivine, low- and high-calcium pyroxenes, magnetite, ilmenite, and quartz. The only minerals unlikely to have formed in an unaltered basalt are hematite and anhydrite. The mineral proportions and compositions of the Rocknest soil are nearly identical to those of the Adirondack-class basalts of Gusev Crater, Mars, inferred from their bulk composition as analyzed by the MER Spirit rover.

  7. Magnetite in Martian Meteorite Mil 03346 and Gusev Adirondack Class Basalt: Moessbauer Evidence for Variability in the Oxidation State of Adirondack Lavas

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; McKay, G. A.; Ming, D. W.; Klingelhoefer, G.; Schroeder, C.; Rodionov, D.; Yen, A.

    2006-01-01

    The Moessbauer spectrometers on the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) have returned information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases [1,2,3]. To date, 100 and 85 surface targets have been analyzed by the Spirit and Opportunity spectrometers, respectively. Twelve component subspectra (8 doublets and 4 sextets) have been identified and most have been assigned to mineralogical compositions [4]. Two sextet subspectra result from the opaque and strongly magnetic mineral magnetite (Fe3O4 for the stoichiometric composition), one each for the crystallographic sites occupied by tetrahedrally-coordinated Fe3+ and by octahedrally-coordinated Fe3+ and Fe2+. At Gusev crater, the percentage of total Fe associated with magnetite for rocks ranges from 0 to 35% (Fig. 1) [3]. The range for soils (5 to 12% of total Fe from Mt, with one exception) is narrower. The ubiquitous presence of Mt in soil firmly establishes the phase as the strongly magnetic component in martian soil

  8. Magnetite in Martian Meteorite Mil 03346 and Gusev Adirondack Class Basalt: Mossbauer Evidence for Variability in the Oxidation State of Adirondack Lavas

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; McKay, G. A.; Ming, D. W.; Klingelhoefer, G.; Schroeder, C.; Rodionov, D.; Yen, A.

    2006-01-01

    The Moessbauer spectrometers on the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) have returned information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases [1,2,3]. To date, approx.100 and approx.85 surface targets have been analyzed by the Spirit and Opportunity spectrometers, respectively. Twelve component subspectra (8 doublets and 4 sextets) have been identified and most have been assigned to mineralogical compositions [4]. Two sextet subspectra result from the opaque and strongly magnetic mineral magnetite (Fe3O4 for the stoichiometric composition), one each for the crystallographic sites occupied by tetrahedrally-coordinated Fe3+ and by octahedrally-coordinated Fe3+ and Fe2+. At Gusev crater, the percentage of total Fe associated with magnetite for rocks ranges from 0 to approx. 35% (Fig. 1) [3]. The range for soils (approx.5 to approx.12% of total Fe from Mt, with one exception) is narrower. The ubiquitous presence of Mt in soil firmly establishes the phase as the strongly magnetic component in martian soil [4,5].

  9. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  10. Adirondack Under the Microscope-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.

  11. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  12. Basalt-Trachybasalt Fractionation in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Edwards, P. H.; Filiberto, J.; Schwenzer, S. P.; Gasda, P.; Wiens, R.

    2016-08-01

    A set of igneous float rocks in Gale Crater have been analysed by ChemCam. They are basalt-trachybasalts, 47 to 53 ± 5 wt% SiO2 and formed by ol-dominated crystal fractionation from an Adirondack type basalt, in magmatism with tholeiitic affinities.

  13. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  14. Adirondack tourism: perceived consequences of acid rain

    SciTech Connect

    Metz, W.C.

    1984-03-01

    This report seeks to place in perspective the perceived effects of acid precipitation on the tourist industry in the Adirondacks. The 9375-square mile park is host to almost nine million tourists annually, not including seasonal residents. Since the park was established almost 100 years ago, there have been many changes in tourist characteristics, available recreational facilities, kinds of activities, accessibility of the area, and land use and resource management policies. The tourist industry has been influenced by both controllable and uncontrollable factors. At present the overwhelming majority of recreational opportunities and natural resources important to the Adirondack tourist industry are relatively unaffected by acid precipitation. Fishing, a significant component of the tourist industry, is the most vulnerable, but any presumed adverse economic effect has to be weighed against the location of the impacted waters, total Adirondack fishing habitat, substitution available, habitat usage, fisherman characteristics, resource management, and the declining importance of fishing as an Adirondack recreational attraction. Concern is expressed as to whether present minimal acidification impacts are the precursor of major future impacts on Adirondack terrestrial and aquatic environments, and ultimately tourism. Tourism in the Adirondacks is increasing, while many other regional employment sectors are declining. It is becoming a more stable multiseason industry. Its future growth and character will be affected by government, private organization, business community, and resident controversies regarding land use and resource management attitudes, policies, budgets, and regulations. The acid precipitation issue is only one of many related controversies. 65 references, 2 figures.

  15. Chemical characteristics of Adirondack lakes

    SciTech Connect

    Driscoll, C.T.; Newton, R.M.

    1985-11-01

    This paper discussed the role of atmospheric deposition of mineral acids in the acidification of low-ionic-strength (dilute) surface waters in remote regions. Surface water acidification has been attributed to the atmospheric deposition of sulfuric acid, sulfur dioxide, and nitric acid, the oxidation of organic nitrogen from the soil, the production of soluble organic acids through the decay of dead plants and animals in soil, the oxidation of naturally occurring sulfide minerals, and the changes in land use. The research reported here was conducted as part of the Regionalized Integrated Lake-Watershed Acidification Study (RILWAS). The intent was to evaluate the general chemical characteristics of lakes in the Adirondack region of New York and to access the mechanisms that regulate the acid-base chemistry of these waters. 36 references, 5 figures, 3 tables.

  16. Episodic acidification of Adirondack lakes during snowmelt

    SciTech Connect

    Schaefer, D.A.; Driscoll, C.T.; Van Dreason, R.; Yatsko, C.P.

    1990-07-01

    Maximum values of acid neutralizing capacity (ANC) in Adirondack, New York lake outlets generally occur during summer and autumn. During spring snowmelt, transport of acidic water through acid-sensitive watersheds causes depression of upper lake water ANC. In some systems lake outlet ANC reaches negative values. The authors examined outlet water chemistry from II Adirondack lakes during 1986 and 1987 snowmelts. In these lakes, SO concentrations were diluted during snowmelt and did not depress ANC. For lakes with high baseline ANC values, springtime ANC depressions were primarily accompanied by basic cation dilution. For lakes with low baseline ANC, No increases dominated ANC depressions. Lakes with intermediate baseline ANC were affected by both processes and exhibited larger ANC depressions. Ammonium dilution only affected wetland systems. A model predicting a linear relationship between outlet water ANC minima and autumn ANC was inappropriate. To assess watershed response to episodic acidification, hydrologic flow paths must be considered. (Copyright (c) 1990 by the American Geophysical Union.)

  17. Fluid-absent metamorphism in the Adirondacks

    NASA Technical Reports Server (NTRS)

    Valley, J. W.

    1986-01-01

    Results on late Proterozoic metamorphism of granulite in the Adirondacks are presented. There more than 20,000 sq km of rock are at granulite facies. Low water fugacites are implied by orthopyroxene bearing assemblages and by stability of k'spar-plag-quartz assemblages. After mentioning the popular concept of infiltration of carbon dioxide into Precambrian rocks and attendent generation of granulite facies assemblages, several features of Adirondack rocks pertinent to carbon dioxide and water during their metamorphism are summarized: wollastonite occurs in the western lowlands; contact metamorphism by anorthosite preceeding granulite metamorphism is indicated by oxygen isotopes. Oxygen fugacity lies below that of the QFM buffer; total P sub water + P sub carbon dioxide determined from monticellite bearing assemblages are much less than P sub total (7 to 7.6 kb). These and other features indicate close spatial association of high- and low-P sub carbon dioxide assemblages and that a vapor phase was not present during metamorphism. Thus Adirondack rocks were not infiltrated by carbon dioxide vapor. Their metamorphism, at 625 to 775 C, occurred either when the protoliths were relatively dry or after dessication occurred by removal of a partial melt phase.

  18. Mercury contribution to an adirondack lake

    NASA Astrophysics Data System (ADS)

    Scrudato, R. J.; Long, D.; Weinbloom, Robert

    1987-10-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.

  19. Mercury contribution to an Adirondack lake

    SciTech Connect

    Scrudato, R.J. ); Long, D. ); Weinbloom, R. )

    1987-01-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipitation.

  20. Spirit Takes a Turn for Adirondack

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This rear hazard-identification camera image looks back at the circular tracks made in the martian soil when the Mars Exploration Rover Spirit drove about 3 meters (10 feet) toward the mountain-shaped rock called Adirondack, Spirit's first rock target. Spirit made a series of arcing turns totaling approximately 1 meter (3 feet). It then turned in place and made a series of short, straightforward movements totaling approximately 2 meters (6.5 feet). The drive took about 30 minutes to complete, including time stopped to take images. The two rocks in the upper left corner of the image are called 'Sashimi' and 'Sushi.' In the upper right corner is a portion of the lander, now known as the Columbia Memorial Station.

  1. Acid Rain Effects on Adirondack Streams - Results from the 2003-05 Western Adirondack Stream Survey (the WASS Project)

    USGS Publications Warehouse

    Lawrence, Gregory B.; Roy, Karen M.; Baldigo, Barry P.; Simonin, Howard A.; Passy, Sophia I.; Bode, Robert W.; Capone, Susan B.

    2009-01-01

    Traditionally lakes have been the focus of acid rain assessments in the Adirondack region of New York. However, there is a growing recognition of the importance of streams as environmental indicators. Streams, like lakes, also provide important aquatic habitat, but streams more closely reflect acid rain effects on soils and forests and are more prone to acidification than lakes. Therefore, a large-scale assessment of streams was undertaken in the drainage basins of the Oswegatchie and Black Rivers; an area of 4,585 km2 in the western Adirondack region where acid rain levels tend to be highest in New York State.

  2. Spatial patterns of mercury in biota of Adirondack, New York lakes.

    PubMed

    Yu, Xue; Driscoll, Charles T; Montesdeoca, Mario; Evers, David; Duron, Melissa; Williams, Kate; Schoch, Nina; Kamman, Neil C

    2011-10-01

    We studied the spatial distribution patterns of mercury (Hg) in lake water, littoral sediments, zooplankton, crayfish, fish, and common loons in 44 lakes of the Adirondacks of New York State, USA, a region that has been characterized as a "biological Hg hotspot". Our study confirmed this pattern, finding that a substantial fraction of the lakes studied had fish and loon samples exceeding established criteria for human and wildlife health. Factors accounting for the spatial variability of Hg in lake water and biota were lake chemistry (pH, acid neutralizing capacity (ANC), percent carbon in sediments), biology (taxa presence, trophic status) and landscape characteristics (land cover class, lake elevation). Hg concentrations in zooplankton, fish and common loons were negatively associated with the lake water acid-base status (pH, ANC). Bioaccumulation factors (BAF) for methyl Hg (MeHg) increased from crayfish (mean log(10) BAF = 5.7), to zooplankton (5.9), to prey fish (6.2), to larger fish (6.3), to common loons (7.2). MeHg BAF values in zooplankton, crayfish, and fish (yellow perch equivalent) all increased with increasing lake elevation. Our findings support the hypothesis that bioaccumulation of MeHg at the base of the food chain is an important controller of Hg concentrations in taxa at higher trophic levels. The characteristics of Adirondack lake-watersheds (sensitivity to acidic deposition; significant forest and wetland land cover; and low nutrient inputs) contribute to elevated Hg concentrations in aquatic biota.

  3. A comparison of the temporally integrated monitoring of ecosystems and Adirondack Long Term-Monitoring programs in the Adirondack Mountain region of New Yrok

    EPA Science Inventory

    This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...

  4. Contemporary doming of the Adirondack mountains: Further evidence from releveling

    USGS Publications Warehouse

    Isachsen, Y.W.

    1981-01-01

    The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The dome has a NNE-SSW axis about 190 km long, and an east-west dimension of about 140 km. It has a structural relief of at least 1600 m, and a local topographic relief of up to 1200 m. First-order leveling in 1955, and again in 1973 along a north-south line at the eastern margin of the Adirondack shows an uplift rate of 2.2 mm/yr at the latitude of the center of the dome and a subsidence rate of 2.8 mm/yr at the northern end of the line near the Canadian border. The net amount of arching along this releveled line is 9 cm ?? 2 cm (Isachsen, 1975). To test the idea that this arching represented an "edge effect" of contemporary doming of the Adirondacks as a whole, the National Geodetic Survey was encouraged to relevel a 1931 north-south line between Utica and Fort Covington (near the Canadian border) which crosses the center of the dome. The releveling showed that the mountain mass is undergoing contemporary domical uplift at a rate which reaches 3.7 mm/yr near the center of the dome (compare with 1 mm/yr for the Swiss Alps). Three other releveled lines in the area support this conclusion. ?? 1981.

  5. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities.

  6. Drainage basin control of acid loadings to two Adirondack lakes

    NASA Astrophysics Data System (ADS)

    Booty, W. G.; Depinto, J. V.; Scheffe, R. D.

    1988-07-01

    Two adjacent Adirondack Park (New York) calibrated watersheds (Woods Lake and Cranberry Pond), which receive identical atmospheric inputs, generate significantly different unit area of watershed loading rates of acidity to their respective lakes. A watershed acidification model is used to evaluate the watershed parameters which are responsible for the observed differences in acid loadings to the lakes. The greater overall mean depth of overburden on Woods Lake watershed, which supplies a greater buffer capacity as well as a longer retention time of groundwater, appears to be the major factor responsible for the differences.

  7. Shock metamorphism of lunar and terrestrial basalts

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Hoerz, F.

    1977-01-01

    Lonar Crater (India) basalt and lunar basalt 75035 were shock loaded under controlled laboratory conditions up to 1000 kbar, generally in a CO/CO2 (1:1) environment evacuated to 10 to the minus seventh power torr. The Kieffer et al. (1976) classification scheme of progressive shock metamorphism is found to apply to lunar basalts. The major shock features of the five classes that span the range 0 to 1000 kbar are described. Only three out of 152 basalt specimens show shock effects in their natural state as severe as Class 2 features. The scarcity of shocked basalt hand samples in contrast to the abundance of shock-produced agglutinates and homogeneous glass spheres in the lunar regolith indicates the dominant role of micrometeorite impact in the evolution of the lunar regolith. The overall glass content in asteroidal and Mercurian regoliths is considered.

  8. Airborne geophysical surveys over the eastern Adirondacks, New York State

    USGS Publications Warehouse

    Shah, Anjana K.

    2016-01-01

    Airborne geophysical surveys were conducted in the eastern Adirondacks from Dec. 7, 2015 - Dec. 21, 2015, by Goldak Airborne Surveys. The area was flown along a draped surface with a nominal survey height above ground of 200 meters. The flight line spacing was 250 meters for traverse lines and 2500 meters for control lines. Here we present downloadable magnetic and radiometric (gamma spectrometry) data from those surveys as image (Geotiff) and flight line data (csv format).BackgroundThe Eastern Adirondacks region was known for iron mining in the 1800's and 1900's but it also contains deposits of rare earth minerals. Rare earth minerals are used in advanced technology such as in cell phones, rechargeable batteries and super-magnets. In many areas rare earth minerals appear to be associated with iron ore.The surveys were flown in order to map geologic variations in three dimensions. Magnetic surveys measure subtle changes in Earth's magnetic field that reflect different types of buried rock, such as iron-rich ore bodies. Radiometric methods detect naturally occurring gamma particles. The energy spectra of these particles can be used to estimate relative amounts of potassium, uranium and thorium (also referred to as gamma ray spectrometry), which are sometimes associated with rare earth elements. Together, these data provide insights into the regional tectonic and magmatic history as well as mineral resources in the area.

  9. Decline of red spruce in the Adirondacks, New York

    SciTech Connect

    Scott, J.T.; Siccama, T.G.; Johnson, A.H.; Breisch, A.R.

    1984-01-01

    Thirty-two stands in the spruce-fir forests of Whiteface Mountain in the Adirondacks, originally sampled from 1964-66, were resurveyed in 1982. From 10-25 Bitterlich points were used in each stand in 1982 to obtain an estimate of basal area per hectare. Data were summarized for low elevation (<900m) and high elevation (> or = 900m) forests. Red spruce declined by 40-60% in basal area for the low elevation forests and by 60-70% above 900m. Balsam fir decreased by 35% at high elevations, due to natural disturbance in several of the stands, but was unchanged when only undisturbed stands were considered. The decline of red spruce accounted for about three quarters of the total decrease in basal area for both the high- and low-elevation forests. Spruce seedling frequency for the high-elevation sample decreased by 80%, but was unchanged below 900m. The pattern of spruce decline in the Adirondacks is similar to findings for New England. The cause of the decline is speculative at the time.

  10. Diatom diversity in chronically versus episodically acidified adirondack streams

    USGS Publications Warehouse

    Passy, S.I.; Ciugulea, I.; Lawrence, G.B.

    2006-01-01

    The relationship between algal species richness and diversity, and pH is controversial. Furthermore, it is still unknown how episodic stream acidification following atmospheric deposition affects species richness and diversity. Here we analyzed water chemistry and diatom epiphyton dynamics and showed their contrasting behavior in chronically vs. episodically acidic streams in the Adirondack region. Species richness and diversity were significantly higher in the chronically acidic brown water stream, where organic acidity was significantly higher and the ratio of inorganic to organic monomeric aluminum significantly lower. Conversely, in the episodically acidic clear water stream, the inorganic acidity and pH were significantly higher and the diatom communities were very species-poor. This suggests that episodic acidification in the Adirondacks may be more stressful for stream biota than chronic acidity. Strong negative linear relationships between species diversity, Eunotia exigua, and dissolved organic carbon against pH were revealed after the influence of non-linear temporal trends was partialled out using a novel way of temporal modeling. ?? 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

  11. Adirondack lakes survey: An interpretive analysis of fish communities and water chemistry, 1984--1987

    SciTech Connect

    Baker, J.P. , Raleigh, NC ); Gherini, S.A.; Munson, R.K. ); Christensen, S.W. ); Driscoll, C.T. ); Gallagher, J. ); Newton, R.M. ); Reckhow, K.H. ); Schofield, C.L. (Co

    1990-01-01

    The Adirondack Lakes Survey Corporation (ALSC) was formed as a cooperative effort of the New York State Department of Environmental Conservation and the Empire State Electric Energy Research Corporation to better characterize the chemical and biological status of Adirondack lakes. Between 1984 and 1987, the ALSC surveyed 1469 lakes within the Adirondack ecological zone. As a follow-up to the survey, the ALSC sponsored a series of interpretive analyses of the ALSC data base. The primary objectives of these analyses were as follows: Evaluate the influence of mineral acids (from acidic deposition) and nonmineral acids (natural organic acids) on lake pH levels; classify Adirondack lakes according to lake and watershed features expected to influence their responsiveness to changes in acidic deposition; evaluate the sensitivity of Adirondack lakes to changes in environmental conditions, such as changes in mineral acids or dissolved organic carbon concentrations; identify lake characteristics important in explaining the observed present-day status of fish communities in Adirondack lakes, in particular the relative importance of lake acidity; evaluate changes that have occurred over time in Adirondack fish communities and probable causes for these trends by using the available historical data on fish communities in the Adirondacks and the ALSC data base; and determine the degree to which the existing fish resource might be at risk from continued acidic deposition, or might recover if acidity levels were reduced. The basic approach examined relationships observed in the ALSC data base among watershed characteristics, lake chemistry, and fish status. Individual reports are processed separately for the data bases.

  12. Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1982-01-01

    Oxygen isotopic analysis of wollastonites from the Willsboro Mine, Adirondack Mountains, New York reveals a 400-ft wide zone of 18O depletion at anorthosite contacts. Values of ??18O vary more sharply with distance and are lower (to -1.3) than any yet reported for a granulite fades terrain. Exchange with circulating hot meteoric water best explains these results and implies that the anorthosite was emplaced at relatively shallow depths, <10 km, in marked contrast to the depth of granulite fades metamorphism (23 km). These 18O depletions offer the first strong evidence for shallow emplacement of anorthosite within the Grenville Province and suggest that regional metamorphism was a later and tectonically distinct event. ?? 1982 Nature Publishing Group.

  13. Post-granulite facies fluid infiltration in the Adirondack Mountains

    SciTech Connect

    Morrison, J.; Valley, J.W.

    1988-06-01

    Granulite facies lithologies from the Adirondack Mountains of New York contain alteration assemblages composed dominantly of calcite +/- chlorite +/- sericite. These assemblages document fluid infiltration at middle to upper crustal levels. Cathodoluminescence of samples from the Marcy anorthosite massif indicates that the late fluid infiltration is more widespread than initially indicated by transmitted-light petrography alone. Samples that appear unaltered in transmitted light show extensive anastomosing veins of calcite (< 0.05 mm wide) along grain boundaries, in crosscutting fractures, and along mineral cleavages. The presence of the retrograde calcite documents paleopermeability in crystalline rocks and is related to the formation of high-density CO/sub 2/-rich fluid inclusions. Recognition of this process has important implications for studies of granulite genesis and the geophysical properties of the crust.

  14. Non-primary layering in some Adirondack orthogneisses

    SciTech Connect

    Levy, R.; McLelland, J.; Ritter, A. . Geology Dept.)

    1993-03-01

    Metamorphic, as opposed to primary, layering has been shown to be important in many tectonites. Within orthogneisses additional types of non-primary layering are common and have important genetic implications. Here the authors cite three Adirondack examples. (1) Hyde School Gneiss of the Adirondack Lowlands contains semi-continuous layers of foliated amphibolite arranged parallel to contacts and early foliation and disrupted by pegmatitic, alaskitic, and tonalitic host rock. Layering appears to be the result of penetration of amphibolite by granitoid magma first along extensional fractures and then parallel to foliation. Intrusion is envisaged to take place in active shear zones initially occupied by foliated amphibolite that is subsequently penetrated parallel to foliation by granitoids. (2) South of Elizabethtown foliated, isoclinally folded gabbroic anorthosite is well layered with garnetiferous amphibolite, quartz-feldspar gneiss, and calcsilicate. Because of rock composition, the layering cannot be due to metavolcanic sequences nor can disruption be attributed to partial melting. A satisfactory interpretation is that gabbroic anorthosite intruded mafic and carbonate-rich rocks in lit-par-lit fashion. (3) North of Speculator a garnetiferous amphibolite/gabbro has been intruded by granite now containing xenoliths, some with ophitic opx. Much of the layering in the granite consists of clots of plagioclase, garnet, pyroxene (chloritized) arranged in parallel. These are interpreted as small xenoliths of garnetiferous amphibolite/gabbro entrained into the granitic magma and strung out in the direction of flow. These examples provide further evidence that layering can develop during magmatic emplacement and need not represent primary stratification. Assignment of a primary origin to such layering necessarily results in misinterpretation of geologic history.

  15. Geochemical studies of mafic and other low silica, Precambrian intrusive rocks in the Adirondack lowlands, New York

    SciTech Connect

    Antibus, J.; Carl, J.D. . Dept. of Geology)

    1993-03-01

    Mafic metaigneous rocks in the Adirondack Lowlands include gabbros, amphibolites and diorites that are associated with, and hard to distinguish from, a host of dark colored, low-silica, alkali feldspar-bearing rocks that include syenogabbros, syenites and monzonites. All rocks intrude metasedimentary and metavolcanic host rocks and occur as isolated, pre- to syn-metamorphic bodies, generally with elongate, sheet-like form. Some occur within or marginal to deformation zones. Lacking are the massive igneous complexes of the Highlands where anorthosites, charnockites and mangerites comprise a common field association. Amphibolites vary from mappable sheets that are hundreds of meters thick to thin (<1 m) layers within the host gneisses. Gabbros and diorites vary from circular to oval-shaped bodies, generally <2 km across, that may be infolded with the host rocks. Pervasive shear in Lowland granitic rocks (Hyde School Gneiss) that resulted in major sheath folds, as proposed by Tewksbury, extends into the mafic bodies whose margins show strong gneissic textures and grain size reduction, but the cores are less deformed. The Balmat gabbro varies inwardly and systematically from monzonitic to gabbroic composition in decreasing Si, Na, K, Rb, Zr and Ba, and in increasing Ca, Mg, Fe, Ti, P, Sr, Cr, V and Ni content. Y/Nb ratios remain constant at 3-4. Among explanations of assimilation and metasomatism, the authors tentatively prefer an hypothesis of exclusion of alkali material during crystallization of mafic magma. Calc alkali and low potassium tholeiites are indicated in plots of the Balmat and other mafic bodies on Ti/100-Zr-Yx3 and Ti-Zr discrimination diagrams, although there is much scatter of data. Within-plate basalts are lacking, and ocean floor basalts are indicated for some amphibolites.

  16. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  17. Wolf restoration to the Adirondacks: the advantages and disadvantages of public participation in the decision

    USGS Publications Warehouse

    Mech, L. David; Sharpe, V.A.; Norton, B.; Donnelley, S.

    2000-01-01

    The first time I ever saw a wolf in New York State's Adirondack Mountains was in 1956. It was a brush wolf, or coyote (Canis latrans), not a real wolf, but to an eager young wildlife student this distinction meant little. The presence of this large deer-killing canid let my fresh imagination view the Adirondacks as a real northern wilderness. Since then I have spent the last 40 years studying the real wolf: the gray wolf (Canis lupus). Although inhabiting nearby Quebec and Ontario, the gray wolf still has not made its way back to the Adirondacks as it has to Wisconsin, Michigan, and Montana. Those three states had the critical advantages of a nearby reservoir population of wolves and wilderness corridors through which dispersers from the reservoirs could immigrate. The Adirondacks, on the other hand, are geographically more similar to the greater Yellowstone area in that they are separated from any wolf reservoir by long distances and intensively human-developed areas aversive to wolves from the reservoir populations. If wolves are to return to the Adirondacks, they almost certainly will have to be reintroduced, as they were to Yellowstone National Park. Wolf reintroduction, as distinct from natural recovery, is an especially contentious issue, for it entails dramatic, deliberate action that must be open to public scrutiny, thorough discussion and review, and highly polarized debate. This is as it should be because once a wolf population is reintroduced to an area, it must be managed forever. There is no turning back. The wolf was once eradicated not just from the Adirondacks but from almost all of the 48 contiguous states. That feat was accomplished by a primarily pioneering society that applied itself endlessly to the task, armed with poison. We can never return to those days, so once the wolf is reintroduced successfully, it will almost certainly be here to stay.

  18. Wetland vegetation responses to liming an Adirondack watershed

    SciTech Connect

    Mackun, I.R.

    1993-01-01

    Watershed liming as a long-term mitigation strategy to neutralize lake acidity, from increasing acid deposition, was initiated in North America at Woods Lake in the west central Adirondack region of New York. In October 1989, a dose of 10 MT lime (83.5% CaCO[sub 3]) ha[sup [minus]1] was aerially applied to 48% of the watershed. The wetlands adjacent to Woods Lake showed two distinct community types: one dominated by Chamaedaphne calyculata, and one dominated by graminoids and other herbaceous species. Within two years, liming did not alter the structure of either community type, and changed the cover or frequency of only 6 of 64 individual taxa. Most of these changes occurred in the herbaceous community type. The only strong positive response to liming was a nearly threefold increase in cover of the rhizomatous sedge Cladium mariscoides. The cover of Carex interior and Sphagnum spp. benefited from lime addition, while cover of Drosera intermedia and Muhlenbergia uniflora, and frequency of Hypericum canadense responded negatively to lime. Liming influenced the competitive release of only three taxa, all forbs with small growth forms. The tissue chemistry of foliage and twigs of Myrica gale, Chamaedaphne calyculata, and Carex stricta in the Chamaedaphne calyculata community type clearly illustrated species-specific patterns of nutrient accumulation and allocation both before and after liming. Concentrations of 17 of 20 elements responded to liming, although the responses varied among species and plant parts. Carex foliage was least responsive to liming, and Chamaedaphne twigs were most responsive. Elemental changes in plant tissues will be reflected in litter and many influence long-term nutrient dynamics in the wetland community.

  19. Mafic rocks of the Adirondack Highlands: One suite or many

    SciTech Connect

    Whitney, P.R. . New York State Museum)

    1993-03-01

    Mafic rocks in the granulite facies terrane of the Adirondack Highlands form at least 3 and possibly as many as 6 groups, based on field, petrographic, and geochemical criteria. Most abundant is the olivine metagabbro-amphibolite group (OMA), equivalent to the mafic suite'' of Olson (J. Petrol. 33:471, 1992). OMA occurs in irregular to tabular bodies, locally with intrusive relations, in all major rock types in the E and central Highlands. OMA is strongly olivine normative and forms a continuous differentiation series (Olson, 1992). Plagioclase-two pyroxene-garnet granulites (PGG) form dikes up to several m wide, in anorthositic host rocks. PGG are ferrogabbroic or ferrodioritic and approximately silica saturated. Two subgroups differ sharply in Mg, P, and trace elements. Ferrodiorite and monzodiorite gneisses (FMG), quartz normative and commonly migmatitic, occur in several large bodies in the NE Highlands and as extensive thin sheets in the W and SE Highlands, in association with anorthositic rocks. Three subgroups are distinguishable using Mg/Fe ratios and trace elements. Major element least-squares modeling suggests that both PGG and FMG could be derived by fractionation of gabbroic anorthosite liquids. A differentiation series is not evident, however, and both trace element (Ba, Rb, Sr, Zr and REE) data and normative plagioclase (An [>=] plag. in anorthosite) indicate a more complex origin. One subgroup of FMG may be early cumulates of the mangerite-charnockite suite. The chemistry of OMA, PGG, and FMG reflects their evolved nature and cannot be readily interpreted in terms of magma sources.

  20. Manganese biogeochemistry in a small Adirondack forested lake watershed

    USGS Publications Warehouse

    Shanley, James B.

    1986-01-01

    In September and October 1981, manganese (Mn) concentrations and pH were intensively monitored in a small forested lake watershed in the west-central Adirondack Mountains, New York, during two large acidic storms (each approximately 5 cm rainfall, pH 4. 61 and 4. 15). The data were evaluated to identify biogeochemical pathways of Mn and to assess how these pathways are altered by acidic atmospheric inputs. Concentrations of Mn averaged 1. 1 mu g/L in precipitation and increased to 107 mu g/L in canopy throughfall, the enrichment reflecting active biological cycling of Mn. Rain pH and throughfall Mn were negatively correlated, suggesting that foliar leaching of Mn was enhanced by rainfall acidity. The pulse-like input of Mn to the forest floor in the high initial concentrations in throughfall (approximately 1000 mu g/L) did not affect Mn concentrations in soil water ( less than 20 mu g/L) or groundwater (usually less than 40 mu g/L), which varied little with time. In the inlet stream, Mn concentrations remained constant at 48 mu g/L as discharge varied from 1. 1 to 96 L/s. Manganese was retained in the vegetative cycle and regulated in the stream by adsorption in the soil organic horizon. The higher Mn levels in the stream may be linked to its high acidity (pH 4. 2-4. 3). Mixing of Mn-rich stream water with neutral lake water (pH 7. 0) caused precipitation of Mn and deposition in lake sediment.

  1. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times

    SciTech Connect

    Cumming, B.F.; Smol, J.P.; Kingston, J.C.; Charles, D.F.; Birks, H.J.B.

    1992-01-01

    Preindustrial and present-day lake water pH, acid neutralizing capacity (ANC), total monomeric aluminum Al(sub m), and dissolved organic carbon (DOC) were inferred from the species composition of diatom and chrysophyte microfossils in the tops (present-day inferences) and bottoms (pre-1850 inferences) of sediment cores collected from a statistically selected set of Adirondack lakes. Results from the study lakes were extrapolated to a predefined target population of 675 low-alkalinity Adirondack region lakes. Estimates of preindustrial to present-day changes in lake water chemistry show that approximately 25-35% of the target population has acidified. The magnitude of acidification was greatest in the low-alkalinity lakes of the southwestern Adirondacks, an area with little geological ability to neutralize acidic deposition and receives the highest annual average rainfall in the region. The authors estimate that approximately 80% of the target population lakes with present-day measured pH = or < 5.2 and 30-45% of lakes with pH between 5.2 and 6.0 have undergone large declines in pH and ANC, and concomitant increases in Al(sub m). Estimated changes in (DOC) were small and show no consistent pattern in the acidified lakes. The study provides the first statistically based regional evaluation of the extent of lake acidification in the Adirondacks.

  2. Nitrate trends in the Adirondack Mountains, Northeastern US, 1993-2007

    EPA Science Inventory

    The Adirondack Mountains in New York State receive some of the highest rates of nitrogen deposition in the Northeastern U.S. Between 1993 and 2007, nitrogen deposition loads did not significantly change and average annual wet inorganic nitrogen deposition was 6 kg/ha (Figure 1)....

  3. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  4. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  5. Understanding cratonic flood basalts

    NASA Astrophysics Data System (ADS)

    Silver, Paul G.; Behn, Mark D.; Kelley, Katherine; Schmitz, Mark; Savage, Brian

    2006-05-01

    The origin of continental flood basalts has been debated for decades. These eruptions often produce millions of cubic kilometers of basalt on timescales of only a million years. Although flood basalts are found in a variety of settings, no locale is more puzzling than cratonic areas such as southern Africa or the Siberian craton, where strong, thick lithosphere is breached by these large basaltic outpourings. Conventionally, flood basalts have been interpreted as melting events produced by one of two processes: 1) elevated temperatures associated with mantle plumes and/or 2) adiabatic-decompression melting associated with lithospheric thinning. In southern Africa, however, there are severe problems with both of these mechanisms. First, the rifting circumstances of several well-known basaltic outpourings clearly reflect lithospheric control rather than the influence of a deep-seated plume. Specifically, rift timing and magmatism are correlated with stress perturbations to the lithosphere associated with the formation of collisional rifts. Second, the substantial lithospheric thinning required for adiabatic decompression melting is inconsistent with xenolith evidence for the continued survival of thick lithosphere beneath flood basalt domains. As an alternative to these models, we propose a new two-stage model that interprets cratonic flood basalts not as melting events, but as short-duration drainage events that tap previously created sublithospheric reservoirs of molten basalt formed over a longer time scale. Reservoir creation/existence (Stage I) requires long-term (e.g. ≫ 1 Ma) supersolidus conditions in the sublithospheric mantle that could be maintained by an elevated equilibrium geotherm (appropriate for the Archean), a slow thermal perturbation (e.g. thermal blanketing or large-scale mantle upwelling), or a subduction-related increase in volatile content. The drainage event (Stage II) occurs in response to an abrupt stress change in the lithosphere, which

  6. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  7. U-Pb age of the Diana Complex and Adirondack granulite petrogenesis

    USGS Publications Warehouse

    Basu, A.R.; Premo, W.R.

    2001-01-01

    U-Pb isotopic analyses of eight single and multi-grain zircon fractions separated from a syenite of the Diana Complex of the Adirondack Mountains do not define a single linear array, but a scatter along a chord that intersects the Concordia curve at 1145 ?? 29 and 285 ?? 204 Ma. For the most concordant analyses, the 207Pb/206Pb ages range between 1115 and 1150 Ma. Detailed petrographic studies revealed that most grains contained at least two phases of zircon growth, either primary magmatic cores enclosed by variable thickness of metamorphic overgrowths or magmatic portions enclosing presumably older xenocrystic zircon cores. The magmatic portions are characterized by typical dipyramidal prismatic zoning and numerous black inclusions that make them quite distinct from adjacent overgrowths or cores when observed in polarizing light microscopy and in back-scattered electron micrographs. Careful handpicking and analysis of the "best" magmatic grains, devoid of visible overgrowth of core material, produced two nearly concordant points that along with two of the multi-grain analyses yielded an upper-intercept age of 1118 ?? 2.8 Ma and a lower-intercept age of 251 ?? 13 Ma. The older age is interpreted as the crystallization age of the syenite and the younger one is consistent with late stage uplift of the Appalachian region. The 1118 Ma age for the Diana Complex, some 35 Ma younger than previously believed, is now approximately synchronous with the main Adirondack anorthosite intrusion, implying a cogenetic relationship among the various meta-igneous rocks of the Adirondacks. The retention of a high-temperature contact metamorphic aureole around Diana convincingly places the timing of Adirondack regional metamorphism as early as 1118 Ma. This result also implies that the sources of anomalous high-temperature during granulite metamorphism are the syn-metamorphic intrusions, such as the Diana Complex.

  8. Post-metamorphic fluid infiltration into granulites from the Adirondack Mountains, USA

    NASA Technical Reports Server (NTRS)

    Morrison, J.; Valley, John W.

    1988-01-01

    Post-metamorphic effects in the anorthosites of the Adirondacks, New York were described. Calcite-chlorite-sericite assemblages occur as veins, in disseminated form and as clots, and document retrograde fluid infiltration. These features are associated with late-state CO2-rich fluid inclusions. Stable isotope analyses of calcites indicates that the retrograde fluids interacted with meta-igneous and supracrustal lithologies, but the precise timing of the retrogression is as yet unknown.

  9. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks. Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed. Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in ??18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences. The range of Adirondack carbonate ??18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their

  10. Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition.

    PubMed

    Gerson, Jacqueline R; Driscoll, Charles T; Roy, Karen M

    2016-09-01

    With decreases in acid deposition, nitrogen : phosphorus (N:P) ratios in lakes are anticipated to decline, decreasing P limitation of phytoplankton and potentially changing current food web dynamics. This effect could be particularly pronounced in the Adirondack Mountains of New York State, a historic hotspot for effects of acid deposition. In this study, we evaluate spatial patterns of nutrient dynamics in Adirondack lakes and use these to infer potential future temporal trends. We calculated Mann-Kendall tau correlations among total phosphorus (TP), chlorophyll a, dissolved organic carbon (DOC), acid neutralizing capacity (ANC), and nitrate (NO3(-) ) concentrations in 52 Adirondack Long Term Monitoring (ALTM) program lakes using samples collected monthly during 2008-2012. We evaluated the hypothesis that decreased atmospheric N and S deposition will decrease P limitation in freshwater ecosystems historically impacted by acidification. We also compared these patterns among lake watershed characteristics (i.e., seepage or lacking a surface outlet, chain drainage, headwater drainage, thin glacial till, medium glacial till). We found that correlations (P < 0.05) were highly dependent upon the different hydrologic flowpaths of seepage vs. drainage lakes. Differentiations among watershed till depth were also important in determining correlations due to water interaction with surficial geology. Additionally, we found low NO3(-) :TP (N:P mass) values in seepage lakes (2.0 in winter, 1.9 in summer) compared to chain drainage lakes (169.4 in winter, 49.5 in summer) and headwater drainage lakes (97.0 in winter, 10.9 in summer), implying a high likelihood of future shifts in limitation patterns for seepage lakes. With increasing DOC and decreasing NO3(-) concentrations coinciding with decreases in acid deposition, there is reason to expect changes in nutrient dynamics in Adirondack lakes. Seepage lakes may become N-limited, while drainage lakes may become less P

  11. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  12. Possible evidence for contemporary doming of the Adirondack Mountains, New York, and suggested implications for regional tectonics and seismicity

    USGS Publications Warehouse

    Isachsen, Y.W.

    1975-01-01

    The Adirondack Mountain massif is a dissected elongate dome having a north-northeast axis about 190 km long, and an east-west dimension of about 140 km. The dome exposes a core of Proterozoic metamorphic rocks from which the Paleozoic cover rocks have been eroded, except in several north-northeast-trending graben. The minimum amplitude of the dome, based on a 'reconstruction' of the Proterozoic-Paleozoic unconformity is 1600 m. The Adirondack dome is an anomalous feature of the eastern edge of the North American craton. It differs from other uplifts in the Interior Lowlands of the craton not only in terms of the greater combined amplitude and area of its uplift, but in the present high elevation of its Mountains (up to 1600 m) which are unequalled on the craton except along the Rocky Mountain front and in the Torngat Mountains of northernmost Labrador. This prompted an interest in the possibility that the Adirondack dome has undergone neotectonic regeneration and may be undergoing domical uplift at the present time. Accordingly, leveling records were consulted at the National Geodetic Survey data base in Rockville, Maryland, and used to construct leveling profiles. The most informative of these extends north-south along the block-faulted eastern flank of the Adirondack dome, extending from Saratoga Springs to Rouses Point, a distance of 245 km. A comparison of the level lines for 1955 and 1973 demonstrates that arching has occurred. An uplift of 40 mm along the central portion of the line, and a corresponding subsidence of 50 mm at the northern end, has produced a net increase in the amplitude of arching of 90 mm in the 18-year interval. This differential uplift, particularly with subsidence at the northern end, argues for a tectonic rather than glacio-isostatic mechanism. Pending releveling across the center of the Adirondack dome, it is tempting to extrapolate the releveling profile and suggest that the Adirondacks as a whole may be undergoing contemporary doming

  13. Chronic and episodic acidification of Adirondack streams from acid rain in 2003-2005

    USGS Publications Warehouse

    Lawrence, G.B.; Roy, K.M.; Baldigo, Barry P.; Simonin, H.A.; Capone, S.B.; Sutherland, J.W.; Nierzwicki-Bauer, S. A.; Boylen, C.W.

    2008-01-01

    Limited information is available on streams in the Adirondack region of New York, although streams are more prone to acidification than the more studied Adirondack lakes. A stream assessment was therefore undertaken in the Oswegatchie and Black River drainages; an area of 4585 km2 in the western part of the Adirondack region. Acidification was evaluated with the newly developed base-cation surplus (BCS) and the conventional acid-neutralizing capacity by Gran titration (ANCG). During the survey when stream water was most acidic (March 2004), 105 of 188 streams (56%) were acidified based on the criterion of BCS < 0 ??eq L-1, whereas 29% were acidified based on an ANCG value < 0 ??eq L-1. During the survey when stream water was least acidic (August 2003), 15 of 129 streams (12%) were acidified based on the criterion of BCS < 0 ??eq L-1, whereas 5% were acidified based on ANCG value < 0 ??eq L -1. The contribution of acidic deposition to stream acidification was greater than that of strongly acidic organic acids in each of the surveys by factors ranging from approximately 2 to 5, but was greatest during spring snowmelt and least during elevated base flow in August. During snowmelt, the percentage attributable to acidic deposition was 81%, whereas during the October 2003 survey, when dissolved organic carbon (DOC) concentrations were highest, this percentage was 66%. The total length of stream reaches estimated to be prone to acidification was 718 km out of a total of 1237 km of stream reaches that were assessed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Characterization of an organic acid analog model in Adirondack, New York, surface waters

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.

    2013-12-01

    Natural waters include a variety of organic matter that differs in composition and functional groups. Dissolved organic matter is important but difficult to characterize acidic and metal binding (e.g., Al) functional groups in chemical equilibrium models. In this study data from Adirondack Lake Survey were used to calibrate an organic acid analog model in order to quantify the influence of organic acids on surface water chemistry. The study sites in the Adirondack region of New York have diverse levels of dissolved organic carbon (DOC), used as a surrogate for organic acids. DOC in 55 Adirondack surface waters varies from 180 μmol C/l (in Little Echo Pond) to 1263 μmol C/l (in Sunday Pond). To reduce the variability inherited in the large raw data set, suite of mean observations was constructed by grouping and averaging measured data into pH intervals of 0.05 pH units from pH 4.15 to 7.3. A chemical equilibrium model, which includes major solutes in natural waters, was linked to an optimization algorithm (genetic algorithm) to calibrate a triprotic organic analog model which includes proton and aluminum binding by adjusting the dissociation constants and site density of DOC. The object of fitting procedure was to simultaneously minimize the discrepancy between observed and simulated pH, acid neutralizing capacity (ANC), organic monomeric aluminum and inorganic monomeric aluminum. A sensitivity analysis on calibrated values indicate that the speciation of the modeled solutes are most responsive to the dissociation constant of AlOrg= Al3+ + Org3- reaction (Org3- represents organic anion), the site density of DOC and the second H+ dissociation constant of the triprotic organic analog (i.e. H2Org- = 2H+ + Org3- reaction).

  15. Preorogenic history of the Adirondacks as an elsonian anorogenic caldera complex

    SciTech Connect

    McLelland, J.

    1985-01-01

    The Adirondack Highlands are characterized by the close association of a distinctive trinity of metaigneous rocks: (1) anorthosites, (2) mangeritic and quartz mangeritic gneisses that tend to envelop the anorthosites, and (3) alaskitic and trondjhemitic gneisses many of which represent metamorphosed volcanic material. All rocks within the province exhibit high concentrations of iron (FeO/FeO + MgO approx. 0.8), and both titaniferous and non-titaniferous iron oxide deposits occur. The mangeritic rocks are alkaline to peralkaline while the alaskitic gneisses are meta- to peraluminous. A/CNK, KN/C, as well as oxides vs SiO/sub 2/ plots yield patterns identical to those cited by J. L. Anderson (1983) as diagnostic of Proterozoic anorogenic plutonism. Within North American this plutonism corresponds to the Elsonian magmatic event with most ages falling between 1.5 - 1.3 b.y. This belt is characterized by high-level anorogenic bimodal magmatism developed in caldera complexes with zoned magma chambers and widespread rhyolitic ash-flow tuffs. Examples of this activity are found in the St. Francois Mountains, Missouri; the Wolf River batholith, Wisconsin; and the Nain Province. The Adirondacks lie along this trend and exhibit the same bulk chemistry and chemical variation as the other complexes. In addition they show enrichment in halogens (esp. F), REE, Zr, and other trace elements associated with calderas. Fayalite and ferroaugite are widely developed. These similarities strongly suggest that prior to the Grenville Orogeny, the Adirondacks consisted of bimodal caldera complexes which were part of the Elsonian anorogenic magmatism extending across North America.

  16. Empirical Relationships Between Watershed Attributes and Headwater Lake Chemistry in the Adirondack Region

    SciTech Connect

    Hunsaker, C.T.

    1987-01-01

    Surface water acidification may be caused or influenced by both natural watershed processes and anthropogenic actions. Empirical models and observational data can be useful for identifying watershed attributes or processes that require further research or that should be considered in the development of process models. This study focuses on the Adirondack region of New York and has two purposes: to (1) develop empirical models that can be used to assess the chemical status of lakes for which no chemistry data exist and (2) determine on a regional scale watershed attributes that account for variability in lake pH and acid-neutralizing capacity (ANC). Headwater lakes, rather than lakes linked to upstream lakes, were selected for initial analysis. The Adirondacks Watershed Data Base (AWDB), part of the Acid Deposition Data Network maintained at Oak Ridge National Laboratory (ORNL), integrates data on physiography, bedrock, soils, land cover, wetlands, disturbances, beaver activity, land use, and atmospheric deposition with the water chemistry and morphology for the watersheds of 463 headwater lakes. The AWD8 facilitates both geographic display and statistical analysis of the data. The report, An Adirondack Watershed Data Base: Attribute and Mapping Information for Regional Acidic Deposition Studies (ORNL/TM--10144), describes the AWDB. Both bivariate (correlations and Wilcoxon and Kruskal-Wallis tests) and multivariate analyses were performed. Fifty-seven watershed attributes were selected as input variables to multiple linear regression and discriminant analysis. For model development -200 lakes for which pH and ANC data exist were randomly subdivided into a specification and a verification data set. Several indices were used to select models for predicting lake pH (31 variables) and ANC (27 variables). Twenty-five variables are common to the pH and ANC models: four lake morphology, nine soil/geology, eight land cover, three disturbance, and one watershed aspect. An

  17. Sources of oceanic basalts: radiogenic isotopic evidence

    SciTech Connect

    White, W.M.

    1985-02-01

    Oceanic basalts can be subdivided into five distinct groupings on the basis of their Sr, Nd, and Pb isotope composition. These classes, represented by mid-ocean ridge basalts (MORB) and St. Helena, Kerguelen, the Society Islands, and the Hawaiian Islands, may represent different but internally heterogeneous mantle reservoirs or merely distinct groups within which chemical evolution has proceeded in a similar manner. Little systematic geographic distribution of volcanism tapping these sources is apparent. Depletion has been most important in the evolution of the MORB-type reservoirs, whereas crustal recycling has dominated the evolution of sources of the Kerguelen and Society types. Primitive mantle is identifiable in the Sr, Nd, Hf, and Pb isotope characteristics of the Hawaiian source only. The evolution of St. Helena-type sources remains enigmatic. 33 references, 2 figures.

  18. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  19. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  20. The origin of garnet in the anorthosite-charnockite suite of the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1977-01-01

    Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: {Mathematical expression}, where ?? is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ?? orthopyroxene ?? quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies. ?? 1977 Springer-Verlag.

  1. Changes in the chemistry of acidified Adirondack streams from the early 1980s to 2008

    USGS Publications Warehouse

    Lawrence, G.B.; Simonin, H.A.; Baldigo, Barry P.; Roy, K.M.; Capone, S.B.

    2011-01-01

    Lakes in the Adirondack region of New York have partially recovered in response to declining deposition, but information on stream recovery is limited. Here we report results of Adirondack stream monitoring from the early 1980s to 2008. Despite a 50% reduction in atmospheric deposition of sulfur, overall increases in pH of only 0.28 and ANC of 13 μeq L-1 were observed in 12 streams over 23 years, although greater changes did occur in streams with lower initial ANC, as expected. In the North Tributary of Buck Creek with high dissolved organic carbon (DOC) concentrations, SO(4)(2-) concentrations decreased from 1999 to 2008 at a rate of 2.0 μmol L-1 y-1, whereas in the neighboring South Tributary with low DOC concentrations, the decrease was only 0.73 μmol L-1 y-1. Ca2+ leaching decreased in the North Tributary due to the SO(4)(2-) decrease, but this was partially offset by an increase in Ca2+ leaching from increased DOC concentrations.

  2. Eskers as an aid to the understanding of deglaciation in the Northern Adirondacks

    SciTech Connect

    King, G.S. . Geology Dept.)

    1993-03-01

    Eskers in the Northern Adirondack Mountains of New York State have been examined in order to gain a better understanding of their origin, their relationship to other glacial landforms, and to determine the relative timing of their formation. Ultimately, it is hoped that eskers can be used to construct a model of the former ice sheet for the region. Cross sections and longitudinal profiles were constructed to give a better understanding of esker form. Subsequent fieldwork was designed to confirm and compliment these morphometric analyses. The sedimentology of an esker and adjacent fan was logged and interpreted. The spatial relations between the eskers, fans, and delta complexes were identified. Results indicate that the eskers of the Northern Adirondack Mountains formed at different stages in the retreat of the ice sheet and are not related to an integrated subglacial drainage system. The presence of a lacustrine fan at the south end of the St. Regis Esker indicates that a glacial lake was present at the ice sheet margin and delimits an ice marginal position. The morphology and distribution of eskers may be useful as an indicator in the timing of continental deglaciation of northern New York State. Research for this project was funded by a University of Dayton Research Council Grant to D. Pair.

  3. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    SciTech Connect

    Revetta, F.A.; O'Brian, B. . Geology Dept.)

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate with the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.

  4. Using Satellite Imagery to Assess Large-Scale Habitat Characteristics of Adirondack Park, New York, USA

    NASA Astrophysics Data System (ADS)

    McClain, Bobbi J.; Porter, William F.

    2000-11-01

    Satellite imagery is a useful tool for large-scale habitat analysis; however, its limitations need to be tested. We tested these limitations by varying the methods of a habitat evaluation for white-tailed deer ( Odocoileus virginianus) in the Adirondack Park, New York, USA, utilizing harvest data to create and validate the assessment models. We used two classified images, one with a large minimum mapping unit but high accuracy and one with no minimum mapping unit but slightly lower accuracy, to test the sensitivity of the evaluation to these differences. We tested the utility of two methods of assessment, habitat suitability index modeling, and pattern recognition modeling. We varied the scale at which the models were applied by using five separate sizes of analysis windows. Results showed that the presence of a large minimum mapping unit eliminates important details of the habitat. Window size is relatively unimportant if the data are averaged to a large resolution (i.e., township), but if the data are used at the smaller resolution, then the window size is an important consideration. In the Adirondacks, the proportion of hardwood and softwood in an area is most important to the spatial dynamics of deer populations. The low occurrence of open area in all parts of the park either limits the effect of this cover type on the population or limits our ability to detect the effect. The arrangement and interspersion of cover types were not significant to deer populations.

  5. Very high potassium (VHK) basalt - Complications in mare basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.; Laul, J. C.; Shih, C.-Y.; Nyquist, L. E.

    1985-01-01

    The first comprehensive report on the petrology and geochemistry of Apollo 14 VHK (Very High Potassium) basalts and their implications for lunar evolution is presented. The reported data are most consistent with the hypothesis that VHK basalts formed through the partial assimilation of granite by a normal low-Ti, high-Al mare basalt magma. Assimilation was preceded by the diffusion-controlled exchange of alkalis and Ba between basalt magma and the low-temperature melt fraction of the granite. Hypotheses involving volatile/nonvolatile fractionations or long-term enrichment of the source regions in K are inconsistent with the suprachondritic Ba/La ratios and low initial Sr-87/Sr-86 ratios of VHK basalt. An important implication of this conclusion is that granite should be a significant component of the lunar crust at the Apollo 14 site.

  6. Sulfide Stability of Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Caiazza, C. M.; Righter, K.; Gibson, E. K., Jr.; Chesley, J. T.; Ruiz, J.

    2004-01-01

    The isotopic system, 187Re 187Os, can be used to determine the role of crust and mantle in magma genesis. In order to apply the system to natural samples, we must understand variations in Re/Os concentrations. It is thought that low [Os] and [Re] in basalts can be attributed to sulfide (FeS) saturation, as Re behaves incompatibly to high degrees of evolution until sulfide saturation occurs [1]. Previous work has shown that lunar basalts are sulfide under-saturated, and mid-ocean ridge, ocean-island and Martian (shergottites) basalts are saturated [2,3]. However, little is known about arc basalts. In this study, basaltic rocks were analyzed across the Trans-Mexican Volcanic Belt.

  7. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-09

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  8. Chlorine in Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  9. A new source of basaltic meteorites inferred from Northwest Africa 011.

    PubMed

    Yamaguchi, Akira; Clayton, Robert N; Mayeda, Toshiko K; Ebihara, Mitsuru; Oura, Yasuji; Miura, Yayoi N; Haramura, Hiroshi; Misawa, Keiji; Kojima, Hideyasu; Nagao, Keisuke

    2002-04-12

    Eucrites are a class of basaltic meteorites that share common mineralogical, isotopic, and chemical properties and are thought to have been derived from the same parent body, possibly asteroid 4 Vesta. The texture, mineralogy, and noble gas data of the recently recovered meteorite, Northwest Africa (NWA) 011, are similar to those of basaltic eucrites. However, the oxygen isotopic composition of NWA011 is different from that of other eucrites, indicating that NWA011 may be derived from a different parent body. The presence of basaltic meteorites with variable oxygen isotopic composition suggests the occurrence of multiple basaltic meteorite parent bodies, perhaps similar to 4 Vesta, in the early solar system.

  10. Geochemical characterization of oceanic basalts using Artificial Neural Network.

    PubMed

    Das, Pranab; Iyer, Sridhar D

    2009-12-23

    The geochemical discriminate diagrams help to distinguish the volcanics recovered from different tectonic settings but these diagrams tend to group the ocean floor basalts (OFB) under one class i.e., as mid-oceanic ridge basalts (MORB). Hence, a method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). We have applied Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) to identify the inherent geochemical signatures present in the Central Indian Ocean Basin (CIOB) basalts. A range of N-MORB, E-MORB and OIB dataset was used for training and testing of the network. Although the identification of the characters as N-MORB, E-MORB and OIB is completely dependent upon the training data set for the LVQ, but to a significant extent this method is found to be successful in identifying the characters within the CIOB basalts. The study helped to geochemically delineate the CIOB basalts as N-MORB with perceptible imprints of E-MORB and OIB characteristics in the form of moderately enriched rare earth and incompatible elements. Apart from the fact that the magmatic processes are difficult to be deciphered, the architecture performs satisfactorily.

  11. Origin of coronas in metagabbros of the Adirondack mts., N. Y

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1973-01-01

    Metagabbros from two widely separated areas in the Adirondacks show development of coronas. In the Southern Adirondacks, these are cored by olivine which is enclosed in a shell of orthopyroxene that is partially, or completely, rimmed by symplectites consisting of clinopyroxene and spinel. Compositions of the corona phases have been determined by electron probe and are consistent with a mechanism involving three partial reactions, thus: (a) Olivine=Orthopyroxene+(Mg, Fe)++. (b) Plagioclase+(Mg, Fe)+++Ca++=Clinopyroxene+Spinel+Na+. (c) Plagioclase+(Mg, Fe)+++Na+=Spinel+more sodic plagioclase+Ca++. Reaction (a) occurs in the inner shell of the corona adjacent to olivine; reaction (b) in the outer shell; and (c) in the surrounding plagioclase, giving rise to the spinel clouding which is characteristic of the plagioclase in these rocks. Alumina and silica remain relatively immobile. These reactions, when balanced, can be generalized to account for the aluminous nature of the pyroxenes and for changing plagioclase composition. Summed together, the partial reactions are equivalent to: (d) Olivine + Anorthite = Aluminous orthopyroxene + Aluminous Clinopyroxene + Spinel (Kushiro and Yoder, 1966). In the Adirondack Highlands, coronas between olivine and plagioclase commonly have an outer shell of garnet replacing the clinopyroxene/spinel shell. The origin of the garnet can also be explained in terms of three partial reactions: (e) Orthopyroxene+Ca++=Clinopyroxene+(Mg, Fe)++. (f) Clinopyroxene+Spinel+Plagioclase+(Mg, Fe)++=Garnet+Ca+++Na+. (g) Plagioclase+(Mg, Fe)+++Na+=Spinel + more sodic plagioclase+Ca++. These occur in the inner and outer corona shell and the surrounding plagioclase, respectively, and involve the products of reactions (a)-(d). Alumina and silica are again relatively immobile. Balanced, and generalized to account for aluminous pyroxenes and variable An content of plagioclase, they are equivalent to: (h) Orthopyroxene+Anorthite+Spinel=Garnet (Green and

  12. Simulation of growth of Adirondack conifers in relation to global climate change

    SciTech Connect

    Pan, Y.; Raynal, D.J. )

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of trees are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.

  13. Acid precipitation effects on algal productivity and biomass in Adirondack Lakes. Final completion report

    SciTech Connect

    Hendrey, G.R.

    1982-12-01

    Relationships between phytoplankton communities and lake acidity in three Adirondack Mountain Lakes were studied at Woods Lake, Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed were Woods 45, Sagamore 55, and Panther 85, conforming to observations at many other sites that species numbers decrease with increasing acidity. The smaller plankton are relatively more important in the more acid lakes, Woods > Sagamore > Panther. This pattern could be determined by nutrient availability (lake acidification is suspected of leading to decreased availability of phosphorus). The amount of 14C-labelled dissolved photosynthate (14C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther.

  14. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  15. Impacts of acidification on macroinvertebrate communities in streams of the western Adirondack Mountains, New York, USA

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.; Bode, R.W.; Simonin, H.A.; Roy, K.M.; Smith, A.J.

    2009-01-01

    Limited stream chemistry and macroinvertebrate data indicate that acidic deposition has adversely affected benthic macroinvertebrate assemblages in numerous headwater streams of the western Adirondack Mountains of New York. No studies, however, have quantified the effects that acidic deposition and acidification may have had on resident fish and macroinvertebrate communities in streams of the region. As part of the Western Adirondack Stream Survey, water chemistry from 200 streams was sampled five times and macroinvertebrate communities were surveyed once from a subset of 36 streams in the Oswegatchie and Black River Basins during 2003-2005 and evaluated to: (a) document the effects that chronic and episodic acidification have on macroinvertebrate communities across the region, (b) define the relations between acidification and the health of affected species assemblages, and (c) assess indicators and thresholds of biological effects. Concentrations of inorganic Al in 66% of the 200 streams periodically reached concentrations toxic to acid-tolerant biota. A new acid biological assessment profile (acidBAP) index for macroinvertebrates, derived from percent mayfly richness and percent acid-tolerant taxa, was strongly correlated (R2 values range from 0.58 to 0.76) with concentrations of inorganic Al, pH, ANC, and base cation surplus (BCS). The BCS and acidBAP index helped remove confounding influences of natural organic acidity and to redefine acidification-effect thresholds and biological-impact categories. AcidBAP scores indicated that macroinvertebrate communities were moderately or severely impacted by acidification in 44-56% of 36 study streams, however, additional data from randomly selected streams is needed to accurately estimate the true percentage of streams in which macroinvertebrate communities are adversely affected in this, or other, regions. As biologically relevant measures of impacts caused by acidification, both BCS and acidBAP may be useful

  16. Persistent mortality of brook trout in episodically acidified streams of the Southwestern Adirondack Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.; Simonin, H.

    2007-01-01

    Water chemistry, discharge, and mortality of caged brook trout Salvelinus fontinalis were characterized in six headwater streams in the southwestern Adirondack Mountains of New York during spring 2001-2003. Results were compared with mortality recorded during similar tests during 1984-1985, 1988-1990, and 1997 to assess contemporary relations between stream acidification and brook trout mortality, the effects of exposure duration on mortality, and the effects of decreased rates of acidic deposition on water quality and fish mortality. Water quality and mortality of caged, young-of-the-year brook trout were evaluated during 30-d exposure periods from mid-April to late May during the most recent tests. In 2001-2003, mortality ranged from 0% to 100% and varied among streams and years, depending on the timing of toxicity tests in relation to the annual snowmelt and on the ability of each watershed to neutralize acids and prevent acutely toxic concentrations of inorganic monomeric aluminum (Alim) during high-flow events. Mortality rates in 2001-2003 tests were highly variable but similar to those observed during earlier tests. This similarity suggests that stream water quality in the southwestern Adirondack Mountains has not changed appreciably over the past 20 years. Concentrations of Alim greater than 2.0 and 4.0 ??mol/L were closely correlated with low and high mortality rates, respectively, and accounted for 83% of the variation in mortality. Two to four days of exposure to Alim concentrations greater than 4.0 ??mol/L resulted in 50-100% mortality. The extended periods (as long as 6 months) during which Alim concentrations exceeded 2.0 and 4.0 ??mol/L in one or more streams, combined with the low tolerance of many other fish species to acid and elevated Al concentrations, indicate a high potential for damage to fish communities in these and other poorly buffered streams of the Northeast. ?? Copyright by the American Fisheries Society 2007.

  17. Hanford basalt flow mineralogy

    SciTech Connect

    Ames, L.L.

    1980-09-01

    Mineralogy of the core samples from five core wells was examined in some detail. The primary mineralogy study included an optical examination of polished mounts, photomicrographs, chemical analyses of feldspars, pyroxenes, metallic oxides and microcrystalline groundmasses and determination from the chemical analyses of the varieties of feldspars, pyroxenes and metallic oxides. From the primary mineralogy data, a firm understanding of the average Hanford basalt flow primary mineralogy emerged. The average primary feldspar was a laboradorite, the average pyroxene was an augite and the average metallic oxide was a solid solution of ilmenite and magnetite. Secondary mineralization consisted of vug filling and joint coating, chiefly with a nontronite-beidellite clay, several zeolites, quartz, calcite, and opal. Specific flow units also were examined to determine the possibility of using the mineralogy to trace flows between core wells. These included units of the Pomona, the Umatilla and a high chromium flow just below the Huntzinger. In the Umatilla, or high barium flow, the compositional variation of the feldspars was unique in range. The pyroxenes in the Pomona were relatively highly zoned and accumulated chromium. The high chromium flow contained chromium spinels that graded in chromium content into simple magnetites very low in chromium content. A study of the statistical relationships of flow unit chemical constituents showed that flow unit constituents could be roughly correlated between wells. The probable cause of the correlation was on-going physical-chemical changes in the source magma.

  18. Flood basalts and mass extinctions

    NASA Technical Reports Server (NTRS)

    Morgan, W. Jason

    1988-01-01

    There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.

  19. Thickness of western mare basalts

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.

    1979-01-01

    An isopach map of the basalt thickness in the western mare basins is constructed from measurements of the exposed external rim height of partially buried craters. The data, although numerically sparse, is sufficiently distributed to yield gross thickness variations. The average basalt thickness in Oceanus Procellarum and adjacent regions is 400 m with local lenses in excess of 1500 m in the circular maria. The total volume of basalt in the western maria is estimated to be in the range of 1.5 x 10 to the 6th power cu km. The chief distinction between the eastern and western maria appears to be one of basalt volumes erupted to the surface. Maximum volumes of basalt are deposited west of the central highlands and flood subjacent terrain to a greater extent than on the east. The surface structures of the western maria reflect the probability of a greater degree of isostatic response to a larger surface loading by the greater accumulation of mare basalt.

  20. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    or channel bends that exposes more core lava to cooling than simply that of the shear zones. Thus the channel geometry plays a major role in the thermal history of a flow. As lava flows rarely flow through pre-existing channels of prescribed geometry, we have performed an additional set of analog laboratory experiments to determine the relationship between flow rate, slope, and channel formation in solidifying flows. All flows develop stable uniform channels within solidified levees except when the flow rate is sufficiently low to permit flow front solidification, inflation, and tube formation. On constant slopes, increasing flow rates result in increases in both the rate of flow advance rate and the channel width, and a decrease in levee width. At constant flow rates, both channel width and levee width decrease with increasing slope while flow advance rate increases. Limited data on the geometry of basaltic lava channels indicate that experimental data are consistent with field observations, however, both additional field data and scaling relationships are required to fully utilize the laboratory experiments to predict channel development in basaltic lava flows.

  1. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  2. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York.

    PubMed

    Sullivan, T J; Lawrence, G B; Bailey, S W; McDonnell, T C; Beier, C M; Weathers, K C; McPherson, G T; Bishop, D A

    2013-11-19

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  3. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  4. Long-Term Trends in Trace Metals Concentrations in Sediment in Lakes in Adirondack Park, NY

    NASA Astrophysics Data System (ADS)

    Bari, A.; Judd, C. D.; Swami, K.; Ahmed, T.; Husain, L.

    2007-12-01

    The industrial Midwestern states consume large quantities of fossil fuel and emit large quantities of trace elements, SO2 and other chemicals. Owing to their long residence time these pollutants can be transported hundreds of miles downwind. These chemical species are removed from the atmosphere by wet and dry deposition and are ultimately deposited in lake sediments. Through the sedimentation process the pollution records can be stored for centuries. In this work we have attempted to retrieve the deposition of 25 trace elements for the past ~170 years by analyzing lake sediment cores from lakes located in the Adirondack Mountains. Sediment cores were collected from four lakes (Clear Pond, West Pine Pond, Bear Pond and Deer Pond) located in the Adirondack Park, NY. These lakes are at high altitude and some are inaccessible except by boat, and have minimum human activity (no motor boats, no camping and away from major roads). Coring was carried out by a gravity driven coring device. The cores were sectioned, weighed, freeze-dried, ground to a fine powder, and homogenized for analysis. The sediment cores were dated using 210Pb radioactive dating. The 137Cs activity was measured for an independent verification of 210Pb technique. Trace metals concentration were determined by microwave digestion method followed by inductively coupled plasma mass spectrometric (ICP-MS) analysis. The top sixteen sections of the West Pine Pond sediment core (representing from about 1835 to 2005) were analyzed for Sr, Ba, As, Se, Mo, Cd, Sn, Sb, Co, Ni, Cu, Ag,Ti, V, Cr, Mn, Fe, Zn, K, Na, Ca, Mg, Be, Tl, and Pb. During pre industrial era the concentrations of Pb, Se and Tl were very low and constant. Pb showed a sharp increase in concentration after around 1880 and a sharp decrease in concentration after about 1990. The concentration of Se increased slowly after pre industrial era. The concentrations of about eight of these elements were determined in quarterly composites of daily aerosol

  5. Chemical Weathering Kinetics of Basalt on Venus

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of this project was to experimentally measure the kinetics for chemical weathering reactions involving basalt on Venus. The thermochemical reactions being studied are important for the CO2 atmosphere-lithosphere cycle on Venus and for the atmosphere-surface reactions controlling the oxidation state of the surface of Venus. These reactions include the formation of carbonate and scapolite minerals, and the oxidation of Fe-bearing minerals. These experiments and calculations are important for interpreting results from the Pioneer Venus, Magellan, Galileo flyby, Venera, and Vega missions to Venus, for interpreting results from Earth-based telescopic observations, and for the design of new Discovery class (e.g., VESAT) and New Millennium missions to Venus such as geochemical landers making in situ elemental and mineralogical analyses, and orbiters, probes and balloons making spectroscopic observations of the sub-cloud atmosphere of Venus.

  6. Long-term pCO2 trends in Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Seekell, David A.; Gudasz, Cristian

    2016-05-01

    Lakes are globally significant sources of CO2 to the atmosphere. However, there are few temporally resolved records of lake CO2 concentrations and long-term patterns are poorly characterized. We evaluated annual trends in the partial pressure of CO2 (pCO2) based on chemical measurements from 31 Adirondack Lakes taken monthly over an 18 year period. All lakes were supersaturated with CO2 and were sources of CO2 to the atmosphere. There were significant pCO2 trends in 29% of lakes. The median magnitude of significant positive trends was 32.1 µatm yr-1. Overall, 52% of lakes had pCO2 trends greater than those reported for the atmosphere and ocean. Significant trends in lake pCO2 were attributable to regional recovery from acid deposition and changing patterns of ice cover. These results illustrate that lake pCO2 can respond rapidly to environmental change, but the lack of significant trend in 71% of lakes indicates substantial lake-to-lake variation in magnitude of response.

  7. Evidence for multiple metamorphic events in the Adirondack Mountains, N. Y

    SciTech Connect

    McLelland, J.; Lochhead, A.; Vyhnal, C.

    1988-05-01

    Field evidence consisting of: (1) rotated, foliated xenoliths, (2) country rock foliation truncated by isoclinally folded igneous intrusions bearing granulite facies assemblages document one, or more, early dynamothermal event(s) of regional scale and high grade. Early metamorphism resulted in pronounced linear and planar fabric throughout the Adirondacks and preceded the emplacement of the anorthosite-mangerite-charnockite-granite-alaskite (AMCA) suite which contains xenoliths of the metamorphosed rocks. Olivine metagabbros, believed to be approximately contemporaneous with the AMCA-suite, also crosscut and contain xenoliths of, strongly foliated metasediments. These intrusive rocks caused contact metamorphism in the metasediments which locally exhibit both anatectite and restite assemblages. Subsequently, this already complex framework underwent three phases of folding, including an early recumbent isoclinical event, and was metamorphosed to granulite facies P,T conditions. The age of the early metamorphism cannot yet be narrowly constrained, but isotopic results suggest that it may be as young as approx. 1200 Ma or older than approx. 1420 Ma. U-Pb zircon ages indicate emplacement of the AMCA-(metagabbro)-suite in the interval 1160-1130 Ma and place the peak of granulite facies metamorphism between 1070-1025 Ma. The anorogenic character of the AMCA-suite, and the occurrence of metadiabase dike swarms within it, are further evidence of the separate nature of the metamorphic events that precede and postdate AMCA emplacement.

  8. Juvenile Middle Proterozoic crust in the Adirondack Highlands, Grenville province, northeastern North America

    SciTech Connect

    Daly, J.S. ); McLelland, J.M. )

    1991-02-01

    Nd isotope data indicate that minimal amounts of significantly older crust have contributed to the genesis of the oldest (ca. 1.3-13.5 Ga) plutons in the Adirondack Highlands. These are magmatic arc tonalites with positive initial {epsilon}{sub Nd} values and Sm-Nd depleted mantle model ages (t{sub DM}) that are within 70 m.y. of the time of their crystallization. Granitoids of the anorthosite-mangerite-charnockite-granite suite, dated at 1,156-1,134 Ma, as well as the 1,100-1,050 Ma plutons, associated with the Ottawan phase of the Grenvillian orogenic cycle, also have positive initial {epsilon}{sub Nd} values and t{sub DM} ages similar to the tonalites. Derivation of both groups of granitoids by crustal melting of the magmatic arc is consistent with the available isotopic and geochemical data. Juvenile late Middle Proterozoic crust that formed during or just prior to the Grenville cycle appears to dominate the southwestern Grenville province as well as the Grenville inliers to the south. In contrast, most of the contiguous Grenville province in Canada comprises largely reworked older crust.

  9. Acid precipitation effects on algal productivity and biomass in Adirondack Mountain lakes

    SciTech Connect

    Hendrey, G.R.

    1982-12-01

    Relationships between phytoplankton communities and lake acidity in three Adirondack Mountain lakes were studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly to maxima six weeks after ice-out, instead of occurring very close to ice-out. Contributions of netplankton, nannoplankton and ultraplankton to productivity per m/sup 2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification is suspected of leading to decreased availability of phosphorus). This was consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. 11 references, 2 tables.

  10. Phytoplankton limitation by phosphorus and zooplankton grazing in an acidic Adirondack lake

    SciTech Connect

    Singer, R.; Evans, G.L.; Pratt, N.C.

    1984-08-01

    Lakes which are believed to have been acidified by atmospheric deposition of anthropogenic substances are known for their unusually high water clarity and low nutrient concentrations. Some evidence indicates that alterations in predator/prey relationships, an indirect effect of acidification, bring about the increase in water clarity. Enclosures were used to study the effects of phosphorus addition and zooplankton removal on the phytoplankton of an acidic lake in the Adirondack Mountains of New York. Fertilized enclosures had significantly lower alkalinities and contained significantly more dissolved oxygen after the incubation period than did unfertilized enclosures. The P concentration remained at or near the limit of detection in the unfertilized enclosures. The phytoplankton population bloomed after the addition of 80 micro g/liter of phosphate as KH/sub 2/PO/sub 4/. The response was measured by cell counts of the dominant phytoplankton. Chlamydomonas, and by changes in chlorophyll a concentration. About half the number of algal cells were present after the two week incubation when zooplankton were not removed, indicating that zooplankton herbivory can influence, but not totally control, the algal production. 46 references.

  11. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, NY

    SciTech Connect

    Charles, D.F.; Binford, M.W.; Furlong, E.T.; Hites, R.A.; Mitchell, M.J.

    1990-01-01

    Paleoecological analysis of the sediment record of 12 Adirondack lakes reveals that the 8 clearwater lakes with current pH<5.5 and alkalinity <10 microeq/l have acidified recently. The onset of the acidification occurred between 1920 and 1970. Loss of alkalinity, based on quantitative analysis of diatom assemblages, ranged from 2 to 35 microeq/l. The acidification trends are substantiated by several lines of evidence including stratigraphies of diatom, chrysophyte, chironomid, and cladoceran remains, Ca:Ti and Mn:Ti ratios, sequentially extracted forms of Al, and historical fish data. Acidification trends appear to be continuing in some lakes, despite reductions in atmospheric sulfur loading that began in the early 1970s. The primary cause of the acidification trend is clearly increased atmospheric deposition of strong acids derived from the combustion of fossil fuels. Natural processes and watershed disturbances cannot account for the changes in water chemistry that have occurred, but they may play a role. Sediment core profiles of Pb, Cu, V, Zn, S, polycyclic aromatic hydrocarbons, magnetic particles, and coal and oil soot provide a clear record of increased atmospheric input of materials associated with the combustion of fossil fuels beginning in the late 1800s and early 1900s.

  12. Sedimentology of basal Potsdam sandstone in Adirondack border region, New York, southeastern Ontario, and southwestern Quebec

    SciTech Connect

    McRae, L.E.; Johnson, G.D.

    1986-05-01

    Field evidence supports the relatively widespread presence of nonmarine facies within the basal Potsdam formation of the Adirondack border areas of northern New York, southeastern Ontario, and southwestern Quebec. Detailed observations of areal extent, analysis of sedimentary structures and paleocurrent directions, and petrographic studies have been combined with the paleomagnetic determination of the temporal relationships of these strata to establish depositional patterns and facies trends within basal Potsdam units. Four distinct nonmarine lithofacies have been identified: massive matrix-supported conglomerate, stratified framework-supported conglomerate, conglomerate-arkose, and pebble conglomerate-arkose fining-upward sequences, interpreted to represent debris flows, proximal gravelly braided-stream deposits, intermediate to distal gravelly braided-stream deposits, and proximal sandy braided-stream deposits, respectively. Facies of eolian or possibly tidal, and shallow marine origin have also been identified at the base of the Potsdam sequence. Most basal Potsdam sediments are compositionally and texturally immature, derived directly from the crystalline detritus of the extensively weathered Precambrian surface and regoliths that may have locally developed on the craton. The desert-like environment of the Precambrian surface allowed for rapid transport and deposition of relatively unweathered sediments and the subsequent construction of a braided alluvial plain system. Field relations and evidence derived from consideration of the paleomagnetic properties in five localities of fine-grained alluvium suggest that terrestrial Potsdam deposition in the Early and Middle Cambrian largely preceded the marine transgression that deposited the thick, shallow marine units typifying most of the Potsdam sequence.

  13. U-Pb zircon geochronology and evolution of some Adirondack meta-igneous rocks

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    An update was presented of the recent U-Pb isotope geochronology and models for evolution of some of the meta-igneous rocks of the Adirondacks, New York. Uranium-lead zircon data from charnockites and mangerites and on baddeleyite from anorthosite suggest that the emplacement of these rocks into a stable crust took place in the range 1160 to 1130 Ma. Granulite facies metamorphism was approximately 1050 Ma as indicated by metamorphic zircon and sphene ages of the anorthosite and by development of magmatitic alaskitic gneiss. The concentric isotherms that are observed in this area are due to later doming. However, an older contact metamorphic aureole associated with anorthosite intrusion is observed where wollastonite develops in metacarbonates. Zenoliths found in the anorthosite indicate a metamorphic event prior to anorthosite emplacement. The most probable mechanism for anorthosite genesis is thought to be ponding of gabbroic magmas at the Moho. The emplacement of the anorogenic anorthosite-mangerite-charnockite suite was apparently bracketed by compressional orogenies.

  14. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    USGS Publications Warehouse

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  15. Development of LANDSAT Derived Forest Cover Information for Integration into Adirondack Park GIS

    NASA Technical Reports Server (NTRS)

    Curran, R. P.; Banta, J. S.

    1982-01-01

    Based upon observed changes in timber harvest practices partially attributable to forest biomass removable for energy supply purposes, the Adirondack Park Agency began in 1979 a multi-year project to implement a digital geographic information system (GIS). An initial developmental task was an inventory of forest cover information and analysis of forest resource change and availability. While developing the GIS, a pilot project was undertaken to evaluate the usefulness of LANDSAT derived land cover information for this purpose, and to explore the integration of LANDSAT data into the GIS. The prototype LANDSAT analysis project involved: (1) the use of both recent and historic data to derive land cover information for two dates; and (2) comparison of land cover over time to determine quantitative and geographic changes. The "recent data," 1978 full foliage data over portions of four LANDSAT scenes, was classified, using ground truth derived training samples in various forested and non-forested categories. Forested categories include the following: northern hardwoods, pine, spruce-fir, and pine plantation, while nonforested categories include wet-conifer, pasture, grassland, urban, exposed soil, agriculture, and water.

  16. Late Quaternary history of the southwestern St. Lawrence Lowlands and adjacent Adirondack Highlands

    SciTech Connect

    Pair, D.L. . Dept. of Geology)

    1993-03-01

    The reconstruction of Late Wisconsinan ice retreat, proglacial lakes, and Champlain Sea history from the northwest Adirondack slope and adjacent St. Lawrence Lowlands is critical to the synthesis of a regional picture of deglacial events in the eastern Great Lakes region. Unfortunately, these same areas are well known for their limited exposures, landforms covered by thick forest, large tracts of land inaccessible to detailed field mapping, and the overall paucity of glacial materials preserved on upland surfaces. Despite these limitations, a model which utilizes multiple and field-truthed evidence has been used to designate areas where ice border deposits indicate a substantial recessional position. It employs the following criteria in this analysis: sedimentology and morphostratigraphy of morainal landform segments and related sediments; orientation and continuity of ice border drainage channels; and the relationship of ice borders and drainage systems to well documented local and regional water bodies which accompanied ice retreat. The results of this approach have provided a unique regional picture of deglaciation. Despite the inherent limitations of working in upland areas to reconstruct glacial events, detailed morphostratigraphic correlations based on multiple lines of evidence can yield important information. The positions of five former ice borders have been reconstructed from the available data. These ice margins correspond closely with those documented previously by others adjoining areas. This type of study, utilizing multiple and field-truthed lines of evidence, constitutes a tangible step towards understanding the nature and history of ice retreat along this portion of the Laurentide Ice Sheet.

  17. Hydraulic and biochemical gradients limit wetland mercury supply to an Adirondack stream

    USGS Publications Warehouse

    Bradley, Paul M.; Burns, Douglas A.; Harvey, Judson; Journey, Celeste; Brigham, Mark E.; Murray, Karen

    2016-01-01

    Net fluxes (change between upstream and downstream margins) for water, methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and chloride (Cl) were assessed twice in an Adirondack stream reach (Sixmile Brook, USA), to test the hypothesized importance of wetland-stream hydraulic and chemical gradients as fundamental controls on fluvial mercury (Hg) supply. The 500 m study reach represented less than 4% of total upstream basin area. During a snowmelt high-flow event in May 2009 surface water, DOC, and chloride fluxes increased by 7.1±1.3%, 8.0±1.3%, and 9.0±1.3%, respectively, within the reach, demonstrating that the adjacent wetlands are important sources of water and solutes to the stream. However, shallow groundwater Hg concentrations lower than in the surface water limited groundwater-surface water Hg exchange and no significant changes in Hg (filtered MeHg and THg) fluxes were observed within the reach despite the favorable hydraulic gradient. In August 2009, the lack of significant wetland-stream hydraulic gradient resulted in no net flux of water or solutes (MeHg, THg, DOC, or Cl) within the reach. The results are consistent with the wetland-Hg-source hypothesis and indicate that hydraulic and chemical gradient (direction and magnitude) interactions are fundamental controls on the supply of wetland Hg to the stream.

  18. Chemical variations within a metagabbro, N. W. Adirondack lowlands, N. Y

    SciTech Connect

    Von Derau, G.D. Jr.; Van Brocklin, M.F. . Geology Dept.)

    1993-03-01

    A metagabbro located in the N.W. Adirondack lowlands has been examined in order to study the chemical changes that occur from the edge of the body into the core. Samples were collected from within a mine adit starting near the contact of the country rock and going into the metagabbro for a distance of 65 feet. The country rock contains an assemblage of alkali feldspar, plagioclase, quartz, biotite, apatite and magnetite. The metagabbro contains an assemblage of plagioclase, hornblende, clinopyroxene, biotite, quartz, sphene, apatite and opaques. Chemical data show a decrease of SiO[sub 2] and K[sub 2]O from the edge of the metagabbro towards the center, and an increase in CaO, Fe[sub 2]O[sub 3], MgO, TiO[sub 2], P[sub 2]O[sub 5], Ni, V, and Cr[sub 2]O[sub 3]. The Al[sub 2]O[sub 3], and Na[sub 2]O content remain nearly constant. Hand samples stained with sodium cobaltinitrite also reflect decreasing K[sub 2]O towards the core of the body. These chemical gradations may be due to metasomatism, assimilation of country rock or true compositional zoning during crystallization of an alkali-rich gabbro.

  19. Evaluation of the recovery of Adirondack acid lakes by chemical manipulation

    SciTech Connect

    Depinto, J.V.; Edzwald, J.K.

    1982-06-01

    This study specifically addressed an evaluation of materials (calcium hydroxide and carbonate, agricultural limestone, fly ash, water treatment plant softening sludge, cement plant by-pass dust) for their neutralizing effectiveness and for establishing a neutral pH buffer system, and an evaluation of the effect of various lake recovery materials on algal growth. Laboratory continuous-flow microcosims were used as models to assess acid lake recovery. These models were filled with actual acid lake water over a layer of lake sediments, subjected to a given chemical treatment, and continuously fed water of selected quality (e.g., acid rain). A simulation of sediment-water-air kinetic interactions on a treated acid lake was obtained by careful monitoring of the microcosm chemical response. Agricultural limestone was determined to be the most appropriate material for acid lake recovery treatment based on its neutralizing properties, assessment of its potential impact on biota, its availability, and its relative cost: the results of this laboratory study suggest that full-scale recovery of an Adirondack acid lake is technically feasible. It is, however, recommended that an acid lake recovery field demonstration project be undertaken. 58 references, 36 figures, 29 tables.

  20. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack Lakes

    SciTech Connect

    Charles, D.F.

    1985-06-01

    Relationships between surface sediment diatom assemblages and lakewater characteristics were studied in 38 lakes in the Adirondack Mountains of northern New York. Most of the lakes are dilute, poorly buffered, and oligotrophic to mesotrophic. The diatom flora typical for circumneutral to acidic lakes. The purposes of this study were to identify the environmental factors most strongly related to the distributions of diatom taxa and the overall composition of diatom assemblages, and to derive equations to infer lakewater pH from diatom assemblage data. Relationships between diatom assemblages and environmental gradients were analyzed using reciprocal averaging ordination (RA). Correlations between Ra axis 1 and pH-related factors were strong. Correlations were weaker (but still statistically significant) with elevation, epilimnion temperature, and concentrations of SO/sub 4/, Cl, and Si. Total P, chlorophyll a, water color, and mean depth were not important in explaining differences among assemblages. Predictive equations were derived for inferring lakewater pH from diatom assemblage data. Agreement between predicted and measured pH was very good. These predictive relationships can be used to interpret stratigraphic diatom assemblages to reconstruct lake pH histories.

  1. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification

    USGS Publications Warehouse

    Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.

    2013-01-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  2. Temperature dependence of basalt weathering

    NASA Astrophysics Data System (ADS)

    Li, Gaojun; Hartmann, Jens; Derry, Louis A.; West, A. Joshua; You, Chen-Feng; Long, Xiaoyong; Zhan, Tao; Li, Laifeng; Li, Gen; Qiu, Wenhong; Li, Tao; Liu, Lianwen; Chen, Yang; Ji, Junfeng; Zhao, Liang; Chen, Jun

    2016-06-01

    The homeostatic balance of Earth's long-term carbon cycle and the equable state of Earth's climate are maintained by negative feedbacks between the levels of atmospheric CO2 and the chemical weathering rate of silicate rocks. Though clearly demonstrated by well-controlled laboratory dissolution experiments, the temperature dependence of silicate weathering rates, hypothesized to play a central role in these weathering feedbacks, has been difficult to quantify clearly in natural settings at landscape scale. By compiling data from basaltic catchments worldwide and considering only inactive volcanic fields (IVFs), here we show that the rate of CO2 consumption associated with the weathering of basaltic rocks is strongly correlated with mean annual temperature (MAT) as predicted by chemical kinetics. Relations between temperature and CO2 consumption rate for active volcanic fields (AVFs) are complicated by other factors such as eruption age, hydrothermal activity, and hydrological complexities. On the basis of this updated data compilation we are not able to distinguish whether or not there is a significant runoff control on basalt weathering rates. Nonetheless, the simple temperature control as observed in this global dataset implies that basalt weathering could be an effective mechanism for Earth to modulate long-term carbon cycle perturbations.

  3. Radiation shielding concrete made of Basalt aggregates.

    PubMed

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  4. Basalt here, basalt there: Constraining the basaltic nature of eight Vp-type asteroids in the inner and outer main asteroid belt

    NASA Astrophysics Data System (ADS)

    Hardersen, Paul Scott; Reddy, Vishnu

    2016-10-01

    The distribution and abundance of basaltic material in the main asteroid belt has multiple implications that impact our understanding of the physical and thermal conditions that existed in the inner solar system during the formation epoch about 4.6 Gyr ago. Subjects impacted by a more accurate basaltic asteroid inventory include the efficacy of current inner solar system heating model predictions (Al-26 and T Tauri induction heating), the existence of differentiated parent bodies other than (4) Vesta, the dispersion efficiency of Vestoids by YORP forces, and the predictive ability of the V-taxonomy in predicting a basaltic surface composition. This work reports on a continuation of an effort to better constrain the basaltic asteroid population in the main asteroid belt with the goal of observing about 650 Vp-type asteroids. This work focuses on two populations: a) those Vp-classified asteroids (Carvano et al., 2010) in the spatial vicinity of (4) Vesta (candidate Vestoids) in the inner main belt, and b) Vp-classified asteroids in the outer main belt beyond 2.5 AU. Thus far, 23 Vp-type asteroids and candidate Vestoids have been observed and analyzed, which are all strongly suggestive of a basaltic surface composition (Hardersen et al., 2014, 2015, 2016 (in preparation)). However, unpublished work is beginning to show that the Vp taxonomic class is less accurate in its ability to identify basaltic surface compositions in outer-belt Vp-type asteroids. We report here on an additional set of Vp-type asteroids that were observed at the NASA Infrared Telescope Facility (IRTF) in December 2015 and January 2016. All observations were obtained with the SpeX spectrograph in prism mode with spectral range from 0.7 to 2.5 microns. They include (4900) Maymelou, (7302) 1993 CQ, (9064) Johndavies, (9531) Jean-Luc, (11341) Babbage, (17480) 1991 PE10, (20171) 1996 WC2, and (25849) 2000 ET107. We present average near-infrared (NIR) reflectance spectra of each asteroid, determine the

  5. Characterization of atmospheric aerosols in the Adirondack Mountains using PIXE, SEM/EDX, and Micro-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Vineyard, M. F.; LaBrake, S. M.; Ali, S. F.; Nadareski, B. J.; Safiq, A. D.; Smith, J. W.; Yoskowitz, J. T.

    2015-05-01

    We are making detailed measurements of the composition of atmospheric aerosols collected in the Adirondack Mountains as a function of particle size using proton-induced X-ray emission, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and Micro-Raman spectroscopy. These measurements provide valuable data to help identify the sources and understand the transport, transformation, and effects of airborne pollutants in upstate New York. Preliminary results indicate significant concentrations of sulfur in small particles that can travel great distances, and that this sulfur may be in the form of oxides that can contribute to acid rain.

  6. A New Twist on the Seasonality of Nitrate Retention and Release in Adirondack Watersheds

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Ross, D. S.; Sutherland, J. W.; Nierzwicki-Bauer, S.; Boylen, C.

    2004-12-01

    Release of nitrate to surface waters in the Northeast has a distinct seasonality that is generally explained by high retention from plant uptake during the growing season, and low retention during the non-growing season, when biological demand is low and soil- water flux is elevated in the absence of transpiration. In the Adirondack region of New York, the highest rates of release, which consistently occur during spring snowmelt, are considered to be the result of nitrate accumulation in the soil and snowpack over the winter. This explanation implies that plants out compete nitrifying bacteria for available ammonium during the growing season. Biweekly and automated high-flow sampling over five years in two tributaries of Buck Creek, in the western Adirondacks, however, has revealed inconsistencies with the conventional view of nitrate retention and release. Although low concentrations of nitrate were measured in stream water during the growing season, concentrations were lowest each year in mid October (near the completion of leaf drop) in the North tributary, and were either the lowest or second lowest each year in mid October in the South tributary. Furthermore, concentrations of nitrate in both watersheds remained elevated throughout the snowmelt periods despite sustained high flows. For example, the concentration in the South tributary on April 9th, 2001, (the initial stage of snowmelt) was 76 micromoles per liter, and on April 24th (following two of the three largest flow events over the 5 years of sampling), was 82 micromoles per liter. Flushing of nitrate stored in the soil over the winter would result in a peak concentration in the stream that would be followed by a rapid decrease. To explain these results we hypothesize a three-way competition that includes heterotrophic non-nitrifying bacteria, as well as plants and autotrophic nitrifying bacteria. Leaf drop in the fall provides a large input of labile carbon with a high C to N ratio (>20) that favors

  7. Resistivity logging of fractured basalt

    SciTech Connect

    Stefansson, V.; Axelsson, G.; Sigurdsson, O.

    1982-01-01

    A lumped double porosity model was studied in order to estimate the effect of fractures on resistivity - porosity relations. It is found that the relationship between resistivity and porosity for fractured rock is in general not simple and depends both on the amounts of matrix porosity as well as the fracture orientation. However, when fractures dominate over matrix porosity the exponent is close to 1.0. Resistivity-porosity relations have been determined for large amounts of basaltic formations in Iceland. An exponent close to 1.0 is found in all cases investigated. This is interpreted as fractures constitute a considerable part of the porosity of the basalts. In the IRDP-hole in Eastern Iceland it is found that the ratio of fracture porosity to total porosity decreases with depth.

  8. An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed

    USGS Publications Warehouse

    Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen

    2014-01-01

    Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.

  9. Short-term responses of wetland vegetation after liming of an Adirondack watershed

    SciTech Connect

    Mackun, I.R.; Leopold, D.J.; Raynal, D.J. )

    1994-08-01

    Watershed liming has been suggested as a long-term mitigation strategy for lake acidity, particularly in areas subject to high levels of acidic deposition. However, virtually no information has been available on the impacts of liming on wetland vegetation. In 1989, 1100 Mg of limestone (83.5% CaCO[sub 3]) were aerially applied to 48% (100 ha) of the Woods Lake watershed in the west-central Adirondack region of New York as part of the first comprehensive watershed liming study in North America. We inventoried wetland vegetation in 1.0-m[sup 2] plots before liming and during the subsequent 2 yr. Within this period liming influenced the cover, frequency, or importance values of only 6 of 64 wetland taxa. The cover of Sphagnum spp. and of the cespitose sedge Carex interior decreased in control relative to limed plots, and cover of the rhizomatous sedge Cladium mariscoides increased nearly threefold in limed areas. These two sedges, which are relatively tall, are characteristic of more calcareous habitats. Cover of the grass Muhlenbergia uniflora, cover and importance were adversely affected or inhibited by lime. It is unclear whether liming directly inhibited the growth of these three small-statured species, or whether the adverse effects of lime were mediated through shifts in competitive interactions with other species. The limited responses that we observed to liming, along with changes that occurred in control plots over the study period, may indicate that in the short term watershed liming was no more of a perturbation than the environmental factors responsible for natural annual variation in wetland communities.

  10. Homogeneous /sup 18/O enrichment of the Marcy Anorthosite Massif, Adirondack Mountains, New York

    SciTech Connect

    Morrison, J.; Valley, J.W.

    1985-01-01

    The Marcy Anorthosite Massif in the Adirondack Mountains, New York, is a composite intrusion that was metamorphosed to granulite facies at approx. 1.1 Ga. The massif is dominantly anorthosite but ranges from anorthosite (1-10% mafics) to oxide-rich pyroxenite layers (up to 98% mafics). In the St Regis Quad (SRQ) systematic variations in the percentage of mafics (POM) roughly parallel the foliation and increase toward the contacts (Davis, 1971). In 47 SRQ samples studied the POM varies from 2-25%; garnet ranges from 0-11%, pyroxene from <1-16% and oxides from <1-8%. Percent phenocrysts varies between 1-80. The Port Kent-Westport Unit (PKW) and an associated hybrid unit show significantly greater textural variability. The POM Varies from 1-50%; garnet ranges from 0-18%, pyroxene from 0-15%, oxides from 0-3% and phenocrysts vary from 0-80%. A total of 28 unaltered plagioclase phenocrysts have been analyzed for delta/sup 18/O: in 13 SRQ samples delta/sup 18/O = 9.0-9.8 (x=9.4. sigma=0.2) and in 15 samples from the PKW and hybrid units values of delta/sup 18/O=8.5-10.5 (x=9.5.sigma0.5). No correlations exist between the modal parameters and delta/sup 18/O. The results from SRQ demonstrate an extreme homogeneity suggesting for the first time a pristine magmatic character which is supported by the virtual absence of metasedimentary inclusions. This contrasts with PKW where inclusions are common and delta/sup 18/O values are more heterogeneous. Further analyses will evaluate the possibility of an anomalous source region as a cause of the /sup 18/O enrichment in the anorthosite.

  11. Geochemistry and origin of albite gneisses, northeastern Adirondack Mountains, New York

    NASA Astrophysics Data System (ADS)

    Whitney, Philip R.; Olmsted, James F.

    1988-08-01

    Albite gneisses containing up to 8.7 percent Na2O and as little as 0.1% K2O comprise a significant part of the Proterozoic Lyon Mountain Gneiss in the Ausable Forks Quadrangle of the northeastern Adirondacks, New York State. Two distinct types of albite gneisses are present. One is a trondhjemitic leucogneiss (LAG) consisting principally of albite (Ab95 Ab98) and quartz with minor magnetite and, locally, minor amounts of amphibole or acmiterich pyroxene. LAG probably originated by metamorphism of a rhyolitie or rhyodacitic ash-flow tuff with A-type geochemical affinities, following post-depositional analcitization in a saline or saline-alkaline environment. The other type is a mafic albite gneiss (MAG) containing albite and pyroxene along with 0 45 percent quartz, minor amphibole, and titanite. MAG locally displays pinstripe banding and contains albite (Ab98) megacrysts up to 5 cm across. Its precursor may have been a sediment composed of diagenetic analcite or albite, dolomite, and quartz. Both types of albite gneiss are interlayered with granitic gneisses (LMG) of variable composition derived from less altered tuffs. A potassium-rich (up to 9.7% K2O) microcline gneiss facies may have had a protolith rich in diagenetic K feldspar. We propose that the albite gneisses and associated granitic gneisses are the granulite-facies metamorphic equivalent of a bimodal, dominantly felsic, volcanic suite with minor intercalated sediments, probably including evaporites. The volcanics were erupted in an anorogenic setting, such as an incipient or failed intracontinental rift. Deposition took place in a closed-basin, playa lake environment, where diagenetic alteration resulted in redistribution of the alkalis and strong oxidation.

  12. Charnockites and granites of the western Adirondacks, New York, USA: a differentiated A-type suite

    USGS Publications Warehouse

    Whitney, P.R.

    1992-01-01

    Granitic rocks in the west-central Adirondack Highlands of New York State include both relatively homogeneous charnockitic and hornblende granitic gneisses (CG), that occur in thick stratiform bodies and elliptical domes, and heterogeneous leucogneisses (LG), that commonly are interlayered with metasedimentary rocks. Major- and trace-element geochemical analyses were obtained for 115 samples, including both types of granitoids. Data for CG fail to show the presence of more than one distinct group based on composition. Most of the variance within the CG sample population is consistent with magmatic differentiation combined with incomplete separation of early crystals of alkali feldspar, plagioclase, and pyroxenes or amphibole from the residual liquid. Ti, Fe, Mg, Ca, P, Sr, Ba, and Zr decrease with increasing silica, while Rb and K increase. Within CG, the distinction between charnockitic (orthopyroxene-bearing) and granitic gneisses is correlated with bulk chemistry. The charnockites are consistently more mafic than the hornblende granitic gneisses, although forming a continuum with them. The leucogneisses, while generally more felsic than the charnockites and granitic gneisses, are otherwise geochemically similar to them. The data are consistent with the LG suite being an evolved extrusive equivalent of the intrusive CG suite. Both CG and LG suites are metaluminous to mildly peraluminous and display an A-type geochemical signature, enriched in Fe, K, Ce, Y, Nb, Zr, and Ga and depleted in Ca, Mg, and Sr relative to I- and S-type granites. Rare earth element patterns show moderate LREE enrichment and a negative Eu anomaly throughout the suite. The geochemical data suggest an origin by partial melting of biotite- and plagioclase-rich crustal rocks. Emplacement occurred in an anorogenic or post-collisional tectonic setting, probably at relatively shallow depths. Deformation and granulite-facies metamorphism with some partial melting followed during the Ottawan phase

  13. Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State

    USGS Publications Warehouse

    Peters, N.E.; Driscoll, C.T.

    1987-01-01

    Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  14. Geochemistry and origin of albite gneisses, northeastern Adirondack Mountains, New York

    USGS Publications Warehouse

    Whitney, P.R.; Olmsted, J.F.

    1988-01-01

    Albite gneisses containing up to 8.7 percent Na2O and as little as 0.1% K2O comprise a significant part of the Proterozoic Lyon Mountain Gneiss in the Ausable Forks Quadrangle of the northeastern Adirondacks, New York State. Two distinct types of albite gneisses are present. One is a trondhjemitic leucogneiss (LAG) consisting principally of albite (Ab95-Ab98) and quartz with minor magnetite and, locally, minor amounts of amphibole or acmiterich pyroxene. LAG probably originated by metamorphism of a rhyolitie or rhyodacitic ash-flow tuff with A-type geochemical affinities, following post-depositional analcitization in a saline or saline-alkaline environment. The other type is a mafic albite gneiss (MAG) containing albite and pyroxene along with 0-45 percent quartz, minor amphibole, and titanite. MAG locally displays pinstripe banding and contains albite (Ab98) megacrysts up to 5 cm across. Its precursor may have been a sediment composed of diagenetic analcite or albite, dolomite, and quartz. Both types of albite gneiss are interlayered with granitic gneisses (LMG) of variable composition derived from less altered tuffs. A potassium-rich (up to 9.7% K2O) microcline gneiss facies may have had a protolith rich in diagenetic K feldspar. We propose that the albite gneisses and associated granitic gneisses are the granulite-facies metamorphic equivalent of a bimodal, dominantly felsic, volcanic suite with minor intercalated sediments, probably including evaporites. The volcanics were erupted in an anorogenic setting, such as an incipient or failed intracontinental rift. Deposition took place in a closed-basin, playa lake environment, where diagenetic alteration resulted in redistribution of the alkalis and strong oxidation. ?? 1988 Springer-Verlag.

  15. Geologic controls on the sources of water to Lake George, Southeastern Adirondack Mountains of New York

    SciTech Connect

    Shuster, E.L.; LaFleur, R.G.; McCaffrey, R. . Dept. of Earth and Environmental Sciences); Boylen, C.W. . Rensselaer Fresh Water Inst.)

    1993-03-01

    Lake George is a long, deep, fault-bounded lake in the Adirondack Mountains, with relatively undeformed Paleozoic sediments in its valley floor and fractured high-grade meta-igneous and meta-sedimentary Proterozoic rocks in the drainage basins's upland. Overlying these rocks is a thin mantle of glacial deposits, consisting of sandy tills, kamic sands and glacio-lacustrine clays. Stratified ice-contact deposits and glacio-lacustrine deposits are generally restricted to the basins's lower elevations. The configuration of fractured bedrock and glacial overburden deposits of varying hydraulic conductivities suggests a variety of potential hydrogeologic flow routes, which can be generally categorized as reflect near-surface and deep groundwater flow systems. A hydrologic survey of the lake suggests that groundwater contributes approximately 20% to Lake George's annual hydrologic budget, with precipitation directly onto the lake's surface and tributary streamflow comprising the remaining 25% and 55%, respectively. Separating streamflow responses to precipitation by formal inversion into quick-, intermediate-, and slow-recession curves (originating from soils, unconsolidated surficial deposits, and fractured bedrock, respectively) suggests that as much as 40 to 50% of the tributary streamflow during the summer of 1988 originated from the slowest return route, a similar percentage has followed the intermediate route, and less than 10% of the streamflow originated as soil water ( runoff''). The flow-partitioning calculations typically suggest decay constants for these exponential recession curves on the order of 1, 10, and 100 days for the quick-, intermediate-, and slow-flow components to tributary streamflow, respectively.

  16. Flood basalts and extinction events

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  17. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  18. Thermoluminescence dating of Hawaiian basalt

    USGS Publications Warehouse

    May, Rodd James

    1979-01-01

    The thermoluminescence (TL) properties of plagioclase separates from 11 independently dated alkalic basalts 4,500 years to 3.3 million years old and 17 tholeiitic basalts 16 years to 450,000 years old from the Hawaiian Islands were investigated for the purpose of developing a TL dating method for young volcanic rocks. Ratios of natural to artificial TL intensity, when normalized for natural radiation dose rates, were used to quantify the thermoluminescence response of individual samples for age-determination purposes. The TL ratios for the alkalic basalt plagioclase were found to increase with age at a predictable exponential rate that permits the use of the equation for the best-fit line through a plot of the TL ratios relative to known age as a TL age equation. The equation is applicable to rocks ranging in composition from basaltic andesite to trachyte over the age range from about 2,000 to at least 250,000 years before present (B.P.). The TL ages for samples older than 50,000 years have a calculated precision of less than :t 10 percent and a potential estimated accuracy relative to potassium-argon ages of approximately :t 10 percent. An attempt to develop a similar dating curve for the tholeiitic basalts was not as successful, primarily because the dose rates are on the average lower than those for the alkalic basalts by a factor of 6, resulting in lower TL intensities in the tholeiitic basalts for samples of equivalent age, and also because the age distribution of dated material is inadequate. The basic TL properties of the plagioclase from the two rock types are similar, however, and TL dating of tholeiitic basalts should eventually be feasible over the age range 10,000 to at least 200,000 years B.P. The average composition of the plagioclase separates from the alkalic basalts ranges from oligoclase to andesine; compositional variations within this range have no apparent effect on the TL ratios. The average composition of the plagioclase from the tholeiitic

  19. Flood Basalts and Neoproterozoic Glaciation

    NASA Astrophysics Data System (ADS)

    Halverson, G. P.; Cox, G. M.; Kunzmann, M.; Strauss, J. V.; Macdonald, F. A.

    2014-12-01

    Large igneous provinces (LIPs), which are commonly associated with supercontinental break-up, are the product of the emplacement of >106 km3 of mafic rocks in less than a few million years. LIP magmatism, in particular continental flood basalt (CFB) volcanism, perturbs global climate on shorter time scales through the radiative effects of degassed SO2 and CO2. On longer time scales, CFBs alter climate through the effect of the high weatherabilty of mafic rocks (5-10 times greater than average continental crust) on global silicate weathering. A link between flood basalt weathering, Rodinia break-up, and Neoproterozoic snowball glaciation has been postulated. Here we present a new compilation of Nd isotope data on Neoproterozoic mudstones from Laurentia, Australia, and South China along with a new seawater strontium isotope record from well preserved carbonates that support this hypothesis. These datasets are consistent with an outsized role of basalt weathering on the global silicate weathering budget during the second half of the Tonian period (~850 to 725 Ma). Along with Os isotope data, they also suggest that an additional pulse of basalt weathering at the end of the Tonian may have initiated the Sturtian snowball glaciation. CFBs have relatively high concentrations of phosphorous. Hence, the drawdown in atmospheric CO2 required to trigger the Sturtian snowball Earth was likely accomplished through a combination of increased silicate weathering rates and enhanced biological productivity driven by greater nutrient supply to the oceans. CFBs were also the likely source of the iron in Neoproterozoic iron formation (IF), all significant occurrences of which are restricted to Sturtian-aged glacial successions. Dramatic declines in ɛNd following the Cryogenian snowball glaciations are mirrored by stepwise increases in 87Sr/86Sr, reflecting the scouring of the continents by global ice sheets. This continental resurfacing removed the extensive basalt carapace as well as

  20. Landscape level estimate of lands and waters impacted by road runoff in the Adirondack Park of New York State.

    PubMed

    Regalado, Sean A; Kelting, Daniel L

    2015-08-01

    Road runoff is understood to be a significant stressor in terrestrial and aquatic ecosystems, yet the effects of this stressor are poorly understood at large spatial scales. We developed an efficient method for estimating the spatial impact of road runoff on lands and waters over large geographic areas and then applied our methodology to the 2.4 million ha Adirondack Park in New York State. We used TauDEM hydrologic modeling and a series of ESRI GIS processes to delineate surface flow downslope of paved roads, illustrating the potential movement of pollutants originating from paved roads through the USGS 10 m DEM topography. We then estimated the land and surface water areas, number of water bodies, and total stream length potentially impacted by road runoff from paved roads. We found that as much as 11% of land area, 77% of surface water area, 1/3 of the water bodies, and 52% of stream length in the Adirondack Park may be impacted by road runoff. The high degree of hydrologic association between paved roads and the lands and waters of this region strongly suggests that the environmental impacts of road runoff should be evaluated along with other regional stressors currently being studied. Being able to estimate the spatial impact of road runoff is important for designing monitoring programs that can explicitly monitor this stressor while also providing opportunities to understand the interaction of multiple environmental stressors.

  1. Sustainability and economics: The Adirondack Park experience, a forest economic-ecological model, and solar energy policy

    NASA Astrophysics Data System (ADS)

    Erickson, Jon David

    The long-term sustainability of human communities will depend on our relationship with regional environments, our maintenance of renewable resources, and our successful disengagement from nonrenewable energy dependence. This dissertation investigates sustainability at these three levels, following a critical analysis of sustainability and economics. At the regional environment level, the Adirondack Park of New York State is analyzed as a potential model of sustainable development. A set of initial and ongoing conditions are presented that both emerge from and support a model of sustainability in the Adirondacks. From these conditions, a clearer picture emerges of the definition of regional sustainability, consequences of its adoption, and lessons from its application. Next, an economic-ecological model of the northern hardwood forest ecosystem is developed. The model integrates economic theory and intertemporal ecological concepts, linking current harvest decisions with future forest growth, financial value, and ecosystem stability. The results indicate very different economic and ecological outcomes by varying opportunity cost and ecosystem recovery assumptions, and suggest a positive benefit to ecological recovery in the forest rotation decision of the profit maximizing manager. The last section investigates the motives, economics, and international development implications of renewable energy (specifically photovoltaic technology) in rural electrification and technology transfer, drawing on research in the Dominican Republic. The implications of subsidizing a photovoltaic market versus investing in basic research are explored.

  2. The reflectance and fluorescence properties of Adirondack mountain region lakes applied to the remote sensing of lake chemistry

    SciTech Connect

    Vertucci, F.A.

    1988-01-01

    This study defines the feasibility of the remote monitoring of lake chemistry in the Adirondack Region of New York. The purpose of this thesis is to determine the relationship between the optical properties of lakes and their chemical constituents. The work is intended to derive useful relationships between lake chemistry and lake spectral properties so that lake chemistry can be estimated by remote means. Chemical constituents associated with lake acidification are of particular interest. Constituents of the water column which are known to directly affect lake optical properties (plant pigments, dissolved organic carbon (DOC) and turbidity) correlated well with field reflectance measurements and allowed for a consistent prediction of the concentrations of these constituents using reflectance measurements. However, parameters associated with acidification (pH, alkalinity and aluminum concentrations) correlated poorly with reflectance measurements and no models for prediction of these constituents were possible. A relationship does exist between DOC and fluorescence intensity and also between lake pH, aluminum and DOC concentrations and spectral fluorescence and intensity. In the Adirondack Region, water column constituents which directly affect lake optical properties may e remotely estimated with reflectance measures while constituents correlated with DOC composition may be estimated by laser fluorsensing, including pH and aluminum.

  3. Comparison of MAGIC and Diatom paleolimnological model hindcasts of lakewater acidification in the Adirondack region of New York

    SciTech Connect

    Sullivan, T.J.; Bernert, J.A.; Eliers, J.M. ); Jenne, E.A. ); Cosby, B.J. . School of Forestry and Environmental Studies); Charles, D.F.; Selle, A.R. . Environmental Research Lab.)

    1991-03-01

    Thirty-three lakes that had been statistically selected as part of the US Environmental Protection Agency's Eastern Lake Survey and Direct Delayed Response Project (DDRP) were used to compare the MAGIC (watershed) and Diatom (paleolimnological) models. The study lakes represented a well-defined group of Adirondack lakes, each larger than 4 ha in area and having acid-neutralizing capacity (ANC) <400 {mu}eq L{sup {minus}1}. The study first compared current and pre-industrial (before 1850) pH and ANC estimates from Diatom and MAGIC as they were calibrated in the preceding Paleocological Investigation of Recent Lake Acidification (PIRLA) and DDRP studies, respectively. Initially, the comparison of hindcasts of pre-industrial chemistry was confounded by seasonal and methodological differences in lake chemistry data used in calibration of the model. Although certain differences proved to be of little significance for comparison, MAGIC did predict significantly higher pre-industrial ANC and pH values than did Diatom, using calibrations in the preceding studies. Both models suggest acidification of low ANC Adirondack region lakes since preindustrial times, but differ primarily in that MAGIC inferred greater acidification and that acidification has occurred in all lakes in the comparison, whereas Diatom inferred that acidification has been restricted to low ANC lakes (

  4. Efficacy of environmental DNA to detect and quantify Brook Trout populations in headwater streams of the Adirondack Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob

    2016-01-01

    Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.

  5. Long-term trends in breeding birds in an old-growth Adirondack forest and the surrounding region

    USGS Publications Warehouse

    McNulty, S.A.; Droege, S.; Masters, R.D.

    2008-01-01

    Breeding bird populations were sampled between 1954 and 1963, and 1990 and 2000 in an old-growth forest, the Natural Area of Huntington Wildlife Forest (HWF), in the Adirondack Mountains of New York. Trends were compared with data from regional North American Breeding Bird Surveys (BBS) and from a forest plot at Hubbard Brook Experimental Forest, New Hampshire. Trends for 22 species in the HWF Natural Area were negative, eight were positive, and one was zero; 20 were significant. Fifteen of 17 long-distance migrants declined, whereas 7 of 14 short-distance migrants and permanent residents declined. Most (74%) HWF Natural Area species, despite differences in sampling periods and local habitat features, matched in sign of trend when compared to Adirondack BBS routes, 61% matched northeastern BBS routes, and 71% matched eastern United States BBS routes, while 66% matched Hubbard Brook species. The agreement in population trends suggests that forest interior birds, especially long-distance migrants, are affected more by regional than local factors. The analysis indicated that bird trends generated from BBS routes may not be as biased toward roads as previously suggested.

  6. Moessbauer Mineralogy of Rock, Soil, and Dust at Gusev Crater, Mars: Spirit's Journey through Weakly Altered Olivine Basalt on the Plains and Pervasively Altered Basalt in the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Schroeder, C.; Rodionov, D. S.; Yen, A.; Ming, D. W.; deSouza, P. A., Jr.; Fleischer, I.; Wdowiak, T.; Gellert, R.; Bernhardt, B.; Evlanov, E. N.; Zubkov, B.; Foh, J.; Bonnes, U.; Kankeleit, E.; Guetlich, P.; Renz, F.; Squyres, S. W.; Arvidson, R. E.

    2006-01-01

    The Moessbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe(3+)-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe(3+)/Fe(sub T)<0.2) with Fe from olivine, pyroxene (Ol>Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe(3+)/Fe(sub T) approx.0.6-0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe(2+) from Ol+Px is 40-49% and 9-24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm approx.3-6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt approx. 10-15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt=40%). Goethite (alpha-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe(3+)/Fe(sub T) approx. 0.3) occur throughout Gusev crater (approx. 60-80% Fe from Ol+Px, approx. 10-30% from npOx, and approx. 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe(3+)-sulfate (approx. 65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust.

  7. USE OF A LUMPED MODEL (MAGIC) TO BOUND THE ESTIMATION OF POTENTIAL FUTURE EFFECTS OF SULFUR AND NITROGEN DEPOSITION ON LAKE CHEMISTRY IN THE ADIRONDACK MOUNTAINS

    EPA Science Inventory

    Leaching of atmospherically deposited nitrogen from forested watersheds can acidify lakes and streams. Using a modified version of the Model of Acidification of Groundwater in Catchments, we made computer simulations of such effects for 36 lake catchments in the Adirondack Mount...

  8. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  9. What lies below the Columbia River Basalt?

    NASA Astrophysics Data System (ADS)

    Reidel, S.; Kauffman, J.; Garwood, D.; Bush, J.

    2006-12-01

    More than 200,000 sq km of the Pacific Northwest are covered by the Miocene Columbia River Basalt Group (CRB). The lavas were erupted onto a complex structural setting dominated by cratonic rocks, and accreted terranes at a convergent plate margin. Few boreholes penetrate the basalt so the sub-basalt structure must be deduced from geophysical data, the surrounding area and structures within the basalt. In Oregon (OR) and Idaho (ID) the eastern edge of the basalt follows the boundary between the craton and accreted terranes but the suture zone becomes lost beneath the basalt in eastern WA. In northern OR and Washington (WA), a thick basalt sequence in the western part of the province overlies an early Tertiary basin with kms of sediment fill which, in turn, overlies accreted terranes. In eastern WA and western ID, a much thinner basalt sequence overlies cratonic and accreted terrane rocks without thick intervening Tertiary sediments. This basin began in the Eocene and continued into the present; the sediment now controls the location of the Yakima fold belt (YFB). Prior to basalt eruptions, a rugged mountainous terrane existed in eastern WA and ID that probably extended to the west. NW faults and folds (e.g. the Orofino fault zone ID, and Chiwaukum graben and White River-Naches River fault zone, Cascade Range) dominate the prebasalt rocks and must extend under the basalt. Remanents of this NW trend are present in YFB (e.g. Rattlesnake-Wallula fault zone) but these are less prominent than the large basalt anticlinal folds that are decoupled from the basement. CRB dikes have a NW to N trend and are thought to reflect a basement structural weakness. In the basalt province many folds and faults follow this dike trend. Major NE trending faults in the basalts do not have major counterparts beyond the basalt. One fault, the Hite Fault, must form a significant sub-basalt boundary. Dikes to the east of the Hite fault trend N-N20W whereas dikes to the west trend N40-50W

  10. Mare basalt magma source region and mare basalt magma genesis

    SciTech Connect

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regions (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.

  11. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    SciTech Connect

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spent nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)

  12. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  13. Inferring Mantle From Basalt Composition

    NASA Astrophysics Data System (ADS)

    Stracke, A.

    2014-12-01

    Isotope ratios in oceanic basalts, first reported by Gast and co-workers 50 years ago, are unique tracers of mantle composition, because they are expected to mirror the composition of their mantle sources. While the latter is certainly true for homogeneous sources, the plethora of studies over the last 50 years have shown that mantle sources are isotopically heterogeneous on different length scales. Isotopic differences exist between basalts from different ocean basins, volcanoes of individual ocean islands, lava flows of a single volcano, and even in μm sized melt inclusions in a single mineral grain. Diffusion, which acts to homogenize isotopic heterogeneity over Gyr timescales, limits the length scale of isotopic heterogeneity in the mantle to anywhere between several mm to 10s of meters. Melting regions, however, are typically several 100 km wide and up to 100 km deep. The scale of melting is thus generally orders of magnitude larger than the scale of isotopic heterogeneity. How partial melts mix during melting, melt transport, and melt storage then inevitably influences how isotopic heterogeneity is conveyed from source to melt. The isotopic composition of oceanic basalts hence provides an integrated signal of isotopically diverse melts. Recent mixing models and observed isotopic differences between source (abyssal peridotites) and melts (MORB) show that the range of isotopic heterogeneity of erupted melts need NOT directly reflect that of their source(s), nor need observed isotopic endmembers in source and melts be congruent. Many geochemical models, however, implicitly assume equivalence of source and melt composition. Especially when attempting to infer spatial patterns of isotopic heterogeneity in the mantle from those observed in erupted melts, or for linking isotopic diversity to geophysical structures in the mantle requires a more profound understanding to what extent erupted melts represent the isotopic composition of their mantle sources.

  14. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats.

    PubMed

    Keeton, William S; Kraft, Clifford E; Warren, Dana R

    2007-04-01

    Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in

  15. Modeling Central American basalts using the Arc Basalt Simulator

    NASA Astrophysics Data System (ADS)

    Feigenson, M.; Carr, M. J.

    2011-12-01

    We have used the Arc Basalt Simulator (ABS), developed by JI Kimura, to explore the conditions and components of melting beneath the Central American volcanic front. ABS is a comprehensive forward model that incorporates slab dehydration and melting and mantle wedge fluxing and melting using realistic P-T conditions and experimentally determined phase relations. We have applied ABS versions 3 and 4 to model representative magma types in Nicaragua, which span a broad geochemical range including proximal high- and low-Ti lavas in Nicaragua. Sr-Nd-Pb data require appropriate selection of previously identified sources, including: separate carbonate and hemipelagic sediments, DMM, an enriched mantle isotopically similar to the alkaline basalts of Yojoa, a Himu-influenced mantle derived from Galapagos material and altered oceanic crust (AOC) derived from both MORB and Galapagos seamounts. Following the dry solidus, the dominant arc basalts, exemplified by Cerro Negro lavas, can be generated at about 80-90 km where lawsonite and zoisite break down, releasing LILEs into a hydrous fluid that travels into the wedge. The fluid-triggered melting occurs just above the garnet stability field in the wedge to fit the HREEs. Below 90 Km, slab melting begins and the AOC component dominates, generating a fluid with little or no HFSE depletions, consistent with the unusual high-Ti lavas found in Nicaragua. However, the isotopic data require a much lower sediment input for the high-Ti lavas (consistent with 10Be results on the high-Ti lavas) and an enriched component for the AOC and/or mantle wedge. Following the wet solidus, fits to the Cerro Negro magma only occur in the absence of phengite in the AOC and with the presence of HFSE attracting minerals, rutile, zircon and allanite. The depth of the best fit is 135 km, consistent with current best estimates of the depth to the seismic zone beneath Cerro Negro. Below 150 km, the high-Ti lavas can be generated if the HFSE retaining

  16. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    USGS Publications Warehouse

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in

  17. Sensitivity of Stream Methyl Hg Concentrations to Environmental Change in the Adirondack Mountains of New York, USA

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Nystrom, E.; Millard, G.; Driscoll, C. T.

    2014-12-01

    The Adirondacks of New York have high levels of mercury (Hg) bioaccumulation as demonstrated by a region-wide fish consumption advisory for children and women who may become pregnant. The source of this Hg is atmospheric deposition that originates from regional, continental, and global emissions. Soils in the region have large Hg stores equivalent to several decades of atmospheric deposition suggesting that the processes controlling Hg transport from soils to surface waters may greatly affect Hg concentrations and loads in surface waters. Furthermore, Hg can be converted to its neuro-toxic methyl form (MeHg), particularly in riparian and wetland soils where biogeochemical conditions favor net methylation. We measured MeHg concentrations during 33 months at Fishing Brook, a 65 km2 catchment in the upper Hudson River basin in the Adirondacks. Seasonal variation in stream MeHg concentrations was more than tenfold, consistent with temperature-driven variation in net methylation rates in soils and sediment. These data also indicate greater than twofold annual variation in stream MeHg concentrations among the three monitored growing seasons. The driest growing season had the lowest MeHg concentrations, and these values were greater during the two wetter growing seasons. We hypothesize that contact of the riparian water table with abundant organic matter and MeHg stored in the shallowest soil horizons is a dominant control on MeHg transport to the stream. An empirical model was developed that accounted for 81% of the variation in stream MeHg concentrations. Water temperature and the length of time the simulated riparian water table remained in the shallow soil were key predictive variables, highlighting the sensitivity of MeHg to climatic variation. Future changes in other factors such as Hg emissions and deposition and acid deposition will likely also influence stream MeHg concentrations and loads. For example, lime application to an Adirondack stream to increase pH and

  18. Carbonate Mineralization of Volcanic Province Basalts

    SciTech Connect

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2010-03-31

    Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the United States, India, Iceland, and Canada. As an extension of our previous experiments with Columbia River basalt, basalts from the eastern United States, India, and South Africa were reacted with aqueous dissolved CO2 and aqueous dissolved CO2-H2S mixtures under supercritical CO2 (scCO2) conditions to study the geochemical reactions resulting from injection of CO2 in such formations. The results of these studies are consistent with cation release behavior measured in our previous experiments (in press) for basalt samples tested in single pass flow through dissolution experiments under dilute solution and mildly acidic conditions. Despite the basalt samples having similar bulk chemistry, mineralogy and apparent dissolution kinetics, long-term static experiments show significant differences in rates of mineralization as well as compositions and morphologies of precipitates that form when the basalts are reacted with CO2-saturated water. For example, basalt from the Newark Basin in the United States was by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. In comparison, the post-reacted samples associated with the Columbia River basalts from the United States contained calcite grains with classic dogtooth spar morphology and trace cation substitution (Mg and Mn). Carbonation of the other basalts produced precipitates with compositions that varied chemically throughout the entire testing period. Examination of polished cross sections of the reacted grains by scanning electron microscopy and energy dispersive x-ray spectroscopy show precipitate overgrowths with varying chemical compositions. Compositional differences in the

  19. Volcanogenic trace element volatiles in basalts

    SciTech Connect

    Jovanovic, S.; Reed, G.W. Jr.

    1984-03-01

    Br, Hg, As, Se, Sb, Zn, and Cu were measured in samples of mid-ocean ridge (MOR) and ocean island basalt. To assess sea-water effects glassy rinds and crystalline interiors of pillow basalts were measured as was subaerial glass from Kilauea volcano. Preliminary results are reported. 6 references, 3 figures. (ACR)

  20. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  1. Specific ultra-violet absorbance as an indicator measurement of merucry sources in an Adirondack River basin

    USGS Publications Warehouse

    Burns, Douglas A.; Aiken, George R.; Bradley, Paul M.; Journey, Celeste; Schelker, Jakob

    2013-01-01

    The Adirondack region of New York has been identified as a hot spot where high methylmercury concentrations are found in surface waters and biota, yet mercury (Hg) concentrations vary widely in this region. We collected stream and groundwater samples for Hg and organic carbon analyses across the upper Hudson River, a 493 km2 basin in the central Adirondacks to evaluate and model the sources of variation in filtered total Hg (FTHg) concentrations. Variability in FTHg concentrations during the growing seasons (May-Oct) of 2007-2009 in Fishing Brook, a 66-km2 sub-basin, was better explained by specific ultra-violet absorbance at 254 nm (SUVA254), a measure of organic carbon aromaticity, than by dissolved organic carbon (DOC) concentrations, a commonly used Hg indicator. SUVA254 was a stronger predictor of FTHg concentrations during the growing season than during the dormant season. Multiple linear regression models that included SUVA254 values and DOC concentrations could explain 75 % of the variation in FTHg concentrations on an annual basis and 84 % during the growing season. A multiple linear regression landscape modeling approach applied to 27 synoptic sites across the upper Hudson basin found that higher SUVA254 values are associated with gentler slopes, and greater riparian area, and lower SUVA254 values are associated with an increasing influence of open water. We hypothesize that the strong Hg?SUVA254 relation in this basin reflects distinct patterns of FTHg and SUVA254 that are characteristic of source areas that control the mobilization of Hg to surface waters, and that the seasonal influence of these source areas varies in this heterogeneous basin landscape.

  2. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.

    2012-09-01

    The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50-200 µm in diameter) body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter) are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  3. Effect of whole catchment liming on the episodic acidification of two adirondack streams

    USGS Publications Warehouse

    Newton, R.M.; Burns, Douglas A.; Blette, V.L.; Driscoll, C.T.

    1996-01-01

    During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 ??eq/L in one of the streams and more than 1000 ??eq/L in the other, from pre-liming values which ranged from -25 to +40 ??eq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams. After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO3- concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO3- concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO3- concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment. In stream WO2 (40ha), Ca2+ concentrations were much

  4. Historical Trends of Trace Metals in Lake Sediments From Adirondack Park, New York

    NASA Astrophysics Data System (ADS)

    Swami, K.; Judd, C. D.; Khan, A. J.; Bari, A.; Ahmed, T.; Husain, L.

    2009-05-01

    Burning of fossil fuel and many industrial operations emit large quantities of trace metals bearing aerosols along with other pollutants into the atmosphere. The pollutants can be transported thousands of kilometers downwind from their source. They are ultimately removed from the atmosphere by wet and dry deposition. Lake sediments can be used to provide a record of the environmental changes that have occurred in the past. In this study we determined the concentrations of trace metals from two lake sediment cores collected from Clear Pond and West Pine Pond, located in the Adirondack Park region in upstate New York. These lakes were chosen as they are remote and have minimum local sources of pollution. The cores were sliced into thin sections, dried and weighed. The sediment cores were dated using the 210Pb technique. The top sixteen sections of the West Pine Pond and Clear Pond sediment represented deposits from about 1821 to 2005, and around 1880 to 2007, respectively. A microwave digestion procedure was used to separate trace metals from organic matter and silicates. The trace element concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). These samples were analyzed for As, Se, Mo, Cd, Sn, Sb, Co, Ni, Cu, Ag, Ti, V, Cr, Mn, Fe, Zn, K, Na, Ca, Mg, Ba, Sr, Be, Hg, Tl, and Pb. The lithophilic elements Ba, Sr, Al, Ti, K, Na, Ca, Mg and Sr showed little increase over the entire period studied in both lakes. Vanadium and Cr showed little increase in the West Pine Pond core (1.2 and 1.4 times the preindustrial level, resp.), but increased more (1.7 and 2.0, resp.) in the Clear Pond core. The elements As, Se, Mo, Cd, Sn, Sb, Co, Ni, Cu, Mn, Fe, Zn, Hg, Tl, V and Pb showed significant increases due to anthropogenic inputs. Lead showed the greatest increase over the preindustrial baseline concentration, a 12-fold increase in Clear Pond and 24-fold in West Pine Pond. Large increases were also seen in Se and Hg ranging from (2.4 to 10

  5. A monitor for continuous measurement of temperature, pH, and conductance of wet precipitation: Preliminary results from the Adirondack Mountains, New York

    USGS Publications Warehouse

    Johnsson, P.A.; Reddy, M.M.

    1990-01-01

    This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.

  6. Basaltic Crater in Color IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 6, 2004 This image shows two representations of the same infra-red image near Nili Fosse in the the Isidis region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. In many cases craters trap sand in their topographic depressions, interrupting the sand's migration across the Martian surface. This image is particularly interesting because there appears to be more than 1 type of sand in the bottom of this crater and in the hummocky terrain near the bottom of the image. The pink/magenta areas are characteristic of a basaltic composition, but there are also orange areas that are likely caused by the presence of andesite. These two compositions, basalt and andesite, are some of the most common found on Mars.

    Image information: IR instrument. Latitude 24, Longitude 80.7 East (297.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  7. Apollo 17 KREEPy basalt - A rock type intermediate between mare and KREEP basalts

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Wood, J. A.

    1977-01-01

    The Apollo 17 KREEPy basalt is a unique lunar volcanic rock, observed only as clasts in the light friable breccia matrix (72275) of Boulder 1, Station 2 at Taurus-Littrow. Its status as a volcanic rock is confirmed by the absence of any meteoritic contamination, a lack of cognate inclusions or xenocrystal material, and low Ni contents in metal grains. The basalt was extruded 4.01 + or - 0.04 b.y. ago, approximately contemporaneously with the high-alumina mare basalts at Fra Mauro; shortly afterwards it was disrupted, probably by the Serenitatis impact, and its fragments emplaced in the South Massif. The basalt, which is quartz-normative and aluminous, is chemically and mineralogically intermediate between the Apollo 15 KREEP basalts and the high-alumina mare basalts in most respects. It consists mainly of plagioclase and pigeonitic pyroxene in approximately equal amounts, and 10-30% of mesostatis.

  8. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  9. Shock metamorphism of granulated lunar basalt

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Thompson, T. D.; Hoerz, F.; Bauer, J. F.

    1979-01-01

    The paper deals with an extensive series of shock-recovery experiments performed on both nonporous crystalline basalt and its granulated and sieved counterpart to study the role of porosity and grain size in shock motomorphic effects under otherwise identical conditions. Shocked samples are compared with unshocked starting material in terms of textural and mineralogical modifications attributable to shock. A comparative petrographic and chemical characterization is presented of pulverized and sieved lunar basalt 75035 shocked between 6 and 75 GPa in comparison with holocrystalline disks of the same basalts shocked in 10 earlier experiments. Specifically, a petrographic classification of shock features is given, along with an estimation of relative amounts of shock glasses and a chemical characterization of shock glasses in each shocked granular basalt.

  10. Reduction of mare basalts by sulfur loss

    USGS Publications Warehouse

    Brett, R.

    1976-01-01

    Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated. Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination. ?? 1976.

  11. Basalts Dredged from the Northeastern Pacific Ocean.

    PubMed

    Engel, C G; Engel, A E

    1963-06-21

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. In addition, aluminous basalts and diabasic theoleiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. The distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope.

  12. Mechanisms of Basalt-plains Ridge Formation

    NASA Technical Reports Server (NTRS)

    Watters, T. R.; Maxwell, T. A.

    1985-01-01

    The morphologic similarities between the Columbia Plateau ridges and ridges on the Moon, Mercury and Mars form a strong basis for the interpretation of basalt-plains ridges as compressional folds. The basalt-plains ridges appear to have formed on competent flood basalt units deformed at the surface with essentially no confining pressure. Estimates of compressive strain for planetary ridges range from a few tenths of a percent on the Moon to up to 0.4% on Mars, to as high as 35% for Columbia Plateau folds with associated thrust faults. Such values have strong implications for both deformational mechanisms as well as for the source of stress. Deformational mechanisms that will attempt to account for the morphology, fold geometry, possible associated thrust faulting and regular spacing of the basalt-plains ridges on the terrestrial planets are under investigation.

  13. Basalts dredged from the northeastern Pacific Ocean

    USGS Publications Warehouse

    Engel, C.G.; Engel, A.E.J.

    1963-01-01

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. in addition, aluminous basalts and diabasic tholeiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. the distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope.

  14. Naming Lunar Mare Basalts: Quo Vadimus Redux

    NASA Astrophysics Data System (ADS)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  15. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  16. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio < 1.7) with disequilibrium textures and low Ba/Sr ratios while Population Two is elongate (aspect ratio > 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic

  17. Basaltic asteroids in the main belt: Spectral and mineralogical characterization

    NASA Astrophysics Data System (ADS)

    De Sanctis, M.; Migliorini, A.; Lazzaro, D.; Ammannito, E.

    2014-07-01

    Most of the basaltic asteroids are thought to be fragments of Vesta, forming its dynamical family, but few others do not appear to have a clear dynamical link, suggesting, thus, the existence of other basaltic parent bodies. Excluding Vesta and its family, the lack of intact differentiated asteroids introduces a strong constraint to the formation scenario of basaltic material. The spectral investigation of the basaltic asteroids in the main belt can help in understanding if there are V-type asteroids that show a differing mineralogy with respect to Vesta and its family members. We present new NIR reflectance spectra of V-type candidate asteroids obtained at the 3.6-m Telescopio Nazionale Galileo covering the spectral range 0.7 to 2.5 microns. The observed objects were selected from diverse datasets of putative V-type asteroids in order to characterize them, and hence better understand their relationship with Vesta. All the spectra of the asteroids here reported show two prominent absorption features at 1 and 2 microns that are typical of V-class objects, indicating that the methods based on the photometric surveys to infer the basaltic asteroid distribution are quite robust. The spectra of these asteroids are examined and compared to those of Vesta and the HED meteorites, for which Vesta is believed to be the parent body, and other V-type asteroids previously observed. To enlarge the data set and increase the statistical significance of the analysis, we included the data presented in our previous articles (De Sanctis et al., 2011ab). It is important to note that all these objects have been observed at the same telescope with the same instrumental set up. We derive spectral parameters from the NIR spectra to infer mineralogical information on the observed asteroids. The V-type asteroids here examined show a large variability of band parameters. These parameters have been compared with those of the HED meteorites and with the parameters derived for Vesta using the

  18. Endeavour basalt geology and petrology

    NASA Astrophysics Data System (ADS)

    Gill, J. B.; Stakes, J.; Ramos, F.; Michael, P.; Stakes, D.

    2005-12-01

    We report major and trace element and isotope data from 250 basalt samples recently collected by submersible from the axial valley and flanks of the Endeavour segment of the Juan de Fuca Ridge. Off-axis volcanism is abundant on both flanks which are mirror images of one another geologically. Axial valley walls up to 1 km off axis appear to be steps of in tact but variably fractured sheet, lobate, and hackly lava flows similar to the youngest lavas seen in collapse features in the axis. Coverage by pillow terrane increases with distance off axis and coverage becomes complete after 1 km. The similarity of the two flanks suggests that the currently asymmetric axial magma chamber (van Ark et al., 2004) may be shorter-lived than the off-axis volcanism. MgO contents range from 6.0-8.5% and generally are lower on the flanks consistent with consistently cooler chamber edges there. La/Yb ratios vary 3-fold within 100 m in the axial valley, with normalized La/Sm = 0.8-2.5 in contrast to constant Sr and Nd isotopes. However, Th/U and 230Th/232Th ratios vary only slightly in the axial valley, which may enable dating of off-axis samples. H2O/Ce is less than 170, typical of values throughout much of the Pacific. Variations in depth and degree of melting, and in source composition, are implied. At times, these heterogeneities escaped homogenization in axial magma chambers. Cl concentrations and Cl/K ratios are surprisingly low considering the active hydrothermal systems in close proximity and the potential for brine incorporation into the magma chamber.

  19. Mercury Inputs, Outputs, Cycling, and Ambient Concentrations under the Forest Canopy in the Adirondacks of New York

    NASA Astrophysics Data System (ADS)

    Choi, H.; Holsen, T.

    2009-12-01

    This study investigated mercury inputs, outputs, cycling, and the interactions between deposition, emissions and atmospheric conditions in the Huntington Forest of the Adirondacks, New York. Continuous speciated mercury concentrations of gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and particulate Bound Hg (PBM) were made from June 2006 to May 2007. The average concentrations of GEM, RGM, and PBM were 1.4 ± 0.4 ng m-3, 1.8 ± 2.2 pg m-3, and 3.2 ± 3.7 pg m-3, respectively. A hybrid receptor modeling technique (potential source contribution function (PSCF)) was used with the speciated Hg concentrations to identify possible Hg sources. Major Hg sources that have a potential to contribute high Hg concentrations observed in the Adirondacks were found to be Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri. The volume-weighted mean (VWM) total Hg concentration in throughfall (Dec. 2004 to Dec. 2006) (6.6 ng L-1) was higher than in precipitation (4.9 ng L-1), while the total cumulative Hg flux in throughfall (12.0 µg m-2) was similar to precipitation (11.6 µg m-2). The emission flux of GEM from the forest floor measured using a polycarbonate dynamic flux chamber (DFC) was highest in spring, and summer, and lowest in winter. The yearly estimated Hg inputs into the forest canopy include throughfall (6.5 g m-2 year-1), litterfall (18.3 g m-2 year-1), and dry deposition during leaf-off periods (0.4g m-2 year-1). The yearly estimated Hg outputs from the forest canopy include emission from the forest floor (7.0g m-2 year-1), soil water (0.6 g m-2 year-1), and Hg loss via evaporation or overland flow during snow melt (1.0 g m-2 year-1). Litterfall represented the most significant input of Hg to this forest ecosystem. Based on this mass balance, 16.6 g m-2 of Hg is accumulating in the forest floor every year.

  20. Are flood basalt eruptions monogenetic or polygenetic?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Cañón-Tapia, Edgardo

    2015-11-01

    A fundamental classification of volcanoes divides them into "monogenetic" and "polygenetic." We discuss whether flood basalt fields, the largest volcanic provinces, are monogenetic or polygenetic. A polygenetic volcano, whether a shield volcano or a stratovolcano, erupts from the same dominant conduit for millions of years (excepting volumetrically small flank eruptions). A flood basalt province, built from different eruptive fissures dispersed over wide areas, can be considered a polygenetic volcano without any dominant vent. However, in the same characteristic, a flood basalt province resembles a monogenetic volcanic field, with only the difference that individual eruptions in the latter are much smaller. This leads to the question how a flood basalt province can be two very different phenomena at the same time. Individual flood basalt eruptions have previously been considered monogenetic, contrasted by only their high magma output (and lava fluidity) with typical "small-volume monogenetic" volcanoes. Field data from Hawaiian shield volcanoes, Iceland, and the Deccan Traps show that whereas many feeder dykes were single magma injections, and the eruptions can be considered "large monogenetic" eruptions, multiple dykes are equally abundant. They indicate that the same dyke fissure repeatedly transported separate magma batches, feeding an eruption which was thus polygenetic by even the restricted definition (the same magma conduit). This recognition helps in understanding the volcanological, stratigraphic, and geochemical complexity of flood basalts. The need for clear concepts and terminology is, however, strong. We give reasons for replacing "monogenetic volcanic fields" with "diffuse volcanic fields" and for dropping the term "polygenetic" and describing such volcanoes simply and specifically as "shield volcanoes," "stratovolcanoes," and "flood basalt fields."

  1. Nickel and Cobalt Partitioning Between Spinel and Basaltic Melt: Applications to Planetary Basalt Suites

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2002-01-01

    New experimental spinel/melt partition coefficients for Ni and Co have been measured in basalt samples with natural levels of Ni and Co, are lower than previous high doping experiments, and are applied to several planetary basalt suites. Additional information is contained in the original extended abstract.

  2. Lunar mare versus terrestrial mid-ocean ridge basalts - Planetary constraints on basaltic volcanism

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Bence, A. E.

    1978-01-01

    Major differences which exist between terrestrial midocean ridge basalts (MORBs) and lunar mare basalts reflect the different planetary characteristics of earth and moon. MORBs are enriched in aluminum and have higher Mg/(Mg + Fe(2+)). These features reflect a more aluminum- and magnesium-rich mantle source for MORBs. Mare basalts are depleted in sodium and potassium relative to MORBs and, consequently, mare feldspars are depleted in the albite component relative to MORB feldspars; these features are a reflection of the alkali-depleted nature of the moon relative to earth. The oxygen fugacities that obtained during MORB petrogenesis follow the quartz-magnetite-fayalite buffer curve very closely, while those of mare basalts are several orders of magnitude lower. This results in reduced valence states for Fe, Cr, and Ti in mare basalts, which, in turn, has a significant effect on mineral-melt partitioning.

  3. Radionuclide reactions with groundwater and basalts from Columbia River basalt formations

    SciTech Connect

    Barney, G.S.

    1981-06-01

    Chemical reactions of radionuclides with geologic materials found in Columbia River basalt formations were studied. The objective was to determine the ability of these formations to retard radionuclide migration from a radioactive waste repository located in deep basalt. Reactions that can influence migration are precipitation, ion-exchange, complexation, and oxidation-reduction. These reactions were studied by measuring the effects of groundwater composition and redox potential (Eh) on radionuclide sorption on fresh basalt surfaces, a naturally altered basalt, and a sample of secondary minerals associated with a Columbia River basalt flow. In addition, radionuclide sorption isotherms were measured for these materials and reaction kinetics were determined. The radionuclides studied were /sup 137/Cs, /sup 85/Sr, /sup 75/Se, /sup 95m/Tc, /sup 237/Np, /sup 241/Am, /sup 226/Ra and /sup 237/Pu. The Freundlich equation accurately describes the isotherms when precipitation of radionuclides does not occur. In general, sorption increased in the order: basalt < altered basalt < secondary minerals. This increase in sorption corresponds to increasing surface area and cation exchange capacity. The Eh of the system had a large effect on technetium, plutonium, and neptunium sorption. Technetium(VII), Pu(VI), and Np(V) are reduced to Tc(IV), Pu(IV), and Np(IV), respectively, under Eh conditions expected in deep basalt formations. The kinetics of radionuclide sorption and basalt-groundwater reactions were observed over a period of 18 weeks. Most sorption reactions stabilized after about four weeks. Groundwater composition changed the least in contact with altered basalt. Contact with secondary minerals greatly increased Ca, K, and Mg concentrations in the groundwater.

  4. Geochemical diversity of shergottite basalts: Mixing and fractionation, and their relation to Mars surface basalts

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.; Filiberto, Justin

    2015-04-01

    The chemical compositions of shergottite meteorites, basaltic rocks from Mars, provide a broad view of the origins and differentiation of these Martian magmas. The shergottite basalts are subdivided based on their Al contents: high-Al basalts (Al > 5% wt) are distinct from low-Al basalts and olivine-phyric basalts (both with Al < 4.5% wt). Abundance ratios of highly incompatible elements (e.g., Th, La) are comparable in all the shergottites. Abundances of less incompatible elements (e.g., Ti, Lu, Hf) in olivine-phyric and low-Al basalts correlate well with each other, but the element abundance ratios are not constant; this suggests mixing between components, both depleted and enriched. High-Al shergottites deviate from these trends consistent with silicate mineral fractionation. The "depleted" component is similar to the Yamato-980459 magma; approximately, 67% crystal fractionation of this magma would yield a melt with trace element abundances like QUE 94201. The "enriched" component is like the parent magma for NWA 1068; approximately, 30% crystal fractionation from it would yield a melt with trace element abundances like the Los Angeles shergottite. This component mixing is consistent with radiogenic isotope and oxygen fugacity data. These mixing relations are consistent with the compositions of many of the Gusev crater basalts analyzed on Mars by the Spirit rover (although with only a few elements to compare). Other Mars basalts fall off the mixing relations (e.g., Wishstone at Gusev, Gale crater rocks). Their compositions imply that basalt source areas in Mars include significant complexities that are not present in the source areas for the shergottite basalts.

  5. Oxygen consumption in subseafloor basaltic crust

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Wheat, C. G.; Hulme, S.; Edwards, K. J.; Bach, W.

    2012-12-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass, yet little is known about the form and function of life in this vast subseafloor realm that covers nearly two-thirds of the Earth's surface. A deep biosphere hosted in subseafloor basalts has been suggested from several lines of evidence; yet, empirical analysis of metabolic reaction rates in basaltic crust is lacking. Here we report the first measure of oxygen consumption in young (~ 8 Ma) and cool (<25 degrees C) basaltic crust, calculated from modeling oxygen and strontium profiles in basal sediments collected during Integrated Ocean Drilling Program (IODP) Expedition 336 to 'North Pond', a sediment 'pond' on the western flank of the Mid-Atlantic Ridge (MAR), where vigorous fluid circulation within basaltic crust occurs. Dissolved oxygen concentrations increased towards the sediment-basement interface, indicating an upward diffusional supply from oxic fluids circulating within the crust. A parametric reaction-transport model suggests oxygen consumption rates on the order of 0.5-500 nmol per cubic centimeter fluid per day in young and cool basaltic crust, providing sufficient energy to support a subsurface crustal biosphere.

  6. Can we identify source lithology of basalt?

    PubMed Central

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered. PMID:23676779

  7. Can we identify source lithology of basalt?

    PubMed

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  8. Thermochemistry and melting properties of basalt

    NASA Astrophysics Data System (ADS)

    Bouhifd, M. A.; Besson, P.; Courtial, P.; Gérardin, C.; Navrotsky, A.; Richet, P.

    2007-06-01

    The heat capacities of the liquid, glassy and crystalline phases of an alkali basalt have been determined from relative enthalpies measured between 400 and 1,800 K. Values given by available models of calculation generally agree to within 2% of these results. As derived from the new data and the enthalpy of vitrification measured at 973 K by oxide-melt drop solution calorimetry for the same sample, the enthalpy of fusion of this basalt increases from 15.4 kJ/mol at 1,000 K to 33.6 kJ/mol at 1,800 K. Comparisons between the enthalpies of fusion of basalt and model compositions confirm the small magnitude of the enthalpy of mixing between the molten mineral components of the liquids. Minor variations in the chemical composition have only a small effect in the heat capacity and the enthalpy of melting of basalt. The enthalpies of formation at 298 K from the oxides of the crystallized and glass phases of this alkali basalt are -112.2 and -98.5 kJ/mol, respectively, for a gram formula weight based on one mole of oxide components.

  9. Impacts of Acidification and Potential Recovery on the Expected Value of Recreational Fisheries in Adirondack Lakes (USA).

    PubMed

    Caputo, Jesse; Beier, Colin M; Fakhraei, Habibollah; Driscoll, Charles T

    2017-01-03

    We estimated the potential economic value of recreational fisheries in lakes altered by acid pollution in the Adirondack Mountains (USA). We found that the expected value of recreational fisheries has been diminished because of acid deposition but may improve as lakes recover from acidification under low emissions scenarios combined with fish stocking. Fishery value increased with lake pH, from a low of $4.41 angler day(-1) in lakes with pH < 4.5, to a high of $38.40 angler day(-1) in lakes with pH > 6.5 that were stocked with trout species. Stocking increased the expected fishery value by an average of $11.50 angler day(-1) across the entire pH range of the lakes studied. Simulating the future long-term trajectory of a subset of lakes, we found that pH and expected fishery value increased over time in all future emissions scenarios. Differences in estimated value among pollution reduction scenarios were small (<$1 angler day(-1)) compared to fish stocking scenarios (>$4 angler day(-1)). Our work provides a basis for assessing the costs and benefits of emissions reductions and management efforts that can hasten recovery of the economic and cultural benefits of ecosystems degraded by chronic pollution.

  10. Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1982-01-01

    Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6-10% TiO2) and the hornblende (3-6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages: (a) Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene??Biotite +more-sodic Plagioclase (b) Hornblende+Orthopyroxene??Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature. ?? 1983 Springer-Verlag.

  11. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  12. CO2 sequestration in basalts: laboratory measurements

    NASA Astrophysics Data System (ADS)

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.

    2010-12-01

    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  13. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  14. The Effect of Shock on the Amorphous Component in Altered Basalt

    NASA Technical Reports Server (NTRS)

    Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.

    2017-01-01

    Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary

  15. Pressure grouting of fractured basalt flows

    SciTech Connect

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  16. Basalt-Block Heat-Storage Plant

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    Concept for storage of solar heat for later use based on use of basalt, cast into blocks and stacked in inflatable gas-tight enclosure serving as heat-storage chamber. Heat flows to blocks from solar collector during day and from blocks to heat engine at night.

  17. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  18. Thermal models for basaltic volcanism on Io

    USGS Publications Warehouse

    Keszthelyil, L.; McEwen, A.

    1997-01-01

    We present a new model for the thermal emissions from active basaltic eruptions on Io. While our methodology shares many similarities with previous work, it is significantly different in that (1) it uses a field tested cooling model and (2) the model is more applicable to pahoehoe flows and lava lakes than fountain-fed, channelized, 'a'a flows. This model demonstrates the large effect lava porosity has on the surface cooling rate (with denser flows cooling more slowly) and provides a preliminary tool for examining some of the hot spots on Io. The model infrared signature of a basaltic eruption is largely controlled by a single parameter, ??, the average survival time for a lava surface. During an active eruption surfaces are quickly covered or otherwise destroyed and typical values of ?? for a basaltic eruption are expected to be on the order of 10 seconds to 10 minutes. Our model suggests that the Galileo SSI eclipse data are consistent with moderately active to quiescent basaltic lava lakes but are not diagnostic of such activity. Copyright 1997 by the American Geophysical Union.

  19. Utilization of lunar ilmenite: Basalt or regolith?

    NASA Technical Reports Server (NTRS)

    Kawatra, S. K.; Delao, K. L.

    1991-01-01

    A critical discussion of whether lunar basalt or regolith should be used as a resource for mineral processing schemes on the lunar surface, with pros and cons for each argument is presented. A literature review has shown that the majority of authors feel that mining the lunar basalt, crushing it, and then processing to remove the desired minerals, would be the route to take. The argument that this method would not be a sound mineral processing practice is presented. Mining and crushing are difficult propositions even on Earth; to attempt such processes in the hostile lunar environment would be a phenomenal task. It would be better to start with a simpler scheme, such as processing the regolith, which can be adapted to the multitude of unknowns facing the first lunar production plant. If, however, the lunar mining trend is followed, it must be kept in mind that mining and processing technology which is radically different from what is currently available and used on Earth will have to be developed. Podnieks and Roepke (1987) and Lindroth and Podnieks (1987) have summarized the new technology that may be applicable, but this technology is very similar to the current, 99 percent inefficient technology used on Earth. One such possible technique is sodium vapor fragmentation of basalt. Initial testwork was conducted at Michigan Technological University on terrestrial basalt with extremely promising results, though much time and effort will be needed to fully develop this process.

  20. Equilibration of Leachants with Basalt Rock for Repository Simulation Tests

    SciTech Connect

    Jantzen, C.M.

    2001-07-02

    In a nuclear waste repository in basalt, the groundwater will have a low redox potential (Eh) which may affect the leach rate of SRP waste glass. Accurate laboratory simulations of conditions in a basalt reposition must maintain low Eh values throughout the course of the experiment. In this report, important parameters affecting the ability of basalt to maintain appropriate Eh-pH conditions are examined, in particular basalt type and groundwater simulation.

  1. The petrology of the Apollo 12 pigeonite basalt suite

    NASA Technical Reports Server (NTRS)

    Baldridge, W. S.; Beaty, D. W.; Hill, S. M. R.; Albee, A. L.

    1979-01-01

    A study of the petrology of the Apollo 12 pigeonite basalt samples 12011, 12043, and 12007 is presented. In this suite, the abundances of olivine and Cr-spinel decrease with increasing grain size, while the abundances of plagioclase and ilmenite increase. The petrochemical and textural variations indicate that the pigeonite basalts were derived from the olivine basalts, but the compositional gap between the olivine and pigeonite basalts indicates that they could not have crystallized together from a single, initially homogeneous magma body.

  2. Hydrogen isotope systematics of submarine basalts

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  3. Class Schedules Need Class.

    ERIC Educational Resources Information Center

    Monfette, Ronald J.

    1986-01-01

    Argues that college publications, including class schedules, must be accurate, timely, and easy to read and follow. Describes Schoolcraft College's unified format approach to publications marketing. Offers suggestions on the design, format, and distribution of class schedules. (DMM)

  4. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe

  5. Middle Proterozoic emplacement and deformation of metanorthosite and related rocks in the northeastern Marcy massif, Adirondack Mountains, New York

    SciTech Connect

    Fakundiny, R.H. ); Muller, P.D. . Dept. of Earth Sciences)

    1993-03-01

    Geologic mapping in the Elizabethtown and Mount Marcy 15 foot quadrangles in the northeastern Adirondack Mountains has shown that Middle Proterozoic anorthosite suite rocks of the Marcy massif were intruded in at least two temporally distinguishable episodes separated by a period of localized ductile shearing. Strain was concentrated in a 100 m to > 1 km thick zone consisting mainly of metamorphosed gabbroic anorthosite, ferrodiorite, and ferrosyenite gneiss with subordinate granite gneiss, calc-silicate gneiss, amphibolite, and marble. This zone of flat to steeply-dipping layered gneisses, designated the Elizabethtown ductile deformation zone (EDDZ) for exposures along Rt 9 south of Elizabethtown, appears to extend from Lake Champlain on the east to at least Lake Placid on the west. Its upper boundary is most clearly evident where it occurs in olivine metagabbro bodies of Jay and Iron Mountain. Massive metagabbro is sheared and recrystallized into amphibolite gneiss. The lower boundary of the zone is more difficult to map, but commonly lies within contaminated metamorphosed gabbroic anorthosite and ferrodiorite gneiss that characterize the margins of the massif in the area. Rocks of the EDDZ display pervasive mesoscopic S and LS fabrics, but exhibit totally recrystallized microtextures. Kinematic indicators such as winged porphyroclasts and S-C fabrics are sporadically developed and provide a regionally ambiguous sense of shear. The authors favor a regional extension origin for the fabrics. Mineral assemblages defining the EDDZ fabrics are consistent with granulite facies conditions during shear-zone development and suggest a lower crustal position. Mapping suggests that the younger anorthosite intrusions were mainly domical and generated a chaotic contact zone typified by block structure and dikes of ferrodiorite, ferromonzonite, and ferrosyenite.

  6. Sulfur isotope homogeneity of lunar mare basalts

    NASA Astrophysics Data System (ADS)

    Wing, Boswell A.; Farquhar, James

    2015-12-01

    We present a new set of high precision measurements of relative 33S/32S, 34S/32S, and 36S/32S values in lunar mare basalts. The measurements are referenced to the Vienna-Canyon Diablo Troilite (V-CDT) scale, on which the international reference material, IAEA-S-1, is characterized by δ33S = -0.061‰, δ34S ≡ -0.3‰ and δ36S = -1.27‰. The present dataset confirms that lunar mare basalts are characterized by a remarkable degree of sulfur isotopic homogeneity, with most new and published SF6-based sulfur isotope measurements consistent with a single mass-dependent mean isotopic composition of δ34S = 0.58 ± 0.05‰, Δ33S = 0.008 ± 0.006‰, and Δ36S = 0.2 ± 0.2‰, relative to V-CDT, where the uncertainties are quoted as 99% confidence intervals on the mean. This homogeneity allows identification of a single sample (12022, 281) with an apparent 33S enrichment, possibly reflecting cosmic-ray-induced spallation reactions. It also reveals that some mare basalts have slightly lower δ34S values than the population mean, which is consistent with sulfur loss from a reduced basaltic melt prior to eruption at the lunar surface. Both the sulfur isotope homogeneity of the lunar mare basalts and the predicted sensitivity of sulfur isotopes to vaporization-driven fractionation suggest that less than ≈1-10% of lunar sulfur was lost after a potential moon-forming impact event.

  7. Additive Construction using Basalt Regolith Fines

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  8. Identifying Common Patterns in Diverse Systems: Effects of Exurban Development on Birds of the Adirondack Park and the Greater Yellowstone Ecosystem, USA

    NASA Astrophysics Data System (ADS)

    Glennon, Michale J.; Kretser, Heidi E.; Hilty, Jodi A.

    2015-02-01

    We examined the impacts of exurban development on bird communities in Essex County, New York and Madison County, Montana by comparing differences in abundance of songbirds between subdivisions and control sites in both regions. We hypothesized that impacts to bird communities would be greater in the relatively homogeneous, closed canopy Adirondack forest of northern New York State than they would be in the more naturally heterogeneous grasslands interspersed with trees and shrubs of the Greater Yellowstone Ecosystem. We examined birds in five functional groups expected to be responsive to exurban development, and determined relative abundance within subdivisions and control sites across these two distinct regions. We found little support for our hypothesis. For birds in the area-sensitive, low nesting, and Neotropical migrant functional groups, relative abundance was lower in subdivisions in the Adirondacks and in Madison County, while relative abundance of edge specialists was greater in subdivisions in both regions. The direction and magnitude of change in the avian communities between subdivisions and controls was similar in both regions for all guilds except microhabitat specialists. These similarities across diverse ecosystems suggest that the ecological context of the encompassing region may be less important than other elements in shaping avian communities in exurban systems. This finding suggests that humans and their specific behaviors and activities in exurban areas may be underappreciated but potentially important drivers of change in these regions.

  9. Identifying common patterns in diverse systems: effects of exurban development on birds of the Adirondack Park and the Greater Yellowstone Ecosystem, USA.

    PubMed

    Glennon, Michale J; Kretser, Heidi E; Hilty, Jodi A

    2015-02-01

    We examined the impacts of exurban development on bird communities in Essex County, New York and Madison County, Montana by comparing differences in abundance of songbirds between subdivisions and control sites in both regions. We hypothesized that impacts to bird communities would be greater in the relatively homogeneous, closed canopy Adirondack forest of northern New York State than they would be in the more naturally heterogeneous grasslands interspersed with trees and shrubs of the Greater Yellowstone Ecosystem. We examined birds in five functional groups expected to be responsive to exurban development, and determined relative abundance within subdivisions and control sites across these two distinct regions. We found little support for our hypothesis. For birds in the area-sensitive, low nesting, and Neotropical migrant functional groups, relative abundance was lower in subdivisions in the Adirondacks and in Madison County, while relative abundance of edge specialists was greater in subdivisions in both regions. The direction and magnitude of change in the avian communities between subdivisions and controls was similar in both regions for all guilds except microhabitat specialists. These similarities across diverse ecosystems suggest that the ecological context of the encompassing region may be less important than other elements in shaping avian communities in exurban systems. This finding suggests that humans and their specific behaviors and activities in exurban areas may be underappreciated but potentially important drivers of change in these regions.

  10. Geochemistry of apollo 15 basalt 15555 and soil 15531.

    PubMed

    Schnetzler, C C; Philpotts, J A; Nava, D F; Schuhmann, S; Thomas, H H

    1972-01-28

    Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?).

  11. Microbial Diversity in the Columbia River Basalt Group and the Context for Life in Subsurface Basalts

    NASA Astrophysics Data System (ADS)

    Lavalleur, H. J.; Smith, A.; Fisk, M. R.; Colwell, F. S.

    2012-12-01

    Large igneous provinces constitute a sizable volume of porous and fractured materials in the Earth's crust and many of these environments exist within the boundaries of survival for subsurface life. The results of microbiological studies of basalts and other igneous materials in subsurface settings hint at the types of microbes that dwell in these environments. We investigated the microbes in aquifers in the Columbia River Basalt Group (CRBG) and also considered the microbial communities in subsurface basalts more broadly to determine if there are recurrent themes in the types of microbes and the nature of diversity present in these geological systems. Bacteria and Archaea collected from five intervals in the CRBG were examined using high-throughput DNA sequencing directed at the 16S rRNA genes. The highest bacterial biomass and the highest bacterial diversity were observed in the deepest samples (>1018 meters below land surface) whereas the highest archaeal diversity was detected in the shallowest samples (<449 mbls). Microbes classified as Proteobacteria, Firmicutes, and Actinobacteria dominated the aquifers. These findings are generally consistent with earlier cultivation- and clone library-based studies performed on microbes from the CRBG and the Snake River Plain aquifer. Microbes associated with marine basalts are similar to those found in terrestrial settings and include Proteobacteria, Firmicutes, candidate division bacterium OP1, Euryarchaeota, and Crenarchaeota. Based on 16S rRNA sequence similarities to known microbes, both basaltic regions have taxa with representative physiologies likely to include hydrogen oxidation, iron and sulfur metabolism, acetogenesis, and hydrocarbon metabolism. Research on the microbiology of basalt rich provinces on the planet has informed our understanding of biogeochemical cycling where igneous rocks dominate. The knowledge gained in these investigations also promotes our ability to verify the remediation of contaminants

  12. Northwest Africa 5298: A Basaltic Shergottite

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Brandon, Alan; Shafer, John

    2009-01-01

    NWA 5298 is a single 445 g meteorite found near Bir Gandouz, Morocco in March 2008 [1]. This rock has a brown exterior weathered surface instead of a fusion crust and the interior is composed of green mineral grains with interstitial dark patches containing small vesicles and shock melts [1]. This meteorite is classified as a basaltic shergottite [2]. A petrologic study of this Martian meteorite is being carried out with electron microprobe analysis and soon trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Oxygen fugacity is calculated from Fe-Ti oxides pairs in the sample. The data from this study constrains the petrogenesis of basaltic shergottites.

  13. Total nitrogen content of deep sea basalts

    NASA Technical Reports Server (NTRS)

    Norris, T. L.; Schaeffer, O. A.

    1982-01-01

    An estimate of the total nitrogen content of the earth's mantle, aimed at furnishing a further constraint for earth atmosphere origin and evolution models, was attempted through thermal neutron activation analysis via N-14(n,p)C-14 for the case of deep sea basalt glasses from the East Pacific Rise, the Mid-Atlantic Rift, and the Juan de Fuca Ridge. The increased nitrogen abundance of matrix material from the same samples as the glasses may be due to the incorporation of chemically-bound nitrogen from sea water, rather than dissolved molecular nitrogen. A discussion is presented of factors affecting observed basalt nitrogen content and its interpretation in terms of mantle nitrogen abundance. A 2 ppm N lower limit is estimated for the mantle.

  14. Biogenic Mn-Oxides in Subseafloor Basalts

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G.

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  15. Degassing-driven crystallisation in basalts

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Tuffen, H.; James, M. R.; Pinkerton, H.

    2013-01-01

    Syn-eruptive crystallisation can drastically increase magma viscosity, with profound implications for conduit dynamics, lava emplacement and volcanic hazards. There is growing evidence that crystallisation is not only cooling-driven, but can also occur almost isothermally during decompression-induced degassing on ascent from depth. Here we review field and experimental evidence for degassing-driven crystallisation in a range of magma compositions. We then present new results showing, for the first time, experimental evidence for this process in basaltic magma. Our experiments use simultaneous thermogravimetric analysis and differential scanning calorimetry coupled with mass spectrometry (TGA-DSC-MS) to monitor degassing patterns and thermal events during heating and cooling of porphyritic basaltic samples from Mt. Etna, Italy. The partly degassed samples, which contained 0.39-0.81 wt.% total volatiles in the glass fraction, were subjected to two cycles of heating from ambient to 1250 °C. On the first heating, TGA data show that 30-60% of the total volatiles degassed slowly at < 1050 °C, and that the degassing rate increased rapidly above this temperature. DSC data indicate that this rapid increase in the degassing rate was closely followed (≤ 3.4 min) by a strongly exothermic event, which is interpreted as crystallisation. Enthalpies measured for this event suggest that up to 35% of the sample crystallises, a value supported by petrographic observations of samples quenched after the event. As neither degassing nor crystallisation was observed at high temperature during the second heating cycle we infer that the events on first heating constitute degassing-driven crystallisation. The rapidity and magnitude of the crystallisation response to degassing indicates that this process may strongly affect the rheology of basaltic magma in shallow conduits and lava flows, and thus influence the hazards posed by basaltic volcanism.

  16. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  17. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region.

  18. Lunar sample studies. [breccias basalts, and anorthosites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility.

  19. Voluminous granitic magmas from common basaltic sources

    USGS Publications Warehouse

    Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F.

    2005-01-01

    Granitic-rhyolitic liquids were produced experimentally from moderately hydrous (1.7-2.3 wt% H2O) medium-to-high K basaltic compositions at 700 MPa and f O2 controlled from Ni-NiO -1.3 to +4. Amount and composition of evolved liquids and coexisting mineral assemblages vary with fO2 and temperature, with melt being more evolved at higher fO2s, where coexisting mineral assemblages are more plagioclase- and Fe-Ti oxide-rich and amphibole-poor. At fO2 of Ni-NiO +1, typical for many silicic magmas, the samples produce 12-25 wt% granitic-rhyolitic liquid, amounts varying with bulk composition. Medium-to-high K basalts are common in subduction-related magmatic arcs, and near-solidus true granite or rhyolite liquids can form widely, and in geologically significant quantities, by advanced crystallization-differentiation or by low-degree partial remelting of mantle-derived basaltic sources. Previously differentiated or weathered materials may be involved in generating specific felsic magmas, but are not required for such magmas to be voluminous or to have the K-rich granitic compositions typical of the upper continental crust. ?? Springer-Verlag 2005.

  20. How thick are lunar mare basalts

    NASA Technical Reports Server (NTRS)

    Hoerz, F.

    1978-01-01

    It is argued that De Hon's estimates of the thickness of lunar mare basalts, made by analyzing 'ghost' craters on mare surfaces, were inflated as the result of the crater morphometric data of Pike (1977) to reconstruct rim heights of degraded craters. Crater rim heights of 82 randomly selected highland craters of various states of degradation were determined, and median rim height was compared to that of corresponding fresh impact structures. Results indicate that the thickness estimates of De Hon may be reduced by a factor of 2, and that the total volume of mare basalt produced throughout lunar history could be as little as 1-2 million cubic kilometers. A survey of geochemical and petrographic evidence indicates that lateral transport of regolith components over distances of much greater than 10 km is relatively inefficient; it is suggested that vertical mixing of a highland substrate underlying the basaltic fill may have had a primordial role in generating the observed mare width distributions and high concentrations of exotic components in intrabasin regoliths.

  1. The effects of liming an Adirondack lake watershed on downstream water chemistry: Effects of liming on stream chemistry

    USGS Publications Warehouse

    Burns, Douglas A.

    1996-01-01

    Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO3- and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO42- and NO3- concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO42--reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO42- reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 ??eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+, as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+, H+, AlIM, and DOC revealed net downstream losses of

  2. Identification of Mineral Phases on Basalt Surfaces by Imaging SIMS.

    PubMed

    Ingram, J C; Groenewold, G S; Olson, J E; Gianotto, A K; McCurry, M O

    1999-05-01

    A method for the identification of mineral phases on basalt surfaces utilizing secondary ion mass spectrometry (SIMS) with imaging capability is described. The goal of this work is to establish the use of imaging SIMS for characterization of the surface of basalt. The basalt surfaces were examined by interrogating the intact basalt (heterogeneous mix of mineral phases) as well as mineral phases that have been separated from the basalt samples. Mineral separates from the basalt were used to establish reference spectra for the specific mineral phases. Electron microprobe and X-ray photoelectron spectroscopy were used as supplemental techniques for providing additional characterization of the basalt. Mineral phases that make up the composition of the basalt were identified from single-ion images which were statistically grouped. The statistical grouping is performed by utilizing a program that employs a generalized learning vector quantization technique. Identification of the mineral phases on the basalt surface is achieved by comparing the mass spectra from the statistically grouped regions of the basalt to the mass spectral results from the mineral separates. The results of this work illustrate the potential for using imaging SIMS to study adsorption chemistry at the top surface of heterogeneous mineral samples.

  3. Making rhyolite in a basalt crucible

    NASA Astrophysics Data System (ADS)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  4. Germanium abundances in lunar basalts - Evidence of mantle metasomatism?

    NASA Technical Reports Server (NTRS)

    Dickinson, T.; Taylor, G. J.; Keil, K.; Bild, R. W.

    1989-01-01

    To fill in gaps in the present Ge database, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, and 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and thus are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and interelement variations, it does not appear that the observed Ge enrichments are due to silicate liquid immiscibility. KREEP basalt source regions may have been metasomatized, and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the moon suggest that the moon was never totally molten.

  5. Hotspots, basalts, and the evolution of the mantle.

    PubMed

    Anderson, D L

    1981-07-03

    The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.

  6. Products of a Subglacial Flood Basalt Eruption

    NASA Astrophysics Data System (ADS)

    Gorny, C. F.; White, J. D. L.; Gudmundsson, M. T.

    2015-12-01

    The Snæbýlisheiði unit, SE Iceland, is a ca. 26 km³ elongate, flat-topped ridge of volcaniclastic debris coupled with and intruded by coherent basalt stretching over 34 km from the eruption site perpendicular to the rift fissure source. It formed from a single subglacial flood basalt eruption during a recent glaciation, and its elongation reflects glacial control on dispersal via the hydraulic potential gradient at the glacier's base, which drove towards the glacier terminus the meltwater+debris formed during the eruption by quenching and fragmentation. High magma discharge and outgassing drove segregation of magma into down-flow propagating intrusions. Edifice growth was mediated by the extent of ice melting, extent and efficiency of meltwater+debris drainage, and hydraulic gradients locally favoring meltwater accumulation. Eruption style reflected magma flux, edifice stability, and accessibility of water to the vent area via flooding or infiltration. Deposits reflect these competing factors in their chaotic internal organization and stratigraphy, limited lithofacies continuity, and diverse particle populations from multiple source vents. Linear growth of the ridge down-gradient from the eruption site was driven primarily by propagation and continuous fragmentation of shoaling intrusions that formed an interconnected intrusive complex with extensive peperites. Advance was along gently meandering and locally bifurcating sub-ice conduits within hyaloclastite with sheet-lobe levees and lobate fingered intrusions. Irregular dikes, apophyses, horns, and tendrils extended from the main body and generated voluminous lapilli tuff and contorticlasts while providing additional heat to the system. Prolonged transport and deposition of debris produced complexly bedded volcaniclastic deposits derived from and intruded by the basalt sheet. The bedding and depositional features of volcaniclastic debris and relationship to their adjacent intrusions suggest transport and

  7. Helium isotope ratios in Easter microplate basalts

    NASA Astrophysics Data System (ADS)

    Poreda, R. J.; Schilling, J. G.; Craig, H.

    1993-09-01

    He-3/He-4 ratios in Easter Microplate basalt glasses show clear evidence of the effects of a mantle plume. The East Rift of the microplate between 26 and 28 deg S, identified by La/Sm, Sr and Pb isotopes and ridge crest elevation as the region of maximum plume influence, has He-3/He-4 ratios spanning the entire range from 7.5 to 11.7 R(sub A). The Easter Microplate is the only section of the entire East Pacific Rise that is associated with a known `hotspot' track (mantle plume) and has elevated He-3/He-4 ratios. Although most of the West Rift basalts contain MORB helium (8.0 - 8.7 (R sub A)), the basalt closest to the East Rift has an elevated He-3/He-4 ratio (11.3 R(sub A)), consistent with a significant plume component. The diversity in isotopic signatures also indicates that homogenization of isotopic anomalies does not occur, even in this region of `super-fast' spreading. The overall He-3/He-4-Pb-206/Pb-204 and He-3/He-4-Sr-87/Sr-86 trends have positive correlations, although the high between the He and Sr isotope distribution is modeled in the context of a plume source-migrating ridge sink. During channeling of the plume toward the ridge, helium if preferentially lost from the center of the channeled plume, resulting in lower He/Pb and He/Sr concentration ratios in the high He-3/He-4 component. Mixing trajectories in He-Sr isotopic space between a LILE depleted asthenosphere and a variably degassed plume component provide a reasonably good fit to the data and may explain the isotope systematics of plume-ridge interactions in the context of modern theories of plume dynamics.

  8. Microbial colonization and alteration of basaltic glass

    NASA Astrophysics Data System (ADS)

    Einen, J.; Kruber, C.; Øvreås, L.; Thorseth, I. H.; Torsvik, T.

    2006-03-01

    Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004). The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM), and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE) in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group of prosthecate oligotrophic

  9. Vesiculation of basaltic magma during eruption

    USGS Publications Warehouse

    Mangan, M.T.; Cashman, K.V.; Newman, S.

    1993-01-01

    Vesicle size distributions in vent lavas from the Pu'u "O'o-Kupaianaha eruption of Kilauea volcano are used to estimate nucleation and growth rates of H2O-rich gas bubbles in basaltic magma nearing the earth's surface (???120 m depth). By using well-constrained estimates for the depth of volatile exsolution and magma ascent rate, nucleation rates of 35.9 events.cm-3.s-1 and growth rates of 3.2 ?? 10-4cm/s are determined directly from size-distribution data. The results are consistent with diffusion-controlled growth as predicted by a parabolic growth law. -from Authors

  10. Water in Mantle Sources of Oceanic Basalts

    NASA Astrophysics Data System (ADS)

    Dixon, J. E.

    2006-12-01

    This talk will review estimates of water partitioning during subduction as determined by studies of mantle- derived melts. A major uncertainty in the earth's water cycle is the effect of subduction and recycling of hydrated lithosphere on deep mantle water concentrations. The problem with quantifying the variablility of mantle volatiles is that their concentrations are easily modified by shallow crystallization and degassing processes. Careful examination of volatile data from submarine basalts is required to select only those that have not degassed water. For example, even basalts collected deep on a submarine rift zone are not immune because basaltic volcanoes that have breached the sea surface are like champagne bottles; once the cork is popped, the entire bottle goes flat (e.g., Dixon et al., 1991). Once degassing effects have been eliminated, mantle water concentrations show systematic variations. Mantle sources for mid-ocean ridge basalts contain about 120 ppm water, with the most depleted MORB end-member having about 60 ppm. Source regions for mantle plumes are wetter than MORB sources. The wettest mantle is found in plumes dominated by the "common mantle plume component" (FOZO; 700 to 800 ppm H2O, H2O /Ce=210 to 300). Mantle sources for plumes enriched in recycled lithosphere (EM1, EM2, LOMU, and HIMU) have about half as much water (300 to 400 ppm H2O) and lower ratios of water to similarly incompatible elements (H2O/Ce<=100). High H2O /Ce in FOZO plumes cannot be derived from recycled lithosphere; therefore, a significant amount of water must be juvenile, left over from planetary accretion. Thus, dehydration during subduction effectively partitions water into the exosphere (mantle wedge, crust, ocean, atmosphere) resulting in time-integrated depletion of water relative to other incompatible elements in recycled (deeply subducted) lithosphere and sediments and, ultimately, the majority of the mantle. These results are consistent with a global water cycle

  11. Plagioclase mineralogy of olivine alkaline basalt

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.

    1973-01-01

    A geological and mineralogical study of the Potrillo volcanics is reported. The investigation consisted first of field mapping to establish and identify the different rock types and volcanic features in order to determine the geological history. Next, samples were collected and analyzed petrographically to determine suitable rocks from the various stratigraphic units for study of plagioclase. Samples selected for further study were crushed and the plagioclase extracted for the determination of composition and structural state. These results were then related to the petrology and crystallization of the basalt.

  12. The nomenclature of polymict basaltic achondrites

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Prinz, M.; Harlow, G. E.; Takeda, H.; Nehru, C. E.

    1983-01-01

    The system of nomenclature for basaltic achondrite meteorites is discussed, and new classification criteria are proposed. Under the new system, all achondrites are divided intno the broad groupings 'monomict' and 'polymict' by the number of lithologies present. The monomicts are classified structurally as brecciated or unbreccciated and as eucrites, diogenites, or cumulate eucrites. The polymicts are classified using an arbitrary mineral-chemical standard based on the percentage content of diogenite (magnesium orthopyroxenite): diogenites have more than 90 percent, eucrites have less than 10 percent, and all other polymicts area howardites. Tables listing all known achondrites by classification are provided.

  13. Mare basalt genesis - Modeling trace elements and isotopic ratios

    NASA Technical Reports Server (NTRS)

    Binder, A. B.

    1985-01-01

    Various types of mare basalt data have been synthesized, leading to the production of an internally consistent model of the mare basalt source region and mare basalt genesis. The model accounts for the mineralogical, major oxide, compatible siderophile trace element, incompatible trace element, and isotopic characteristics of most of the mare basalt units and of all the pyroclastic glass units for which reliable data are available. Initial tests of the model show that it also reproduces the mineralogy and incompatible trace element characteristics of the complementary highland anorthosite suite of rocks and, in a general way, those of the lunar granite suite of rocks.

  14. Geochemistry of Apollo 15 basalt 15555 and soil 15531.

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.; Philpotts, J. A.; Nava, D. F.; Schuhmann, S.; Thomas, H. H.

    1972-01-01

    Data are presented on major and trace element concentrations determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area, as well as on trace element concentrations determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Most of the chemical differences between basalt 15555 and soil 15531 could be accounted for if the soil were a mixture of 88% basalt, 6% KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus), and 6% plagioclase.

  15. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  16. An estimate of the juvenile sulfur content of basalt

    USGS Publications Warehouse

    Moore, J.G.; Fabbi, Brent P.

    1971-01-01

    Sulfur analyses by X-ray fluorescence give an average content of 107 ppm for 9 samples of fresh subaerially-erupted oceanic basalt and 680 ppm for 38 samples of submarine erupted basalt. This difference is the result of retention of sulfur in basalt quenched on the sea floor and loss of sulfur in basalt by degassing at the surface. The outer glassy part of submarine erupted basalt contains 800??150 ppm sulfur, and this amount is regarded as an estimate of the juvenile sulfur content of the basalt melt from the mantle. The slower cooled interiors of basalt pillows are depleted relative to the rims owing to degassing and escape through surface fractures. Available samples of deep-sea basalts do not indicate a difference in original sulfur content between low-K tholeiite, Hawaiian tholeiite, and alkali basalt. The H2O/S ratio of analyzed volcanic gases is generally lower than the H2O/S ratio of gases presumed lost from surface lavas as determined by chemical differences between pillow rims and surface lavas. This enrichment of volcanic gases in sulfur relative to water may result from a greater degassing of sulfur relative to water from shallow intrusive bodies beneath the volcano. ?? 1971 Springer-Verlag.

  17. Variations in chemical composition of Apollo 15 mare basalts

    NASA Technical Reports Server (NTRS)

    Butler, J. C.

    1976-01-01

    Chemical analyses of 30 different Apollo 15 mare basalts were examined to evaluate the effects of closure on the pearson moment correlation coefficient. It is shown possible to describe the Apollo 15 mare basalts in terms of an opaque, an olivine/pyroxene, an anorthite, and a KREEP component, if significant correlations are identified using the expected correlations as null values. Using Q-mode cluster analysis and nonlinear mapping, it is possible to recognize three groups of the mare basalts, groups 1 and 2 belonging to the olivine normative basalt cluster and group 3 to the quartz normative cluster.

  18. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    USGS Publications Warehouse

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  19. The application of an integrated biogeochemical model (PnET-BGC) to five forested watersheds in the Adirondack and Catskill regions of New York

    USGS Publications Warehouse

    Chen, L.; Driscoll, C.T.; Gbondo-Tugbawa, S.; Mitchell, M.J.; Murdoch, Peter S.

    2004-01-01

    PnET-BGC is an integrated biogeochemical model formulated to simulate the response of soil and surface waters in northern forest ecosystems to changes in atmospheric deposition and land disturbances. In this study, the model was applied to five intensive study sites in the Adirondack and Catskill regions of New York. Four were in the Adirondacks: Constable Pond, an acid-sensitive watershed; Arbutus Pond, a relatively insensitive watershed; West Pond, an acid-sensitive watershed with extensive wetland coverage; and Willy's Pond, an acid-sensitive watershed with a mature forest. The fifth was Catskills: Biscuit Brook, an acid-sensitive watershed. Results indicated model-simulated surface water chemistry generally agreed with the measured data at all five sites. Model-simulated internal fluxes of major elements at the Arbutus watershed compared well with previously published measured values. In addition, based on the simulated fluxes, element and acid neutralizing capacity (ANC) budgets were developed for each site. Sulphur budgets at each site indicated little retention of inputs of sulphur. The sites also showed considerable variability in retention of NO3-. Land-disturbance history and in-lake processes were found to be important in regulating the output of NO3- via surface waters. Deposition inputs of base cations were generally similar at these sites. Various rates of base cation outputs reflected differences in rates of base cation supply at these sites. Atmospheric deposition was found to be the largest source of acidity, and cation exchange, mineral weathering and in-lake processes served as sources of ANC. ?? 2004 John Wiley and Sons, Ltd.

  20. Using 40Ar/39Ar ages of intercalated silicic tuffs to date flood basalts: Precise ages for Steens Basalt Member of the Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.; Benson, Thomas R.

    2017-02-01

    To establish causality between flood basalt eruptions and extinction events and global environmental effects recorded by isotopic excursions in marine sediments, highly accurate and precise ages for the flood basalts are required. But flood basalts are intrinsically difficult to date. We illustrate how 40Ar/39Ar feldspar ages for silicic tuffs intercalated with and overlying sections of Steens Basalt, the earliest lavas of the Middle Miocene Columbia River Basalt Group in the northwestern United States, provide high-precision ages that, for the first time, make it possible to resolve age differences with stratigraphic position within a section of these flood lavas. The stratigraphically lowest rhyolitic tuff, a fall deposit, yielded an age of 16.592 ± ± 0.028 Ma (FCs = 28.02 Ma), and the uppermost, the alkali rhyolite ignimbrite Tuff of Oregon Canyon, is 16.468 ± ± 0.014 Ma. The argon and stratigraphic data indicate that Steens Basalt eruptions occurred from ∼16.64 to 16.43 Ma in the southern end of its distribution. We estimate that the Steens Mountain geomagnetic reversal occurred at 16.496 ± ± 0.028 Ma (±0.18 Ma total error). Our estimates of the timing for initiation of volcanism and volumetric eruptive rates do not seem to support volcanic forcing by the initial stages of Columbia River Basalt Group eruptions as an explanation for the abrupt warming and carbonate dissolution at the beginning of the Miocene Climatic Optimum.

  1. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  2. Identifying recycled ash in basaltic eruptions

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These `recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  3. Hafnium isotope variations in oceanic basalts.

    USGS Publications Warehouse

    Patchett, P.J.; Tatsumoto, M.

    1980-01-01

    Routine low-blank chemistry and 0.01-0.04% precision on the ratio 176Hf/177Hf allows study of Hf isotopic variations, generated by beta --decay of 176Lu, in volcanic rocks derived from the suboceanic mantle. Normalized to 176Hf/177Hf = 0.7325, 176Hf/177Hf ranges 0.2828-0.2835, based on 24 basalt samples. 176Hf/177Hf is positively correlated with 143Nd/144Nd, and negatively correlated with 87Sr/86Sr and 206Pb/204Pb. Along the Iceland-Reykjanes ridge traverse, 176Hf/177Hf increases southwards. The coherence of Hf, Nd and Sr isotopes in the oceanic mantle allows an approximate bulk Earth 176Hf/177Hf of 0.28295 to be inferred from the bulk Earth 143Nd/144Nd. This requires the bulk Earth Lu/Hf to be 0.25, similar to that of the Juvinas eucrite. 60% of the Hf isotopic variation in oceanic basalts occurs among mid-ocean ridge samples. Lu-Hf fractionation probably decouples from Sm-Nd and Rb-Sr fractionation in very depleted source regions, with high Lu/Hf, and consequent high 176Hf/177Hf ratios developing in mantle residual from partial melting. (Authors' abstract) -T.R.

  4. Degassing of reduced carbon from planetary basalts

    PubMed Central

    Wetzel, Diane T.; Rutherford, Malcolm J.; Jacobsen, Steven D.; Hauri, Erik H.; Saal, Alberto E.

    2013-01-01

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  5. Emplacement of Columbia River flood basalt

    SciTech Connect

    Reidel, Stephen P. )

    1997-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  6. Emplacement of Columbia River flood basalt

    SciTech Connect

    Reidel, S.P.

    1998-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  7. Identifying recycled ash in basaltic eruptions.

    PubMed

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-28

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These 'recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  8. Is Ishtar Terra a thickened basaltic crust?

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar

    1992-01-01

    The mountain belts of Ishtar Terra and the surrounding tesserae are interpreted as compressional regions. The gravity and surface topography of western Ishtar Terra suggest a thick crust of 60-110 km that results from crustal thickening through tectonic processes. Underthrusting was proposed for the regions along Danu Montes and Itzpapalotl Tessera. Crustal thickening was suggested for the entire Ishtar Terra. In this study, three lithospheric models with total thicknesses of 40.75 and 120 km and initial crustal thicknesses of 3.9 and 18 km are examined. These models could be produced by partial melting and chemical differentiation in the upper mantle of a colder, an Earth-like, and a hotter Venus having temperatures of respectively 1300 C, 1400 C, and 1500 C at the base of their thermal boundary layers associated with mantle convection. The effects of basalt-granulite-eclogite transformation (BGET) on the surface topography of a thickening basaltic crust is investigated adopting the experimental phase diagram and density variations through the phase transformation.

  9. The photometry of flat, basaltic surfaces

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Meador, W. E.

    1977-01-01

    A photometer was developed and successfully operated to obtain photometric measurements on several flat, particulate surfaces of basalt for coplanar scattering geometries. The test materials were two size ranges each of two different basalts with significantly different albedos. The measurements include a range of phase angles from 30 to 80 degrees and were obtained by varying the angles of incidence and emission such that the phase angle remained constant. The data were used elsewhere in the verification of the Meador-Weaver photometric function and are presented here in the form of Minnaert plots. In this form the data offered the first support for the accuracy of the Meador-Weaver photometric function because of a deviation of the data from a straight line trend at larger departures from the mirror point geometry. This trend is predicted by the Meador-Weaver function but not by the Minnaert function. The failure of photometric data to support the Minnaert function was not evident in earlier measurements because of the restriction of planetary data to small departures from the mirror point geometry and to small values of the phase angle.

  10. Kinetics of anorthite dissolution in basaltic melt

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Zhang, Youxue; Chen, Yang; Xu, Zhengjiu

    2016-04-01

    We report convection-free anorthite dissolution experiments in a basaltic melt at 1280-1500 °C and 0.5 GPa on two different crystallographic surfaces, (1 2 1 bar) and (3 bar 0 2) to investigate dissolution kinetics. The anisotropy of the anorthite dissolution rate along these two surfaces is negligible. Time series experiments at ∼1280 °C show that anorthite dissolution is mainly controlled by diffusion in the melt within experimental uncertainty. Analytical solutions were used to model the dissolution and diffusion processes, and to obtain the diffusivities and the saturation concentrations of the equilibrium-determining component (Al2O3) for anorthite dissolution into the basaltic melt. For the first time, we are able to show the physical and chemical characteristics of quench growth effect on the near-interface melt using high spatial resolution (0.3 μm) EDS analyses. For anorthite (An# ⩾ 90) saturation in a melt with 39-53 wt% SiO2 and ⩽0.4 wt% H2O, the concentration of Al2O3 in wt% depends on temperature as follows:

  11. Identifying recycled ash in basaltic eruptions

    PubMed Central

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-01-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These ‘recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions. PMID:25069064

  12. Degassing of reduced carbon from planetary basalts.

    PubMed

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  13. Lithium Isotope Systematics in Azores Basalts

    NASA Astrophysics Data System (ADS)

    Yu, H.; Widom, E.; Qiu, L.; Rudnick, R.; Gelinas, A.; Franca, Z.

    2009-05-01

    Basalts from the Azores archipelago and MORB from the nearby Azores Platform exhibit extreme chemical and isotopic variations attributed to the influence of a heterogeneous mantle plume, with compositions ranging from depleted mantle (DMM) to strong HIMU, EMI and EMII signatures. In order to assess the utility of Li isotopes as a mantle source tracer and to better constrain the origin of heterogeneous mantle beneath the Azores, we have analyzed Li isotopes in a suite of young, fresh, MgO-rich basalts from São Miguel and three Central Group islands including Pico, Faial and Terceira. Despite large variations in radiogenic isotope signatures (e.g. 206Pb/204Pb = 19.3 to 20.1), δ7Li varies only slightly (3.1-4.7‰), and is within the range for global and North Atlantic MORB [1, 2]. More extreme δ7Li values such as those reported previously for some EMII, EMI and HIMU ocean island basalts (-17‰ to +10‰; [3-5]) were not observed. Nevertheless, basalts from the Central Group islands with EMI-type signatures are, on average, slightly heavier in δ7Li than the São Miguel samples, and they exhibit positive correlations with 87Sr/86Sr and negative correlations with 206Pb/204Pb, Nd, and Hf isotopes. Li isotopes do not correlate with indices of fractionation such as MgO, suggesting that the δ7Li correlations with radiogenic isotopes may represent subtle variations in mantle source signatures. Positive and negative correlations of δ7Li with 87Sr/86Sr and 206Pb/204Pb, respectively, and relatively unradiogenic Os (187Os/188Os = 0.1244-0.1269), may reflect old, slab-fluid metasomatized mantle beneath the Central Group islands. In contrast, δ7Li signatures in the São Miguel basalts do not correlate with radiogenic isotopes. Rather, δ7Li is essentially constant despite extremely high 87Sr/86Sr and 206Pb/204Pb and low ΔɛHf signatures that have been attributed to 3.5 Ga recycled E-MORB or evolved oceanic crust [6; 7]. This suggests either that the São Miguel source

  14. Constructibility issues associated with a nuclear waste repository in basalt

    SciTech Connect

    Turner, D.A.

    1981-12-04

    This report contains the text and slide reproductions of a speech on nuclear waste disposal in basalt. The presentation addresses the layout of repository access shafts and subsurface facilities resulting from the conceptual design of a nuclear repository in basalt. The constructibility issues that must be resolved prior to construction are described. (DMC)

  15. Germanium abundances in lunar basalts: Evidence of mantle metasomatism

    SciTech Connect

    Dickinson, T.; Taylor, G.J.; Keil, T.K.; Bild, R.W.

    1988-01-01

    To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear that the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.

  16. Investigation of Basalt Woven Fabrics for Military Applications

    DTIC Science & Technology

    2011-11-01

    or gray, fine-grained rock classified in the family of igneous rocks , formed by cooling of molten lava. It is commonly found in the Earth’s crust...Acronyms 18 Distribution List 19 iv List of Figures Figure 1. Basalt rock ...help in acquiring the info within. vi INTENTIONALLY LEFT BLANK. 1 1. Introduction Basalt rock (figure 1) is a black

  17. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  18. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    SciTech Connect

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.

    1980-03-01

    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO/sub 3/, which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs/sub 2/MoO/sub 4/, Cs/sub 2/U/sub 2/O/sub 7/) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO/sub 4/, with the production of pollucite exceeding that of CsAlSiO/sub 4/. Dissolution of ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO/sub 3/.3H/sub 2/O) during some experiments containing basalt phases, indicates a tendency to oxidize U/sup 4 +/ to U/sup 6 +/. When diopside (nominally CaMgSi/sub 2/O/sub 6/) and ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ were hydrothermally reacted, at 300/sup 0/C both UO/sub 2/ and UO/sub 3/.3H/sub 2/O were produced. Results of experiments on SrZrO/sub 3/ show it to be

  19. Lu-Hf constraints on the evolution of lunar basalts

    NASA Technical Reports Server (NTRS)

    Fujimaki, H.; Tatsumoto, M.

    1984-01-01

    It is shown that a cumulate-remelting model best explains the recently acquired data on the Lu-Hf systematics of lunar mare basalts. The model is constructed using Lu and Hf concentration data and is strengthened by Hf isotopic evidence of Unruh et al. (1984). It is shown that the similarity in MgO/FeO ratios and Cr2O3 content in high-Ti and low-Ti basalts are not important constraints on lunar basalt petrogenesis. The model demonstrates that even the very low Ti or green glass samples are remelting products of a cumulate formed after at least 80-90 percent of the lunar magma ocean had solidified. In the model, all the mare basalts and green glasses were derived from 100-150 km depth in the lunar mantle. The Lu-Hf systematics of KREEP basalts clearly indicate that they would be the final residual liquid of the lunar magma ocean.

  20. [Determination of Total Iron and Fe2+ in Basalt].

    PubMed

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  1. Use and Features of Basalt Formations for Geologic Sequestration

    SciTech Connect

    McGrail, B. Peter; Ho, Anita M.; Reidel, Steve P.; Schaef, Herbert T.

    2003-01-01

    Extrusive lava flows of basalt are a potential host medium for geologic sequestration of anthropogenic CO2. Flood basalts and other large igneous provinces occur worldwide near population and power-producing centers and could securely sequester a significant fraction of global CO2 emissions. We describe the location, extent, and general physical and chemical characteristics of large igneous provinces that satisfy requirements as a good host medium for CO2 sequestration. Most lava flows have vesicular flow tops and bottoms as well as interflow zones that are porous and permeable and serve as regional aquifers. Additionally, basalt is iron-rich, and, under the proper conditions of groundwater pH, temperature, and pressure, injected CO2 will react with iron released from dissolution of primary minerals in the basalt to form stable ferrous carbonate minerals. Conversion of CO2 gas into a solid form was confirmed in laboratory experiments with supercritical CO2 in contact with basalt samples from Washington state.

  2. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    PubMed

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  3. Composition of basalts from the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Engel, A.E.J.; Engel, C.G.

    1964-01-01

    Studies of volcanic rocks in dredge hauls from the submerged parts of the Mid-Atlantic Ridge suggest that it consists largely of tholeiitic basalt with low values of K, Ti, and P. In contrast, the volcanic islands which form the elevated caps on the Ridge are built of alkali basalt with high values of Ti, Fe3+, P, Na, and K. This distinct correlation between the form of the volcanic structures, elevation above the sea floor, and composition suggests that the islands of alkali basalt are derived from a parent tholeiitic magma by differentiation in shallow reservoirs. The volume of low-potassium tholeiites along the Mid-Atlantic Ridge and elsewhere in the oceans appears to be many times that of the alkali basalts exposed on oceanic islands. Tholeiitic basalts with about 0.2 K2O appear to be the primary and predominant magma erupted on the oceanic floor.

  4. Ibitira: A basaltic achondrite from a distinct parent asteroid

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2004-01-01

    I have done detailed petrologic study of Ibitira, nominally classified as a basaltic eucrite. The Fe/Mn ratio of Ibitira pyroxenes with <10 mole % wollastonite component is 36.4 0.4, and is well-resolved from those of five basaltic eucrites studied for comparison; 31.2-32.2. Data for the latter completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes. Thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust.

  5. Phase relations of a high-Mg basalt from the Aleutian Island arc - Implications for primary island arc basalts and high-Al basalts

    NASA Technical Reports Server (NTRS)

    Gust, D. A.; Perfit, M. R.

    1987-01-01

    An experimental investigation of a primitive high-Mg basalt, MK-15, collected from lava flows of the Unalaska Island in the Aleutian Island arc has been conducted in order to study primary and parental island arc basalts and the development of island arc magmas. The results suggest a model in which high-Al basalts are generated by moderate amounts of crystal fractionation from more primitive (high Mg/Mg + Fe, lower Al2O3) basaltic magmas near the arc crust-mantle boundary. Somewhere between 20-30 depth, significant amounts of clinopyroxene and olivine, with lesser amounts of spinel and possibly amphibole, fractionate, forming layer of olivine-clinopyroxenite at the base of the arc crust.

  6. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  7. Flood basalt eruptions, comet showers, and mass extinction events

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Stothers, Richard B.

    1988-01-01

    A chronology of initiation dates of the major continental flood basalt episodes has been established from compilation of published K-Ar and Ar-Ar ages of basaltic flows and related basic intrusions. The dating is therefore independent of the biostratigraphic and paleomagnetic time scales, and the estimated errors of the inititation dates are approximately + or - 4 pct. There are 11 distinct episodes of continental flood basalts known during the past 250 Myr. The data show that flood basalt episodes are generally relatively brief geologic events, with intermittent eruptions during peak output periods lasting ony 2 to 3 Myr or less. Statistical analyses suggest that these episodes may have occurred quasi-periodically with a mean cycle time of 32 + or - 1 Myr. The initiation dates of the flood basalts are close to the estimated dates of marine mass extinctions and impact-crater clusters. Although a purely internal forcing might be argued for the flood basalt volcanism, quasi-periodic comet impacts may be the trigger for both the flood basalts and the extinctions. Impact cratering models suggest that large-body impactors lead to deep initial cratering, and therefore may cause mantle disturbances and initiate mantle plume activity. The flood basalt episodes commonly mark the initiation or jump of a mantle hotspot, and are often followed by continental rifting and separation. Evidence from dynamical studies of impacts, occurrences of craters and hotspots, and the geochemistry of boundary layers is synthesized to provide a possible model of impact-generated volcanism. Flood basalt eruptions may themselves have severe effects on climate, and possibly on life. Impacts might, as a result, have led to mass extinctions through direct atmospheric disturbances, and/or indirectly through prolonged flood basalt volcanism.

  8. Rheological evolution of planetary basalts during cooling and crystallization

    NASA Astrophysics Data System (ADS)

    Sehlke, Alexander

    Basaltic lavas cover large portions of the surface of the Earth and other planets and moons. Planetary basalts are compositionally different from terrestrial basalts, and show a variety of unique large-scale lava flow morphologies unobserved on Earth. They are usually assumed to be much more fluid than basalts on Earth, such as Hawaiian basalt, but their rheology is largely unknown. I synthesized several synthetic silicate melts representing igneous rock compositions of Mars, Mercury, the Moon, Io and Vesta. I measured their viscosity, as well as several terrestrial lavas including Hawaiian basalt, by concentric cylinder and parallel plate viscometry. Planetary melts cover a wide range of viscosity at their liquidus, overlapping with terrestrial basaltic melts. I derived a new viscosity model that is based on the Adam-Gibbs theory of structural relaxation, predicting these viscosities much more accurately than previously published viscosity models. During crystallization, the rheological behavior changes from Newtonian to pseudoplastic. Combining rheology experiments with field observations, the rheological conditions of the pahoehoe to `a`a morphological transition for Hawaiian basalt were determined in strain rate-viscosity space. This transition occurs at temperatures around 1185+/-15°C. For Mercurian lavas, this transition is predicted to occur at higher temperatures around 1250+/-30°C. We find that the rheology of these lavas is broadly similar to terrestrial ones, suggesting that the large smooth volcanic plains observed on Mercury's northern hemisphere are due to flood basalt volcanism rather than unusually fluid lavas. We also show that KREEP lavas, a type of basalt associated with sinuous rilles on the lunar surface, is more likely to form rilles through levee construction, as the high and rapidly increasing viscosity prohibits sufficient thermo-mechanical erosion.

  9. "Racializing" Class

    ERIC Educational Resources Information Center

    Hatt-Echeverria, Beth; Urrieta, Luis, Jr.

    2003-01-01

    In an effort to explore how racial and class oppressions intersect, the authors use their autobiographical narratives to depict cultural and experiential continuity and discontinuity in growing up white working class versus Chicano working class. They specifically focus on "racializing class" due to the ways class is often used as a copout by…

  10. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  11. Cold press sintering of simulated lunar basalt

    NASA Technical Reports Server (NTRS)

    Altemir, D. A.

    1993-01-01

    In order to predict the conditions for which the lunar regolith may be adequately sintered, experiments were conducted in which samples of simulated lunar basalt (MLS-1) were pressed at high pressures and then heated in an electric furnace. This sintering process may be referred to as cold press sintering since the material is pressed at room temperature. Although test articles were produced which possessed compressive strengths comparable to that of terrestrial concrete, the cold press sintering process requires very high press pressures and sintering temperatures in order to achieve that strength. Additionally, the prospect of poor internal heat transfer adversely affecting the quality of sintered lunar material is a major concern. Therefore, it is concluded that cold press sintering will most likely be undesirable for the production of lunar construction materials.

  12. Helium isotope ratios in Ethiopian Rift basalts

    NASA Astrophysics Data System (ADS)

    Scarsi, P.; Craig, H.

    1996-11-01

    Helium isotope ratios were measured in olivine and pyroxene phenocrysts from basalts of the Ethiopian Rift Valley and Afar Depression between 6° and 15°N and 37° and 43°E. 3He/4He ratios range from 6 to 17 times the atmospheric value (RA = 1.4 × 10-6), that is, from ratios less than typical MORB (depleted mantle) helium (R/RA= 8 ± 1) to ratios similar to high-3He hotspots and to the Yellowstone hotspot (R/RA= 16.5). The high 3He/4He ratios occur all along the Ethiopian Rift and well up into the Afar Depression, with a maximum value of 17.0 RA at 8°N in the Rift Axis and a high value of 14.2 RA in the central Tat'Ali sector of the Afar Depression. The ratios decrease to MORB-like values near the edge of the Red Sea, and to sub-MORB ratios (5-6 RA) at the northern end of the Rift (Zula Peninsula) and at the southern end, at lakes Abaya and Chamo. The Ethiopian Rift provides the only continental hotspot terrain in which helium isotope ratios can be compared in detail between volcanic lavas and associated geothermal and volcanic gases, a primary motivation for this work. Comparison with our previously measured ratios in fluids and gases (range 2-15 RA) shows excellent agreement in the areas sampled for both lavas and fluids, and indicates that high-temperature volcanic fluids can be used for establishing helium isotope signatures in such terrains. The high-3He values in both fluids and basalts show that a Primitive Mantle (PM) component is required and that a Lower Mantle High-3He plume is strongly involved as a driving force in the rifting process of the East African Rift System.

  13. Isotope geochemistry of caliche developed on basalt

    NASA Astrophysics Data System (ADS)

    Knauth, L. Paul; Brilli, Mauro; Klonowski, Stan

    2003-01-01

    Enormous variations in oxygen and carbon isotopes occur in caliche developed on < 3 Ma basalts in 3 volcanic fields in Arizona, significantly extending the range of δ 18O and δ 13C observed in terrestrial caliche. Within each volcanic field, δ 18O is broadly co-variant with δ 13C and increases as δ 13C increases. The most 18O and 13C enriched samples are for subaerial calcite developed on pinnacles, knobs, and flow lobes that protrude above tephra and soil. The most 18O and 13C depleted samples are for pedogenic carbonate developed in soil atmospheres. The pedogenic caliche has δ 18O fixed by normal precipitation in local meteoric waters at ambient temperatures and has low δ 13C characteristic of microbial soil CO 2. Subaerial caliche has formed from 18O-rich evapoconcentrated meteoric waters that dried out on surfaces after local rains. The associated 13C enrichment is due either to removal of 12C by photosynthesizers in the evaporating drops or to kinetic isotope effects associated with evaporation. Caliche on basalt lava flows thus initially forms with the isotopic signature of evaporation and is subsequently over-layered during burial by calcite carrying the isotopic signature of the soil environment. The large change in carbon isotope composition in subsequent soil calcite defines an isotopic biosignature that should have developed in martian examples if Mars had a "warm, wet" early period and photosynthesizing microbes were present in the early soils. The approach can be similarly applied to terrestrial Precambrian paleocaliche in the search for the earliest record of life on land. Large variations reported for δ 18O of carbonate in Martian meteorite ALH84001 do not necessarily require high temperatures, playa lakes, or flood runoff if the carbonate is an example of altered martian caliche.

  14. Geologic Mapping of Basalt Flows: Implications for Petrology

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, J. M.; Grove, T. L.; Champion, D. E.

    2011-12-01

    Basaltic lava flows can display a variety of compositional signatures that hold clues to P, T, and composition of the mantle from which they originated. Compositional variation within basalt flows records individual histories of mantle and crustal processes. At the Cascades rear-arc Newberry and Medicine Lake volcanoes, detailed geologic mapping of compositionally-zoned basalts indicates clearly that "drive-through" sampling of such lava flows would fail to capture the full geochemical story. For these flows, the internal stratigraphy captures the eruptive sequence that took place as the magma reservoir was tapped. Given a range of composition, or exposures of basalt that have different compositions, how does one know whether different eruptions have occurred, or whether a single compositionally-zoned eruption took place? Geologic mapping today goes well beyond traditional approaches using petrography and morphology. In addition to those basic tools, iterative use of multiple chemical analyses and, most critically, paleomagnetic sampling are essential to identifying individual basalt eruptive events. At Medicine Lake volcano in N. CA, 4 compositionally-zoned basalt flows have been documented (see Donnelly-Nolan, 2011, USGS map SIM 2927): (1) basalt of Black Crater and Ross Chimneys; this very small eruptive event produced 0.001 km3 of lava that covers 0.4 km2. SiO2 content increased from 48.3 to 50.6% as the eruption progressed; composition also correlates with latitude; (2) basalt of Giant Crater, 200-sq-km postglacial basaltic andesite to basalt that is characterized by strong variation in a variety of elements (e.g. 47.7-53.2% SiO2, 0.07-1.1% K2O) [Baker et al. 1991 JGR; Donnelly-Nolan et al. 1991 JGR]; (3) basalt of Mammoth Crater, 250-sq-km basaltic andesite to basalt also having strong SiO2 variation (48.2-56.0%), but in addition a lobe enriched in FeO and TiO2; (4) 300-sq-km basalt of Yellowjacket Butte displays limited SiO2 variation, but linear variation

  15. Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Giordano, D.; Dingwell, D. B.

    Water dissolved in a silicate melt can strongly influence its physical properties and thus magma behavior during crystallization, degassing, foaming and fragmentation. Etna is a basaltic volcano whose activity is dominated by effusive eruptions which have long represented a threat to the densely populated, surrounding area. Recently, recognition of the products of a Plinian eruption (122 B.C.) has raised further issues for hazard assessment at Etna and other basaltic volcanoes. Constraining the behavior of Etna magma under conditions relevant to both effusive and explosive hazards requires viscosity data under conditions near the glass transition. Here we have investigated the viscosity of hydrous Etna lava in order to better understand eruptive processes which characterize this volcano. The experimental methods which have been used include piston cylinder synthesis of the hydrated melts, micropenetration viscometry for low-temperature viscosity measurements, and near-infrared spectroscopy for the evaluation of sample homogeneity and measurements of water content. Additionally, scanning calorimetric determinations were performed to check whether incipient crystallization had occurred. Sample compositions were determined using electron microprobe analysis and 57Fe Mössbauer spectroscopy. Results from this study are compared with previous reports of trachytic, phonolitic and model calc-alkaline rhyolite (HPG8) compositions. The viscosity of the basaltic melt (dry and wet) has been parameterized in terms of temperature and water content via the non-Arrhenian equation: log10ɛ=-4.643+(5,812.44- 427.04×H2O)/(T(K)- 499.31+28.74×ln(H2O)) where ɛ is the viscosity in Pa s, H2O is the water content in wt%, and T is the temperature in Kelvin. We observe that the viscosity of alkali basalt (at more than 0.5 wt% H2O) is similar to that of an alkaline trachyte (Agnano-Monte Spina eruption, Phlegrean Fields) and much higher than that of a peralkaline phonolite (Teide

  16. Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Giordano, D.; Dingwell, D. B.

    2002-07-01

    Water dissolved in a silicate melt can strongly influence its physical properties and thus magma behavior during crystallization, degassing, foaming and fragmentation. Etna is a basaltic volcano whose activity is dominated by effusive eruptions which have long represented a threat to the densely populated, surrounding area. Recently, recognition of the products of a Plinian eruption (122 B.C.) has raised further issues for hazard assessment at Etna and other basaltic volcanoes. Constraining the behavior of Etna magma under conditions relevant to both effusive and explosive hazards requires viscosity data under conditions near the glass transition. Here we have investigated the viscosity of hydrous Etna lava in order to better understand eruptive processes which characterize this volcano. The experimental methods which have been used include piston cylinder synthesis of the hydrated melts, micropenetration viscometry for low-temperature viscosity measurements, and near-infrared spectroscopy for the evaluation of sample homogeneity and measurements of water content. Additionally, scanning calorimetric determinations were performed to check whether incipient crystallization had occurred. Sample compositions were determined using electron microprobe analysis and 57Fe Mössbauer spectroscopy. Results from this study are compared with previous reports of trachytic, phonolitic and model calc-alkaline rhyolite (HPG8) compositions. The viscosity of the basaltic melt (dry and wet) has been parameterized in terms of temperature and water content via the non-Arrhenian equation: log10ɛ=-4.643+(5,812.44-427.04×H2O)/(T(K)-499.31+28.74×ln(H2O)) where ɛ is the viscosity in Pa s, H2O is the water content in wt%, and T is the temperature in Kelvin. We observe that the viscosity of alkali basalt (at more than 0.5 wt% H2O) is similar to that of an alkaline trachyte (Agnano-Monte Spina eruption, Phlegrean Fields) and much higher than that of a peralkaline phonolite (Teide, Tenerife

  17. Ages, Thicknesses and Mineralogy of Lunar Mare Basalts

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Head, J. W.; Wolf, U.; Jaumann, R.; Neukum, G.

    2002-01-01

    About 17% of the lunar surface are covered with lunar mare basalts. Mare basalts occur preferentially on the lunar nearside and their presence on planetary surfaces is indicative of the thermal activity and volcanic evolution of the body. In order to place constraints on the thermal/volcanic evolution and petrogenetic models for the formation of lunar mare basalts, we dated basalts exposed on the lunar nearside. Over the last 6 years we performed crater counts for Oceanus Procellarum, Mare Nubium, Cognitum, Insularum, Humorum, Imbrium, Serenitatis, Tranquillitatis, Humboldtianum, and Australe. Currently we are extending our crater counts to basalt areas in Mare Frigoris, Nectaris, Vaporum, Smythii, and Marginis. We are also in the progress of dating some lava-filled impact craters such as Schickard, Cr?ger, and Grimaldi. Crater counts not only allow one to determine the age of a basalt unit but also provide important information about the thickness, the volume, and the temporal separation of individual basalt flow units. In addition, age data in combination with Clementine and Lunar Prospector data allow one to investigate changes in mineralogy with time.

  18. Petrologic models of 15388, a unique Apollo 15 mare basalt

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Dasch, E. J.; Nyquist, L. E.

    1993-01-01

    Mare basalt 15388, a feldspathic microgabbro from the Apennine Front, is chemically and petrographically distinct from Apollo 15 picritic, olivine-normative (ON), and quartz-normative basalts. The evolved chemistry, coarse texture, lack of olivine, and occurrence of cristobalite in 15388 argue for derivation by a late-stage magmatic process that is significantly removed from parental magma. It either crystallized from a magma evolved from the more mafic Apollo 15 basalts, or it crystallized from a currently unrepresented magma. Rb-Sr and Sm-Nd isotopic systematics yield isochron ages of 3.391 plus or minus 0.036 and 3.42 plus or minus 0.07 Ga, respectively, and epsilon(sub Nd) = 8.6 plus or minus 2.4, which is relatively high for Apollo 15 mare basalts. In contrast to chemical patterns of average Apollo 15 ON basalts and Apollo 15 picritic basalt, 15388 has a strongly positive LREE slope, high Ti, shallower HREE slope and a slightly positive Eu anomaly. These features argue against 15388 evolution by simple olivine fractionation of a parental ON or picritic basalt magma, although olivine is a dominant liquidus phase in both potential parents.

  19. The phylogeny of endolithic microbes associated with marine basalts.

    PubMed

    Mason, Olivia U; Stingl, Ulrich; Wilhelm, Larry J; Moeseneder, Markus M; Di Meo-Savoie, Carol A; Fisk, Martin R; Giovannoni, Stephen J

    2007-10-01

    We examined the phylogenetic diversity of microbial communities associated with marine basalts, using over 300 publicly available 16S rDNA sequences and new sequence data from basalt enrichment cultures. Phylogenetic analysis provided support for 11 monophyletic clades originating from ocean crust (sediment, basalt and gabbro). Seven of the ocean crust clades (OCC) are bacterial, while the remaining four OCC are in the Marine Group I (MGI) Crenarchaeota. Most of the OCC were found at diverse geographic sites, suggesting that these microorganisms have cosmopolitan distributions. One OCC in the Crenarchaeota consisted of sequences derived entirely from basalts. The remaining OCC were found in both basalts and sediments. The MGI Crenarchaeota were observed in all studies where archaeal diversity was evaluated. These results demonstrate that basalts are occupied by cosmopolitan clades of microorganisms that are also found in marine sediments but are distinct from microorganisms found in other marine habitats, and that one OCC in the ubiquitous MGI Crenarchaeota clade may be an ecotype specifically adapted to basalt.

  20. Pliocene Basaltic Volcanism in The East Anatolia Region (EAR), Turkey

    NASA Astrophysics Data System (ADS)

    Oyan, Vural; Özdemir, Yavuz; Keskin, Mehmet

    2016-04-01

    East Anatolia Region (EAR) is one of the high Plateau which is occurred with north-south compressional regime formed depending on continent-continent collision between Eurasia and Arabia plates (Şengör and Kidd, 1979). Recent studies have revealed that last oceanic lithosphere in the EAR have completely depleted to 20 million years ago based on fission track ages (Okay et al. 2010). Our initial studies suggest that extensively volcanic activity in the EAR peaked in the Pliocene and continued in the same productivity throughout Quaternary. Voluminous basaltic lava plateaus and basaltic lavas from local eruption centers occurred as a result of high production level of volcanism during the Pliocene time interval. In order to better understand the spatial and temporal variations in Pliocene basaltic volcanism and to reveal isotopic composition, age and petrologic evolution of the basaltic volcanism, we have started to study basaltic volcanism in the East Anatolia within the framework of a TUBITAK project (project number:113Y406). Petrologic and geochemical studies carried out on the Pliocene basaltic lavas indicate the presence of subduction component in the mantle source, changing the character of basaltic volcanism from alkaline to subalkaline and increasing the amount of spinel peridotitic melts (contributions of lithospheric mantle?) in the mantle source between 5.5-3.5 Ma. FC, AFC and EC-AFC modelings reveal that the while basaltic lavas were no or slightly influenced by crustal contamination and fractional crystallization, to more evolved lavas such as bazaltictrachyandesite, basalticandesite, trachybasalt might have been important processes. Results of our melting models and isotopic analysis data (Sr, Nd, Pb, Hf, 18O) indicate that the Pliocene basaltic rocks were derived from both shallow and deep mantle sources with different melting degrees ranging between 0.1 - 4 %. The percentage of spinel seems to have increased in the mantle source of the basaltic

  1. Mechanical behavior of concrete columns confined by basalt FRP windings

    NASA Astrophysics Data System (ADS)

    Ciniņa, I.; Zīle, E.; Zīle, O.

    2012-11-01

    The results of an experimental investigation of round concrete columns confined by a wound basalt filament yarn are presented. Basalt is an attractive material for strengthening purposes due to its low cost coupled with a good mechanical performance, especially at high temperatures. It is shown that the basalt FRP confinement provides a considerable strengthening effect. The winding equipment employed in this study has the ability to set a desired pretension force of the yarn and thereby to produce a prestressed confinement. It is found that the prestressed confinement notably delays the onset of intense internal cracking of concrete.

  2. Modeling Cooling Rates of Martian Flood Basalt Columns

    NASA Astrophysics Data System (ADS)

    Weiss, D. K.; Jackson, B.; Milazzo, M. P.; Barnes, J. W.

    2011-12-01

    Columnar jointing in large basalt flows have been extensively studied and can provide important clues about the emplacement conditions and cooling history of a basalt flow. The recent discovery of basalt columns on Mars in crater walls near Marte Vallis provides an opportunity to infer conditions on early Mars when the Martian basalt flows were laid down. Comparison of the Martian columns to Earth analogs allows us to gain further insight into the early Martian climate, and among the best terrestrial analogs are the basalt columns in the Columbia River Basalt Group (CRBG) in eastern Washington. The CRBG is one of the youngest (< 17 Myrs old) and most extensively studied basalt provinces in the world, extending over 163,700 square km with total thickness exceeding 1 km in some places. The morphologies and textures of CRBG basalt columns suggest that in many places flows ~100 m thick cooled at uniform rates, even deep in the flow interior. Such cooling seems to require the presence of water in the column joints since the flow interiors should have cooled much more slowly than the flow margins if conductive cooling dominated. Secondary features, such pillow basalts, likewise suggest the basalt flows were in direct contact with standing water in many places. At the resolution provided by the orbiting HiRISE camera (0.9 m), the Martian basalt columns resemble the CRBG columns in many respects, and so, subject to important caveats, inferences linking the morphologies of the CRBG columns to their thermal histories can be extended in some respects to the Martian columns. In this presentation, we will describe our analysis of the HiRISE images of the Martian columns and what can be reasonably inferred about their thermal histories and the conditions under which they were emplaced. We will also report on a field expedition to the CRBG in eastern Washington State. During that expedition, we surveyed basalt column outcrops on the ground and from the air using Unmanned Aerial

  3. An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Burling, Trina Cox

    1996-01-01

    Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15

  4. Spreading And Collapse Of Big Basaltic Volcanoes

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Bonforte, A.; Guglielmino, F.; Peltier, A.; Poland, M. P.

    2015-12-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. Our work aims to investigate the relation between basement setting and volcanic activity and stability at Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These volcanoes, due to their similarities and differences, coupled with

  5. Spreading and collapse of big basaltic volcanoes

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  6. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  7. CLASS for Class.

    NASA Astrophysics Data System (ADS)

    Bluestein, Howard B.

    1993-09-01

    Faculty and students from the School of Meteorology at the University of Oklahoma and staff members from the Atmospheric Technology Division at the National Center for Atmospheric Research (NCAR) participated in a special course given during the last two weeks of May 1992. The purpose of the course was to give students the opportunity to use the NCAR mobile CLASS (Cross-Chain LORAN Atmospheric Sounding System) in the field and to interpret data they collected themselves in the context of material learned earlier in a lecture setting. Soundings were obtained in parts of Texas and Oklahoma in the environment of multicell storms, in supercells, in a gust front, and on the cold side of a cold front.

  8. Acid weathering of basalt and basaltic glass: 2. Effects of microscopic alteration textures on spectral properties

    NASA Astrophysics Data System (ADS)

    Smith, Rebecca J.; Horgan, Briony H. N.; Mann, Paul; Cloutis, Edward A.; Christensen, Philip R.

    2017-01-01

    Acid alteration has long been proposed for the Martian surface, and so it is important to understand how the resulting alteration textures affect surface spectra. Two basaltic materials of varying crystallinity were altered in two different H2SO4 solutions (pH 1 and pH 3) for 220 days. The unaltered and altered samples were studied in the visible and near infrared (VNIR) and thermal infrared (TIR), and select samples were chosen for scanning electron microscopy analysis. Materials altered in pH 3 solutions showed little to no physical alteration, and their spectral signatures changed very little. In contrast, all materials altered in pH 1 acid displayed silica-rich alteration textures, and the morphology differed based on starting material crystallinity. The more crystalline material displayed extensive alteration reaching into the sample interiors and had weaker silica spectral features. The glass sample developed alteration layers tens of microns thick, exhibiting amorphous silica-rich spectral features that completely obscured the substrate. Thus, the strong absorption coefficient of silica effectively decreases the penetration depth of TIR spectral measurements, causing silica abundances to be grossly overestimated in remote sensing data. Additionally, glass samples with silica layers exhibited distinct concave up blue spectral slopes in the VNIR. Spectra from the northern lowland plains of Mars are modeled with high abundances of amorphous silica and exhibit concave up blue spectral slopes and are thus consistent with acid altered basaltic glass. Therefore, we conclude that large regions of the Martian surface may have formed through the interaction of basaltic glass with strongly acidic fluids.

  9. Effects of basaltic mineral fines on composting.

    PubMed

    Sikora, Lawrence J

    2004-01-01

    A by-product of the construction aggregate industry is fines or dust that contain trace elements such as zinc and copper and significant amounts of iron, aluminum, silica and potassium. Beneficial uses for these materials have been proposed such as replenishing depleted soils and amendment in mixtures of organic byproducts prior to composting. To evaluate the beneficial uses in composting, outdoor bin studies were conducted using a beef cattle manure, straw and wood chip mixture amended with and without basaltic mineral fines. Temperature differences in composting mixtures of equal volumes, equal moisture and relatively equal material content are considered an indication of differing biological activities [Haug, Compost Engineering Principles and Practice. Ann Arbor Science, Ann Arbor, MI. (1980)]. Temperatures were lower in the mineral fine-treated manure mixture initially. After turning the piles at six weeks, temperatures tended to be higher in the mineral fine amended mixture. Overall, temperatures were not significantly different suggesting that mineral fines amendment does not significantly increase temperature and activity in composting mixtures.

  10. Hafnium isotope variations in oceanic basalts

    NASA Technical Reports Server (NTRS)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  11. Lead isotope systematics of mare basalt 75075

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Tilton, G. R.; Mattinson, J. M.; Vidal, P.

    1978-01-01

    Uranium, thorium and isotopic lead data are reported for two bulk samples and separated pyroxene, ilmenite and plagioclase from basalt 75075. In a concordia diagram the whole rock, ilmenite and four pyroxene samples define a chord intersecting the concordia curve at approximately 4.25 and 2.8 AE. Three plagioclase samples plot distinctly off the chord. The crystallization age of 75075 is accurately determined at 3.74 AE by Rb-Sr, Sm-Nd and K-Ar measurements from other laboratories. It is not possible to adjust the isotopic composition of initial lead so as to reconcile the U-Pb data with a crystallization age of 3.74 AE. The data therefore indicate some type of post-crystallization disturbance of the U-Pb system that is not detected by the other systems. The 75075 data are one of the few examples of this type of age pattern found on the moon. If the disturbance was a single event, it probably occurred around 2.8 AE ago, the time indicated by the pyroxene, whole rock and ilmenite data.

  12. Basalt Waste Isolation Project Reclamation Support Project:

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1992-06-01

    The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory's role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site's altitude and north-facing orientation.

  13. Bedload flux in southern Brazilian basalt scarp

    NASA Astrophysics Data System (ADS)

    Merten, G. H.; Minella, J. P. G.

    2015-03-01

    Frequently, to assess the life expectancy of Brazilian reservoirs, bedload flux has been estimated by using formulas (e.g. the Einstein equations) or by assuming that bedload represents a fixed percentage of the suspended load. This study was carried out to characterize the bedload flux on the basalt scarps of southern Brazil. The bedload was measured over the course of 12 stormflows. The results demonstrated that the bedload flux-streamflow relationship was adequately described by a potential mathematical function. Bedload flux selectively transported particles smaller than D50 surface and subsurface bedstream sediments. When considering the bedload flux-streamflow relationship, the flux ranged from a minimum of 0.24 g m-1 s-1 for a streamflow of 0.53 m3 s-1 to a maximum of 44 g m-1 s-1 for a streamflow of 1.3 m3 s-1. The percentage of bedload/suspended load varied between <1% up to 60%, and this variation was strongly associated with peak flow.

  14. Potential for Carbon Dioxide Sequestration in Flood Basalts

    SciTech Connect

    McGrail, B. PETER; Schaef, Herbert T.; Ho, Anita M.; Chien, Yi-Ju; Dooley, James J.; Davidson, Casie L.

    2006-12-01

    Flood basalts are a potentially important host medium for geologic sequestration of anthropogenic CO2. Most lava flows have flow tops that are porous, permeable, and have enormous capacity for storage of CO2. Interbedded sediment layers and dense low-permeability basalt rock overlying sequential flows may act as effective seals allowing time for mineralization reactions to occur. Laboratory experiments confirm relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. Calculations suggest a sufficiently short time frame for onset of carbonate precipitation after CO2 injection that verification of in situ mineralization rates appears feasible in field pilot studies. If proven viable, major flood basalts in the U.S. and India would provide significant additional CO2 storage capacity and additional geologic sequestration options in certain regions where more conventional storage options are limited.

  15. Computation of EABF and EBF for basalt rock samples

    NASA Astrophysics Data System (ADS)

    Karabul, Yaşar; Amon Susam, Lidya; İçelli, Orhan; Eyecioğlu, Önder

    2015-10-01

    In this study, certain photon absorption parameters including the energy absorption buildup factor (EABF) and exposure buildup factor (EBF) have been investigated for three different basalt samples collected from different parts of Van city. Radiation shielding properties of the basalt samples indicated a strong correlation between photon energy absorption parameters and values of EABF and EBF of basalt samples. It was found that EABF and EBF parameters are related to radiation shielding properties of basalt samples. A new method and algorithm based on ZXCOM was used. Instead of calculating G-P fitting parameters for every effective atomic number (Zeff), EABF and EBF were calculated for Zeff by interpolation, using ANSI/ANS 6.4.3 standard data available for Zeff.

  16. Systematics of Vanadium in Olivine from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.

    2002-01-01

    The systematics of vanadium in olivines from the Earth, Moon and Mars allows for the comparison of planetary basalt origin and igneous setting and process. Additional information is contained in the original extended abstract.

  17. Basaltic Cone Suggests Constructional Origin of Some Guyots.

    PubMed

    Christensen, M N; Gilbert, C M

    1964-01-17

    A basaltic cinder cone was built beneath the waters of Mono Lake in Pleistocene time. This cone is now exposed. Its internal structure, external form, and petrography suggest that it was constructed with a flat top.

  18. Mineralogy of Silica Polymorphs in Basaltic Clasts in Eucrites

    NASA Astrophysics Data System (ADS)

    Ono, H.; Takenouchi, A.; Mikouchi, T.

    2016-08-01

    We analyzed silica polymorphs in basaltic clasts in Y-75011, Pasamonte and Stannern eucrites. Cristobalite and quartz have been found, which suggests wide occurrence of hydrothermal activity throughout the crust of Vesta.

  19. Alteration of hydrovolcanic basaltic ash - Observations with visible and near-infrared spectrometry

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Singer, Robert B.

    1992-01-01

    Altered basaltic tephras from tuff rings and tuff cones across the Basin and Range were examined using visible and NIR (Vis/IR) reflectance spectrometry and a variety of other techniques. It was found that Vis/IR spectrometry is sensitive to subtle changes in the hydration and oxidation state of these tephras. In the tuffs examined, ferrous and ferric iron minerals produce one composite absorption feature rather than two resolvable bands. Different styles of alteration were noted between thinly bedded tuff ring deposits emplaced by high energy, largely dry, pyroclastic surge and massively bedded tuff cone deposits emplaced by wetter, lower energy pyroclastic flow. The former class of tephras become hydrated and only moderately oxidized with some limited development of dioctehedral smectite clay minerals and minimal palagomitization. The latter class of tephras are highly palagonitized which implies a high degree of hydration and oxidation. In the most of highly altered tephras, all the Fe(2+) that is initially in the volcanic glass is converted to Fe(3+) within nanophase and bulk ferric oxide phases in the palagonite. There is also more extensive development in tuff cone beds of zeolite and phyllosilicate minerals. The differences in reflectance spectra of altered basaltic tephras can be traced to initial differences in the water/magma ratio extant at the volcanic vent.

  20. Alteration of hydrovolcanic basaltic ash - Observations with visible and near-infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Farrand, William H.; Singer, Robert B.

    1992-11-01

    Altered basaltic tephras from tuff rings and tuff cones across the Basin and Range were examined using visible and NIR (Vis/IR) reflectance spectrometry and a variety of other techniques. It was found that Vis/IR spectrometry is sensitive to subtle changes in the hydration and oxidation state of these tephras. In the tuffs examined, ferrous and ferric iron minerals produce one composite absorption feature rather than two resolvable bands. Different styles of alteration were noted between thinly bedded tuff ring deposits emplaced by high energy, largely dry, pyroclastic surge and massively bedded tuff cone deposits emplaced by wetter, lower energy pyroclastic flow. The former class of tephras become hydrated and only moderately oxidized with some limited development of dioctehedral smectite clay minerals and minimal palagomitization. The latter class of tephras are highly palagonitized which implies a high degree of hydration and oxidation. In the most of highly altered tephras, all the Fe(2+) that is initially in the volcanic glass is converted to Fe(3+) within nanophase and bulk ferric oxide phases in the palagonite. There is also more extensive development in tuff cone beds of zeolite and phyllosilicate minerals. The differences in reflectance spectra of altered basaltic tephras can be traced to initial differences in the water/magma ratio extant at the volcanic vent.

  1. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.

    PubMed

    Dzaugis, Mary E; Spivack, Arthur J; Dunlea, Ann G; Murray, Richard W; D'Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium ((238)U, (235)U), thorium ((232)Th) and potassium ((40)K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as

  2. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer

    PubMed Central

    Dzaugis, Mary E.; Spivack, Arthur J.; Dunlea, Ann G.; Murray, Richard W.; D’Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U), thorium (232Th) and potassium (40K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as many as

  3. Shocked basalt from Lonar Impact Crater, India, and experimental analogues

    NASA Technical Reports Server (NTRS)

    Kieffer, S. W.; Schaal, R. B.; Gibbons, R.; Horz, F.; Milton, D. J.; Dube, A.

    1976-01-01

    Samples of Lonar basalts were experimentally shocked in vacuum to pressures between 200 and 650 kbar by a 20 mm, high-velocity gun. Plagioclase and palagonite in experimentally shocked samples show deformation similar to that in the naturally shocked rocks, but pyroxene does not show optically resolvable edge melting. It is estimated that pressures in excess of 800-1000 kbar are required for the formation of totally shock-melted rocks from nonporous basalt.

  4. Genesis of highland basalt breccias - A view from 66095

    NASA Technical Reports Server (NTRS)

    Garrison, J. R., Jr.; Taylor, L. A.

    1980-01-01

    Electron microprobe and defocused beam analyses of the lunar highland breccia sample 66095 show it consists of a fine-grained subophitic matrix containing a variety of mineral and lithic clasts, such as intergranular and cataclastic ANT, shocked and unshocked plagioclase, and basalts. Consideration of the chemistries of both matrix and clasts provides a basis for a qualitative three-component mixing model consisting of an ANT plutonic complex, a Fra Mauro basalt, and minor meteoric material.

  5. Basalt: Biologic Analog Science Associated with Lava Terrains

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication

  6. ON THE PUZZLE OF SPACE WEATHERING ALTERATION OF BASALTIC ASTEROIDS

    SciTech Connect

    Marchi, S.; Lazzarin, M.; Magrin, S.; De Sanctis, M. C. E-mail: monica.lazzarin@unipd.i E-mail: mariacristina.desanctis@iasf-roma.inaf.i

    2010-10-01

    The majority of basaltic asteroids are found in the inner main belt, although a few have also been observed in the outer main belt and near-Earth space. These asteroids-referred to as V-types-have surface compositions that resemble that of the 530 km sized asteroid Vesta. Besides the compositional similarity, dynamical evidence also links many V-type asteroids to Vesta. Moreover, Vesta is one of the few asteroids to have been identified as source of specific classes of meteorites, the howardite, eucrite, and diogenite achondrites (HEDs). Despite the general consensus on the outlined scenario, several questions remain unresolved. In particular, it is not clear if the observed spectral diversity among Vesta, V-types, and HEDs is due to space weathering, as is thought to be the case for S-type asteroids. In this Letter, SDSS photometry is used to address the question of whether the spectral diversity among candidate V-types and HEDs can be explained by space weathering. We show that visible spectral slopes of V-types are systematically redder with respect to HEDs, in a similar way to what is found for ordinary chondrite meteorites and S-types. On the assumption that space weathering is responsible for the slope mismatch, we estimated an upper limit for the reddening timescale of about 0.5 Ga. Nevertheless, the observed slope mismatch between HEDs and V-types poses several puzzles to understanding its origin. The implication of our findings is also discussed in light of the Dawn mission to Vesta.

  7. Modes of emplacement of basalt terrains and an analysis of mare volcanism in the Orientale Basin

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1976-01-01

    Three distinctive types of basalt terrains can be recognized on earth on the basis of surface morphology: flood basalts, shield basalts, and plains basalts, each of which reflects unique styles of eruption and modes of emplacement. Two of these, flood basalts and plains basalts, appear to be important in the emplacement of mare basalts on the moon. Using surface features as identifying criteria, mare units in the Orientale Basin were examined and the following emplacement sequence was derived: (1) initial emplacement of impact melt in the basin center, (2) eruption of flood-type basalts in the basin center and approximately concurrent emplacement of plains type basalts in Lacus Veris, and (3) emplacement of plains type basalts in Lacus Autumni

  8. Testing the Origins of Basalt Fragments fro Apollo 16

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Stevens, R. E.; Neal, C. R.; Zeigler, R. A.

    2013-01-01

    Several 2-4 mm regolith fragments of basalt from the Apollo 16 site were recently described by [1]. These included a high-Ti vitrophyric basalts (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). As Apollo 16 was the only highlands sample return mission distant from the maria, identification of basaltic samples at the site indicates input from remote sites via impact processes [1]. However, distinguishing between impact melt and pristine basalt can be notoriously difficult and requires significant sample material [2-6]. The crystal stratigraphy method utilizes essentially non-destructive methods to make these distinctions [7,8]. Crystal stratigraphy combines quantitative petrography in the form of crystal size distributions (CSDs) coupled with mineral geochemistry to reveal the petrogenetic history of samples. The classic CSD plot of crystal size versus population density can reveal insights on growth/cooling rates, residence times, and magma history which in turn can be used to evaluate basaltic vs impact melt origin [7-9]. Electron microprobe (EMP) and laser ablation (LA)-ICP-MS analyses of mineral phases complement textural investigations. Trace element variations document subtle changes occurring during the formation of the samples, and are key in the interpretation and preservation of this rare lunar sample collection.

  9. Experimental investigation of sodium bentonite stability in Hanford basalt

    SciTech Connect

    Wood, M.I.

    1983-02-01

    Sodium bentonite is a candidate material for the waste package backfill component in a repository in basalt at the Hanford Site. Preliminary hydrothermal experiments have been conducted under near-field geochemical conditions expected to occur in the reference repository location in Grande Ronde Basalt. Experiments have been conducted in the basalt/groundwater, bentonite/groundwater, and basalt/bentonite/groundwater systems. The experiments have been conducted at 300/sup 0/C using a simulated Grande Ronde groundwater, reference Umtanum basalt, and sodium bentonite. Key data generated by the experiments include experimental solution analyses as a function of time and preliminary solids analysis by scanning transmission electron microscopy and x-ray diffraction. Solution trends of the major aqueous species were similar in the three systems and are characterized by: (1) the gradual reduction of the pH value from approx.9.75 to a steady-state value of approx.6, (2) an initial rapid increase followed by a gradual decreasein silica concentration, and (3) a slight or negligible increase in sodium, sulfate, and chloride concentrations. In the bentonite/groundwater experiment, small amounts (<1%) of an albite reaction product were observed. Conserversely, the formation of illite, a common bentonite alteration product, was not observed. These results indicate tjhat sodium bentonite will remain sufficiently stablee at 300/sup 0/C under hydrothermal conditions in basalt to permit its use as a backfill material.

  10. A basalt trigger for the 1991 eruptions of Pinatubo volcano?

    USGS Publications Warehouse

    Pallister, J.S.; Hoblitt, R.P.; Reyes, A.G.

    1992-01-01

    THE eruptive products of calc-alkaline volcanos often show evidence for the mixing of basaltic and acid magmas before eruption (see, for example, refs 1, 2). These observations have led to the suggestion3 that the injection of basaltic magma into the base of a magma chamber (or the catastrophic overturn of a stably stratified chamber containing basaltic magma at its base) might trigger an eruption. Here we report evidence for the mixing of basaltic and dacitic magmas shortly before the paroxysmal eruptions of Pinatubo volcano on 15 June 1991. Andesitic scoriae erupted on 12 June contain minerals and glass with disequilibrium compositions, and are considerably more mafic than the dacitic pumices erupted on 15 June. Differences in crystal abundance and glass composition among the pumices may arise from pre-heating of the dacite magma by the underlying basaltic liquid before mixing. Degassing of this basaltic magma may also have contributed to the climatologically important sulphur dioxide emissions that accompanied the Pinatubo eruptions.

  11. Meteoric water - basalt interactions: a field and laboratory study

    SciTech Connect

    Gislason, S.R.

    1985-01-01

    The goal of this study is to define and interpret the composition of the meteoric waters in N.E. Iceland in their cycle through the hydrosphere and the upper part of the crust, and to calibrate the natural process by dissolution experiments done in the laboratory. The composition of rain, snow, spring and geothermal waters from the rift zone of N.E. Iceland can be explained by sea-spray addition (1/10000), dissolution of basalts and buffering by alteration minerals. Rates, stoichiometry and activation energy of dissolution, pH vs. time and activity-activity paths were determined by dissolving basaltic rocks under simulated natural conditions at 25 to 60/sup 0/C. Dissolution follows a linear rate law, with basaltic glass dissolving 10 times faster than the crystalline basalt. Rates are independent of pH from 7 to 10. The average activation energy for dissolution of basaltic glass is 31.8 kJ/mol (+/-3). For individual elements leached from crystalline basalt it ranges from 35 to 15 kJ/mol. This indicates that under the experimental conditions reactions on the surfaces of the solids are the rate determining step in the dissolution mechanism. Considerable differences (2 to 4 log units) exist in the calculated oxygen fugacities obtained from different redox species in the geothermal fluids. This is primarily caused by the nonequilibrium state of the sulfur redox pair.

  12. Carbon Sequestration in Olivine and Basalt Powder Packed Beds.

    PubMed

    Xiong, Wei; Wells, Rachel K; Giammar, Daniel E

    2017-02-21

    Fractures and pores in basalt could provide substantial pore volume and surface area of reactive minerals for carbonate mineral formation in geologic carbon sequestration. In many fractures solute transport will be limited to diffusion, and opposing chemical gradients that form as a result of concentration differences can lead to spatial distribution of silicate mineral dissolution and carbonate mineral precipitation. Glass tubes packed with grains of olivine or basalt with different grain sizes and compositions were used to explore the identity and spatial distribution of carbonate minerals that form in dead-end one-dimensional diffusion-limited zones that are connected to a larger reservoir of water in equilibrium with 100 bar CO2 at 100 °C. Magnesite formed in experiments with olivine, and Mg- and Ca-bearing siderite formed in experiments with flood basalt. The spatial distribution of carbonates varied between powder packed beds with different powder sizes. Packed beds of basalt powder with large specific surface areas sequestered more carbon per unit basalt mass than powder with low surface area. The spatial location and extent of carbonate mineral formation can influence the overall ability of fractured basalt to sequester carbon.

  13. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  14. Hotspots, basalts, and the evolution of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1981-01-01

    It is noted that the trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. Estimates of the relative sizes of the source regions for these fundamentally different basalt types can be arrived at from the trace element enrichment-depletion patterns. Their combined volume occupies the greater part of the mantle above the 670 km discontinuity. It is pointed out that the source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that gave up its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, while the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are found to be consistent with the evolution of a terrestrial magma ocean.

  15. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    PubMed

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems.

  16. Hydrologic analysis of two headwater lake basins of differing lake pH in the west-central Adirondack Mountains of New York

    USGS Publications Warehouse

    Murdoch, Peter S.; Peters, N.E.; Newton, R.M.

    1987-01-01

    Hydrologic analysis of two headwater lake basins in the Adirondack Mountains, New York, during 1980-81 indicates that the degree of neutralization of acid precipitation is controlled by the groundwater contribution to the lake. According to flow-duration analyses, daily mean outflow/unit area from the neutral lake (Panther Lake, pH 5-7) was more sustained and contained a higher percentage of groundwater than that of the acidic lake (Woods Lake, pH 4-5). Outflow recession rates and maximum base-flow rates, derived from individual recession curves, were 3.9 times and 1.5 times greater, respectively, in the neutral-lake basin than in the acidic-lake basin. Groundwater contribution to lake outflow was also calculated from a lake-water budget; the groundwater contribution to the neutral lake was about 10 times greater than that to the acidic lake. Thick sandy till forms the groundwater reservoir and the major recharge area in both basins but covers 8.5 times more area in the neutral-lake basin than in the acidic-lake basin. More groundwater storage within the neutral basin provides longer contact time with neutralizing minerals and more groundwater discharge. As a result, the neutral lake has relatively high pH and alkalinity, and more net cation transport. (USGS)

  17. Importance of lunar granite and KREEP in very high potassium (VHK) basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1988-01-01

    Analysis of five very high potassium (VHK) basalts from Apollo 14 breccia 14303 shows the presence of a KREEP component. An assimilation and fractional crystallization model is presented to describe the basalt evolution. The influence of granite assimilation on the basalt evolution is discussed. The presence of VHK basalts containing only a granite signature and those with both granite and KREEP signatures suggests that there are at least two different VHK basalt flows at the Apollo 14 site.

  18. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    SciTech Connect

    Ulmer, G.C.; Grandstaff, D.E. . Dept. of Geology)

    1984-11-21

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs.

  19. Flood basalts and ocean island basalts: A deep source or shallow entrainment?

    NASA Astrophysics Data System (ADS)

    Lohmann, F. C.; Hort, M.; Phipps Morgan, J.

    2009-07-01

    Basalts from continental flood basalts (CFBs) and intraplate or hotspot ocean islands are found to have distinct geochemical signatures. This diversity in composition is generally believed to result from the upwelling plume entraining overlying reservoirs of shallow and intermediate depth mantle material during its ascent from the deep mantle. Here we present laboratory experiments and numerical model calculations which clarify that — for a strongly temperature dependent viscosity like that of the mantle — a rising plume head should be expected to bring up a surrounding sheath of deep mantle from its source region. Mixing between the central core of the plume and this sheath produces the whorl-like structures noted in previous studies where they were typically attributed to thermal entrainment of surrounding ambient mantle, but this is mainly the product of intermixing between neighboring parts of the plume's deep source material. These results imply that the popular idea that mantle plumes should typically mix small fractions of deep 'primitive' mantle material with much larger fractions of shallower depleted mantle needs to be critically reexamined.

  20. CO 2-water-basalt interaction. Numerical simulation of low temperature CO 2 sequestration into basalts

    NASA Astrophysics Data System (ADS)

    Gysi, Alexander P.; Stefánsson, Andri

    2011-09-01

    The interaction between CO 2-rich waters and basaltic glass was studied using reaction path modeling in order to get insight into the water-rock reaction process including secondary mineral composition, water chemistry and mass transfer as a function of CO 2 concentration and reaction progress ( ξ). The calculations were carried out at 25-90 °C and pCO 2 to 30 bars and the results were compared to recent experimental observations and natural systems. A thermodynamic dataset was compiled from 25 to 300 °C in order to simulate mineral saturations relevant to basalt alteration in CO 2-rich environment including revised key aqueous species for mineral dissolution reactions and apparent Gibbs energies for clay and carbonate solid solutions observed to form in nature. The dissolution of basaltic glass in CO 2-rich waters was found to be incongruent with the overall water composition and secondary mineral formation depending on reaction progress and pH. Under mildly acid conditions in CO 2 enriched waters (pH <6.5), SiO 2 and simple Al-Si minerals, Ca-Mg-Fe smectites and Ca-Mg-Fe carbonates predominated. Iron, Al and Si were immobile whereas the Mg and Ca mobility depended on the mass of carbonate formed and water pH. Upon quantitative CO 2 mineralization, the pH increased to >8 resulting in Ca-Mg-Fe smectite, zeolites and calcite formation, reducing the mobility of most dissolved elements. The dominant factor determining the reaction path of basalt alteration and the associated element mobility was the pH of the water. In turn, the pH value was determined by the concentration of CO 2 and extent of reaction. The composition of the carbonates depended on the mobility of Ca, Mg and Fe. At pH <6.5, Fe was in the ferrous oxidation state resulting in the formation of Fe-rich carbonates with the incorporation of Ca and Mg. At pH >8, the mobility of Fe and Mg was limited due to the formation of clays whereas Ca was incorporated into calcite, zeolites and clays. Competing

  1. Vapor segregation and loss in basaltic melts

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.

    2007-01-01

    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  2. Elucidating the Mechanisms of Microbial Weathering of Submarine Basalts

    NASA Astrophysics Data System (ADS)

    Tebo, B. M.; Templeton, A.; Haucke, L.; Bailey, B.; Staudigel, H.

    2005-12-01

    In recent years there has been as increasing interest in microbe-mineral interactions, specifically the molecular mechanisms of mineral formation and dissolution. While not a true mineral, submarine basaltic glass represents an important rock surface and one of the most reactive components of the ocean crust. The high solubility of reduced glasses and the large disequilibrium with oxygenated seawater leads to large scale chemical exchange of Ca, Mg, Si, Al, Mn, Sr, as well as the pervasive oxidation of Fe(II). A variety of different mechanisms can be envisioned to contribute to the weathering of basalt, yet our basic understanding of what mechanisms actually occur and which are the most important is exceedingly small. To gain a comprehensive understanding of the mechanisms of basalt weathering it is necessary to be able to measure weathering rates, distinguish between biotic and abiotic components of weathering, and relate these rates to the various microbial processes that may be occurring. This requires an integration of geochemical, microbiological, molecular biological and mineralogical approaches. In addition, comparative studies between laboratory and field experiments and between different environments are necessary to assess the dominant pathways for basalt weathering. Given the chemical abundance and availability of reduced Fe and to a lesser extent, reduced Mn in basalts which may serve as energy sources, our group is focusing on bacteria that carry out redox transformations of these metals or produce compounds that complex these metals. Our approach includes cultivation and characterization of bacteria from natural basalt surfaces of various ages and from different environments, and using these isolates for laboratory studies of basalt colonization and weathering. Natural basaltic glass as well as synthetic basaltic substrates amended with enhanced concentrations of Mn, phosphate and varying Fe oxidation states have been placed back in the environment

  3. Class Matters

    ERIC Educational Resources Information Center

    Valdata, Patricia

    2005-01-01

    Ever since George Washington opted for the title of president rather than king, Americans have been uncomfortable with the idea of class distinctions. This article presents an interview with Dr. Janet Galligani Casey regarding the idea of class distinctions. Galligani Casey, who grew up in a working-class neighborhood in Somerville, Massachusetts,…

  4. Class Size.

    ERIC Educational Resources Information Center

    Underwood, Siobhan; Lumsden, Linda S.

    1994-01-01

    The items featured in this annotated bibliography touch on several aspects of the multifaceted class-size debate. Allen Odden reviews the literature and contends that class-size reduction should be used "sparingly and strategically." C. M. Achilles and colleagues examines two different class-size situations and find student test…

  5. Space-Time-Isotopic Trends of Snake River Plain Basalts

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Hanan, B. B.; Shervais, J. W.

    2010-12-01

    The Snake River Plain (SRP) volcanic province is an 800 km track of basalt extending from the Owyhee Plateau to its current terminus, the Yellowstone Plateau. It is one of several late-Tertiary magmatic terranes that also include the Cascades magmatic arc, the Columbia River basalts, and the Oregon Plateau basalts; all of which are adjacent to the Basin and Range Province extensional system (Hughes and McCurry, 2002). This province represents the track of the Yellowstone plume and consists of basalt that is compositionally similar to ocean-island basalt. This basalt overlies a series of rhyolitic eruptive centers (overlapping caldera complexes, ignimbrites, and caldera-filling eruptions) that signal the arrival of the plume head (Christiansen, 2001) and herald the onset of plume-related rhyolitic and basaltic volcanism (Pierce et al., 2002). Observed within the SRP are two basalt types: the dominant low-K olivine tholeiites and less common high-K alkaline basalts. We report new Sr-, Nd-, and Pb-isotopic analyses of these two basalt types from all three SRP provinces: eastern, central, and western. Low-K tholeiites are enriched in 143Nd/144Nd and 86Sr/87Sr and forms a quasi-linear array in Pb-isotope space, along with Craters of the Moon and eastern SRP basalts. High-K lavas are found largely in the western plain, and have a uniquely different isotopic signature. They are depleted in 143Nd/144Nd and 86Sr/87Sr, relative to the low-K tholeiites, and plot closer to the BSE component of Zindler and Hart (1986). They also share the same Pb-isotopic space with high-K basalts from Smith Prairie (Boise River Group 2 of Vetter and Shervais, 1992). One low-K tholeiite - Eureka North, plots with these high alkali basalts. Mass balance models have demonstrated an increasing plume component from the Yellowstone caldera in the east to the craton edge in the west. The lavas analyzed in this study conform remarkably to this model. The mass fraction of plume component in western

  6. Elastic laboratory measurements and modeling of saturated basalts

    NASA Astrophysics Data System (ADS)

    Adam, Ludmila; Otheim, Thomas

    2013-03-01

    Understanding the elastic behavior of basalt is important to seismically monitor volcanoes, subsea basalts, and carbon sequestration in basalt. We estimate the elastic properties of basalt samples from the Snake River Plain, Idaho, at ultrasonic (0.8 MHz) and seismic (2-300 Hz) frequencies. To test the sensitivity of seismic waves to the fluid content in the pore structure, measurements are performed at three saturation conditions: saturated with liquid CO2, water, and dry. When CO2 replaces water, the P-wave velocity drops, on average, by 10%. Vesicles and cracks, observed in the rock microstructure, control the relaxation of pore-fluid pressures in the rock as a wave propagates. The bulk and shear moduli of basalts saturated with liquid CO2 are not frequency dependent, suggesting that fluid pore pressures are in equilibrium between 2 Hz and 0.8 MHz. However, when samples are water saturated, the bulk modulus of the rock is frequency dependent. Modeling with Gassmann's equations predicts the measured saturated rock bulk modulus for all fluids for frequencies below 20 Hz but underpredicts the water-saturated basalt bulk modulus for frequencies greater than 20 Hz. The most likely reason is that the pore-fluid pressures are unrelaxed. Instead, the ultrasonic frequency rock moduli are modeled with high-frequency elastic theories of squirt flow and Kuster-Toksöz (KT). Although KT's model is based on idealized pore shapes, a combination of spheres (vesicles) and penny-shaped cracks (fractures) interpreted and quantified from petrographical data predicts the ultrasonic dry and saturated rock moduli for the measured basalts.

  7. Optimization of DNA Extraction from Deep-sea Basalt

    NASA Astrophysics Data System (ADS)

    Wang, H.; Edwards, K. J.

    2007-12-01

    Studies on the microorganisms that inhabit deep-sea basalt can provide information on this dark ecosystem, which will contribution to our understanding of mass transformation and energy flow in the deep ocean. However, molecular methods for use with metal- and clay-rich rock materials such as basalt have not been suitably developed at present, yet are critically required in order to be able to fully evaluate the basalt biotope. For example, inefficient DNA extraction might lead to loss of information about important components of this community, and misinterpretation about the total community diversity and function. In order to investigate the effects of sample pretreated method, particle size, different DNA extraction methods and cell density on extracted DNA yields, two basalt samples were collected from the East Pacific Rise 9° N during research cruise AT11- 20 in Nov 2004. Basalt samples were crushed to different particle size, washed with ddH2O and 100% ethanol respectively, and autoclaved. Marinobacter aquaeolei cultures with different cell densities were inoculated into differently treated basalt samples. Pure culture and basalt samples without inoculation were used as positive and negative control to evaluate the extracting efficiency. FastDNA spin for soil kit, GeneClean for ancient DNA kit and UltraCleanTM soil DNA Kit are used for DNA extraction. Results showed that DNA yields increased with culture density. FastDNA spin for soil kit gave the highest DNA yields, which is almost 10 times more than that of UltraCleanTM soil DNA Kit. Ethanol washing and ddH2O washing did not make big difference to DNA yields. Mineral composition and surface areas might also affect DNA yields.

  8. A new lunar high-Ti basalt type defined from clasts in Apollo 16 breccia 60639

    NASA Astrophysics Data System (ADS)

    Fagan, A. L.; Neal, C. R.

    2016-01-01

    This paper reports the detailed examination of three basalt clasts from Apollo 16 breccia 60639 that represent a new variant of high-Ti basalt returned from the Moon by the Apollo 16 mission. Mineral chemistry and whole-rock analyses were conducted on aliquots from three clasts (breccia matrix, basalt, and basalt + breccia matrix). The basalt clasts, which are not overtly porphyritic, contain compositionally zoned pyroxene, olivine, and plagioclase crystals that represent the evolution of the magma during crystallization; ilmenite does not exhibit major-element compositional zoning within individual crystals. Mineral compositions are distinct between the basalt and breccia matrix lithologies. In addition, whole-rock analyses identify clear compositional differences between the basalt and breccia matrix lithologies in both major and trace element concentrations. The composition of the mixed lithology aliquots (i.e., basalt + breccia matrix) do not indicate simple two component mixing (i.e., compositions are not intermediate to the basalt and breccia end-members); this apparent incongruity can be accounted for by adding ∼19-40% plagioclase to an amalgamation of the average basalt and individual breccia clast compositions via impact mixing. Whole-rock analyses are consistent with previous analyses of one 60639 basalt clast, which were interpreted to indicate chemical similarity with Apollo 11 and 17 basalts. However, both major and trace elements suggest that the 60639 basalt clasts examined here have compositions that are distinct from Apollo 11 and 17 high-Ti basalts. Although the 60639 basalt clasts have similar characteristics to a variety of previously identified basalt types, the more extensive whole-rock analyses reported here indicate that they represent a type of Apollo high-Ti basalt heretofore unrecognized in the Apollo and lunar meteorite collections. By placing these new analyses in the context of other mare basalt compositions, a petrogenetic model for

  9. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Chun; Yang, Huai-Jen

    2016-04-01

    The pillow basalts from Baolai in southwestern Taiwan have been inferred to bear Dupal signautres based on their Th/Ce ratio, linking the Baolai basalts to the South China Sea (SCS) seamounts that are characterized by Dupal Pb isotope signatures (Smith and Lewis, 2007). In this study, thirty-two Baolai basalt samples were analyzed for abundances of major and trace elements as well as Pb and Nd isotope ratios to verify their Dupal characters and to constrain their petrogenesis significance. The Baolai basalts contain 4-10 % L.O.I.. Three stages of alteration are inferred from plots of L.O.I. abundance versus concentrations major oxides as well as mineral textures and compositions. The first alteration stage was characterized by albitization that converted Ca-rich plagioclase to albite. The second alteration stage was dominated by chloritization of olivine and augite, resulting in increases in L.O.I. abundance. The last alteration stage is represented by formation of secondary calcite in vesicles and cracks. These alteration processes reflect interaction with seawater and apparently did not affect the magmatic Pb isotope composition for the low Pb concentration in seawater. Relative to the North Hemisphere Reference Line (NHRL), the Baolai pillow basalts have higher 208Pb/204Pb ratios at a given 206Pb/204Pb value, showing Dupal anomaly. For their relatively higher 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios, the Baolai basalts are distinct from majority of the Cenozoic basalts in the Hainan-Leizhou peninsula, the Indochina peninsula, and the SCS seamounts, for which derivation from the Hainan mantle plume has been recently proposed (Wang et al., 2013). In contrast, the Baolai basalts and the Cenozoic basalts from eastern Guangdong at southeastern China have similar Pb and Nd isotope compositions, indicating derivation from similar mantle sources. However, the Baolai basalts have lower abundance ratios of Zr/Hf (40.3-45.6 versus 46.5-50.5), La/Yb (12

  10. Breakthroughs in Seismic and Borehole Characterization of Basalt Sequestration Targets

    SciTech Connect

    Sullivan, E. C.; Hardage, Bob A.; McGrail, B. Peter; Davis, Klarissa N.

    2011-04-01

    Mafic continental flood basalts form a globally important, but under-characterized CO2 sequestration target. The Columbia River Basalt Group (CRBG) in the northwestern U.S. is up to 5 km thick and covers over 168,000 km2. In India, flood basalts are 3 km thick and cover greater than 500,000 km2. Laboratory experiments demonstrate that the CRBG and other basalts react with formation water and super critical (sc) CO2 to precipitate carbonates, thus adding a potential mineral trapping mechanism to the standard trapping mechanisms of most other types of CO2 sequestration reservoirs. Brecciated tops of individual basalt flows in the CRBG form regional aquifers that locally have greater than 30% porosity and three Darcies of permeability. Porous flow tops are potential sites for sequestration of gigatons of scCO2 in areas where the basalts contain unpotable water and are at depths greater than 800 m. In this paper we report on the U.S. DOE Big Sky Regional Carbon Sequestration Partnership surface seismic and borehole geophysical characterization that supports a field test of capacity, integrity, and geochemical reactivity of CRBG reservoirs in eastern Washington, U.S.A. Traditional surface seismic methods have had little success in imaging basalt features in on-shore areas where the basalt is thinly covered by sediment. Processing of the experimental 6.5 km, 5 line 3C seismic swath included constructing an elastic wavefield model, identifying and separating seismic wave modes, and processing the swath as a single 2D line. Important findings include: (1) a wide variety of shear wave energy modes swamp the P-wave seismic records; (2) except at very short geophone offsets, ground roll overprints P-wave signal; and (3) because of extreme velocity contrasts, P-wave events are refracted at incidence angles greater than 7-15 degrees. Subsequent removal of S-wave and other noise during processing resulted in tremendous improvement in image quality. The application of wireline

  11. Mongolian Hangay Uplift Recorded in Vesicular Basalts

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Proussevitch, A. A.; Ancuta, L. D.; Idleman, B. D.; Zeitler, P. K.

    2014-12-01

    Epeirogenic histories of highland areas have confounded geophysicists for decades, as there are few records of paleoelevation in eroding highlands. However, preserved basaltic lava flows record paleoelevation in the size distributions of vesicles at the tops and bottoms of flow units. Although the bubbles have identical mass distributions at top and base, they are subject to different total pressures (sizes) due to differences in overburden. Two factors control the size of bubbles at the base of the flow: atmospheric pressure and lava weight. Thus, the atmospheric pressure-dependence of vesicle size can be expressed by the ratio of vesicle size modes at the top and bottom of a flow. The atmosphere's paleopressure can thus be determined and a paleoelevation can then be calculated. Knowing the elevation at which the rock formed, its age, and its present elevation, the amount of uplift or subsidence can be determined, providing a history of tectonic uplift or subsidence of the locality. The total error bounds of the method are estimated to be ±400 m, which is sufficient only for major epeirogenic trends, such as that seen previously on the Colorado Plateau, and now in Mongolia. The mechanisms that led to the high elevations of the Hangay Plateau in central Mongolia are not clear. As part of a broader collaborative project to better understand the tectonics of this part of Asia, we collected samples from several flows from throughout the Hangay Plateau. Results suggest that the Hangay Plateau experienced uplift of over 1 km in the last 10 Ma., corresponding to an average uplift rate of about 140 m/Ma (see graph below, with intercept within error bounds of 0,0). A flow sampled from the adjacent northern Gobi Desert indicates a paleoelevation of only a few hundred meters (no significant recent uplift), suggesting that the Gobi has experienced a different recent tectonic history from the Hangay Plateau. The uplift history of the Hangay, in addition to the composition of

  12. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  13. Back-arc basin basalt systematics

    NASA Astrophysics Data System (ADS)

    Taylor, Brian; Martinez, Fernando

    2003-05-01

    The Mariana, east Scotia, Lau, and Manus back-arc basins (BABs) have spreading rates that vary from slow (<50 mm/yr) to fast (>100 mm/yr) and extension axes located from 10 to 400 km behind their island arcs. Axial lava compositions from these BABs indicate melting of mid-ocean ridge basalt (MORB)-like sources in proportion to the amount added of previously depleted, water-rich, arc-like components. The arc-like end-members are characterized by low Na, Ti and Fe, and by high H 2O and Ba/La; the MORB-like end-members have the opposite traits. Comparisons between basins show that the least hydrous compositions follow global MORB systematics and an inverse correlation between Na8 and Fe8. This is interpreted as a positive correlation between the average degree and pressure of mantle melting that reflects regional variations in mantle potential temperatures (Lau/Manus hotter than Mariana/Scotia). This interpretation accords with numerical model predictions that faster subduction-induced advection will maintain a hotter mantle wedge. The primary compositional trends within each BAB (a positive correlation between Fe8, Na8 and Ti8, and their inverse correlation with H 2O(8) and Ba/La) are controlled by variations in water content, melt extraction, and enrichments imposed by slab and mantle wedge processes. Systematic axial depth (as a proxy for crustal production) variations with distance from the island arc indicate that compositional controls on melting dominate over spreading rate. Hydrous fluxing enhances decompression melting, allowing depleted mantle sources just behind the island arc to melt extensively, producing shallow spreading axes. Flow of enriched mantle components around the ends of slabs may augment this process in transform-bounded back-arcs such as the east Scotia Basin. The re-circulation (by mantle wedge corner flow) to the spreading axes of mantle previously depleted by both arc and spreading melt extraction can explain the greater depths and thinner

  14. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    SciTech Connect

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir

  15. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam

    NASA Astrophysics Data System (ADS)

    An, A.-Rim; Choi, Sung Hi; Yu, Yongjae; Lee, Der-Chuen

    2017-02-01

    Major and trace element concentrations, and Sr-Nd-Hf-Pb isotopic compositions of Late Cenozoic (4.1 to 13.8 Ma) basaltic rocks from southern Vietnam have been determined to understand the nature of their mantle source. The volcanic rocks are composed of tholeiite basalt, alkaline basanite, trachybasalt, basaltic trachyandesite, and trachyandesite. The alkaline rocks show light rare earth element (LREE) enrichment, with (La/Yb)N = 10.3-29.8. The tholeiite basalts are distinguished by much lower values (8.8-9.5) of (La/Yb)N. On a primitive mantle-normalized trace element distribution diagram, they show oceanic island basalt (OIB)-like large-ion lithophile element enrichment without high field strength element depletion. However, some samples exhibit positive anomalies in K and Pb and negative anomalies in Sm, suggesting K-rich residual amphibole in the source. The samples contain Sr (87Sr/86Sr = 0.703794-0.704672), Nd (ɛNd = + 1.7-5.7), Hf (ɛHf = + 4.0-10.9), and Pb (206Pb/204Pb = 18.23-18.75; 207Pb/204Pb = 15.53-15.59; 208Pb/204Pb = 38.32-38.88) isotopes, plotting among OIBs, with depleted mid-ocean ridge basalt mantle-enriched mantle type 2 (DMM-EM2) characteristics. There are no discernible isotopic differences between tholeiite and the alkaline series, reflecting the same source. The Nd and Hf isotopic compositions are coupled, and plot along the mantle-crust array, ruling out the possibility of lithospheric mantle in the source. Plots of NiO against the Fo numbers of olivines from the basaltic rocks are within the range of Hainan and Hawaiian basalt olivines, implying that hybrid pyroxenite is present in the source. Also note that the estimated primary melt compositions fall within the experimental field defined by partial melting of silica-poor eclogite and peridotite. The effective melting pressure (Pf) and melting temperature (T) of the primary melts are Pf = 29.6-32.8 kbar and T = 1470-1480 °C. We suggest that Vietnamese basaltic rocks may be produced by

  16. Volatiles and the tempo of flood basalt magmatism

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Manga, Michael

    2017-01-01

    Individual flood basalt lavas often exceed 103 km3 in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas implies correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. The overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, and as a large magma body heats the surrounding rocks thermally activated creep will relax isotropic overpressure more rapidly. Here, we examine the viability of buoyancy overpressure as a trigger for continental flood basalt eruptions. We employ a new one-dimensional model that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape from Moho-depth and crustal chambers. We investigate the temporal evolution of degassing and the eruptibility of magmas using the Siberian Traps flood basalts as a test case. We suggest that the volatile inventory set during mantle melting and redistributed via bubble motion controls ascent of magma into and through the crust, thereby regulating the tempo of flood basalt magmatism. Volatile-rich melts from low degrees of partial melting of the mantle are buoyant and erupt to the surface with little staging or crustal interaction. Melts with moderate volatile budgets accumulate in large, mostly molten magma chambers at the Moho or in the lower crust. These large magma bodies may remain buoyant and poised to erupt-triggered by volatile-rich recharge or external stresses-for ∼106 yr. If and when such chambers fail, enormous volumes of magma can ascend into the upper crust, staging at shallow levels and initiating substantial assimilation that contributes to pulses of large-volume flood basalt eruption. Our model further predicts that the Siberian Traps may have released 1019-1020 g of CO2

  17. Effect of carbon nanotube addition on the wear behavior of basalt/epoxy woven composites.

    PubMed

    Kim, M T; Rhee, K Y; Lee, B H; Kim, C J

    2013-08-01

    The effect of acid-treated carbon nanotube (CNT) addition on the wear and dynamic mechanical thermal properties of basalt/epoxy woven composites was investigated in this study. Basalt/CNT/epoxy composites were fabricated by impregnating woven basalt fibers into epoxy resin mixed with 1 wt% CNTs which were acid-treated. Wear and DMA (dynamic mechanical analyzer) tests were performed on basalt/epoxy composites and basalt/CNT/epoxy composites. The results showed that the addition of the acid-treated CNTs improved the wear properties of basalt/epoxy woven composites. Specifically, the friction coefficient of the basalt/epoxy composite was stabilized in the range of 0.5-0.6 while it fell in the range of 0.3-0.4 for basalt/CNT/epoxy composites. The wear volume loss of the basalt/CNT/epoxy composites was approximately 68% lower than that of the basalt/epoxy composites. The results also showed that the glass transition temperature of basalt/CNT/epoxy composites was higher than that of basalt/epoxy composites. The improvement of wear properties of basalt/epoxy composites by the addition of acid-treated CNTs was caused by the homogeneous load transfer between basalt fibers and epoxy matrix due to the reinforcement of CNTs.

  18. Similar Microbial Communities Found on Two Distant Seafloor Basalts.

    PubMed

    Singer, Esther; Chong, Lauren S; Heidelberg, John F; Edwards, Katrina J

    2015-01-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  19. An ancient recipe for flood-basalt genesis.

    PubMed

    Jackson, Matthew G; Carlson, Richard W

    2011-07-27

    Large outpourings of basaltic lava have punctuated geological time, but the mechanisms responsible for the generation of such extraordinary volumes of melt are not well known. Recent geochemical evidence suggests that an early-formed reservoir may have survived in the Earth's mantle for about 4.5 billion years (ref. 2), and melts of this reservoir contributed to the flood basalt emplaced on Baffin Island about 60 million years ago. However, the volume of this ancient mantle domain and whether it has contributed to other flood basalts is not known. Here we show that basalts from the largest volcanic event in geologic history--the Ontong Java plateau--also exhibit the isotopic and trace element signatures proposed for the early-Earth reservoir. Together with the Ontong Java plateau, we suggest that six of the largest volcanic events that erupted in the past 250 million years derive from the oldest terrestrial mantle reservoir. The association of these large volcanic events with an ancient primitive mantle source suggests that its unique geochemical characteristics--it is both hotter (it has greater abundances of the radioactive heat-producing elements) and more fertile than depleted mantle reservoirs-may strongly affect the generation of flood basalts.

  20. Columbia River flood basalts from a centralized crustal magmatic system

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ramos, F. C.; Hart, G. L.; Patterson, J. D.; Brandon, A. D.

    2008-03-01

    The Columbia River Basalt Group in the northwestern United States, comprising about 230,000 cubic kilometres of rock, exhibits unusual patterns in lava distribution, geochemistry and its apparent relationship to regional tectonics. Consequently, there is little consensus on the origin of its magmas. Here, we examine the isotopic ratios of Sr, Nd, Pb and Os and trace-element abundances in Columbia River basalts. The results suggest that most of the lava was produced when magma derived from a mantle plume assimilated continental crust in a central magma chamber system located at the boundary between the North American craton and the accreted terranes of Idaho and Oregon. Other, related basalts are the product of mixing between the mantle plume and different types of regional upper mantle. Magma was then transported over a wide region by an extensive network of dykes, a process that has been identified in other flood basalt provinces as well. Interactions of the plume with surrounding upper mantle, and of mantle-derived magmas with regional crust, provide a relatively simple model to explain the more unusual features of the main-phase Columbia River Basalts.

  1. Similar Microbial Communities Found on Two Distant Seafloor Basalts

    PubMed Central

    Singer, Esther; Chong, Lauren S.; Heidelberg, John F.; Edwards, Katrina J.

    2015-01-01

    The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy. PMID:26733957

  2. Three basaltic earth-approaching asteroids and the source of the basaltic meteorites

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Tholen, D. J.; Bell, J. F.; Hartmann, W. K.; Brown, R. H.

    1991-01-01

    Diameters of 1.2, 1.0, and 3.4 km are respectively derived for the earth-approaching asteroids 1983 RD, 1980 PA, and 1985 DO2, whose spectra are virtually identical to that of the basaltic-surfaced large asteroid, Vesta. While probably not fragments of Vesta, the three asteroids may be fragments of one or more Vesta-like parent bodies; it is suggested that they may be fragments of the source body or bodies of the HED meteorites. While these asteroids' regoliths have significant insulating properties, they differ from that of the moon in that lunar-like glasses and agglutinates are largely absent. It is noted that asteroids of this kind may have impacted the earth without leaving the chemical signatures associated with the K-T boundary event.

  3. A common parentage for Deccan Continental Flood Basalt and Central Indian Ocean Ridge Basalt? A geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Ray, D.; Misra, S.; Widdowson, M.; Langmuir, C. H.

    2014-04-01

    A comparison of geochemical and Sr-Nd-Pb isotopic compositions for Deccan Continental Flood Basalts (CFBs) and Central Indian Ridge (CIR) Basalts is presented: these data permit assessment of possible parental linkages between the two regions, and comparison of their respective magmatic evolutionary trends in relation to rift-related tectonic events during Gondwana break-up. The present study reveals that Mid-Ocean Ridge Basalt (MORB) from the northern CIR and basalts of Deccan CFB are geochemically dissimilar because of: (1) the Deccan CFB basalts typically show a greater iron-enrichment as compared to the northern CIR MORB, (2) a multi-element spiderdiagram reveals that the Deccan CFBs reveal a more fractionated slope (Ba/YbN > 1), as compared to relatively flat northern CIR MORB (Ba/YbN < 1), (3) there is greater REE fractionation for Deccan CFB than for the northern CIR MORB (i.e., La/YbN ˜ 2.3 and 1 respectively) and (4) substantial variation of compatible-incompatible trace elements and their ratios among the two basalt groups suggests that partial melting is a dominant process for northern CIR MORB, while fractional crystallization was a more important control to the geochemical variation for Deccan CFB. Further, incompatible trace element ratios (Nb/U and Nb/Pb) and radiogenic isotopic data (Sr-Pb-Nd) indicate that the northern CIR MORBs are similar to depleted mantle [and/or normal (N)-MORB], and often lie on a mixing line between depleted mantle and upper continental crust. By contrast, Deccan CFB compositions lie between the lower continental crust and Ocean island basalt. Accordingly, we conclude that the basaltic suites of the northern CIR MORB and Deccan CFB do not share common parentage, and are therefore genetically unrelated to each other. Instead, we infer that the northern CIR MORB were derived from a depleted mantle source contaminated by upper continental crust, probably during the break up of Gondwanaland; the Deccan CFB are more similar to

  4. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA).

    PubMed

    Caputo, Jesse; Beier, Colin M; Sullivan, Timothy J; Lawrence, Gregory B

    2016-09-15

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification - and their implications for the sustainability of SM and its economic and cultural benefits - have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production - although not feasible across the vast areas where acid impairment has occurred - may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern hardwood

  5. Acid-base characteristics of the Grass Pond watershed in the Adirondack Mountains of New York State, USA: interactions among soil, vegetation and surface waters

    NASA Astrophysics Data System (ADS)

    McEathron, K. M.; Mitchell, M. J.; Zhang, L.

    2013-07-01

    Grass Pond watershed is located within the southwestern Adirondack Mountain region of New York State, USA. This region receives some of the highest rates of acidic deposition in North America and is particularly sensitive to acidic inputs due to many of its soils having shallow depths and being generally base poor. Differences in soil chemistry and tree species between seven subwatersheds were examined in relation to acid-base characteristics of the seven major streams that drain into Grass Pond. Mineral soil pH, stream water BCS (base-cation surplus) and pH exhibited a positive correlation with sugar maple basal area (p = 0.055; 0.48 and 0.39, respectively). Black cherry basal area was inversely correlated with stream water BCS, ANC (acid neutralizing capacity)c and NO3- (p = 0.23; 0.24 and 0.20, respectively). Sugar maple basal areas were positively associated with watershed characteristics associated with the neutralization of atmospheric acidic inputs while in contrast, black cherry basal areas showed opposite relationships to these same watershed characteristics. Canonical correspondence analysis indicated that black cherry had a distinctive relationship with forest floor chemistry apart from the other tree species, specifically a strong positive association with forest floor NH4, while sugar maple had a distinctive relationship with stream chemistry variables, specifically a strong positive association with stream water ANCc, BCS and pH. Our results provide evidence that sugar maple is acid-intolerant or calciphilic tree species and also demonstrate that black cherry is likely an acid-tolerant tree species.

  6. Concentration and flux of solutes from snow and forest floor during snowmelt in the West-Central Adirondack region of New York

    USGS Publications Warehouse

    Rascher, C.M.; Driscoll, C.T.; Peters, N.E.

    1987-01-01

    Decreases in pH and increases in the concentration of Al and NO3- have been observed in surface waters draining acid-sensitive regions in the northeastern U.S. during spring snowmelt. To assess the source of this acidity, we evaluated solute concentrations in snowpack, and in meltwater collected from snow and forest floor lysimeters in the west-central Adirondack Mountains of New York during the spring snowmelt period, 29 March through 15 April 1984. During the initial phase of snowmelt, ions were preferentially leached from the snowpack resulting in elevated concentrations in snowmelt water (e.g. H+ = 140 ??eq.l-1; NO42- = 123 ??eq.l-1; SO3- = 160 ??eq.l-1). Solute concentrations decreased dramatically within a few days of the initial melt (< 50 ??eq.l-1). The concentrations of SO42- and NO3- in snowpack and snowmelt water were similar, whereas NO-3 in the forest floor leachate was at least two times the concentration of SO42-. Study results suggest that the forest floor was a sink for snowmelt inputs of alkalinity, and a net source of H+, NO3-, dissolved organic carbon, K+ and Al inputs to the mineral soil. The forest floor was relatively conservative with respect to snowmelt inputs of Ca2+, SO42- and Cl-. These results indicate that mineralization of N, followed by nitrification in the forest floor may be an important process contributing to elevated concentrations of H+ and NO3- in streams during the snowmelt period. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  7. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA)

    USGS Publications Warehouse

    Caputo, Jesse PhD.; Beier, Colin M.; Sullivan, Timothy J.; Lawrence, Gregory B.

    2016-01-01

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification – and their implications for the sustainability of SM and its economic and cultural benefits – have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100 years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production – although not feasible across the vast areas where acid impairment has occurred – may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern

  8. Evidence against hydrogen-based microbial ecosystems in basalt aquifers

    USGS Publications Warehouse

    Anderson, R.T.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    It has been proposed that hydrogen produced from basalt-ground-water interactions may serve as an energy source that supports the existence of microorganisms in the deep subsurface on Earth and possibly on other planets. However, experiments demonstrated that hydrogen is not produced from basalt at an environmentally relevant, alkaline pH. Small amounts of hydrogen were produced at a lower pH in laboratory incubations, but even this hydrogen production was transitory. Furthermore, geochemical considerations suggest that previously reported rates of hydrogen production cannot be sustained over geologically significant time frames. These findings indicate that hydrogen production from basalt-ground-water interactions may not support microbial metabolism in the subsurface.

  9. Evidence against hydrogen-based microbial ecosystems in basalt aquifers

    PubMed

    Anderson; Chapelle; Lovley

    1998-08-14

    It has been proposed that hydrogen produced from basalt-ground-water interactions may serve as an energy source that supports the existence of microorganisms in the deep subsurface on Earth and possibly on other planets. However, experiments demonstrated that hydrogen is not produced from basalt at an environmentally relevant, alkaline pH. Small amounts of hydrogen were produced at a lower pH in laboratory incubations, but even this hydrogen production was transitory. Furthermore, geochemical considerations suggest that previously reported rates of hydrogen production cannot be sustained over geologically significant time frames. These findings indicate that hydrogen production from basalt-ground-water interactions may not support microbial metabolism in the subsurface.

  10. Mineralogy of the last lunar basalts: Results from Clementine

    USGS Publications Warehouse

    Staid, M.I.; Pieters, C.M.

    2001-01-01

    The last major phase of lunar volcanism produced extensive high-titanium mare deposits on the western nearside which remain unsampled by landing missions. The visible and near-infrared reflectance properties of these basalts are examined using Clementine multispectral images to better constrain their mineralogy. A much stronger 1 ??m ferrous absorption was observed for the western high-titanium basalts than within earlier maria, suggesting that these last major mare eruptions also may have been the most iron-rich. These western basalts also have a distinctly long-wavelength, 1 ??m ferrous absorption which was found to be similar for both surface soils and materials excavated from depth, supporting the interpretation of abundant olivine within these deposits. Spectral variation along flows within the Imbrium basin also suggests variations in ilmenite content along previously mapped lava flows as well as increasing olivine content within subsequent eruptions. Copyright 2001 by the American Geophysical Union.

  11. Lunar basalt meteorite EET 87521: Petrology of the clast population

    NASA Technical Reports Server (NTRS)

    Semenova, A. S.; Nazarov, M. A.; Kononkova, N. N.

    1993-01-01

    The Elephant Moraine meteorite EET 87521 was classified as a lunar mare basalt breccia which is composed mainly of VLT basalt clasts. Here we report on our petrological study of lithic clasts and monomineralic fragments in the thin sections EET 87521,54 and EET 87521,47,1, which were prepared from the meteorite. The results of the study show that EET 87521 consists mainly of Al-rich ferrobasalt clasts and olivine pyroxenite clasts. The bulk composition of the meteorite can be well modelled by the mixing of these lithic components which appear to be differentiates of the Luna 25 basalt melt. KREEP and Mg-rich gabbro components are minor constituents of EET 87521.

  12. Examination of subaerially altered basaltic glass with TEM and EELS

    SciTech Connect

    Luo, J.-S.

    1998-06-17

    We have examined the weathered surfaces of 720 year old Hawaiian basalt glasses that were recovered from a subaerial environment with high-resolution transmission electron microscopy (TEM) and energy filtered imaging and electron energy loss spectroscopy (EELS) techniques. Whereas the alteration products (palagonite) were physically detached from the underlying glass in most samples, a gel-like amorphous layer was observed adjacent to the glass in a few samples. To our knowledge, this is the first time a gel layer has been observed on weathered basalt. This is significant because analogous gel layers have been observed on nuclear waste glasses reacted in laboratory tests, and this demonstrates an important similarity in the mechanisms of the weathering of basalt and the corrosion of waste glasses.

  13. Near-Primary Oxidized Basalts from the Submarine Vanuatu Arc

    NASA Astrophysics Data System (ADS)

    Gentes, Z.; Kelley, K. A.; Cottrell, E.; Arculus, R. J.

    2014-12-01

    Near-primary melt compositions (i.e., in equilibrium with >Fo89 olivine) are rare in arc systems. Yet, such melts provide essential views of mantle-derived melts, without further modification by fractional crystallization or other crustal processes, and reveal the diversity of melt compositions that exist in the arc mantle wedge. Here, we present new measurements of naturally glassy, near-primary olivine-hosted melt inclusions from one dredge of Evita seamount (SS07/2008 NLD-02) in the southern Vanuatu arc system. Two distinct basalt types were identified in hand sample upon collection, based on contrasting phenocryst assemblage (Type 1: 1% phenocrysts; Type 2: 15% phenocrysts). We selected melt inclusions from each type and determined major elements, S, and Cl by EMP, H2O and CO2 by FTIR, trace elements by LA-ICP-MS, and Fe3+/∑Fe ratios by XANES. Melt inclusions from both lava types show equilibrium with ≥Fo90 olivine, consistent with host olivine compositions, and thus are near-primary melt compositions that have escaped major modification since departing the mantle wedge. Both have similar maximum dissolved H2O (~2.3 wt.%), high Mg# (48-75), and are basalt to basaltic andesite (SiO2 49-55 wt.%). However, the two lava types have very different major and trace element compositions. Inclusions from Type 1 show relatively flat REE patterns and classic negative anomalies in Nb and Ta, and positive anomalies in Pb and Sr typical of normal arc basalts, and have Fe3+/∑Fe ratios similar to global arc basalts (~0.24). In contrast, melt inclusions from Type 2 exhibit steeply sloped REE patterns with strong depletions in the HREE that suggest garnet in the source lithology for these magmas, either in the subducting slab or the mantle wedge. Moreover, the Type 2 inclusions have high La/Yb (29.5-43) and Sr/Y (50-58), which are classically attributed to partial melting of the basaltic slab, although these inclusions are basaltic, not andesitic. Type 2 inclusions also

  14. Crustal influence in the generation of continental flood basalts

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Lugmair, G. W.; Macdougall, J. D.

    1981-01-01

    The suggestion that primordial undifferentiated material may exist in the earth's mantle has recently been revived on the strength of Nd isotope data for two types of young continental rocks - flood basalts and kimberlites. The limited published data show a clustering of Nd isotopic compositions close to those for meteorites with chondritic relative rare-earth (REE) abundance. In contrast, data are presented for samples from the Columbia flood basalt province of the northwestern United States which show large isotopic variability suggestive of mixing processes acting after the separation of the primary magmas from their mantle source.

  15. Distinct subsolidus cooling histories of Apollo 14 basalts.

    NASA Technical Reports Server (NTRS)

    Schurmann, K.; Hafner, S. S.

    1972-01-01

    Study of the distribution of magnesium and ferrous iron over the M1 and M2 positions in pyroxenes from the basaltic rocks 14053 and 14310, aimed at an analysis of the subsolidus cooling history. The results obtained suggest that the subsolidus cooling of the basalt 14310 occurred at a depth of several meters in a coherent body of appreciable size. As for the 14053, the hot debris of which it was a part were deposited after the projection from the Imbrium basin; some smaller fragments, including 14503, cooled very rapidly in the cold Fra Mauro regolith by conduction.

  16. One atmosphere melting experiments on ilmenite basalt 12008

    NASA Technical Reports Server (NTRS)

    Rhodes, J. M.; Lofgren, G. E.; Smith, D. P.

    1979-01-01

    An evaluation of a crystal-fractionation model for Apollo 12 ilmenite basalts with melting experiments under controlled oxygen fugacities is reported. The crystallization sequence including olivine, chromium spinel, and pigeonite phases was determined, showing that the changes in melt composition are dominated by olivine crystallization and the decrease in MgO with a corresponding increase in CaO, Al2O3, and TiO2. It is concluded that the bulk composition of the ilmenite basalts was established by crystallization of olivine and minor spinel prior to the onset of pyroxene and plagioclase.

  17. Seismic wave propagation through an extrusive basalt sequence

    NASA Astrophysics Data System (ADS)

    Sanford, Oliver; Hobbs, Richard; Brown, Richard; Schofield, Nick

    2016-04-01

    Layers of basalt flows within sedimentary successions (e.g. in the Faeroe-Shetland Basin) cause complex scattering and attenuation of seismic waves during seismic exploration surveys. Extrusive basaltic sequences are highly heterogeneous and contain strong impedance contrasts between higher velocity crystalline flow cores (˜6 km s-1) and the lower velocity fragmented and weathered flow crusts (3-4 km s-1). Typically, the refracted wave from the basaltic layer is used to build a velocity model by tomography. This velocity model is then used to aid processing of the reflection data where direct determination of velocity is ambiguous, or as a starting point for full waveform inversion, for example. The model may also be used as part of assessing drilling risk of potential wells, as it is believed to constrain the total thickness of the sequence. In heterogeneous media, where the scatter size is of the order of the seismic wavelength or larger, scattering preferentially traps the seismic energy in the low velocity regions. This causes a build-up of energy that is guided along the low velocity layers. This has implications for the interpretation of the observed first arrival of the seismic wave, which may be a biased towards the low velocity regions. This will then lead to an underestimate of the velocity structure and hence the thickness of the basalt, with implications for the drilling of wells hoping to penetrate through the base of the basalts in search of hydrocarbons. Using 2-D acoustic finite difference modelling of the guided wave through a simple layered basalt sequence, we consider the relative importance of different parameters of the basalt on the seismic energy propagating through the layers. These include the proportion of high to low velocity material, the number of layers, their thickness and the roughness of the interfaces between the layers. We observe a non-linear relationship between the ratio of high to low velocity layers and the apparent velocity

  18. Earliest Silicic Volcanism Associated with Mid-Miocene Flood Basalts: Tuffs Interbedded with Steens Basalt, Nevada and Oregon

    NASA Astrophysics Data System (ADS)

    Luckett, M.; Mahood, G. A.; Benson, T. R.

    2013-12-01

    During the main phase of Steens and Columbia River flood basalt eruptions between ~16.7 and 15.0 Ma, spatially associated silicic volcanism was widespread, ~4,000 km3 of silicic magma erupting at calderas and smaller centers dispersed across ~25,000 km2 in eastern Oregon and northern Nevada (Coble and Mahood, 2012). The oldest flood basalts erupted from a focus at Steens Mountain in eastern Oregon, where the section of lavas is ~1 km thick. The Steens Basalt thins southward to only a few flows thick in northern Nevada, either because fewer flows were emplaced this far from the focus or because fewer dikes propagated to the surface on encountering thicker continental crust and/or were intercepted by growing bodies of silicic magma that ultimately erupted in McDermitt Caldera Field (Rytuba and McKee, 1984), High Rock Caldera Complex, and the Lone Mountain/Hawks Valley center (Wypych et al., 2011). Rhyolitic tuffs have not been recognized interbedded with the basalt lavas in the type section, but we have identified several silicic tuffs interbedded with Steens Basalt in the southern Pueblo Mountains and in the Trout Creek Mountains. Although noted by previous workers (e.g., Avent, 1965; Minor, 1986; Hart et al., 1989), they have not been studied. We identified six tuffaceous intervals 20 cm to 15 m thick in the escarpment of the southern Pueblo Mountains near the Oregon-Nevada border where the Steens basalt section is ~250 m thick, with the base unexposed. Two intervals are lithic-rich, reworked volcaniclastic sediments, but four are primary or only slightly reworked sequences of fall deposits that range from fine ash to lapilli in grain size. The heat and weight of the overlying basaltic lava flows has fused the tuffs so that the upper parts of thicker tuffaceous intervals and entire thinner ones are converted to vitrophyres, with crystals of alkali feldspar × quartz × biotite typically 1-2 mm in diameter set in a dense, black, variably hydrated, glassy matrix. We

  19. Basaltic Volcanism of the Snake River Volcanic Province

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Vetter, S.

    2012-12-01

    The Yellowstone-Snake River Plain (YSRP) volcanic province is the world's best modern example of a time-transgressive hotspot track beneath continental crust. Tomographic images document a thermal anomaly which pierces the Farallon plate at depth and appears to extend to depths of over 1000 km. Many investigators attribute this anomaly to a deep mantle plume, while others recognize the sheet-like aspect of the velocity anomaly and attribute it to lower mantle flow around a fragmented remnant of the Farallon plate. Tholeiitic basalts of the SRP have major element compositions similar to ocean island basalts (OIB), with higher FeO, TiO2, P2O5 and K2O than mid-ocean ridge basalts over a similar range in MgO. Their trace element concentrations also mimic OIB tholeiites, with moderately enriched LREE/HREE ratios, OIB-like HFSE ratios and Nb-Y-Zr systematics. Most SRP basalts show little evidence of crustal assimilation: oxygen isotope compositions are mantle-like, K2O is low and does not increase relative to other incompatible elements during fractionation (e.g., P2O5), and silica contents are consistently low. In contrast, evidence suggests that these basalts evolve primarily through fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Trace element concentration patterns are nearly identical to OIB tholeiites, with somewhat lower slopes on multi-element variations diagrams, consistent with 7-12% partial melting of spinel-facies peridotite (9-18 kb, 40-65 km) with a composition similar to the source of OIB or EMORB. Models show that depleted MORB asthenosphere or primitive mantle peridotite composition sources cannot yield SRP tholeiites, even with residual garnet in the source region to raise LREE/HREE ratios in the melt. There is no indication of residual garnet in the source - which requires that either the lithosphere was relatively thin during formation of the SRP, or that the melts originated within the lithosphere itself

  20. Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts

    NASA Astrophysics Data System (ADS)

    Fogel, Robert A.

    2005-03-01

    Aubrite basalt vitrophyres (ABVs) are clastic inclusions found in enstatite chondrites and aubrites. Three have been discovered so far; PAI from the Parsa EH3 chondrite, KTI from the Khor Temiki aubrite and L87I from the LEW 87007 aubrite. Their significance stems from the fact that their parental melts were formed from source materials similar to E chondrites; therefore, they provide an opportunity to study the process of aubrite formation from an E chondrite-like protolith. KTI, PAI and L87I contain the FeO-poor highly reduced assemblage: forsterite + enstatite + silicate glass + kamacite + troilite. Additionally, KTI and PAI contain alabandite while L87I contains diopside. ABV glass contents are: 51 vol% for KTI; 30 vol% for PAI and 13 vol% for L87I. The ABVs are, thus, representative of the different stages of crystallization of a reduced precursor basalt similar to that which gave rise to the aubrites. The chemistry of all three ABVs can be projected onto the system forsterite-albite-silica. This system is where the bulk compositions of E chondrites fall. The melting relations in this system outline the melting of aubrite parental liquids. ABV bulk compositions lie along the enstatite-forsterite reaction boundary and are generally distinct from E chondrite bulk compositions. Analysis of the forsterite-albite-silica system, and the loci of ABV bulk compositions relative to that of the enstatite chondrites shows that the ABVs can be derived by partial melting of an E chondrite protolith. The L87I vitrophyre is more oxidizing than KTI and PAI. This was determined by its: higher enstatite and forsterite FeO content, lack of alabandite, low kamacite Si content and low Ti in troilite. Forsterites enclosed in enstatite display a solid trend of anticorrelated MnO and FeO; contrary to the positive correlation found for olivines in most gecochemical settings. This anticorrelation can be explained by an oxidizing or reducing event that occurred to the L87I parental melt

  1. Genetic relations of oceanic basalts as indicated by lead isotopes

    USGS Publications Warehouse

    Tatsumoto, M.

    1966-01-01

    The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.

  2. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  3. Swale built up of drylaid basaltic rock along the Route ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Swale built up of dry-laid basaltic rock along the Route 66 section. Sandia Peak in distance, facing south. - La Bajada Historic Trails and Roads, Approximately 1 mile East/Northeast of intersection of State Highway 16 and Indian Service Road 841, La Bajada, Santa Fe County, NM

  4. Detail of basaltic rock retaining walls just below top switchback. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of basaltic rock retaining walls just below top switchback. 500 ft long retaining wall at left, scale figure in distance, view south. - La Bajada Historic Trails and Roads, Approximately 1 mile East/Northeast of intersection of State Highway 16 and Indian Service Road 841, La Bajada, Santa Fe County, NM

  5. Notice of Release of NBR-1 Germplasm Basalt Milkvetch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Basalt milkvetch or threadstalk milkvetch (Astragalus filipes Torr. ex A. Gray) is a perennial legume that is widely distributed on rangelands in western North America and holds promise for rangeland revegetation and restoration programs. No germplasms or cultivars are commercially available for ba...

  6. Interpreting chemical compositions of small scale basaltic systems: A review

    NASA Astrophysics Data System (ADS)

    McGee, Lucy E.; Smith, Ian E. M.

    2016-10-01

    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  7. Vesicularity and CO2 in mid-ocean ridge basalt

    USGS Publications Warehouse

    Moore, J.G.

    1979-01-01

    Vesicles and included CO2are enriched in deep-sea basalts that are also enriched in light rare earth and incompatible elements. This enrichment probably results from a unique deep mantle origin of such melts but may have been modified by CO2 bubbles rising in shallow magma chambers. ?? 1979 Nature Publishing Group.

  8. Sampling methane in basalt on Earth and Mars

    NASA Astrophysics Data System (ADS)

    McMahon, Sean; Parnell, John; Blamey, Nigel J. F.

    2013-04-01

    If confirmed, the extremely low concentrations of methane (CH4) detected in the Martian atmosphere may represent reservoirs and emission processes that would normally be considered negligible on Earth. One such process is the release of ancient volatiles from fluid inclusions and interstitial sites in rocks and minerals during erosion or geothermal activity. Using a highly sensitive rock-crushing and mass-spectrometry technique previously shown to detect CH4 in serpentinites and hydrothermal mineral deposits, we have demonstrated that CH4 and other ancient volatiles can be recovered from basalt, the dominant rock type on the Martian surface. Basalt samples from a wide range of ages and geological systems were tested, all of which released CH4 when crushed. Oxidative weathering was associated with lower quantities of CH4. Otherwise, CH4 recoverability showed no relationship with age or geological context. Mineral veins, cross-cutting one locality were found to share the volatile composition of the basalt. In general, the results suggest that CH4-release from ancient basalts could be a significant process on Mars, which could be further investigated by Martian rovers using a similar rock-crushing and mass spectrometry technique in situ.

  9. Asteroid Spectroscopy: Vesta, the Basaltic Achondrites and Other Differentiated Asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1996-01-01

    Reflectance spectroscopy, thermal infrared radiometry, optical polarimetry, speckle interferometry, and high-resolution imagery are among the remote sensing techniques applied to Vesta, producing a sophisticated characterization of this object. Reflectance spectroscopy has provided relatively detailed descriptions of the surface mineralogy of Vesta and has provided critical evidence linking Vesta to the basaltic achondrite meteorites.

  10. 69. Photocopy of General Arrangement of Engine Room. Basalt Rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. Photocopy of General Arrangement of Engine Room. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No. 540-WAGL-4000-2 (right side), dated July 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  11. 68. Photocopy of General Arrangement of Engine Room. Basalt Rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Photocopy of General Arrangement of Engine Room. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No. 540-WAGL-4000-2 (left side), dated July 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  12. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  13. Mineralogical variation of the late stage mare basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Xunyu; Wu, Yunzhao; Ouyang, Ziyuan; Bugiolacchi, Roberto; Chen, Yuan; Zhang, Xiaomeng; Cai, Wei; Xu, Aoao; Tang, Zesheng

    2016-10-01

    The last major phases of lunar volcanism occurred mainly in Oceanus Procellarum and Mare Imbrium and produced spectrally unique medium- and high-titanium basalts. The composition and distribution of these basalts provide a record of the late stage thermal evolution of the Moon. To study the spectral and mineralogical variations of the late stage mare basalts, 31 distinct units were mapped employing a range of remote sensing data. Their inferred mineralogical characteristics were studied by analyzing the spectral features of small, fresh craters derived from the Moon Mineralogy Mapper (M3) data. The strongest olivine spectral signatures were found around Lichtenberg crater, while the units with the lowest olivine/pyroxene ratio occurred mainly in the southern Kepler crater and some local areas. In Oceanus Procellarum, the olivine/pyroxene ratio decreases progressively from the Lichtenberg crater to the southern units. The northern and southern units within Mare Imbrium have higher olivine/pyroxene ratios than the central ones. The inferred abundance of olivine appears to vary stratigraphically, with the younger flows being more olivine rich. However, the stratigraphically younger units around Euler crater in Mare Imbrium, which present as dark red hues in the integrated band depth image of M3, were found to have lower olivine/pyroxene ratios than the units around Lichtenberg crater (shown as light red hues) in Oceanus Procellarum. It could be interpreted that the late stage mare basalts around Lichtenberg crater originated from a more olivine-rich source than those around Euler crater.

  14. Basaltic fragments in lunar feldspathic meteorites: Connecting sample analyses to orbital remote sensing

    NASA Astrophysics Data System (ADS)

    Robinson, Katharine L.; Treiman, Allan H.; Joy, Katherine H.

    2012-03-01

    The feldspathic lunar meteorites contain rare fragments of crystalline basalts. We analyzed 16 basalt fragments from four feldspathic lunar meteorites (Allan Hills [ALHA] 81005, MacAlpine Hills [MAC] 88104/88105, Queen Alexandra Range [QUE] 93069, Miller Range [MIL] 07006) and utilized literature data for another (Dhofar [Dho] 1180). We compositionally classify basalt fragments according to their magma's estimated TiO2 contents, which we derive for crystalline basalts from pyroxene TiO2 and the mineral-melt Ti distribution coefficient. Overall, most of the basalt fragments are low-Ti basalts (1-6% TiO2), with a significant proportion of very-low-Ti basalts (<1% TiO2). Only a few basalt clasts were high-Ti or intermediate Ti types (>10% TiO2 and 6-10% TiO2, respectively). This distribution of basalt TiO2 abundances is nearly identical to that obtained from orbital remote sensing of the moon (both UV-Vis from Clementine, and gamma ray from Lunar Prospector). However, the distribution of TiO2 abundances is unlike those of the Apollo and Luna returned samples: we observe a paucity of high-Ti basalts. The compositional types of basalt differs from meteorite to meteorite, which implies that all basalt subtypes are not randomly distributed on the Moon, i.e., the basalt fragments in each meteorite probably represent basalts in the neighborhood of the meteorite launch site. These differences in basalt chemistry and classifications may be useful in identifying the source regions of some feldspathic meteorites. Some of the basalt fragments probably originate from ancient cryptomaria, and so may hold clues to the petrogenesis of the Moon's oldest volcanism.

  15. Plant-induced weathering of a basaltic rock: experimental evidence

    NASA Astrophysics Data System (ADS)

    Hinsinger, Philippe; Fernandes Barros, Omar Neto; Benedetti, Marc F.; Noack, Yves; Callot, Gabriel

    2001-01-01

    The active role of higher plants in the weathering of silicate minerals and rocks is still a question for debate. The present work aimed at providing experimental evidence of the important role of a range of crop plants in such processes. In order to quantitatively assess the possible effect of these diverse plant species on the weathering of a basaltic rock, two laboratory experiments were carried out at room temperature. These compared the amounts of elements released from basalt when leached with a dilute salt solution in the presence or absence of crop plants grown for up to 36 days. For Si, Ca, Mg, and Na, plants resulted in an increase in the release rate by a factor ranging from 1 to 5 in most cases. Ca and Na seemed to be preferentially released relative to other elements, suggesting that plagioclase dissolved faster than the other constituents of the studied basalt. Negligible amounts of Fe were released in the absence of plants as a consequence of the neutral pH and atmospheric pO 2 that were maintained in the leaching solution. However, the amounts of Fe released from basalt in the presence of plants were up to 100- to 500-fold larger than in the absence of plants, for banana and maize. The kinetics of dissolution of basalt in the absence of plants showed a constantly decreasing release rate over the whole duration of the experiment (36 days). No steady state value was reached both in the absence and presence of banana plants. However, in the latter case, the rates remained at a high initial level over a longer period of time (up to 15 days) before starting to decrease. For Fe, the maximum rate of release was reached beyond 4 days and this rate remained high up to 22 days of growth of banana. The possible mechanisms responsible for this enhanced release of elements from basalt in the presence of plants are discussed. Although these mechanisms need to be elucidated, the present results clearly show that higher plants can considerably affect the kinetics

  16. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE PAGES

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; ...

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage

  17. Paleomagnetism of the late Cenozoic basalts from northern Patagonia

    NASA Astrophysics Data System (ADS)

    Mena, Mabel; Ré, Guillermo H.; Haller, Miguel J.; Singer, Silvia E.; Vilas, Juan F.

    2006-10-01

    Late Cenozoic volcanic rocks outcrop in the northern Patagonia Extrandina. Lava flows, characterized as olivine and alkaline basalts, belong to intraplate volcanism. We report paleomagnetic and rock-magnetic studies carried out on Late Cenozoic basalts belonging to the Cráter, Mojón and Moreniyeu Formations. The paleomagnetic sampling comprised 75 sites in lava flows and dikes from the Cráter Formation, three sites in a lava flow from the Mojón Formation and three sites in a lava flow from the Moreniyeu Formation. Alternating field (AF) and thermal detailed demagnetization techniques were used. Most of the samples have a viscous component. The AF procedure was more effective than thermal demagnetization in destroying viscous components and in defining the characteristic remanent magnetizations. Demagnetization curves and rock-magnetic studies suggest that the main remanence carrier is Ti-poor magnetite. Radiometric K-Ar ages were performed on these basalts. The radiometric ages are 0.8±0.1 Ma from outcrops located at Cerro Fermín and 1.9±0.4 Ma from outcrops at Cerro Negro, both at the Cráter Formation. These ages suggest an early-middle Pleistocene age for the lava flows from Cerro Fermín, and a late Pliocene to early Pleistocene age for the Cerro Negro lava flows. Based on the magnetic polarity temporal scale, the Cerro Fermín lava flows have registered the beginning of the Brunhes Chron, while the Cerro Negro basalts could have been extruded during the Olduvai Subchron. The K-Ar radiometric age of the Moreniyeu Formation (1.6±0.2 Ma) suggests an early Pleistocene age for this lava flow. The reverse polarity of its virtual geomagnetic poles (VGPs) is in agreement with the predominant one during the Matuyama Chron and suggests that the Moreniyeu Formation constitutes another volcanic event clearly separate from those of the Cráter Formation. The K-Ar radiometric age of the Mojón Formation (3.3±0.4 Ma) locates it in the middle Pliocene. The VGP

  18. Injection and Monitoring at the Wallula Basalt Pilot Project

    SciTech Connect

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show that mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity

  19. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    U-Th disequilibrium analyses of the Naivasha basalts show a very small (U-238/Th-230) ratios which are lower than any previously analyzed basalts. The broadly positive internal isochron trend from one sample indicates that the basalts may have source heterogeneities, this is supported by earlier work. The Naivasha complex comprises a bimodal suite of basalts and rhyolites. The basalts are divided into two stratigraphic groups each of a transitional nature. The early basalt series (EBS) which were erupted prior to the Group 1 comendites and, the late basalt series (LBS) which erupted temporally between the Broad Acres and the Ololbutot centers. The basalts represent a very small percentage of the overall eruptive volume of material at Naivasha (less than 2 percent). The analyzed samples come from four stratigraphic units in close proximity around Ndabibi, Hell's Gate and Akira areas. The earliest units occur as vesicular flows from the Ndabibi plain. These basalts are olivine-plagioclase phyric with the associated hawaiites being sparsely plagioclase phyric. An absolute age of 0.5Ma was estimated for these basalts. The next youngest basalts flows occur as younger tuft cones in the Ndabibi area and are mainly olivine-plagioclase-clinopyroxcene phyric with one purely plagioclase phyric sample. The final phase of activity at Ndabibi resulted in much younger tuft cones consisting of air fall ashes and lapilli tufts. Many of these contain resorbed plagioclase phenocrysts with sample number 120c also being clinopyroxene phyric. The isotopic evidence for the basalt formation is summarized.

  20. Carbon fixation by basalt-hosted microbial communities.

    PubMed

    Orcutt, Beth N; Sylvan, Jason B; Rogers, Daniel R; Delaney, Jennifer; Lee, Raymond W; Girguis, Peter R

    2015-01-01

    Oceanic crust is a massive potential habitat for microbial life on Earth, yet our understanding of this ecosystem is limited due to difficulty in access. In particular, measurements of rates of microbial activity are sparse. We used stable carbon isotope incubations of crustal samples, coupled with functional gene analyses, to examine the potential for carbon fixation on oceanic crust. Both seafloor-exposed and subseafloor basalts were recovered from different mid-ocean ridge and hot spot environments (i.e., the Juan de Fuca Ridge, the Mid-Atlantic Ridge, and the Loihi Seamount) and incubated with (13)C-labeled bicarbonate. Seafloor-exposed basalts revealed incorporation of (13)C-label into organic matter over time, though the degree of incorporation was heterogeneous. The incorporation of (13)C into biomass was inconclusive in subseafloor basalts. Translating these measurements into potential rates of carbon fixation indicated that 0.1-10 nmol C g(-1) rock d(-1) could be fixed by seafloor-exposed rocks. When scaled to the global production of oceanic crust, this suggests carbon fixation rates of 10(9)-10(12) g C year(-1), which matches earlier predictions based on thermodynamic calculations. Functional gene analyses indicate that the Calvin cycle is likely the dominant biochemical mechanism for carbon fixation in basalt-hosted biofilms, although the reductive acetyl-CoA pathway and reverse TCA cycle likely play some role in net carbon fixation. These results provide empirical evidence for autotrophy in oceanic crust, suggesting that basalt-hosted autotrophy could be a significant contributor of organic matter in this remote and vast environment.

  1. Origin of pegmatitic segregation veins within flood basalts

    SciTech Connect

    Puffer, J.H.; Horter, D.L. )

    1993-06-01

    Subhorizontal veins and lenses of coarse-grained rock composed of plagioclase, augite, and Fe-Ti oxides in a glassy and vesicular mesostasis occur within several thick subaerial basalt flows in the Columbia River Basalt province of Washington and in the eastern North American Mesozoic basalt province. The veins and lenses, referred to as pegmatitic segregation veins, are typically 1-10 cm thick and are enriched in Fe, Ti, K, P, Cu, Zr, Ba, and REE by a factor of about 1.1 to 3 over the host basalt; Al, Ca, Sr, Mg, Ni, and Cr are lower, and Si and Na are typically unchanged. We interpret the pegmatitic segregation veins as the product of residual melt carried in vapor bubbles from the lower crystallization front of partially crystallized flows to the crystal mush within the upper crystallization front. Movement through the elevated temperatures of flow interiors fused any crystal nuclei in the segregation melt. Diminished nucleation density during crystallization may partially account for coarse grain sizes. In addition, diffusion of ions to large, rapidly growing skeletal crystals was probably enhanced by the viscosity-reduction effect of water enrichment. The water content of accumulated segregation melt may have increased whenever the escape of volatiles from partially crystallized flows was temporarily sealed off under a rigid barrier of solidified basalt. Rupture of the barrier by downward propagation of columnar joints would allow the resumption of effervescence and any remaining partially crystallized segregation melt-phase would be degassed and quenched into a glassy and vesicular mesostasis. 59 refs., 8 figs., 2 tabs.

  2. Carbon fixation by basalt-hosted microbial communities

    PubMed Central

    Orcutt, Beth N.; Sylvan, Jason B.; Rogers, Daniel R.; Delaney, Jennifer; Lee, Raymond W.; Girguis, Peter R.

    2015-01-01

    Oceanic crust is a massive potential habitat for microbial life on Earth, yet our understanding of this ecosystem is limited due to difficulty in access. In particular, measurements of rates of microbial activity are sparse. We used stable carbon isotope incubations of crustal samples, coupled with functional gene analyses, to examine the potential for carbon fixation on oceanic crust. Both seafloor-exposed and subseafloor basalts were recovered from different mid-ocean ridge and hot spot environments (i.e., the Juan de Fuca Ridge, the Mid-Atlantic Ridge, and the Loihi Seamount) and incubated with 13C-labeled bicarbonate. Seafloor-exposed basalts revealed incorporation of 13C-label into organic matter over time, though the degree of incorporation was heterogeneous. The incorporation of 13C into biomass was inconclusive in subseafloor basalts. Translating these measurements into potential rates of carbon fixation indicated that 0.1–10 nmol C g-1rock d-1 could be fixed by seafloor-exposed rocks. When scaled to the global production of oceanic crust, this suggests carbon fixation rates of 109–1012 g C year-1, which matches earlier predictions based on thermodynamic calculations. Functional gene analyses indicate that the Calvin cycle is likely the dominant biochemical mechanism for carbon fixation in basalt-hosted biofilms, although the reductive acetyl-CoA pathway and reverse TCA cycle likely play some role in net carbon fixation. These results provide empirical evidence for autotrophy in oceanic crust, suggesting that basalt-hosted autotrophy could be a significant contributor of organic matter in this remote and vast environment. PMID:26441854

  3. Zr and Nb partition coefficients - Implications for the genesis of mare basalts, KREEP, and sea floor basalts

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.; Charette, M. P.

    1978-01-01

    The distribution coefficients of Zr and Nb have been found between armalcolite, ilmenite, clinopyroxene, rutile, plagioclase, and a coexisting high-Ti mare basalt melt in the 1105-1128 C temperature range. Henry's Law is not broken over the compositional range evaluated. The distribution coefficients of clinopyroxene are strongly dependent on melt and crystal compositions. The Al2O3 activity in the melt is a strong controlling parameter. It is concluded that: (1) Apollo 11 (low K) and Apollo 17 high-Ti mare basalts may have been generated by the partial melting of an ilmenite-rich cumulate, (2) Apollo 11 (high K) basalts may have been generated by a small amount of partial melting of a more fractionated ilmenite-rich cumulate, (3) KREEP magmas may have been formed as residual melts produced by fractional crystallization of the lunar magma ocean, and (4) anomalous (type II) MOR basalts may have been generated by small degrees of partial melting of a relatively undepleted mantle with clinopyroxene remaining in the residium.

  4. Eruption and emplacement of flood basalt. An example from the large-volume Teepee Butte Member, Columbia River Basalt Group

    SciTech Connect

    Reidel, S.P. ); Tolan, T.L. )

    1992-12-01

    Flows of the Teepee Butte Member, Grande Ronde Basalt, issued from a vent system in southeastern Washington, northeastern Oregon, and western Idaho. Three distinct basalt flows were erupted: the Limekiln Rapids flow, the Joseph Creek flow, and the Pruitt Draw flow. Together these mappable flows cover more than 52,000 km[sup 2] and have a volume exceeding 5,000 km[sup 3]. A portion of the vent system for the Joseph Creek flow is exposed in cross section in Joseph Canyon, Washington; it is one of the best preserved Columbia River Basalt Group vent complexes known. The vent complex is about 1 km in cross section, 30 m high, and composed of deposits characteristic of Hawaiian-type volcanism. The vent is asymmetrical; the eastern rampart consists of intercalated pyroclastic deposits and thin pahoehoe flows; the western rampart is composed wholly of pahoehoe flows. Flows of the Teepee Butte Member are compositionally homogeneous and were emplaced as sheet flows, each having several local flow units. Our study supports the importance of linear vent systems and the westward Palouse Slope, along with the large-volume lava flows, in controlling the distribution of Columbia River Basalt Group flows. Other factors, including the number of active fissure segments and topography, modified the shape of the flows and the number of flow units. 45 refs., 19 figs., 2 tabs.

  5. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large

  6. Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA.

    PubMed

    Riva-Murray, Karen; Bradley, Paul M; Chasar, Lia C; Button, Daniel T; Brigham, Mark E; Scudder Eikenberry, Barbara C; Journey, Celeste A; Lutz, Michelle A

    2013-01-01

    We studied lower food webs in streams of two mercury-sensitive regions to determine whether variations in consumer foraging strategy and resultant dietary carbon signatures accounted for observed within-site and among-site variations in consumer mercury concentration. We collected macroinvertebrates (primary consumers and predators) and selected forage fishes from three sites in the Adirondack Mountains of New York, and three sites in the Coastal Plain of South Carolina, for analysis of mercury (Hg) and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N). Among primary consumers, scrapers and filterers had higher MeHg and more depleted δ(13)C than shredders from the same site. Variation in δ(13)C accounted for up to 34 % of within-site variation in MeHg among primary consumers, beyond that explained by δ(15)N, an indicator of trophic position. Consumer δ(13)C accounted for 10 % of the variation in Hg among predatory macroinvertebrates and forage fishes across these six sites, after accounting for environmental aqueous methylmercury (MeHg, 5 % of variation) and base-N adjusted consumer trophic position (Δδ(15)N, 22 % of variation). The δ(13)C spatial pattern within consumer taxa groups corresponded to differences in benthic habitat shading among sites. Consumers from relatively more-shaded sites had more enriched δ(13)C that was more similar to typical detrital δ(13)C, while those from the relatively more-open sites had more depleted δ(13)C. Although we could not clearly attribute these differences strictly to differences in assimilation of carbon from terrestrial or in-channel sources, greater potential for benthic primary production at more open sites might play a role. We found significant variation among consumers within and among sites in carbon source; this may be related to within-site differences in diet and foraging habitat, and to among-site differences in environmental conditions that influence primary production. These observations

  7. Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA

    USGS Publications Warehouse

    Riva-Murray, Karen; Bradley, Paul M.; Chasar, Lia C.; Button, Daniel T.; Brigham, Mark E.; Eikenberry, Barbara C. Scudder; Journey, Celeste; Lutz, Michelle A.

    2013-01-01

    We studied lower food webs in streams of two mercury-sensitive regions to determine whether variations in consumer foraging strategy and resultant dietary carbon signatures accounted for observed within-site and among-site variations in consumer mercury concentration. We collected macroinvertebrates (primary consumers and predators) and selected forage fishes from three sites in the Adirondack Mountains of New York, and three sites in the Coastal Plain of South Carolina, for analysis of mercury (Hg) and stable isotopes of carbon (δ13C) and nitrogen (δ15N). Among primary consumers, scrapers and filterers had higher MeHg and more depleted δ13C than shredders from the same site. Variation in δ13C accounted for up to 34 % of within-site variation in MeHg among primary consumers, beyond that explained by δ15N, an indicator of trophic position. Consumer δ13C accounted for 10 % of the variation in Hg among predatory macroinvertebrates and forage fishes across these six sites, after accounting for environmental aqueous methylmercury (MeHg, 5 % of variation) and base-N adjusted consumer trophic position (Δδ15N, 22 % of variation). The δ13C spatial pattern within consumer taxa groups corresponded to differences in benthic habitat shading among sites. Consumers from relatively more-shaded sites had more enriched δ13C that was more similar to typical detrital δ13C, while those from the relatively more-open sites had more depleted δ13C. Although we could not clearly attribute these differences strictly to differences in assimilation of carbon from terrestrial or in-channel sources, greater potential for benthic primary production at more open sites might play a role. We found significant variation among consumers within and among sites in carbon source; this may be related to within-site differences in diet and foraging habitat, and to among-site differences in environmental conditions that influence primary production. These observations suggest that different

  8. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, Phil-Goo; Mitchell, Myron J.; McHale, Patrick J.; Driscoll, Charles T.; Inamdar, Shreeram; Park, Ji-Hyung

    2016-05-01

    Lakes nested in forested watersheds play an important role in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC) and dissolved organic (DON) and inorganic nitrogen (DIN) in aquatic ecosystems of the Arbutus Lake watershed to evaluate how a lake nested in a forested watershed affects the sources (e.g., production) and sinks (e.g., retention) of DOC and DON in the Adirondack Mountains of New York, USA. We observed no significant long-term changes of DOC and DON in the lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass balances between inlet and outlet for the period from 2000 to 2009 suggested that the lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 µmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: + 87 µmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low percent retention ((influx-outflux)/influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different

  9. Phase relations of a simulated lunar basalt as a function of oxygen fugacity, and their bearing on the petrogenesis of the Apollo 11 basalts

    USGS Publications Warehouse

    Tuthill, R.L.; Sato, M.

    1970-01-01

    A glass of Apollo 11 basalt composition crystallizing at 1 atm at low f{hook}02 showed the following crystallization sequence; ferropseudobrookite at 1210??C, olivine at 1200??C, ilmenite and plagioclase at 1140??C, clinopyroxene at 1113??C. Ferropseudobrookite and olivine have a reaction relation to the melt. This sequence agrees with that assumed on textural grounds for some Apollo 11 basalts. It also indicates that the Apollo 11 basalts cannot have been modified by low-pressure fractionation. ?? 1970.

  10. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    NASA Astrophysics Data System (ADS)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  11. Magnetic Excursion Recorded in Basalt at Newberry Volcano, Central Oregon

    NASA Astrophysics Data System (ADS)

    Champion, D. E.; Donnelly-Nolan, J. M.; Lanphere, M. A.; Ramsey, D. W.

    2004-12-01

    Paleomagnetic study of basalt flows on the north flank of Newberry Volcano has identified a major eruptive episode that occurred during a magnetic excursion. The measured direction of the basalt flows erupted during the excursion shallows from 81° to 76° inclination along a declination of ˜ 155° . The Virtual Geomagnetic Pole also shallows from 29° to 19° paleolatitude, along a paleolongitude of ˜ 250° , and is located off the west coast of Mexico. Geologic evidence combined with limited argon dating indicate that the basalt erupted from multiple sites about 80,000 years ago, probably during the time of anomalous magnetic directions recorded by ( ˜80 ka) ocean sediments in the Norwegian Sea and the North Atlantic. The westernmost flows erupted from spatter vents located a few km south of the city of Bend, and flowed north through lava tube(s) which form Stevens Cave, Horse Cave, and Redmond Cave among others. This western lobe flowed more than 50 km to the north, over NW-trending faults of the Tumalo Fault Zone that cut the adjacent and underlying basalt of Bend (40Ar/39Ar plateau age of 78±9 ka; isochron age of 77±19 ka); it is overlain by the basaltic andesite of Klawhop Butte (40Ar/39Ar plateau age of 39±6 ka). One sample of the transitional magnetic direction basalt has a K-Ar age of 77±40 ka; another sample has a 40Ar/39Ar plateau age of 92±25 ka and an isochron age of 73±24 ka. The eastern lobe erupted from vents at and near Lava Top Butte, located approximately 15 km SE of the western vents. These eastern lavas flowed through Arnold Cave and formed a broad ~10-12 km rootless shield known as the Badlands, the NE extent of which is about 30 km from Lava Top Butte. The west and east lobes each cover about 150 km2, and comprise an estimated volume of 3-5 km3. Newly acquired 10-meter DEM's and compilation of the mapping in ArcGIS will allow more precise calculation of the total area covered and the volume erupted. Chemical analyses of multiple

  12. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Zhang, Zhaochong; Santosh, M.; Lü, Linsu; Han, Liu; Liu, Wei

    2017-02-01

    We report the finding of a ∼20 m thick sequence of massive pyroxene-plagioclase-phyric basalt lava flows in the Yanghe area of the northeastern Sichuan Basin, within the Yangtze craton of SW China, which were previously considered to be located outside the Emeishan flood basalt province. This basaltic sequence above the middle Permian Maokou Formation (Fm.) is overlain by the late Permian Longtan Fm. Thus, the Yanghe basalts should be stratigraphically correlated with the Emeishan flood basalts. The Yanghe basalts show typical oceanic island basalt (OIB) affinity, and geochemically resemble Emeishan basalts, especially in the case of high-Ti (HT) basalts from the eastern domain of the Emeishan flood basalt province. The rocks have low age-corrected (87Sr/86Sr)t (t = 260 Ma) ratios (0.704158-0.704929) and Pb isotopic ratios [206Pb/204Pb(t) (18.264-18.524), 207Pb/204Pb(t) (15.543-15.58), and 208Pb/204Pb(t) (38.147-38.519)], and positive εNd(t) values (+3.15 to +3.61), suggesting that the lavas have not undergone any significant crustal contamination. The crystallization temperature of clinopyroxene is estimated to be 1368-1420 °C, suggesting anomalously thermal inputs from a mantle source and a possible plume-head origin. The fractionation of middle rare earth elements (MREE) to heavy REE (HREE) suggests that these rocks were produced by small degrees of partial melting of mantle peridotite within the garnet-spinel transition region. The stratigraphic relationships and similar geochemical signatures with the Emeishan flood basalts suggest that the Yanghe basalts are part of the Emeishan flood basalt province and can be considered as the northeastern limit of the Emeishan flood basalt province. Our finding extends the diameter of the Emeishan flood basalt province to ∼1200-1400 km, covering an area of up to ∼7 × 105 km2, two times more than previously estimated. The larger areal extent and giant eruption volume, incorporating the Sichuan Basin, lend support

  13. Whole rock major element chemistry of KREEP basalt clasts in lunar breccia 15205: Implications for the petrogenesis of volcanic KREEP basalts

    NASA Technical Reports Server (NTRS)

    Vetter, Scott K.; Shervais, John W.

    1993-01-01

    KREEP basalts are a major component of soils and regolith at the Apollo 15 site. Their origin is controversial: both endogenous (volcanic) and exogenous (impact melt) processes have been proposed, but it is now generally agreed that KREEP basalts are volcanic rocks derived from the nearby Apennine Bench formation. Because most pristine KREEP basalts are found only as small clasts in polymict lunar breccias, reliable chemical data are scarce. The primary aim of this study is to characterize the range in chemical composition of pristine KREEP basalt, and to use these data to decipher the petrogenesis of these unique volcanic rocks.

  14. Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources

    PubMed Central

    DePaolo, D. J.; Wasserburg, G. J.

    1979-01-01

    The initial isotopic compositions of Nd and Sr in basalts from the Central Siberian Plateau and other major continental flood basalts are reported. The continental flood basalts appear to be the product of partial melting of mantle sources that consist of relatively primitive undifferentiated material and are clearly distinct from midocean ridge basalts, which sample mantle reservoirs that have been modified by extraction of continental crust earlier in earth history. These observations provide fundamental constraints on models of mantle structure and dynamics. Isotopic effects of crustal contamination are clearly recognizable in some continental flood basalts, but these effects can be distinguished from isotopic patterns inherited from the mantle magma sources. PMID:16592671

  15. Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources.

    PubMed

    Depaolo, D J; Wasserburg, G J

    1979-07-01

    The initial isotopic compositions of Nd and Sr in basalts from the Central Siberian Plateau and other major continental flood basalts are reported. The continental flood basalts appear to be the product of partial melting of mantle sources that consist of relatively primitive undifferentiated material and are clearly distinct from midocean ridge basalts, which sample mantle reservoirs that have been modified by extraction of continental crust earlier in earth history. These observations provide fundamental constraints on models of mantle structure and dynamics. Isotopic effects of crustal contamination are clearly recognizable in some continental flood basalts, but these effects can be distinguished from isotopic patterns inherited from the mantle magma sources.

  16. Apollo 12 feldspathic basalts 12031, 12038 and 12072 - Petrology, comparison and interpretations

    NASA Technical Reports Server (NTRS)

    Beaty, D. W.; Hill, S. M. R.; Albee, A. L.; Baldridge, W. S.

    1979-01-01

    The paper presents the petrology of Apollo 12 feldspathic basalts. Modal and chemical data indicate that basalts 12072, 12038, and 12031 cannot be related to the other Apollo rock types; 12072 contains phenocrysts of olivine and pigeonite, 12038 is a multiply saturated equigranular basalt, and 12031 is a coarse-grained rock with granular to graphic intergrowths of pyroxene and plagioclase. The bulk compositions indicate that these basalts could not have been derived from the Apollo 12 olivine or ilmenite basalts by crystal-liquid fractionation, and their petrologic similarities suggest that they were produced in the same or similar source regions.

  17. Continental Flood Basalt Chemistry, Age and Volcanic Volumes

    NASA Astrophysics Data System (ADS)

    Humler, E.; Doubre, C.; Doubre, C.

    2001-12-01

    We have compiled a large collection of published chemical analyses of the 11 known continental flood basalts of the last 250 millions years. Only basaltic lavas and some related basic intrusive rocks are considered to be representative of the major episodes. Differentiation trends exhibit varying amounts of scatter, the trends for SiO2, FeO, and TiO2 are quite well defined, have slopes of the same sign, and can be represented adaquately by straigth lines. In contrast, the trends of CaO, Al2O3 and Na2O are often poorly defined. There are clear differences in major element abundances between volcanic suites, particularly for elements with well defined slopes. The results of our regressions are generally consistent with those of Turner and Hawkesworth (1995), Peng et al (1994) and Lassister and DePaolo (1997), although some differences exist. Examination of the global data base shows that there are systematic global variations in continental flood basalt chemistry that correlate with age. Old CFB, such as the Central Atlantic and Karoo-Ferrar, show the following characteristics: low Na2O, TiO2 and FeO, high SiO2. In contrast, basalts associated with recent breakups such as Afar-Yemen and Ethiopia, show the opposite chemical trends. Between these old and young continental breakup, a continuum of compositions is observed. The observed chemical systematics suggest that basalts associated with old breakups are derived by larger extent of melting at shallower mean pressures of melt segregation. Estimating the original volumes of lava in flood basalt provinces is rendered difficult due to subsequent erosion, partial destruction during continental collisions or burial beneath passive margin sedimentation wedges. Many CFBs were erupted in geologically brief intervals (0.5 to 2 Ma) although some, notably the Siberian Traps and Brito-Arctic Province, were emplaced in two or more distinct phases separeted by quiescent intervals. Our calculated emplacement rate show correlation

  18. Aqueous Alteration of Basalts: Earth, Moon, and Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2007-01-01

    The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon

  19. Similarities in basalt and rhyolite lava flow emplacement processes

    NASA Astrophysics Data System (ADS)

    Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte

    2016-04-01

    Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This

  20. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  1. Melt Segregation & LPO in Anorthite-Basalt Deformed in Torsion

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. E.; Kohlstedt, D. L.

    2003-12-01

    Deformation in the middle and lower crust is in large part controlled by the rheology of feldspar. Seismic studies have shown that the middle crust of orogenic belts is partially molten. Structural studies of mylonites and migmatites from these terrains record large strain deformation. Therefore, we performed torsional shear deformation experiments on fine grained (10 μ m) samples of Beaver Bay anorthite (An70) +/- 10 vol% basalt to shear strains γ = 2-6 to investigate the development of lattice preferred orientation (LPO) and melt segregation at large shear strains. We performed experiments in a gas medium apparatus equipped with an internal torque cell at T = 1450 K, P = 300 MPa, and constant twist rate. Melt segregated in the An70 + basalt samples into melt-rich bands oriented at ˜20° to the shear plane and antithetic to the shear direction. The spacing between bands is ˜0.5 mm. Distortion of the iron jacket demonstrates that strain localized in the melt-rich bands. We determined the LPO of An70 with scanning electron microscopy using electron back scatter diffraction (SEM-EBSD). In patterns from an An70+ basalt sample deformed to γ ≈ 2.5, (001) planes are aligned subparallel to the shear plane and [100] axes are concentrated close to the shear direction. Both the (001) and the [100] are rotated counter clockwise from the shear direction by 20-25° . The formation of melt-rich bands is consistent with results from simple shear experiments on olivine + chromite + basalt and olivine + FeS +/- basalt, as well as An70 + basalt and indicates that deformation can drive melt segregation. Deformation drives the self organization of melt-rich bands and decreases the effective viscosity of the rock. The LPO is consistent with results from experiments on albite in shear and anorthite in compression and compatible with slip dominantly on (001) with [100] as the slip direction. A similar back rotation, attributed to partitioning of the strain between melt-rich and

  2. Basalt characterization by means of nuclear and electrical well logging techniques. Case study from Southern Syria.

    PubMed

    Asfahani, Jamal

    2011-03-01

    Nuclear well logging, including natural gamma ray, density, and neutron-porosity techniques are used with electrical well logging of long and short normal techniques to characterize the basaltic areas largely extended in Southern Syria. Statistical analysis approach with the threshold concept has been adapted for such characterization, where four kinds of basalt have been identified: very hard basalt, hard basalt, fractured basalt, and basalt alteration products. The spectrometric gamma technique has also been applied on the retrieved rock samples in order to determine the radioactive content (eU, eTh, and K%) of the basaltic section in the study area. No radioactive anomalies have been detected, the radioactive values are normal and in the expected range.

  3. Automated interpretation of nuclear and electrical well loggings for basalt characterization (case study from southern Syria).

    PubMed

    Asfahani, J; Abdul Ghani, B

    2012-10-01

    Nuclear well logging, including natural gamma ray, density and neutron-porosity techniques are used with electrical well logging of long and short normal techniques in order to characterize the large extended basaltic areas in southern Syria. Four kinds of basalt have been identified: hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay, based on a statistical analysis approach with the threshold concept. The statistical conditions for such basalt characterization have been programmed in the present research to automatically interpret the well logging data for establishing and predicting the lithological cross-section of the studied well. A specific computer program has been written in Delphi for such purposes. The program is flexible and it can be used for other well logging applications by changing the statistical conditions and the well logging parameters. The program has been successfully tested on the Kodanah well logging data in southern Syria.

  4. Flood basalts and hot-spot tracks: plume heads and tails.

    PubMed

    Richards, M A; Duncan, R A; Courtillot, V E

    1989-10-06

    Continental flood basalt eruptions have resulted in sudden and massive accumulations of basaltic lavas in excess of any contemporary volcanic processes. The largest flood basalt events mark the earliest volcanic activity of many major hot spots, which are thought to result from deep mantle plumes. The relative volumes of melt and eruption rates of flood basalts and hot spots as well as their temporal and spatial relations can be explained by a model of mantle plume initiation: Flood basalts represent plume "heads" and hot spots represent continuing magmatism associated with the remaining plume conduit or "tail." Continental rifting is not required, although it commonly follows flood basalt volcanism, and flood basalt provinces may occur as a natural consequence of the initiation of hot-spot activity in ocean basins as well as on continents.

  5. Very low Ti /VLT/ basalts - A new mare rock type from the Apollo 17 drill core

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1977-01-01

    Phaneritic fragments, vitrophyres, and glass beads of a new very low Ti (VLT) mare basalt are found in the Apollo 17 drill core. VLT lithic fragments are characterized by TiO2 content of approximately 0.5%, Mg/(Mg + Fe) of approximately 0.52, CaO/Al2O3 of approximately 0.9, and low alkali content. Although mineral systematics and modal composition of VLT basalt are similar to Apollo 12 and 15 low Ti basalts, VLT basalts cannot be related to these mare basalts by crystal fractionation. Since VLT basalt is isochemical with some of the less mafic green glasses, fractionation of VLT magma from a liquid of green-glass composition is a possibility. Spectral reflectance studies suggest that VLT-type basalts may be relatively common in mare basins.

  6. Pillow basalts of the Angayucham terrane: Oceanic plateau and island crust accreted to the Brooks Range

    NASA Astrophysics Data System (ADS)

    Pallister, John S.; Budahn, James R.; Murchey, Benita L.

    1989-11-01

    The Angayucham Mountains (north margin of the Yukon-Koyukuk province) are made up of an imbricate stack of four to eight east-west trending, steeply dipping, fault slabs composed of Paleozoic (Devonian to Mississippean), Middle to Late Triassic, and Early Jurassic oceanic upper crustal rocks (pillow basalt, subordinate diabase, basaltic tuff, and radiolarian chert). Field relations and geochemical characteristics of the basaltic rocks suggest that the fault slabs were derived from an oceanic plateau or island setting and were emplaced onto the Brooks Range continental margin. The basalts are variably metamorphosed to prehnite-pumpellyite and low-greenschist facies. Major element analyses suggest that many are hypersthene-normative olivine tholeiites. Classification based on immobile trace elements confirms the tholeiitic character of most of the basalts but suggests that some had primary compositions transitional to alkali basalt. Although field and petrographic features of the basalts are similar, trace element characteristics allow definition of geographically distinct suites. A central outcrop belt along the crest of the mountains is made up of basalt with relatively flat rare earth element (REE) patterns. This belt is flanked to the north and south by LREE (light rare earth element)-enriched basalts. Radiolarian and conodont ages from interpillow and interlayered chert and limestone indicate that the central belt of basalts is Triassic in age, the southern belt is Jurassic in age, and the northern belt contains a mixture of Paleozoic and Mesozoic ages. Data for most of the basalts cluster in the "within-plate basalt" fields of trace element discriminant diagrams; none have trace-element characteristics of island arc basalt. The Triassic and Jurassic basalts are geochemically most akin to modern oceanic plateau and island basalts. Field evidence also favors an oceanic plateau or island setting. The great composite thickness of pillow basalt probably resulted

  7. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    USGS Publications Warehouse

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  8. AR-39-AR-40 "Age" of Basaltic Shergottite NWA-3171

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Park, Jisun

    2007-01-01

    North-West-Africa 3171 is a 506 g, relatively fresh appearing, basaltic shergottite with similarities to Zagami and Shergotty, but not obviously paired with any of the other known African basaltic shergottites. Its exposure age has the range of 2.5-3.1 Myr , similar to those of Zagami and Shergotty. We made AR-39-AR-40 analyses of a "plagioclase" (now shock-converted to maskelynite) separate and of a glass hand-picked from a vein connected to shock melt pockets.. Plagioclase was separated using its low magnetic susceptibility and then heavy liquid with density of <2.85 g/cm(exp 3). The AR-39-AR-40 age spectrum of NWA-317 1 plag displays a rise in age over 20-100% of the 39Ar release, from 0.24 Gyr to 0.27 Gy.

  9. Test drilling in basalts, Lalamilo area, South Kohala District, Hawaii

    USGS Publications Warehouse

    Teasdale, Warren E.

    1980-01-01

    Test drilling has determined that a downhole-percussion airhammer can be used effectively to drill basalts in Hawaii. When used in conjunction with a foam-type drilling fluid, the hammer-bit penetration rate was rapid. Continuous drill cuttings from the materials penetrated were obtained throughout the borehole except from extremely fractured or weathered basalt zones where circulation was lost or limited. Cementing of these zones as soon as encountered reduced problems of stuck tools, washouts, and loss of drill-cuttings. Supplies and logistics on the Hawaiian Islands, always a major concern, require that all anticipated drilling supplies, spare rig and tool parts, drilling muds and additives, foam, and miscellaneous hardware be on hand before starting to drill. If not, the resulting rig downtime is costly in both time and money. (USGS)

  10. Basaltic rocks analyzed by the Spirit Rover in Gusev Crater

    NASA Technical Reports Server (NTRS)

    McSween, H. Y.; Arvidson, R. E.; Bell, J. F., III; Blaney, D.; Cabrol, N. A.; Christensen, P. R.; Clark, B. C.; Crisp, J. A.; Crumpler, L. S.; DesMarais, D. J.; Farmer, J. D.; Gellert, R.; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L. A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B. L.; Klingelhoefer, G.; Morris, R. V.; Yen, A.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mossbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  11. Lunar ferroan anorthosites and mare basalt sources - The mixed connection

    NASA Astrophysics Data System (ADS)

    Ryder, Graham

    1991-11-01

    Global overturn of a hot, gravitationally unstable lunar mantle immediately following the solidification of a magma ocean explains several characteristics of lunar petrology. Lunar mare basalt sources are inferred to be depleted in europium and alumina. These depletions are consensually attributed to complementary plagioclase floating from a magma ocean. However, in contrast to the mare basalt source parent magma, the ferroan anorthosite parent magma was more evolved by virtue of its lower Mg/Fe ratio and Ni abundances, although less evolved in its poverty of clinopyroxene constituents, flat rare earth pattern, and lower incompatible element abundances. The europium anomaly in mare sources is inferred to be present at 400 km depth, too deep to have been directly influenced by plagioclase crystallization. Massive overturning of the post-magma ocean mantle would have carried down clinopyroxene, ilmenite, and phases containing fractionated rare earths, europium anomalies, and some heat-producing radionuclides.

  12. The petrogenesis of primary mid-ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Elthon, Don

    1990-01-01

    The nature of primary mid-ocean ridge basalts (MORB) is reviewed from the primary-magma composition point of view. The concept of primary MORB magma used in the study stipulates that melting of the mantle produces a discrete identifiable magma that separates from the mantle and ascends toward the surface. Constraints from abyssal peridotites are considered along with constraints from high-pressure phase equilibria studies with emphasis on partial melting of mantle peridotites, basalt-peridotite sandwich techniques, high-pressure experiments on MORB-type compositions, and constraints on the pressure of origin from mineral compositions. Compositional variations in primitive MORB glasses are discussed, and possible models for the origin of these glasses are presented.

  13. Petrography and petrology of basaltic achondrite polymict breccias /Howardites/

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.

    1975-01-01

    The reported investigation is based on the results from petrographic observations, electron microprobe analyses of constituent phases, and defocused beam analyses of clasts and glasses. Howardites consist of mostly angular-to-rounded mineral, rock, and breccia clasts compacted in variable grain-sized matrices of finely comminuted materials. Attention is given to ophitic and subophitic rocks, granular basalts and microgabbros, mafic rocks, Al-rich rocks, breccia clasts, impact melt rocks, glasses, meteorite clasts, bulk composition, particle size distribution, howardite component composition, questions of breccia formation, and parent body implications. It is found that the four main rock types found in howardites do have certain analogies to lunar rocks. It is tempting to speculate that both the moon and the basaltic achondrite parent body formed similar rock suites in their evolutionary processes.

  14. Effect of chromate action on morphology of basalt-inhabitingbacteria

    SciTech Connect

    Lin, Z.; Zhu, Y.; Kalabegishvili, T.L.; Tsibakhashvili, N.Y.; Holman, H-Y.

    2006-03-01

    Basalt-inhabiting bacteria isolated from polluted basaltshave been demonstrated to be able to tolerate moderate to highconcentrations of chromium oxyanions such as chromate. Previous resultshave shown that macromolecules outside the cell wall of bacteria may playan important role in this survival ability. In this paper, ScanningElectron Microscopy (SEM) and Transmission Electron Microscopy (TEM) wereapplied to study the chromate-induced morphological changes inchromate-resistant basalt-inhabiting Arthrobacter K-2 and K-4, which wereisolated from the Republic of Georgia. The surfaces of both strainschanged in the presence of chromate. TEM thin sections show that chromatestimulates the appearance of bacteria capsular polysaccharide outside thecell wall, although the chromate concentration does not have a strongeffect on the capsular thickness. These results, in conjunction withthose reported earlier, provide direct evidence to show that capsularpolysaccharides of the bacteria play very important role for thereduction and localization of chromate.

  15. Diameter of basalt columns derived from fracture mechanics bifurcation analysis.

    PubMed

    Bahr, H-A; Hofmann, M; Weiss, H-J; Bahr, U; Fischer, G; Balke, H

    2009-05-01

    The diameter of columnar joints forming in cooling basalt and drying starch increases with decreasing growth rate. This observation can be reproduced with a linear-elastic three-dimensional fracture mechanics bifurcation analysis, which has been done for a periodic array of hexagonal columnar joints by considering a bifurcation mode compatible with observations on drying starch. In order to be applicable to basalt columns, the analysis has been carried out with simplified stationary temperature fields. The critical diameter differs from the one derived with a two-dimensional model by a mere factor of 1/2. By taking into account the latent heat released at the solidification front, the results agree fairly well with observed column diameters.

  16. Lunar ferroan anorthosites and mare basalt sources - The mixed connection

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1991-01-01

    Global overturn of a hot, gravitationally unstable lunar mantle immediately following the solidification of a magma ocean explains several characteristics of lunar petrology. Lunar mare basalt sources are inferred to be depleted in europium and alumina. These depletions are consensually attributed to complementary plagioclase floating from a magma ocean. However, in contrast to the mare basalt source parent magma, the ferroan anorthosite parent magma was more evolved by virtue of its lower Mg/Fe ratio and Ni abundances, although less evolved in its poverty of clinopyroxene constituents, flat rare earth pattern, and lower incompatible element abundances. The europium anomaly in mare sources is inferred to be present at 400 km depth, too deep to have been directly influenced by plagioclase crystallization. Massive overturning of the post-magma ocean mantle would have carried down clinopyroxene, ilmenite, and phases containing fractionated rare earths, europium anomalies, and some heat-producing radionuclides.

  17. Disequilibrium of the 238U series in basalt

    USGS Publications Warehouse

    Somayajulu, B.L.K.; Tatsumoto, M.; Rosholt, J.N.; Knight, R.J.

    1966-01-01

    Radioisotope analyses of basalt samples from Hawaii, Japan, and Iwo Jima show that: (1) 234U and 238U are virtually in radioactive equilibrium, (2) 230Th exceeds equilibrium values in all these samples, (3) 210Pb concentrations range from 10-200% of the equilibrium values and average 30% deficient, and (4) 226Ra is probably not in equilibrium with 234U. The source regions of the basalts or magma forming processes are open systems, chemically. The enrichment of some of the uranium-daughter nuclides is insufficient to account for the excess 206Pb in volcanic rocks. The isotopic composition of lead and specific activity of 210Pb in sublimates from Showa-shinzan, Japan are also reported. ?? 1966.

  18. The Apollo 17 mare basalts: Serenely sampling Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-01-01

    As we are all aware, the Apollo 17 mission marked the final manned lunar landing of the Apollo program. The lunar module (LM) landed approximately 0.7 km due east of Camelot Crater in the Taurus-Littrow region on the southwestern edge of Mare Serenitatis. Three extravehicular activities (EVA's) were performed, the first concentrating around the LM and including station 1 approximately 1.1 km south-southeast of the LM at the northwestern edge of Steno Crater. The second traversed approximately 8 km west of the LM to include stations 2, 3, 4, and 5, and the third EVA traversed approximately 4.5 km to the northwest of the LM to include stations 6, 7, 8, and 9. This final manned mission returned the largest quantity of lunar rock samples, 110.5 kg/243.7 lb, and included soils, breccias, highland samples, and mare basalts. This abstract concentrates upon the Apollo 17 mare basalt samples.

  19. Flood basalt volcanism during the past 250 million years.

    PubMed

    Rampino, M R; Stothers, R B

    1988-08-05

    A chronology of the initiation dates of major continental flood basalt volcanism is established from published potassium-argon (K-Ar) and argon-argon (Ar-Ar) ages of basaltic rocks and related basic intrusions. The dating is therefore independent of the biostratigraphic and paleomagnetic time scales. Estimated errors of the initation dates of the volcanic episodes determined from the distributions of the radiometric ages are, approximately, plus or minus 4 percent. There were 11 distinct episodes during the past 250 million years. Sometimes appearing in pairs, the episodes have occurred quasi-periodically with a mean cycle time of 32 +/- 1 (estimated, error of the mean) million years. The initiation dates of the episodes are close to the estimated dates of mass extinctions of marine organisms. Showers of impacting comets may be the cause.

  20. Flood basalt volcanism during the past 250 million years

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Stothers, Richard B.

    1988-01-01

    A chronology of the initiation dates of major continental flood basalt volcanism is established from published potassium-argon (K-Ar) and argon-argon (Ar-Ar) ages of basaltic rocks and related basic intrusions. The dating is therefore independent of the biostratigraphic and paleomagnetic time scales. Estimated errors of the initiation dates of the volcanic episodes determined from the distributions of the radiometric ages are, approximately, + or - 4 percent. There were 11 distinct episodes during the past 250 million years. Sometimes appearing in pairs, the episodes have occurred quasi-periodically with a mean cycle time of 32 + or - 1 (estimated error of the mean) million years. The initiation dates of the episodes are close to the estimated dates of mass extinctions of marine organisms. Showers of impacting comets may be the cause.

  1. The solubility of olivine in basaltic liquids - An ionic model

    NASA Technical Reports Server (NTRS)

    Herzberg, C. T.

    1979-01-01

    A model is presented which enables the temperature at which olivine is in equilibrium with any alkali-depleted basaltic compound to be calculated to within + or - 30 C. It is noted that the error increases substantially when applied to terrestrial basalts which contain several weight percent alkalis. In addition the model predicts and quantifies the reduced activity of SiO4(4-) monomers due to increasing SiO2 concentrations in the melt. It is shown that the coordination of alumina in melts which precipitate olivine only appears to be dominantly octahedral, while titanium acts as a polmerizing agent by interconnecting previously isolated SiO4(4-) monomers. It is concluded that the model is sufficiently sensitive to show that there are small repulsive forces between Mg(2+) and calcium ions which are in association with normative diopside in the melt.

  2. Basaltic rocks analyzed by the Spirit Rover in Gusev Crater.

    PubMed

    McSween, H Y; Arvidson, R E; Bell, J F; Blaney, D; Cabrol, N A; Christensen, P R; Clark, B C; Crisp, J A; Crumpler, L S; Des Marais, D J; Farmer, J D; Gellert, R; Ghosh, A; Gorevan, S; Graff, T; Grant, J; Haskin, L A; Herkenhoff, K E; Johnson, J R; Jolliff, B L; Klingelhoefer, G; Knudson, A T; McLennan, S; Milam, K A; Moersch, J E; Morris, R V; Rieder, R; Ruff, S W; De Souza, P A; Squyres, S W; Wänke, H; Wang, A; Wyatt, M B; Yen, A; Zipfel, J

    2004-08-06

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mössbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  3. A new basaltic glass microanalytical reference material for multiple techniques

    USGS Publications Warehouse

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  4. Carbon Dioxide Tucked into Basalt Converts to Rock

    SciTech Connect

    McGrail, Pete

    2016-11-18

    Carbon Sequestration or storing carbon dioxide underground may be one approach to reducing atmospheric levels of the greenhouse gas. Storing it in basalt formations creates a chemical reaction in which the CO2 is transformed into a mineral similar to limestone enabling permanent storage underground. A field study by researchers at the Department of Energy’s Pacific Northwest National Laboratory shows that chemical happens quickly. Within two years, CO2 injected underground in Washington state had converted to the carbonate mineral ankerite.

  5. Possible Terrestrial Basaltic Analogs for Highly Magnetized Martian Crustal Rocks

    NASA Astrophysics Data System (ADS)

    Murdock, K. J.; Brown, L.

    2008-05-01

    With the discovery of crustal rock with high magnetic remanence by the MAG/ER on the Mars Global Surveyor, two of the prominent questions have been how did these Martian rocks become so magnetized, and, after what is assumed to be billions of years, how do they retain their magnetism? Modeling of the observed anomalies requires remanence values of 20 A/m, an order of magnitude greater than common remanences on earth. Images and spectral data show that basalt is a prevalent rock type on the surface of Mars; andesitic and layered rocks have also been found on Mars, but are much less common. Geochemical plots of alkalis versus silica indicate samples from Gusev Crater area (measured by the SPIRIT Rover) have alkaline compositions, while readings made by Pathfinder and MGS-TES surface measurements indicate subalkaline compositions. While only rare rocks on Earth have been found with a similar high magnetic remanence to those observed on Mars, are there terrestrial basalts with greater remanences, or with the possibility of enhanced composition to provide such remanences? To this end we are investigating the details of magnetic character of terrestrial basalts over a range of compositions. Average natural remanent magnetization for lava flows range from 1 to 4 A/m, with susceptibilities of approximately 0.1 SI, corresponding to roughly 3% magnetite content. We are studying mineralogy, grain size, magnetic remanence, magnetic susceptibility, and magnetic coercivity of basalt samples from different sources with the emphasis on the range of characteristics and the possibility of producing high remanences. Samples include those taken from arrange of tectonic environments on earth including hot spots (Hawaii, Easter Island), continental rift (New Mexico), subduction (Chile), slab window (southern Argentina) and continental platform (Arizona).

  6. Initial effects of vegetation on Hawaiian basalt weathering rates

    SciTech Connect

    Cochran, M.F.; Berner, R.A. )

    1992-01-01

    Weathering of Ca and Mg silicates on land and ensuing precipitation and burial of Ca and Mg carbonates in marine sediments is the principal sink for carbon dioxide from the atmosphere/ocean system on geologic time scales. Model calculations of ancient atmospheric CO[sub 2] partial pressure depend strongly on the authors assumptions about the enhancement of silicate weathering rates first by primitive terrestrial biota, then by the appearance and evolution of the vascular plants. Aa and pahoehoe basalts were collected from Mauna Loa and Kilauea volcanoes on the island of Hawaii. Flows ranged in age (one year to several thousand years) and in ambient climate. Where possible, each flow was sampled beneath a suite of current plant covers: none, lichens, and higher plants. Rocks were embedded in epoxy to preserve the plant-rock interface, then sectioned and subjected to electron probe microanalysis. During initial weathering, vascular plants appeared to promote congruent dissolution of minerals (particularly olivine and Ca-rich plagioclase) and glass near the surfaces of underlying basalts. In the neighborhood of roots, primary cracks widened with time into networks of open channels. This effect was observed prior to the formation of measurable leached zones in exterior grains and prior to the appearance of secondary minerals. As a result, initial mass loss from young, plant-covered basalts appeared to be up to one or more orders of magnitude greater than from bare-rock controls. Despite earlier reports of substantial enhancement of Hawaiian basalt weathering rates by the lichen Stereocaulon vulcani, weathering observed beneath this lichen was comparable to that of unvegetated rocks.

  7. Rock billboards on the basaltic cliff along the Route 66 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock billboards on the basaltic cliff along the Route 66 alignment, ca. 1926. The sign on the left is for "La Bajada Service Shop" (faint "da" visible), "Santa Fe Camp" in the center, and a petroglyph at far right. View facing northwest. - La Bajada Historic Trails and Roads, Approximately 1 mile East/Northeast of intersection of State Highway 16 and Indian Service Road 841, La Bajada, Santa Fe County, NM

  8. Lead isotope systematics of three Apollo 17 mare basalts

    NASA Technical Reports Server (NTRS)

    Tilton, G. R.; Chen, J. H.

    1979-01-01

    The paper deals with new and more accurate determinations of uranium, thorium, and isotopic lead data for five bulk samples and separate pyroxene, ilmenite, and plagioclase from basalt 71055. In a concordia diagram, the samples suggest a postcrystallization disturbance of the U-Pb systems of the rock. There is no compelling reason, from U-Pb data, to believe that the moon is younger than 4.55 AE.

  9. On the natural remanent magnetism of certain mare basalts

    NASA Technical Reports Server (NTRS)

    Fuller, M.; Meshkov, E.; Cisowski, S. M.; Hale, C. J.

    1979-01-01

    The natural remanent magnetization (NRM) and magnetic properties of five fine-grain mare basalts were investigated. The NRM of two vitrophyres has a large soft component, and the directional stability during AF demagnetization is poor. The remaining samples have NRM which is too soft to be of thermal origin and yet too hard to be simply isothermal contamination. It is suggested that the NRM of the samples could be shock remanent magnetization.

  10. The carbon dioxide solubility in alkali basalts: an experimental study

    NASA Astrophysics Data System (ADS)

    Lesne, Priscille; Scaillet, Bruno; Pichavant, Michel; Beny, Jean-Michel

    2011-07-01

    Experiments were conducted to determine CO2 solubilities in alkali basalts from Vesuvius, Etna and Stromboli volcanoes. The basaltic melts were equilibrated with nearly pure CO2 at 1,200°C under oxidizing conditions and at pressures ranging from 269 to 2,060 bars. CO2 solubility was determined by FTIR measurements. The results show that alkalis have a strong effect on the CO2 solubility and confirm and refine the relationship between the compositional parameter Π devised by Dixon (Am Mineral 82:368-378, 1997) and the CO2 solubility. A general thermodynamic model for CO2 solubility in basaltic melts is defined for pressures up to 2 kbars. Based on the assumption that O2- and CO{3/2-} mix ideally, we have: begin{gathered} K(P,T) = {{X_{{{{CO}}3^{2 - } }}m (P,T)}/{X_{{{{O}^{2 - } }}m × f_{{{{CO}}2 }} (P,T)}}} \\ K(P,T) = {{X_{{{{CO}}3^{2 - } }}m (P,T)} {/ {{{X_{{{{CO}}3^{2 - } }}m (P,T)} {( {X_{{{{O}}^{2 - } }}m × f_{{{{CO}}2 }} (P,T)} ).}}} . kern-νlldelimiterspace} {( {X_{{{{O}}^{2 - } }}m × f_{{{{CO}}2 }} (P,T)} ).}} \\ Then, from the thermodynamic model, we obtain ln K 0 = 0.893 Π - 15.247. The new CO2 solubility model yields saturation pressures lower by as much as 50% relative to some existing models when applied to volatile-rich alkali basalts.

  11. Dissolved amino acids in oceanic basaltic basement fluids

    NASA Astrophysics Data System (ADS)

    Lin, Huei-Ting; Amend, Jan P.; LaRowe, Douglas E.; Bingham, Jon-Paul; Cowen, James P.

    2015-09-01

    The oceanic basaltic basement contains the largest aquifer on Earth and potentially plays an important role in the global carbon cycle as a net sink for dissolved organic carbon (DOC). However, few details of the organic matter cycling in the subsurface are known because great water depths and thick sediments typically hinder direct access to this environment. In an effort to examine the role of water-rock-microorganism interaction on organic matter cycling in the oceanic basaltic crust, basement fluid samples collected from three borehole observatories installed on the eastern flank of the Juan de Fuca Ridge were analyzed for dissolved amino acids. Our data show that dissolved free amino acids (1-13 nM) and dissolved hydrolyzable amino acids (43-89 nM) are present in the basement. The amino acid concentrations in the ridge-flank basement fluids are at the low end of all submarine hydrothermal fluids reported in the literature and are similar to those in deep seawater. Amino acids in recharging deep seawater, in situ amino acid production, and diffusional input from overlying sediments are potential sources of amino acids in the basement fluids. Thermodynamic modeling shows that amino acid synthesis in the basement can be sustained by energy supplied from inorganic substrates via chemolithotrophic metabolisms. Furthermore, an analysis of amino acid concentrations and compositions in basement fluids support the notion that heterotrophic activity is ongoing. Similarly, the enrichment of acidic amino acids and depletion of hydrophobic ones relative to sedimentary particulate organic matter suggests that surface sorption and desorption also alters amino acids in the basaltic basement. In summary, although the oceanic basement aquifer is a net sink for deep seawater DOC, similar amino acid concentrations in basement aquifer and deep seawater suggest that DOC is preferentially removed in the basement over dissolved amino acids. Our data also suggest that organic carbon

  12. New Insights into Basaltic Balloon Formation during Submarine Eruptions

    NASA Astrophysics Data System (ADS)

    Carey, S.; Kelly, J.; Rosi, M.; Pistolesi, M.; Marani, M.; Roman, C.; Croff Bell, K. L.

    2014-12-01

    Remotely operated vehicle (ROV) explorations in the area of the 1891 Foerstner submarine eruption (Pantelleria, Italy) during cruise NA-018 of the E/V Nautilus has provided the first examination of the vent site of a basaltic balloon-forming eruption. Ultra high-resolution bathymetric mapping defined a mound-like vent morphology in water depths of ~250 meter, constructed dominantly of highly vesicular scoriaceous fragments with minor pillow lava flows. The formation of floating basaltic balloons that reached the surface of the Strait of Sicily during the eruption is attributed to a hybrid Strombolian eruption mechanism that involved pre-concentration of volatiles into gas-rich portions of magma beneath the vent. An important difference of this Strombolian mechanism compared to its subaerial counterpart is the occurrence of buoyant magma discharge in the submarine environment caused by localized high gas contents. The added buoyancy flux modifies the fluid dynamic configuration of magma venting on the seafloor allowing for detachment of highly-inflated parcels of gas-rich magma. Some of these parcels contain large gas cavities that are enveloped in a partially quenched shell and maintain sufficient buoyancy to rise to the sea surface as a basaltic balloon. The majority of the vesicular magma maintains only partial positive buoyancy or negative buoyancy and is explosively fragmented to form large quantities of decimeter-scale fragments that accumulate close to the vent. Formation of the basaltic balloons is thus considered a somewhat accidental process that involves a subset of the total erupted volume of magma during the eruption. Suitable conditions for balloon formation include low magma viscosity, pre-concentration of gas, and moderate pressures (i.e.water depth). The dampening effect of seawater greatly reduces the dispersal of pyroclasts resulting in a mound-like vent morphology compared to subaerial scoria cones typically associated with Strombolian activity.

  13. Oxidation state of iron in plagioclase from lunar basalts.

    NASA Technical Reports Server (NTRS)

    Hafner, S. S.; Virgo, D.; Warburton, D.

    1971-01-01

    Determination of the oxidation state of iron in the plagioclase from the coarse-grained basalts 10044 and 12021, using Mossbauer spectroscopy. The location of iron in the crystal structure was also investigated. The spectra show that iron is in the high-spin ferrous state, and they located at least two distinct positions with different coordination numbers. Some excess resonant absorption is probably due to Fe(3+), although the Fe(3+) doublet could not be positively resolved.

  14. Basaltic Shergottite NWA 856: Differentiation of a Martian Magma

    NASA Technical Reports Server (NTRS)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2016-01-01

    NWA 856 or Djel Ibone, is a basaltic shergottite discovered as a single stone of 320 g in South Morocco in April, 2001. This meteorite is fresh, i.e. shows minimal terrestrial weathering for a desert find. No shergottite discovered in North Africa can be paired with NWA 856. The purpose of this study is to constrain its crystallization history using textural observations, crystallization sequence modeling and in-situ trace element analysis in order to understand differentiation in shergottite magmatic systems.

  15. The Habitability of Basaltic Hydrovolcanic Tuffs: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Nikitczuk, M. P. C.; Schmidt, M. E.; Flemming, R. L.

    2014-12-01

    Reed and South Reed Rock are two hydrovolcanic tuff ring deposits in the Fort Rock Volcanic Field (FRVF), Oregon, where microbial ichnofossils (endolithic microbores) exist within basaltic glass pyroclasts. Their presence indicates that continental volcanic settings can provide a habitable environment. The secondary phase assemblage of smectite clays (nontronite), zeolites (chabazite), calcite and palagonite point to a contemporaneous to post depositional hydrothermal alteration temperature range (~25-120°C), below which microbes introduced through groundwater were able to inhabit. Electron Dispersive Spectroscopy reveals geochemical differences between fresh glass and microbore interiors (eg., Fe, Mg depletion and K and Ca enrichment). These differences are interpreted to reflect acquisition by microbes of nutrients and energy by oxidizing and dissolving fresh basaltic glass. The Black Hills, a second study area located 20 km south the Reed Rocks, consists of a series of at least 6 hydrovolcanic vents. Petrographic observations from the Black Hills also reveal microbial ichnofossil features within basaltic glass pyroclasts. Conditions necessary for a habitable environment may therefore be common throughout the FRVF. In both locations, eruptive, depositional, and hydrothermal processes led to an environment conducive to microbial activity in which glass-rich deposits possess a source of biogenic elements, energy, and water. The histories of these deposits however, may be quite different in terms of peak hydrothermal temperatures, age relationships, water content and timing. Comparison of the textural, mineralogical and geochemical properties of the Reed Rocks and Black Hills deposits is ongoing in order to gain a better understanding of the conditions of habitability in these types of deposits. These results have important astrobiological implications for Mars where basaltic pyroclastic materials are widely distributed and may represent a habitable environment.

  16. Project CLASS.

    ERIC Educational Resources Information Center

    McBain, Susan L.; And Others

    Project CLASS (Competency-Based Live-Ability Skills) uses a series of 60 modules to teach life survival skills to adults with low-level reading ability--especially Adult Basic Education/English as a Second Language students. Two versions of the modules have been developed: one for use with teacher-directed instruction and another for independent…

  17. Temperature profile around a basaltic sill intruded into wet sediments

    USGS Publications Warehouse

    Baker, Leslie; Bernard, Andrew; Rember, William C.; Milazzo, Moses; Dundas, Colin M.; Abramov, Oleg; Kestay, Laszlo P.

    2015-01-01

    The transfer of heat into wet sediments from magmatic intrusions or lava flows is not well constrained from field data. Such field constraints on numerical models of heat transfer could significantly improve our understanding of water–lava interactions. We use experimentally calibrated pollen darkening to measure the temperature profile around a basaltic sill emplaced into wet lakebed sediments. It is well known that, upon heating, initially transparent palynomorphs darken progressively through golden, brown, and black shades before being destroyed; however, this approach to measuring temperature has not been applied to volcanological questions. We collected sediment samples from established Miocene fossil localities at Clarkia, Idaho. Fossils in the sediments include pollen from numerous tree and shrub species. We experimentally calibrated changes in the color of Clarkia sediment pollen and used this calibration to determine sediment temperatures around a Miocene basaltic sill emplaced in the sediments. Results indicated a flat temperature profile above and below the sill, with T > 325 °C within 1 cm of the basalt-sediment contact, near 300 °C at 1–2 cm from the contact, and ~ 250 °C at 1 m from the sill contact. This profile suggests that heat transport in the sediments was hydrothermally rather than conductively controlled. This information will be used to test numerical models of heat transfer in wet sediments on Earth and Mars.

  18. Spitzer IRS Spectra of Basaltic Asteroids: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nick; Stewart, Heather; Marchis, Frank

    2008-01-01

    We present preliminary results of a Spitzer program to observe the 5.2--38 micron spectra of small basaltic asteroids using the Spitzer IRS (Infrared Spectrograph). Our targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), four outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid (NEA) 4055 Magellan. We will compare the compositions and thermophysical properties of the non-Vestoid objects with those of the dynamical vestoids to provide insight on the extent of metal-silicate differentiation on planetsimals during the epoch of planet formation in the early Solar System. As of this writing, spectra of asteroids 10537 (1991 RY16) and 2763 Jeans have been returned. Analysis of these data are ongolng. Observations of 956 Elisa, 2653 Principia, 4215 Kamo, 7472 Kumakiri, and 1459 Magnya have been scheduled and are expected to be available by the time of the DPS meeting. NIR spectra and lightcurves o f the target asteroids are also being observed in support of this program.

  19. Carbon dioxide sequestration in deep-sea basalt.

    PubMed

    Goldberg, David S; Takahashi, Taro; Slagle, Angela L

    2008-07-22

    Developing a method for secure sequestration of anthropogenic carbon dioxide in geological formations is one of our most pressing global scientific problems. Injection into deep-sea basalt formations provides unique and significant advantages over other potential geological storage options, including (i) vast reservoir capacities sufficient to accommodate centuries-long U.S. production of fossil fuel CO2 at locations within pipeline distances to populated areas and CO2 sources along the U.S. west coast; (ii) sufficiently closed water-rock circulation pathways for the chemical reaction of CO2 with basalt to produce stable and nontoxic (Ca(2+), Mg(2+), Fe(2+))CO(3) infilling minerals, and (iii) significant risk reduction for post-injection leakage by geological, gravitational, and hydrate-trapping mechanisms. CO2 sequestration in established sediment-covered basalt aquifers on the Juan de Fuca plate offer promising locations to securely accommodate more than a century of future U.S. emissions, warranting energized scientific research, technological assessment, and economic evaluation to establish a viable pilot injection program in the future.

  20. Putative cryptoendolithic life in Devonian pillow basalt, Rheinisches Schiefergebirge, Germany.

    PubMed

    Peckmann, J; Bach, W; Behrens, K; Reitner, J

    2008-03-01

    Middle Devonian (Givetian) pillow basalt and inter-pillow breccia from the Rheinisches Schiefergebirge in Germany were found to contain putative biogenic filaments that indicate that life once proliferated within these volcanic rocks. Mineralized filaments are found in carbonate amygdules (vesicles filled by carbonate cement) in the volcanic rock, where they started to form on the internal surface of the once water-filled vesicles. Biogenicity of the filaments is indicated by (1) their size and shape resembling modern microorganisms including a constant diameter along the length of curved filaments, (2) their independence of crystal faces or cleavage planes, (3) branching patterns reminiscent of modern microorganisms, and (4) their spatial clustering and preferential occurrence close to the margin of pillows and in the inter-pillow breccias. A time lag between the deposition of pillow basalt and the activity of endoliths is revealed by the sequence of carbonate cements filling the amygdules. The putative filamentous microorganisms thrived after the formation of early fibrous rim cement, but before later equant calcite spar filled most of the remaining porosity. Microbial clay authigenesis analogous to the encrustation of prokaryotes in modern iron-rich environments led to the preservation of filaments. The filaments predominantly consist of the clay minerals chamosite and illite. Having dwelled in water-filled vesicles, the Devonian basalt-hosted filaments apparently represent cryptoendoliths. This finding suggests that a previously unrecognized niche for life exists within volcanic rock.

  1. Radiolytic Hydrogen Production in the South Pacific Subseafloor Basaltic Aquifer

    NASA Astrophysics Data System (ADS)

    Dzaugis, M. E.; Spivack, A. J.; Dunlea, A. G.; Murray, R. W.; D'Hondt, S.

    2015-12-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from natural radioactive decay of uranium (238U, 235U), thorium (232Th) and potassium (40K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we calculate radiolytic H2 production rates in basement fractures utilizing measured radionuclide concentrations in 42 basalt samples from IODP Expedition 329. The samples are from three sites with very different basement ages and a wide range of alteration types. Major and trace element concentrations vary by up to an order of magnitude from sample to sample. Comparison of our samples to each other and to previous studies of fresh East Pacific Rise basalt suggests that between-sample variation in radionuclide concentrations is primarily due to differences in initial (pre-alteration) concentrations (which can vary between eruptive events), rather than to alteration type or extent. Local maxima in radionuclide (U, Th, and K) concentrations produce 'hotspots' of radiolytic H2 production; calculated radiolytic rates differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production. Due to the low penetration distance of alpha radiation, microfractures are 'hotpots' for radiolytic H2 production. For example, radiolytic H2 production rates normalized to water volume are 170 times higher in 1μm-wide fractures than in 10cm-wide fractures.

  2. High water content in primitive continental flood basalts.

    PubMed

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-05-04

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>10(5) km(3)) within short time span (<1-3 Ma) is in principle caused by an abnormally high temperature, extended decompression, a certain amount of mafic source rocks (e.g., pyroxenite), or an elevated H2O content in the mantle source. These four factors are not mutually exclusive. There are growing evidences for high temperature, decompression and mafic source rocks, albeit with hot debate. However, there is currently no convincing evidence of high water content in the source of CFB. We retrieved the initial H2O content of the primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB.

  3. High water content in primitive continental flood basalts

    PubMed Central

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-01-01

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>105 km3) within short time span (<1–3 Ma) is in principle caused by an abnormally high temperature, extended decompression, a certain amount of mafic source rocks (e.g., pyroxenite), or an elevated H2O content in the mantle source. These four factors are not mutually exclusive. There are growing evidences for high temperature, decompression and mafic source rocks, albeit with hot debate. However, there is currently no convincing evidence of high water content in the source of CFB. We retrieved the initial H2O content of the primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB. PMID:27143196

  4. High water content in primitive continental flood basalts

    NASA Astrophysics Data System (ADS)

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-05-01

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>105 km3) within short time span (<1–3 Ma) is in principle caused by an abnormally high temperature, extended decompression, a certain amount of mafic source rocks (e.g., pyroxenite), or an elevated H2O content in the mantle source. These four factors are not mutually exclusive. There are growing evidences for high temperature, decompression and mafic source rocks, albeit with hot debate. However, there is currently no convincing evidence of high water content in the source of CFB. We retrieved the initial H2O content of the primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB.

  5. Basalt Waste Isolation Project. Annual report, fiscal year 1980

    SciTech Connect

    Not Available

    1980-11-01

    During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies.

  6. Basalt Pb isotope analysis and the prehistoric settlement of Polynesia.

    PubMed

    Weisler, M I; Woodhead, J D

    1995-03-14

    The prehistoric settlement of the Pacific Ocean has intrigued scholars and stimulated anthropological debate for the past two centuries. Colonized over a few millennia during the mid to late Holocene, the islands of the Pacific--displaying a wide diversity of geological and biotic variability--provided the stage for endless "natural experiments" in human adaptation. Crucial to understanding the evolution and transformation of island societies is documenting the relative degree of interisland contacts after island colonization. In the western Pacific, ideal materials for archaeologically documenting interisland contact--obsidian, pottery, and shell ornaments--are absent or of limited geographic distribution in Polynesia. Consequently, archaeologists have relied increasingly on fine-grained basalt artifacts as a means for documenting colonization routes and subsequent interisland contacts. Routinely used x-ray fluorescence characterization of oceanic island basalt has some problems for discriminating source rocks and artifacts in provenance studies. The variation in trace and major element abundances is largely controlled by near-surface magma-chamber processes and is broadly similar between most oceanic islands. We demonstrate that Pb isotope analysis accurately discriminates rock source and is an excellent technique for charting the scale, frequency, and temporal span of imported fine-grained basalt artifacts found throughout Polynesia. The technique adds another tool for addressing evolutionary models of interaction, isolation, and cultural divergence in the eastern Pacific.

  7. Mars Crustal Magnetism: Plate Tectonics and Flood Basalts

    NASA Astrophysics Data System (ADS)

    Connerney, J.; Acuna, M.; Ness, N.

    2006-12-01

    The crustal magnetic field of Mars, mapped in unprecedented detail by the Mars Global Surveyor spacecraft, bears a record of crustal formation and subsequent evolution. The magnetic field in Meridiani has characteristics (transform faulting, symmetry) associated with crustal spreading in the presence of a reversing dynamo. The detailed erasure of crustal fields in and around filled basins (Utopia, Isidis) and massive volcanic constructs (Tharsis Montes, Oylmpus Mons, Alba Patera, Elysium Mons) suggests that the northern plains were largely demagnetized by emplacement of ~km thick flood basalts in single cooling events. Thermal demagnetization under a few km of flood basalts would require that the pre-existing magnetic imprint be borne in a layer only a few km thick. This in turn implies very intense magnetization (order 100 A/m) if the same layer thickness is applied to the intensely magnetized southern highlands. Icelandic basalts are rarely as intensely magnetized, but some samples - characterized by single domain magnetite formed from high temperature oxidation of olivine - approach this number.

  8. Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-03-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs.

  9. The consanguinity of the oldest Apollo 11 mare basalts

    NASA Technical Reports Server (NTRS)

    Gamble, R. P.; Coish, R. A.; Taylor, L. A.

    1978-01-01

    The textural, mineralogical, and chemical relationships between three of the oldest dates lunar mare basalt samples returned by Apollo 11 (10003, 10029 and 10062) were investigated. Very strong resemblances were noted between the modal minerologies of 10003 and 10029. Significantly more modal olivine and cristobalite was observed in 10062 than in the other basalt samples. A detailed examination of mineral-chemical relationships among the samples revealed similarities between 10003 and 10062 and differences between these two rocks and 10029, the most significant of which is the presence of akaganeite in 10029, implying that lawrencite was present in the pristine sample of 10029 but not in 10003 and 10062. Results of a Wright-Doherty mixing program used to test various fractional crystallization schemes show that 10062 can be derived from a liquid with the composition of either 10003 or 10029 by removing 2-5% ilmenite and 5% olivine. By removing about 6% plagioclase, 10003 can be derived from a liquid with the bulk composition of 10062. It is concluded that 10003 and 10029 may have come from different basaltic flows, whereas it is possible that 10003 and 10062 were derived from the same parental magma by near-surface fractionation of olivine plus ilmenite or of plagioclase plus or minus olivine.

  10. Dissolution of basaltic glass in seawater: Mechanism and rate

    SciTech Connect

    Crovisier, J.L. ); Honnorez, J. Universite Louis Pasteur, Strasbourg ); Eberhart, J.P. )

    1987-11-01

    Basaltic glasses are considered as natural analogues for nuclear waste glasses. Thermodynamic computer codes used to evaluate long term behavior of both nuclear waste and basaltic glasses require the knowledge of the dissolution mechanism of the glass network. The paper presents the results of a series of experiments designed to study the structure and chemical composition of alteration layers formed on the surface of artificial tholeiitic glass altered in artificial seawater. Experiments were performed at 60{degree}C, 1 bar and 350 bars in non-renewed conditions. A natural sample from Palagonia (Sicily) has been studied by electron microscopy and comparison between natural and experimental palagonitic layers is made. The behavior of dissolved silica during experiments, and both the structure and the chemical composition of the palagonitic layers, indicate that they form by precipitation of secondary minerals from solution after a total breakdown of the glassy network, i.e., congruent dissolution of the glass. Hence the dissolution equation necessary for thermodynamic modelling of basaltic glass dissolution in seawater at low temperature must be written as a simple stoichiometric process. These experiments indicate that the transformation of glass to palagonitic material is not isovolumetric. Hence it is preferable to use Fe or Ti as conservative elements for chemical budget calculations.

  11. Rare earth element contents and multiple mantle sources of the transform-related Mount Edgecumbe basalts, southeastern Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Budahn, J.R.; Lanphere, M.A.; Brew, D.A.

    1994-01-01

    Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. Rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, are modelled by 10-15% partial melting of fertile spinel-plagioclase lherzolite followed by removal of 8-13% olivine. It is concluded that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. -from Authors

  12. Rhyolite, dacite, andesite, basaltic andesite, and basalt volcanism on the Alarcon Rise spreading-center, Gulf of California

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Portner, R. A.; Clague, D. A.; Castillo, P. R.; Paduan, J. B.; Martin, J. F.

    2012-12-01

    The Alarcon Rise is a ~50 km long intermediate-rate (~50mm/a) spreading segment at the southern end of the Gulf of California. The Rise is bounded by the Tamayo and Pescadero transforms to the south and north. In Spring 2012, an MBARI-led expedition mapped a ~1.5- 3km wide swath of the ridge axis at 1-m resolution and completed 9 ROV dives (Clague et al., this session). Sampling during the ROV dives was supplemented by use of a wax-tip corer to recover volcanic glass: 194 glassy lava samples were recovered from the Rise. The vast majority of lava flows along the axis are basalt and rare basaltic andesite. More than half the basalts are plagioclase-phyric to ultraphyric (Martin et al., this session), and the rest are aphyric. Rare samples also include olivine or olivine and clinopyroxene phenocrysts. Analyses of half of the recovered glass basalt rinds range in MgO from 4.3 to 8.5 wt.% and those with MgO > 6 wt % have K2O/TiO2 = 0.07-0.11. The basalts are broadly characterized as normal mid-ocean ridge basalts (N-MORB). E-MORB is also present near the center of the ridge segment, but has been found only as pyroclasts in sediment cores. A much greater range in lava composition is associated with an unusual volcanic dome-like edifice that lies ~9 km south of the Pescadero transform. Two dives in the vicinity of the dome collected lava and volcaniclastic samples consisting of moderately to sparsely phyric light brown to colorless volcanic glass. Feldspar is the dominant phase, but magnetite, fayalitic olivine, light tan and light green clinopyroxene, orthopyroxene, zircon, and rare pyrite blebs also occur. Melt-inclusions are common in many phenocrysts, especially of plagioclase. Hydrous mineral phases are not observed. These samples have rhyolitic glass compositions (75.8- 77.4 SiO2 wt %), but their whole-rock compositions will be somewhat less silicic. Pillow flows to the immediate west have dacitic glass compositions (67.4- 68.8 wt % SiO2). Basaltic andesitic

  13. Origin of the 'Gabbro' Signature in Ocean Island Basalts: Constraints from Osmium Isotopic Ratios of Galapagos Basalts

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Dale, C. W.; Geist, D.; Harpp, K. S.

    2014-12-01

    The Re-Os isotope system has become increasingly used as a tracer of lithological heterogeneity in the convecting mantle, with radiogenic 187Os/188Os in high-Os oceanic basalts and picrites widely interpreted as evidence of a melt contribution from ancient recycled oceanic crust. When combined with 206Pb/204Pb and O isotopes, 187Os/188Os ratios have been used to identify distinct lithological units (i.e. sediments, gabbros and basalts). We report new 187Os/188Os for basalts with high Os (>40 ppt) and MgO from Galápagos, which range from near primitive mantle values (0.130) to highly radiogenic (0.155). While co-variations in 187Os/188Os and 206Pb/204Pb for some Galápagos basalts (Floreana-type) are HIMU like, and consistent with melting of ancient recycled oceanic crust, others have variable 187Os/188Os ratios and primitive to depleted mantle like 206Pb/204Pb. Similar variations in Os and Pb isotopic space have been interpreted in other OIB suites as melts from recycled ancient oceanic gabbros, entrained by upwelling mantle plumes. Nevertheless, a marked east-west spatial variation in 187Os/188Os of Galápagos basalts does not correlate with postulated lithological variations in the Galápagos plume (Vidito et al., 2013). We show that basalts in eastern Galápagos with elevated 187Os/188Os and positive Sr anomalies occur in the vicinity of over-thickened 10 Ma gabbroic crust, that formed when the Galápagos plume was on-axis. We propose the elevated 187Os/188Os of Galápagos basalts are due to in-situ assimilation of young gabbroic lower crust, with high Re/Os, rather than melting of ancient recycled material in the Galápagos plume. In western Galápagos recent plume accreted crust is thick but more mafic, the melt flux higher and assimilation more sporadic. The contamination thresholds of Os and MgO in Galápagos basalts occur at higher contents than for many global OIBs (Azores, Iceland, Hawaii) and may reflect both a relatively low melt flux into the crust

  14. Appendix C: A comparative study of small scale remotely sensed data for monitoring clearcutting in hardwood forests. M.S. Thesis; [Allegheny National Forest, Pennsylvania and the Adirondacks, New York

    NASA Technical Reports Server (NTRS)

    Hafker, W. R.

    1980-01-01

    Manual photointerpretation techniques were used to analyze images acquired by high altitude aircraft, the Skylab multispectral and Earth terrain camera (ETC), the LANDSAT multispectral scanner, and the LANDSAT-3 return beam vidicon camera. A color-additive viewer, and digital image analysis were also used on the LANDSAT MSS imagery. The value of each type of remotely sensed data was judged by the ease and accuracy of clearcut identification, and by the amount of detail discernible, especially regarding revegetation. Results of a site study in the Allegheny National Forest, Pennsylvania indicate that high altitude aerial photography, especially color infrared photography acquired during the growing season, is well suited for identifying clearcuts and assessing revegetation. Although photographs acquired with Skylab's ETC also yielded good results, only incomplete inventories of clearcuts could be made using LANDSAT imagery. Results for the Adirondack region of New York State were similar for the aircraft and satellite photography, but even less satisfactory for the LANDSAT imagery.

  15. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  16. Assessing eruption column height in ancient flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2017-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced

  17. Trace-element modelling of mare basalt parental melts: Implications for a heterogeneous lunar mantle

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Anand, M.; Strekopytov, S.

    2014-06-01

    The heterogeneous-source model of mare basalt formation indicates that Lunar Magma Ocean (LMO) overturn produced an uneven mixture of early-formed olivine and pyroxene, and late-formed, ilmenite-rich cumulates, which subsequently partially melted to give rise to mare magmas. These heterogeneous cumulate source regions would not only have been characterised by different mineral modal abundances, but also by different trace element compositions. The aim of this work was to investigate the petrology and geochemistry of a diverse suite of Apollo mare basalts, and utilise trace-element modelling in order to understand their petrogenetic history. Chemical modelling confirms that the mare basalts were produced by relatively small degrees of partial melting (<10%) of the LMO cumulates, and that the dominant melting type (batch vs. fractional) varies among different basalt groups. Similarly, single-source mineralogy cannot be applied to all mare basalt types, confirming that the lunar mantle was heterogeneous at the time of generation of mare magmas. Plagioclase is not required in the source of most mare basalts, with the notable exception of the Apollo 14 high-Al basalts. Addition of more than 1% plagioclase to the source of other basalts produces weaker negative Eu anomalies than those observed in the samples. AFC calculations demonstrate the compositional differences between materials assimilated into the Apollo 14 high-Al and Apollo 11 high-K mare basalt partial melts, highlighting the complexities of mare basalt petrogenesis.

  18. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts and gabbros

    NASA Astrophysics Data System (ADS)

    Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.

    2008-12-01

    Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.

  19. Petrology and geochemistry of olivine-normative and quartz-normative basalts from regolith breccia 15498 - New diversity in Apollo 15 mare basalts

    NASA Technical Reports Server (NTRS)

    Vetter, Scott K.; Shervais, John W.; Lindstrom, Marilyn M.

    1988-01-01

    Analysis of mare basalt clasts from Apollo 15 shows a greater diversity than previously recognized and provides new constraints on the petrogenesis of these basalts. The quartz-normative basalts (QNB) from 15498 are divided into four groups based on chemical variations: primitive, intermediate/1, intermediate/2, and evolved. The olivine-normative basalts (ONB) are divided into three groups: low-SiO2, high-SiO2, and olivine-pyroxene cumulates. Least-squares mixing calculations show that the high SiO2 ONBs may be parental to the QNB suite. Variations within the low-SiO2 ONBs are explained by olivine factionation. It is suggested that the presence of these basalt types may result from the position of breccia 15498 near the edge of the mare plain where normal ONBs are scarce, and from its presumed origin as ejecta from Dune Crater.

  20. Extrinsic controls on inter-basaltic plant ecosystems in the Columbia River Flood Basalt Province, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Ebinghaus, Alena; Jolley, David W.; Hartley, Adrian J.

    2015-04-01

    The impact Large Igneous Province (LIP) volcanism may have had on paleoclimate, fauna and flora is still controversy. Inter-lava field plant ecosystems have the potential to record in detail the effects LIPs had on the environment in the immediate vicinity of volcanic activity. The Miocene Columbia River Flood Basalt Province (CRBP), Washington State, USA, provides excellent exposure of an entire LIP stratigraphy and offers a detailed record of inter-basaltic plant ecosystems throughout LIP evolution. The CRBP lava field comprise numerous basaltic lava flows that are intercalated with fluvial and lacustrine sediments which formed during phases of volcanic quiescence. The LIP volcanic evolution is characterised by an initial phase of high eruption volumes and eruptions rates, which is followed by waning volcanism associated with longer interbed intervals. Inter-lava field plant ecosystems are expected to correlate with phases of volcanic evolution: short interbed intervals should be dominated by early seral succession, while longer intervals should record more mature seral successions. The palynological record of the sedimentary interbeds however indicates a decline in successional status within the long interbed intervals of CRBP stratigraphy. An integrated analysis of sedimentary facies and geochemistry suggests intense volcanic ash fall derived from the adjacent Yellowstone hot spot as a major trigger for repetitive successional re-setting. This implies that inter-lava field ecosystem maturity was controlled by extrinsic forcing, and argues against environmental changes solely driven by LIPs of similar scale and magnitude to that of the CRBP.

  1. Hydrothermal Alteration on Basaltic Mauna Kea Volcano as a Template for Identification of Hydrothermal Alteration on Basaltic Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Mertzman, S. A.; Bell, J. F., III

    2003-01-01

    Certain samples of palagonitic tephra from Mauna Kea Volcano (Hawaii) are spectral analogues for bright martian surface materials at visible and near-IR wavelengths because both are characterized by a ferric absorption edge extending from about 400 to 750 nm and relatively constant reflectivity extending from about 750 nm to beyond 2000 nm. Palagonite is a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass. For Mars-analogue palagonite, the pigment is nanometersized ferric oxide particles (np-Ox) dispersed throughout an allophane-like hydrated basaltic glass matrix. Crystalline phyllosilicates are not generally detected, and the hydration state of the is not known. The poorly crystalline nature of glass alteration products implies relatively low temperature formation pathways. We report here x-ray diffraction, major element, Mossbauer, and VNIR data for 9 basaltic tephras. Thermal emission spectra are reported in a separate abstract. Our multidisciplinary approach both tightly constrains mineralogical interpretations and maximizes overlap with datasets available for the martian surface available now and in the future.

  2. Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Christensen, P. R.

    2003-01-01

    The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].

  3. New Crater Counts for Mare Basalts in Mare Frigoris and Other Nearside Maria

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Head, J. W., III; Wolf, U.; Jaumann, R.; Neukum, G.

    2003-04-01

    Lunar mare basalts cover about 17% of the lunar surface, occur preferentially on the lunar nearside, and often fill the low-lying inner depressions of large impact basins and craters. Basalts in Mare Frigoris are special in that they occur in an area that is not clearly related to any unambiguously accepted impact structure. Mare Frigoris may be part of the large and very old Procellarum basin, but the existence of this basin is still debated. Mare basalts in Mare Frigoris are relatively homogeneous, low in titanium, have a bright albedo, and strong 1 µm- and prominent 2 µm-absorption bands. The thickness of these basalts has been estimated to be less than 500 m. Wilhelms found the basalts of eastern Mare Frigoris to be of Imbrian age and the basalts of central and western Frigoris (west of ~10deg E) to be Eratosthenian in age. Whitford-Stark proposed that the basalts in Mare Frigoris were emplaced by flood-style eruptions 3.2-3.6 b.y. ago. We report on crater counts for Mare Frigoris, Mare Nectaris, Mare Smythii, Mare Marginis, Mare Vaporum, Sinus Medii, and Palus Putredinis. We also determined ages for basalts exposed in the craters Schickard, Grimaldi, Crüger, Hubble, Joliot, Goddard, and two lava ponds south of the crater Endymion. Our crater counts let us conclude that (1) Mare Frigoris is mostly filled with Imbrian basalts but there are a few areas that are covered with Eratosthenian basalts, (2) these Eratosthenian basalts occur in few small-sized areas north of the crater Plato but are not connected with each other as shown by Wilhelms, (3) basalts in Mare Nectaris, Mare Vaporum, Sinus Medii and Palus Putredinis are Imbrian in age, (4) basalts in Mare Smythii are younger than in Mare Marginis, contrary to the geologic map of Wilhelms and El-Baz, (5) basaltic fills of the craters Goddard, Hubble, and Joliot are of Imbrian age, (6) there are no Eratosthenian basalts in the crater Schickard but basalts in the crater Grimaldi are Eratosthenian in age as

  4. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt.

    PubMed

    Dixon, Jacqueline Eaby; Leist, Loretta; Langmuir, Charles; Schilling, Jean-Guy

    2002-11-28

    A substantial uncertainty in the Earth's global geochemical water cycle is the amount of water that enters the deep mantle through the subduction and recycling of hydrated oceanic lithosphere. Here we address the question of recycling of water into the deep mantle by characterizing the volatile contents of different mantle components as sampled by ocean island basalts and mid-ocean-ridge basalts. Although all mantle plume (ocean island) basalts seem to contain more water than mid-ocean-ridge basalts, we demonstrate that basalts associated with mantle plume components containing subducted lithosphere--'enriched-mantle' or 'EM-type' basalts--contain less water than those associated with a common mantle source. We interpret this depletion as indicating that water is extracted from the lithosphere during the subduction process, with greater than 92 per cent efficiency.

  5. Hafnium-neodymium isotope systematics of ocean island basalts

    NASA Astrophysics Data System (ADS)

    Salters, V. J.; Hart, S. R.; Blichert-Toft, J.

    2002-12-01

    We have measured Hf and Nd isotopes in basalts from Koolau, Hawaii, as well as from the Samoa hot spot chain. The Hawaiian samples, the Koolau drillhole, show limited variation in Hf or Nd isotope composition (epsilon Nd varies from 4.2 to 7.3 and epsilon Hf varies from 8 to 12.2). The correlated variation, based on 38 samples, has an R-squared of 0.86. The data results in a slope of 1.23 on a Hf-Nd isotope correlation diagram (epsilon notation). This slope is shallower than the mantle array defined by ocean island basalts which is 1.4. Contrary to previous work the Hf-Nd-isotope correlation for Samoa shows an even shallower slope than the Hawaiian samples. The Samoan samples are surface samples as well as recently dredged samples of the youngest extension of the Samoan hot spot [Hart et al., 2000]. The samples show a large range in Sr-Nd and Hf compositions with epsilon-Nd ranging from -2.2 to 3.5 and epsilon-Hf ranging from 2.2 to 7.5 and large range in Sr-isotopic composition with extreme values up to 0.7088. Hf-isotopic composition is well correlated with both Sr and Nd isotopic composition (R-squared is 0.93 and 0.95 respectively). Based on 10 samples the slope of the correlated isotope variation on an epsilon Hf-Nd isotope diagram is 0.97, which is shallower than any Hf-Nd-isotope correlation measured before. The shallow slope of the Hawaiian basalts on a Hf-Nd isotope correlation diagram has been interpreted as being distinctive of a contribution of recycled pelagic sediments [Blichert-Toft et al., 1999]. However, for Samoa the influence of pelagic sediments was thought to be limited as EMII basalts were thought to find its source in either a mixture of recycled oceanic crust with terrigenous sediments, or carbonatite metasomatism as an EMII-like component has been recognized in xenoliths affected by carbonatite metasomatism with Sr-isotopic compositions up to 0.7128 [Hauri et al., 1993]. Our new Hf-isotope data seem to rule out a recycled terrigenous

  6. Petrology of basalt and single-mineral fragments in the soil of the Sea of Fertility

    NASA Technical Reports Server (NTRS)

    Bence, A. E.; Holzwarth, W.; Papike, J. J.

    1974-01-01

    Basalt and single-mineral particles, ranging from 150 to 425 microns, from the Luna-16 sample are studied by electron microanalysis, X-ray fluorescence analysis, and petrographic techniques. Three basalt species of different structure are identified. The structure and composition of the individual minerals (in particular of pyroxenes) indicate that the basalts have crystallized under conditions similar to those established for Apollo-11 samples.

  7. Origin of yellow glasses associated with Apollo 15 KREEP basalt fragments

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit; Holmberg, Beth B.; Molinaroli, Emanuela

    1992-01-01

    The occurrence and chemical compositions of some uncommon yellow to yellowish orange glasses associated with KREEP basalt fragments in Apollo 15 solids of possibly pyroclastic origins are discussed. The glasses show compositional variations that are compatible with igneous fractionation trends. A scenario is described in which late-stage KREEP basalt magmas erupted violently enough to fragment and incorporate previously crystallized basalts and deposited pyroclastic material on the moon.

  8. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    SciTech Connect

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  9. Scappoose Formation, Columbia County, Oregon: new evidence of age and relation to Columbia River basalt group

    SciTech Connect

    VanAtta, R.O.; Kelty, K.B.

    1985-05-01

    The Scappoose Formation, considered to be late Oligocene to early Miocene in age, was originally believed to be disconformably separated from both the underlying Pittsburg Bluff Formation and the overlying Yakima subgroup of the Columbia River Basalt Group. Recent mapping and petrography show that it lies disconformably on both the Keasey and Pittsburg Bluff Formations, and interfingers with the Yakima Basalt. The Scappoose is composed of fluvial sandstone, conglomerate, and carbonaceous to coal-bearing mud rock, intertongued with shallow neritic to estuarine siltstone, mud rock, and minor sandstone. Chemistry of basalt clasts from fluvial conglomerates reveals that they are derived from the Yakima subgroup. Basalt conglomerate and palagonitic sediments in the upper part of the formation are intercalated with Grande Ronde basalt (Yakima subgroup) flows at many localities. Flows of Yakima Basalt are also invasive into originally wet, unconsolidated Scappoose sediment. Grande Ronde basalt and the Frenchman Springs Member of the Wanapum basalt overlie conglomerate of the Scappoose. In places, the Scappoose Formation is absent, and Yakima Basalt lies directly on the Pittsburg Bluff and Keasey Formations. The thickness of both the Scappoose Formation and the Columbia River Basalt Group varies widely, indicating that both were deposited over a paleotopography with a relief up to 800 ft (245 m). The definition of the boundaries of the Scappoose Formation should be revised, owing to the disconformable relation of the Scappoose to both the underlying Keasey and Pittsburg Bluff Formations and to the Scappoose's intercalation with the overlying Yakima Basalt. Definition of age must also be revised, inasmuch as sedimentation of the formation was coeval with Columbia River Basalt volcanism.

  10. Class distinction

    NASA Astrophysics Data System (ADS)

    White, M. Catherine

    Typical 101 courses discourage many students from pursuing higher level science and math courses. Introductory classes in science and math serve largely as a filter, screening out all but the most promising students, and leaving the majority of college graduates—including most prospective teachers—with little understanding of how science works, according to a study conducted for the National Science Foundation. Because few teachers, particularly at the elementary level, experience any collegiate science teaching that stresses skills of inquiry and investigation, they simply never learn to use those methods in their teaching, the report states.

  11. Evidence of biological activity in Hawaiian subsurface basalts

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.; Storrie-Lombardi, M. C.; Douglas, S.; Popa, R.; McDonald, G.; di Meo-Savoie, C.

    2003-12-01

    The Hawaii Scientific Drilling Program (HSDP) cored and recovered igneous rock from the surface to a depth of 3109 m near Hilo, Hawaii. Much of the deeper parts of the hole is composed of hyaloclastite (fractured basalt glass that has been cemented in situ with secondary minerals). Some hyaloclastite units have been altered in a manner attributed to microorganisms in volcanic rocks. Samples from one such unit (1336 m to 1404 m below sea level) were examined to test the hypothesis that the alteration was associated with microorganisms. Deep ultraviolet native fluorescence and resonance Raman spectroscopy indicate that nucleic acids and aromatic amino acids are present in clay inside spherical cavities (vesicles) within basalt glass. Chemical mapping shows that phosphorus and carbon were enriched at the boundary between the clay and volcanic glass of the vesicles. Environmental scanning electron microscopy (ESEM) reveals two to three micrometer coccoid structures in these same boundaries. ESEM-linked energy dispersive spectroscopy demonstrated carbon, phosphorous, chloride, and magnesium in these bodies significantly differing from unoccupied neighboring regions of basalt. These observations taken together indicate the presence of microorganisms at the boundary between primary volcanic glass and secondary clays. Amino acids and nucleic acids were extracted from bulk samples of the hyaloclastite unit. Amino acid abundance was low, and if the amino acids are derived from microorganisms in the rock, then there are less than 100,000 cells per gram of rock. Most nucleic acid sequences extracted from the unit were closely related to sequences of Crenarchaeota collected from the subsurface of the ocean floor.

  12. Petrogenesis of the Northwest Africa 4734 basaltic lunar meteorite

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hsu, Weibiao; Guan, Yunbin; Li, Xianhua; Li, Qiuli; Liu, Yu; Tang, Guoqiang

    2012-09-01

    We report the petrography, mineralogy, trace element abundance geochemistry, and Pb-Pb geochronology of the lunar meteorite Northwest Africa (NWA) 4734 and make a comparison with the LaPaz Icefield (LAP) 02205/02224 low-Ti lunar basaltic meteorites. NWA 4734 is an unbrecciated low-Ti mare basalt composed mainly of subophitic-textured pyroxene (60 vol%) and plagioclase (30%). Pyroxene, plagioclase, and olivine exhibit large compositional variations and intra-grain chemical zoning. Pyroxene and plagioclase in NWA 4734 have rare earth element (REE) concentrations and patterns similar to those of the LAPs. The crystallization age of NWA 4734, determined in situ in baddeleyite, is 3073 ± 15 Ma (2σ), nearly identical to that of the LAPs (3039 ± 12 Ma). NWA 4734 and the LAPs have similar textures, modal abundances, mineral chemistry, and crystallization ages, and are most likely source-crater paired on the Moon. One baddeleyite grain in LAP 02224 displays distinctively older and spatially variable ages, from 3349 ± 62 to 3611 ± 62 Ma (2σ), similar to another baddeleyite grain (3109 ± 29 to 3547 ± 21 Ma) reported by Zhang et al. (2010) for the same meteorite. Raman spectra, cathodoluminescence, and stoichiometric studies of the baddeleyite suggest that the two older grains were not endogenic but were trapped by the parental magma. Equilibrium partition calculation shows that the parental melt from which the NWA 4734 plagioclase crystallized has much lower REE contents than its whole rock, indicating an open system during magma evolution. NWA 4734 could have originated from a parental melt with REE concentrations similar to that of the Apollo 12 olivine basalt. The magma likely assimilated a small amount (˜4 wt%) of KREEP-rich material during its ascent through the lunar crust.

  13. Atmospheric argon contamination of ocean island basalt olivine phenocrysts

    NASA Astrophysics Data System (ADS)

    Parley, K. A.; Craig, H.

    1994-06-01

    40Ar/ 36Ar and helium and argon concentrations have been repeatedly measured on olivine phenocrysts in a single tholeiitic basalt (PIN-12) from the Juan Fernandez hotspot. Forty olivine splits were analyzed by crushing of bulk samples or laser fusion of single crystals. The measured 40Ar/ 36Ar ratios span a very large range (400-7700) and are consistent with binary mixing of two argon components. Unlike argon, helium in repeated measurements of this single basalt flow has a reproducible isotopic ratio, 17 times the air 3He/ 4He value. It is unlikely that such large variations in 40Ar/ 36Ar represent microscale mantle heterogeneity. Rather the results indicate highly variable mixing proportions of a mantle-derived radiogenic argon component ( 40Ar/ 36Ar ≫ 7700) and an isotopically air-like endmember that is almost certainly an atmospheric contaminant. This air-like constituent cannot be removed by physical and chemical treatments of the olivines. Analysis of individual crystals by laser fusion shows that both the radiogenic and the contaminant components are in fluid inclusions. Siting of the contaminant in inclusions requires the addition of airderived noble gases to hotspot magmas prior to or during emplacement, a process that may occur by assimilation of altered crust during crustal storage or, alternatively, by direct addition of air or seawater to the magma. In either case the olivines must continue to trap argon, presumably by fracture annealing and/or bubble enclosure, after the contaminating event. If atmospheric contamination is a general phenomenon, the 40Ar/ 36Ar composition of olivines (and possibly of basalt glasses as well) must be only a lower limit for the mantle source ratio. With the exception of helium, the other noble gases may be similarly compromised. Our results support contentions that lavas with near-atmospheric noble gas compositions reflect severe atmospheric contamination, rather than the air-like signature of an undegassed primitive

  14. 3D Finite Difference Modelling of Basaltic Region

    NASA Astrophysics Data System (ADS)

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  15. A convective model of water flow in Mururoa basalts

    NASA Astrophysics Data System (ADS)

    Henry, P.; Guy, C.; Cattin, R.; Dudoignon, P.; Sornein, J. F.; Caristan, Y.

    1996-06-01

    Even long after the end of volcanic activity, the background geothermal flux of Mururoa atoll (French Polynesia) maintains fluid convection. We present evidences that interstitial water is continuously renewed in the carbonate platform, as well as in the volcanic basement. In the carbonate rocks, the presence of a karst system allows convective fluxes high enough for the thermal equilibration of the formation with the ocean around. On the contrary, convection in the volcanic basement is, in most places, too slow to cause a measurable disturbance of temperature profiles. Thermal convection models indicate that the average permeability of the volcanic basement cannot be more than a few 10 mD (10 -14 m 2), implying a residence time of more than 10,000 years. The concentration of Sr in porewaters is used as an indicator of the rock/water ratio and of the residence time of the fluid. Considering the measured permeabilities and the estimated rates of reaction, residence times of more than 1 My, corresponding to average permeabilities of less than 10 -16 m 2, are unlikely in the studied upper kilometer of the volcano. However, the extrapolation of the rates of dissolution for basaltic glass measured in the laboratory to in situ conditions apparently leads to overestimate the rates of reaction. Chemically reactive surface area per volume of fluid is a critical parameter in this extrapolation and its value is dependent on the method used to measure it. Although it may not be the only explanation, the discrepancies can be caused by the presence of clays in conduits for fluid flow and as a replacement product of glass. Comparing our results with studies of Quaternary basalts in Iceland, the 10 Ma alteration history of the Mururoa basalt results in a decrease of the permeability of the aquifers by several orders of magnitude, but does not cause a large change of the chemically reactive surface area.

  16. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Laszlo P.; Jaeger, Windy L.

    2015-07-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The "Odessa Craters," near Odessa, WA, are 50-500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., "rootless") cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  17. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    USGS Publications Warehouse

    Kestay, Laszlo P.; Jaeger, Windy L.

    2015-01-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  18. Carbon Dioxide Tucked into Basalt Converts to Rock

    ScienceCinema

    McGrail, Pete

    2016-12-02

    Carbon Sequestration or storing carbon dioxide underground may be one approach to reducing atmospheric levels of the greenhouse gas. Storing it in basalt formations creates a chemical reaction in which the CO2 is transformed into a mineral similar to limestone enabling permanent storage underground. A field study by researchers at the Department of Energy’s Pacific Northwest National Laboratory shows that chemical happens quickly. Within two years, CO2 injected underground in Washington state had converted to the carbonate mineral ankerite.

  19. Dissolved hydrogen and methane in the oceanic basaltic biosphere

    NASA Astrophysics Data System (ADS)

    Lin, Huei-Ting; Cowen, James P.; Olson, Eric J.; Lilley, Marvin D.; Jungbluth, Sean P.; Wilson, Samuel T.; Rappé, Michael S.

    2014-11-01

    The oceanic basaltic crust is the largest aquifer on Earth and has the potential to harbor substantial subsurface microbial ecosystems, which hitherto remains largely uncharacterized and is analogous to extraterrestrial subsurface habitats. Within the sediment-buried 3.5 Myr old basaltic crust of the eastern Juan de Fuca Ridge flank, the circulating basement fluids have moderate temperature (∼65 °C) and low to undetectable dissolved oxygen and nitrate concentrations. Sulfate, present in high concentrations, is therefore expected to serve as the major electron acceptor in this subsurface environment. This study focused on the availability and potential sources of two important electron donors, methane (CH4) and hydrogen (H2), for the subseafloor biosphere. High integrity basement fluids were collected via fluid delivery lines associated with Integrated Ocean Drilling Program (IODP) Circulation Obviation Retrofit Kits (CORKs) that extend from basement depths to outlet ports at the seafloor. Two new CORKs installed during IODP 327 in 2010, 1362A and 1362B, were sampled in 2011 and 2013. The two CORKs are superior than earlier style CORKs in that they are equipped with coated casing and polytetrafluoroethylene fluid delivery lines, reducing the interaction between casing materials with the environment. Additional samples were collected from an earlier style CORK at Borehole 1301A. The basement fluids are enriched in H2 (0.05-1.8 μmol/kg), suggesting that the ocean basaltic aquifer can support H2-driven metabolism. The basement fluids also contain significant amount of CH4 (5-32 μmol/kg), revealing CH4 as an available substrate for subseafloor basaltic habitats. The δ13C values of CH4 from the three boreholes ranged from -22.5 to -58‰, while the δ2H values ranged from -316 to 57‰. The isotopic compositions of CH4 and the molecular compositions of hydrocarbons suggest that CH4 in the basement fluids is of both biogenic and abiotic origins, varying among sites

  20. Ilmenite exsolution schemes in Apollo-17 high-Ti basalts

    SciTech Connect

    Vaniman, D.; Heiken, G. ); Muhich, T. . Dept. of Geology)

    1990-01-01

    Combined electron microprobe and scanning electron microscope (SEM) x-ray image analyses are used to obtain semiquantitative data on the relations between ilmenite grains and their exsolved chromite and rutile. Comparisons of these data for ilmenites in four Apollo-17 high-Ti basalts with a database of electron microprobe analyses from the literature indicates that Cr expulsion from ilmenite can be as important as Fe{sup 2+} reduction in causing subsolidus exsolution of chromite and rutile from ilmenite. 12 refs., 4 figs., 5 tabs.

  1. Lonar Lake, India: An impact Crater in basalt

    USGS Publications Warehouse

    Fredriksson, K.; Dube, A.; Milton, D.J.; Balasundaram, M.S.

    1973-01-01

    Discovery of shock-metamorphosed material establishes the impact origin of Lonar Crater. Coarse breccia with shatter coning and microbreccia with moderately shocked fragments containing maskelynite were found in drill holes through the crater floor. Trenches on the rim yield strongly shocked fragments in which plagioclase has melted and vesiculated, and bombs and spherules of homogeneous rock melt. As the only known terrestrial impact crater in basalt, Lonar Crater provides unique opportunities for comparison with lunar craters. In particular, microbreccias and glass spherules from Lonar Crater have close analogs among the Apollo specimens.

  2. Pressure of origin of primary mid-ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Elthon, Don

    1989-01-01

    Evidence bearing on the pressure of origin of primary mid-ocean ridge basalts (MORBs) is reviewed. Consideration is given to the constraints derived from pseudoliquidus phase diagrams, the importance of silica contents in primitive MORB glasses, and the mineral compositions in the residual mantle. It is noted that the least depleted abyssal periodotite orthopyroxenes show the dominance of melting and primary MORB genesis at pressures of about 20-25 kbar, a value substantially greater than that (10 kbar) predicted by high-pressure phase equilibrium studies of MORBs.

  3. Final Reclamation Report: Basalt Waste Isolation Project exploratory shaft site

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs.

  4. Reclamation report, Basalt Waste Isolation Project, boreholes 1990

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1991-01-01

    The restoration of areas disturbed activities of the Basalt Waste Isolation Project (BWIP) has been undertaken by the US Department of Energy (DOE) in fulfillment of obligations and commitments made under the National Environmental Policy Act and the Nuclear Waste Policy Act. This restoration program comprises three separate projects: borehole reclamation, Near Surface Test Facility reclamation, and Exploratory Shaft Facility reclamation. Detailed descriptions of these reclamation projects may be found in a number of previous reports. This report describes the second phase of the reclamation program for the BWIP boreholes and analyzes its success relative to the reclamation objective. 6 refs., 14 figs., 13 tabs.

  5. Geochemical characterization of tubular alteration features in subseafloor basalt glass

    NASA Astrophysics Data System (ADS)

    Knowles, Emily; Staudigel, Hubert; Templeton, Alexis

    2013-07-01

    There are numerous indications that subseafloor basalts may currently host a huge quantity of active microbial cells and contain biosignatures of ancient life in the form of physical and chemical basalt glass alteration. Unfortunately, technological challenges prevent us from observing the formation and mineralization of these alteration features in situ, or reproducing tubular basalt alteration processes in the laboratory. Therefore, comprehensive analysis of the physical and chemical traces retained in mineralized tubules is currently the best approach for deciphering a record of glass alteration. We have used a number of high-resolution spectroscopic and microscopic methods to probe the geochemical and mineralogical characteristics of tubular alteration features in basalt glasses obtained from a suite of subseafloor drill cores that covers a range of different collection locations and ages. By combining three different synchrotron-based X-ray measurements - X-ray fluorescence microprobe mapping, XANES spectroscopy, and μ-XRD - with focused ion beam milling and transmission electron microscopy, we have spatially resolved the major and trace element distributions, as well as the oxidation state of Fe, determined the coordination chemistry of Fe, Mn and Ti at the micron-scale, and constrained the secondary minerals within these features. The tubular alteration features are characterized by strong losses of Fe2+, Mn2+, and Ca2+ compared to fresh glass, oxidation of the residual Fe, and the accumulation of Ti and Cu. The predominant phases infilling the alteration regions are Fe3+-bearing silicates dominated by 2:1 clays, with secondary Fe- and Ti-oxides, and a partially oxidized Mn-silicate phase. These geochemical patterns observed within the tubular alteration features are comparable across a diverse suite of samples formed over the past 5-100 Ma, which shows that the microscale mineralization processes are common and consistent throughout the ocean basins and

  6. Carbon and its isotopes in mid-oceanic basaltic glasses

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Moore, J. G.

    1984-01-01

    Sample surface carbon, mantle carbon dioxide in vesicles, and mantle carbon dissolved in glasses, are the three carbon components evident in the 11 mid-oceanic basalts presently analyzed. The total carbon content may be controlled by the depth of the shallowest ridge magma chamber, and carbon isotopic fractionation accompanies magma degassing. Using He-3 and carbon data for submarine hydrothermal fluids, the present day midoceanic ridge carbon flux is approximately estimated to be 1.0 x 10 to the 13th g C/yr, requiring 8 Gyr to accumulate the earth's present crustal carbon inventory.

  7. Basalt weathering in an Arctic Mars-analog site

    NASA Astrophysics Data System (ADS)

    Yesavage, Tiffany; Thompson, Aaron; Hausrath, Elisabeth M.; Brantley, Susan L.

    2015-07-01

    The martian surface has undergone chemical and physical weathering in the past, and these processes may continue intermittently today. To explore whether martian rocks are likely to retain features indicative of weathering, we investigated how basaltic material weathers on Earth. Specifically, we investigated weathering of a Quaternary-aged basaltic flow at the Sverrefjell volcano in Svalbard, above the Arctic Circle. This flow weathered since deglaciation under cold, dry (<400 mm/yr) conditions. We analyzed a ∼75-cm core of regolith for chemical loss and then characterized the mineralogical and morphological properties using electron microscopy (EM), X-ray diffraction (XRD), infrared (IR) spectroscopy and selective chemical dissolution. In addition, we ran colloidal dispersion, wetting/drying, and freeze/thaw experiments. In the regolith, we observed concentrations of short-range ordered (SRO) phases similar to those observed in warmer, wetter volcanic ash soils. IR and EM analyses of the clay-sized fraction were consistent with allophane as the predominant secondary phase. Selective chemical extractions targeting SRO phases indicated lower Al/Si ratios than those observed in volcanic soils reported in warmer localities, which we attribute to Si-rich allophane and/or abundant Si-rich rock coatings. The oxic circumneutral-pH colloidal dispersion experiments mobilized Al, Fe and Ti primarily as 260-415 nm particles and Ca, Mg and Na as solutes. Si was lost both in the colloidal and dissolved forms. Dispersed colloids likely contain allophane and ferrihydrite. Under anoxic conditions, dissolution of Fe oxide cements also released fines. The experiments help to explain elemental loss from the clay-sized regolith fraction at Svalbard: observed depletions in Ca, K, Mg and Na were likely due to solute loss, while particle-reactive Al, Fe, Si and Ti were mostly retained. Wetting/drying was observed to be as effective as freeze/thaw in driving material loss. It is thus

  8. Preliminary potentiometric map and flow dynamic characteristics for the upper-basalt confined aquifer system

    SciTech Connect

    Spane, F.A. Jr.; Raymond, R.G.

    1993-09-01

    This report presents the first comprehensive Hanford Site-wide potentiometric map for the upper-basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). In constructing the potentiometric map, over forty on-site and off-site monitoring wells and boreholes were used. The potentiometric map developed for the upper-basalt confined aquifer is consistent with the areal head pattern indicated for the Mabton interbed, which is a deeper and more areally extensive confined aquifer underlying the Hanford Site. Salient features for the upper-basalt confined aquifer system potentiometric map are described.

  9. Petrography, Geochemistry, and Pairing Relationships of Basaltic Lunar Meteorite Miller Range 13317

    NASA Astrophysics Data System (ADS)

    Zeigler, R. A.; Korotev, R. L.

    2016-08-01

    A petrographic and geochemical description of "new" lunar meteorite MIL 13317, an evolved lunar basaltic regolith breccia. The pairing relationships with previously described lunar meteorites are also explored.

  10. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts

    NASA Technical Reports Server (NTRS)

    Sakai, H.; Ueda, A.; Des Marais, D. J.; Moore, J. G.

    1984-01-01

    Ocean floor basalts studied from the Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 20-200 ppm carbon and 0.3-2.8 ppn nitrogen as sums of the vesicle-filling gases CO2 and N2 and dissolved species. The wide range of carbon contents found is due partly to the different extent of outgassing of vesicle-filling gases and partly to depth dependency of dissolved CO2 in the basalts. Sulfate commonly exists with sulfide in these basalts, and the sulfate/sulfide ratio increases with increasing water content, perhaps reflecting the higher oxidation potential in basalt melt of the higher water content.

  11. Double flood basalts and plume head separation at the 660-kilometer discontinuity.

    PubMed

    Bercovici, D; Mahoney, J

    1994-11-25

    Several of the world's flood basalt provinces display two distinct times of major eruptions separated by between 20 million and 90 million years. These double flood basalts may occur because a starting mantle plume head can separate from its trailing conduit upon passing the interface between the upper mantle and the lower mantle. This detached plume head eventually triggers the first flood basalt event. The remaining conduit forms a new plume head, which causes the second eruptive event. The second plume head is predicted to arrive at the lithosphere at least 10 million years after the first plume head, in general agreement with observations regarding double flood basalts.

  12. Nd-Sr isotopes, petrochemistry, and origin of the Siberian flood basalts, USSR

    SciTech Connect

    Sharma, M.; Basu, A.R. ); Nesterenko, G.V. )

    1991-04-01

    The Siberian Flood Basalt Province (SFBP) of Permo-Triassic age is one of the largest flood basalt provinces with an estimated area of exposure of 337 000 km{sup 2}, average thickness of 1 km, and a magma volume of 337 000 km{sup 3}. Forty-seven basaltic rocks from two main subprovinces, Norilsk (5-10{percent} of area, thickness up to 3 km) and Putorana (90-95{percent} of area, thickness of more than 2 km), were selected, on the basis of petrography and volcano-stratigraphic relation, for major-element analysis. Twenty-six of these basalts, twelve from Norilsk and fourteen from Putorana, were analyzed for Nd- and Sr-isotopic compositions. The Norilsk and Putorana basalts show some contrasting behavior in terms of the ratios of the highly incompatible elements of Ti, P, and K as a function of their Mg. The Norilsk basalts are more variable, suggesting the role of fractional crystallization-assimilation in their evolution. In contrast, the Putorana basalts show remarkable uniformity in their bulk chemical compositions. In Nd- and Sr-isotopic space, most of the Siberian basalts also fall within the field defined by the ocean island basalts data, implying common mantle sources. It is concluded that the SFBP originated by hotspot volcanism due to the rise of a large and relatively primitive lower mantle-derived plume beneath the Siberian continent.

  13. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    NASA Astrophysics Data System (ADS)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  14. Chemical and isotopic constraints on the petrogenesis of the large mare basalt clast in breccia 15459

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Lindstrom, M.; Bansal, B.; Mittlefehldt, D.; Shih, C.-Y.

    1989-01-01

    Results are presented that demonstrate that the large mare basalt clast in Apollo 15 breccia 15459 may represent one or more independent magma types. The complex nonequilibrium pyroxene and plagioclase compositions and relatively abundant mesostasis suggest that the 15459 clast is not a slowly cooled crystal cumulate. The addition of about 40 percent olivine to an olivine-normative basalt parental magma is found to be necessary to explain the high MgO abundances of picritic basalts by the accumulation of olivine in the magma. The present clast has a slightly younger age and a slightly higher Sr-87/Sr-86 ratio than most Apollo 15 basalts.

  15. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  16. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    SciTech Connect

    Bennecke, William M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

  17. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  18. Humps and hollows: basalt weathering in low-latitude mountains

    NASA Astrophysics Data System (ADS)

    Knight, Jasper; Grab, Stefan

    2013-04-01

    Physical, chemical and biological weathering processes are significant contributors to landscape development in mountain blocks worldwide, and over long time scales, but the interplay between different weathering processes is uncertain. Jurassic-age basalt lava flows underlie the Drakensberg mountain range of eastern Lesotho, southern Africa (summits 3200-3400 m asl), and weathered bedrock is commonly exposed on flat plateau surfaces. Subaerial weathering throughout the Quaternary and Holocene has resulted in a range of weathering forms, some of which exploit pre-existing cooling fractures within the basalts, and some of which are independent of geological control. These forms include pseudokarst-style potholes, karren and other microforms. The geometry, chemistry of water contained within the potholes, seasonal presence of ice, sediment and organic residues all suggest that physical, chemical and biological weathering processes are significant at different times and in different ways in subaerial weathering. Moreover, it is also likely that these process-types show pronounced seasonal variability that means that the interplay between different processes is subtle. Aggregated rates of land surface denudation or geomorphic development of single landforms therefore hide this subtle interplay between different processes. Changes in mountain summit soil depth (through soil erosion), ecosystems and climate will change this balance between different processes, and will operate over different spatial and temporal scales.