Sample records for adirondack class basalts

  1. Calcium Sulfate in Atacama Desert Basalt: A Possible Analog for Bright Material in Adirondack Basalt, Gusev Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    The Atacama Desert in northern Chile is one of the driest deserts on Earth (< 2mm/y). The hyper-arid conditions allow extraordinary accumulations of sulfates, chlorides, and nitrates in Atacama soils. Examining salt accumulations in the Atacama may assist understanding salt accumulations on Mars. Recent work examining sulfate soils on basalt parent material observed white material in the interior vesicles of surface basalt. This is strikingly similar to the bright-white material present in veins and vesicles of the Adirondack basalt rocks at Gusev Crater which are presumed to consist of S, Cl, and/or Br. The abundance of soil gypsum/anhydrite in the area of the Atacama basalt suggested that the white material consisted of calcium sulfate (Ca-SO4) which was later confirmed by SEM/EDS analysis. This work examines the Ca-SO4 of Atacama basalt in an effort to provide insight into the possible nature of the bright material in the Adirondack basalt of Gusev Crater. The objectives of this work are to (i) discuss variations in Ca-SO4 crystal morphology in the vesicles and (ii) examine the Ca-SO4 interaction(s) with the basalt interior.

  2. Alteration Mineralogy of Adirondack-class Rocks in Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Ruff, S. W.

    2009-12-01

    The rock Adirondack is the type example of a class of basaltic rocks analyzed by the Mars Exploration Rover Spirit in Gusev crater. Thermal infrared spectra of Adirondack-class rocks acquired by the Mini-TES instrument are distinguishable from spectra of other rock classes by the presence of an emissivity peak at 430 cm-1 and a minimum near 510 cm-1, which are characteristic of olivine. This is the primary spectral class on the plains of Gusev, but spectra of rocks exhibiting similar low wavenumber spectral character have been acquired along the rover traverse in the Columbia Hills, and we have confirmed that these also are Adirondack-class. Linear mixture modeling of their infrared spectra (enabled by applying a correction for dust on the Mini-TES optics) suggests that they are mafic with sulfate minerals present as alteration phases (up to 25%) in the majority of these rocks, broadly consistent with APXS-measured chemistry. The RAT-brushed surface of an unusual plains rock referred to as Mazatzal exhibits a spectral shape and modeled mineralogy consistent with the absence of olivine and the presence of amorphous phases low in silica, and is a coating unlike any other observed on Mars. We have also used a previously-demonstrated factor analysis and target transformation (FATT) technique with Adirondack-class rock spectra to retrieve the spectral shapes of independently-varying components within the data set. Using this approach, we have identified four shapes attributable to two distinct surface components, fine particulate surface dust, and a second dust component similar to downwelling sky radiance and/or dust on the Mini-TES optics. The two surface shapes do not resemble those of the two canonical surface types measured from orbit. One of the surface shapes is very similar to that of the lherzolitic Shergottite ALH A77005. Preliminary linear mixture analysis of this shape shows that it is dominated by olivine (~57%, ~Fo45) and pyroxene (~28%), with minor

  3. Adirondack's Inner Self

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectrum - the first taken of a rock on another planet - reveals the different iron-containing minerals that makeup the martian rock dubbed Adirondack. It shows that Adirondack is a type of volcanic rock known as basalt. Specifically, the rock is what is called olivine basalt because in addition to magnetite and pyroxene, two key ingredients of basalt, it contains a mineral called olivine. This data was acquired by Spirit's Moessbauer spectrometer before the rover developed communication problems with Earth on the 18th martian day, or sol, of its mission.

  4. Basaltic Soil of Gale Crater: Crystalline Component Compared to Martian Basalts and Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Schmidt, M.; Downs, R. T.; Stolper, E. M.; Blake, D. F.; Vaniman, D. T.; Achilles, C. N.; hide

    2013-01-01

    A significant portion of the soil of the Rocknest dune is crystalline and is consistent with derivation from unweathered basalt. Minerals and their compositions are identified by X-ray diffraction (XRD) data from the CheMin instrument on MSL Curiosity. Basalt minerals in the soil include plagioclase, olivine, low- and high-calcium pyroxenes, magnetite, ilmenite, and quartz. The only minerals unlikely to have formed in an unaltered basalt are hematite and anhydrite. The mineral proportions and compositions of the Rocknest soil are nearly identical to those of the Adirondack-class basalts of Gusev Crater, Mars, inferred from their bulk composition as analyzed by the MER Spirit rover.

  5. Formation of Fe/mg Smectite Under Acidic Conditions from Synthetic Adirondack Basaltic Glass: an Analog to Fe/mg Smectite Formation on Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-01-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (< 53 microns) of Adirondack rock class composition was exposed to pH 4 (acetic acid buffer) and N2 purged (anoxic) solutions amended with 0 and 10 mM Mg or Fe(II). Basaltic glass in these solutions was heated to 200 C in batch reactors for 1, 7, and 14 days. X-ray diffraction analysis of reacted materials detected the presence of phyllosilicates as indicated by a approx. 15.03-15.23Angstroms (001) peak. Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Angstroms (02l) and 1.54Angstroms (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200 C for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060

  6. Formation of Fe/Mg Smectite under acidic conditions from synthetic Adirondack Basaltic Glass: An Analog to Fe/Mg Smectite Formation on Mars.

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-12-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg-saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (< 53 μm) of Adirondack rock class composition was exposed to pH 4 (acetic acid buffer) and N2 purged (anoxic) solutions amended with 0 and 10 mM Mg or Fe(II). Basaltic glass in these solutions was heated to 200ºC in batch reactors for 1, 7, and 14 days. X-ray diffraction analysis of reacted materials detected the presence of phyllosilicates as indicated by a ~15.03-15.23Ǻ (001) peak. Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550°C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Ǻ (02l) and 1.54Ǻ (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200ºC for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060 peaks. Mössbauer analysis

  7. Basalt-Trachybasalt Fractionation in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Edwards, P. H.; Filiberto, J.; Schwenzer, S. P.; Gasda, P.; Wiens, R.

    2016-08-01

    A set of igneous float rocks in Gale Crater have been analysed by ChemCam. They are basalt-trachybasalts, 47 to 53 ± 5 wt% SiO2 and formed by ol-dominated crystal fractionation from an Adirondack type basalt, in magmatism with tholeiitic affinities.

  8. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  9. The Adirondack research center

    Treesearch

    Francis M. Rushmore

    1957-01-01

    Some of the first forest research done in North America was done in that lake-spangled land of forests and mountains in upper New York State that we know as the Adirondacks. The very name Adirondacks smacks of forest. The big Webster dictionary says that Adirondacks comes from a Mohawk Indian word, Hatirongtaks, which means literally, "they eat trees."

  10. Basalt-trachybasalt samples in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edwards, Peter H.; Bridges, John C.; Wiens, Roger; Anderson, Ryan; Dyar, Darby; Fisk, Martin; Thompson, Lucy; Gasda, Patrick; Filiberto, Justin; Schwenzer, Susanne P.; Blaney, Diana; Hutchinson, Ian

    2017-11-01

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at 55 wt% SiO2 and 6 wt% total alkalis, with a minor secondary maximum at 47-51 wt% SiO2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. The Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.

  11. Basalt-trachybasalt samples in Gale Crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Peter H.; Bridges, John C.; Wiens, Roger Craig

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg#more » = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.« less

  12. Basalt-trachybasalt samples in Gale Crater, Mars

    DOE PAGES

    Edwards, Peter H.; Bridges, John C.; Wiens, Roger Craig; ...

    2017-09-14

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg#more » = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.« less

  13. Adirondack tourism: perceived consequences of acid rain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.C.

    This report seeks to place in perspective the perceived effects of acid precipitation on the tourist industry in the Adirondacks. The 9375-square mile park is host to almost nine million tourists annually, not including seasonal residents. Since the park was established almost 100 years ago, there have been many changes in tourist characteristics, available recreational facilities, kinds of activities, accessibility of the area, and land use and resource management policies. The tourist industry has been influenced by both controllable and uncontrollable factors. At present the overwhelming majority of recreational opportunities and natural resources important to the Adirondack tourist industry aremore » relatively unaffected by acid precipitation. Fishing, a significant component of the tourist industry, is the most vulnerable, but any presumed adverse economic effect has to be weighed against the location of the impacted waters, total Adirondack fishing habitat, substitution available, habitat usage, fisherman characteristics, resource management, and the declining importance of fishing as an Adirondack recreational attraction. Concern is expressed as to whether present minimal acidification impacts are the precursor of major future impacts on Adirondack terrestrial and aquatic environments, and ultimately tourism. Tourism in the Adirondacks is increasing, while many other regional employment sectors are declining. It is becoming a more stable multiseason industry. Its future growth and character will be affected by government, private organization, business community, and resident controversies regarding land use and resource management attitudes, policies, budgets, and regulations. The acid precipitation issue is only one of many related controversies. 65 references, 2 figures.« less

  14. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  15. A comparison of the temporally integrated monitoring of ecosystems and Adirondack Long Term-Monitoring programs in the Adirondack Mountain region of New Yrok

    EPA Science Inventory

    This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...

  16. Fluid-absent metamorphism in the Adirondacks

    NASA Technical Reports Server (NTRS)

    Valley, J. W.

    1986-01-01

    Results on late Proterozoic metamorphism of granulite in the Adirondacks are presented. There more than 20,000 sq km of rock are at granulite facies. Low water fugacites are implied by orthopyroxene bearing assemblages and by stability of k'spar-plag-quartz assemblages. After mentioning the popular concept of infiltration of carbon dioxide into Precambrian rocks and attendent generation of granulite facies assemblages, several features of Adirondack rocks pertinent to carbon dioxide and water during their metamorphism are summarized: wollastonite occurs in the western lowlands; contact metamorphism by anorthosite preceeding granulite metamorphism is indicated by oxygen isotopes. Oxygen fugacity lies below that of the QFM buffer; total P sub water + P sub carbon dioxide determined from monticellite bearing assemblages are much less than P sub total (7 to 7.6 kb). These and other features indicate close spatial association of high- and low-P sub carbon dioxide assemblages and that a vapor phase was not present during metamorphism. Thus Adirondack rocks were not infiltrated by carbon dioxide vapor. Their metamorphism, at 625 to 775 C, occurred either when the protoliths were relatively dry or after dessication occurred by removal of a partial melt phase.

  17. Acid Rain Effects on Adirondack Streams - Results from the 2003-05 Western Adirondack Stream Survey (the WASS Project)

    USGS Publications Warehouse

    Lawrence, Gregory B.; Roy, Karen M.; Baldigo, Barry P.; Simonin, Howard A.; Passy, Sophia I.; Bode, Robert W.; Capone, Susan B.

    2009-01-01

    Traditionally lakes have been the focus of acid rain assessments in the Adirondack region of New York. However, there is a growing recognition of the importance of streams as environmental indicators. Streams, like lakes, also provide important aquatic habitat, but streams more closely reflect acid rain effects on soils and forests and are more prone to acidification than lakes. Therefore, a large-scale assessment of streams was undertaken in the drainage basins of the Oswegatchie and Black Rivers; an area of 4,585 km2 in the western Adirondack region where acid rain levels tend to be highest in New York State.

  18. Adirondack Under the Microscope-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.

  19. Snow accumulations and melt under certain forest conditions in the Adirondacks

    Treesearch

    Howard W. Lull; Francis M. Rushmore

    1960-01-01

    The Adirondack region of New York is a land of many lakes and streams. It feeds water into Lake Champlain, Lake Ontario, the St. Lawrence River, and the Hudson River. Much of this streamflow comes from the melting of the spring snowpack in the Adirondacks.

  20. Coping, crowding and satisfaction: a study of Adirondack wilderness hikers

    Treesearch

    Andrew K. Johnson; Chad Dawson

    2002-01-01

    Hikers in the wilderness areas of New York's Adirondack Park use a combination of physical and cognitive coping behaviors to maintain satisfaction with their wilderness experience. A total of 102 hikers in 16 Adirondack wilderness areas were interviewed and asked to complete a single-page survey. The in-depth interviews and surveys of hikers' importance and...

  1. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    USGS Publications Warehouse

    McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F.; Herkenhoff, K.; Gellert, Ralf; Stockstill, K.R.; Tornabene, L.L.; Squyres, S. W.; Crisp, J.A.; Christensen, P.R.; McCoy, T.J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-01-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater. Copyright 2006 by the American Geophysical Union.

  2. SEASONAL AND LONG-TERM TEMPORAL PATTERNS IN THE CHEMISTRY OF ADIRONDACK LAKES

    EPA Science Inventory

    There is considerable interest in the recovery of surface waters from acidification by acidic deposition. he Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. he objectives of this paper are to: 1) ...

  3. The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D.; Lim, D. S. S.; Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Christensen, P. R.

    2016-12-01

    Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and King's Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010. Spirit was equipped with the Athena science payload enabling the determination of mineralogy (mini-Thermal Emission Spectrometer, Pancam multispectral camera, and Mössbauer spectrometer), bulk chemistry (Alpha Particle X-ray Spectrometer) and context (Pancam and Microscopic Imager). During sol 32 Spirit investigated an olivine basalt named Adirondack, the type specimen for a class of rock that composes much of the plains material within Gusev Crater and embays the Columbia Hills. Following the characterization of the plains material, Spirit departed the plains targeting the Columbia Hills and ascending at Husband Hill. During Spirit's ascent of Husband Hill three additional classes of volcanic rock were identified as distinct by their mini-TES spectra; Wishstone, Backstay and Irvine. These rocks are classified as tephrite, trachy-basalt and basalt, respectively, and are the first alkaline rocks observed on Mars. These

  4. Spectral variability among rocks in visible and near-infrared mustispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques

    USGS Publications Warehouse

    Farrand, W. H.; Bell, J.F.; Johnson, J. R.; Squyres, S. W.; Soderblom, J.; Ming, D. W.

    2006-01-01

    Visible and near-infrared (VNIR) multispectral observations of rocks made by the Mars Exploration Rover Spirit's Panoramic camera (Pancam) have been analyzed using a spectral mixture analysis (SMA) methodology. Scenes have been examined from the Gusev crater plains into the Columbia Hills. Most scenes on the plains and in the Columbia Hills could be modeled as three end-member mixtures of a bright material, rock, and shade. Scenes of rocks disturbed by the rover's Rock Abrasion Tool (RAT) required additional end-members. In the Columbia Hills, there were a number of scenes in which additional rock end-members were required. The SMA methodology identified relatively dust-free areas on undisturbed rock surfaces as well as spectrally unique areas on RAT abraded rocks. Spectral parameters from these areas were examined, and six spectral classes were identified. These classes are named after a type rock or area and are Adirondack, Lower West Spur, Clovis, Wishstone, Peace, and Watchtower. These classes are discriminable based, primarily, on near-infrared (NIR) spectral parameters. Clovis and Watchtower class rocks appear more oxidized than Wishstone class rocks and Adirondack basalts based on their having higher 535 nm band depths. Comparison of the spectral parameters of these Gusev crater rocks to parameters of glass-dominated basaltic tuffs indicates correspondence between measurements of Clovis and Watchtower classes but divergence for the Wishstone class rocks, which appear to have a higher fraction of crystalline ferrous iron-bearing phases. Despite a high sulfur content, the rock Peace has NIR properties resembling plains basalts. Copyright 2006 by the American Geophysical Union.

  5. Spectral Variability among Rocks in Visible and Near Infrared Multispectral Pancam Data Collected at Gusev Crater: Examinations using Spectral Mixture Analysis and Related Techniques

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Bell, J. F., III; Johnson, J. R.; Squyres, S. W.; Soderblom, J.; Ming, D. W.

    2006-01-01

    Visible and Near Infrared (VNIR) multispectral observations of rocks made by the Mars Exploration Rover Spirit s Panoramic camera (Pancam) have been analysed using a spectral mixture analysis (SMA) methodology. Scenes have been examined from the Gusev crater plains into the Columbia Hills. Most scenes on the plains and in the Columbia Hills could be modeled as three endmember mixtures of a bright material, rock, and shade. Scenes of rocks disturbed by the rover s Rock Abrasion Tool (RAT) required additional endmembers. In the Columbia Hills there were a number of scenes in which additional rock endmembers were required. The SMA methodology identified relatively dust-free areas on undisturbed rock surfaces, as well as spectrally unique areas on RAT abraded rocks. Spectral parameters from these areas were examined and six spectral classes were identified. These classes are named after a type rock or area and are: Adirondack, Lower West Spur, Clovis, Wishstone, Peace, and Watchtower. These classes are discriminable based, primarily, on near-infrared (NIR) spectral parameters. Clovis and Watchtower class rocks appear more oxidized than Wishstone class rocks and Adirondack basalts based on their having higher 535 nm band depths. Comparison of the spectral parameters of these Gusev crater rocks to parameters of glass-dominated basaltic tuffs indicates correspondence between measurements of Clovis and Watchtower classes, but divergence for the Wishstone class rocks which appear to have a higher fraction of crystalline ferrous iron bearing phases. Despite a high sulfur content, the rock Peace has NIR properties resembling plains basalts.

  6. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  7. Browning of Adirondack, NY Lakes: Rates and Effects

    NASA Astrophysics Data System (ADS)

    Driscoll, C. T.; Mota, Y.; Fakhraei, H.; Todorova, S.; Leach, T.; Rose, K. C.; O'Donnell, S.

    2017-12-01

    Browning, or increases in the concentrations of dissolved organic matter (DOM), is an intriguing recent phenomenon occurring in northern freshwaters. It is hypothesized that browning is a watershed response to decreases in acid deposition, although changing in climate may also contribute. The Adirondack region of NY is experiencing marked increases in lake concentrations of dissolved organic carbon (DOC), with 29 out of 48 lakes in the Adirondack Long-Term Monitoring (ALTM) program showing significant increases and two exhibiting decreases since 1992. Increases in DOC is altering the acid base status of Adirondack lakes largely due increases in DOM with strongly acidic functional groups. DOM mobilization limits increases in acid neutralizing capacity that can be achieved in recovery of surface waters from acid deposition. A subset of ALTM lakes also appear to be experiencing changes in their physical characteristics during the summer stratification period, consistent with increases in DOM and browning. Of 28 lakes monitored for water column profiles since 1994: 8 are showing declines in thermocline depth (5 significant, p<0.05); all are exhibiting increases in epilimnetic temperature (9 significant); 26 are experiencing increases in the difference between epilimnetic and hypolimnetic temperatures (6 significant); and 17 are experiencing decreases in hypolimnetic dissolved oxygen concentrations (6 significant decreases, 1 increase). These changes may be a manifestation of increases in the attenuation of light associated with increases in DOM, increasing the intensity and duration of thermal stratification.

  8. Deep crustal deformation by sheath folding in the Adirondack Mountains, USA

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    As described by McLelland and Isachsen, the southern half of the Adirondacks are underlain by major isoclinal (F sub 1) and open-upright (F sub 2) folds whose axes are parallel, trend approximately E-W, and plunge gently about the horizontal. These large structures are themselves folded by open upright folds trending NNE (F sub 3). It is pointed out that elongation lineations in these rocks are parallel to X of the finite strain ellipsoid developed during progressive rotational strain. The parallelism between F sub 1 and F sub 2 fold axes and elongation lineations led to the hypothesis that progressive rotational strain, with a west-directed tectonic transport, rotated earlier F sub 1-folds into parallelism with the evolving elongation lineation. Rotation is accomplished by ductile, passive flow of F sub 1-axes into extremely arcuate, E-W hinges. In order to test these hypotheses a number of large folds were mapped in the eastern Adirondacks. Other evidence supporting the existence of sheath folds in the Adirondacks is the presence, on a map scale, of synforms whose limbs pass through the vertical and into antiforms. This type of outcrop pattern is best explained by intersecting a horizontal plane with the double curvature of sheath folds. It is proposed that sheath folding is a common response of hot, ductile rocks to rotational strain at deep crustal levels. The recognition of sheath folds in the Adirondacks reconciles the E-W orientation of fold axes with an E-W elongation lineation.

  9. VALUATION OF NATURAL RESOURCE IMPROVEMENTS IN THE ADIRONDACKS

    EPA Science Inventory

    The benefits of improving natural resources in the Adirondacks are estimated to be between $336 million and $1.1 billion per year (2003$), according to a new study by Resources for the Future. The five-year study, supported by an EPA grant, estimates New Yorkers willingness-to-...

  10. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  11. Contemporary doming of the Adirondack mountains: Further evidence from releveling

    USGS Publications Warehouse

    Isachsen, Y.W.

    1981-01-01

    The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The dome has a NNE-SSW axis about 190 km long, and an east-west dimension of about 140 km. It has a structural relief of at least 1600 m, and a local topographic relief of up to 1200 m. First-order leveling in 1955, and again in 1973 along a north-south line at the eastern margin of the Adirondack shows an uplift rate of 2.2 mm/yr at the latitude of the center of the dome and a subsidence rate of 2.8 mm/yr at the northern end of the line near the Canadian border. The net amount of arching along this releveled line is 9 cm ?? 2 cm (Isachsen, 1975). To test the idea that this arching represented an "edge effect" of contemporary doming of the Adirondacks as a whole, the National Geodetic Survey was encouraged to relevel a 1931 north-south line between Utica and Fort Covington (near the Canadian border) which crosses the center of the dome. The releveling showed that the mountain mass is undergoing contemporary domical uplift at a rate which reaches 3.7 mm/yr near the center of the dome (compare with 1 mm/yr for the Swiss Alps). Three other releveled lines in the area support this conclusion. ?? 1981.

  12. Wolf restoration to the Adirondacks: the advantages and disadvantages of public participation in the decision

    USGS Publications Warehouse

    Mech, L. David; Sharpe, V.A.; Norton, B.; Donnelley, S.

    2000-01-01

    The first time I ever saw a wolf in New York State's Adirondack Mountains was in 1956. It was a brush wolf, or coyote (Canis latrans), not a real wolf, but to an eager young wildlife student this distinction meant little. The presence of this large deer-killing canid let my fresh imagination view the Adirondacks as a real northern wilderness. Since then I have spent the last 40 years studying the real wolf: the gray wolf (Canis lupus). Although inhabiting nearby Quebec and Ontario, the gray wolf still has not made its way back to the Adirondacks as it has to Wisconsin, Michigan, and Montana. Those three states had the critical advantages of a nearby reservoir population of wolves and wilderness corridors through which dispersers from the reservoirs could immigrate. The Adirondacks, on the other hand, are geographically more similar to the greater Yellowstone area in that they are separated from any wolf reservoir by long distances and intensively human-developed areas aversive to wolves from the reservoir populations. If wolves are to return to the Adirondacks, they almost certainly will have to be reintroduced, as they were to Yellowstone National Park. Wolf reintroduction, as distinct from natural recovery, is an especially contentious issue, for it entails dramatic, deliberate action that must be open to public scrutiny, thorough discussion and review, and highly polarized debate. This is as it should be because once a wolf population is reintroduced to an area, it must be managed forever. There is no turning back. The wolf was once eradicated not just from the Adirondacks but from almost all of the 48 contiguous states. That feat was accomplished by a primarily pioneering society that applied itself endlessly to the task, armed with poison. We can never return to those days, so once the wolf is reintroduced successfully, it will almost certainly be here to stay.

  13. Widespread sugar maple decline and regeneration failure in the Adirondacks

    Treesearch

    Jerry C. Jenkins; Elizabeth Moffett; Daphne Ross

    1999-01-01

    Over large areas of the Adirondacks, hardwood stands whose canopies are dominated by or contain abundant mature sugar maple (Acer saccharum Marsh.) have almost no sugar maple saplings or seedlings in the understory.

  14. U-Pb age of the Diana Complex and Adirondack granulite petrogenesis

    USGS Publications Warehouse

    Basu, A.R.; Premo, W.R.

    2001-01-01

    U-Pb isotopic analyses of eight single and multi-grain zircon fractions separated from a syenite of the Diana Complex of the Adirondack Mountains do not define a single linear array, but a scatter along a chord that intersects the Concordia curve at 1145 ?? 29 and 285 ?? 204 Ma. For the most concordant analyses, the 207Pb/206Pb ages range between 1115 and 1150 Ma. Detailed petrographic studies revealed that most grains contained at least two phases of zircon growth, either primary magmatic cores enclosed by variable thickness of metamorphic overgrowths or magmatic portions enclosing presumably older xenocrystic zircon cores. The magmatic portions are characterized by typical dipyramidal prismatic zoning and numerous black inclusions that make them quite distinct from adjacent overgrowths or cores when observed in polarizing light microscopy and in back-scattered electron micrographs. Careful handpicking and analysis of the "best" magmatic grains, devoid of visible overgrowth of core material, produced two nearly concordant points that along with two of the multi-grain analyses yielded an upper-intercept age of 1118 ?? 2.8 Ma and a lower-intercept age of 251 ?? 13 Ma. The older age is interpreted as the crystallization age of the syenite and the younger one is consistent with late stage uplift of the Appalachian region. The 1118 Ma age for the Diana Complex, some 35 Ma younger than previously believed, is now approximately synchronous with the main Adirondack anorthosite intrusion, implying a cogenetic relationship among the various meta-igneous rocks of the Adirondacks. The retention of a high-temperature contact metamorphic aureole around Diana convincingly places the timing of Adirondack regional metamorphism as early as 1118 Ma. This result also implies that the sources of anomalous high-temperature during granulite metamorphism are the syn-metamorphic intrusions, such as the Diana Complex.

  15. The influence of the Adirondacks on the wilderness preservation contributions of Robert Marshall and Howard Zahniser

    Treesearch

    Chad P. Dawson; Ed Zahniser

    2000-01-01

    Two wilderness visionaries, Robert Marshall and Howard Zahniser, were influenced by their personal wilderness experiences in the Adirondack Mountains of New York and the “forever wild” legislation that protected those Forest Preserve areas. Both learned from and contributed to the wilderness preservation movement in the Adirondacks and the nation. The wilderness...

  16. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  17. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  18. Exploring satisfaction among paddlers in two Adirondack canoeing areas

    Treesearch

    Becky J. Pfaffenbach; Harry C. Zinn; Chad P. Dawson

    2003-01-01

    An exploratory study examining the relationships between visitor satisfaction, perceived crowding, and expected crowding was conducted using both quantitative and qualitative methods. The study sample consisted of non-motorized watercraft users in two adjacent popular canoe areas in New York State's Adirondack Forest Preserve: the Saint Regis Canoe Area (SRCA) and...

  19. Nitrate trends in the Adirondack Mountains, Northeastern US, 1993-2007

    EPA Science Inventory

    The Adirondack Mountains in New York State receive some of the highest rates of nitrogen deposition in the Northeastern U.S. Between 1993 and 2007, nitrogen deposition loads did not significantly change and average annual wet inorganic nitrogen deposition was 6 kg/ha (Figure 1)....

  20. Diatom diversity in chronically versus episodically acidified adirondack streams

    USGS Publications Warehouse

    Passy, S.I.; Ciugulea, I.; Lawrence, G.B.

    2006-01-01

    The relationship between algal species richness and diversity, and pH is controversial. Furthermore, it is still unknown how episodic stream acidification following atmospheric deposition affects species richness and diversity. Here we analyzed water chemistry and diatom epiphyton dynamics and showed their contrasting behavior in chronically vs. episodically acidic streams in the Adirondack region. Species richness and diversity were significantly higher in the chronically acidic brown water stream, where organic acidity was significantly higher and the ratio of inorganic to organic monomeric aluminum significantly lower. Conversely, in the episodically acidic clear water stream, the inorganic acidity and pH were significantly higher and the diatom communities were very species-poor. This suggests that episodic acidification in the Adirondacks may be more stressful for stream biota than chronic acidity. Strong negative linear relationships between species diversity, Eunotia exigua, and dissolved organic carbon against pH were revealed after the influence of non-linear temporal trends was partialled out using a novel way of temporal modeling. ?? 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

  1. Mercury contribution to an Adirondack lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrudato, R.J.; Long, D.; Weinbloom, R.

    1987-01-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipitation.

  2. Mercury contribution to an adirondack lake

    NASA Astrophysics Data System (ADS)

    Scrudato, R. J.; Long, D.; Weinbloom, Robert

    1987-10-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.

  3. Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification

    NASA Astrophysics Data System (ADS)

    Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.

    1993-04-01

    Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish

  4. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks. Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed. Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in ??18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences. The range of Adirondack carbonate ??18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their

  5. Kyanite-Bearing Migmatites at Ledge Mountain, Adirondack Highlands

    NASA Astrophysics Data System (ADS)

    Swanson, B.; Leech, M.; Metzger, E. P.

    2017-12-01

    Sillimanite-rich felsic migmatites exposed at Ledge Mountain represent the only location in the Adirondack Highlands where kyanite has been found. The texturally young kyanite is overprinted on sillimanite in largely undeformed pegmatitic leucosomes, suggesting a late episode of melting taking place deeper than previously thought, and requiring a counter-clockwise P-T path. A final phase of anatexis ca. 1050 Ma in the Eastern Adirondack Highlands is consistent with an influx of fluid or decompression from extension in sillimanite-bearing migmatites. Temperatures both from this study and previous work are consistent with granulite-facies metamorphism, however the presence of kyanite requires higher pressure conditions corresponding to deeper burial of these central Adirondack rocks. We used Perple_X to model phase equilibria using XRF+ICP-MS whole-rock chemistries for the kyanite-bearing migmatites. Pseudosection models suggest that the peak P-T mineral assemblage kyanite + mesoperthite + garnet + rutile formed at approximately 15-20kb and 1000°C which is higher than previously proposed for granulites in the region. These P-T conditions for peak metamorphism are similar to those reported for the distinctive and relatively rare assemblage that we observe kyanite + hypersolvus feldspar (now mesoperthite) + garnet + rutile. We have evidence of isothermal decompression to <11kb and 880°-1000°C based on Grt + Pl equilibrium in the assemblage Grt + Pl ± Kfs + Qz + Ilm + melt. The leucocratic melt phase comprises 16 vol. % of the rock at these P-T conditions which is sufficient for ductile flow in the deep crust. This melt phase is present syn-exhumation and helped to buoyantly exhume Ledge Moutain rocks beneath bounding normal faults as a granitic gneiss dome. Preliminary U-Pb SHRIMP zircon ages from Ledge Mountain kyanite-bearing migmatites show anatexis continuing well after high-grade metamorphism is believed to have ceased in the range. A counter-clockwise P

  6. Climbers' attitudes toward recreation resource impacts in the Adirondack Park

    Treesearch

    Christopher A. Monz; Katherine E. Smith; Leah Knickerbocker

    2006-01-01

    Climbers arriving at trailheads to popular climbing areas in Adirondack Park, NY were surveyed as to the types of resource impacts they found to be offensive. Climbers were also asked about their degree of concern regarding crowding, noise and management of climbing areas. Some resource impacts, such as damage to trees as a result of poor climbing practices, are...

  7. Aluminum toxicity risk reduction as a result of reduced acid deposition in Adirondack lakes and ponds.

    PubMed

    Michelena, Toby M; Farrell, Jeremy L; Winkler, David A; Goodrich, Christine A; Boylen, Charles W; Sutherland, James W; Nierzwicki-Bauer, Sandra A

    2016-11-01

    In 1990, the US Congress amended the Clean Air Act (CAA) to reduce regional-scale ecosystem degradation from SO x and NO x emissions which have been responsible for acid deposition in regions such as the Adirondack Mountains of New York State. An ecosystem assessment project was conducted from 1994 to 2012 by the Darrin Fresh Water Institute to determine the effect of these emission reduction policies on aquatic systems. The project investigated water chemistry and biota in 30 Adirondack lakes and ponded waters. Although regulatory changes made in response to the 1990 CAA amendments resulted in a reduction of acid deposition within the Adirondacks, the ecosystem response to these reductions is complicated. A statistical analysis of SO 4 , pH, Al, and DOC data collected during this project demonstrates positive change in response to decreased deposition. The changes in water chemistry also have lowered the risk of Al toxicity to brook trout (Salvelinus fontinalis [Mitchill]), which allowed the re-introduction of this species to Brooktrout Lake from which it had been extirpated. However, pH and labile aluminum (Al im ) fluctuate and are not strongly correlated to changes in acid deposition. As such, toxicity to S. fontinalis also is cyclic and provides rationale for the difficulties inherent in re-establishing resident populations in impacted aquatic environments. Overall, aquatic ecosystems of the Adirondacks show a positive response to reduced deposition driven by changes in environmental policy, but the response is more complex and indicates an ecosystem-wide interaction between aquatic and watershed components of the ecosystem.

  8. Moessbauer Mineralogy of Rock, Soil, and Dust at Gusev Crater, Mars: Spirit's Journey through Weakly Altered Olivine Basalt on the Plains and Pervasively Altered Basalt in the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Schroeder, C.; Rodionov, D. S.; Yen, A.; Ming, D. W.; deSouza, P. A., Jr.; Fleischer, I.; Wdowiak, T.; Gellert, R.; hide

    2006-01-01

    The Moessbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe(3+)-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe(3+)/Fe(sub T)<0.2) with Fe from olivine, pyroxene (Ol>Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe(3+)/Fe(sub T) approx.0.6-0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe(2+) from Ol+Px is 40-49% and 9-24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm approx.3-6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt approx. 10-15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt=40%). Goethite (alpha-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe(3+)/Fe(sub T) approx. 0.3) occur throughout Gusev crater (approx. 60-80% Fe from Ol+Px, approx. 10-30% from npOx, and approx. 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe(3+)-sulfate (approx. 65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust.

  9. Age and petrogenesis of the Diana Complex, Adirondack Mountains, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, N.; Yang, Yingping; Cliff, R.

    1992-01-01

    U-Pb zircon data show that the Diana Complex was emplaced 1152[plus minus]12 Ma ago along the Carthage-Colton Mylonite Zone (CCMZ), that marks the boundary between the Adirondack Highlands and the Lowlands. The tectonic setting of the Complex is uncertain because granitoid plutons of the same age were emplaced under syntectonic conditions in the Lowlands, while in the Highlands the same plutons have been viewed as anorogenic. Deformation focused on the CCMZ is reflected in whole-rock Rb-Sr isochron age of 1038[plus minus]97 Ma for the Complex. This resetting is typical of granitoid plutons within a 10 km-wide zone across the CCMZ,more » but is absent outside this zone elsewhere in the Lowlands. Although the chemical continuity of the Complex with Adirondack mafic rocks of the same presumed age demonstrates that crystal fractionation from a basic parent was a likely origin for the Complex, it is probable the magmas were modified by crustal assimilation. For example, the initial [sup 87]Sr/[sup 86]Sr[sub 1152] values for the Complex (0.7042[plus minus]3) are higher than the same ratios for Adirondack mafic rocks (0.7033[plus minus]6), and one zircon fraction lies to the right of the discordia defined by the other four analyzed fractions. The nature and age of the assimilant may be constrained by a metasedimentary xenolith with a whole-rock Rb-Sr isochron age of 1318[plus minus]15 Ma. Changes in TiO[sub 2] and P[sub 2]O[sub 5] abundances and La/Yb values indicate that the crystallization of both accessory (e.g., Fe-Ti oxides, apatite and zircon) and silicate phases were important in the fractionation of the Diana Complex syenites.« less

  10. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  11. Conservation easements in the Adirondack Park of New York state

    Treesearch

    Chad P. Dawson; Steven Bick; Peter D' Luhosch; Matthew Nowak; Diane Kuehn

    2015-01-01

    The use of conservation easements to keep private lands undeveloped and protect open space and large scale landscapes has grown rapidly. The New York State Adirondack Park includes 2.5 million acres (1 million ha) of state owned land and 3 million acres (1.2 million ha) of private lands; over 781,000 acres (316,194 ha) of these private lands were under publicly held...

  12. Melting of the primitive martian mantle at 0.5-2.2 GPa and the origin of basalts and alkaline rocks on Mars

    NASA Astrophysics Data System (ADS)

    Collinet, Max; Médard, Etienne; Charlier, Bernard; Vander Auwera, Jacqueline; Grove, Timothy L.

    2015-10-01

    We have performed piston-cylinder experiments on a primitive martian mantle composition between 0.5 and 2.2 GPa and 1160 to 1550 °C. The composition of melts and residual minerals constrain the possible melting processes on Mars at 50 to 200 km depth under nominally anhydrous conditions. Silicate melts produced by low degrees of melting (<10 wt.%) were analyzed in layers of vitreous carbon spheres or in micro-cracks inside the graphite capsule. The total range of melt fractions investigated extends from 5 to 50 wt.%, and the liquids produced display variable SiO2 (43.7-59.0 wt.%), MgO (5.3-18.6 wt.%) and Na2O + K2O (1.0-6.5 wt.%) contents. We provide a new equation to estimate the solidus temperature of the martian mantle: T (°C) = 1033 + 168.1 P (GPa) - 14.22P2 (GPa), which places the solidus 50 °C below that of fertile terrestrial peridotites. Low- and high-degree melts are compared to martian alkaline rocks and basalts, respectively. We suggest that the parental melt of Adirondack-class basalts was produced by ∼25 wt.% melting of the primitive martian mantle at 1.5 GPa (∼135 km) and ∼1400 °C. Despite its brecciated nature, NWA 7034/7533 might be composed of material that initially crystallized from a primary melt produced by ∼10-30 wt.% melting at the same pressure. Other igneous rocks from Mars require mantle reservoirs with different CaO/Al2O3 and FeO/MgO ratios or the action of fractional crystallization. Alkaline rocks can be derived from mantle sources with alkali contents (∼0.5 wt.%) similar to the primitive mantle.

  13. Rehabilitation of alpine vegetation in the Adirondack Mountains of New York State

    Treesearch

    E.H. Ketchledge; R.E. Leonard; N.A. Richards; P.F. Craul; A.R. Eschner; A.R. Eschner

    1985-01-01

    This paper describes field experiments in using sod-forming grasses from lower elevations as soil stabilizers, and discusses the effects of fertilizing and transplanting native vegetation as part of an integrated management plan for rehabilitating alpine plant communities in the Adirondacks. Results show that it is possible to stabilize severely degraded alpine...

  14. Lake acidification in the Adirondack Mountains of New York causes and consequences

    Treesearch

    Carl L. Schofield

    1976-01-01

    Current and historic geographic distributions of acidity in Adirondack lakes were examined in relation to regional edaphic, climatic, and physiographic features. Acid conditions are currently predominant in high elevation drainage lakes having small watershed/surface area ratios. Comparable levels of acidity were found only in small seepage lakes and bog ponds during...

  15. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; McPherson, G.T.

    2013-01-01

    This study documents the effects of acidic deposition and soil acid-base chemistry on the growth, regeneration, and canopy condition of sugar maple (SM) trees in the Adirondack Mountains of New York. Sugar maple is the dominant canopy species throughout much of the northern hardwood forest in the State. A field study was conducted in 2009 in which 50 study plots within 20 small Adirondack watersheds were sampled and evaluated for soil acid-base chemistry and SM growth, canopy condition, and regeneration. Atmospheric sulfur (S) and nitrogen (N) deposition were estimated for each plot. Trees growing on soils with poor acid-base chemistry (low exchangeable calcium and % base saturation) that receive relatively high levels of atmospheric S and N deposition exhibited little to no SM seedling regeneration, decreased canopy condition, and short-to long-term growth declines compared with study plots having better soil condition and lower levels of atmospheric deposition. These results suggest that the ecosystem services provided by SM in the western and central Adirondack Mountain region, including aesthetic, cultural, and monetary values, are at risk from ongoing soil acidification caused in large part by acidic deposition.

  16. Toward a better understanding of recreational boating in the Adirondack lakes region

    Treesearch

    Herbert E. Echelberger; George H. Moeller

    1973-01-01

    Results of a study to determine the relationship between physical characteristics of Adirondack lakes and variations in peak boat-use intensity indicated that 69 percent of the variation in peak use can be accounted for by the number of public and commercial boat-launching facilities per mile of lake shoreline. Other lake characteristics related to peak boat use were:...

  17. Impact of backcountry recreationists on the water quality of an Adirondack lake

    Treesearch

    Robert G. Werner; Raymond E. Leonard; James O. Crevelling; James O. Crevelling

    1985-01-01

    This study reports the effects of recreational use on the water quality of an Adirondack lake. Phosphates, nitrates, conductivity, fecal coliform, transparency, and temperature were regularly measured over a period of 2 years and related to the recreational use that the lake received during that time. An adjacent lake, which was not visited by recreationists, served as...

  18. Chronic and episodic acidification of Adirondack streams from acid rain in 2003-2005

    USGS Publications Warehouse

    Lawrence, G.B.; Roy, K.M.; Baldigo, Barry P.; Simonin, H.A.; Capone, S.B.; Sutherland, J.W.; Nierzwicki-Bauer, S. A.; Boylen, C.W.

    2008-01-01

    Limited information is available on streams in the Adirondack region of New York, although streams are more prone to acidification than the more studied Adirondack lakes. A stream assessment was therefore undertaken in the Oswegatchie and Black River drainages; an area of 4585 km2 in the western part of the Adirondack region. Acidification was evaluated with the newly developed base-cation surplus (BCS) and the conventional acid-neutralizing capacity by Gran titration (ANCG). During the survey when stream water was most acidic (March 2004), 105 of 188 streams (56%) were acidified based on the criterion of BCS < 0 ??eq L-1, whereas 29% were acidified based on an ANCG value < 0 ??eq L-1. During the survey when stream water was least acidic (August 2003), 15 of 129 streams (12%) were acidified based on the criterion of BCS < 0 ??eq L-1, whereas 5% were acidified based on ANCG value < 0 ??eq L -1. The contribution of acidic deposition to stream acidification was greater than that of strongly acidic organic acids in each of the surveys by factors ranging from approximately 2 to 5, but was greatest during spring snowmelt and least during elevated base flow in August. During snowmelt, the percentage attributable to acidic deposition was 81%, whereas during the October 2003 survey, when dissolved organic carbon (DOC) concentrations were highest, this percentage was 66%. The total length of stream reaches estimated to be prone to acidification was 718 km out of a total of 1237 km of stream reaches that were assessed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  19. Attributes affecting campsite selection at two types of campgrounds in the Adirondack Park

    Treesearch

    Kye-Young Choi; Chad P. Dawson

    2003-01-01

    This study compared the important attributes affecting campers' decisions in selecting their preferred campsites at two different types of New York State Department of Environmental Conservation (NYSDEC) campgrounds in the Adirondack Park. Mail surveys were sent to campers using six NYSDEC campgrounds (three less-developed campgrounds and three more-developed...

  20. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  1. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York.

    PubMed

    Sullivan, T J; Lawrence, G B; Bailey, S W; McDonnell, T C; Beier, C M; Weathers, K C; McPherson, G T; Bishop, D A

    2013-11-19

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  2. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  3. Post-metamorphic fluid infiltration into granulites from the Adirondack Mountains, USA

    NASA Technical Reports Server (NTRS)

    Morrison, J.; Valley, John W.

    1988-01-01

    Post-metamorphic effects in the anorthosites of the Adirondacks, New York were described. Calcite-chlorite-sericite assemblages occur as veins, in disseminated form and as clots, and document retrograde fluid infiltration. These features are associated with late-state CO2-rich fluid inclusions. Stable isotope analyses of calcites indicates that the retrograde fluids interacted with meta-igneous and supracrustal lithologies, but the precise timing of the retrogression is as yet unknown.

  4. Notice of release of NBR-1 Germplasm basalt milkvetch

    Treesearch

    Douglas A. Johnson; Thomas A. Jones; Kevin J. Connors; Kishor Bhattarai; B. Shaun Bushman; Kevin B. Jensen

    2008-01-01

    A selected-class pre-variety germplasm of basalt milkvetch (Astragalus filipes Torr. ex A. Gray [Fabaceae]) has been released for reclamation, rehabilitation, and restoration of semiarid rangelands in the northern Great Basin Region of the western US.

  5. Estimating costs of improving Adirondack timber stands by killing culls with frills and sodium arsenite

    Treesearch

    Robert O. Curtis

    1956-01-01

    Although it has been known for many years that sodium arsenite solution applied in ax frills is an effective means of killing cull trees (1), no published information could be found on the cost of stand-improvement work with this method under Adirondack conditions.

  6. Origin of coronas in metagabbros of the Adirondack mts., N. Y

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1973-01-01

    Metagabbros from two widely separated areas in the Adirondacks show development of coronas. In the Southern Adirondacks, these are cored by olivine which is enclosed in a shell of orthopyroxene that is partially, or completely, rimmed by symplectites consisting of clinopyroxene and spinel. Compositions of the corona phases have been determined by electron probe and are consistent with a mechanism involving three partial reactions, thus: (a) Olivine=Orthopyroxene+(Mg, Fe)++. (b) Plagioclase+(Mg, Fe)+++Ca++=Clinopyroxene+Spinel+Na+. (c) Plagioclase+(Mg, Fe)+++Na+=Spinel+more sodic plagioclase+Ca++. Reaction (a) occurs in the inner shell of the corona adjacent to olivine; reaction (b) in the outer shell; and (c) in the surrounding plagioclase, giving rise to the spinel clouding which is characteristic of the plagioclase in these rocks. Alumina and silica remain relatively immobile. These reactions, when balanced, can be generalized to account for the aluminous nature of the pyroxenes and for changing plagioclase composition. Summed together, the partial reactions are equivalent to: (d) Olivine + Anorthite = Aluminous orthopyroxene + Aluminous Clinopyroxene + Spinel (Kushiro and Yoder, 1966). In the Adirondack Highlands, coronas between olivine and plagioclase commonly have an outer shell of garnet replacing the clinopyroxene/spinel shell. The origin of the garnet can also be explained in terms of three partial reactions: (e) Orthopyroxene+Ca++=Clinopyroxene+(Mg, Fe)++. (f) Clinopyroxene+Spinel+Plagioclase+(Mg, Fe)++=Garnet+Ca+++Na+. (g) Plagioclase+(Mg, Fe)+++Na+=Spinel + more sodic plagioclase+Ca++. These occur in the inner and outer corona shell and the surrounding plagioclase, respectively, and involve the products of reactions (a)-(d). Alumina and silica are again relatively immobile. Balanced, and generalized to account for aluminous pyroxenes and variable An content of plagioclase, they are equivalent to: (h) Orthopyroxene+Anorthite+Spinel=Garnet (Green and

  7. Drainage basin control of acid loadings to two Adirondack lakes

    NASA Astrophysics Data System (ADS)

    Booty, W. G.; Depinto, J. V.; Scheffe, R. D.

    1988-07-01

    Two adjacent Adirondack Park (New York) calibrated watersheds (Woods Lake and Cranberry Pond), which receive identical atmospheric inputs, generate significantly different unit area of watershed loading rates of acidity to their respective lakes. A watershed acidification model is used to evaluate the watershed parameters which are responsible for the observed differences in acid loadings to the lakes. The greater overall mean depth of overburden on Woods Lake watershed, which supplies a greater buffer capacity as well as a longer retention time of groundwater, appears to be the major factor responsible for the differences.

  8. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  9. The origin of garnet in the anorthosite-charnockite suite of the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1977-01-01

    Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: {Mathematical expression}, where ?? is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ?? orthopyroxene ?? quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies. ?? 1977 Springer-Verlag.

  10. Very high potassium (VHK) basalt - Complications in mare basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.; Laul, J. C.; Shih, C.-Y.; Nyquist, L. E.

    1985-01-01

    The first comprehensive report on the petrology and geochemistry of Apollo 14 VHK (Very High Potassium) basalts and their implications for lunar evolution is presented. The reported data are most consistent with the hypothesis that VHK basalts formed through the partial assimilation of granite by a normal low-Ti, high-Al mare basalt magma. Assimilation was preceded by the diffusion-controlled exchange of alkalis and Ba between basalt magma and the low-temperature melt fraction of the granite. Hypotheses involving volatile/nonvolatile fractionations or long-term enrichment of the source regions in K are inconsistent with the suprachondritic Ba/La ratios and low initial Sr-87/Sr-86 ratios of VHK basalt. An important implication of this conclusion is that granite should be a significant component of the lunar crust at the Apollo 14 site.

  11. Planetary basalts - Chemistry and petrology

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Bence, A. E.

    1979-01-01

    Recent literature (1975-1978) on planetary basalts is reviewed. Terrestrial basalts are considered in relation to Nd and Sm isotopic studies, magma mixing, chemical and mineralogical heterogeneities in basalt source regions, and partial melting controls on basalt chemistry. Attention is also given to features of mare basalts, eucrites, and comparisons of basalts for the earth, the moon, and the parent body of basaltic achondrites.

  12. Changes in the chemistry of acidified Adirondack streams from the early 1980s to 2008

    USGS Publications Warehouse

    Lawrence, G.B.; Simonin, H.A.; Baldigo, Barry P.; Roy, K.M.; Capone, S.B.

    2011-01-01

    Lakes in the Adirondack region of New York have partially recovered in response to declining deposition, but information on stream recovery is limited. Here we report results of Adirondack stream monitoring from the early 1980s to 2008. Despite a 50% reduction in atmospheric deposition of sulfur, overall increases in pH of only 0.28 and ANC of 13 μeq L-1 were observed in 12 streams over 23 years, although greater changes did occur in streams with lower initial ANC, as expected. In the North Tributary of Buck Creek with high dissolved organic carbon (DOC) concentrations, SO(4)(2-) concentrations decreased from 1999 to 2008 at a rate of 2.0 μmol L-1 y-1, whereas in the neighboring South Tributary with low DOC concentrations, the decrease was only 0.73 μmol L-1 y-1. Ca2+ leaching decreased in the North Tributary due to the SO(4)(2-) decrease, but this was partially offset by an increase in Ca2+ leaching from increased DOC concentrations.

  13. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revetta, F.A.; O'Brian, B.

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate withmore » the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.« less

  14. Some effects of stand density and deer browsing on reproduction in an Adirondack hardwood stand

    Treesearch

    Robert O. Curtis; F.M. Rushmore

    1958-01-01

    The northern hardwood stands of the Adirondack region of New York constitute a major natural resource, the basis of one of the few year-round industries of the area. However, knowledge of their silviculture and potential productivity is limited. The results of an exploratory study begun in 1938 provide some information about the problems involved in the management of...

  15. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  16. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less

  17. Using Critical Loads to Look at Improvements in Acidic Surface Water Conditions since the 1990 Amendments to the Clear Air Act: Case Study Adirondack, NY

    NASA Astrophysics Data System (ADS)

    Lynch, J. A.; Kolian, M. J.; Haeuber, R.

    2008-12-01

    Acid deposition has affected hundreds of lakes and thousands of miles of headwater streams in the Adirondack region of New York State. The diversity of life in these acidic waters has been greatly reduced. The poor buffering capacity of the thin, acidic soils in the Adirondack Mountains makes the lakes and ponds particularly susceptible to acidification. Since the mid-1990's, lakes in the Adirondack region are finally showing signs of recovery. The good news is that emissions of sulfur dioxide and nitrogen oxides have been reduced and as a result acidic deposition of sulfate and nitrate has decreased in surface waters approximately 26 and 13%, respectively. This has led to improvement in the acid neutralizing capacity (ANC) of these water bodies. Although improvement in water quality is a good sign, it does not tell us if a particular lake or a group of lakes have recovered from decades of acidic deposition. However, the critical loads approach does allow for evaluation of whether a water body has reached recovery for acidic deposition. Critical loads and exceedances for lake surface water and acidity were calculated for 187 lakes in the Adirondack region. The Steady-State Water Chemistry (SSWC) model was used to calculate the critical load, relying on water chemistry data from the TIME/LTM network. An ANC threshold of 50 μeq/L was selected for this case study. Exceedances were calculated from deposition for the period before implementation of the Acid Rain program (ARP) (1989-1991) and for the period of 2004-2006 to judge improvements as a result of the ARP. On average, the critical load for lakes in the Adirondack region is 164 meq/m2/yr, while it is 48 meq/m2/yr for the most sensitive lakes (i.e. ANC less than 100 μeq/L). For the period from 2004 to 2006, 65% of the lakes within the TIME/LTM network continued to receive levels of acid deposition that exceeded the lake's critical load down from 72% of lakes before implementation of the Acid Rain Program

  18. Assessing Brook Trout populations in headwater streams of the Adirondack Mountains using environmental DNA -- Summary report

    USGS Publications Warehouse

    Baldigo, Barry P.; George, Scott D.; Sporn, Lee Ann; Ball, Jacob

    2016-01-01

    This project evaluated standard fish-survey and environmental DNA (eDNA) sampling methods to determine the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations in 40 headwater streams mainly in the western Adirondack Mountains during 2014–2015 (Figure 2). Standard 3-pass electrofishing surveys found that Brook Trout were absent from about 25 percent of study sites, and at low densities in 25 percent of sites, moderate densities in 25 percent of sites, and high densities in 25 percent of sites. Environmental DNA results correctly predicted the presence/absence of Brook Trout in 85.0 to 92.5 percent of study sites and explained 44.0 percent of the variability in density and 24 percent of the variability in biomass of their populations. The findings indicate that eDNA surveys will enable researchers to effectively characterize the presence as well as the abundance of Brook Trout and other species populations in headwater streams across the Adirondack Mountains and elsewhere.

  19. Synthesis of a spinifex-textured basalt as an analog to Gusev crater basalts, Mars

    NASA Astrophysics Data System (ADS)

    Bost, Nicolas; Westall, Frances; Gaillard, Fabrice; Ramboz, Claire; Foucher, Frédéric

    2012-05-01

    Analyses by the Mars Exploration Rover (MER), Spirit, of Martian basalts from Gusev crater show that they are chemically very different from terrestrial basalts, being characterized in particular by high Mg- and Fe-contents. To provide suitable analog basalts for the International Space Analogue Rockstore (ISAR), a collection of analog rocks and minerals for preparing in situ space missions, especially, the upcoming Mars mission MSL-2011 and the future international Mars-2018 mission, it is necessary to synthesize Martian basalts. The aim of this study was therefore to synthesize Martian basalt analogs to the Gusev crater basalts, based on the geochemical data from the MER rover Spirit. We present the results of two experiments, one producing a quench-cooled basalt (<1 h) and one producing a more slowly cooled basalt (1 day). Pyroxene and olivine textures produced in the more slowly cooled basalt were surprisingly similar to spinifex textures in komatiites, a volcanic rock type very common on the early Earth. These kinds of ultramafic rocks and their associated alteration products may have important astrobiological implications when associated with aqueous environments. Such rocks could provide habitats for chemolithotrophic microorganisms, while the glass and phyllosilicate derivatives can fix organic compounds.

  20. Geochemical Properties of Rocks and Soils in Gusev Crater, Mars: APXS Results from Cumberland Ridge to Home Plate

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Gellert, R.; Morris, R. V.; Yen, A. S.; Arvidson, E.; Brueckner, J.; Clark, B. C.; Cohen, B. A.; Fleischer, I.; Klingelhoefer, G.; hide

    2008-01-01

    The Mars Exploration Rover Spirit landed in Gusev crater on Jan. 4, 2004. Spirit has traversed the Gusev crater plains, ascended to the top of Husband Hill, and entered into the Inner Basin of the Columbia Hills. The Athena science payload onboard Spirit has recorded numerous measurements on the chemistry and mineralogy of materials encountered during nearly 2 Mars years of operation within the crater. Rocks and soils have been grouped into classes based upon their unique differences in mineralogy and chemistry [1-3]. Some of the most significant chemical discoveries include the composition of Adirondack class flood basalts [4-6]; high sulfur in Clovis and Peace Class rocks [7,2]; high P and Ti in Wishstone Class rocks [7,2]; composition of alkalic basalts [2,6]; very high S in Paso Robles class soils [7,2], and the possible occurrence of a smectite-like chemical composition in Independence class rocks [8]. Water has played a significant role in the alteration of rocks and soils in the Columbia Hills. The occurrence of goethite and ferric sulfate alone suggests that liquid water was involved in their formation [3]. The pervasively altered materials in Husband Hill outcrops and rocks may have formed by the aqueous alteration of basaltic rocks, volcaniclastic materials, and/or impact ejecta by solutions that were rich in acid-volatile elements [2]. The objective of this paper is to provide an update on the health of the Alpha Particle X-ray Spectrometer (APXS) and to expand the geochemical dataset from sol 470 to sol 1368. Specific objectives are to (1) update the rock and soil classifications, (2) characterize elemental relationships among the major rock and soil classes, and (3) evaluate the involvement of water in the formation or alteration of the materials in these classes.

  1. Sensitivity of stream methyl Hg concentrations to environmental change in the Adirondack mountains of New York, USA

    Treesearch

    Doug Burns; Karen Riva Murray; Elizabeth A. Nystrom; David M. Wolock; Geofrey Millard; Charles T. Driscoll

    2016-01-01

    The Adirondacks of New York have high levels of mercury (Hg) bioaccumulation as demonstrated by a region-wide fish consumption advisory for children and women who may become pregnant. The source of this Hg is atmospheric deposition that originates from regional, continental, and global emissions.

  2. Isotopic assessment of NO3_ and SO42_ mobility during winter in two adjacent watersheds in the Adirondack Mountains, New York

    Treesearch

    John L. Campbell; Myron J. Mitchell; Bernhard Mayer

    2006-01-01

    Biogeochemical cycling of N and S was examined at two watersheds in the Adirondack Mountains, New York, to better understand the retention and loss of these elements during winter and spring snowmelt.

  3. The Effect of Shock on the Amorphous Component in Altered Basalt

    NASA Technical Reports Server (NTRS)

    Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.

    2017-01-01

    Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary

  4. Fishes of the Adirondack Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, C.J.

    1980-01-01

    This review of the ichthyology of the area of the Adirondack Park contained within the blue line centers on biological surveys of the six major watersheds of the study area done in 1930-1935. The total area of 9261 square miles contains 2000-3000 water bodies. The ichthyofauna consists of 96 forms, including four kinds of hybrids commonly produced and used in stock programs; of the remaining 92 forms, 23 may be classified as Boreal or peri-glacial. The Atlantian group consists of 20 species and the Mississippian and adjacent Pleistocene refugia have provided about 45 members of the fauna. Two of themore » fauna are the rainbow and steelhead trout and the Kokanee salmon, introduced from the west coast; three species are from the old world. Spraying for insect control, introduction of exotic plant species, and acid precipitation have all measurably impacted fish populations in recent years, often in complex and synergistic ways. For example, a decline of fish populations in Big Moose Lake is probably the complex result of present and past lumbering, fishing, stocking, forest fires and hurricane damage, as well as acid precipitation. As the system diversifies, many populations of Boreal forms are being lost, and new forms of Atlantian and Mississippian heritage are being established. 253 references, 7 tables.« less

  5. Effects of Acidic Deposition and Soil Acidification on Sugar Maple Trees in the Adirondack Mountains, New York

    Treesearch

    T. J. Sullivan; G. B. Lawrence; S. W. Bailey; T. C. McDonnell; C. M. Beier; K. C. Weathers; G. T. McPherson; D. A. Bishop

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been...

  6. Long-term trends in breeding birds in an old-growth Adirondack forest and the surrounding region

    USGS Publications Warehouse

    McNulty, S.A.; Droege, S.; Masters, R.D.

    2008-01-01

    Breeding bird populations were sampled between 1954 and 1963, and 1990 and 2000 in an old-growth forest, the Natural Area of Huntington Wildlife Forest (HWF), in the Adirondack Mountains of New York. Trends were compared with data from regional North American Breeding Bird Surveys (BBS) and from a forest plot at Hubbard Brook Experimental Forest, New Hampshire. Trends for 22 species in the HWF Natural Area were negative, eight were positive, and one was zero; 20 were significant. Fifteen of 17 long-distance migrants declined, whereas 7 of 14 short-distance migrants and permanent residents declined. Most (74%) HWF Natural Area species, despite differences in sampling periods and local habitat features, matched in sign of trend when compared to Adirondack BBS routes, 61% matched northeastern BBS routes, and 71% matched eastern United States BBS routes, while 66% matched Hubbard Brook species. The agreement in population trends suggests that forest interior birds, especially long-distance migrants, are affected more by regional than local factors. The analysis indicated that bird trends generated from BBS routes may not be as biased toward roads as previously suggested.

  7. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  8. A monitor for continuous measurement of temperature, pH, and conductance of wet precipitation: Preliminary results from the Adirondack Mountains, New York

    USGS Publications Warehouse

    Johnsson, P.A.; Reddy, M.M.

    1990-01-01

    This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.

  9. Relationships among basaltic lunar meteorites

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.

    1991-01-01

    During the past two years four meteorites of dominantly mare basalt composition were identified in the Japanese and US Antarctic collections. Basalts represent a much higher proportion of the lunar meteorites than is expected from photogeologic mapping of mare and highland regions. Also, the basaltic lunar meteorites are all described as VLT mare basalt, which is a relatively uncommon type among returned lunar samples. The significance of the basaltic meteorites to the understanding of the lunar crust depends on the evaluation of possible relationships among the individual meteorites. None of the specimens are paired meteorites. They differ from each other in petrography and composition. It is important to determine whether they might be paired ejecta which were ejected from the same mare region by the same impact. The question of paired ejecta must be addressed using a combination of exposure histories and petrographic/compositional characteristics. It is possible that the basaltic lunar meteorites are paired ejecta from the same region of the Moon. However, the relationships among them are more complicated than the basaltic breccias being simply brecciated mare gabbros.

  10. Carbonate Mineralization of Volcanic Province Basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2010-03-31

    Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the United States, India, Iceland, and Canada. As an extension of our previous experiments with Columbia River basalt, basalts from the eastern United States, India, and South Africa were reacted with aqueous dissolved CO2 and aqueous dissolved CO2-H2S mixtures under supercritical CO2 (scCO2) conditions to study the geochemical reactions resulting from injection of CO2 in such formations. The results of these studies are consistent with cation release behavior measured in our previous experiments (in press) for basalt samples tested inmore » single pass flow through dissolution experiments under dilute solution and mildly acidic conditions. Despite the basalt samples having similar bulk chemistry, mineralogy and apparent dissolution kinetics, long-term static experiments show significant differences in rates of mineralization as well as compositions and morphologies of precipitates that form when the basalts are reacted with CO2-saturated water. For example, basalt from the Newark Basin in the United States was by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. In comparison, the post-reacted samples associated with the Columbia River basalts from the United States contained calcite grains with classic dogtooth spar morphology and trace cation substitution (Mg and Mn). Carbonation of the other basalts produced precipitates with compositions that varied chemically throughout the entire testing period. Examination of polished cross sections of the reacted grains by scanning electron microscopy and energy dispersive x-ray spectroscopy show precipitate overgrowths with varying chemical compositions. Compositional differences in

  11. Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isachsen, Y.W.

    1978-09-27

    Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similarmore » dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.« less

  12. Kyanite-bearing migmatites in the central Adirondack Mountains: Implications for late to post-orogenic metamorphism and melting in a collisional orogen

    NASA Astrophysics Data System (ADS)

    Reeder, J.; Metzger, E. P.; Bickford, M. E.; Leech, M. L.

    2016-12-01

    Sillimanite-rich felsic migmatites exposed at Ledge Mountain in the Central Adirondack Highlands (AH) represent the only location in the AH where kyanite is found. The texturally young kyanite is overprinted on sillimanite in largely undeformed pegmatitic leucosomes, suggesting a late episode of melting taking place deeper than previously thought, and requiring a counter-clockwise P-T path. A final phase of anatexis ca. 1050 Ma in the Eastern AH is consistent with an influx of fluid or decompression from extension in sillimanite-bearing migmatites. Temperatures both from this study and previous work are consistent with granulite-facies metamorphism; however, the presence of kyanite requires higher pressure conditions corresponding to deeper burial of rocks exposed in the central Adirondacks. The Adirondacks are associated with the Grenville Province of eastern North America, that formed during four orogenic events. The most recent (Grenville) orogeny consisted of two stages: crustal thickening and granulite facies metamorphism during the Ottawan phase (ca 1090-1020) then metamorphism and melting in the kyanite field during the much shorter Rigolet pulse (ca 1005-980 Ma). Preliminary U-Pb SHRIMP zircon ages from Ledge Mountain kyanite-bearing migmatites suggest that melting in the Central AH persisted into the Rigolet phase. On the basis of mineral composition and chemistry and the presence of distinctive quartz-sillimanite nodules, the Ledge Mountain migmatites closely resemble the K-rich phase of the Ottawan-age Lyon Mountain granite (LMG) and may represent LMG that was metamorphosed to sillimanite grade and then overprinted by a higher pressure, lower temperature assemblage. Kyanite-bearing felsic anatectites of Rigolet age have previously been observed only in the western portion of the Grenville Province. Documentation of a counterclockwise P-T path and post-Ottawan melting in the Ledge Mountain migmatites requires re-evaluation of current tectonic models for

  13. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  14. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe

  15. Mars: Difference Between Lowland and Highland Basalts Confirms A Tendency Observed In Terrestrial and Lunar Basaltic Compositions

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars

  16. Flood basalts and mass extinctions

    NASA Technical Reports Server (NTRS)

    Morgan, W. Jason

    1988-01-01

    There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.

  17. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  18. Roadside camping on forest preserve lands in the Adirondack Park: A qualitative exploration of place attachment and resource substitutability

    Treesearch

    David A. Graefe; Chad Dawson; Rudolph M. Schuster

    2012-01-01

    Roadside camping is a popular and widespread public outdoor recreation activity on New York State Forest Preserve (FP) lands within the Adirondack Park (AP). While several roadside camping areas exist on FP lands throughout the Park, little is known about these camping areas or the visitors who use them. Recently, debate has developed over how to define and manage...

  19. Recreation-related values, attitudes, and beliefs of business owners in the Saranac Lakes region of New York State's Adirondack Park

    Treesearch

    Diane Kuehn; Rudy Schuster

    2008-01-01

    Public forest management agencies often work with recreation-related business owners as they implement management policies. The main objective of this study is to quantify the values, beliefs, and attitudes of business owners in the Saranac Lakes Region of New York's Adirondack Park regarding motorboating, nonmotorized boating, and personal watercraft use. The...

  20. Sustainability and economics: The Adirondack Park experience, a forest economic-ecological model, and solar energy policy

    NASA Astrophysics Data System (ADS)

    Erickson, Jon David

    The long-term sustainability of human communities will depend on our relationship with regional environments, our maintenance of renewable resources, and our successful disengagement from nonrenewable energy dependence. This dissertation investigates sustainability at these three levels, following a critical analysis of sustainability and economics. At the regional environment level, the Adirondack Park of New York State is analyzed as a potential model of sustainable development. A set of initial and ongoing conditions are presented that both emerge from and support a model of sustainability in the Adirondacks. From these conditions, a clearer picture emerges of the definition of regional sustainability, consequences of its adoption, and lessons from its application. Next, an economic-ecological model of the northern hardwood forest ecosystem is developed. The model integrates economic theory and intertemporal ecological concepts, linking current harvest decisions with future forest growth, financial value, and ecosystem stability. The results indicate very different economic and ecological outcomes by varying opportunity cost and ecosystem recovery assumptions, and suggest a positive benefit to ecological recovery in the forest rotation decision of the profit maximizing manager. The last section investigates the motives, economics, and international development implications of renewable energy (specifically photovoltaic technology) in rural electrification and technology transfer, drawing on research in the Dominican Republic. The implications of subsidizing a photovoltaic market versus investing in basic research are explored.

  1. Using Satellite Imagery to Assess Large-Scale Habitat Characteristics of Adirondack Park, New York, USA

    NASA Astrophysics Data System (ADS)

    McClain, Bobbi J.; Porter, William F.

    2000-11-01

    Satellite imagery is a useful tool for large-scale habitat analysis; however, its limitations need to be tested. We tested these limitations by varying the methods of a habitat evaluation for white-tailed deer ( Odocoileus virginianus) in the Adirondack Park, New York, USA, utilizing harvest data to create and validate the assessment models. We used two classified images, one with a large minimum mapping unit but high accuracy and one with no minimum mapping unit but slightly lower accuracy, to test the sensitivity of the evaluation to these differences. We tested the utility of two methods of assessment, habitat suitability index modeling, and pattern recognition modeling. We varied the scale at which the models were applied by using five separate sizes of analysis windows. Results showed that the presence of a large minimum mapping unit eliminates important details of the habitat. Window size is relatively unimportant if the data are averaged to a large resolution (i.e., township), but if the data are used at the smaller resolution, then the window size is an important consideration. In the Adirondacks, the proportion of hardwood and softwood in an area is most important to the spatial dynamics of deer populations. The low occurrence of open area in all parts of the park either limits the effect of this cover type on the population or limits our ability to detect the effect. The arrangement and interspersion of cover types were not significant to deer populations.

  2. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio < 1.7) with disequilibrium textures and low Ba/Sr ratios while Population Two is elongate (aspect ratio > 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic

  3. The rocks of Gusev Crater as viewed by the Mini-TES instrument

    USGS Publications Warehouse

    Ruff, S.W.; Christensen, P.R.; Blaney, D.L.; Farrand, W. H.; Johnson, J. R.; Michalski, J.R.; Moersch, J.E.; Wright, S.P.; Squyres, S. W.

    2006-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on board the Mars Exploration Rover Spirit is part of a payload designed to investigate whether a lake once existed in Gusev Crater. Mini-TES has observed hundreds of rocks along the rover's traverse into the Columbia Hills, yielding information on their distribution, bulk mineralogy, and the potential role of water at the site. Although dust in various forms produces contributions to the spectra, we have established techniques for dealing with it. All of the rocks encountered on the plains traverse from the lander to the base of the Columbia Hills share common spectral features consistent with an olivine-rich basaltic rock known as Adirondack Class. Beginning at the base of the West Spur of the Columbia Hills and across its length, the rocks are spectrally distinct from the plains but can be grouped into a common type called Clovis Class. These rocks, some of which appear as in-place outcrop, are dominated by a component whose spectral character is consistent with unaltered basaltic glass despite evidence from other rover instruments for significant alteration. The northwest flank of Husband Hill is covered in float rocks known as Wishstone Class with spectral features that can be attributed uniquely to plagioclase feldspar, a phase that represents more than half of the bulk mineralogy. Rare exceptions are three classes of basaltic "exotics" found scattered across Husband Hill that may represent impact ejecta and/or float derived from local intrusions within the hills. The rare outcrops observed on Husband Hill display distinctive spectral characteristics. The outcrop called Peace shows a feature attributable to molecular bound water, and the outcrop that hosts the rock called Watchtower displays a dominant basaltic glass component. Despite evidence from the rover's payload for significant alteration of some of the rocks, no unambiguous detection of crystalline phyllosilicates or other secondary silicates has

  4. Responses of 20 lake-watersheds in the Adirondack region of New York to historical and potential future acidic deposition.

    PubMed

    Zhou, Qingtao; Driscoll, Charles T; Sullivan, Timothy J

    2015-04-01

    Critical loads (CLs) and dynamic critical loads (DCLs) are important tools to guide the protection of ecosystems from air pollution. In order to quantify decreases in acidic deposition necessary to protect sensitive aquatic species, we calculated CLs and DCLs of sulfate (SO4(2-))+nitrate (NO3-) for 20 lake-watersheds from the Adirondack region of New York using the dynamic model, PnET-BGC. We evaluated lake water chemistry and fish and total zooplankton species richness in response to historical acidic deposition and under future deposition scenarios. The model performed well in simulating measured chemistry of Adirondack lakes. Current deposition of SO4(2-)+NO3-, calcium (Ca2+) weathering rate and lake acid neutralizing capacity (ANC) in 1850 were related to the extent of historical acidification (1850-2008). Changes in lake Al3+ concentrations since the onset of acidic deposition were also related to Ca2+ weathering rate and ANC in 1850. Lake ANC and fish and total zooplankton species richness were projected to increase under hypothetical decreases in future deposition. However, model projections suggest that lake ecosystems will not achieve complete chemical and biological recovery in the future. Copyright © 2014. Published by Elsevier B.V.

  5. Basaltic volcanism - The importance of planet size

    NASA Technical Reports Server (NTRS)

    Walker, D.; Stolper, E. M.; Hays, J. F.

    1979-01-01

    The volumetrically abundant basalts on the earth, its moon, and the eucrite parent planet all have chemical compositions that are controlled to a large extent by dry, low-pressure, crystal-liquid equilibria. Since this generalization is valid for these three planetary bodies, we infer that it may also apply to the other unsampled terrestrial planets. Other characteristics of basaltic volcanism show variations which appear to be related to planet size: the eruption temperatures, degrees of fractionation, and chemical variety of basalts and the endurance of basaltic volcanism all increase with planet size. Although the processes responsible for chemical differences between basalt suites are known, no simple systematization of the chemical differences between basalts from planet to planet has emerged.

  6. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  7. Sensitivity of Stream Methyl Hg Concentrations to Environmental Change in the Adirondack Mountains of New York, USA

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Nystrom, E.; Millard, G.; Driscoll, C. T.

    2014-12-01

    The Adirondacks of New York have high levels of mercury (Hg) bioaccumulation as demonstrated by a region-wide fish consumption advisory for children and women who may become pregnant. The source of this Hg is atmospheric deposition that originates from regional, continental, and global emissions. Soils in the region have large Hg stores equivalent to several decades of atmospheric deposition suggesting that the processes controlling Hg transport from soils to surface waters may greatly affect Hg concentrations and loads in surface waters. Furthermore, Hg can be converted to its neuro-toxic methyl form (MeHg), particularly in riparian and wetland soils where biogeochemical conditions favor net methylation. We measured MeHg concentrations during 33 months at Fishing Brook, a 65 km2 catchment in the upper Hudson River basin in the Adirondacks. Seasonal variation in stream MeHg concentrations was more than tenfold, consistent with temperature-driven variation in net methylation rates in soils and sediment. These data also indicate greater than twofold annual variation in stream MeHg concentrations among the three monitored growing seasons. The driest growing season had the lowest MeHg concentrations, and these values were greater during the two wetter growing seasons. We hypothesize that contact of the riparian water table with abundant organic matter and MeHg stored in the shallowest soil horizons is a dominant control on MeHg transport to the stream. An empirical model was developed that accounted for 81% of the variation in stream MeHg concentrations. Water temperature and the length of time the simulated riparian water table remained in the shallow soil were key predictive variables, highlighting the sensitivity of MeHg to climatic variation. Future changes in other factors such as Hg emissions and deposition and acid deposition will likely also influence stream MeHg concentrations and loads. For example, lime application to an Adirondack stream to increase pH and

  8. Use of stream chemistry for monitoring acidic deposition effects in the Adirondack region of New York

    USGS Publications Warehouse

    Lawrence, G.B.; Momen, B.; Roy, K.M.

    2004-01-01

    Acid-neutralizing capacity (ANC) and pH were measured weekly from October 1991 through September 2001 in three streams in the western Adirondack Mountain region of New York to identify trends in stream chemistry that might be related to changes in acidic deposition. A decreasing trend in atmospheric deposition of SO42- was observed within the region over the 10-yr period, although most of the decrease occurred between 1991 and 1995. Both ANC and pH were inversely related to flow in all streams; therefore, a trend analysis was conducted on (i) the measured values of ANC and pH and (ii) the residuals of the concentration-discharge relations. In Buck Creek, ANC increased significantly (p 0.10). In Bald Mountain Brook, ANC and residuals of ANC increased significantly (p < 0.01), although the trend was diatonic-a distinct decrease from 1991 to 1996 was followed by a distinct increase from 1996 to 2001. In Fly Pond outlet, ANC and residuals of ANC increased over the study period (p < 0.01), although the trend of the residuals resulted largely from an abrupt increase in 1997. In general, the trends observed in the three streams are similar to results presented for Adirondack lakes in a previous study, and are consistent with the declining trend in atmospheric deposition for this region, although the observed trends in ANC and pH in streams could not be directly attributed to the trends in acidic deposition.

  9. Miocene Basaltic Lava Flows and Dikes of the Intervening Area Between Picture Gorge and Steens Basalt of the CRBG, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Cahoon, E. B.; Streck, M. J.

    2016-12-01

    Mid-Miocene basaltic lavas and dikes are exposed in the area between the southern extent of the Picture Gorge Basalt (PGB) and the northern extent of Steens Basalt in a wide corridor of the Malheur National Forest, eastern Oregon. An approximate mid-Miocene age of sampled basaltic units is indicated by stratigraphic relationships to the 16 Ma Dinner Creek Tuff. Lavas provide an opportunity to extend and/or revise distribution areas of either CRBG unit and explore the petrologic transition between them. The PGB and the Steens Basalt largely represent geochemically distinct tholeiitic units of the CRBG; although each unit displays internal complexity. Lavas of PGB are relatively primitive (MgO 5-9 wt.%) while Steens Basalt ranges in MgO from >9 to 3 wt.% but both units are commonly coarsely porphyritic. Conversely, Steens Basalt compositions are on average more enriched in highly incompatible elements (e.g. Rb, Th) and relatively enriched in the lesser incompatible elements (e.g. Y, Yb) compared to the Picture Gorge basalts. These compositional signatures produce inclined and flat patterns on mantle-normalized incompatible trace element plots but with similar troughs and spikes, respectively. New compositional data from our study area indicate basaltic lavas can be assigned as PGB lava flows and dikes, and also to a compositional group chemically distinct between Steens Basalt and PGB. Distribution of lava flows with PGB composition extend this CRBG unit significantly south/southeast closing the exposure gap between PGB and Steens Basalt. We await data that match Steens Basalt compositions but basaltic lavas with petrographic features akin to Steens Basalt have been identified in the study area. Lavas of the transitional unit share characteristics with Upper Steens and Picture Gorge basalt types, but identify a new seemingly unique composition. This composition is slightly more depleted in the lesser incompatible elements (i.e. steeper pattern) on mantle normalized

  10. Lu-Hf constraints on the evolution of lunar basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimaki, H.; Tatsumoto, M.

    1984-02-15

    Very low Ti basalts andd green glass samples from the moon show high Lu/Hf ratios and low Hf concentrations. Low-Ti lunar basalts show high and variable Lu/Hf ratios and higher Hf concentrations, whereas high-Ti lunar basalts show low Lu/Hf ratios and high Hf concentrations. KREEP basalts have constant Lu/Hf ratios and high but variable Hf concentrations. Using the Lu-Hf behavior as a constraint, we propose a model for the mare basalts evolution. This constraint requires extensive crystallization of the primary lunar magma ocean prior to formation of the lunar mare basalt sources and the KREEP basalts. Mare basalts are producedmore » by the melting of the cumulate rocks, and KREEP basalts represent the residual liquid of the magma ocean.« less

  11. Simulation of growth of Adirondack conifers in relation to global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.; Raynal, D.J.

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of treesmore » are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.« less

  12. Apollo 17 KREEPy basalts - Evidence for nonuniformity of KREEP

    NASA Technical Reports Server (NTRS)

    Salpas, Peter A.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1987-01-01

    Breccia 72275 contains pristine KREEPy basalt clasts that are not found among other samples collected at Apollo 17. These basalts occur as discrete clasts and as clasts enclosed within basaltic microbreccias. Mineral and whole-rock chemical analyses reveal that the microbreccias are compositionally indistinguishable from the basalt clasts. Samples of the 72275 matrix also have the same compositions as the basalts and the basaltic microbreccias. 72275 was assembled in situ from a single flow or series of closely related flows of Apollo 17 KREEPy basalt before it was transported to the Apollo 17 site. As a rock type, Apollo 17 KREEPy basalts are distinct from Apollo 15 KREEP basalts. The Apollo 17 samples have lower REE concentrations, steeper negative slopes of the HREE, and are less magnesian than the Apollo 15 samples. The two basalt types cannot be related by fractional crystallization, partial melting, or assimilation. This is evidence for the compositional nonuniformity of KREEP as a function of geography.

  13. Geophysical Measurements of Basalt Intraflow Structures.

    DTIC Science & Technology

    1997-12-01

    COVERED Final 4. TITLE AND SUBTITLE Geophysical Measurements of Basalt Intraflow Structures 6. AUTHOR(S) William K. Hudson 7. PERFORMING...horm 29B (Hi ^ 29 ev. 5-88) by ANISE Sad Z39-18 Prescribed 298-102 GEOPHYSICAL MEASUREMENTS OF BASALT INTRAFLOW STRUCTURES by William K. Hudson A...region. The physical properties of basalt can change dramatically within a single flow and may be associated with changes in intraflow structure. The

  14. The basalts of Mare Frigoris

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Jaiswal, B.; Hawke, B. R.; Öhman, T.; Giguere, T. A.; Johnson, K.

    2015-10-01

    This paper discusses the methodology and results of a detailed investigation of Mare Frigoris using remote sensing data from Clementine, Lunar Prospector, and Lunar Reconnaissance Orbiter, with the objective of mapping and characterizing the compositions and eruptive history of its volcanic units. With the exception of two units in the west, Mare Frigoris and Lacus Mortis are filled with basalts having low-TiO2 to very low TiO2, low-FeO, and high-Al2O3 abundances. These compositions indicate that most of the basalts in Frigoris are high-Al basalts—a potentially undersampled, yet important group in the lunar sample collection for its clues about the heterogeneity of the lunar mantle. Thorium abundances of most of the mare basalts in Frigoris are also low, although much of the mare surface appears elevated due to contamination from impact gardening with the surrounding high-Th Imbrium ejecta. There are, however, a few regional thorium anomalies that are coincident with cryptomare units in the east, the two youngest mare basalt units, and some of the scattered pyroclastic deposits and volcanic constructs. In addition, Mare Frigoris lies directly over the northern extent of the major conduit for a magma plumbing system that fed many of the basalts that filled Oceanus Procellarum, as interpreted by Andrews-Hanna et al. (2014) using data from the Gravity Recovery and Interior Laboratory mission. The relationship between this deep-reaching magma conduit and the largest extent of high-Al basalts on the Moon makes Mare Frigoris an intriguing location for further investigation of the lunar mantle.

  15. USE OF A LUMPED MODEL (MAGIC) TO BOUND THE ESTIMATION OF POTENTIAL FUTURE EFFECTS OF SULFUR AND NITROGEN DEPOSITION ON LAKE CHEMISTRY IN THE ADIRONDACK MOUNTAINS

    EPA Science Inventory

    Leaching of atmospherically deposited nitrogen from forested watersheds can acidify lakes and streams. Using a modified version of the Model of Acidification of Groundwater in Catchments, we made computer simulations of such effects for 36 lake catchments in the Adirondack Mount...

  16. The Mineralogy of the Youngest Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Staid, M. I.; Pieters, C. M.

    1999-01-01

    The last stage of lunar volcanism produced spectrally distinct basalts on the western nearside of the Moon, which remain unsampled by landing missions. The spectral properties of these late-stage basalts are examined using high-spatial-resolution Clementine images to constrain their mineralogic composition. The young high-Ti basalts in the western Procellarum and Imbrium Basins display a significantly stronger ferrous absorption than earlier mare basalts, suggesting that they may be the most Fe-rich deposits on the Moon. The distinct long-wavelength shape of this ferrous absorption is found to be similar for surface soils and materials excavated from depth. The pervasive character of this absorption feature supports the interpretation of abundant olivine within these late-stage lunar deposits. Important distinctions exist between the early-stage eastern maria and the late-stage western basalts, even though both appear to be Ti-rich. For example, the western maria are more radiogenic than eastern deposits. Telescopic spectra of the high-Ti western maria also exhibit a unique combination of a strong 1 micron feature and a relatively weak or attenuated 2-micron absorption. Pieters et al. concluded that the unusual strength and shape of the 1-micron absorption in western basalts results from an additional absorption from abundant olivine and/or Fe-bearing glass. Either mineralogy could produce the strong long wavelength 1-micron band, but a glassy Fe-rich surface could only form by rapid cooling along the exterior surfaces of flows. Clementine UV-VIS data of late-stage basalts are examined for regions in Oceanus Procellarum and Mare Imbrium. The spectral properties of western regions are compared to the sampled Apollo 11 basalts in Mare Tranquillitatis, which contain similar albedos and UV-VIS spectral properties. For reference, the western basalts are also compared to the low-Ti and Fe-rich basalts in Mare Serenitatis (mISP). Serenitatis basalts have the strongest

  17. Naming Lunar Mare Basalts: Quo Vadimus Redux

    NASA Astrophysics Data System (ADS)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  18. Thermoluminescence dating of Hawaiian basalt

    USGS Publications Warehouse

    May, Rodd James

    1979-01-01

    The thermoluminescence (TL) properties of plagioclase separates from 11 independently dated alkalic basalts 4,500 years to 3.3 million years old and 17 tholeiitic basalts 16 years to 450,000 years old from the Hawaiian Islands were investigated for the purpose of developing a TL dating method for young volcanic rocks. Ratios of natural to artificial TL intensity, when normalized for natural radiation dose rates, were used to quantify the thermoluminescence response of individual samples for age-determination purposes. The TL ratios for the alkalic basalt plagioclase were found to increase with age at a predictable exponential rate that permits the use of the equation for the best-fit line through a plot of the TL ratios relative to known age as a TL age equation. The equation is applicable to rocks ranging in composition from basaltic andesite to trachyte over the age range from about 2,000 to at least 250,000 years before present (B.P.). The TL ages for samples older than 50,000 years have a calculated precision of less than :t 10 percent and a potential estimated accuracy relative to potassium-argon ages of approximately :t 10 percent. An attempt to develop a similar dating curve for the tholeiitic basalts was not as successful, primarily because the dose rates are on the average lower than those for the alkalic basalts by a factor of 6, resulting in lower TL intensities in the tholeiitic basalts for samples of equivalent age, and also because the age distribution of dated material is inadequate. The basic TL properties of the plagioclase from the two rock types are similar, however, and TL dating of tholeiitic basalts should eventually be feasible over the age range 10,000 to at least 200,000 years B.P. The average composition of the plagioclase separates from the alkalic basalts ranges from oligoclase to andesine; compositional variations within this range have no apparent effect on the TL ratios. The average composition of the plagioclase from the tholeiitic

  19. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Astrophysics Data System (ADS)

    Shervais, John W.; Vetter, Scott K.

    1993-05-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  20. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  1. Investigation of Basalt Woven Fabrics for Military Applications

    DTIC Science & Technology

    2011-11-01

    investigates the use of basalt fibers in a composite along with SC-15 epoxy resin for ballistic protection. Basalt fibers are not known as a ballistic...material but rather as a structural one. Even though basalt fibers are not expected to outperform some of the higher ballistic performing materials...such as the aramid and polyethylene fibers ; however, due to the lower manufacturing costs, basalt fibers are an interesting alternative. The objective

  2. Geologic structure of the eastern mare basins. [lunar basalts

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.; Waskom, J. D.

    1976-01-01

    The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.

  3. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  4. Modeling Cooling Rates of Martian Flood Basalt Columns

    NASA Astrophysics Data System (ADS)

    Weiss, D. K.; Jackson, B.; Milazzo, M. P.; Barnes, J. W.

    2011-12-01

    Columnar jointing in large basalt flows have been extensively studied and can provide important clues about the emplacement conditions and cooling history of a basalt flow. The recent discovery of basalt columns on Mars in crater walls near Marte Vallis provides an opportunity to infer conditions on early Mars when the Martian basalt flows were laid down. Comparison of the Martian columns to Earth analogs allows us to gain further insight into the early Martian climate, and among the best terrestrial analogs are the basalt columns in the Columbia River Basalt Group (CRBG) in eastern Washington. The CRBG is one of the youngest (< 17 Myrs old) and most extensively studied basalt provinces in the world, extending over 163,700 square km with total thickness exceeding 1 km in some places. The morphologies and textures of CRBG basalt columns suggest that in many places flows ~100 m thick cooled at uniform rates, even deep in the flow interior. Such cooling seems to require the presence of water in the column joints since the flow interiors should have cooled much more slowly than the flow margins if conductive cooling dominated. Secondary features, such pillow basalts, likewise suggest the basalt flows were in direct contact with standing water in many places. At the resolution provided by the orbiting HiRISE camera (0.9 m), the Martian basalt columns resemble the CRBG columns in many respects, and so, subject to important caveats, inferences linking the morphologies of the CRBG columns to their thermal histories can be extended in some respects to the Martian columns. In this presentation, we will describe our analysis of the HiRISE images of the Martian columns and what can be reasonably inferred about their thermal histories and the conditions under which they were emplaced. We will also report on a field expedition to the CRBG in eastern Washington State. During that expedition, we surveyed basalt column outcrops on the ground and from the air using Unmanned Aerial

  5. Specific ultra-violet absorbance as an indicator measurement of merucry sources in an Adirondack River basin

    USGS Publications Warehouse

    Burns, Douglas A.; Aiken, George R.; Bradley, Paul M.; Journey, Celeste A.; Schelker, Jakob

    2013-01-01

    The Adirondack region of New York has been identified as a hot spot where high methylmercury concentrations are found in surface waters and biota, yet mercury (Hg) concentrations vary widely in this region. We collected stream and groundwater samples for Hg and organic carbon analyses across the upper Hudson River, a 493 km2 basin in the central Adirondacks to evaluate and model the sources of variation in filtered total Hg (FTHg) concentrations. Variability in FTHg concentrations during the growing seasons (May-Oct) of 2007-2009 in Fishing Brook, a 66-km2 sub-basin, was better explained by specific ultra-violet absorbance at 254 nm (SUVA254), a measure of organic carbon aromaticity, than by dissolved organic carbon (DOC) concentrations, a commonly used Hg indicator. SUVA254 was a stronger predictor of FTHg concentrations during the growing season than during the dormant season. Multiple linear regression models that included SUVA254 values and DOC concentrations could explain 75 % of the variation in FTHg concentrations on an annual basis and 84 % during the growing season. A multiple linear regression landscape modeling approach applied to 27 synoptic sites across the upper Hudson basin found that higher SUVA254 values are associated with gentler slopes, and greater riparian area, and lower SUVA254 values are associated with an increasing influence of open water. We hypothesize that the strong Hg?SUVA254 relation in this basin reflects distinct patterns of FTHg and SUVA254 that are characteristic of source areas that control the mobilization of Hg to surface waters, and that the seasonal influence of these source areas varies in this heterogeneous basin landscape.

  6. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    USGS Publications Warehouse

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in

  7. The importance of visitors' knowledge of the cultural and natural history of the Adirondacks in influencing sense of place in the high peaks region

    Treesearch

    Laura Fredrickson

    2002-01-01

    This study examined various dimensions of the sense of place experience felt by visitors to the High Peaks of the Adirondack Park. More specifically, a 6-page questionnaire (mail-back postage-paid) was distributed to 803 people over a three-month period (June, July & August, 1999). The two primary objectives of this study were to: 1) explore the various...

  8. Sardinian basalt. An ancient georesource still en vougue

    NASA Astrophysics Data System (ADS)

    Careddu, Nicola; Grillo, Silvana Maria

    2017-04-01

    Commercially quarried Sardinian basalt was the result of extensive volcanic activity during the Pliocene and Pleistocene ages, following the opening of the Campidano plain and Tyrrhenian sea rift. Extensive areas of Sardinia have been modelled by large volumes of basalt and andesite rock. An example is provided by the 'Giare' tablelands and other large plateaus located in central Sardinia. Other basalt-rich areas exist in the Island. Sardinia is featured by a vast array of basalt monuments, dating back to the II-I millennium BC, bearing witness to the great workability, durability and resistance to weathering of the rock. The complex of circular defensive towers, known as "Su Nuraxi di Barumini" was included in the World Heritage List by Unesco in 1997. Basalt is currently produced locally to be used for architectural and ornamental purposes. It is obtained by quarrying stone deposits or mining huge boulders which are moved and sawn by means of mechanical machinery. Stone-working is carried out in plants located in various sites of the Island. The paper begins with an historical introduction and then focusses on the current state of the art of Sardinian basalt quarrying, processing and using. An analysis of the basalt market has been carried out.

  9. Trace element composition of Luna 24 Crisium VLT basalt

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.

    1978-01-01

    The origins of the individual particles analyzed from the Luna 24 core and the information they provide on the trace-element composition of Mare Crisium basalt are considered. Previous analyses of several Luna 24 soil fragments are reviewed. It is concluded that: (1) the average trace-element concentrations for 12 VLT basalt fragments are the best available estimates for bulk samples of Crisium VLT basalt; (2) there is weak evidence that the average Crisium basalt might have a small positive Eu anomaly relative to chondritic matter; (3) the soils contain components from sources other than the Crisium VLT basalt; and (4) there is no convincing information in concentrations of rare-earth elements, Co, Sc, FeO, or Na2O among the analyzed fragments to indicate more than one parent basalt.

  10. Can we identify source lithology of basalt?

    PubMed

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  11. Can we identify source lithology of basalt?

    PubMed Central

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered. PMID:23676779

  12. U-Pb zircon geochronology and evolution of some Adirondack meta-igneous rocks

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    An update was presented of the recent U-Pb isotope geochronology and models for evolution of some of the meta-igneous rocks of the Adirondacks, New York. Uranium-lead zircon data from charnockites and mangerites and on baddeleyite from anorthosite suggest that the emplacement of these rocks into a stable crust took place in the range 1160 to 1130 Ma. Granulite facies metamorphism was approximately 1050 Ma as indicated by metamorphic zircon and sphene ages of the anorthosite and by development of magmatitic alaskitic gneiss. The concentric isotherms that are observed in this area are due to later doming. However, an older contact metamorphic aureole associated with anorthosite intrusion is observed where wollastonite develops in metacarbonates. Zenoliths found in the anorthosite indicate a metamorphic event prior to anorthosite emplacement. The most probable mechanism for anorthosite genesis is thought to be ponding of gabbroic magmas at the Moho. The emplacement of the anorogenic anorthosite-mangerite-charnockite suite was apparently bracketed by compressional orogenies.

  13. Are flood basalt eruptions monogenetic or polygenetic?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Cañón-Tapia, Edgardo

    2015-11-01

    A fundamental classification of volcanoes divides them into "monogenetic" and "polygenetic." We discuss whether flood basalt fields, the largest volcanic provinces, are monogenetic or polygenetic. A polygenetic volcano, whether a shield volcano or a stratovolcano, erupts from the same dominant conduit for millions of years (excepting volumetrically small flank eruptions). A flood basalt province, built from different eruptive fissures dispersed over wide areas, can be considered a polygenetic volcano without any dominant vent. However, in the same characteristic, a flood basalt province resembles a monogenetic volcanic field, with only the difference that individual eruptions in the latter are much smaller. This leads to the question how a flood basalt province can be two very different phenomena at the same time. Individual flood basalt eruptions have previously been considered monogenetic, contrasted by only their high magma output (and lava fluidity) with typical "small-volume monogenetic" volcanoes. Field data from Hawaiian shield volcanoes, Iceland, and the Deccan Traps show that whereas many feeder dykes were single magma injections, and the eruptions can be considered "large monogenetic" eruptions, multiple dykes are equally abundant. They indicate that the same dyke fissure repeatedly transported separate magma batches, feeding an eruption which was thus polygenetic by even the restricted definition (the same magma conduit). This recognition helps in understanding the volcanological, stratigraphic, and geochemical complexity of flood basalts. The need for clear concepts and terminology is, however, strong. We give reasons for replacing "monogenetic volcanic fields" with "diffuse volcanic fields" and for dropping the term "polygenetic" and describing such volcanoes simply and specifically as "shield volcanoes," "stratovolcanoes," and "flood basalt fields."

  14. Petrogenesis of mare basalts - A record of lunar volcanism

    NASA Astrophysics Data System (ADS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-06-01

    The classification, sources, and overall petrogenesis of mare basalts are reviewed. All mare basalt analyses are used to define a sixfold classification scheme using TiO2 contents as the primary division. A secondary division is made using Al2O3 contents, and a tertiary division is defined using K contents. Such divisions and subdivisions yield a classification containing 12 categories, of which six are accounted for by the existing Apollo and Luna collections. A variety of postmagma-generation such as fractional crystallization, either alone or combined with wallrock assimilation, are invoked to explain the compositional ranges of the various mare basalt suites. High-Ti mare basalts are found at Apollo 1 and Apollo 17 sites; the A-11 basalts contain lower TiO2 abundances, a considerably larger range in trace-element contents, and the only occurrence of high-Ti/high-K mare basalts. The low-Ti basalts exhibit a wide range of major-and trace-element compositions and require source heterogeneity, fractional crystallization, and some assimilation.

  15. [Determination of Total Iron and Fe2+ in Basalt].

    PubMed

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  16. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  17. Whole rock major element chemistry of KREEP basalt clasts in lunar breccia 15205: Implications for the petrogenesis of volcanic KREEP basalts

    NASA Technical Reports Server (NTRS)

    Vetter, Scott K.; Shervais, John W.

    1993-01-01

    KREEP basalts are a major component of soils and regolith at the Apollo 15 site. Their origin is controversial: both endogenous (volcanic) and exogenous (impact melt) processes have been proposed, but it is now generally agreed that KREEP basalts are volcanic rocks derived from the nearby Apennine Bench formation. Because most pristine KREEP basalts are found only as small clasts in polymict lunar breccias, reliable chemical data are scarce. The primary aim of this study is to characterize the range in chemical composition of pristine KREEP basalt, and to use these data to decipher the petrogenesis of these unique volcanic rocks.

  18. Impacts of acidification on macroinvertebrate communities in streams of the western Adirondack Mountains, New York, USA

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.; Bode, R.W.; Simonin, H.A.; Roy, K.M.; Smith, A.J.

    2009-01-01

    Limited stream chemistry and macroinvertebrate data indicate that acidic deposition has adversely affected benthic macroinvertebrate assemblages in numerous headwater streams of the western Adirondack Mountains of New York. No studies, however, have quantified the effects that acidic deposition and acidification may have had on resident fish and macroinvertebrate communities in streams of the region. As part of the Western Adirondack Stream Survey, water chemistry from 200 streams was sampled five times and macroinvertebrate communities were surveyed once from a subset of 36 streams in the Oswegatchie and Black River Basins during 2003-2005 and evaluated to: (a) document the effects that chronic and episodic acidification have on macroinvertebrate communities across the region, (b) define the relations between acidification and the health of affected species assemblages, and (c) assess indicators and thresholds of biological effects. Concentrations of inorganic Al in 66% of the 200 streams periodically reached concentrations toxic to acid-tolerant biota. A new acid biological assessment profile (acidBAP) index for macroinvertebrates, derived from percent mayfly richness and percent acid-tolerant taxa, was strongly correlated (R2 values range from 0.58 to 0.76) with concentrations of inorganic Al, pH, ANC, and base cation surplus (BCS). The BCS and acidBAP index helped remove confounding influences of natural organic acidity and to redefine acidification-effect thresholds and biological-impact categories. AcidBAP scores indicated that macroinvertebrate communities were moderately or severely impacted by acidification in 44-56% of 36 study streams, however, additional data from randomly selected streams is needed to accurately estimate the true percentage of streams in which macroinvertebrate communities are adversely affected in this, or other, regions. As biologically relevant measures of impacts caused by acidification, both BCS and acidBAP may be useful

  19. Critical loads of atmospheric deposition to Adirondack lake watersheds: A guide for policymakers

    USGS Publications Warehouse

    Burns, Douglas A.; Sullivan, Timothy J.

    2015-01-01

    Acid deposition is sometimes referred to as “acid rain,” although part of the acid load reaches the surface by means other than rainfall. In the eastern U.S., acid deposition consists of several forms of sulfur and nitrogen that largely originate as emissions to the atmosphere from sources such as electricity-generating facilities (coal, oil, and natural gas), diesel- and gasoline-burning vehicles, some agricultural activities, and smokestack industries. Acid deposition is known to cause deleterious effects to sensitive ecosystems of which the Adirondack region of New York State provides several well-known and well-studied examples. This largely forested region includes abundant lakes, streams, and wetlands and possesses several landscape features that result in high ecosystem sensitivity to acid deposition. These features include bedrock that weathers slowly, steep slopes, and thin, naturally acidic soils. An ecosystem is described as sensitive to, or affected by, acid deposition if prolonged exposure to acid deposition has resulted in detrimental ecosystem effects. Soils, streams, and lakes that are less sensitive are better able to buffer acid deposition. A principal reason that acidification is a concern for resource managers is because of the changes induced in native biota and their habitat on land and in water. As the chemistry of soils and surface waters in sensitive landscapes changes in response to prolonged exposure to acid deposition, organisms that cannot tolerate high acidity, such as sugar maple trees and many species of fish and aquatic insects, may be gradually eliminated from the ecosystem. Other biota such as red spruce may experience increased stress and reduced growth rates as a result of acidification, exposing these species to increased susceptibility to disease and other natural stressors and perhaps increased mortality. The ecological effects of acid deposition have been documented by extensive research that began in the U.S. in the

  20. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  1. Reduction of mare basalts by sulfur loss

    USGS Publications Warehouse

    Brett, R.

    1976-01-01

    Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated. Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination. ?? 1976.

  2. Basalt: Biologic Analog Science Associated with Lava Terrains

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication

  3. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    USGS Publications Warehouse

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  4. Ibitira: A basaltic achondrite from a distinct parent asteroid

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2004-01-01

    I have done detailed petrologic study of Ibitira, nominally classified as a basaltic eucrite. The Fe/Mn ratio of Ibitira pyroxenes with <10 mole % wollastonite component is 36.4 0.4, and is well-resolved from those of five basaltic eucrites studied for comparison; 31.2-32.2. Data for the latter completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes. Thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust.

  5. Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Nageswara Rao, P. V.; Swaroop, P. C.; Karimulla, Syed

    2012-04-01

    This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110-1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063-1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900-1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748-898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe-Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900-1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48-10.3) and extremely reducing conditions for middle (12.1-15.5) and upper basalt (12.4-15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3 +MgO) data plots for present basalts suggested

  6. Germanium abundances in lunar basalts: Evidence of mantle metasomatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, T.; Taylor, G.J.; Keil, T.K.

    1988-01-01

    To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear thatmore » the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.« less

  7. Study on basalt fiber parameters affecting fiber-reinforced mortar

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  8. Os isotope systematics in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Reisberg, Laurie; Zindler, Alan; Marcantonio, Franco; White, William; Wyman, Derek; Weaver, Barry

    1993-12-01

    New Re-Os isotopic results for Os-poor basalts from St. Helena, the Comores, Samoa, Pitcairn and Kerguelen dramatically expand the known range of initial Os-186/Os-187 ratios in Ocean Island Basalts (OIBs) to values as high as 1.7. In contrast to the Os isotopic uniformity of Os-rich basalts from the HIMU islands of Tubuai and Mangaia found by Hauri and Hart, our values for St. Helena span most of the known range of Os isotopic variability in oceanic basalts (initial O-187/Os-186 ranges from 1.2 to 1.7). Generation of such radiogenic Os in the mantle requires melting of source materials that contain large proportions of recycled oceanic crust. The very low Os concentrations of most of the basalts analyzed here, however, leave them susceptible to modification via interaction with materials containing radiogenic Os in the near-surface environment. Thus the high Os-186/Os-187 ratios may result from assimilation of radiogenic Os-rich marine sediments, such as Mn oxides, within the volcanic piles traversed by these magmas en route to the surface. Furthermore, the Os isotopic signatures of Os-rich, olivine-laden OIBs may reflect the accumulation of lithospheric olivine, rather than simply their mantle source characteristics. The extent to which these processes alter the view of the mantle obtained via study of Re-Os systematics in oceanic basalts is uncertain. These effects must be quantified before Re-Os systematics in OIBs can be used with confidence to investigate the nature of mantle heterogeneity and its causes.

  9. Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun-Deok Choi; Thomas M. Holsen; Philip K. Hopke

    2008-08-15

    Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (HgP) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and HgP were 1.4 {+-} 0.4 ng m{sup -3}, 1.8 {+-} 2.2 pg m{sup -3}, and 3.2 {+-} 3.7 pg m{sup -3}, respectively. RGM represents <3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and HgP represents <3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, andmore » HgP were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory. 51 refs., 7 figs., 1 tab.« less

  10. Lu-Hf AND Sm-Nd EVOLUTION IN LUNAR MARE BASALTS.

    USGS Publications Warehouse

    Unruh, D.M.; Stille, P.; Patchett, P.J.; Tatsumoto, M.

    1984-01-01

    Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small ( less than equivalent to 10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and hf-enriched. Calculated source compositions range from lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite ( less than equivalent to 3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts reveals that the epsilon Hf/ epsilon Nd ratios in low-Ti mare basalts are much higher than in terrestrial ocean basalts.

  11. Continental Basalts and Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Zartman, Robert E.

    In this decade of the International Lithosphere Program, much scientific attention is being directed toward the deep continental crust and subadjacent mantle. The petrologic, geochemical, and isotopic signatures of basaltic magmas, which transect much of the lithosphere as they ascend from their site of melting, and of contained cognate and accidental xenoliths, which are found along the path of ascent, give us, perhaps, the best clues to composition and structure in the third dimension. Continental Basalts and Mantle Xenoliths provides an opportunity to sample the British school of thought on subjects such as differences between oceanic and continental basalts, effects of mantle metasomatism, and relationships between events in the subcontinental mantle and those in the overlying crust. This volume is recommended by the publisher as being of interest to senior undergraduates and postgraduate researchers; I would extend that readership to all scientists who seek access to a potpourri of recent findings and current ideas in a rapidly evolving field of research.

  12. Efficacy of environmental DNA to detect and quantify Brook Trout populations in headwater streams of the Adirondack Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob

    2016-01-01

    Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.

  13. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York

    NASA Astrophysics Data System (ADS)

    Fakhraei, Habibollah; Driscoll, Charles T.; Selvendiran, Pranesh; DePinto, Joseph V.; Bloomfield, Jay; Quinn, Scott; Rowell, H. Chandler

    2014-10-01

    Acidic deposition has impaired acid-sensitive surface waters in the Adirondack region of New York by decreasing pH and acid neutralizing capacity (ANC). In spite of air quality programs over past decades, 128 lakes in the Adirondacks were classified as “impaired” under Section 303(d) of the Clean Water Act in 2010 due to elevated acidity. The biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric sulfur (S) and nitrogen (N) deposition to changes in lake water chemistry. The model was calibrated and confirmed using observed soil and lake water chemistry data and then was applied to calculate the maximum atmospheric deposition that the impaired lakes can receive while still achieving ANC targets. Two targets of ANC were used to characterize the recovery of acid-impaired lakes: 11 and 20 μeq L-1. Of the 128 acid-impaired lakes, 97 currently have ANC values below the target value of 20 μeq L-1 and 83 are below 11 μeq L-1. This study indicates that a moderate control scenario (i.e., 60% decrease from the current atmospheric S load) is projected to recover the ANC of lakes at a mean rate of 0.18 and 0.05 μeq L-1 yr-1 during the periods 2022-2050 and 2050-2200, respectively. The total maximum daily load (TMDL) of acidity corresponding to this moderate control scenario was estimated to be 7.9 meq S m-2 yr-1 which includes a 10% margin of safety.

  14. Geochemistry of Apollo 15 basalt 15555 and soil 15531.

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.; Philpotts, J. A.; Nava, D. F.; Schuhmann, S.; Thomas, H. H.

    1972-01-01

    Data are presented on major and trace element concentrations determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area, as well as on trace element concentrations determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Most of the chemical differences between basalt 15555 and soil 15531 could be accounted for if the soil were a mixture of 88% basalt, 6% KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus), and 6% plagioclase.

  15. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA)

    USGS Publications Warehouse

    Beier, Colin M.; Caputo, Jesse; Lawrence, Gregory B.; Sullivan, Timothy J.

    2017-01-01

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global ‘hot-spot’ of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils – an estimated loss of ∼ $10,000 ha−1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact – relative to the effects of surficial geology and till depth – on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8–5.5, but are costly and limited in scope. Although any estimates of the monetary ‘damages’ of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition.

  16. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.

    PubMed

    Dzaugis, Mary E; Spivack, Arthur J; Dunlea, Ann G; Murray, Richard W; D'Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium ((238)U, (235)U), thorium ((232)Th) and potassium ((40)K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as

  17. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  18. An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Burling, Trina Cox

    1996-01-01

    Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15

  19. A preliminary synthesis of structural, stratigraphic, and magnetic data from part of the northwest Adirondacks, New York

    USGS Publications Warehouse

    Foose, M.P.; Brown, C. Ervin

    1976-01-01

    Synthesis of recent work in the NW Adirondacks, New York allows the development of a coherent geologic picture. Mapping of the Precambrian rock units enables the recognition of four major units which are, from bottom to top, 1) Granitic Gneiss (alaskite), 2) Lower Marble, 3) Major Gneiss, and 4) Upper Marble. Additionally, lenses of amphibolite and granite occur as intrusives within this succession. These rock units have been complexly deformed by three major folding episodes, and by two distinctly different styles of faulting. The result has been to produce large northeast-southwest trending dome and basin structures. Patterns of magnetic intensity closely parallel distribution of rock units and provide additional information for a structural and stratigraphic synthesis-.

  20. Identifying Common Patterns in Diverse Systems: Effects of Exurban Development on Birds of the Adirondack Park and the Greater Yellowstone Ecosystem, USA

    NASA Astrophysics Data System (ADS)

    Glennon, Michale J.; Kretser, Heidi E.; Hilty, Jodi A.

    2015-02-01

    We examined the impacts of exurban development on bird communities in Essex County, New York and Madison County, Montana by comparing differences in abundance of songbirds between subdivisions and control sites in both regions. We hypothesized that impacts to bird communities would be greater in the relatively homogeneous, closed canopy Adirondack forest of northern New York State than they would be in the more naturally heterogeneous grasslands interspersed with trees and shrubs of the Greater Yellowstone Ecosystem. We examined birds in five functional groups expected to be responsive to exurban development, and determined relative abundance within subdivisions and control sites across these two distinct regions. We found little support for our hypothesis. For birds in the area-sensitive, low nesting, and Neotropical migrant functional groups, relative abundance was lower in subdivisions in the Adirondacks and in Madison County, while relative abundance of edge specialists was greater in subdivisions in both regions. The direction and magnitude of change in the avian communities between subdivisions and controls was similar in both regions for all guilds except microhabitat specialists. These similarities across diverse ecosystems suggest that the ecological context of the encompassing region may be less important than other elements in shaping avian communities in exurban systems. This finding suggests that humans and their specific behaviors and activities in exurban areas may be underappreciated but potentially important drivers of change in these regions.

  1. Lu-Hf and Sm-Nd evolution in lunar mare basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, D.M.; Stille, P.; Patchett, P.J.

    1984-02-15

    Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small (< or =10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and Hf-enriched. Calculated source compositions range fromm lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite (< or =3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts revealsmore » that the epsilonHf/epsilonNd ratios of low-Ti mare basalts are much higher than in terrestrial oceanic basalts. The results are qualitatively consistent with the hypothesis that terrestrial basalt sources are partial melt residues whereas mare basalt sources are cumulates. Alternatively, the results may imply that the terrestrial mantle has evolved in two (or more) stages of evolution, and that the net effect was depletion of the mantle during the first approx.1-3 b.y. followed by enrichment during the last 1-2 b.y.; or simply that there is a difference in Lu-Hf crystal-liquid partitioning (relative to Sm-Nd) between the lunar and terrestrial mantles.« less

  2. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  3. Petrologic models of 15388, a unique Apollo 15 mare basalt

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Dasch, E. J.; Nyquist, L. E.

    1993-01-01

    Mare basalt 15388, a feldspathic microgabbro from the Apennine Front, is chemically and petrographically distinct from Apollo 15 picritic, olivine-normative (ON), and quartz-normative basalts. The evolved chemistry, coarse texture, lack of olivine, and occurrence of cristobalite in 15388 argue for derivation by a late-stage magmatic process that is significantly removed from parental magma. It either crystallized from a magma evolved from the more mafic Apollo 15 basalts, or it crystallized from a currently unrepresented magma. Rb-Sr and Sm-Nd isotopic systematics yield isochron ages of 3.391 plus or minus 0.036 and 3.42 plus or minus 0.07 Ga, respectively, and epsilon(sub Nd) = 8.6 plus or minus 2.4, which is relatively high for Apollo 15 mare basalts. In contrast to chemical patterns of average Apollo 15 ON basalts and Apollo 15 picritic basalt, 15388 has a strongly positive LREE slope, high Ti, shallower HREE slope and a slightly positive Eu anomaly. These features argue against 15388 evolution by simple olivine fractionation of a parental ON or picritic basalt magma, although olivine is a dominant liquidus phase in both potential parents.

  4. Flood basalts and extinction events

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  5. A basalt trigger for the 1991 eruptions of Pinatubo volcano?

    USGS Publications Warehouse

    Pallister, J.S.; Hoblitt, R.P.; Reyes, A.G.

    1992-01-01

    THE eruptive products of calc-alkaline volcanos often show evidence for the mixing of basaltic and acid magmas before eruption (see, for example, refs 1, 2). These observations have led to the suggestion3 that the injection of basaltic magma into the base of a magma chamber (or the catastrophic overturn of a stably stratified chamber containing basaltic magma at its base) might trigger an eruption. Here we report evidence for the mixing of basaltic and dacitic magmas shortly before the paroxysmal eruptions of Pinatubo volcano on 15 June 1991. Andesitic scoriae erupted on 12 June contain minerals and glass with disequilibrium compositions, and are considerably more mafic than the dacitic pumices erupted on 15 June. Differences in crystal abundance and glass composition among the pumices may arise from pre-heating of the dacite magma by the underlying basaltic liquid before mixing. Degassing of this basaltic magma may also have contributed to the climatologically important sulphur dioxide emissions that accompanied the Pinatubo eruptions.

  6. Thermal models for basaltic volcanism on Io

    USGS Publications Warehouse

    Keszthelyil, L.; McEwen, A.

    1997-01-01

    We present a new model for the thermal emissions from active basaltic eruptions on Io. While our methodology shares many similarities with previous work, it is significantly different in that (1) it uses a field tested cooling model and (2) the model is more applicable to pahoehoe flows and lava lakes than fountain-fed, channelized, 'a'a flows. This model demonstrates the large effect lava porosity has on the surface cooling rate (with denser flows cooling more slowly) and provides a preliminary tool for examining some of the hot spots on Io. The model infrared signature of a basaltic eruption is largely controlled by a single parameter, ??, the average survival time for a lava surface. During an active eruption surfaces are quickly covered or otherwise destroyed and typical values of ?? for a basaltic eruption are expected to be on the order of 10 seconds to 10 minutes. Our model suggests that the Galileo SSI eclipse data are consistent with moderately active to quiescent basaltic lava lakes but are not diagnostic of such activity. Copyright 1997 by the American Geophysical Union.

  7. The Thickness and Volume of Young Basalts Within Mare Imbrium

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Li, Chunlai; Ren, Xin; Liu, Jianjun; Wu, Yunzhao; Lu, Yu; Cai, Wei; Zhang, Xunyu

    2018-02-01

    Basaltic volcanism is one of the most important geologic processes of the Moon. Research on the thickness and volume of late-stage basalts of Mare Imbrium helps better understand the source of lunar volcanism and eruption styles. Based on whether apparent flow fronts exist or not, the late-stage basalts within Mare Imbrium were divided into two groups, namely, Upper Eratosthenian basalts (UEm) and Lower Eratosthenian basalts (LEm). Employing the topographic profile analysis method for UEm and the crater excavation technique for LEm, we studied the thickness and distribution of Eratosthenian basalts in Mare Imbrium. For the UEm units, their thicknesses were estimated to be 16-34 (±2) m with several layers of individual lava ( 8-13 m) inside. The estimated thickness of LEm units was 14-45(±1) m, with a trend of reducing thickness from north to south. The measured thickness of late-stage basalts around the Chang'E-3 landing site ( 37 ± 1 m) was quite close to the results acquired by the lunar penetrating radar carried on board the Yutu Rover ( 35 m). The total volume of the late-stage basalts in Mare Imbrium was calculated to be 8,671 (±320) km3, which is 4 times lower than that of Schaber's estimation ( 4 × 104 km3). Our results indicate that the actual volume is much lower than previous estimates of the final stage of the late basaltic eruption of Mare Imbrium. Together, the area flux and transport distance of the lava flows gradually decreased with time. These results suggest that late-stage volcanic evolution of the Moon might be revised.

  8. Lu-Hf CONSTRAINTS ON THE EVOLUTION OF LUNAR BASALTS.

    USGS Publications Warehouse

    Fujimaki, Hirokazu; Tatsumoto, Mistunobu

    1984-01-01

    The authors show that a cumulate-remelting model best explains the recently acquired data on the Lu-Hf systematics of lunar mare basalts. The authors model is first constructed using the Lu and Hf concentration data and it is then further strengthened by the Hf isotopic evidence. The authors also show that the similarity of MgO/FeO ratios and the Cr//2O//3 contents between high-Ti and low-Ti basalts, which have been given significance by A. E. Ringwood and D. H. Green are not important constraints for lunar basalt petrogenesis. The authors principal aim is to revive the remelting model for further consideration with the powerful constraints of Lu-Hf systematics of lunar basalts.

  9. Chemical magnetization when determining Thellier paleointensity experiments in oceanic basalts

    NASA Astrophysics Data System (ADS)

    Tselebrovskiy, Alexey; Maksimochkin, Valery

    2017-04-01

    The natural remanent magnetization (NRM) of oceanic basalts selected in the rift zones of the Mid-Atlantic Ridge (MAR) and the Red Sea has been explored. Laboratory simulation shows that the thermoremanent magnetization and chemical remanent magnetization (CRM) in oceanic basalts may be separated by using Tellier-Coe experiment. It was found that the rate of CRM destruction is about four times lower than the rate of the partial thermoremanent magnetization formation in Thellier cycles. The blocking temperatures spectrum of chemical component shifted toward higher temperatures in comparison with the spectrum of primary thermoremanent magnetization. It was revealed that the contribution of the chemical components in the NRM increases with the age of oceanic basalts determined with the analysis of the anomalous geomagnetic field (AGF) and spreading theory. CRM is less than 10% at the basalts aged 0.2 million years, less than 50% at basalts aged 0.35 million years, from 60 to 80% at basalts aged 1 million years [1]. Geomagnetic field paleointensity (Hpl) has been determined through the remanent magnetization of basalt samples of different ages related to Brunhes, Matuyama and Gauss periods of the geomagnetic field polarity. The value of the Hpl determined by basalts of the southern segment of MAR is ranged from 17.5 to 42.5 A/m, by the Reykjanes Ridge basalts — from 20.3 to 44 A/m, by the Bouvet Ridge basalts — from 21.7 to 34.1 A/m. VADM values calculated from these data are in good agreement with the international paleointensity database [2] and PISO-1500 model [3]. Literature 1. Maksimochkin V., Tselebrovskiy A., (2015) The influence of the chemical magnetization of oceanic basalts on determining the geomagnetic field paleointensity by the thellier method, moscow university physics bulletin, 70(6):566-576, 2. Perrin, M., E. Schnepp, and V. Shcherbakov (1998), Update of the paleointensity database, Eos Trans. AGU, 79, 198. 3. Channell JET, Xuan C, Hodell DA (2009

  10. Additive Construction using Basalt Regolith Fines

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  11. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    NASA Astrophysics Data System (ADS)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  12. Sulfur in Hydrous, Oxidized Basaltic Magmas: Phase Equilibria and Melt Solubilities

    NASA Astrophysics Data System (ADS)

    Pichavant, M.; Scaillet, B.; di Carlo, I.; Rotolo, S.; Metrich, N.

    2006-05-01

    Basaltic magmas from subduction zone settings are typically S-rich and may be the ultimate source of sulfur in vapor phases emitted during eruptions of more silicic systems. To understand processes of sulfur recycling in subduction zones, the behaviour of S in hydrous, oxidized, mafic arc magmas must be known. Although experimental data on S-bearing basaltic melts are available for dry conditions, and under both reduced and oxidized fO2, no study has yet examined the effect of S in hydrous mafic melts. In this work, 3 starting compositions were investigated, a basaltic andesite, a K basalt and a picritic basalt. For each composition, experimental data for S-added (1 wt % elemental sulfur) and S-free charges were obtained under similar P-T- H2O-fO2. All experiments were performed at 4 kbar and at either 950 ° C (basaltic andesite), 1100 ° C (K basalt) or 1150 ° C (picritic basalt). These were carried out in an internally heated vessel pressurized with Ar-H2 mixtures and fitted with a drop-quench device, and lasted for between 15 and 99 h. Either Au (950 ° C) or AuPd alloys (1100 and 1150 ° C) were used as containers. These latter perform satisfactorily under strongly oxidizing conditions, i.e., for fO2 above NNO+1 at 1100 and 1150 ° C. Below NNO+1, Pd- Au-S-Fe phases appear in the charges, suggesting extensive interaction between S and the capsule material. Experimental redox conditions, determined from Ni-Pd-O sensors, ranged between NNO+1.3 to +4.1 (basaltic andesite), +0.6 to +2.0 (K basalt), and +0.3 to +3.6 (picritic basalt). H2O concentrations in melt ranged from 8.2 wt % (basaltic andesite), decreasing to 2.2-3.9 wt % (K basalt) and 2.5-5.0 wt % (picritic basalt). All 3 compositions studied crystallize anhydrite and Fe-Ni-S-O sulphide as saturating S-bearing phases, anhydrite at high fO2 and sulphide at lower fO2, although melt composition also influences their stability. Anhydrite is present at a fO2 as low as NNO+1.5 in the K basalt. In the picritic

  13. Testing the Origins of Basalt Fragments fro Apollo 16

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Stevens, R. E.; Neal, C. R.; Zeigler, R. A.

    2013-01-01

    Several 2-4 mm regolith fragments of basalt from the Apollo 16 site were recently described by [1]. These included a high-Ti vitrophyric basalts (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). As Apollo 16 was the only highlands sample return mission distant from the maria, identification of basaltic samples at the site indicates input from remote sites via impact processes [1]. However, distinguishing between impact melt and pristine basalt can be notoriously difficult and requires significant sample material [2-6]. The crystal stratigraphy method utilizes essentially non-destructive methods to make these distinctions [7,8]. Crystal stratigraphy combines quantitative petrography in the form of crystal size distributions (CSDs) coupled with mineral geochemistry to reveal the petrogenetic history of samples. The classic CSD plot of crystal size versus population density can reveal insights on growth/cooling rates, residence times, and magma history which in turn can be used to evaluate basaltic vs impact melt origin [7-9]. Electron microprobe (EMP) and laser ablation (LA)-ICP-MS analyses of mineral phases complement textural investigations. Trace element variations document subtle changes occurring during the formation of the samples, and are key in the interpretation and preservation of this rare lunar sample collection.

  14. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Chun; Yang, Huai-Jen

    2016-04-01

    The pillow basalts from Baolai in southwestern Taiwan have been inferred to bear Dupal signautres based on their Th/Ce ratio, linking the Baolai basalts to the South China Sea (SCS) seamounts that are characterized by Dupal Pb isotope signatures (Smith and Lewis, 2007). In this study, thirty-two Baolai basalt samples were analyzed for abundances of major and trace elements as well as Pb and Nd isotope ratios to verify their Dupal characters and to constrain their petrogenesis significance. The Baolai basalts contain 4-10 % L.O.I.. Three stages of alteration are inferred from plots of L.O.I. abundance versus concentrations major oxides as well as mineral textures and compositions. The first alteration stage was characterized by albitization that converted Ca-rich plagioclase to albite. The second alteration stage was dominated by chloritization of olivine and augite, resulting in increases in L.O.I. abundance. The last alteration stage is represented by formation of secondary calcite in vesicles and cracks. These alteration processes reflect interaction with seawater and apparently did not affect the magmatic Pb isotope composition for the low Pb concentration in seawater. Relative to the North Hemisphere Reference Line (NHRL), the Baolai pillow basalts have higher 208Pb/204Pb ratios at a given 206Pb/204Pb value, showing Dupal anomaly. For their relatively higher 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios, the Baolai basalts are distinct from majority of the Cenozoic basalts in the Hainan-Leizhou peninsula, the Indochina peninsula, and the SCS seamounts, for which derivation from the Hainan mantle plume has been recently proposed (Wang et al., 2013). In contrast, the Baolai basalts and the Cenozoic basalts from eastern Guangdong at southeastern China have similar Pb and Nd isotope compositions, indicating derivation from similar mantle sources. However, the Baolai basalts have lower abundance ratios of Zr/Hf (40.3-45.6 versus 46.5-50.5), La/Yb (12

  15. Seismic wave propagation through an extrusive basalt sequence

    NASA Astrophysics Data System (ADS)

    Sanford, Oliver; Hobbs, Richard; Brown, Richard; Schofield, Nick

    2016-04-01

    Layers of basalt flows within sedimentary successions (e.g. in the Faeroe-Shetland Basin) cause complex scattering and attenuation of seismic waves during seismic exploration surveys. Extrusive basaltic sequences are highly heterogeneous and contain strong impedance contrasts between higher velocity crystalline flow cores (˜6 km s-1) and the lower velocity fragmented and weathered flow crusts (3-4 km s-1). Typically, the refracted wave from the basaltic layer is used to build a velocity model by tomography. This velocity model is then used to aid processing of the reflection data where direct determination of velocity is ambiguous, or as a starting point for full waveform inversion, for example. The model may also be used as part of assessing drilling risk of potential wells, as it is believed to constrain the total thickness of the sequence. In heterogeneous media, where the scatter size is of the order of the seismic wavelength or larger, scattering preferentially traps the seismic energy in the low velocity regions. This causes a build-up of energy that is guided along the low velocity layers. This has implications for the interpretation of the observed first arrival of the seismic wave, which may be a biased towards the low velocity regions. This will then lead to an underestimate of the velocity structure and hence the thickness of the basalt, with implications for the drilling of wells hoping to penetrate through the base of the basalts in search of hydrocarbons. Using 2-D acoustic finite difference modelling of the guided wave through a simple layered basalt sequence, we consider the relative importance of different parameters of the basalt on the seismic energy propagating through the layers. These include the proportion of high to low velocity material, the number of layers, their thickness and the roughness of the interfaces between the layers. We observe a non-linear relationship between the ratio of high to low velocity layers and the apparent velocity

  16. Experimental investigation of the reaction between corundum xenocrysts and alkaline basaltic host magma: Constraints on magma residence times of basalt-hosted sapphires

    NASA Astrophysics Data System (ADS)

    Baldwin, L. C.; Ballhaus, C.

    2018-03-01

    Megacrystic sapphires (Fe-Ti-rich corundum) of up to 5 cm in size are well known from alkaline mafic rocks from intra-continental rift-related magmatic fields. There is no doubt that these sapphires represent xenocrysts that were trapped from their original lithology by ascending basaltic magmas carrying them to the Earth's surface. Most studies about basalt-hosted sapphires address the question about the origin of the sapphires, but there is hardly any information available about the time the sapphires resided inside the carrier melt. Sapphires are in reaction relationship with basalt and produce spinel coronas at the sapphire-basalt interface, spatially separating the mutually incompatible phases from one another. Assuming isothermal and isobaric conditions of spinel rim formation, the rim-thickness should be a function of the reaction time with the basaltic melt. In this paper, we report time-series experiments aimed at investigating the kinetics of spinel rim formation due to igneous corrosion of corundum. Therefore, we reacted corundum fragments with alkaline basalt powder at 1250 °C and 1GPa, using a Piston Cylinder Apparatus. The width of the spinel rim was used to estimate a residence time. Extrapolating the experimentally derived reaction rates to the thickness of natural spinel rims as described from the Siebengebirge Volcanic Field, Germany, and from Changle, China, we estimated residence times in the order of a few weeks to months.

  17. Scarification of basalt milkvetch (Astragalus filipes) seed for improved emergence

    Treesearch

    Clinton C. Shock; Erik Feibert; Lamont D. Saunders

    2008-01-01

    Basalt milkvetch (Astragalus nlipes) is a forb (non woody perennial) native to western North America. Basalt milkvetch is a legume forb species of interest for revegetating rangelands of the intermountain northwest; it can contribute high quality feed, valuable seed for wildlife, and nitrogen fixation to help maintain range productivity. Basalt milkvetch has a hard...

  18. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  19. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA).

    PubMed

    Beier, Colin M; Caputo, Jesse; Lawrence, Gregory B; Sullivan, Timothy J

    2017-04-15

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global 'hot-spot' of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils - an estimated loss of ∼ $10,000 ha -1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact - relative to the effects of surficial geology and till depth - on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8-5.5, but are costly and limited in scope. Although any estimates of the monetary 'damages' of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites.

    PubMed

    Binzel, R P; Xu, S

    1993-04-09

    For more than two decades, asteroid 4 Vesta has been debated as the source for the eucrite, diogenite, and howardite classes of basaltic achondrite meteorites. Its basaltic achondrite spectral properties are unlike those of other large main-belt asteroids. Telescopic measurements have revealed 20 small (diameters

  1. [Comparative carcinogenic properties of basalt fiber and chrysotile-asbestos].

    PubMed

    Nikitina, O V; Kogan, F M; Vanchugova, N N; Frash, V N

    1989-01-01

    In order to eliminate asbestos adverse effect on workers' health it was necessary to use mineral rayon, primarily basalt fibre, instead of asbestos. During a chronic experiment on animals the oncogenicity of 2 kinds of basalt fibre was studied compared to chrysotile asbestos. The dust dose of 25 mg was twice administered by intraperitonial route. All types of dust induced the onset of intraperitonial mesotheliomas but neoplasm rates were significantly lower in the groups exposed to basalt fibre. There was no credible data on the differences between the groups exposed to various types of basalt fibre. Since the latter produced some oncogenic effect, it was necessary to develop a complex of antidust measures, fully corresponding to the measures adopted for carcinogenic dusts.

  2. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  3. Similar microbial communities found on two distant seafloor basalts

    NASA Astrophysics Data System (ADS)

    Singer, E.; Chong, L. S.; Heidelberg, J. F.; Edwards, K. J.

    2016-12-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present a comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR) (9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  4. Distribution and stratigraphy of basaltic units in Maria Tranquillitatis and Fecunditatis: A Clementine perspective

    NASA Technical Reports Server (NTRS)

    Rajmon, D.; Spudis, P.

    2004-01-01

    Maria Tranquillitatis and Fecunditatis have been mapped based on Clementine image mosaics and derived iron and titanium maps. Impact craters served as stratigraphic probes enabling better delineation of compositionally different basaltic units, determining the distribution of subsurface basalts, and providing estimates of total basalt thickness and the thickness of the surface units. Collected data indicate that volcanism in these maria started with the eruption of low-Ti basalts and evolved toward medium- and high-Ti basalts. Some of the high-Ti basalts in Mare Tranquillitatis began erupting early and were contemporaneous with the low- and medium-Ti basalts; these units form the oldest units exposed on the mare surface. Mare Tranquillitatis is mostly covered with high- Ti basalts. In Mare Fecunditatis, the volume of erupting basalts clearly decreased as the Ti content increased, and the high-Ti basalts occur as a few patches on the mare surface. The basalt in both maria is on the order of several hundred meters thick and locally may be as thick as 1600 m. The new basalt thickness estimates generally fall within the range set by earlier studies, although locally differ. The medium- to high-Ti basalts exposed at the surfaces of both maria are meters to tens of meters thick.

  5. Rhyolite, dacite, andesite, basaltic andesite, and basalt volcanism on the Alarcon Rise spreading-center, Gulf of California

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Portner, R. A.; Clague, D. A.; Castillo, P. R.; Paduan, J. B.; Martin, J. F.

    2012-12-01

    The Alarcon Rise is a ~50 km long intermediate-rate (~50mm/a) spreading segment at the southern end of the Gulf of California. The Rise is bounded by the Tamayo and Pescadero transforms to the south and north. In Spring 2012, an MBARI-led expedition mapped a ~1.5- 3km wide swath of the ridge axis at 1-m resolution and completed 9 ROV dives (Clague et al., this session). Sampling during the ROV dives was supplemented by use of a wax-tip corer to recover volcanic glass: 194 glassy lava samples were recovered from the Rise. The vast majority of lava flows along the axis are basalt and rare basaltic andesite. More than half the basalts are plagioclase-phyric to ultraphyric (Martin et al., this session), and the rest are aphyric. Rare samples also include olivine or olivine and clinopyroxene phenocrysts. Analyses of half of the recovered glass basalt rinds range in MgO from 4.3 to 8.5 wt.% and those with MgO > 6 wt % have K2O/TiO2 = 0.07-0.11. The basalts are broadly characterized as normal mid-ocean ridge basalts (N-MORB). E-MORB is also present near the center of the ridge segment, but has been found only as pyroclasts in sediment cores. A much greater range in lava composition is associated with an unusual volcanic dome-like edifice that lies ~9 km south of the Pescadero transform. Two dives in the vicinity of the dome collected lava and volcaniclastic samples consisting of moderately to sparsely phyric light brown to colorless volcanic glass. Feldspar is the dominant phase, but magnetite, fayalitic olivine, light tan and light green clinopyroxene, orthopyroxene, zircon, and rare pyrite blebs also occur. Melt-inclusions are common in many phenocrysts, especially of plagioclase. Hydrous mineral phases are not observed. These samples have rhyolitic glass compositions (75.8- 77.4 SiO2 wt %), but their whole-rock compositions will be somewhat less silicic. Pillow flows to the immediate west have dacitic glass compositions (67.4- 68.8 wt % SiO2). Basaltic andesitic

  6. Aquifers and Their Tectonic Connectivity in Flood Basalts Using AEM

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Auken, E.; Sonkamble, S.; Maurya, P. K.; Ahmed, S.; Clausen, O. R.; Verma, S. K.

    2016-12-01

    Aquifers, the major freshwater storage providing water for human consumption, agriculture, industry and groundwater-dependent ecosystems, are subjected to increasing stress resulting into drying up of large number of wells in major parts of world. The climate change with erratic rainfall pattern and increasing temperature enhances the rate of evapotranspiration causing reduction in groundwater recharge as well as enhancement in the groundwater withdrawal. Not only the wells, but also springs, ponds and non glacial rivers, mostly fed by base flow during non-monsoon periods, also go dry during droughts. Water crisis is very severe in the basaltic and hard rock areas in India where the weathered zone, principal aquifer, has almost dried up and the water is mostly confined within the underlying vesicular and weathered-fractured basalts, and occasionally within green bole beds. The paper presents results from Basaltic hard rock terrains in India based on integrated geophysical surveys including airborne electromagnetic (AEM) and airborne magnetic methods. Due to good resistivity contrasts, AEM results showed strong signatures of multiple basaltic flows, their alterations and associated major intertrappeans. In combination with ground geophysics, geological and borehole information, AEM was found to be very effective in mapping the multiple flows, Gondwana and basaltic interface, and inter- and infra-trappeans (Figure 1). In addition to the basaltic flows, we could map the tectonic groundwater pathways, which is a completely new knowledge. The tectonic pathways connect different aquifers (water saturated vesicular basalt) located in various flows. The results demonstrate that the AEM is very effective for groundwater prospecting in basalts and in delineating suitable recharge zones to create strategic groundwater reserves.

  7. Two new basaltic objects in the Outer Main Belt

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Roig, F.; Gil-Hutton, R.; Moskovitz, N. A.

    2007-08-01

    in the visible range of (7472) Kumakiri and (10537) 1991 RY16 have been obtained by us on November 14th, 2006, using the Calar Alto Faint Object Spectrograph (CAFOS) at the 2.2m telescope in Calar Alto Observatory, Spain. The reflectance spectra of the two bodies seem to correspond to that of a V-type asteroid. However, the presence of a shallow absorption band around 0.6 microns, which has never been observed before in other V-type spectra, precludes these objects from being classified by any existing taxonomic system [4]. It is worth noting that the observed band is real and its presence in the spectrum of (10537) has been confirmed independently by other observers [13]. Therefore, we do not know whether we have discovered two basaltic asteroids with a very particular and previously unseen mineralogical composition or two objects of non basaltic nature that have to be included in a totally new taxonomic class. To unambiguously determine whether our targets have basaltic surfaces, we will observe in the near-infrared range. References: [1] Binzel, R., Rivkin, A., Stuart, S., et al. 2004, Icarus, 170, 259 [2] Binzel, R.P., Masi, G., Foglia, S., 2006, American Astronomical Society, DPS meeting #38, #71.06. [3] Burbine, T. H.; Buchanan, P. C.; Binzel, R. P.; Bus, S. J.; Hiroi, T.; Hinrichs, J. L.; Meibom, A.; McCoy, T. J., 2001. Meteoritics & Planetary Science 36, 761-781. [4] Bus, S. J., 1999, PhD Thesis, Massachusetts Institute of Technology. [5] Cruikshank, D. P.; Tholen, D. J.; Bell, J. F.; Hartmann,W. K.; Brown, R. H., 1991. Icarus 89, 1-13. [6] Duffard, R.; de Leon, J.; Licandro, J.; Lazzaro, D.; Serra-Ricart, M., 2006. Astronomy and Astrophysics, 456, 775-781. [7] Ivezic et al. 2001. Astronomical Journal 122, 2749-2784. [8] Florczak, M., Lazzaro, D., and Duffard, R. 2002. Icarus 159, 178. [9] Juric et al. 2002. Astronomical Journal 124, 1776-1787. [10] Lazzaro, D., Michtchenko, T.A., Carvano, J.M., Binzel, R.P., Bus, S.J., Burbine, T.H., Mothe-Diniz, T

  8. Development of LANDSAT Derived Forest Cover Information for Integration into Adirondack Park GIS

    NASA Technical Reports Server (NTRS)

    Curran, R. P.; Banta, J. S.

    1982-01-01

    Based upon observed changes in timber harvest practices partially attributable to forest biomass removable for energy supply purposes, the Adirondack Park Agency began in 1979 a multi-year project to implement a digital geographic information system (GIS). An initial developmental task was an inventory of forest cover information and analysis of forest resource change and availability. While developing the GIS, a pilot project was undertaken to evaluate the usefulness of LANDSAT derived land cover information for this purpose, and to explore the integration of LANDSAT data into the GIS. The prototype LANDSAT analysis project involved: (1) the use of both recent and historic data to derive land cover information for two dates; and (2) comparison of land cover over time to determine quantitative and geographic changes. The "recent data," 1978 full foliage data over portions of four LANDSAT scenes, was classified, using ground truth derived training samples in various forested and non-forested categories. Forested categories include the following: northern hardwoods, pine, spruce-fir, and pine plantation, while nonforested categories include wet-conifer, pasture, grassland, urban, exposed soil, agriculture, and water.

  9. Is formation segregation melts in basaltic lava flows a viable analogue to melt generation in basaltic systems?

    NASA Astrophysics Data System (ADS)

    Thordarson, Thorvaldur; Sigmarsson, Olgeir; Hartley, Margaret E.; Miller, Jay

    2010-05-01

    Pahoehoe sheet lobes commonly exhibit a three-fold structural division into upper crust, core and lower crust, where the core corresponds to the liquid portion of an active lobe sealed by crust. Segregations are common in pahoehoe lavas and are confined to the core of individual lobes. Field relations and volume considerations indicate that segregation is initiated by generation of volatile-rich melt at or near the lower crust to core boundary via in-situ crystallization. Once buoyant, the segregated melt rises through the core during last stages of flow emplacement and accumulates at the base of the upper crust. The segregated melt is preserved as vesicular and aphyric, material within well-defined vesicle cylinders and horizontal vesicle sheets that make up 1-4% of the total lobe volume. We have undertaken a detailed sampling and chemical analysis of segregations and their host lava from three pahoehoe flow fields; two in Iceland and one in the Columbia River Basalt Group (CRBG). The Icelandic examples are: the olivine-tholeiite Thjorsa lava (24 cubic km) of the Bardarbunga-Veidivotn volcanic system and mildly alkalic Surtsey lavas (1.2 cubic km) of the Vestmannaeyjar volcanic system. The CRBG example is the tholeiitic ‘high-MgO group' Levering lava (>100? cubic km) of the N2 Grande Ronde Basalt. The thicknesses of the sampled lobes ranges from 2.3 to 14 m and each lobe feature well developed network of segregation structures [1,2,3]. Our whole-rock analyses show that the segregated melt is significantly more evolved than the host lava, with enrichment factors of 1.25 (Thjorsa) to 2.25 (Surtsey) for incompatible trace elements (Ba, Zr). Calculations indicate that the segregation melt was formed by 20 to 50% closed-system fractional crystallization of plagioclase (plus minor pyroxene and/or olivine). A more striking feature is the whole-rock composition of the segregations. In the olivine-tholeiite Thjorsa lava the segregations exhibit quartz tholeiite

  10. Diffusion of hydrous species in model basaltic melt

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  11. CO 2 Mineral Sequestration in Naturally Porous Basalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Wells, Rachel K.; Horner, Jake A.

    2018-02-27

    Continental flood basalts are extensive geologic features currently being evaluated as reservoirs that are suitable for long-term storage of carbon emissions. Favorable attributes of these formations for containment of injected carbon dioxide (CO2) include high mineral trapping capacity, unique structural features, and enormous volumes. We experimentally investigated mineral carbonation in whole core samples retrieved from the Grand Ronde basalt, the same formation into which ~1000 t of CO2 was recently injected in an eastern Washington pilot-scale demonstration. The rate and extent of carbonate mineral formation at 100 °C and 100 bar were tracked via time-resolved sampling of bench-scale experiments. Basaltmore » cores were recovered from the reactor after 6, 20, and 40 weeks, and three-dimensional X-ray tomographic imaging of these cores detected carbonate mineral formation in the fracture network within 20 weeks. Under these conditions, a carbon mineral trapping rate of 1.24 ± 0.52 kg of CO2/m3 of basalt per year was estimated, which is orders of magnitude faster than rates for deep sandstone reservoirs. On the basis of these calculations and under certain assumptions, available pore space within the Grand Ronde basalt formation would completely carbonate in ~40 years, resulting in solid mineral trapping of ~47 kg of CO2/m3 of basalt.« less

  12. Clinopyroxene dissolution in basaltic melt

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhang, Youxue

    2009-10-01

    The history of magmatic systems may be inferred from reactions between mantle xenoliths and host basalt if the thermodynamics and kinetics of the reactions are quantified. To study diffusive and convective clinopyroxene dissolution in silicate melts, diffusive clinopyroxene dissolution experiments were conducted at 0.47-1.90 GPa and 1509-1790 K in a piston-cylinder apparatus. Clinopyroxene saturation is found to be roughly determined by MgO and CaO content. The effective binary diffusivities, DMgO and DCaO, and the interface melt saturation condition, C0MgO×C0CaO, are extracted from the experiments. DMgO and DCaO show Arrhenian dependence on temperature. The pressure dependence is small and not resolved within 0.47-1.90 GPa. C0MgO×C0CaO in the interface melt increases with increasing temperature, but decreases with increasing pressure. Convective clinopyroxene dissolution, where the convection is driven by the density difference between the crystal and melt, is modeled using the diffusivities and interface melt saturation condition. Previous studies showed that the convective dissolution rate depends on the thermodynamics, kinetics and fluid dynamics of the system. Comparing our results for clinopyroxene dissolution to results from a previous study on convective olivine dissolution shows that the kinetic and fluid dynamic aspects of the two minerals are quite similar. However, the thermodynamics of clinopyroxene dissolution depends more strongly on the degree of superheating and composition of the host melt than that of olivine dissolution. The models for clinopyroxene and olivine dissolution are tested against literature experiments on mineral-melt interaction. They are then applied to previously proposed reactions between Hawaii basalts and mantle minerals, mid-ocean ridge basalts and mantle minerals, and xenoliths digestion in a basalt at Kuandian, Northeast China.

  13. High-Mg subduction-related Tertiary basalts in Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Morra, V.; Secchi, F. A. G.; Melluso, L.; Franciosi, L.

    1997-03-01

    The Oligo-Miocene volcanics (32-15 Ma), which occur in the Oligo-Miocene Sardinian Rift, were interpreted in the literature as an intracontinental volcanic arc built upon continental crust about 30 km thick. They are characterized by a close field association of dominantly andesites and acid ignimbrites, with subordinate basalts. In this paper we deal with the origin and evolution of recently discovered high-magnesia basalts aged ca. 18 Ma occurring in the Montresta area, northern Sardinia, relevant to the petrogenesis of the Cenozoic volcanics of Sardinia. The igneous rocks of the Montresta area form a tholeiitic, subduction-related suite. Major-element variation from the high-magnesia basalts (HMB) to high-alumina basalts (HAB) are consistent with crystal/liquid fractionation dominated by olivine and clinopyroxene. Proportions of plagioclase and titanomagnetite increase from HAB to andesites. Initial {87Sr }/{86Sr } ratios increase with differentiation from 0.70398 for the HMB to 0.70592 for the andesites. This suggests concomitant crustal contamination. The geochemical characteristics of the high-magnesia basalts are typical of subduction-related magmas, with negative Nb, Zr and Ti spikes in mantle-normalized diagrams. It is proposed that these high-magnesia basalts were produced by partial melting of a mantle source characterized by large-ion lithophile elements (LILE) enrichment related principally to dehydration of subducted oceanic crust. Chondrite-normalized rare earth elements (REE) patterns indicate that the lavas are somewhat enriched in light rare earth elements (LREE), with flat heavy rare earth elements (HREE) patterns. This evidence is consistent with a spinel-bearing mantle source. The sub-parallel chondrite-normalized patterns show enrichment with differentiation, with a greater increase of LREE than HREE. The occurrence of high-magnesia basalts at 18 Ma in Sardinia appears to be correlated with and favoured by pronounced extensional tectonics at

  14. The Influence of Conduit Processes During Basaltic Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Sable, J. E.; Wilson, C. J.; Coltelli, M.; Del Carlo, P.

    2001-12-01

    Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e. generating widespread phreatomagmatic, subplinian and Plinian fall deposits. These eruptions are particularly dangerous because the ascent rate of basaltic magma prior to eruption can be very rapid (giving warning times as little as a few hours) and because their precursors may be ignored or misunderstood. The main question addressed in this talk is: what conditions in the conduit cause basaltic magma to adopt an eruption style more typical of chemically evolved, highly viscous magmas? Possible mechanisms (acting singly, or in concert) are: (1) interaction between magma and water, (ii) very rapid ascent producing a delayed onset of degassing then exceptionally rapid "runaway" vesiculation at shallow levels in the conduit, (iii) microlite crystallization and degassing of the magma during ascent leading to increased viscosity. We focus here on two examples of basaltic Plinian volcanism: the 1886 eruption of Tarawera, New Zealand, which is the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well documented 122 BC eruption of Mount Etna, Italy. Field and laboratory evidence suggests that the Plinian phase of the 1886 eruption was a consequence of two processes. Firstly rheologic changes during magma ascent accompanied early (pre-fragmentation) interaction between the basaltic melt and water-bearing rhyolitic units forming the conduit walls and, secondly, late-stage magma:water interaction. In contrast, during the 122 BC eruption tectonic processes, such as slope failure or permanent displacement of a mobile flank of the volcano, appear to have triggered exceptionally rapid ascent, delayed onset of degassing and exceptionally

  15. Plate tectonics and continental basaltic geochemistry throughout Earth history

    NASA Astrophysics Data System (ADS)

    Keller, Brenhin; Schoene, Blair

    2018-01-01

    Basaltic magmas constitute the primary mass flux from Earth's mantle to its crust, carrying information about the conditions of mantle melting through which they were generated. As such, changes in the average basaltic geochemistry through time reflect changes in underlying parameters such as mantle potential temperature and the geodynamic setting of mantle melting. However, sampling bias, preservation bias, and geological heterogeneity complicate the calculation of representative average compositions. Here we use weighted bootstrap resampling to minimize sampling bias over the heterogeneous rock record and obtain maximally representative average basaltic compositions through time. Over the approximately 4 Ga of the continental rock record, the average composition of preserved continental basalts has evolved along a generally continuous trajectory, with decreasing compatible element concentrations and increasing incompatible element concentrations, punctuated by a comparatively rapid transition in some variables such as La/Yb ratios and Zr, Nb, and Ti abundances approximately 2.5 Ga ago. Geochemical modeling of mantle melting systematics and trace element partitioning suggests that these observations can be explained by discontinuous changes in the mineralogy of mantle partial melting driven by a gradual decrease in mantle potential temperature, without appealing to any change in tectonic process. This interpretation is supported by the geochemical record of slab fluid input to continental basalts, which indicates no long-term change in the global proportion of arc versus non-arc basaltic magmatism at any time in the preserved rock record.

  16. Manganese biogeochemistry in a small Adirondack forested lake watershed

    USGS Publications Warehouse

    Shanley, James B.

    1986-01-01

    In September and October 1981, manganese (Mn) concentrations and pH were intensively monitored in a small forested lake watershed in the west-central Adirondack Mountains, New York, during two large acidic storms (each ∼5 cm rainfall, pH 4.61 and 4.15). The data were evaluated to identify biogeochemical pathways of Mn and to assess how these pathways are altered by acidic atmospheric inputs. Concentrations of Mn averaged 1.1 μg/L in precipitation and increased to 107 μg/L in canopy throughfall, the enrichment reflecting active biological cycling of Mn. Rain pH and throughfall Mn were negatively correlated, suggesting that foliar leaching of Mn was enhanced by rainfall acidity. The pulselike input of Mn to the forest floor in the high initial concentrations in throughfall (∼1000 μg/L) did not affect Mn concentrations in soil water (< 20 μg/L) or groundwater (usually < 40 μg/L), which varied little with time. In the inlet stream, Mn concentrations remained constant at 48 μg/L as discharge varied from 1.1 to 96 L/s. Manganese was retained in the vegetative cycle and regulated in the stream by adsorption in the soil organic horizon. The higher Mn levels in the stream may be linked to its high acidity (pH 4.2–4.3). Mixing of Mn-rich stream water with neutral lake water (pH 7.0) caused precipitation of Mn and deposition in lake sediment.

  17. Magnesium Isotopic Compositions of Continental Basalts From Various Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Yang, W.; Li, S.; Tian, H.; Ke, S.

    2016-12-01

    Recycled sedimentary carbonate through subduction is the main light Mg isotopic reservoir in Earth's deep interior, thus Mg isotopic variation of mantle-derived melts provides a fresh perspective on investigating deep carbon cycling. Here we investigate Mg isotopic compositions of continental basalts from various tectonic settings: (1) The Cenozoic basalts from eastern China, coinciding with the stagnant Pacific slab in the mantle transition zone revealed by seismic tomography; (2) The Cenozoic basalts from Tengchong area, southwestern China, which comprises a crucial part of the collision zone between the Indian and Eurasian plates; (3) The Permian basalts from Emeishan large igneous province, related to a mantle plume. The Cenozoic basalts from both eastern China and Tengchong area exhibit light Mg isotopic compositions (δ26Mg = -0.60 to -0.30‰ and -0.51 to -0.33‰), suggesting recycled sedimentary carbonates in their mantle sources. This is supported by their low Fe/Mn, high CaO/Al2O3, low Hf/Hf* and low Ti/Ti* ratios, which are typical features of carbonated peridotite-derived melt. The Tengchong basalts also show high 87Sr/86Sr, high radiogenic Pb and upper crustal-like trace element pattern, indicating contribution of recycled continental crustal materials. By contrast, all Emeishan basalts display a mantle-like Mg isotopic composition, with δ26Mg ranging from -0.35 to -0.19‰. Since the Emeishan basalts derived from a mantle plume, their mantle-like Mg isotopic composition may indicate limited sedimentary carbonated recycled into the lower mantle. This is consistent with a recent experimental study which concluded that direct recycling of carbon into the lower mantle may have been highly restricted throughout most of the Earth's history.

  18. Importance of lunar granite and KREEP in very high potassium (VHK) basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1988-01-01

    Analysis of five very high potassium (VHK) basalts from Apollo 14 breccia 14303 shows the presence of a KREEP component. An assimilation and fractional crystallization model is presented to describe the basalt evolution. The influence of granite assimilation on the basalt evolution is discussed. The presence of VHK basalts containing only a granite signature and those with both granite and KREEP signatures suggests that there are at least two different VHK basalt flows at the Apollo 14 site.

  19. Chemistry of Apollo 11 low-K mare basalts

    NASA Technical Reports Server (NTRS)

    Rhodes, J. M.; Blanchard, D. P.

    1980-01-01

    A reexamination of the bulk major and trace element geochemistry of Apollo 11 low-K mare basalts is presented. New analyses are given for seven previously unanalyzed samples (10003, 10020, 10044, 10047, 10050, 10058, and 10062) and for two low-K basalts (10029 and 10092) and one high-K basalt (10071) for which comprehensive compositional data were previously lacking. The data show that three distinct magma types have been sampled, as proposed by Beaty and Albee (1978), and that these magma types are unrelated by near-surface crystal fractionation. Each magma type is characterized by distinctive magmaphile element ratios, which enable previously unclassified samples (10050 and 10062) to be assigned to an appropriate magma type.

  20. A Brillouin scattering study of hydrous basaltic glasses: the effect of H2O on their elastic behavior and implications for the densities of basaltic melts

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Yang, De-Bin; Liu, Jun-Xiu; Hu, Bo; Xie, Hong-Sen; Li, Fang-Fei; Yu, Yang; Xu, Wen-Liang; Gao, Chun-Xiao

    2017-06-01

    Hydrous basalt glasses with water contents of 0-6.82% were synthesized using a multi-anvil press at 1.0-2.0 GPa and 1200-1400 °C. The starting materials were natural Mesozoic basalts from the eastern North China Craton (NCC). Their sound velocities and elastic properties were measured by Brillouin scattering spectroscopy. The longitudinal ( V P) and shear ( V S) wave velocities decreased with increasing water content. Increasing the synthesis pressure resulted in the glass becoming denser, and finally led to an increase in V P. As the degree of depolymerization increased, the V P, V S, and shear and bulk moduli of the hydrous basalt glasses decreased, whereas the adiabatic compressibility increased. The partial molar volumes of water (ν) under ambient conditions were independent of composition, having values of 11.6 ± 0.8, 10.9 ± 0.6 and 11.5 ± 0.5 cm3/mol for the FX (Feixian), FW (Fuxin), and SHT (Sihetun) basalt glasses, respectively. However, the {{V}_{{{{H}}_{{2}}}{O}}} values measured at elevated temperatures and pressures are increasing with increasing temperature or decreasing pressure. The contrasting densities of these hydrous basalt melts with those previously reported for mid-ocean ridge basalt and preliminary reference Earth model data indicate that hydrous basalt melts may not maintain gravitational stability at the base of the upper mantle.

  1. How thick are lunar mare basalts

    NASA Technical Reports Server (NTRS)

    Hoerz, F.

    1978-01-01

    It is argued that De Hon's estimates of the thickness of lunar mare basalts, made by analyzing 'ghost' craters on mare surfaces, were inflated as the result of the crater morphometric data of Pike (1977) to reconstruct rim heights of degraded craters. Crater rim heights of 82 randomly selected highland craters of various states of degradation were determined, and median rim height was compared to that of corresponding fresh impact structures. Results indicate that the thickness estimates of De Hon may be reduced by a factor of 2, and that the total volume of mare basalt produced throughout lunar history could be as little as 1-2 million cubic kilometers. A survey of geochemical and petrographic evidence indicates that lateral transport of regolith components over distances of much greater than 10 km is relatively inefficient; it is suggested that vertical mixing of a highland substrate underlying the basaltic fill may have had a primordial role in generating the observed mare width distributions and high concentrations of exotic components in intrabasin regoliths.

  2. Iron isotopic systematics of oceanic basalts

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard

    2013-04-01

    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  3. Making rhyolite in a basalt crucible

    NASA Astrophysics Data System (ADS)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  4. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    PubMed Central

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking. PMID:28793595

  5. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    PubMed

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  6. 87Sr/86Sr ratios in basalts from islands in the Indian Ocean

    USGS Publications Warehouse

    Hedge, C.E.; Watkins, N.D.; Hildreth, R.A.; Doering, W.P.

    1973-01-01

    87Sr/86Sr ratios of basalts from islands in the Indian Ocean (0.7040) are higher than those of basalts dredged from the Mid-Indian Ocean Ridge (0.7034). The sources of the island basalts have apparently not been in equilibrium with the source of the ridge basalts for roughly 109 years. Both ridge and island basalts in the Indian Ocean are higher in 87Sr/86Sr than are rocks from similar settings in the eastern Pacific. ?? 1973.

  7. Comparative Planetary Mineralogy: Basaltic Plagioclase from Earth, Moon, Mars and 4 Vesta

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.

    2003-01-01

    Major, minor and trace element analysis of silicates has allowed for the study of planetary basalts in a comparative planetary mineralogy context. We continue this initiative by exploring the chemistry of plagioclase feldspar in basalts from the Earth, Moon, Mars and 4 Vesta. This paper presents new data on plagioclase from six terrestrial basalt suites including Keweenawan, Island Arc, Hawaiian, Columbia Plateau, Taos Plateau, and Ocean Floor; six lunar basalt suites including Apollo 11 Low K, Apollo 12 Ilmenite, Apollo 12 Olivine, Apollo 12 Pigeonite, Apollo 15 Olivine, and Apollo 15 Pigeonite; two basaltic martian meteorites, Shergotty and QUE 94201; and one unequilibrated eucrite, Pasamonte.

  8. Phase relations of a simulated lunar basalt as a function of oxygen fugacity, and their bearing on the petrogenesis of the Apollo 11 basalts

    USGS Publications Warehouse

    Tuthill, R.L.; Sato, M.

    1970-01-01

    A glass of Apollo 11 basalt composition crystallizing at 1 atm at low f{hook}02 showed the following crystallization sequence; ferropseudobrookite at 1210??C, olivine at 1200??C, ilmenite and plagioclase at 1140??C, clinopyroxene at 1113??C. Ferropseudobrookite and olivine have a reaction relation to the melt. This sequence agrees with that assumed on textural grounds for some Apollo 11 basalts. It also indicates that the Apollo 11 basalts cannot have been modified by low-pressure fractionation. ?? 1970.

  9. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  10. A mantle plume beneath California? The mid-Miocene Lovejoy Flood Basalt, northern California

    USGS Publications Warehouse

    Garrison, N.J.; Busby, C.J.; Gans, P.B.; Putirka, K.; Wagner, D.L.

    2008-01-01

    The Lovejoy basalt represents the largest eruptive unit identified in California, and its age, volume, and chemistry indicate a genetic affinity with the Columbia River Basalt Group and its associated mantle-plume activity. Recent field mapping, geochemical analyses, and radiometric dating suggest that the Lovejoy basalt erupted during the mid-Miocene from a fissure at Thompson Peak, south of Susanville, California. The Lovejoy flowed through a paleovalley across the northern end of the Sierra Nevada to the Sacramento Valley, a distance of 240 km. Approximately 150 km3 of basalt were erupted over a span of only a few centuries. Our age dates for the Lovejoy basalt cluster are near 15.4 Ma and suggest that it is coeval with the 16.1-15.0 Ma Imnaha and Grande Ronde flows of the Columbia River Basalt Group. Our new mapping and age dating support the interpretation that the Lovejoy basalt erupted in a forearc position relative to the ancestral Cascades arc, in contrast with the Columbia River Basalt Group, which erupted in a backarc position. The arc front shifted trenchward into the Sierran block after 15.4 Ma. However, the Lovejoy basalt appears to be unrelated to volcanism of the predominantly calc-alkaline Cascade arc; instead, the Lovejoy is broadly tholeiitic, with trace-element characteristics similar to the Columbia River Basalt Group. Association of the Lovejoy basalt with mid-Miocene flood basalt volcanism has considerable implications for North American plume dynamics and strengthens the thermal "point source" explanation, as provided by the mantle-plume hypothesis. Alternatives to the plume hypothesis usually call upon lithosphere-scale cracks to control magmatic migrations in the Yellowstone-Columbia River basalt region. However, it is difficult to imagine a lithosphere-scale flaw that crosses Precambrian basement and accreted terranes to reach the Sierra microplate, where the Lovejoy is located. Therefore, we propose that the Lovejoy represents a rapid

  11. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.P. McGrail; E. C. Sullivan; F. A. Spane

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  12. Results of test drilling in the Basalt aquifer near Fallon, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.

    2002-01-01

    Drilling of two test holes into the Fallon basalt aquifer commenced August 14, 2001. The basalt aquifer is located beneath the Carson Desert, near Fallon, Nevada, and is the sole source of drinking water for the City of Fallon, the Naval Air Station (NAS) Fallon, and the Fallon Paiute-Shoshone Tribe. Basalt comprising the aquifer is exposed at Rattlesnake Hill, an eroded volcanic cone, about 1 mile northeast of Fallon, and the remainder is buried beneath sediments deposited by the Carson River and ancient Lake Lahontan to depths of 600 feet near its edges (fig. 1). The basalt-aquifer system is a mushroom-shaped body of highly permeable volcanic rock. Viewed from above, the lateral extent of the basalt body is oval-shaped, about 4-miles wide and 10-miles long (fig. 1). Drilling was part of a cooperative study between the U.S. Geological Survey (USGS), the Bureau of Reclamation, and NAS Fallon. The study was started because of concern about the continued viability of the basalt-aquifer system as a source of municipal water supply. Increased pumping from about 1,700 acre-feet per year (acre-ft/yr) in the 1970?s to over 3,000 acre-ft/yr in the late 1990?s has caused water levels in the basalt to decline as much as 12 feet (fig. 2). During this same time period, water pumped from the aquifer at NAS Fallon and the City of Fallon wells showed that concentrations of dissolved chloride increased, although chloride concentrations were well within the U.S. Environmental Protection Agency?s (EPA) drinking-water standards; at this rate of increase, it would take decades to exceed the present standard (Maurer and Welch, 2001, p. 46). Concentrations of arsenic in the aquifer are about 0.1 milligrams per liter (mg/L), exceeding the drinking-water standard of 0.01 mg/L, but show no apparent change over time (Maurer and Welch, 2001, p. 10 and 48; U. S. Environmental Protection Agency, 2001). Increasing concentrations of chloride may be caused by increased pumping, that induces

  13. Petrology of basalts from Loihi Seamount, Hawaii

    NASA Astrophysics Data System (ADS)

    Hawkins, James; Melchior, John

    1983-12-01

    Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated "primary" magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/ 4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred

  14. Extracellular enzyme activity and microbial diversity measured on seafloor exposed basalts from Loihi seamount indicate the importance of basalts to global biogeochemical cycling.

    PubMed

    Jacobson Meyers, Myrna E; Sylvan, Jason B; Edwards, Katrina J

    2014-08-01

    Seafloor basalts are widely distributed and host diverse prokaryotic communities, but no data exist concerning the metabolic rates of the resident microbial communities. We present here potential extracellular enzyme activities of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) measured on basalt samples from different locations on Loihi Seamount, HI, coupled with analysis of prokaryotic biomass and pyrosequencing of the bacterial 16S rRNA gene. The community maximum potential enzyme activity (Vmax) of LAP ranged from 0.47 to 0.90 nmol (g rock)(-1) h(-1); the Vmax for AP was 28 to 60 nmol (g rock)(-1) h(-1). The Km of LAP ranged from 26 to 33 μM, while the Km for AP was 2 to 7 μM. Bacterial communities on Loihi basalts were comprised primarily of Alpha-, Delta-, andGammaproteobacteria, Bacteroidetes, and Planctomycetes. The putative ability to produce LAP is evenly distributed across the most commonly detected bacterial orders, but the ability to produce AP is likely dominated by bacteria in the orders Xanthomonadales, Flavobacteriales, and Planctomycetales. The enzyme activities on Loihi basalts were compared to those of other marine environments that have been studied and were found to be similar in magnitude to those from continental shelf sediments and orders of magnitude higher than any measured in the water column, demonstrating that the potential for exposed basalts to transform organic matter is substantial. We propose that microbial communities on basaltic rock play a significant, quantifiable role in benthic biogeochemical processes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Field Validation of Supercritical CO 2 Reactivity with Basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B. Peter; Schaef, Herbert T.; Spane, Frank A.

    2017-01-10

    Continued global use of fossil fuels places a premium on developing technology solutions to minimize increases in atmospheric CO 2 levels. CO 2 storage in reactive basalts might be one of these solutions by permanently converting injected gaseous CO 2 into solid carbonates. Herein we report results from a field demonstration where ~1000 MT of CO 2 was injected into a natural basalt formation in Eastern Washington State. Following two years of post-injection monitoring, cores were obtained from within the injection zone and subjected to detailed physical and chemical analysis. Nodules found in vesicles throughout the cores were identified asmore » the carbonate mineral, ankerite Ca[Fe, Mg, Mn](CO 3) 2. Carbon isotope analysis showed the nodules are chemically distinct as compared with natural carbonates present in the basalt and clear correlation with the isotopic signature of the injected CO 2. These findings provide field validation of rapid mineralization rates observed from years of laboratory testing with basalts.« less

  16. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    U-Th disequilibrium analyses of the Naivasha basalts show a very small (U-238/Th-230) ratios which are lower than any previously analyzed basalts. The broadly positive internal isochron trend from one sample indicates that the basalts may have source heterogeneities, this is supported by earlier work. The Naivasha complex comprises a bimodal suite of basalts and rhyolites. The basalts are divided into two stratigraphic groups each of a transitional nature. The early basalt series (EBS) which were erupted prior to the Group 1 comendites and, the late basalt series (LBS) which erupted temporally between the Broad Acres and the Ololbutot centers. The basalts represent a very small percentage of the overall eruptive volume of material at Naivasha (less than 2 percent). The analyzed samples come from four stratigraphic units in close proximity around Ndabibi, Hell's Gate and Akira areas. The earliest units occur as vesicular flows from the Ndabibi plain. These basalts are olivine-plagioclase phyric with the associated hawaiites being sparsely plagioclase phyric. An absolute age of 0.5Ma was estimated for these basalts. The next youngest basalts flows occur as younger tuft cones in the Ndabibi area and are mainly olivine-plagioclase-clinopyroxcene phyric with one purely plagioclase phyric sample. The final phase of activity at Ndabibi resulted in much younger tuft cones consisting of air fall ashes and lapilli tufts. Many of these contain resorbed plagioclase phenocrysts with sample number 120c also being clinopyroxene phyric. The isotopic evidence for the basalt formation is summarized.

  17. Complex layering of the Orange Mountain Basalt: New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris

    2018-06-01

    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  18. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE PAGES

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; ...

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage

  19. Growing magma chambers control the distribution of small-scale flood basalts

    PubMed Central

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  20. Geochronology and petrogenesis of Apollo 14 very high potassium mare basalts

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.

    1986-01-01

    Rb-Sr, K-Ar, and Sm-Nd isotopic studies were undertaken for two Apollo 14 very high potassium (VHK) highly radiogenic mare basaltic clasts from breccias 14305 and 14168. Rb-Sr data indicate ages of 3.83 + or - 0.08 b.y., and 3.82 + or - 0.12 b.y. for samples 14305 and 14168 respectively, for lambda(Rb-87) = 0.0 139/b.y. Their corresponding initial Sr-87/Sr-86 ratios are nearly identical, as well as their Ar-39 to Ar-40 age spectra, and it is proposed that they were derived from the same flow. The Sm-Nd isotopic data of whole rock and mineral separates for the two VHK basalts define an internal isochrone age of 3.94 + or - 0.16 b.y. for lambda (Sm-147) = 0.00654/b.y. and an initial Nd-143/Nd-144 of 0.50673 + or - 21. The similarity in isotopic ages suggests that VHK basalts crystallized from a melt about 3.85 b.y. ago. VHK basalts show very large Rb/Sr fractionation but no significant Sm/Nd fractionation at the time of crystallization. The source material had a Rb/Sr ratio similar to those of Apollo 14 high-Al mare basalts and a nearly chrondritic Sm/Nd ratio. Basalt/granite interaction was found to be responsible for the extreme enrichments of Rb/Sr and K/La during the formation of VHK basalts. It is concluded that K, Rb-rich components of granitic wall rocks in the highland crust were selectively introduced into ascending hot high-Al mare basaltic magma upon contact.

  1. Evidence for multiple metamorphic events in the Adirondack Mountains, N. Y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLelland, J.; Lochhead, A.; Vyhnal, C.

    1988-05-01

    Field evidence consisting of: (1) rotated, foliated xenoliths, (2) country rock foliation truncated by isoclinally folded igneous intrusions bearing granulite facies assemblages document one, or more, early dynamothermal event(s) of regional scale and high grade. Early metamorphism resulted in pronounced linear and planar fabric throughout the Adirondacks and preceded the emplacement of the anorthosite-mangerite-charnockite-granite-alaskite (AMCA) suite which contains xenoliths of the metamorphosed rocks. Olivine metagabbros, believed to be approximately contemporaneous with the AMCA-suite, also crosscut and contain xenoliths of, strongly foliated metasediments. These intrusive rocks caused contact metamorphism in the metasediments which locally exhibit both anatectite and restite assemblages. Subsequently,more » this already complex framework underwent three phases of folding, including an early recumbent isoclinical event, and was metamorphosed to granulite facies P,T conditions. The age of the early metamorphism cannot yet be narrowly constrained, but isotopic results suggest that it may be as young as approx. 1200 Ma or older than approx. 1420 Ma. U-Pb zircon ages indicate emplacement of the AMCA-(metagabbro)-suite in the interval 1160-1130 Ma and place the peak of granulite facies metamorphism between 1070-1025 Ma. The anorogenic character of the AMCA-suite, and the occurrence of metadiabase dike swarms within it, are further evidence of the separate nature of the metamorphic events that precede and postdate AMCA emplacement.« less

  2. Carbon storage potential of Columbia River flood basalt

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Xiong, W.; Giammar, D.; Skemer, P. A.

    2017-12-01

    Basalt reservoirs are an important option for sequestering carbon through dissolution of host rock and precipitation of stable carbonate minerals. This study seeks to understand the nature of dissolution and surface roughening processes and their influence on the timing and spatial distribution of carbonation, in static experiments at 150 °C and 100 bar CO2. Intact samples and cores with milled pathways from Ca-rich and Fe-rich Columbia River flood basalt formations were reacted for up to 40 weeks. Experimental specimens were analyzed using SEM-EDS, microprobe, and μCT scanning, Raman spectroscopy, and 2D profilometer to characterize changes in composition and surface roughness. ICP-MS was used to examine bulk fluid chemistry. Initial dissolution of olivine grains results in higher Mg2+ and Fe2+ concentrations within the bulk solution in the first week of reaction. However, once available olivine grains are gone, Ca-rich pyroxene becomes the primary contributor of Ca2+, Mg2+, and Fe2+ within the bulk solution. The complete dissolution of olivine grains resulted in pits up to 200 μm deep. Dissolution of other minerals resulted in the formation of microscale textures, primarily along grain boundaries and fractures. The surface roughness increased by factors of up to 42, while surface area increased 20%. Based on these results, pyroxene is the sustaining contributor of divalent metal cations during dissolution of basalt, and the limited connectivity of olivine and pyroxene grains limits the exposure of new reactive surface areas. Within 6 weeks, aragonite precipitated in Ca-rich basalt samples, while Fe-rich samples precipitated of siderite. The highest concentration of carbonates occurs 1/3 into milled pathways, which simulate dead-end fractures, in low porosity basalts, and near the fracture tip in high porosity basalts. Even at elevated temperatures, the fractures are not blocked nor filled within 40 weeks of reaction. When vesicles are present, carbonates can

  3. Antifriction basalt-plastics based on polypropylene

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  4. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  5. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    NASA Technical Reports Server (NTRS)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  6. Giant Plagioclase "Mosaicrysts" and Other Textures in the Steens Basalt, Columbia River Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Grunder, A.; Moore, N. E.; Bohrson, W. A.

    2015-12-01

    The Steens Basalts (~16.7 Ma), the oldest and most mafic stage of Columbia River flood basalt volcanism, are known for lavas with conspicuous giant plagioclase laths (2 - 5 cm in diameter). Such flows are intercalated with ones that are nearly aphyric or that bear plagioclase (plag) phenocrysts of 0.5-2 cm. Addition textures are distinctive radial, snowflake plag clusters and sandwich glomerocrysts of plag, with olivine trapped between laths. These clusters and glomerocrysts are typically 1, but as large as 3 cm in diameter. Plag composition of all textural types is limited (An76-60). Plag dominates the phenocryst mode; rare flows, mainly low in the section, have olivine > plag and phenocrystic clinopyroxene occurs rarely, and mainly high in the section. Unlike the flows, dikes have few phenocrysts; giant laths are rare and the snowflake texture has not been observed. Giant plag laths are euhedral and make up a few percent to more than 50% of the rock. Many plag megacrysts are made of several plag crystals that form a mosaic, where the constituent crystals are crystallographically distinct and are overgrown with feldspar to make the crystal euhedral. We describe these composite megacrysts as "mosaicrysts". We are exploring magmatic conditions that would trigger oversaturation to spawn rapid growth yielding clusters and overgrowths that form mosaicrysts. Giant plagioclase basalts (so-called GPB) are also described for the Deccan and Emeishan flood basalt provinces attesting to similar magmatic processes. Plag laths typically define strong flow foliation at the flow base, have a swirled distribution in the flow core, and are sparse in the top. Some particularly crystal-rich flows (or sills) have an abrupt transition to a crystal-poor upper few decimeters of the several-m- thick flow. We interpret the crystal-poor top to be the expelled melt from crystal accumulation in the flow, which locally reinjects and is entrained in lower crystal mush.

  7. Explosive eruption of coal and basalt and the end-Permian mass extinction

    PubMed Central

    Ogden, Darcy E.; Sleep, Norman H.

    2012-01-01

    The end-Permian extinction decimated up to 95% of carbonate shell-bearing marine species and 80% of land animals. Isotopic excursions, dissolution of shallow marine carbonates, and the demise of carbonate shell-bearing organisms suggest global warming and ocean acidification. The temporal association of the extinction with the Siberia flood basalts at approximately 250 Ma is well known, and recent evidence suggests these flood basalts may have mobilized carbon in thick deposits of organic-rich sediments. Large isotopic excursions recorded in this period are potentially explained by rapid venting of coal-derived methane, which has primarily been attributed to metamorphism of coal by basaltic intrusion. However, recently discovered contemporaneous deposits of fly ash in northern Canada suggest large-scale combustion of coal as an additional mechanism for rapid release of carbon. This massive coal combustion may have resulted from explosive interaction with basalt sills of the Siberian Traps. Here we present physical analysis of explosive eruption of coal and basalt, demonstrating that it is a viable mechanism for global extinction. We describe and constrain the physics of this process including necessary magnitudes of basaltic intrusion, mixing and mobilization of coal and basalt, ascent to the surface, explosive combustion, and the atmospheric rise necessary for global distribution. PMID:22184229

  8. Stratigraphy of Oceanus Procellarum basalts - Sources and styles of emplacement

    NASA Technical Reports Server (NTRS)

    Whitford-Stark, J. L.; Head, J. W., III

    1980-01-01

    The basaltic fill of Oceanus Procellarum has been formally subdivided into four lithostratigraphic formations: The Repsold Formation, the Telemann Formation, the Hermann Formation, and the Sharp Formation. The Repsold Formation is composed of high-Ti basalts and pyroclastic deposits with an estimated age of 3.75 + or - 0.05 b.y. and an estimated volume of about 2.1 x 10 to the 5th cu km. This is overlain by the Telemann Formation composed of very low-Ti basalts and pyroclastic deposits with an estimated age of 3.6 + or - 0.2 b.y. and a volume of 4.2 x 10 to the 5th cu km. The Hermann Formation, composed of intermediate basalts with an estimated age of 3.3 + or - 0.3 b.y., represents the next youngest unit with an estimated volume of 2.2 x 10 to the 5th cu km. The youngest materials in Procellarum are the medium-to-high-Ti basalts comprising the Sharp Formation with an estimated age of 2.7 + or - 0.7 b.y. and a volume of 1.8 x 10 to the 4th cu km.

  9. Searching for neuKREEP: An EMP study of Apollo 11 Group A basalts

    NASA Technical Reports Server (NTRS)

    Jerde, Eric A.; Taylor, Lawrence A.

    1993-01-01

    The Apollo 11 and 17 landing sites are characterized by the presence of high-Ti basalts (TiO2 greater than 6 percent). The Group A basalts of Apollo 11 have elevated K compositions (greater than 2000 ppm); and are enriched in incompatible trace elements relative to the other types of high-Ti basalt found in the region. These unique basalts also are the youngest of all high-Ti basalts, with an age of 3.56 +/- 0.02 Ga. Recent modelling of the Apollo 11 Group A basalts by Jerde et al. has demonstrated that this unique variety of high-Ti basalt may have formed through fractionation of a liquid with the composition of the Apollo 11 orange glass, coupled with assimilation of evolved material (dubbed neuKREEP and having similarities to lunar quartz monzodiorite). Assimilation of this material would impart its REE signature on the liquid, resulting in the elevated REE abundances observed. Minerals such as whitlockite which contain a large portion of the REE budget can be expected to reflect the REE characteristics of the assimilant. To this end, an examination of the whitlockite present in the Apollo 11 Group A basalts was undertaken to search for evidence of the neuKREEP material assimilated.

  10. On causal links between flood basalts and continental breakup

    NASA Astrophysics Data System (ADS)

    Courtillot, V.; Jaupart, C.; Manighetti, I.; Tapponnier, P.; Besse, J.

    1999-03-01

    Temporal coincidence between continental flood basalts and breakup has been noted for almost three decades. Eight major continental flood basalts have been produced over the last 300 Ma. The most recent, the Ethiopian traps, erupted in about 1 Myr at 30 Ma. Rifting in the Red Sea and Gulf of Aden, and possibly East African rift started at about the same time. A second trap-like episode occurred around 2 Ma and formation of true oceanic crust is due in the next few Myr. We find similar relationships for the 60 Ma Greenland traps and opening of the North Atlantic, 65 Ma Deccan traps and opening of the NW Indian Ocean, 132 Ma Parana traps and South Atlantic, 184 Ma Karoo traps and SW Indian Ocean, and 200 Ma Central Atlantic Margin flood basalts and opening of the Central Atlantic Ocean. The 250 Ma Siberian and 258 Ma Emeishan traps seem to correlate with major, if aborted, phases of rifting. Rifting asymmetry, apparent triple junctions and rift propagation (towards the flood basalt area) are common features that may, together with the relative timings of flood basalt, seaward dipping reflector and oceanic crust production, depend on a number of plume- and lithosphere- related factors. We propose a mixed scenario of `active/passive' rifting to account for these observations. In all cases, an active component (a plume and resulting flood basalt) is a pre-requisite for the breakup of a major oceanic basin. But rifting must be allowed by plate-boundary forces and is influenced by pre-existing heterogeneities in lithospheric structure. The best example is the Atlantic Ocean, whose large-scale geometry with three large basins was imposed by the impact points of three mantle plumes.

  11. The application of an integrated biogeochemical model (PnET-BGC) to five forested watersheds in the Adirondack and Catskill regions of New York

    USGS Publications Warehouse

    LiJun, Chen; Driscoll, C.T.; Gbondo-Tugbawa, S.; Mitchell, M.J.; Murdoch, Peter S.

    2004-01-01

    PnET-BGC is an integrated biogeochemical model formulated to simulate the response of soil and surface waters in northern forest ecosystems to changes in atmospheric deposition and land disturbances. In this study, the model was applied to five intensive study sites in the Adirondack and Catskill regions of New York. Four were in the Adirondacks: Constable Pond, an acid-sensitive watershed; Arbutus Pond, a relatively insensitive watershed; West Pond, an acid-sensitive watershed with extensive wetland coverage; and Willy's Pond, an acid-sensitive watershed with a mature forest. The fifth was Catskills: Biscuit Brook, an acid-sensitive watershed. Results indicated model-simulated surface water chemistry generally agreed with the measured data at all five sites. Model-simulated internal fluxes of major elements at the Arbutus watershed compared well with previously published measured values. In addition, based on the simulated fluxes, element and acid neutralizing capacity (ANC) budgets were developed for each site. Sulphur budgets at each site indicated little retention of inputs of sulphur. The sites also showed considerable variability in retention of NO3-. Land-disturbance history and in-lake processes were found to be important in regulating the output of NO3- via surface waters. Deposition inputs of base cations were generally similar at these sites. Various rates of base cation outputs reflected differences in rates of base cation supply at these sites. Atmospheric deposition was found to be the largest source of acidity, and cation exchange, mineral weathering and in-lake processes served as sources of ANC. ?? 2004 John Wiley and Sons, Ltd.

  12. Basalt generation at the Apollo 12 site. Part 1: New data, classification, and re-evaluation

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    New data are reported from five previously unanalyzed Apollo 12 mare basalts that are incorporated into an evaluation of previous petrogenetic models and classification schemes for these basalts. This paper proposes a classification for Apollo 12 mare basalts on the basis of whole-rock Mg# (molar 100*(Mg/(Mg+Fe))) and Rb/Sr ratio (analyzed by isotope dilution), whereby the ilmenite, olivine, and pigeonite basalt groups are readily distinguished from each other. Scrutiny of the Apollo 12 feldspathic 'suite' demonstrates that two of the three basalts previously assigned to this group (12031, 12038, 12072) can be reclassified: 12031 is a plagioclase-rich pigeonite basalt; and 12072 is an olivine basalt. Only basalt 12038 stands out as a unique sample to the Apollo 12 site, but whether this represents a single sample from another flow at the Apollo 12 site or is exotic to this site is equivocal. The question of whether the olivine and pigeonite basalt suites are co-magmatic is addressed by incompatible trace-element chemistry: the trends defined by these two suites when Co/Sm and Sm/Eu ratios are plotted against Rb/Sr ratio demonstrate that these two basaltic types cannot be co-magmatic. Crystal fractionation/accumulation paths have been calculated and show that neither the pigeonite, olivine, or ilmenite basalts are related by this process. Each suite requires a distinct and separate source region. This study also examines sample heterogeneity and the degree to which whole-rock analyses are representative, which is critical when petrogenetic interpretation is undertaken. Sample heterogeneity has been investigated petrographically (inhomogeneous mineral distribution) with consideration of duplicate analyses, and whether a specific sample (using average data) plots consistently upon a fractionation trend when a number of different compostional parameters are considered. Using these criteria, four basalts have been identified where reported analyses are not

  13. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments

    PubMed Central

    Olsson-Francis, Karen; Pearson, Victoria K.; Steer, Elisabeth D.; Schwenzer, Susanne P.

    2017-01-01

    Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effects of biota on the dissolution of terrestrial basalt, and the formation of secondary alteration minerals. The chemoorganoheterotrophic bacterium, Burkholderia sp. strain B_33, was grown in a minimal growth medium with and without terrestrial basalt as the sole nutrient source. No growth was detected in the absence of the basalt. In the presence of basalt, during exponential growth, the pH decreased rapidly from pH 7.0 to 3.6 and then gradually increased to a steady-state of equilibrium of between 6.8 and 7.1. Microbial growth coincided with an increase in key elements in the growth medium (Si, K, Ca, Mg, and Fe). Experimental results were compared with theoretical thermochemical modeling to predict growth of secondary alteration minerals, which can be used as bio-signatures, over a geological timescale. We thermochemically modeled the dissolution of the basalt (in the absence of biota) in very dilute brine at 25°C, 1 bar; the pH was buffered by the mineral dissolution and precipitation reactions. Preliminary results suggested that at the water to rock ratio of 1 × 107, zeolite, hematite, chlorite, kaolinite, and apatite formed abiotically. The biotic weathering processes were modeled by varying the pH conditions within the model to adjust for biologic influence. The results suggested that, for a basaltic system, the microbially-mediated dissolution of basalt would result in “simpler” secondary alteration, consisting of Fe-hydroxide and kaolinite, under conditions where the abiotic system would also form chlorite. The results from this study demonstrate that, by using

  14. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments.

    PubMed

    Olsson-Francis, Karen; Pearson, Victoria K; Steer, Elisabeth D; Schwenzer, Susanne P

    2017-01-01

    Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effects of biota on the dissolution of terrestrial basalt, and the formation of secondary alteration minerals. The chemoorganoheterotrophic bacterium, Burkholderia sp. strain B_33, was grown in a minimal growth medium with and without terrestrial basalt as the sole nutrient source. No growth was detected in the absence of the basalt. In the presence of basalt, during exponential growth, the pH decreased rapidly from pH 7.0 to 3.6 and then gradually increased to a steady-state of equilibrium of between 6.8 and 7.1. Microbial growth coincided with an increase in key elements in the growth medium (Si, K, Ca, Mg, and Fe). Experimental results were compared with theoretical thermochemical modeling to predict growth of secondary alteration minerals, which can be used as bio-signatures, over a geological timescale. We thermochemically modeled the dissolution of the basalt (in the absence of biota) in very dilute brine at 25°C, 1 bar; the pH was buffered by the mineral dissolution and precipitation reactions. Preliminary results suggested that at the water to rock ratio of 1 × 10 7 , zeolite, hematite, chlorite, kaolinite, and apatite formed abiotically. The biotic weathering processes were modeled by varying the pH conditions within the model to adjust for biologic influence. The results suggested that, for a basaltic system, the microbially-mediated dissolution of basalt would result in "simpler" secondary alteration, consisting of Fe-hydroxide and kaolinite, under conditions where the abiotic system would also form chlorite. The results from this study demonstrate that, by using

  15. Some volcanologic aspects of Columbia River basalt volcanism relevant to the extinction controversy

    NASA Technical Reports Server (NTRS)

    Swanson, Donald A.

    1988-01-01

    The Columbia River Basalt Group is the youngest and most thoroughly studied flood-basalt province known; information about it should be relevant to questions about the possible relation of flood-basalt volcanism to mass extinctions. The group has a total volume of about 174,000 cu km and covers an area of about 164,000 sq km. It was erupted between 17.5 and 6 Ma, as measured by K-Ar and Ar-40/Ar-39 dates. Early eruptions formed the Imnaha Basalt. More than 85 percent of the group was produced during a 1.5 my period between 17 and 15.5 Ma, forming the Grande Ronde and greatly subordinate Picture Gorge Basalts. Later flows formed the Wanapum Basalt, which includes the well-known Roza Member, and the Saddle Mountains Basalt. Linear vent systems for many of the flows are known and are located only in the eastern third of the Columbia Plateau. No systematic migration of vents occurred throughout the 11.5 my period of activity; this and other considerations make it unlikely that the province is related to a hot spot. Model calculations based on observations that little cooling occurred during flow of hundreds of kilometers suggest eruption and emplacement durations of a few days. Some voluminous flows occur in all formations, but most such flows apparently were erupted during Grande Ronde time. The eruption and emplacement of more than 1,000 cu km of 1100 C basaltic lava on the surface within several days doubtless had at least local meteorologic effects. Whether the effects were broader can at present only be hypothesized. Grande Ronde Basalt and Picture Gorge Basalts contain moderately common but thin sedimentary interbeds between flows, whereas earlier and later formations contain numerous, locally thick sediment accumulations. Volcaniclastic debris derived from extra-plateau sources commonly occurs in the testbeds.

  16. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  17. Northwest Africa 5298: A Basaltic Shergottite

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Brandon, Alan; Shafer, John

    2009-01-01

    NWA 5298 is a single 445 g meteorite found near Bir Gandouz, Morocco in March 2008 [1]. This rock has a brown exterior weathered surface instead of a fusion crust and the interior is composed of green mineral grains with interstitial dark patches containing small vesicles and shock melts [1]. This meteorite is classified as a basaltic shergottite [2]. A petrologic study of this Martian meteorite is being carried out with electron microprobe analysis and soon trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Oxygen fugacity is calculated from Fe-Ti oxides pairs in the sample. The data from this study constrains the petrogenesis of basaltic shergottites.

  18. Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Xiao, Liguang; Li, Jiheng; Liu, Qingshun

    2017-12-01

    In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.

  19. Mare basalts on the Apennine Front and the mare stratigraphy of the Apollo 15 landing site

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1989-01-01

    Olivine-normative mare basalts are present on the Apennine Front as crystalline particles and shocked or shock-melted fragments. Picritic basalts, which may be related to the olivine-normative basalts by olivine accumulation, not only occur on the Front but such samples so far recognized are confined to it. Mare volcanic and impact glasses also occur on the Front; all are olivine-normative, though none are quite the equivalent of the typical olivine-normative mare group. The quartz-normative mare basalts are not present (or are extremely rare) on the Front either as crystalline basalts or shocked or glass equivalents. These observations are consistent with the olivine-normative mare basalts being both local and the youngest flows at the site, and the fragments being emplaced on the Front by impacts. The picritic basalts raise the distinct possibility that the olivine-normative basalts also ponded on the Front. An influx of olivine-normative basalts from exotic sources (e.g., a ray from Aristillus) is inconsistent with their abundance, their dominance in the mare soil chemistry, and their age, isotopic, and trace element similarities with the quartz-normative basalts. However, the thermal histories of the olivine-normative basalts require elucidation.

  20. Lunar sample studies. [breccias basalts, and anorthosites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility.

  1. Mineralogy, Petrology and Oxygen Fugacity of the LaPaz Icefield Lunar Basaltic Meteorites and the Origin of Evolved Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Collins, S. J.; Righter, K.; Brandon, A. D.

    2005-01-01

    LAP 02205 is a 1.2 kg lunar mare basalt meteorite found in the Lap Paz ice field of Antarctica in 2002 [1]. Four similar meteorites were also found within the same region [1] and all five have a combined mass of 1.9 kg (LAP 02224, LAP 02226, LAP 02436 and LAP 03632, hereafter called the LAP meteorites). The LAP meteorites all contain a similar texture, mineral assemblage, and composition. A lunar origin for these samples comes from O isotopic data for LAP 02205 [1], Fe/Mn ratios of pyroxenes [1-5], and the presence of distinct lunar mineralogy such as Fe metal and baddeleyite. The LAP meteorites may represent an area of the Moon, which has never been sampled by Apollo missions, or by other lunar meteorites. The data from this study will be used to compare the LAP meteorites to Apollo mare basalts and lunar basaltic meteorites, and will ultimately help to constrain their origin.

  2. Aqueous Alteration of Basalts: Earth, Moon, and Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2007-01-01

    The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon

  3. H2S Injection and Sequestration into Basalt - The SulFix Project

    NASA Astrophysics Data System (ADS)

    Gudbrandsson, S.; Moola, P.; Stefansson, A.

    2014-12-01

    Atmospheric H2S emissions are among major environmental concern associated with geothermal energy utilization. It is therefore of great importance for the geothermal power sector to reduce H2S emissions. Known solutions for H2S neutralization are both expensive and include production of elemental sulfur and sulfuric acid that needs to be disposed of. Icelandic energy companies that utilize geothermal power for electricity production have decided to try to find an environmentally friendly and economically feasible solution to reduce the H2S emission, in a joint venture called SulFix. The aim of SulFix project is to explore the possibilities of injecting H2S dissolved in water into basaltic formations in close proximity to the power plants for permanent fixation as sulfides. The formation of sulfides is a natural process in geothermal systems. Due to basalt being rich in iron and dissolving readily at acidic conditions, it is feasible to re-inject the H2S dissolved in water, into basaltic formations to form pyrite. To estimate the mineralization rates of H2S, in the basaltic formation, flow through experiments in columns were conducted at various H2S concentrations, temperatures (100 - 240°C) and both fresh and altered basaltic glass. The results indicate that pyrite rapidly forms during injection into fresh basalt but the precipiation in altered basalt is slower. Three different alteration stages, as a function of distance from inlet, can be observed in the column with fresh basaltic glass; (1) dissolution features along with precipitation, (2) precipitation increases, both sulfides and other secondary minerals and (3) the basalt looks to be unaltered and little if any precipitation is observed. The sulfur has precipitated in the first half of the column and thereafter the solution is possibly close to be supersaturated with respect to the rock. These results indicate that the H2S sequestration into basalt is possible under geothermal conditions. The rate limiting

  4. Lithospheric control on basaltic magma compositions within a long-lived monogenetic magmatic province: the Cainozoic basalts of eastern Victoria, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Nicholls, I. A.; Maas, R.

    2012-12-01

    Basaltic volcanism, ranging in age from Late Jurassic to Holocene and extending across southern Victoria in south-eastern Australia was initiated ~ 95 Ma ago during the earliest stages of rifting associated with opening of the Tasman Sea and Southern Ocean. Volcanic activity has continued sporadically since that time with the only major hiatus being between 18 and 7 Ma (Price et al, 2003). Basaltic rocks with ages in the range 18-90 Ma occur in small lava fields scattered across eastern and south-eastern Victoria and have also been recovered from bore holes in the west of the state. These have in the past been referred to as the "Older Volcanics" to differentiate them from more volumetrically extensive and younger (< 5 Ma) lava fields to the west. Older Volcanics vary in composition from SiO2-undersaturated basanites, basalts and hawaiites through transitional basalts to hypersthene normative tholeiites. Strontium, Nd and Pb isotopic compositions lie between DM and EM 2 in Sr-Nd-Pb isotopic space. They are isotopically similar to Samoan OIB but different from intra-plate rocks of the New Zealand-Antarctic diffuse alkaline magmatic province (DAMP). Trace element compositions are generally characterised by enrichment of Cs, Ba, Rb, Th, U, Nb, K and light REE over heavy REE, Ti, Zr and Y but there is subtle diversity within and between particular lava fields. (La/Yb)n and K/Nb ratios show significant variation and some basalts are relatively enriched in Sr, P and Pb. Potassium and Rb show distinctive relative depletions in some samples and this could be indicating low degree melting with residual phlogopite. When Sr isotope data for Older Volcanics are projected onto an east-west profile they outline distinctive discontinuities that can be related to surface and subsurface structural features within the basement. This has previously been identified in the "Newer Volcanics" (< 5 Ma) province of western Victoria (Price et al., 1997, 2003). Both Proterozoic and

  5. Variation in fish mercury concentrations in streams of the Adirondack region, New York: A simplified screening approach using chemical metrics

    USGS Publications Warehouse

    Burns, Douglas A.; Riva-Murray, Karen

    2018-01-01

    Simple screening approaches for the neurotoxicant methylmercury (MeHg) in aquatic ecosystems may be helpful in risk assessments of natural resources. We explored the development of such an approach in the Adirondack Mountains of New York, USA, a region with high levels of MeHg bioaccumulation. Thirty-six perennial streams broadly representative of 1st and 2nd order streams in the region were sampled during summer low flow and analyzed for several solutes and for Hg concentrations in fish. Several landscape and chemical metrics that are typically strongly related to MeHg concentrations in aquatic biota were explored for strength of association with fish Hg concentrations. Data analyses were based on site mean length-normalized and standardized Hg concentrations (assumed to be dominantly MeHg) in whole juvenile and adult Brook Trout Salvelinus fontinalis, Creek Chub Semotilus atromaculatus, Blacknose Dace Rhinichthys atratulus, and Central Mudminnow Umbra limi, as well as on multi-species z-scores. Surprisingly, none of the landscape metrics was related significantly to regional variation in fish Hg concentrations or to z-scores across the study streams. In contrast, several chemical metrics including dissolved organic carbon (DOC) concentrations, sulfate concentrations (SO42−), pH, ultra-violet absorbance (UV254), and specific ultra-violet absorbance were significantly related to regional variation in fish Hg concentrations. A cluster analysis based on DOC, SO42−, and pH identified three distinct groups of streams: (1) high DOC, acidic streams, (2) moderate DOC, slightly acidic streams, and (3) low DOC circum-neutral streams with relatively high SO42−. Preliminary analysis indicated no significant difference in fish Hg z-scores between the moderate and high DOC groups, so these were combined for further analysis. The resulting two groups showed strong differences (p < 0.001) in DOC and SO42−concentrations as well as in pH and UV254 values. Median

  6. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    NASA Astrophysics Data System (ADS)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  7. Structural studies in columnar basalts from crystallographic and magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Tiphaine, Boiron; Jérôme, Bascou; Pierre, Camps; Eric, Ferre; Claire, Maurice; Bernard, Guy; Marie-Christine, Gerbe

    2010-05-01

    The purpose of this study is to better characterize the columnar and the associated microstructure development in basalt flows. The thermal contraction (O'Reilly, 1879) is the main hypothesis to explain the columnar formation. However, neither the structures which appear in basalt flow constituted of three levels (Tomkeieff, 1940) nor circular and radial structures within the prisms (for which weathering nor fracturing can account for) can be explained by the thermal contraction theory alone. An early structuring process during solidification (Guy and Le Coze, 1990) could play for a part that must be discussed (Guy, 2010). We studied two recent basalt flows (75 000 years) from the French Massif Central, in which the three flow levels are clearly observed. In the first basalt flow (La Palisse, Ardèche), the emission centre and the flow direction are known. In the second one (Saint Arcons d'Allier, Haute Loire), the prismatic columns are particularly well developed. In order to characterize the flow structure at different scales, from the flow to the grain scale, anisotropy of magnetic susceptibility (AMS) measurements were performed. The AMS data were coupled with crystallographic preferred orientation measurements of magnetite, plagioclase and clinopyroxene using Electron Backscattered Diffraction (EBSD) and image analyses from perpendicular thin sections. Magnetic mineralogy studies of the La Palisse basalts, in particular the thermomagnetic curves, indicate that the main carrier of AMS is high-Ti titanomagnetite (Tc≈130°C). AMS measurements of about a hundred samples show a higher degree of AMS (P parameter) in the middle level in comparison to the base. Inversely, the bulk magnetic susceptibility (Km) is higher at the flow base. Distinctive parameters for the different levels of the basaltic flows could be then provided by AMS measurements.. Moreover, the comparison between AMS and EBSD data indicate that the magnetic susceptibility carried by the magnetic

  8. Comparative Planetary Mineralogy: Co, Ni Systematics in Chromite from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Shearer, C. K.; Papike, J. J.; Righter,K.

    2005-01-01

    Spinel is a minor but important phase in planetary basalts because its variable composition often reflects basalt petrogenesis. For example, complicated zoning trends in spinel can give clues to melt evolution [1], and V concentrations in chromite lend insight into magma oxygen fugacity (fO2) conditions [2]. Nickel and Co are two elements that are commonly used as a measure of melt fractionation, and their partitioning between olivine and melt is fairly well understood. Less clear is their partitioning into spinel, although [3] has explored Ni and Co systematics in experimental charges. This study documents Ni and Co behavior in early crystallizing spinel (chromite) from several planetary basalts in an attempt to compare our results with [3], and also gain insight into basalt evolution on the three planets.

  9. Submarine Basaltic Glass Colonization by the Heterotrophic Fe(II)-Oxidizing and Siderophore-Producing Deep-Sea Bacterium Pseudomonas stutzeri VS-10: The Potential Role of Basalt in Enhancing Growth

    PubMed Central

    Sudek, Lisa A.; Wanger, Greg; Templeton, Alexis S.; Staudigel, Hubert; Tebo, Bradley M.

    2017-01-01

    Phylogenetically and metabolically diverse bacterial communities have been found in association with submarine basaltic glass surfaces. The driving forces behind basalt colonization are for the most part unknown. It remains ambiguous if basalt provides ecological advantages beyond representing a substrate for surface colonization, such as supplying nutrients and/or energy. Pseudomonas stutzeri VS-10, a metabolically versatile bacterium isolated from Vailulu’u Seamount, was used as a model organism to investigate the physiological responses observed when biofilms are established on basaltic glasses. In Fe-limited heterotrophic media, P. stutzeri VS-10 exhibited elevated growth in the presence of basaltic glass. Diffusion chamber experiments demonstrated that physical attachment or contact of soluble metabolites such as siderophores with the basaltic glass plays a pivotal role in this process. Electrochemical data indicated that P. stutzeri VS-10 is able to use solid substrates (electrodes) as terminal electron donors and acceptors. Siderophore production and heterotrophic Fe(II) oxidation are discussed as potential mechanisms enhancing growth of P. stutzeri VS-10 on glass surfaces. In correlation with that we discuss the possibility that metabolic versatility could represent a common and beneficial physiological trait in marine microbial communities being subject to oligotrophic and rapidly changing deep-sea conditions. PMID:28344573

  10. Petrochemistry of a xenolith-bearing Neogene alkali olivine basalt from northeastern Iran

    NASA Astrophysics Data System (ADS)

    Saadat, Saeed; Stern, Charles R.

    2012-05-01

    A small isolated Neogene, possibly Quaternary, monogenetic alkali olivine basalt cone in northeastern Iran contains both mantle peridotite and crustal gabbroic xenoliths, as well as plagioclase megacrysts. The basaltic magma rose to the surface along pathways associated with local extension at the junction between the N-S right-lateral and E-W left-lateral strike slip faults that form the northeastern boundary of the Lut microcontinental block. This basalt is enriched in LREE relative to HREE, and has trace-element ratios similar to that of oceanic island basalts (OIB). Its 87Sr/86Sr (0.705013 to 0.705252), 143Nd/144Nd (0.512735 to 0.512738), and Pb isotopic compositions all fall in the field of OIB derived from enriched (EM-2) mantle. It formed by mixing of small melt fractions from both garnet-bearing asthenospheric and spinel-facies lithospheric mantle. Plagioclase (An26-32) megacrysts, up to 4 cm in length, have euhedral crystal faces and show no evidence of reaction with the host basalt. Their trace-element concentrations suggest that these megacrysts are co-genetic with the basalt host, although their 87Sr/86Sr (0.704796) and 143Nd/144Nd (0.512687) ratios are different than this basalt. Round to angular, medium-grained granoblastic meta-igneous gabbroic xenoliths, ranging from ~ 1 to 6 cm in dimension, are derived from the lower continental crust. Spinel-peridotite xenoliths equilibrated in the subcontinental lithosphere at depths of 30 to 60 km and temperatures of 965 °C to 1065 °C. These xenoliths do not preserve evidence of extensive metasomatic enrichment as has been inferred for the mantle below the Damavand volcano further to the west in north-central Iran, and clinopyroxenes separated from two different mantle xenoliths have 87Sr/86Sr (0.704309 and 0.704593) and 143Nd/144Nd (0.512798) ratios which are less radiogenic than either their host alkali basalt or Damavand basalts, implying significant regional variations in the composition and extent of

  11. The implications of basalt in the formation and evolution of mountains on Venus

    NASA Astrophysics Data System (ADS)

    Jull, Matthew G.; Arkani-Hamed, Jafar

    1995-06-01

    The highland region of Ishtar Terra on Venus has mountains that reach up to 11 km in height and are thought to be basaltic in composition. Assuming that dynamic uplift of crust to this height is unlikely, we examine the topography produced by an isostatically supported thickening basaltic crust. It is found that regardless of whether the crust thickens by crustal shortening or by volcanic construction, the high-density basalt-eclogite phase transition is the limiting factor for producing significant elevation of the mountains. The maximum height attained by basaltic mountains depends on the nature of the basalt-eclogite phase transition. Without a phase transition, a basaltic crust must thicken to greater than 100 km to reach heights over 10 km. An instantaneous phase transition of basalt to eclogite allows a maximum topographic height of less than about 2 km. However, with a time lag of 100 Ma owing to slow rates of solid-state diffusion, our calculations show that the mountains can reach elevations greater than 10 km only if they are less than 25 Ma old. Higher temperatures within the Venusian crust may decrease the extent of the stability fields of high-density basalt phases and allow high topography if the thickening crust melts. This can occur if the radioactive element concentrations measured on the surface of Venus are uniformly distributed throughout the crust, the crust thickens to greater than 65 km, and the thickened crust is older than about 400 Ma. The conflicting results of a young age predicted for high basaltic mountains and an almost uniform surface age of 500 Ma from crater populations, coupled with similarities in bulk physical properties of Venus and Earth, suggest that the basaltic surface composition found at several landing sites on the planet may not be representative of the entire crust. We suggest that Ishtar Terra formed from the collision of continent-like highly silicic cratons over a region of mantle downwelling. Lakshmi Planum

  12. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  13. Mafic enclaves record syn-eruptive basalt intrusion and mixing

    NASA Astrophysics Data System (ADS)

    Plail, Melissa; Edmonds, Marie; Woods, Andrew W.; Barclay, Jenni; Humphreys, Madeleine C. S.; Herd, Richard A.; Christopher, Thomas

    2018-02-01

    Mafic enclaves hosted by andesite erupted at the Soufrière Hills Volcano between 1995 and 2010 yield insights into syn-eruptive mafic underplating of an andesite magma reservoir, magma mixing and its role in sustaining eruptions that may be widely applicable in volcanic arc settings. The mafic enclaves range in composition from basalt to andesite and are generated from a hybrid thermal boundary layer at the interface between the two magmas, where the basalt quenches against the cooler andesite, and the two magmas mix. We show, using an analytical model, that the enclaves are generated when the hybrid layer, just a few tens of centimetres thick, becomes buoyant and forms plumes which rise up into the andesite. Mafic enclave geochemistry suggests that vapour-saturated basalt was underplated quasi-continuously throughout the first three eruptive phases of the eruption (the end member basalt became more Mg and V-rich over time). The andesite erupted during the final phases of the eruption contained more abundant and larger enclaves, and the enclaves were more extensively hybridised with the andesite, suggesting that at some time during the final few years of the eruption, the intrusion of mafic magma at depth ceased, allowing the hybrid layer to reach a greater thickness, generating larger mafic enclaves. The temporal trends in mafic enclave composition and abundance suggests that basalt recharge and underplating sustained the eruption by the transfer of heat and volatiles across the interface and when the recharge ceased, the eruption waned. Our study has important implications for the petrological monitoring of long-lived arc eruptions.

  14. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Technical Reports Server (NTRS)

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.

    2012-01-01

    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (<3.85 Ga) [4]. The high-Al basalts were originally classified into five compositional groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  15. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Olivia U.; Di Meo-Savoie, Carol A.; Van Nostrand, Joy D.

    2008-09-30

    We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 oN, from the rift axis of the Juan de Fuca Ridge, and from neighboring seamounts. Cluster analysis of 16S rDNA Terminal Restriction Fragment Polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure. Cloning and sequencing of bacterial and archaeal 16S rRNA genes revealed twelve different phyla and sub-phyla associated with basalts. These include themore » Gemmatimonadetes, Nitrospirae, the candidate phylum SBR1093 in the c, andin the Archaea Marine Benthic Group B, none of which have been previously reported in basalts. We delineated novel ocean crust clades in the gamma-Proteobacteria, Planctomycetes, and Actinobacteria that are composed entirely of basalt associated microflora, and may represent basalt ecotypes. Finally, microarray analysis of functional genes in basalt revealed that genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation are present, suggesting that basalts harbor previously unrecognized metabolic diversity. These novel processes could exert a profound influence on ocean chemistry.« less

  16. Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, Bernard Pete; Schaef, Herbert T.; Spane, Frank A.

    Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO 2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO 2 were injected over a 3-week period during July/August 2013. The target CO 2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. Duringmore » the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO 2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ 13C, δ 18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO 2. Both the secondary mineral nodules and injected CO 2

  17. Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions

    DOE PAGES

    McGrail, Bernard Pete; Schaef, Herbert T.; Spane, Frank A.; ...

    2017-08-18

    Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO 2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO 2 were injected over a 3-week period during July/August 2013. The target CO 2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. Duringmore » the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO 2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ 13C, δ 18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO 2. Both the secondary mineral nodules and injected CO 2

  18. The Effect of Adhesion Interaction on the Mechanical Properties of Thermoplastic Basalt Plastics

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Kabak, A. I.; Yakovchuk, Yu. Yu.

    2003-01-01

    The effect of temperature, adhesion time, and surface treatment of a reinforcing filler on the mechanical properties of thermoplastic basalt plastics based on a high-density polyethylene and a copolymer of 1,3,5-trioxane with 1,3-dioxolan is investigated. An extreme dependence for the adhesive strength in a thermoplastic-basalt fiber system is established and its effect on the mechanical properties of basalt plastics and the influence of the adhesion contact time on the adhesive strength in the system are clarified. The surface modification of basalt fibers in acidic and alkaline media intensifies the adhesion of thermoplastics to them owing to a more developed surface of the reinforcing fibers after etching. It is found that the treatment in the acidic medium is more efficient and considerably improves the mechanical properties of basalt plastics.

  19. Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.

    2014-01-01

    The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and

  20. Hydraulic and biochemical gradients limit wetland mercury supply to an Adirondack stream

    USGS Publications Warehouse

    Bradley, Paul M.; Burns, Douglas A.; Harvey, Judson; Journey, Celeste A.; Brigham, Mark E.; Murray, Karen

    2016-01-01

    Net fluxes (change between upstream and downstream margins) for water, methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and chloride (Cl) were assessed twice in an Adirondack stream reach (Sixmile Brook, USA), to test the hypothesized importance of wetland-stream hydraulic and chemical gradients as fundamental controls on fluvial mercury (Hg) supply. The 500 m study reach represented less than 4% of total upstream basin area. During a snowmelt high-flow event in May 2009 surface water, DOC, and chloride fluxes increased by 7.1±1.3%, 8.0±1.3%, and 9.0±1.3%, respectively, within the reach, demonstrating that the adjacent wetlands are important sources of water and solutes to the stream. However, shallow groundwater Hg concentrations lower than in the surface water limited groundwater-surface water Hg exchange and no significant changes in Hg (filtered MeHg and THg) fluxes were observed within the reach despite the favorable hydraulic gradient. In August 2009, the lack of significant wetland-stream hydraulic gradient resulted in no net flux of water or solutes (MeHg, THg, DOC, or Cl) within the reach. The results are consistent with the wetland-Hg-source hypothesis and indicate that hydraulic and chemical gradient (direction and magnitude) interactions are fundamental controls on the supply of wetland Hg to the stream.

  1. Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina)

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Hesse, A.; Mandeville, C. W.

    2010-11-01

    Young basaltic back-arc volcanoes occur east of the main Andes chain at about 37.5°-39°S in the Loncopue graben, Province of Neuquen, Argentina. These olivine-rich basalts and trachybasalts have up to 8% MgO, with high Ni and Cr contents, but highly variable incompatible element concentrations. Mafic lava flows and cinder cones at the southern end of the graben lack phenocrystic plagioclase. The northern samples have relative Ta-Nb depletions and K, Pb and LREE enrichment. These samples strongly resemble rocks of the nearby arc volcanoes Copahue and Caviahue, including their Fe-Ti enrichment relative to the main Andes arc rocks. The Sr, Nd and Pb isotope ratios show that the source regions of these back-arc basalts are enriched in subducted components that were depleted in the aqueous mobile elements such as Cs, Sr and Ba as a result of prior extractions from the subducted complex below the main arc. Some mafic flows show slightly low 206Pb/ 204Pb and 143Nd/ 144Nd values as well as incompatible trace element ratios similar to southern Patagonia plateau back-arc basalts, suggesting contributions from an EM1 mantle source. Geothermometry and barometry suggest that the basalts crystallized and fractionated small amounts of olivine and spinel at ˜ 35 km depth at temperatures of 1170-1220 °C, at about QFM + 0.5 to QFM + 1 with 1-2% H 2O, and then rose rapidly to the surface. The Loncopue graben back-arc basalts are transitional in composition between the South Patagonia back-arc plateau basalts and the Caviahue and Copahue arc volcanoes to the northwest. The EM1 source endmember is possibly the subcontinental lithospheric mantle. Strong variations in incompatible element enrichment and isotopic compositions between closely spaced cinder cones and lava flows suggest a heterogeneous mantle source for the Loncopue graben volcanics.

  2. Submarine basaltic fountain eruptions in a back-arc basin during the opening of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Hosoi, Jun; Amano, Kazuo

    2017-11-01

    Basaltic rock generated during the middle Miocene opening of the Japan Sea, is widely distributed on the back-arc side of the Japanese archipelago. Few studies have investigated on submarine volcanism related to opening of the Japan Sea. The present study aimed to reconstruct details of the subaqueous volcanism that formed the back-arc basin basalts (BABB) during this event, and to discuss the relationship between volcanism and the tectonics of back-arc opening, using facies analyses based on field investigation. The study area of the southern Dewa Hills contains well-exposed basalt related to the opening of the Japan Sea. Five types of basaltic rock facies are recognized: (1) coherent basalt, (2) massive platy basalt, (3) jigsaw-fit monomictic basaltic breccia, (4) massive or stratified coarse monomictic basaltic breccia with fluidal clasts, and (5) massive or stratified fine monomictic basaltic breccia. The basaltic rocks are mainly hyaloclastite. Based on facies distributions, we infer that volcanism occurred along fissures developed mainly at the center of the study area. Given that the rocks contain many fluidal clasts, submarine lava fountaining is inferred to have been the dominant eruption style. The basaltic rocks are interpreted as the products of back-arc volcanism that occurred by tensional stress related to opening of the Japan Sea, which drove strong tectonic subsidence and active lava fountain volcanism.

  3. Low Temperature Reaction Experiments Between Basalt, Seawater and CO2, and Implications for Carbon Dioxide Sequestration in Deep-Sea Basalts

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Teagle, D. A. H.; Matter, J. M.

    2015-12-01

    Reactions between divalent cation-rich silicate minerals and CO2-bearing fluids to form (Ca, Mg, Fe) carbonate minerals could facilitate the safe and permanent storage of anthropogenic carbon dioxide. Deep-sea basalt formations provide large storage reservoir capacities and huge potential sources of Ca2+, Mg2+ and Fe2+. However, better knowledge of silicate mineral reaction rates with carbonate-bearing fluids is required to understand the overall carbon storage potential of these reservoirs. This study investigates key reactions associated with progressive seawater-rock interaction using far-from equilibrium dissolution experiments. The experiments were carried out at 40 ˚C and at constant CO2 partial pressure of 1 atm. Mid-ocean ridge basalts from the Juan de Fuca and Mid-Atlantic Ridges and a gabbro from the Troodos ophiolite were reacted with 500 mL of CO2-charged seawater using thick-walled fluorinated polypropylene bottles combined with rubber stoppers. The starting material was crushed, sieved and thoroughly cleaned to remove fine particles (< 63 μm) to ensure a particle grain size between 63 and 125 μm for all the samples. The seawater chemistry and the pH were monitored throughout the experiments by daily analysis of 1 mL of fluid. The pH increased rapidly from 4.8 to 5.0 before stabilizing at 5.1 after 10 days of reaction time. The analysis of anions (S, Cl) highlighted a substantial evaporation (up to 15 %) during the experiments, requiring a correction factor for the measured dissolved ion concentrations. Evaporation corrected silicon (Si) and calcium (Ca) concentrations in the seawater increased by 5900 % and 14 %, resulting in total dissolved Si and Ca from basalt of 0.3 % and 2.4 %, respectively. The results are comparable with literature data for fresh water experiments conducted on basaltic glass at higher temperature or pressure, illustrating the considerable potential of the mineral sequestration of CO2 in submarine basalts.

  4. Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Christensen, P. R.

    2003-01-01

    The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].

  5. Mare basalt magma source region and mare basalt magma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regionsmore » (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.« less

  6. Experimentally reproduced textures and mineral chemistries of high-titanium mare basalts

    NASA Technical Reports Server (NTRS)

    Usselman, T. M.; Lofgren, G. E.; Williams, R. J.; Donaldson, C. H.

    1975-01-01

    Many of the textures, morphologies, and mineral chemistries of the high-titanium mare basalts have been experimentally duplicated using single-stage cooling histories. Lunar high-titanium mare basalts are modeled in a 1 m thick gravitationally differentiating flow based on cooling rates, thermal models, and modal olivine contents. The low-pressure equilibrium phase relations of a synthetic high-titanium basalt composition were investigated as a function of oxygen fugacity, and petrographic criteria are developed for the recognition of phenocrysts which were present in the liquid at the time of eruption.

  7. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai

    2012-04-01

    Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous

  8. Vapor deposition in basaltic stalactites, Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  9. Volatiles in High-K Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, Jessica J.; McCubbin, Francis M.; Messenger, Scott R.; Nguyen, Ann; Boyce, Jeremy

    2017-01-01

    Chlorine is an unusual isotopic system, being essentially unfractionated ((delta)Cl-37 approximately 0 per mille ) between bulk terrestrial samples and chondritic meteorites and yet showing large variations in lunar (approximately -4 to +81 per mille), martian, and vestan (HED) samples. Among lunar samples, the volatile-bearing mineral apatite (Ca5(PO4)3[F,Cl,OH]) has been studied for volatiles in K-, REE-, and P (KREEP), very high potassium (VHK), low-Ti and high-Ti basalts, as well as samples from the lunar highlands. These studies revealed a positive correlation between in-situ (delta)Cl-37 measurements and bulk incompatible trace elements (ITEs) and ratios. Such trends were interpreted to originate from Cl isotopic fractionation during the degassing of metal chlorides during or shortly after the differentiation of the Moon via a magma ocean. In this study, we investigate the volatile inventories of a group of samples for which new-era volatile data have yet to be reported - the high-K (greater than 2000 ppm bulk K2O), high-Ti, trace element-rich mare basalts. We used isotope imaging on the Cameca NanoSIMS 50L at JSC to obtain the Cl isotopic composition [((Cl-37/(35)Clsample/C-37l/(35)Clstandard)-1)×1000, to get a value in per thousand (per mille)] which ranges from approximately -2.7 +/- 2 per mille to +16.1 +/- 2 per mille (2sigma), as well as volatile abundances (F & Cl) of apatite in samples 10017, 10024 & 10049. Simply following prior models, as lunar rocks with high bulk-rock abundances of ITEs we might expect the high-K, high-Ti basalts to contain apatite characterized by heavily fractionated (delta)Cl-37 values, i.e., Cl obtained from mixing between unfractionated mantle Cl (approximately 0 per mille) and the urKREEP reservoir (possibly fractionated to greater than +25 per mille.). However, the data obtained for the studied samples do not conform to either the early degassing or mixing models. Existing petrogentic models for the origin of the high

  10. Transition Element Abundances in MORB Basalts

    NASA Astrophysics Data System (ADS)

    Yang, S.; Humayun, M.; Salters, V. J.; Fields, D.; Jefferson, G.; Perfit, M. R.

    2012-12-01

    The mineralogy of the mantle sources of basalts is an important, but hard to constrain parameter, especially with the basalts as chemical probes of major element mantle composition. Geophysical models imply that the deep mantle may have significant variations in Fe and Si relative to the ambient mantle sampled by MORB. Some petrological models of sub-ridge melting involve both pyroxenite and peridotite, implying that basalts preferentially sample a pyroxenite endmember. The First-Row Transition Elements (FRTE), Ga and Ge are compatible to moderately incompatible during partial melting, and are sensitive to mineralogical variability in the mantle and thus can provide constraints on mantle source mineralogy for MORB. We have analyzed major elements, FRTE, Ga and Ge on 231 basaltic glasses from the Middle Atlantic Ridge (MAR between -23°S to 36.44°N), 30 Mid-Cayman Rise basaltic glasses, 12 glasses from the Siqueiros Fracture Zone (EPR), 9 glasses from the Blanco Trough, Juan de Fuca ridge, and Galapagos Spreading Centers (EPR), and 4 Indian Ocean MORB. Large spots (150 μm) were precisely (±1%) analyzed by a New Wave UP193FX excimer (193 nm) laser ablation system coupled to a high-resolution ICP-MS at the National High Magnetic Field Laboratory using a high ablation rate (50 Hz) to yield blank contributions <1% for all elements, particularly Ge. The data demonstrate that the Ge/Si (6.96 x 10E-6 ± 3%, 1σ) and Fe/Mn (55 ± 2%) ratios for MORB are insensitive to fractional crystallization within the MgO range 6%-10%. MORB have Zn/Fe (9.9 x 10E-4 ± 7%), Ga/Sc (0.37-0.50), Ga/Al (2.2 x 10E-4 ± 11%) ratios, with the variations mostly due to the effects of fractional crystallization. Recent experimental determination of FRTE, Ga and Ge partition coefficients provide a framework within which to interpret these data [1]. Using these new partition coefficients, we have modeled the sensitivity of each element to mineralogical variations in the mantle source. Olivine

  11. Lunar basalt meteorite EET 87521: Petrology of the clast population

    NASA Technical Reports Server (NTRS)

    Semenova, A. S.; Nazarov, M. A.; Kononkova, N. N.

    1993-01-01

    The Elephant Moraine meteorite EET 87521 was classified as a lunar mare basalt breccia which is composed mainly of VLT basalt clasts. Here we report on our petrological study of lithic clasts and monomineralic fragments in the thin sections EET 87521,54 and EET 87521,47,1, which were prepared from the meteorite. The results of the study show that EET 87521 consists mainly of Al-rich ferrobasalt clasts and olivine pyroxenite clasts. The bulk composition of the meteorite can be well modelled by the mixing of these lithic components which appear to be differentiates of the Luna 25 basalt melt. KREEP and Mg-rich gabbro components are minor constituents of EET 87521.

  12. Automated identification of basalt spectra in Clementine lunar data

    NASA Astrophysics Data System (ADS)

    Antonenko, I.; Osinski, G. R.

    2011-06-01

    The identification of fresh basalt spectra plays an important role in lunar stratigraphic studies; however, the process can be time consuming and labor intensive. Thus motivated, we developed an empirically derived algorithm for the automated identification of fresh basalt spectra from Clememtine UVVIS data. This algorithm has the following four parameters and limits: BC Ratio=3(R950-R900)/(R900-R750)<1.1, CD Delta=(R1000-R950)/R750-1.09(R950-R900)/R750>0.003 and <0.06, B Slope=(R900-R750)/(3R750)<-0.012, and Band Depth=(R750-R950)/(R750-R415)>0.1, where R750 represents the unnormalized reflectance of the 750 nm Clementine band, and so on. Algorithm results were found to be accurate to within an error of 4.5% with respect to visual classification, though olivine spectra may be under-represented. Overall, fresh basalts identified by the algorithm are consistent with expectations and previous work in the Mare Humorum area, though accuracy in other areas has not yet been tested. Great potential exists in using this algorithm for identifying craters that have excavated basalts, estimating the thickness of mare and cryptomare deposits, and other applications.

  13. Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1982-01-01

    Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6-10% TiO2) and the hornblende (3-6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages: (a) Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene??Biotite +more-sodic Plagioclase (b) Hornblende+Orthopyroxene??Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature. ?? 1983 Springer-Verlag.

  14. Rare earth element contents and multiple mantle sources of the transform-related Mount Edgecumbe basalts, southeastern Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Budahn, J.R.; Lanphere, M.A.; Brew, D.A.

    1994-01-01

    Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. Rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, are modelled by 10-15% partial melting of fertile spinel-plagioclase lherzolite followed by removal of 8-13% olivine. It is concluded that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. -from Authors

  15. Evaluation of Basalt Fibre Composites for Marine Applications

    NASA Astrophysics Data System (ADS)

    Davies, P.; Verbouwe, W.

    2018-04-01

    Basalt fibres offer potential for use in marine structures, but few data exist to evaluate the influence of seawater immersion on their mechanical behaviour. This paper provides the results from a study in which basalt fibre reinforced epoxy composites were aged in natural seawater at different temperatures. Tests were performed under quasi-static and cyclic loading, first in the as-received state then after saturation in natural seawater. Results are compared to those for an E-glass reinforced composite with the same epoxy matrix. They indicate similar mechanical performance for both materials after seawater saturation.

  16. Genesis of highland basalt breccias - A view from 66095

    NASA Technical Reports Server (NTRS)

    Garrison, J. R., Jr.; Taylor, L. A.

    1980-01-01

    Electron microprobe and defocused beam analyses of the lunar highland breccia sample 66095 show it consists of a fine-grained subophitic matrix containing a variety of mineral and lithic clasts, such as intergranular and cataclastic ANT, shocked and unshocked plagioclase, and basalts. Consideration of the chemistries of both matrix and clasts provides a basis for a qualitative three-component mixing model consisting of an ANT plutonic complex, a Fra Mauro basalt, and minor meteoric material.

  17. Chemical differences between small subsamples of Apollo 15 olivine-normative basalts

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Vetter, S. K.; Lindstrom, M. M.

    1990-01-01

    Results are presented on the chemical and petrological characterization of nine samples of an Apollo 15 mare basalt suite. The results show that all nine samples are low-silica olivine normative basalts (ONBs) similar to those described earlier for low-silica ONBs from Apollo 15 site. The samples were found to vary in texture and grain size, from fine-grained intergranular or subophitic basalts to coarse-grained granular 'microgabbros'. Several displayed macroscopic heterogeneity. Variation diagrams show that the overall trend of the data is consistent with the fractionation of olivine (plus minor Cr-spinel) from a high-MgO parent magma.

  18. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    O'Hara, M. J.; Herzberg, C.

    2002-06-01

    The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense "primary" picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures - a conclusion supported by calculation of the melt composition, which would need to be extracted in order to

  19. Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James

    2012-01-01

    Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.

  20. Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance

    NASA Astrophysics Data System (ADS)

    Xiao, Li-guang; Li, Gen-zhuang

    2018-03-01

    In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.

  1. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Age distribution of Serra Geral (Paraná) flood basalts, southern Brazil

    USGS Publications Warehouse

    Fodor, R.V.; McKee, E.H.; Roisenberg, A.

    1989-01-01

    We evaluated 193 K-Ar ages (10 newly determined) of basaltic and differentiated rocks of the Serra Geral (Paraná) flood-basalt province for indications of magmatism occurring systematically with progressive rifting and complete separation ( ≈130-105 Ma) of South America from Africa. The K-Ar ages represent basalt emplacement between 35° and 19°S covering about 1,200,000 km2. We note that volcanism appears ubiquitous across the province between about 140 and 115 Ma, and that there are no significant age differences within that relate directly to progressive south-to-north tectonism. On the other hand, the oldest samples, about 140–160 Ma, are among those nearest the Brazil coastline (rift margin), perhaps suggesting migration of activity away from the rift with time. Studies of other flood-basalt provinces now indicate short (<3 m.y.) eruption periods, thereby pointing to the need for re-examination of Serra Geral ages by 40Ar-39Ar incremental heating techniques.

  3. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts

    USGS Publications Warehouse

    Sakai, H.; Marais, D.J.D.; Ueda, A.; Moore, J.G.

    1984-01-01

    Fresh submarine basalt glasses from Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 22 to 160 ppm carbon and 0.3 to 2.8 ppm nitrogen, respectively, as the sums of dissolved species and vesicle-filling gases (CO2 and N2). The large range of variation in carbon content is due to combined effect of depth-dependency of the solubility of carbon in basalt melt and varying extents of vapour loss during magma emplacement as well as in sample crushing. The isotopic ratios of indigenous carbon and nitrogen are in very narrow ranges,-6.2 ?? 0.2% relative to PDB and +0.2 ?? 0.6 %. relative to atmospheric nitrogen, respectively. In basalt samples from Juan de Fuca Ridge, however, isotopically light carbon (??13C = around -24%.) predominates over the indigenous carbon; no indigenous heavy carbon was found. Except for Galapagos Ridge samples, these ocean-floor basalts contain 670 to 1100 ppm sulfur, averaging 810 ppm, in the form of both sulfide and sulfate, whereas basalts from Galapagos Ridge are higher in both sulfur (1490 and 1570 ppm) and iron (11.08% total iron as FeO). The ??34S values average +0.3 ?? 0.5%. with average fractionation factor between sulfate and sulfide of +7.4 ?? 1.6%.. The sulfate/sulfide ratios tend to increase with increasing water content of basalt, probably because the oxygen fugacity increases with increasing water content in basalt melt. ?? 1984.

  4. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts.

    PubMed

    Sakai, H; Des Marais, D J; Ueda, A; Moore, J G

    1984-01-01

    Fresh submarine basalt glasses from Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 22 to 160 ppm carbon and 0.3 to 2.8 ppm nitrogen, respectively, as the sums of dissolved species and vesicle-filling gases (CO2 and N2). The large range of variation in carbon content is due to combined effect of depth-dependency of the solubility of carbon in basalt melt and varying extents of vapour loss during magma emplacement as well as in sample crushing. The isotopic ratios of indigenous carbon and nitrogen are in very narrow ranges, -6.2 +/- 0.2% relative to PDB and +0.2 +/- 0.6% relative to atmospheric nitrogen, respectively. In basalt samples from Juan de Fuca Ridge, however, isotopically light carbon (delta 13 C = around -24%) predominates over the indigenous carbon; no indigenous heavy carbon was found. Except for Galapagos Ridge samples, these ocean-floor basalts contain 670 to 1100 ppm sulfur, averaging 810 ppm in the form of both sulfide and sulfate, whereas basalts from Galapagos Ridge are higher in both sulfur (1490 and 1570 ppm) and iron (11.08% total iron as FeO). the delta 34S values average +0.3 +/- 0.5% with average fractionation factor between sulfate and sulfide of +7.4 +/- 1.6%. The sulfate/sulfide ratios tend to increase with increasing water content of basalt, probably because the oxygen fugacity increases with increasing water content in basalt melt.

  5. Spitzer IRS Spectra of Basaltic Asteroids: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nick; Stewart, Heather; Marchis, Frank

    2008-01-01

    We present preliminary results of a Spitzer program to observe the 5.2--38 micron spectra of small basaltic asteroids using the Spitzer IRS (Infrared Spectrograph). Our targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), four outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid (NEA) 4055 Magellan. We will compare the compositions and thermophysical properties of the non-Vestoid objects with those of the dynamical vestoids to provide insight on the extent of metal-silicate differentiation on planetsimals during the epoch of planet formation in the early Solar System. As of this writing, spectra of asteroids 10537 (1991 RY16) and 2763 Jeans have been returned. Analysis of these data are ongolng. Observations of 956 Elisa, 2653 Principia, 4215 Kamo, 7472 Kumakiri, and 1459 Magnya have been scheduled and are expected to be available by the time of the DPS meeting. NIR spectra and lightcurves o f the target asteroids are also being observed in support of this program.

  6. Carbon uptake in granular basalt is mitigated by added organic carbon.

    NASA Astrophysics Data System (ADS)

    Howard, E. L.; Van Haren, J. L. M.; Dontsova, K.

    2017-12-01

    Soils represent a large, and potentially long-term, storage component of the global carbon budget. Accurate projections of the response of soil respiration -the release of CO2 from soils generated either through root respiration or microbial respiration- to rainfall events remains one of the largest uncertainties in global carbon cycling models. Similarly poorly represented in models is the uptake of CO2 by basalt soils. In an attempt to address these unknowns, we have investigated how the addition of carbon influences the negative CO2 flux observed after wetting basalt. At Biosphere 2 we have constructed a large scale environmentally controlled experiment known as the Landscape Evolution Observatory (LEO). The objective of LEO is to observe the interactions between water, microbes, and climate in the formation of soil and landscapes utilizing granular basalt as a young soil. Previous studies show that water addition to the LEO soil leads to considerable CO2 uptake and that the addition of plants does not alter this response. In this study, we conducted soil incubations to investigate the effect of varying soil carbon content on CO2 fluxes. During incubations we measured CO2 emissions from two types of soil (granular basalt and sand soil) mixed with seven (0, 5, 10, 25, 50, 75, 100%) different proportions of Kalso prairie. The carbon content varied from nearly zero in the basalt to 6.5% in the Kalso Prarie soil. Other parameters that influence soil CO2 fluxes such as pH were taken into account. In conclusion, our experiments confirm that unweathered basalt will consume CO2 when wetted, whereas added carbon will cause a strong pulse of CO2 following water addition. This supports our hypotheses that the carbon content is a large contributor and that maturation of basalt flows will lead to a shift in the carbon dynamics from inorganic to organic dominated. Likewise, these transitions would be expected to be present during soil formation after primary succession and

  7. Discovery of a basaltic asteroid in the outer main belt

    PubMed

    Lazzaro; Michtchenko; Carvano; Binzel; Bus; Burbine; Mothe-Diniz; Florczak; Angeli; Harris

    2000-06-16

    Visible and near-infrared spectroscopic observations of the asteroid 1459 Magnya indicate that it has a basaltic surface. Magnya is at 3. 15 astronomical units (AU) from the sun and has no known dynamical link to any family, to any nearby large asteroid, or to asteroid 4 Vesta at 2.36 AU, which is the only other known large basaltic asteroid. We show that the region of the belt around Magnya is densely filled by mean-motion resonances, generating slow orbital diffusion processes and providing a potential mechanism for removing other basaltic fragments that may have been created on the same parent body as Magnya. Magnya may represent a rare surviving fragment from a larger, differentiated planetesimal that was disrupted long ago.

  8. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  9. Mineralogy of the last lunar basalts: Results from Clementine

    USGS Publications Warehouse

    Staid, M.I.; Pieters, C.M.

    2001-01-01

    The last major phase of lunar volcanism produced extensive high-titanium mare deposits on the western nearside which remain unsampled by landing missions. The visible and near-infrared reflectance properties of these basalts are examined using Clementine multispectral images to better constrain their mineralogy. A much stronger 1 ??m ferrous absorption was observed for the western high-titanium basalts than within earlier maria, suggesting that these last major mare eruptions also may have been the most iron-rich. These western basalts also have a distinctly long-wavelength, 1 ??m ferrous absorption which was found to be similar for both surface soils and materials excavated from depth, supporting the interpretation of abundant olivine within these deposits. Spectral variation along flows within the Imbrium basin also suggests variations in ilmenite content along previously mapped lava flows as well as increasing olivine content within subsequent eruptions. Copyright 2001 by the American Geophysical Union.

  10. Petrological and Geochemical characterization of central Chihuahua basalts: a possible local sign of rifting activity

    NASA Astrophysics Data System (ADS)

    Espejel-Garcia, V. V.; Garcia-Rascon, M.; Villalobos-Aragon, A.; Morton-Bermea, O.

    2012-12-01

    The central part of the mexican state, Chihuahua, is the oriental border of the Sierra Madre Occidental (silicic large igneous province), which consist of series of ignimbrites divided into two volcanic groups of andesites and rhyolites. In the central region of Chihuahua, the volcanic rocks are now part of the Basin and Range, allowing the presence of mafic rocks in the lower areas. The study area is located approximately 200 km to the NW of Chihuahua city near to La Guajolota town, in the Namiquipa County. There are at least 5 outcrops of basalts to the west of the road, named Puerto de Lopez, Malpaises, El Tascate, Quebrada Honda, and Carrizalio, respectively. These outcrops have only been previously described by the Mexican Geologic Survey (SGM) as thin basaltic flows, with vesicles filled with quartz, and phenocrystals of labradorite, andesine, oligoclase and olivine. Petrologically, the basalts present different textures, from small phenocrysts of plagioclase in a very fine matrix to large, zoned and sometimes broken phenocrysts of plagioclase in a coarser matrix. All samples have olivine in an advanced state of alteration, iddingsite. The geochemical analyses report that these basaltic flows contain characteristics of rift basalts. The rocks have a normative olivine values from 5.78 to 27.26 and nepheline values from 0 to 2.34. In the TAS diagram the samples straddle the join between basalt and trachy-basalt, reflecting a high K2O content. The Mg# average is 0.297, a value that suggests that the basalts do not come from a primitive magma. The basalts have high values of Ba (945-1334 ppm), Cu (54-147 ppm), and Zn (123-615 ppm). The contents of Rb (23-57 ppm), Sr (659-810 ppm), Y (26-33 ppm), Zr (148-217 ppm) and Cr (79-98 ppm) are characteristics of rift basalts. Using discrimination diagrams, the basalts plot in the field of within plate, supporting the rifting origin. Outcrops of other basalts, at about 80 to 100 km to the east of the study area, Lomas El

  11. Flame-resistant pure and hybrid woven fabrics from basalt

    NASA Astrophysics Data System (ADS)

    Jamshaid, H.; Mishra, R.; Militky, J.

    2017-10-01

    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  12. Pyroxenes as recorders of lunar basalt petrogenesis - Chemical trends due to crystal-liquid interaction.

    NASA Technical Reports Server (NTRS)

    Bence, A. E.; Papike, J. J.

    1972-01-01

    Review of the crystallization histories suggested by the chemical, crystallographic, morphological, and paragenetic relationships observed in pyroxenes from basalts collected on the Apollo 11, 12, 14, 15, and Luna 16 missions. Although the final stages of lunar basalt crystallization appear to be rapid near-surface events, the initial stages are shown to vary considerably among the different basalt types.

  13. Characterization and utilization potential of basalt rock from East-Lampung district

    NASA Astrophysics Data System (ADS)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of <0.2 mm, whereas pyroxene present among the blades of plagioclase, with a greenish tint looked and a size of <0.006 mm. Mineral opaque has a rectangular shape to irregular, with a size of <0.16 mm. The chemical composition of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  14. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  15. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Skeffington, Richard A.; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers M.; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham W.; Wignall, Paul B.; Carslaw, Kenneth S.

    2016-01-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  16. Effect of Fluorine on Near-Liquidus Phase Equilibria of Basalts

    NASA Technical Reports Server (NTRS)

    Filiberto, Justin; Wood, Justin; Loan, Le; Dasgupta, Rajdeep; Shimizu, Nobumichi; Treiman, Allan H.

    2010-01-01

    Volatile species such as H2O, CO2, F, and Cl have significant impact in generation and differentiation of basaltic melts. Thus far experimental work has primarily focused on the effect of water and carbon dioxide on basalt crystallization, liquid-line of descent, and mantle melting [e.g., 1, 2] and the effects of halogens have received far less attention [3-4]. However, melts in the planetary interiors can have non-negligible chlorine and fluorine concentrations. Here, we explore the effects of fluorine on near-liquidus phase equilibria of basalt. We have conducted nominally anhydrous piston cylinder experiments using graphite capsules at 0.6 - 1.5 GPa on an Fe-rich model basalt composition. 1.75 wt% fluorine was added to the starting mix in the form of AgF2. Fluorine in the experimental glass was measured by SIMS and major elements of glass and minerals were analyzed by EPMA. Nominally volatile free experiments yield a liquidus temperature from 1330 C at 0.8GPa to 1400 at 1.6GPa and an olivine(Fo72)-pyroxene(En68)-liquid multiple saturation point at 1.25 GPa and 1375 C. The F-bearing experiments yield a liquiudus temperature from 1260 C at 0.6GPa to 1305 at 1.5GPa and an ol(Fo66)-pyx(En64)-MSP at 1 GPa and 1260 C. This shows that F depresses the basalt liquidus, extends the pyroxene stability field to lower pressure, and forces the liquidus phases to be more Fe-rich. KD(Fe-Mg/mineral-melt) calculated for both pyroxenes and olivines show an increase with increasing F content of the melt. Therefore, we infer that F complexes with Mg in the melt and thus increases the melt s silica activity, depressing the liquidus and changing the composition of the crystallizing minerals. Our study demonstrates that on a weight percent basis, the effect of fluorine is similar to the effect of H2O [1] and Cl [3] on freezing point depression of basalts. But on an atomic fraction basis, the effect of F on liquidus depression of basalts is xxxx compared to the effect of H. Future

  17. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts and gabbros

    NASA Astrophysics Data System (ADS)

    Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.

    2008-12-01

    Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.

  18. Biogenic Mn-Oxides in Subseafloor Basalts

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G.

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  19. Petrology of dune sand derived from basalt on the Ka'u Desert, Hawaii

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1982-01-01

    Dune sand from the Ka'u Desert, southwest flank of Kilauea volcano, Hawaii, is moderately well-sorted (median = 1.60 Phi, deviation = 0.60, skewness = 0.25, kurtosis = 0.68) and composed mostly of frosted subangular particles of basalt glass ('unfractionated' olivine-normative tholeitte), olivine, lithic fragments (subophitic and intersertal basalts; magnetite-ilmenite-rich basalts), reticular basalt glass, magnetite, ilmenite, and plagioclase, in approximately that order of abundance. Quantitative lithological comparison of the dune sand with sand-sized ash from the Keanakakoi Formation supports suggestions that the dune sand was derived largely from Keanakakoi ash. The dune sand is too well sorted to have been emplaced in its present form by base-surge but could have evolved by post-eruption reworking of the ash.

  20. Assessing Causes and Consequences of Columbia River Basalt Volcanism with Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Kasbohm, J.; Schoene, B.

    2017-12-01

    The Columbia River Basalt (CRB) is the youngest and best-preserved continental flood basalt province, but its mechanism of origin remains disputed. While some workers favor a mantle plume source to generate the large volume of flood basalts, others prefer subduction-related processes such as slab breakoff. Additionally, based on current geochronological (K-Ar and 40Ar/39Ar) estimates for the age of the CRB, there appears to be a very broad temporal coincidence between the main eruptive phase of the CRB and the Mid-Miocene Climate Optimum (MMCO), a period of elevated global temperatures and atmospheric CO2. Currently, large analytical uncertainties preclude the detailed calculation of volumetric eruption rates, which will be essential to test models of origin and to pinpoint correlation to climate records. To develop a complete record of eruption rates through the CRB, we use CA-ID-TIMS U-Pb zircon geochronology, which is capable of yielding 2σ uncertainties on single analyses of ca. 10 kyr. While basalt does not typically saturate zircon, interflow sediments, paleosols, and volcaniclastic layers in the CRB stratigraphy contain felsic zircon-bearing ash, likely sourced from both the Cascades arc and incipient Snake River plain volcanism. We use U-Pb zircon dates from these horizons to bracket the age of basalt flows. Preliminary results show that 88% of the total volume of the CRB (the Imnaha, Grande Ronde, and Wanapum Basalts) erupted in 700 kyr, beginning 16.6 Ma, with an average effusion rate of 0.26 km3/yr and with occurrence of lava flows propagating from south to north at a minimum rate of 0.3 m/yr. Thus far, these results do not preclude a mantle plume origin, but do place quantitative constraints on geodynamic numerical models hoping to constrain flood basalt origins. Although models based on prior geochronology have suggested that degassing from the CRB was insufficient to cause the MMCO, our calculated reduction in the duration of the main phase of CRB

  1. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.

    PubMed

    La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F

    2016-12-12

    Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.

  2. Deep-ocean basalts: inert gas content and uncertainties in age dating.

    PubMed

    Noble, C S; Naughton, J J

    1968-10-11

    The radiogenic argon and helium contents of three basalts erupted into the deep ocean from an active volcano (Kilauea) have been measured. Ages calculated from these measurements increase with sample depth up to 22 million years for lavas deduced to be recent. Caution is urged in applying dates from deep-ocean basalts in studies on ocean-floor spreading.

  3. Heat resistance study of basalt fiber material via mechanical tests

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.

    2017-12-01

    This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.

  4. Petrogenesis of high-Ti and low-Ti basalts: high-pressure and high-temperature experimental study

    NASA Astrophysics Data System (ADS)

    Yang, J.; WANG, C.; Jin, Z.

    2017-12-01

    Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces. However, the petrogenesis of them are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust or delaminated lower crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both of them are from mantle plume or asthenospheric source, but the production of high-Ti basalts are associated with the thick lithosphere and relevant low degrees of melting while the low-Ti basalts are controlled by the thin lithosphere with high degrees of melting (Arndt et al., 1993; Xu et al., 2001). Almost all authors emphasize the role of partial melting but less discuss the crystallization differentiation process. The low Mg# (< 0.7) of these basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts. In order to investigate the generation of these basalts, a series of high pressure and high temperature partial crystallization experiments were performed by using piston-cylinder and multi-anvil press at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700°. Two synthetic picrite glass with different chemical compositions were used as starting materials. Our experimental results show that Ti is preferred to be concentrated in the residual melt during crystallization differentiation. For the same melt fraction, the residual melt of higher pressure experiments has relatively higher TiO2 concentration and

  5. Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Sakai, H.; Casadevall, T.J.; Moore, J.G.

    1982-01-01

    Eighteen basalts and some volcanic gases from the submarine and subaerial parts of Kilauea volcano were analyzed for the concentration and isotope ratios of sulfur. By means of a newly developed technique, sulfide and sulfate sulfur in the basalts were separately but simultaneously determined. The submarine basalt has 700 ?? 100 ppm total sulfur with ??34S??s of 0.7 ?? 0.1 ???. The sulfate/sulfide molar ratio ranges from 0.15 to 0.56 and the fractionation factor between sulfate and sulfide is +7.5 ?? 1.5???. On the other hand, the concentration and ??34S??s values of the total sulfur in the subaerial basalt are reduced to 150 ?? 50 ppm and -0.8 ?? 0.2???, respectively. The sulfate to sulfide ratio and the fractionation factor between them are also smaller, 0.01 to 0.25 and +3.0???, respectively. Chemical and isotopic evidence strongly suggests that sulfate and sulfide in the submarine basalt are in chemical and isotopic equilibria with each other at magmatic conditions. Their relative abundance and the isotope fractionation factors may be used to estimate the f{hook}o2 and temperature of these basalts at the time of their extrusion onto the sea floor. The observed change in sulfur chemistry and isotopic ratios from the submarine to subaerial basalts can be interpreted as degassing of the SO2 from basalt thereby depleting sulfate and 34S in basalt. The volcanic sulfur gases, predominantly SO2, from the 1971 and 1974 fissures in Kilauea Crater have ??34S values of 0.8 to 0.9%., slightly heavier than the total sulfur in the submarine basalts and definitely heavier than the subaerial basalts, in accord with the above model. However, the ??34S value of sulfur gases (largely SO2) from Sulfur Bank is 8.0%., implying a secondary origin of the sulfur. The ??34S values of native sulfur deposits at various sites of Kilauea and Mauna Loa volcanos, sulfate ions of four deep wells and hydrogen sulfide from a geothermal well along the east rift zone are also reported. The high

  6. Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.

    2016-12-01

    Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns

  7. Corrosion and tribological properties of basalt fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  8. Pyroclastic Deposits in Floor-Fractured Craters: A Unique Style or Lunar Basaltic Volcanism?

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; DonaldsonHanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    The lunar maria were formed by effusive fissure flows of low-viscosity basalt. Regional pyroclastic deposits were formed by deep-sourced fire-fountain eruptions dominated by basaltic glass. Basaltic material is also erupted from small vents within floor-fractured impact craters. These craters are characterized by shallow, flat floors cut by radial, concentric and/or polygonal fractures. Schultz [1] identified and classified over 200 examples. Low albedo pyroclastic deposits originate from depressions along the fractures in many of these craters.

  9. Mineralization of Basalts in the CO 2-H 2O-H 2S System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2013-05-10

    Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90°C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation,more » and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations.« less

  10. Basaltic glass as a habitat for microbial life: Implications for astrobiology and planetary exploration

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Banerjee, N. R.; Flemming, R. L.; Bridge, N. J.; Schultz, C.

    2010-03-01

    Recent studies have demonstrated that terrestrial subaqueous basalts and hyaloclastites are suitable microbial habitats. During subaqueous basaltic volcanism, glass is produced by the quenching of basaltic magma upon contact with water. On Earth, microbes rapidly begin colonizing the glassy surfaces along fractures and cracks that have been exposed to water. Microbial colonization of basaltic glass leads to the alteration and modification of the rocks and produces characteristic granular and/or tubular bioalteration textures. Infilling of the alteration textures by minerals such as phyllosilicates, zeolites and titanite may enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggests the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend as far back as ˜3.5 billion years ago and is widespread in oceanic crust and its metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  11. Basalts, gabbroic cumulates and andesite generation in the Lesser Antilles - An experimental perspective

    NASA Astrophysics Data System (ADS)

    Pichavant, M.; Di Carlo, I.; Lesne, P.; Wulput, L.; Maury, R. C.; Macdonald, R.

    2012-12-01

    New experiments have been performed to explore the petrological relationships between basaltic magmas, gabbroic cumulates, amphibole (Amph) crystallization and andesite generation in the Lesser Antilles arc. Four natural basalt starting materials representative of typical high-MgO (HMB) and high-Al2O3 (HAB) along the arc have been selected. Results are combined with previous experimental work on mafic melts from Mt Pelée and St Vincent. Under H2O-saturated conditions, Amph stability is about 25°C higher in HMB than HAB, being limited to a maximum of1050-1100°C at 10 kbar. Amph is the liquidus phase for the 3 high-Al2O3 basalts above 4 kbar (> 6 wt% H2O in melt), and very close to the liquidus for the high-MgO basalt at 10 kbar (9-10 wt% H2O in melt). Derivative liquids from the crystallization of Amph-bearing assemblages are basaltic to dacitic, depending on parental melt composition, extent of crystallization and experimental fO2. Fractionation of > 20 wt% Amph is necessary to produce andesitic-dacitic liquids from basaltic parents. Amph composition reflects the Al/Si and Mg# of their parental melts. It generally divides into two groups, one Si-poor and Al-rich (pargasite: gabbroic cumulates, basalts, andesites) and the other Si-rich and Al-poor (edenite: dioritic cumulates, andesites, dacites). The systematic presence of Amph in gabbroic cumulate blocks, its near-absence in basaltic to andesitic lavas, plus the compositional contrast between the two Amph groups, suggest the existence of an Amph-free "window" along the P-T-X magma evolution trend. In gabbroic cumulates, Amph shows systematic differences between islands (similar Mg# but higher AlIV in Martinique than in St Vincent). Our experimental results suggest that the origin of the St Vincent gabbroic assemblages can be traced back to residual melts generated from the crystallization of high-MgO basalts. However, Amph with the highest AlIV(eg, Martinique, Montserrat) have not been reproduced in our

  12. New 40Ar/ 39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implications for duration of flood basalt eruption episodes

    NASA Astrophysics Data System (ADS)

    Barry, T. L.; Self, S.; Kelley, S. P.; Reidel, S.; Hooper, P.; Widdowson, M.

    2010-08-01

    Grande Ronde Basalt (GRB) lavas represent the most voluminous eruptive pulse of the Columbia River-Snake River-Yellowstone hotspot volcanism. With an estimated eruptive volume of 150,000 km 3, GRB lavas form at least 66% of the total volume of the Columbia River Basalt Group. New 40Ar/ 39Ar dates for GRB lavas reveal they were emplaced within a maximum period of 0.42 ± 0.18 My. A well-documented stratigraphy indicates at least 110 GRB flow fields (or individual eruptions), and on this basis suggests an average inter-eruption hiatus of less than 4000 years. Isotopic age-dating cannot resolve time gaps between GRB eruptions, and it is difficult to otherwise form a picture of the durations of eruptions because of non-uniform weathering in the top of flow fields and a general paucity of sediments between GR lavas. Where sediment has formed on top of GRB lavas, it varies in thickness from zero to 20-30 cm of silty to fine-sandy material, with occasional diatomaceous sediment. Individual GRB eruptions varied considerably in volume but many were greater than 1000 km 3 in size. Most probably eruptive events were not equally spaced in time; some eruptions may have followed short periods of volcanic repose (perhaps 10 2 to 10 3 of years), whilst others could have been considerably longer (many 1000 s to > 10 4 years). Recent improvements in age-dating for other continental flood basalt (CFB) lava sequences have yielded estimates of total eruptive durations of less than 1 My for high-volume pulses of lava production. The GRB appears to be a similar example, where the main pulse occupied a brief period. Even allowing for moderate to long-duration pahoehoe flow field production, the amount of time the system spends in active lava-producing mode is small — less than c. 2.6% (based on eruption durations of approximately 10,000 years, compared to the duration of the entire eruptive pulse of c. 420,000 years). A review of available 40Ar/ 39Ar data for the major voluminous phases

  13. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics

    PubMed Central

    La Spina, G.; Burton, M.; de' Michieli Vitturi, M.; Arzilli, F.

    2016-01-01

    Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1–2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism. PMID:27941750

  14. South Pole-Aitken Sample Return Mission: Collecting Mare Basalts from the Far Side of the Moon

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.; Lucey, P. G.

    2003-01-01

    We consider the probability that a sample mission to a site within the South Pole-Aitken Basin (SPA) would return basaltic material. A sample mission to the SPA would be the first opportunity to sample basalts from the far side of the Moon. The near side basalts are more abundant in terms of volume and area than their far-side counterparts (16:1), and the basalt deposits within SPA represent approx. 28% of the total basalt surface area on the far side. Sampling far-side basalts is of particular importance because as partial melts of the mantle, they could have derived from a mantle that is mineralogically and chemically different than determined for the nearside, as would be expected if the magma ocean solidified earlier on the far side. For example, evidence to support the existence of high-Th basalts like those that appear to be common on the nearside in the Procellarum KREEP Terrane has been found. Although SPA is the deepest basin on the Moon, it is not extensively filled with mare basalt, as might be expected if similar amounts of partial melting occurred in the mantle below SPA as for basins on the near side. These observations may mean that mantle beneath the far-side crust is lower in Th and other heat producing elements than the nearside. One proposed location for a sample-return landing site is 60 S, 160 W. This site was suggested to maximize the science return with respect to sampling crustal material and SPA impact melt, however, basaltic samples would undoubtedly occur there. On the basis of Apollo samples, we should expect that basaltic materials would be found in the vicinity of any landing site within SPA, even if located away from mare deposits. For example, the Apollo 16 mission landed in an ancient highlands region 250-300 km away from the nearest mare-highlands boundary yet it still contains a small component of basaltic samples (20 lithic fragments ranging is size from <1 to .01 cm). A soil sample from the floor of SPA will likely contain an

  15. Role for syn-eruptive plagioclase disequilibrium crystallisation in basaltic magma ascent dynamics

    NASA Astrophysics Data System (ADS)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Arzilli, Fabio

    2017-04-01

    Magma ascent dynamics in volcanic conduits play a key role in determining the eruptive style of a volcano. The lack of direct observations inside the conduit means that numerical conduit models, constrained with observational data, provide invaluable tools for quantitative insights into complex magma ascent dynamics. The highly nonlinear, interdependent processes involved in magma ascent dynamics require several simplifications when modelling their ascent. For example, timescales of magma ascent in conduit models are typically assumed to be much longer than crystallisation and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallisation and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Using observations from Mount Etna's 2001 eruption and a magma ascent model we are able to constrain timescales for crystallisation and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were 1 h. Furthermore, we have related the amount of plagioclase in erupted products with the ascent dynamics of basaltic eruptions. We find that relatively high plagioclase content requires crystallisation in a shallow reservoir, whilst a low plagioclase content reflects a disequilibrium crystallisation occurring during a fast ascent from depth to the surface. Using these new constraints on disequilibrium plagioclase crystallisation we also reproduce observed crystal abundances for different basaltic eruptions: Etna 2002/2003, Stromboli 2007 (effusive eruption) and 1930 (paroxysm) and different Pu'u' O'o eruptions at Kilauea (episodes 49-53). Therefore, our results show that disequilibrium processes play a key role on the ascent dynamics of basaltic magmas and cannot be neglected when describing basaltic

  16. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, Mark; Ridley, Victoria

    2010-05-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better

  17. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  18. Sm-Nd and Rb-Sr Isotopic Studies of Meteorite Kalahari 009: An Old VLT Mare Basalt

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Bischoff, A.

    2008-01-01

    Lunar meteorite Kalahari 009 is a fragmental basaltic breccia contain ing various very-low-Ti (VLT) mare basalt clasts embedded in a fine-g rained matrix of similar composition. This meteorite and lunar meteorite Kalahari 008, an anorthositic breccia, were suggested to be paired mainly due to the presence of similar fayalitic olivines in fragment s found in both meteorites. Thus, Kalahari 009 probably represents a VLT basalt that came from a locality near a mare-highland boundary r egion of the Moon, as compared to the typical VLT mare basalt samples collected at Mare Crisium during the Luna-24 mission. The concordant Sm-Nd and Ar-Ar ages of such a VLT basalt (24170) suggest that the extrusion of VLT basalts at Mare Crisium occurred 3.30 +/- 0.05 Ga ag o. Previous age results for Kalahari 009 range from approximately 4.2 Ga by its Lu-Hf isochron age to 1.70?0.04 Ga of its Ar-Ar plateau ag e. However, recent in-situ U-Pb dating of phosphates in Kalahari 009 defined an old crystallization age of 4.35+/- 0.15 Ga. The authors su ggested that Kalahari 009 represents a cryptomaria basalt. In this r eport, we present Sm-Nd and Rb-Sr isotopic results for Kalahari 009, discuss the relationship of its age and isotopic characteristics to t hose of other L-24 VLT mare basalts and other probable cryptomaria ba salts represented by Apollo 14 aluminous mare basalts, and discuss it s petrogenesis.

  19. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  20. Basaltic material in the main belt: a tale of two (or more) parent bodies?

    NASA Astrophysics Data System (ADS)

    Ieva, S.; Dotto, E.; Lazzaro, D.; Fulvio, D.; Perna, D.; Epifani, E. Mazzotta; Medeiros, H.; Fulchignoni, M.

    2018-06-01

    The majority of basaltic objects in the main belt are dynamically connected to Vesta, the largest differentiated asteroid known. Others, due to their current orbital parameters, cannot be easily dynamically linked to Vesta. This is particularly true for all the basaltic asteroids located beyond 2.5 au, where lies the 3:1 mean motion resonance with Jupiter. In order to investigate the presence of other V-type asteroids in the middle and outer main belt (MOVs) we started an observational campaign to spectroscopically characterize in the visible range MOV candidates. We observed 18 basaltic candidates from TNG and ESO - NTT between 2015 and 2016. We derived spectral parameters using the same approach adopted in our recent statistical analysis and we compared our data with orbital parameters to look for possible clusters of MOVs in the main belt, symptomatic for a new basaltic family. Our analysis seemed to point out that MOVs show different spectral parameters respect to other basaltic bodies in the main belt, which could account for a diverse mineralogy than Vesta; moreover, some of them belong to the Eos family, suggesting the possibility of another basaltic progenitor. This could have strong repercussions on the temperature gradient present in the early Solar System, and on our current understanding of differentiation processes.

  1. The Cenozoic magmatism of East-Africa: Part I - Flood basalts and pulsed magmatism

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.

    2017-08-01

    Cenozoic magmatism in East Africa results from the interplay between lithospheric extension and material upwelling from the African Large Low Shear Velocity Province (LLSVP). The modern focusing of East African magmatism into oceanic spreading centers and continental rifts highlights the modern control of lithospheric thinning in magma generation processes, however the widespread, and volumetrically significant flood basalt events of the Eocene to Early Miocene suggest a significant role for material upwelling from the African LLSVP. The slow relative motion of the African plate during the Cenozoic has resulted in significant spatial overlap in lavas derived from different magmatic events. This complexity is being resolved with enhanced geochronological precision and a focus on the geochemical characteristics of the volcanic products. It is now apparent that there are three distinct pulses of basaltic volcanism, followed by either bimodal lavas or silicic volcanic products during this period: (A) Eocene Initial Phase from 45 to 34 Ma. This is a period of dominantly basaltic volcanism focused in Southern Ethiopia and Northern Kenya (Turkana). (B) Oligocene Traps phase from 33.9 to 27 Ma. This period coincides with a significant increase in the aerial extent of volcanism with broadly age equivalent 1 to 2 km thick sequences of dominantly basalt centered on the NW Ethiopian Plateau and Yemen, (C) Early Miocene resurgence phase from 26.9 to 22 Ma. This resurgence in basaltic volcanism is seen throughout the region at ca. 24-23 Ma, but is less volumetrically significant than the prior two basaltic pulses. With our developing understanding of the persistence of LLSVP anomalies within the mantle, I propose that the three basaltic pulses are ostensibly manifestations of the same plume-lithosphere interaction, requiring revision to the duration, magmatic extent, and magma volume of the African-Arabian Large Igneous Province.

  2. The Age of Rift-Related Basalts in East Antarctica

    NASA Astrophysics Data System (ADS)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.

    2018-01-01

    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  3. Suitability of Spatial Interpolation Techniques in Varying Aquifer Systems of a Basaltic Terrain for Monitoring Groundwater Availability

    NASA Astrophysics Data System (ADS)

    Katpatal, Y. B.; Paranjpe, S. V.; Kadu, M. S.

    2017-12-01

    Geological formations act as aquifer systems and variability in the hydrological properties of aquifers have control over groundwater occurrence and dynamics. To understand the groundwater availability in any terrain, spatial interpolation techniques are widely used. It has been observed that, with varying hydrogeological conditions, even in a geologically homogenous set up, there are large variations in observed groundwater levels. Hence, the accuracy of groundwater estimation depends on the use of appropriate interpretation techniques. The study area of the present study is Venna Basin of Maharashtra State, India which is a basaltic terrain with four different types of basaltic layers laid down horizontally; weathered vesicular basalt, weathered and fractured basalt, highly weathered unclassified basalt and hard massive basalt. The groundwater levels vary with topography as different types of basalts are present at varying depths. The local stratigraphic profiles were generated at different types of basaltic terrains. The present study aims to interpolate the groundwater levels within the basin and to check the co-relation between the estimated and the observed values. The groundwater levels for 125 observation wells situated in these different basaltic terrains for 20 years (1995 - 2015) have been used in the study. The interpolation was carried out in Geographical Information System (GIS) using ordinary kriging and Inverse Distance Weight (IDW) method. A comparative analysis of the interpolated values of groundwater levels is carried out for validating the recorded groundwater level dataset. The results were co-related to various types of basaltic terrains present in basin forming the aquifer systems. Mean Error (ME) and Mean Square Errors (MSE) have been computed and compared. It was observed that within the interpolated values, a good correlation does not exist between the two interpolation methods used. The study concludes that in crystalline basaltic

  4. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  5. Electron microprobe evaluation of terrestrial basalts for whole-rock K-Ar dating

    USGS Publications Warehouse

    Mankinen, E.A.; Brent, Dalrymple G.

    1972-01-01

    Four basalt samples for whole-rock K-Ar dating were analyzed with an electron microprobe to locate potassium concentrations. Highest concentrations of potassium were found in those mineral phases which were the last to crystallize. The two reliable samples had potassium concentrated in fine-grained interstitial feldspar and along grain boundaries of earlier formed plagioclase crystals. The two unreliable samples had potassium concentrated in the glassy matrix, demonstrating the ineffectiveness of basaltic glass as a retainer of radiogenic argon. In selecting basalt samples for whole-rock K-Ar dating, particular emphasis should be placed on determining the nature and condition of the fine-grained interstitial phases. ?? 1972.

  6. Petrogenesis of the Northwest Africa 4898 high-Al mare basalt

    NASA Astrophysics Data System (ADS)

    Li, Shaolin; Hsu, Weibiao; Guan, Yunbin; Wang, Linyan; Wang, Ying

    2016-07-01

    Northwest Africa (NWA) 4898 is the only low-Ti, high-Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12-62Fs25-62Wo11-36), which display a continuous trend from Mg-rich cores toward Ca-rich mantles and then to Fe-rich rims. Plagioclase has relatively restricted compositions (An87-96Or0-1Ab4-13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high-Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high-Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high-Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed-system fractional crystallization.

  7. Feldspar basalts in lunar soil and the nature of the lunar continents

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Ridley, W. I.; Harmon, R. S.; Warner, J.; Brett, R.; Jakes, P.; Brown, R. W.

    1974-01-01

    It is found that 25% on the Apollo-14 glasses have the same composition as the glasses in two samples taken from the Luna-16 column. The compositions are equivalent to feldspar basalt and anorthosite gabbro, and are similar to the feldspar basalts identified from Surveyor-7 analysis for lunar continents.

  8. K-Rich Basaltic Sources beneath Ultraslow Spreading Central Lena Trough in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ling, X.; Snow, J. E.; Li, Y.

    2016-12-01

    Magma sources fundamentally influence accretion processes at ultraslow spreading ridges. Potassium enriched Mid-Ocean Ridge Basalt (K-MORB) was dredged from the central Lena Trough (CLT) in the Arctic Ocean (Nauret et al., 2011). Its geochemical signatures indicate a heterogeneous mantle source with probable garnet present under low pressure. To explore the basaltic mantle sources beneath the study area, multiple models are carried out predicting melting sources and melting P-T conditions in this study. P-T conditions are estimated by the experimental derived thermobarometer from Hoang and Flower (1998). Batch melting model and major element model (AlphaMELTs) are used to calculate the heterogeneous mantle sources. The modeling suggests phlogopite is the dominant H2O-K bearing mineral in the magma source. 5% partial melting of phlogopite and amphibole mixing with depleted mantle (DM) melt is consistent with the incompatible element pattern of CLT basalt. P-T estimation shows 1198-1212oC/4-7kbar as the possible melting condition for CLT basalt. Whereas the chemical composition of north Lena Trough (NLT) basalt is similar to N-MORB, and the P-T estimation corresponds to 1300oC normal mantle adiabat. The CLT basalt bulk composition is of mixture of 40% of the K-MORB endmember and an N-MORB-like endmember similar to NLT basalt. Therefore the binary mixing of the two endmembers exists in the CLT region. This kind of mixing infers to the tectonic evolution of the region, which is simultaneous to the Arctic Ocean opening.

  9. An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed

    USGS Publications Warehouse

    Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen

    2014-01-01

    Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.

  10. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    PubMed

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  11. Genetic relations of oceanic basalts as indicated by lead isotopes

    USGS Publications Warehouse

    Tatsumoto, M.

    1966-01-01

    The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.

  12. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification

    USGS Publications Warehouse

    Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.

    2013-01-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  13. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification.

    PubMed

    Lawrence, Gregory B; Dukett, James E; Houck, Nathan; Snyder, Phil; Capone, Sue

    2013-07-02

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  14. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    NASA Astrophysics Data System (ADS)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  15. Paraná-Etendeka basalts in Misiones, Argentina; characterization and petrogenetic inferences

    NASA Astrophysics Data System (ADS)

    Rämö, O. T.; Heikkilä, P. A.

    2013-12-01

    The Early Cretaceous (ca. 130 Ma) Paraná-Etendeka flood basalts constitute one of the major Phanerozoic LIP sequences with an original volume probably in excess of 2.3 Mkm3.The bulk of this volcanic system is preserved in South America (Brazil, Uruguay, Paraguay, Argentina), where it manifests the onset of South Atlantic opening at present 25 degrees Southern Latitude. The sequence is overwhelmingly basaltic (ca. 90%), but also includes contemporaneous silicic volcanic rocks. Known as the Serra Geral Suite (e.g., Bellieni et al., 1984), it fills the Paraná Basin with a northward deepening strata of lavas with a maximum thickness of ca. 1500 m. We have collected and examined basalt samples from the west-central part (western flank) of the Paraná Basin in Misiones State, northeastern Argentina (54-55 degrees Western Longitude), where the estimated thickness of the basalt succession decreases from ca. 700 m in the east to ca. 300 m in the west. The examined samples are massive, aphyric (or microphyric with plagioclase and altered olivine microphenocrysts), and geochemically relatively evolved (Mg number 50-35) basalts and basaltic andesites. Their MgO values are between 6 and 3.7 wt.% and Ni content is relatively low (65-20 ppm). Incompatible trace element values increase with increasing fractionation (decreasing Mg number), e.g., Zr from 135 to 290 ppm, Ce from 45 to 105 ppm, Nd from 20 to 50 ppm, Sm from 5 to 11 ppm, Ba from 280 to 600 ppm, and Y from 25 to 50 ppm. In terms of Ti, the samples fall into two groups (1.9-2.3 and ca. 3.8 wt.% TiO2). These values conform, respectively, to the high-Ti, high-Ti/Y Paranapanema and Pitanga magma types of Peate et al. (1992) that govern the northern half of the Paraná basalt succession. Initial Nd and Sr isotope compositions of the two groups are remarkably uniform. Our analyzed ten samples have an average initial (at 134.6 Ma) epsilon-Nd value of -4.2 × 0.3 (1 SD) and an average initial 87Sr/86Sr of 0.70570 × 0

  16. Similarities in basalt and rhyolite lava flow emplacement processes

    NASA Astrophysics Data System (ADS)

    Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte

    2016-04-01

    Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This

  17. MARIUS HILLS REGION, MOON: Stratigraphy of low shields and mare basalts

    NASA Astrophysics Data System (ADS)

    Gebhart, Jennifer; Hiesinger, Harry; van der Bogert, Carolyn; Hendrik Pasckert, Jan; Weinauer, Julia; Lawrence, Samuel; Stopar, Julie; Robinson, Mark

    2016-04-01

    The Marius Hills region consists of more than 250 individual basaltic low shields (usually referred to as "domes") and cones, located on a broad topographic rise. The bases of numerous low shields have slope angles of ~2-3° whereas the upper portions have slopes of ~6-7° [1], interpreted to reflect changes in composition over time [1]. However, the absence of spectral differences between the two dome morphologies and the surrounding mare basalts suggests that the observed morphologies are more plausibly explained by changes in effusion rates, temperature (viscosity), and/or crystallization over time [e.g., 2]. Previous studies indicate that volcanism in this region occurred in the Upper Imbrian (3.2-3.8 Ga) [3], although several other authors reported ages ranging from the Imbrian (~3.3 Ga) to the Eratosthenian (~2.5 Ga) [e.g., 1,2,4]. [2,5] reported that all low shields are embayed by younger mare units, indicating that they formed during an older stage of volcanic activity. Mare basalts surrounding the Marius Hills exhibit absolute model ages of 1.2-3.7 Ga [6]. We used 36 LRO NAC images to perform crater size-frequency distribution (CSFD) measurements. The images were calibrated and map-projected with ISIS 3 and imported into ArcGIS. Within ArcGIS, we used CraterTools [7] to perform our CSFD measurements. The crater size-frequency distributions were then plotted with CraterStats [8], using the production and chronology functions of [9]. We conducted CSFD measurements for 50 Marius Hills low shields. Our count area sizes ranged from 1.06 x 101 to 8.75 x 101 km2; those for adjacent basalts varied between 6.17 x 100 and 8.01 x 101 km2. We determined absolute model ages (AMAs) of 1.03 to 3.65 Ga for the low shields and did not find a spatial correlation of ages versus their locations. CSFD measurements for 27 adjacent basalts show AMAs of 1.20-3.69 Ga. Of those basalts, 24 exhibit AMAs of 3-3.5 Ga; there is no correlation of AMAs and the geographic position of the

  18. Mafic mantle sources indicated by the olivine-spinifex basalt-ferropicrite lavas in the accreted Permian oceanic LIP fragments and Miocene low-Ni basalt and adakite lavas in central Japan

    NASA Astrophysics Data System (ADS)

    Ishiwatari, A.; Ichiyama, Y.; Yamazaki, R.; Katsuragi, T.; Tsuchihashi, H.

    2008-12-01

    Melting of mafic (eclogitic) rocks in the peridotite mantle diapir may be important to generate a large quantity of magma in a short period of time as required for the LIP basaltic magmatism (e.g. Takahashi et al. 1998; EPSL, 162, 63-). Ferropicritic rocks also occur in some LIPs, and Ichiyama et al. (2006; Lithos, 89, 47-) propose a non-peridotitic, Ti- and Fe-rich eclogitic source (recycled oceanic ferrogabbro?) entrained in the peridotitic LIP mantle plume for the origin of ferropicritic rocks, that occur with olivine-spinifex basalt (Ichiyama et al., 2007; Island Arc, 16, 493-) in a Permian LIP fragment that was captured in the Jurassic Tamba accretionary complex in central Japan. Although Ti-poor ferrokomatiitic magma might form through high- degree melting of a primitive chondritic mantle (25wt% MgO and 25wt% Fe+FeO), Ti- and HFSE-rich ferropicritic and meimechitic magmas can not form in this way. On the other hand, Miocene volcanic rocks distributed along the Japan Sea coast of central Japan also represent a product of large-scale arc magmatism that happened coeval to the spreading of the Japan Sea floor. The chemical and isotopic signatures of the magmas are consistent with the secular change of tectonic setting from continental arc (22- 20 Ma) to island arc (15-11 Ma) (Shuto et al. 2006; Lithos, 86, 1-). Some adakites have already been found from these Miocene volcanic rocks by Shuto"fs group, and mafic rock melting in either subducting slab or lower arc crust has been proposed. We have recently found a wide distribution of low-Ni basalt from Fukui City. The low-Ni basalt contains olivine phenocrysts which are one order of magnitude poorer in Ni (less than 0.02 wt% NiO at Fo87) than those in normal basalt (more than 0.2 wt% NiO at Fo87). The rock is also poor in bulk-rock Ni, rich in K and Ti, and may have formed from an olivine-free pyroxenitic source. Close association of adakite and low-Ni basalt with normal tholeiitic basalt, calc-alkaline andesite

  19. Increased Calcium Availability Leads to Greater Forest Floor Accumulation in an Adirondack Forest

    NASA Astrophysics Data System (ADS)

    Melvin, A.; Goodale, C. L.

    2010-12-01

    Nutrient availability in Northeastern US forests has been dramatically altered by anthropogenic activities. Acid deposition has not only increased nitrogen (N) availability, but has also been linked to soil acidification and a loss of base cations, largely calcium (Ca). We are studying the long-term effects of a Ca addition on carbon (C) and N cycling in a forested catchment in the Adirondack Park, New York. In 1989, calcium carbonate (lime) was added to two subcatchments within the Woods Lake Watershed to ameliorate the effects of soil Ca depletion. Two additional subcatchments were left as controls. Eighteen years after the Ca application, both soil pH and exchangeable Ca concentrations remain elevated in the organic horizons and upper mineral soils of the treated subcatchments. The forest floor mass in this watershed is very large and measurements show that the organic layer in the limed subcatchments is significantly larger than in the controls (212 t/ha vs. 116 t/ha), resulting in greater C and N stocks in the Ca-amended soils. This finding suggests that Ca may stabilize soil organic matter (SOM), resulting in greater C storage under high soil Ca conditions. We are investigating potential drivers of this SOM accumulation in the limed subcatchments, including rates of leaf litter production and the decomposition rate of forest floor material. This work will provide important insights into how long-term changes in soil Ca availability influence SOM stabilization, retention and nutrient cycling.

  20. Dynamics of basaltic glass dissolution - Capturing microscopic effects in continuum scale models

    NASA Astrophysics Data System (ADS)

    Aradóttir, E. S. P.; Sigfússon, B.; Sonnenthal, E. L.; Björnsson, G.; Jónsson, H.

    2013-11-01

    The method of 'multiple interacting continua' (MINC) was applied to include microscopic rate-limiting processes in continuum scale reactive transport models of basaltic glass dissolution. The MINC method involves dividing the system up to ambient fluid and grains, using a specific surface area to describe the interface between the two. The various grains and regions within grains can then be described by dividing them into continua separated by dividing surfaces. Millions of grains can thus be considered within the method without the need to explicity discretizing them. Four continua were used for describing a dissolving basaltic glass grain; the first one describes the ambient fluid around the grain, while the second, third and fourth continuum refer to a diffusive leached layer, the dissolving part of the grain and the inert part of the grain, respectively. The model was validated using the TOUGHREACT simulator and data from column flow through experiments of basaltic glass dissolution at low, neutral and high pH values. Successful reactive transport simulations of the experiments and overall adequate agreement between measured and simulated values provides validation that the MINC approach can be applied for incorporating microscopic effects in continuum scale basaltic glass dissolution models. Equivalent models can be used when simulating dissolution and alteration of other minerals. The study provides an example of how numerical modeling and experimental work can be combined to enhance understanding of mechanisms associated with basaltic glass dissolution. Column outlet concentrations indicated basaltic glass to dissolve stoichiometrically at pH 3. Predictive simulations with the developed MINC model indicated significant precipitation of secondary minerals within the column at neutral and high pH, explaining observed non-stoichiometric outlet concentrations at these pH levels. Clay, zeolite and hydroxide precipitation was predicted to be most abundant within

  1. Detection of reduced carbon in basalt using Raman spectroscopy: a signpost to habitat on Mars

    NASA Astrophysics Data System (ADS)

    Harris, L. V.; Hutchinson, I. B.; Parnell, J.; Ingley, R.; Edwards, H. G. M.

    2013-09-01

    In the search for evidence of the environmental history of the Martian surface, and the possibility of life at some stage in the planet's history, a key component is reduced carbon. Carbon is available to the surface environment through meteoritic infall [1] and erosion of abundant volcanic rocks which contain magmatic carbon [2][3], in addition to the possibility of some biogenic carbonaceous matter. However, reduced carbon has not yet been detected by a range of missions to Mars. Carbonate minerals, containing carbon in inorganic oxidized form, have been recorded [4], which together with carbon dioxide in the Martian atmosphere and magmatic carbon in Martian meteorites provide evidence for a carbon cycle on Mars [5][6]. The mobility of carbon on Mars is also evident in fracture-bound carbon in the Nakhla meteorite, derived from Martian basalt [7] [8]. Basalts are widespread on Mars, so are readily accessible for sampling and analysis. Basalt-hosted carbon could have a relationship to life in both a consequential or causative manner. Basalt could incorporate carbon from organic matter disseminated in sediments through which the basaltic magma passed. It is even possible that basalt could concentrate carbon scavenged from sediments into carbon-rich structures. Alternatively, basalt could act as a feedstock of carbon to provide biomass for colonizing microbes. In this way, the discovery of carbon in (Martian) basalt could be regarded as a signpost to habitat, i.e. the identification of carbon is a key aspect of the strategy for targeting where evidence of life should be sought. The ExoMars mission, currently intended to fly in 2018, includes a Raman spectroscopy instrument, whose targets for detection include reduced carbon. We report here the study of an analogue for the carbon-bearing Nakhla meteorite, representing nearsurface Martian crust, using Raman spectroscopy and other techniques to demonstrate the potential to detect the reduced carbon therein. The

  2. Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria A.; Richards, Mark A.

    2010-09-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby

  3. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, M. A.; Ridley, V. A.

    2010-12-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better

  4. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars

    USGS Publications Warehouse

    McCoy, T.J.; Sims, M.; Schmidt, M.E.; Edwards, L.; Tornabene, L.L.; Crumpler, L.S.; Cohen, B. A.; Soderblom, L.A.; Blaney, D.L.; Squyres, S. W.; Arvidson, R. E.; Rica, J.W.; Treguier, E.; d'Uston, C.; Grant, J. A.; McSween, H.Y.; Golombek, M.P.; Haldemann, A.F.C.; de Souza, P.A.

    2008-01-01

    The strike and dip of lithologic units imaged in stereo by the Spirit rover in the Columbia Hills using three-dimensional imaging software shows that measured dips (15-32??) for bedding on the main edifice of the Columbia Hill are steeper than local topography (???8-10??). Outcrops measured on West Spur are conformable in strike with shallower dips (7-15??) than observed on Husband Hill. Dips are consistent with observed strata draping the Columbia Hills. Initial uplift was likely related either to the formation of the Gusev Crater central peak or ring or through mutual interference of overlapping crater rims. Uplift was followed by subsequent draping by a series of impact and volcaniclastic materials that experienced temporally and spatially variable aqueous infiltration, cementation, and alteration episodically during or after deposition. West Spur likely represents a spatially isolated depositional event. Erosion by a variety of processes, including mass wasting, removed tens of meters of materials and formed the Tennessee Valley primarily after deposition. This was followed by eruption of the Adirondack-class plains basalt lava flows which embayed the Columbia Hills. Minor erosion, impact, and aeolian processes have subsequently modified the Columbia Hills. Copyright 2008 by the American Geophysical Union.

  5. Investigation of Zn2+ and Cd2+ Adsorption Performanceby Different Weathering Basalts

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Shuo, Q.; Chen, H.

    2016-12-01

    Geological barriers play an important role in preventing pollution of groundwater. Basalts are common geological media; however, there have not been any studies that report the effect of basalt type on the metal ion adsorption performance. In this study, we explored the metal ion (Zn2+ and Cd2+) adsorption ability of two kinds of weathering basalts: the origin weathering basalt (WB) and the eluvial deposit (ED), both of which were derived from same basaltic formation. Characteristics of the sediments were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Barrett-Joyner-Halenda (BJH) measurement and the rapid potentiometric titration (RPT) method. Batch experiments were performed to evaluate the Zn2+ and Cd2+ adsorption performance of WB and ED and how adsorption was affected by contact time, initial metal ion concentration, pH and ionic strength. Despite WB and ED having similar chemical compositions, WB exhibited better adsorption than ED likely due to the fact that WB was rougher and had more small-sized spherical structures and stronger electrostatic forces. The adsorption process fit the Freundlich isotherm model well. The adsorption efficiency decreased with a decrease of pH (from 4 to 2) and with increasing ionic strength. These results suggest that a geological barrier composed of WB media might be able to effectively sequester metallic contaminants to prevent them from reaching groundwater.

  6. Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Bell, J. F., III; Le, L.; Mertzman, S. A.; Christensen, P. R.

    2004-01-01

    Palagonitic tephra from certain areas on Mauna Kea Volcano (Hawaii) are well-established spectral and magnetic analogues of high-albedo regions on Mars. By definition, palagonite is "a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass." The yellow to orange pigment is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles and the matrix is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. Martian low-albedo regions are also characterized by a palagonite-like ferric absorption edge, but, unlike the highalbedo regions, they also show evidence for absorption by ferrous iron. Thermal emission spectra (TES) obtained by the Mars Global Surveyor Thermal Emission Spectrometer suggest that basaltic (surface Type 1) and andesitic (surface Type 2) volcanic compositions preferentially occur in southern (Syrtis Major) and northern (Acidalia) hemispheres, respectively. The absence of a ferric-bearing component in the modeling of TES spectra is in apparent conflict with VNIR spectra of Martian dark regions, as discussed above. However, the andesitic spectra have also been interpreted as oxidized basalt using phyllosilicates instead of high-SiO2 glass as endmembers in the spectral deconvolution of surface Type 2 TES spectra. We show here that laboratory VNIR and TES spectra of rinds on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.

  7. Constraining the effects of permeability uncertainty for geologic CO2 sequestration in a basalt reservoir

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R.

    2016-12-01

    Carbon capture and sequestration (CCS) in geologic reservoirs is one strategy for reducing anthropogenic CO2 emissions from large-scale point-source emitters. Recent developments at the CarbFix CCS pilot in Iceland have shown that basalt reservoirs are highly effective for permanent mineral trapping on the basis of CO2-water-rock interactions, which result in the formation of carbonates minerals. In order to advance our understanding of basalt sequestration in large igneous provinces, this research uses numerical simulation to evaluate the feasibility of industrial-scale CO2 injections in the Columbia River Basalt Group (CRBG). Although bulk reservoir properties are well constrained on the basis of field and laboratory testing from the Wallula Basalt Sequestration Pilot Project, there remains significant uncertainty in the spatial distribution of permeability at the scale of individual basalt flows. Geostatistical analysis of hydrologic data from 540 wells illustrates that CRBG reservoirs are reasonably modeled as layered heterogeneous systems on the basis of basalt flow morphology; however, the regional dataset is insufficient to constrain permeability variability at the scale of an individual basalt flow. As a result, permeability distribution for this modeling study is established by centering the lognormal permeability distribution in the regional dataset over the bulk permeability measured at Wallula site, which results in a spatially random permeability distribution within the target reservoir. In order to quantify the effects of this permeability uncertainty, CO2 injections are simulated within 50 equally probable synthetic reservoir domains. Each model domain comprises three-dimensional geometry with 530,000 grid blocks, and fracture-matrix interaction is simulated as interacting continua for the two low permeability layers (flow interiors) bounding the injection zone. Results from this research illustrate that permeability uncertainty at the scale of

  8. 182W in Modern Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Mundl, A.; Touboul, M.; Walker, R. J.; Jackson, M. G.; Kurz, M. D.; Day, J. M.; Horan, M. F.; Helz, R. L.

    2016-12-01

    The short lived Hf-W isotopic system (182Hf → 182W, t½ = 8.9 Ma) can be used as an important tracer for very early geochemical processes in the Earth's mantle, as well as for possible detection of core-mantle interactions. To date, most high precision 182W/184W data have been obtained for ancient rocks, with most of these characterized by having positive 182W anomalies. Here we report data for modern ocean island basalts (OIB). Although most OIB examined to date show no 182W anomalies, some basalts from Hawaii and Samoa are characterized by well-resolved negative anomalies with µ182W values ranging to -16 (µ182W is the ppm deviation in 182W/184W of a sample relative to a terrestrial reference standard). Further, for both OIB systems the W isotopic data are negatively correlated with 3He/4He, whereby the samples with the lowest µ182W values are characterized by the highest 3He/4He. Thus, both OIB systems sample one or more primordial reservoirs. A primordial mantle domain characterized by negative 182W anomalies could have been created as a result of silicate crystal-liquid fractionation, such as by a magma ocean process, within the first 50 Ma of Solar System history. Tungsten is similarly incompatible to U and Th (from which 4He is generated), so it is difficult to envision a single-stage, early Earth process that would lead to the low Hf/W and high He/(U+Th) implied by the observed correlation. A second option is that the mantle sources of the 182W-depleted, 3He/4He-enriched basalts contain a core component. This is difficult to reconcile with the normal abundances of highly siderophile elements in the rocks. Positive 182W anomalies have been reported for high-3He/4He samples from the 60 Ma Baffin Bay picrites, so isotopically anomalous W is accessed by modern OIB and flood basalt systems from at least two high 3He/4He domains.

  9. Identifying recycled ash in basaltic eruptions

    PubMed Central

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-01-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These ‘recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions. PMID:25069064

  10. Hyper-localized carbon mineralization in diffusion-limited basalt fractures

    NASA Astrophysics Data System (ADS)

    Menefee, A. H.; Giammar, D.; Ellis, B. R.

    2017-12-01

    Basalt formations could enable secure carbon sequestration through mineral trapping. CO2 injection acidifies formation brines and drives dissolution of the host rock, which releases divalent metal cations that combine with dissolved carbonate ions to form stable carbonate minerals. Here, a series of high-pressure flow-through experiments was conducted to evaluate how transport limitations and geochemical gradients drive microscale carbonation reactions in fractured basalts. To isolate advection- and diffusion-controlled zones, surfaces of saw-cut basalt cores were milled to create one primary flow channel adjoined by four dead-end fracture pathways. In the first experiment, a representative basalt brine (6.3 mM NaHCO3) equilibrated with CO2 (100ºC, 10 MPa) was injected at 1 mL/h under 20 MPa confining stress. The second experiment was conducted under the same physical conditions but [NaHCO3] was elevated to 640 mM, and in the third, temperature was also raised to 150ºC. Effluent chemistry was monitored via ICP-MS to infer dissolution trends and calibrate reactive transport models. Reacted cores were characterized using x-ray computed tomography (xCT), optical microscopy, scanning electron microscopy, and Raman spectroscopy. Carbonation occurred in all experiments but increased in experiments with higher alkalinity and higher temperature. At low [NaHCO3], secondary precipitate coatings formed distinct reaction fronts that varied with distance into dead-end fractures. Reactive transport modeling demonstrated that these reactions fronts were due to sharp gradients in pH and dissolved inorganic carbon. Carbonation was restricted to transport-limited vugs and pores between the confined core surfaces and was highly localized on reactive primary mineral grains (e.g. pyroxene) that contributed major divalent cations. Increasing [NaHCO3] by two orders of magnitude significantly enhanced carbonation and promoted Mg and Fe uptake into carbonates. While xCT scans revealed

  11. Assessing eruption column height in ancient flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2017-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced

  12. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  13. Volcanic diapirs in the Orange Mountain flood basalt: New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Puffer, John H.; Laskowich, Chris

    2012-09-01

    Diapir-shaped structures, 4-30 m high, consisting of vesicular basalt have intruded into the interior of a 50-70 m-thick subaerial Orange Mountain Basalt flow exposed at several rock quarries in northern New Jersey. The basalt flowed onto a travertine encrusted mudflat saturated with alkali salts. We propose that pressurized alkali vapors trapped under the lava created a vesicular and viscous flow bottom layer about 10 m thick. Vesicle coalescence within this layer increased its buoyancy where it locally accumulated into diapirs and displaced overlying lava. Large bubbles within the diapirs expanded upon intrusion into hot flow interiors where they explosively escaped leaving lenses of breccia. Some early diapirs reached the base of the upper lava crust. These diapirs document vapor driven convection of large blobs of contaminated lava into the lava core of the Orange Mountain flow.

  14. Tectonic affinities of the accreted basalts in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Yang, Huai-Jen; Liu, Yung-Hsin; Huang, Kuo-Fang; Takazawa, Eiichi

    2018-06-01

    Tectonic affinities of accreted basalts provide constraints on mass transport in convergent boundaries, improving our understandings on the evolution of regional geology. In this study, nineteen accreted basalts from the southernmost tip of Taiwan Island, which is on the convergent boundary between the Eurasian and Philippine Sea Plates, were analyzed for element concentrations as well as Sr, Nd, Hf, and Pb isotope ratios to investigate their tectonic affinities. All the samples contain > 3% LOI, reflecting post-magmatic alteration. LOI and Nb variation diagrams together with comparisons to oceanic basalt compositions indicated that the concentrations of most major elements and Rb, Sr, and Ba were modified by post-magmatic processes to varying extents, while P2O5, REE and HFSE remained immobile. Although some samples show Pb loss, most samples have Pb concentrations not affected by post-magmatic processes. Isotope ratios of Pb, Nd and Hf, generally reflect the mantle source characteristics. The εNd-εHf relationship and trace element abundance ratios indicated that the LREE-depleted samples were mostly scraped off the subducting South China Sea floor, reflecting the volumetric dominance of N-MORB on ocean floors. The overriding Philippine Sea Plate contributed both N-MORB and E-MORB to the accretionary prism. The tectonic affinities of the LREE-enriched samples, however, could not be unambiguously determined for the large geochemical variability of OIB from both subducting and overlying slabs. Based on our results, it is proposed that the tectonic affinity of the basalts in an accretionary prism can indicate the subduction polarity of the associated convergent boundary, providing a constraint for regional geology evolution.

  15. Scaling law deduced from impact-cratering experiments on basalt targets

    NASA Astrophysics Data System (ADS)

    Takagi, Y.; Hasegawa, S.; Suzuki, A.

    2014-07-01

    Since impact-cratering phenomena on planetary bodies were the key process which modified the surface topography and formed regolith layers, many experiments on non-cohesive materials (sand, glass beads) were performed. On the other hand, experiments on natural rocks were limited. Especially, experiments on basalt targets are rare, although basalt is the most common rocky material on planetary surfaces. The reason may be the difficulties of obtaining basalt samples suitable for cratering experiments. Recently, we obtained homogenous and crackless large basalt blocks. We performed systematic cratering experiments using the basalt targets. Experimental Procedure: Impact experiments were performed using a double stage light-gas (hydrogen) gun on the JAXA Sagamihara campus. Spherical projectiles of nylon, aluminum, stainless steel, and tungsten carbide were launched at velocities between 2400 and 6100 m/sec. The projectiles were 1.0 to 7.1 mm in diameter and 0.004 to 0.22 g in mass. The incidence angle was fixed at 90 degrees. The targets were rectangular blocks of Ukrainian basalt. The impact plane was a square with 20-cm sides. The thickness was 9 cm. Samples were cut out from a columnar block so that the impact plane might become perpendicular to the axis of the columnar joint. The mass was about 10.5 kg. The density was 2920 ± 10 kg/m^3 . Twenty eight shots were performed. Three-dimensional shapes of craters were measured by an X-Y stage with a laser displacement sensor (Keyence LK-H150). The interval between the measurement points was 200 micrometer. The volume, depth, and aperture area of the crater were calculated from the 3-D data using analytical software. Since the shapes of the formed craters are markedly asymmetrical, the diameter of the circle whose area is equal to the aperture area was taken as the crater diameter. Results: The diameter, depth, and the volume of the formed craters are normalized by the π parameters. Experimental conditions are also

  16. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam

    NASA Astrophysics Data System (ADS)

    Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik

    2018-01-01

    This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and

  17. Comparison of mechanical and tribotechnical properties of UHMWPE reinforced with basalt fibers and particles

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Qitao, Huang; Ivanova, L. R.

    2016-11-01

    Mechanical and tribotechnical properties of UHMWPE composites reinforced with basalt fibers and particles under dry sliding friction and abrasion were investigated. It is shown that adding of the basalt particles provides higher wear resistance under the dry sliding friction while at abrasion filling by the basalt fibers is more efficient since the wear resistance of the reinforced UHMWPE composites is by 3.7 times higher in contrast with the neat polymer. Wear mechanisms of the polymeric UHMWPE composites under various types of wear are discussed.

  18. Investigating the Origin of Th in Mare Basalts of the Western Procellarum Region

    NASA Technical Reports Server (NTRS)

    Flor, E. L.; Gillis, J. J.; Jolliff, B. L.; Lawrence, D. L.

    2002-01-01

    Clementine spectral reflectance and compositional data and Lunar Prospector gamma-ray data are used to map individual basalt flows in the western Procellarum and to investigate whether Th was inherent to the basalts or the result of surface contamination. Additional information is contained in the original extended abstract.

  19. Does the presence of bacteria effect basaltic glass dissolution rates? 1: Dead Pseudomonas reactants

    NASA Astrophysics Data System (ADS)

    Stockmann, Gabrielle J.; Shirokova, Liudmila S.; Pokrovsky, Oleg S.; Oelkers, Eric H.; Benezeth, Pascale

    2010-05-01

    Basaltic glass and crystalline basalt formations in Iceland have been suggested for industrial CO2 storage due to their porous and permeable properties and high reactivity. Acid CO2-saturated waters in contact with basaltic glass will lead to rapid dissolution of the glass and release of divalent cations, (Ca2+, Mg2+, Fe2+) that can react to form stable carbonates and thereby trap the CO2. However, the basalt formations in Iceland not only contains glass and mineral assemblages, but also host microbiological communities that either by their presence or by active involvement in chemical reactions could affect the amount of basaltic glass being dissolved and CO2 being trapped. Samples of natural bacteria communities from the CO2 storage grounds in Iceland were collected, separated, and purified using agar plate technique and cultured under laboratory conditions in nutrient broth-rich media. Heterotrophic aerobic Gram-negative strain of Pseudomonas reactants was selected for a series of flow-through experiments aimed at evaluation of basaltic glass dissolution rate in the presense of increasing amounts of dead bacteria and their lysis products. The experiments were carried out using mixed-flow reactors at pH 4, 6, 8 and 10 at 25 °C. Each of the four reactors contained 1 gram of basaltic glass of the size fraction 45-125 μm. This glass was dissolved in ~ 0.01 M buffer solutions (acetate, MES, bicarbonate and carbonate+bicarbonate mixture) of the desired pH. All experiments ran 2 months, keeping the flowrate and temperature stable and only changing the concentration of dead bacteria in the inlet solutions (from 0 to 430 mg/L). Experiments were performed in sterile conditions, and bacterial growth was prevented by adding NaN3 to the inlet solutions. Routine culturing of bacteria on the agar plates confirmed the sterility of experiments. Samples of outlet solutions were analyzed for major cations and trace elements by ICP-MS. Results demonstrate a slight decrease in the

  20. The Ninole Basalt - Implications for the structural evolution of Mauna Loa volcano, Hawaii

    USGS Publications Warehouse

    Lipman, P.W.; Rhodes, J.M.; Dalrymple, G.B.

    1990-01-01

    Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1-0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1-0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa. ?? 1990 Springer-Verlag.

  1. A LREE-depleted component in the Afar plume: Further evidence from Quaternary Djibouti basalts

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Maury, René C.; Barrat, Jean-Alix; Taylor, Rex N.; Le Gall, Bernard; Guillou, Hervé; Cotten, Joseph; Rolet, Joël

    2010-02-01

    Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K-Ar ages are presented for Quaternary (0.90-0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (La n/Sm n = 0.76-0.83), with 87Sr/ 86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/ 144Nd ( ɛNd = + 5.9-+ 7.3) and Pb isotopic compositions ( 206Pb/ 204Pb = 18.47-18.55, 207Pb/ 204Pb = 15.52-15.57, 208Pb/ 204Pb = 38.62-38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.

  2. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    USGS Publications Warehouse

    Kestay, Laszlo P.; Jaeger, Windy L.

    2015-01-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  3. Basalt models for the Mars penetrator mission: Geology of the Amboy Lava Field, California

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Bunch, T. E.

    1976-01-01

    Amboy lava field (San Bernardino County, California) is a Holocene basalt flow selected as a test site for potential Mars Penetrators. A discussion is presented of (1) the general relations of basalt flow features and textures to styles of eruptions on earth, (2) the types of basalt flows likely to be encountered on Mars and the rationale for selection of the Amboy lava field as a test site, (3) the general geology of the Amboy lava field, and (4) detailed descriptions of the target sites at Amboy lava field.

  4. Geochemistry of Central Snake River Plain Basalts From Camas Prairie to Glenns Ferry, Southern Idaho

    NASA Astrophysics Data System (ADS)

    Vetter, S. K.; Johnston, S. A.; Shervais, J.; Hanan, B.

    2006-12-01

    The Snake River Plain (SRP) of southern Idaho represents the track of a hot-spot (mantle plume) which links voluminous flood basalts of the Miocene Columbia River province to Quaternary volcanic centers at Island Park and Yellowstone. However, much of the volcanism associated with this province either lies off the main volcanic trend or differs in age from the postulated plume passage. The Camas Prairie and the Mount Bennett Hills lie north of the Snake River-Yellowstone plume track, near the intersection of the eastern and western Snake River Plain trends. Young basalt flows cap highlands overlooking the Snake River near King Hill, but farther north in the Mount Bennett Hills and Camas Prairie these young lava flows are juxtaposed against older basalts along a series of WNW trending normal faults. These older basalt flows rest directly on rhyolite of the Mount Bennett Hills, making them the oldest basalts known in outcrop in this area. The older basalts in the Mount Bennett Hills include at least six major flows with a total thickness of 110 m. Although they have been strongly dissected by erosion, they still cover an outcrop area of 300 km2 . Eighty samples were collected as part of our petrologic survey of basaltic volcanism in the central Snake River Plain. These samples were studied petrographically and analyzed for their major elements, trace elements, and REE. The basalts consist of plagioclase and olivine microphenocrysts set in a groundmass of olivine, plagioclase, clinopyroxene, oxides and interstitial glass. The majority of samples have Mg# ranging from 50- 59. However there are samples that are more evolved as indicated by Mg# ranging from less than 50 to 29. The high Mg# samples have the following chemical ranges: TiO2 0.87 - 2.6 wt.%; FeO 9.95 - 13.7 wt.%; Nb 8 to 23 ppm; Zr 111 to 243 ppm; Ni 81 to 151 ppm; La 10.9 to 26.9 ppm. The more evolved samples have TiO2 1.4 3.93 wt.%; FeO 9.7 16.8 wt%; Nb 11 to 40 ppm; Zr 110 to 500 ppm; Ni 4 to 85 ppm; La

  5. Mantle sources for Central Atlantic Magmatic Province basalts from Hf isotopes

    NASA Astrophysics Data System (ADS)

    Elkins, L. J.; Marzoli, A.; Bizimis, M.; Meyzen, C. M.; Callegaro, S.; Sorsen, N.; Lassiter, J. C.; Ernesto, M.

    2017-12-01

    The Central Atlantic Magmatic Province (CAMP) was one of the most voluminous LIP events in Earth history and likely triggered the end-Triassic mass extinction. The tectonic and mantle processes that produced such significant magmatic emplacement are thus of great interest. To further explore the origins of CAMP, we present new 176Hf/177Hf isotope data for a broad geographic sampling of CAMP dikes, sills, and basalt flows. We find that basaltic intrusions from the Carolinas in Eastern North America trend along a shallower slope than the terrestrial array on a diagram of 176Hf/177Hf vs. 143Nd/144Nd. This trend may reflect the presence of variable quantities of sediment-derived material in the mantle source region. This is consistent with previous suggestions that the asthenosphere beneath CAMP has been partially metasomatised by fluids derived from subducted sediments, as well as with isotopic trends observed in other LIP, such as Karoo [Jourdan et al., 2007, Jour. Petrology, doi:10.1093/petrology/egm010]. Distinct from the Carolina trend, we further observe that high-TiO2 basalts from Amazonia exhibit unusually radiogenic 176Hf/177Hf for a given 208Pb/206Pb ratio. The high-TiO­2 basalts, which trend towards EM1-type compositions, may be asthenospheric melts that have experienced the addition of melts from local subcontinental lithospheric mantle (SCLM). Similarly high-TiO2 CAMP rocks from Sierra Leone may likewise have incorporated enriched lithospheric melts of lamproite-like composition in the source region [Callegaro et al., JPet, accepted; GSA Abstract #302853, 2017]. Low-TiO2 basalts from the same region in Brazil and of similar age to the high-TiO2 basalts lack the observed radiogenic 176Hf/177Hf ratios. This suggests that the melt source region beneath Brazil was heterogeneous, containing variable material with relatively radiogenic 176Hf/177Hf ratios, perhaps due to the greater age of subcontinental lithosphere and the presence of garnet. It remains unclear

  6. Plume-stagnant slab-lithosphere interactions: Origin of the late Cenozoic intra-plate basalts on the East Eurasia margin

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Sakuyama, Tetsuya; Miyazaki, Takashi; Vaglarov, Bogdan S.; Fukao, Yoshio; Stern, Robert J.

    2018-02-01

    Intra-plate basalts of 35-0 Ma in East Eurasia formed in a broad backarc region above the stagnant Pacific Plate slab in the mantle transition zone. These basalts show regional-scale variations in Nd-Hf isotopes. The basalts with the most radiogenic Nd-Hf center on the Shandong Peninsula with intermediate Nd-Hf at Hainan and Datong. The least radiogenic basalts occur in the perimeters underlain by the thick continental lithosphere. Shandong basalts possess isotopic signatures of the young igneous oceanic crust of the subducted Pacific Plate. Hainan and Datong basalts have isotopic signatures of recycled subduction materials with billions of years of storage in the mantle. The perimeter basalts have isotopic signatures similar to pyroxenite xenoliths from the subcontinental lithospheric mantle beneath East Eurasia. Hainan basalts exhibit the highest mantle potential temperature (Tp), while the Shandong basalts have the lowest Tp. We infer that a deep high-Tp plume interacted with the subducted Pacific Plate slab in the mantle transition zone to form a local low-Tp plume by entraining colder igneous oceanic lithosphere. We infer that the subducted Izanagi Plate slab, once a part of the Pacific Plate mosaic, broke off from the Pacific Plate slab at 35 Ma to sink into the lower mantle. The sinking Izanagi slab triggered the plume that interacted with the stagnant Pacific slab and caused subcontinental lithospheric melting. This coincided with formation of the western Pacific backarc marginal basins due to Pacific Plate slab rollback and stagnation.

  7. Characterization and Distribution of Lunar Mare Basalt Types Using Remote Sensing Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pieters, C.

    1977-01-01

    The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).

  8. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng; Wang, Xiaohong; Zong, Keqing; Hu, Zhaochu; Chen, Haihong; Zhou, Lian

    2017-03-01

    It has been advocated that the stagnant Pacific slab within the mantle transition zone played a critical role in the genesis of the Cenozoic basalts in the eastern part of the North China Craton (NCC); however, it is not clear whether this recycled oceanic crust contributed to the chemical makeup of the Cenozoic basalts in the Trans-North China Orogen (TNCO, the central zone of the NCC). Here, we show that Cenozoic basalts from the TNCO are featured by low CaO contents, high TiO2 and FeOT contents and high Fe/Mn and Zn/Fe ratios, indicating a mantle source of pyroxenite. Temporally, these basalts evolved from alkali basalts of Late Eocene-Oligocene age to coexisting alkali and tholeiitic basalts of Late Miocene-Quaternary age. Spatially, their isotopic and chemical compositions vary symmetrically from the center to both the north and the south sides along the TNCO, i.e., SiO2 contents and 87Sr/86Sr ratios increase, FeOT contents and 143Nd/144Nd, Sm/Yb and Ce/Pb ratios decrease. The estimated average melting pressure of the TNCO tholeiitic basalts ( 3 GPa) agrees well with the present lithosphere thickness beneath the north region of the TNCO ( 90-120 km). The temporal and spatial chemical variations of Cenozoic basalts in the TNCO suggest that the recycled oceanic crust in the mantle of the TNCO is mainly related to the southward subduction of the Paleo-Asian oceanic plate and the northward subduction of the Tethyan ocean plate. The westward subduction of Pacific slab may not have contributed much than previously thought.

  9. Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

    1997-01-01

    Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

  10. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Halverson, Galen P.; Stevenson, Ross K.; Vokaty, Michelle; Poirier, André; Kunzmann, Marcus; Li, Zheng-Xiang; Denyszyn, Steven W.; Strauss, Justin V.; Macdonald, Francis A.

    2016-07-01

    Atmospheric CO2 levels and global climate are regulated on geological timescales by the silicate weathering feedback. However, this thermostat has failed multiple times in Earth's history, most spectacularly during the Cryogenian (c. 720-635 Ma) Snowball Earth episodes. The unique middle Neoproterozoic paleogeography of a rifting, low-latitude, supercontinent likely favored a globally cool climate due to the influence of the silicate weathering feedback and planetary albedo. Under these primed conditions, the emplacement and weathering of extensive continental flood basalt provinces may have provided the final trigger for runaway global glaciation. Weathering of continental flood basalts may have also contributed to the characteristically high carbon isotope ratios (δ13 C) of Neoproterozoic seawater due to their elevated P contents. In order to test these hypotheses, we have compiled new and previously published Neoproterozoic Nd isotope data from mudstones in northern Rodinia (North America, Australia, Svalbard, and South China) and Sr isotope data from carbonate rocks. The Nd isotope data are used to model the mafic detrital input into sedimentary basins in northern Rodinia. The results reveal a dominant contribution from continental flood basalt weathering during the ca. 130 m.y. preceding the onset of Cryogenian glaciation, followed by a precipitous decline afterwards. These data are mirrored by the Sr isotope record, which reflects the importance of chemical weathering of continental flood basalts on solute fluxes to the early-middle Neoproterozoic ocean, including a pulse of unradiogenic Sr input into the oceans just prior to the onset of Cyrogenian glaciation. Hence, our new data support the hypotheses that elevated rates of flood basalt weathering contributed to both the high average δ13 C of seawater in the Neoproterozoic and to the initiation of the first (Sturtian) Snowball Earth.

  11. Chemical variation and fractionation of KREEP basalt magmas

    NASA Technical Reports Server (NTRS)

    Irving, A. J.

    1977-01-01

    The fact that 53 Apollo 15 igneous KREEP basalts show a range of 100 Mg/(Mg + Fe) from 73 to 35, and that there are systematic variations in K2O and trace element abundances with the Mg/(Mg + Fe) ratio, suggests that the KREEP basalts are a magma series generated by fractional crystallization processes. Experimental and chemical evidence indicate that this magma series results from low-pressure, possibly subvolcanic, fractional crystallization of a magnesian parental liquid (100 Mg/(Mg + Fe) equal to approximately 72) by removal of low-Ca pyroxene and plagioclase, with eventual production of liquids similar in composition to 15405 quartz-monozodiorites. One soil sample, SAO 465-11, corresponds to the postulated parental liquid, which might have been a direct partial melt of troctolitic materials in the deep lunar crust.

  12. Is plagioclase removal responsible for the negative Eu anomaly in the source regions of mare basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, C.K.; Papike, J.J.

    1989-12-01

    The nearly ubiquitous presence of a negative Eu anomaly in the mare basalts has been suggested to indicate prior separation and flotation of plagioclase from the basalt source region during its crystallization from a lunar magma ocean (LMO). Are there any mare basalts derived from a mantle source which did not experience prior plagioclase separation Crystal chemical rationale for REE substitution in pyroxene suggests that the combination of REE size and charge, M2 site characteristics of pyroxene, fO{sub 2}, magma chemistry, and temperature may account for the negative Eu anomaly in the source region of some types of primitive, lowmore » TiO{sub 2} mare basalts. This origin for the negative Eu anomaly does not preclude the possibility of the LMO as many mare basalts still require prior plagioclase crystallization and separation and/or hybridization involving a KREEP component.« less

  13. Alteration of submarine basaltic glass from the Ontong Java Plateau: A STXM and TEM study

    NASA Astrophysics Data System (ADS)

    Benzerara, K.; Menguy, N.; Banerjee, N. R.; Tyliszczak, Tolek; Brown, G. E.; Guyot, F.

    2007-08-01

    Frequent observations of tubular to vermicular microchannels in altered basalt glass have led to increasing appreciation of a possible significant role of microbes in the low-temperature alteration of seafloor basalt. We have examined such microchannel alteration features at the nanoscale in basalt glass shards from the Ontong Java Plateau using a combination of focused ion beam milling, transmission electron microscopy and scanning transmission X-ray microscopy. Three types of materials were found in ultrathin cross-sections cut through the microchannels by FIB milling: fresh basalt glass, amorphous Si-rich rims surrounding the microchannels, and palagonite within the microchannels. X-ray absorption spectroscopy at the C K-edge and Fe L 2,3-edges showed the presence of organic carbon in association with carbonates within the microchannels and partial oxidation of iron in palagonite compared with basalt glass. Although these observations alone cannot discriminate between a biotic or abiotic origin for the microchannels, they provide new information on their mineralogical and chemical composition and thus better constrain the physical and chemical conditions prevailing during the alteration process.

  14. Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir

    USGS Publications Warehouse

    Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.

    2008-01-01

    As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.

  15. Is Ishtar Terra a thickened basaltic crust?

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar

    1992-01-01

    The mountain belts of Ishtar Terra and the surrounding tesserae are interpreted as compressional regions. The gravity and surface topography of western Ishtar Terra suggest a thick crust of 60-110 km that results from crustal thickening through tectonic processes. Underthrusting was proposed for the regions along Danu Montes and Itzpapalotl Tessera. Crustal thickening was suggested for the entire Ishtar Terra. In this study, three lithospheric models with total thicknesses of 40.75 and 120 km and initial crustal thicknesses of 3.9 and 18 km are examined. These models could be produced by partial melting and chemical differentiation in the upper mantle of a colder, an Earth-like, and a hotter Venus having temperatures of respectively 1300 C, 1400 C, and 1500 C at the base of their thermal boundary layers associated with mantle convection. The effects of basalt-granulite-eclogite transformation (BGET) on the surface topography of a thickening basaltic crust is investigated adopting the experimental phase diagram and density variations through the phase transformation.

  16. The flexural stiffness and tension state of basalt filter

    NASA Astrophysics Data System (ADS)

    Khalmuradovich, Sattarov Laziz; Ahmedovich, Kurbanov Abdirahim

    2017-03-01

    In recent years, there is a growing demand in Uzbekistan for new, cheap and competitive products from local raw materials, the demand being directly connected with the expansion and development opportunities of the mining, metallurgical and processing industries. In such conditions, the need for providing a solution of the problems faced by these industries is a very urgent one and requires further comprehensive studies. One of these tasks includes assessment of the force parameters and bending stiffness of basalt fibre filters, aimed at further improving the efficiency of local basalt raw materials and aiding in the manufacture of new, long-lasting, reliable and high-quality products. In this case, we studied the interaction of basalt fibre filter with a gas or liquid medium, the deformed state of the fibres under the action force of the gas or liquid, and the filter recovery process after removal of the load, all of which occur during mechanical filtration. These tasks are of interest because during the mechanical filtration of a gas or liquid (hereinafter, mechanical filtration) from solids, all attention is paid to the quality of the filtering process. The filtering quality, as known, is determined by the degree of contamination in the liquid undergoing treatment, duration of separation of the pulp into solid and liquid phases during the decantation process of the mixture and the amount of gas/ liquid released into the atmosphere along with carbon monoxide and toxic impurities. At the same time, the state and behaviour of the filtering material remain as minor factors, the consideration of which can play a decisive role in the establishment of filter life and work capacity. Solutions to these problems are very urgent and allow one to create new technologies for the production of basalt filters based on force parameters and bending stiffness, wherein the purification occurs without the intervention of chemicals.

  17. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and

  18. Rhenium - osmium heterogeneity of enriched mantle basalts explained by composition and behaviour of mantle-derived sulfides

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.

    2010-12-01

    187Os/188Os signature. Only when sulfides armored within silicates are exposed to the melt through continued partial melting will enclosed sulfides add their high [Os] and unradiogenic 187Os/188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all the metasomatic sulfide, followed by (ii) the incorporation of small amounts of armored sulfide can thus account for the range of both [Os] and 187Os/188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs. References: [1] Zindler & Hart, (1986) Annu. Rev. Earth Planet. Sci. 14, 493-571. [2] Class et al. (2009) Earth Planet. Sci. Lett. 284, 219-227. [3] Stracke, et al. (2005) Geochem., Geophys., Geosys. 6, doi:10.1029/2004GC000824. [4] Burton et al., Earth Planet. Sci. Lett. (1999) 172, 311-322. [5] Alard et al., (2002) Earth Planet. Sci. Lett. 203, 651-663

  19. Microseismic monitoring of columnar jointed basalt fracture activity: a trial at the Baihetan Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing

    2014-10-01

    Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.

  20. Ambient Effects on Basalt and Rhyolite Lavas under Venusian, Subaerial, and Subaqueous Conditions

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Both subaerial and subaqueous environments have been used as analog settings for Venus volcanism. To assess the merits of this, the effects of ambient conditions on the physical properties of lava on Venus, the seafloor, and land on Earth are evaluated. Rhyolites on Venus and on the surface of Earth solidify before basalts do because of their lower eruption temperatures. Rhyolite crust is thinner than basalt crust at times less than about an hour, especially on Venus. At later times, rhyolite crust is thicker because of its lower latent heat relative to basalt. The high pressure on the seafloor and Venus inhibits the exsolution of volatiles in lavas. Vesicularity and bulk density are proportional, so that lavas of the same composition should be more dense on the seafloor and less dense on land. Because viscosity depends partly upon the fraction of unvesiculated water in a melt, basalts with the same initial volatile abundance will be least viscous on the seafloor and most viscous on land. Assuming the same preeruptive H2O contents, molten rhyolites on Venus will have viscosities approx. 10% that of rhyolites on land. Despite lower expected viscosities, under-water flows are more buoyant and should have heights like subaerial and Venusian lavas of the same composition and extrusive history. In cases where the influence of crust is insignificant, a volume of rhyolite will have a higher aspect ratio than the same volume of basalt, no matter what the environment. If flow rheology is dominated by the presence of strong crust, aspect ratios differ little among environments or between compositions. These analyses support a rhyolitic interpretation for the composition of Venusian festooned flows and a basaltic interpretation for the composition of Venusian steep-sided domes. Although ambient effects are significant, extrusion rate and eruption history must also be considered to explain analogous volcanic landforms on Earth and Venus.

  1. Movement of coliform bacteria and nutrients in ground water flowing through basalt and sand aquifers.

    PubMed

    Entry, J A; Farmer, N

    2001-01-01

    Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.

  2. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    USGS Publications Warehouse

    Hegner, E.; Tatsumoto, M.

    1989-01-01

    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  3. Green glass vitrophyre 78526 - An impact of very low-Ti mare basalt composition

    NASA Technical Reports Server (NTRS)

    Warner, R. D.; Taylor, G. J.; Kiel, K.; Planner, H. H.; Nehru, C. E.; Ma, M.-S.; Schmitt, R. A.

    1978-01-01

    Rake sample 78526 is an 8.77 g rock consisting primarily of vitrophyric pale green glass with subordinate mineral and lithic relics. Petrographic and compositional evidence leads to the following conclusions: (1) the bulk composition represents that of a mixture formed by impact melting of at least two different textural and compositional varieties of VLT mare basalt that are now present in the rock as lithic relics and a poorly defined low-Ti mare basalt component observed in thin section only in the form of isolated mineral relics; (2) the admixed VLT mare basalts had REE abundances lower than those found in other mare basalts (but probably higher than emerald green glass) and REE patterns showing significant enrichment of the heavy relative to light REE's, suggesting that they were derived by comparatively high degrees of partial melting of a clinopyroxene-rich source region; and (3) the impact melt supercooled to produce the vitrophyre, with rather sharply contrasting textural domains present in the vitrophyre resulting from differences in nucleation kinetics and degrees of supercooling in various portions of the sample.

  4. A kinetic rate model for crystalline basalt dissolution at temperature and pressure conditions relevant for geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Pollyea, R.; Rimstidt, J. D.

    2016-12-01

    Geologic carbon sequestration in terrestrial basalt reservoirs is predicated on permanent CO2 trapping through CO2-water-rock dissolution reactions followed by carbonate precipitation. Bench-scale experiments have shown these reaction paths to be rapid, occurring on a timescale 100 - 102 years. Moreover, recent results from the CarbFix basalt sequestration pilot project in Iceland demonstrate >95% CO2 isolation two years after a small-scale injection. In order to assess the viability of basalt sequestration worldwide (e.g., Deccan Traps, Columbia Plateau, etc.), flexible simulation tools are required that distill the dissolution reactions into a user-friendly format that is readily transmissible to existing reactive transport numerical simulators. In the present research, we combine experimental results extant in the literature for Icelandic basalt to develop kinetic rate models describing the pH-dependent dissolution of (1) basaltic glass and (2) an aggregate mineral assemblage for crystalline basalt comprising olivine, pyroxene, and plagioclase phases. In order to utilize these kinetic rate models with numerical simulation, a thermodynamic solubility model for each phase is developed for use with the reactive transport simulation code, TOUGHREACT. We use reactive transport simulation in a simple 1-D reactor to compare dissolution of the aggregate crystalline basalt phase with the traditional formulation comprising individual mineral phases for the crystalline basalt. Simulation results are in general agreement, illustrating the efficacy of this simplified approach for modeling basalt dissolution at temperature and pressure conditions typical of geologic CO2 reservoirs. Moreover, this approach may be of value to investigators seeking dissolution models for crystalline basalt in other mafic provinces.

  5. Brittle strength of basaltic rock masses with applications to Venus

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1993-06-01

    Spacecraft images of surfaces with known or suspected basaltic composition on Venus (as well as on moon and Mars) indicate that these rocks have been deformed in the brittle regime to form faults and perhaps joints, in addition to folding and more distributed types of deformation. This paper presents results of detailed examinations and interpretations of Venus surface materials which show that the strengths of basaltic rocks on planetary surfaces and in the shallow subsurface are significantly different from strength values commonly used in tectonic modeling studies which assume properties of either intact rock samples or single planar shear surface.

  6. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    NASA Astrophysics Data System (ADS)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  7. The consanguinity of the oldest Apollo 11 mare basalts

    NASA Technical Reports Server (NTRS)

    Gamble, R. P.; Coish, R. A.; Taylor, L. A.

    1978-01-01

    The textural, mineralogical, and chemical relationships between three of the oldest dates lunar mare basalt samples returned by Apollo 11 (10003, 10029 and 10062) were investigated. Very strong resemblances were noted between the modal minerologies of 10003 and 10029. Significantly more modal olivine and cristobalite was observed in 10062 than in the other basalt samples. A detailed examination of mineral-chemical relationships among the samples revealed similarities between 10003 and 10062 and differences between these two rocks and 10029, the most significant of which is the presence of akaganeite in 10029, implying that lawrencite was present in the pristine sample of 10029 but not in 10003 and 10062. Results of a Wright-Doherty mixing program used to test various fractional crystallization schemes show that 10062 can be derived from a liquid with the composition of either 10003 or 10029 by removing 2-5% ilmenite and 5% olivine. By removing about 6% plagioclase, 10003 can be derived from a liquid with the bulk composition of 10062. It is concluded that 10003 and 10029 may have come from different basaltic flows, whereas it is possible that 10003 and 10062 were derived from the same parental magma by near-surface fractionation of olivine plus ilmenite or of plagioclase plus or minus olivine.

  8. Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts.

    PubMed

    Xu, Zheng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2018-01-09

    Crustal components may be incorporated into continental basalts by either shallow contamination or deep mixing. While the former proceeds at crustal depths with common preservation of refractory minerals, the latter occurs at mantle depths with rare survival of relict minerals. Discrimination between the two mechanisms has great bearing to subcontinental mantle geochemistry. Here we report the occurrence of relict zircons in Cenozoic continental basalts from eastern China. A combined study of zircon U-Pb ages and geochemistry indicates that detrital zircons were carried by terrigenous sediments into a subcontinental subduction zone, where the zircon were transferred by fluids into the magma sources of continental basalts. The basalts were sampled from three petrotectonic units with distinct differences in their magmatic and metamorphic ages, making the crustal contamination discernible. The terrigenous sediments were carried by the subducting oceanic crust into the asthenospheric mantle, producing both soluble and insoluble materials at the slab-mantle interface. These materials were served as metasomatic agents to react with the overlying mantle wedge peridotite, generating a kind of ultramafic metasomatites that contain the relict zircons. Therefore, the occurrence of relict zircons in continental basalts indicates that this refractory mineral can survive extreme temperature-pressure conditions in the asthenospheric mantle.

  9. Thermal control of low-pressure fractionation processes. [in basaltic magma solidification

    NASA Technical Reports Server (NTRS)

    Usselman, T. M.; Hodge, D. S.

    1978-01-01

    Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.

  10. Distinct Igneous APXS Rock Compositions on Mars from Pathfinder, MER and MSL

    NASA Technical Reports Server (NTRS)

    Gellert, Ralf; Arvidson, Raymond; Clark, Benton, III; Ming, Douglas W.; Morris, Richard V.; Squyres, Steven W.; Yen, Albert S.

    2015-01-01

    The alpha particle x-ray spectrometer (APXS) on all four Mars Rovers returned geochemical data from about 1000 rocks and soils along the combined traverses of over 50 kilometers. Here we discuss rocks likely of igneous origin, which might represent source materials for the soils and sediments identified along the traverses. Adirondack-type basalts, abundant in the plains of Gusev Crater, are primitive, olivine bearing basalts. They resemble in composition the basaltic soils encountered at all landing sites, except the ubiquitous elevated S, Cl and Zn in soils. They have been postulated to represent closely the average Martian crust composition. The recently identified new Martian meteorite Black Beauty has similar overall geochemical composition, very distinct from the earlier established SNC meteorites. The rim of the Noachian crater Endeavour, predating the sulfate-bearing Burns formation at Meridiani Planum, also resembles closely the composition of Adirondack basalts. At Gale Crater, the MSL Curiosity rover identified a felsic rock type exemplified by the mugearitic float rock JakeM, which is widespread along the traverse at Gale. While a surprise at that time, possibly related more evolved, alkaline rocks had been previously identified on Mars. Spirit encountered the Wishstone rocks in the Columbia Hills with approx. 6% Na2O+K2O, 15 % Al2O3 and low 12% FeO. Pathfinder rocks with elevated K and Na and >50% SiO2 were postulated to be andesitic. Recently Opportunity encountered the rock JeanBaptisteCharbonneau with >15% Al2O3, >50% SiO2 and approx. 10% FeO. A common characteristic all these rocks is the very low abundance of Cr, Ni and Zn, and an Fe/Mn ratio of about 50, indicating an unaltered Fe mineralogy. Beside these likely igneous rock types, which occurred always in several rocks, a few unique rocks were encountered, e.g. Bounce Rock, a pyroxene-bearing ejecta rock fragment resembling the Shergottite EETA 79001B meteorite. The APXS data can be used to

  11. Genetic interpretation of lead-isotopic data from the Columbia River basalt group, Oregon, Washington, and Idaho.

    USGS Publications Warehouse

    Church, S.E.

    1985-01-01

    Lead-isotopic data for the high-alumina olivine plateau basalts and most of the Colombia River basalt group plot within the Cascade Range mixing array. The data for several of the formations form small, tight clusters and the Nd and Sr isotopic data show discrete variation between these basalt groups. The observed isotopic and trace-element data from most of the Columbia River basalt group can be accounted for by a model which calls for partial melting of the convecting oceanic-type mantle and contamination by fluids derived from continental sediments which were subducted along the trench. These sediments were transported in the low-velocity zone at least 400 km behind the active arc into a back-arc environment represented by the Columbia Plateau province. With time, the zone of melting moved up, resulting in the formation of the Saddle Mt basalt by partial melting of a 2600 m.y.-old sub-continental lithosphere characterized by high Th/U, Th/Pb, Rb/Sr and Nd/Sm ratios and LREE enrichment. Partial melting of old sub-continental lithosphere beneath the continental crust may be an important process in the formation of continental tholeiite flood basalt sequences world-wide. -L.di H.

  12. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia

    USGS Publications Warehouse

    Sisson, T.W.; Bronto, S.

    1998-01-01

    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  13. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  14. New absolute paleointensity determinations for the Permian-Triassic boundary from the Kuznetsk Trap Basalts.

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Metelkin, D. V.; Kazansky, A.

    2015-12-01

    We report the results of a pilot absolute paleointensity study of the ~250 Ma basalts of Kuznetsk traps (Kuznetsk Basin, Altai-Sayan folded area). Studied samples are characterized by a reversed polarity of natural remanent magnetization that corresponds to the lower part of Siberian Trap basalts sequence. Geochemical similarity of Kuznets basalts with those from Norilsk region supports this interpretation. Primary origin of thermal remanence in our sample is confirmed by a positive backed contact test. Rock magnetic analyses indicate that the ChRM is carried by single-domain titanomagnetite. The Coe-version of the Thellier-Therllier double-heating method was utilized for the paleointensity determinations. In contrast to the previous studies of the Permian-Triassic Siberian trap basalts, our data indicate that by the P-T boundary the paleofield intensity was relatively high and comparable with geomagnetic field strength for the last 10 millions of years. New results question the duration of the "Mesozoic dipole-low".

  15. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars

    USGS Publications Warehouse

    McSween, H.Y.; Wyatt, M.B.; Gellert, Ralf; Bell, J.F.; Morris, R.V.; Herkenhoff, K. E.; Crumpler, L.S.; Milam, K.A.; Stockstill, K.R.; Tornabene, L.L.; Arvidson, R. E.; Bartlett, P.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Des Marais, D.J.; Economou, T.; Farmer, J.D.; Farrand, W.; Ghosh, A.; Golombek, M.; Gorevan, S.; Greeley, R.; Hamilton, V.E.; Johnson, J. R.; Joliff, B.L.; Klingelhofer, G.; Knudson, A.T.; McLennan, S.; Ming, D.; Moersch, J.E.; Rieder, R.; Ruff, S.W.; Schrorder, C.; de Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Yen, A.; Zipfel, J.

    2006-01-01

    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times. Copyright 2006 by the American Geophysical Union.

  16. A unique basaltic micrometeorite expands the inventory of solar system planetary crusts

    PubMed Central

    Gounelle, Matthieu; Chaussidon, Marc; Morbidelli, Alessandro; Barrat, Jean-Alix; Engrand, Cécile; Zolensky, Michael E.; McKeegan, Kevin D.

    2009-01-01

    Micrometeorites with diameter ≈100–200 μm dominate the flux of extraterrestrial matter on Earth. The vast majority of micrometeorites are chemically, mineralogically, and isotopically related to carbonaceous chondrites, which amount to only 2.5% of meteorite falls. Here, we report the discovery of the first basaltic micrometeorite (MM40). This micrometeorite is unlike any other basalt known in the solar system as revealed by isotopic data, mineral chemistry, and trace element abundances. The discovery of a new basaltic asteroidal surface expands the solar system inventory of planetary crusts and underlines the importance of micrometeorites for sampling the asteroids' surfaces in a way complementary to meteorites, mainly because they do not suffer dynamical biases as meteorites do. The parent asteroid of MM40 has undergone extensive metamorphism, which ended no earlier than 7.9 Myr after solar system formation. Numerical simulations of dust transport dynamics suggest that MM40 might originate from one of the recently discovered basaltic asteroids that are not members of the Vesta family. The ability to retrieve such a wealth of information from this tiny (a few micrograms) sample is auspicious some years before the launch of a Mars sample return mission. PMID:19366660

  17. Characterization and Petrologic Interpretation of Olivine-Rich Basalts at Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    McSween, H. Y.; Wyatt, M. B.; Gellert, R.; Bell, J. F., III; Morris, R. V.; Herkenhoff, K. E.; Crumpler, L. S.; Milam, K. A.; Stockstill, K. R.; Tornabene, L. L.; hide

    2006-01-01

    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times.

  18. A study on the crushing behavior of basalt fiber reinforced composite structures

    NASA Astrophysics Data System (ADS)

    Pandian, A.; Veerasimman, A. P.; Vairavan, M.; Francisco, C.; Sultan, M. T. H.

    2016-10-01

    The crushing behavior and energy absorption capacity of basalt fiber reinforced hollow square structure composites are studied under axial compression. Using the hand layup technique, basalt fiber reinforced composites were fabricated using general purpose (GP) polyester resin with the help of wooden square shaped mould of varying height (100 mm, 150 mm and 200 mm). For comparison, similar specimens of glass fiber reinforced polymer composites were also fabricated and tested. Axial compression load is applied over the top end of the specimen with cross head speed as 2 mm/min using Universal Testing Machine (UTM). From the experimental results, the load-deformation characteristics of both glass fiber and basalt fiber composites were investigated. Crashworthiness and mode of collapse for the composites were determined from load-deformation curve, and they were then compared to each other in terms of their crushing behaviors.

  19. Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete

    NASA Astrophysics Data System (ADS)

    Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun

    2017-09-01

    In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.

  20. Valence State Partitioning of Cr and V Between Pyroxene - Melt: Estimates of Oxygen Fugacity for Martian Basalt QUE 94201

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.; McKay, G.; Le, L.; Burger, P.

    2007-01-01

    Several studies, using different oxybarometers, have suggested that the variation of fO2 in martian basalts spans about 3 log units from approx. IW-1 to IW+2. The relatively oxidized basalts (e.g., pyroxene-phyric Shergotty) are enriched in incompatible elements, while the relatively reduced basalts (e.g., olivine-phyric Y980459) are depleted in incompatible elements. A popular interpretation of the above observations is that the martian mantle contains two reservoirs; 1) oxidized and enriched, and 2) reduced and depleted. The basalts are thus thought to represent mixing between these two reservoirs. Recently, Shearer et al. determined the fO2 of primitive olivine-phyric basalt Y980459 to be IW+0.9 using the partitioning of V between olivine and melt. In applying this technique to other basalts, Shearer et al. concluded that the martian mantle shergottite source was depleted and varied only slightly in fO2 (IW to IW+1). Thus the more oxidized, enriched basalts had assimilated a crustal component on their path to the martian surface. In this study we attempt to address the above debate on martian mantle fO2 using the partitioning of Cr and V into pyroxene in pyroxene-phyric basalt QUE 94201.

  1. The Ninole Basalt — Implications for the structural evolution of Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.; Rhodes, J. M.; Dalrymple, G. Brent

    1990-12-01

    Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1 0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1 0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.

  2. Reactive transport modeling of CO2 mineral sequestration in basaltic rocks

    NASA Astrophysics Data System (ADS)

    Aradottir, E. S.; Sonnenthal, E. L.; Bjornsson, G.; Jonsson, H.

    2011-12-01

    CO2 mineral sequestration in basalt may provide a long lasting, thermodynamically stable, and environmentally benign solution to reduce greenhouse gases in the atmosphere. Multi-dimensional, field scale, reactive transport models of this process have been developed with a focus on the CarbFix pilot CO2 injection in Iceland. An extensive natural analog literature review was conducted in order to identify the primary and secondary minerals associated with water-basalt interaction at low and elevated CO2 conditions. Based on these findings, an internally consistent thermodynamic database describing the mineral reactions of interest was developed and validated. Hydrological properties of field scale mass transport models were properly defined by calibration to field data using iTOUGH2. Reactive chemistry was coupled to the models and TOUGHREACT used for running predictive simulations carried out with the objective of optimizing long-term management of injection sites, to quantify the amount of CO2 that can be mineralized, and to identify secondary minerals that compete with carbonates for cations leached from the primary rock. Calibration of field data from the CarbFix reservoir resulted in a horizontal permeability for lava flows of 300 mD and a vertical permeability of 1700 mD. Active matrix porosity was estimated to be 8.5%. The CarbFix numerical models were a valuable engineering tool for designing optimal injection and production schemes aimed at increasing groundwater flow. Reactive transport simulations confirm dissolution of primary basaltic minerals as well as carbonate formation, and thus indicate in situ CO2 mineral sequestration in basalts to be a viable option. Furthermore, the simulations imply that clay minerals are most likely to compete with magnesite-siderite solid solutions for Mg and Fe leached from primary minerals, whereas zeolites compete with calcite for dissolved Ca. In the case of the CarbFix pilot injection, which involves a continuous

  3. The Columbia River Basalt Group: from the gorge to the sea

    USGS Publications Warehouse

    Wells, Ray E.; Niem, Alan R.; Evarts, Russell C.; Hagstrum, Jonathan T.

    2009-01-01

    Miocene flood basalts of the Columbia River Basalt Group inundated eastern Washington, Oregon, and adjacent Idaho between 17 and 6 Ma. Some of the more voluminous flows followed the ancestral Columbia River across the Cascade arc, Puget-Willamette trough, and the Coast Range to the Pacific Ocean. We have used field mapping, chemistry, and paleomagnetic directions to trace individual flows and flow packages from the Columbia River Gorge westward into the Astoria Basin, where they form pillow palagonite complexes and mega-invasive bodies into older marine sedimentary rocks. Flows of the Grande Ronde, Wanapum, and Saddle Mountains Basalts all made it to the ocean; at least 33 flows are recognized in the western Columbia River Gorge, 50 in the Willamette Valley, 16 in the lower Columbia River Valley, and at least 12 on the Oregon side of the Astoria Basin. In the Astoria Basin, the basalt flows loaded and invaded the wet marine sediments, producing peperite breccias, soft sediment deformation, and complex invasive relations. Mega-invasive sills up to 500 m thick were emplaced into strata as old as Eocene, and invasive dikes up to 90 m thick can be traced continuously for 25 km near the basin margin. Mega-pillow complexes up to a kilometer thick are interpreted as the remains of lava deltas that prograded onto the shelf and a filled submarine canyon southeast of Astoria, possibly providing the hydraulic head for injection of invasive sills and dikes at depth.

  4. Using Apollo 17 high-Ti mare basalts as windows to the lunar mantle

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-01-01

    The Apollo 17 high-Ti mare basalts are derived from source regions containing plagioclase that was not retained in the residue. Ilmenite appears to remain as a residual phase, but plagioclase is exhausted. The open-system behavior of the type B2 basalts results in slightly higher Yb/Hf and La/Sm ratios. The nature of the added component is not clear, but may be a KREEP derivative or residue. The recognition of plagioclase in the source(s) of these basalts suggests that the location of the source region(s) would be more likely to be less than 150 km (i.e., closer to the plagioclase-rich crust), which would allow incorporation of plagioclase into the source through incomplete separation of crustal feldspar.

  5. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    USGS Publications Warehouse

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  6. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zheng, Fei; Zhao, Zi-Fu; Zheng, Yong-Fei

    2018-03-01

    Although alkali basalts are common in oceanic islands and continental rifts, the lithology of their mantle sources is still controversial. While the peridotite is usually viewed as a common source lithology, there are increasing studies suggesting significant contributions from ultramafic metasomatites such as carbonated peridotite, pyroxenite and hornblendite to the origin of alkali basalts. The present study indicates that carbonated peridotite plus hornblendite would have served as the mantle sources of Cenozoic alkali basalts from the West Qinling orogen in China. The target basalts show low SiO2 contents of 36.9 to 40.8 wt% and highly variable Na2O + K2O contents from 0.86 to 4.77 wt%, but high CaO contents of 12.5 to 16.3 wt% and CaO/Al2O3 ratios of 1.42 to 2.19. They are highly enriched in the majority of incompatible trace elements, but depleted in Rb, K, Pb, Zr, Hf, and Ti. Furthermore, they exhibit high (La/Yb)N, Zr/Hf, Ce/Pb and Nb/Ta ratios, but low Ti/Eu and Hf/Sm ratios. Generally, with increasing (La/Yb)N and CaO/Al2O3 ratios, their Ti/Eu and Hf/Sm ratios decrease whereas their Zr/Hf, Ce/Pb and Nb/Ta ratios increase. These major and trace element features are similar to those of carbonatites and hornblendite-derived melts to some extent, but significantly different from those of mid-ocean ridge basalts (MORB). This suggests that the alkali basalts would be originated from metasomatic mantle sources. A comparison of the major-trace elements in the alkali basalts with those of some representative mantle-derived melts indicates that the source lithology of alkali basalts is a kind of ultramafic metasomatites that are composed of carbonated peridotite and hornblendite. Such metasomatites would be generated by reaction of the depleted MORB mantle peridotite with hydrous, carbonate-bearing felsic melts derived from partial melting of the subducted Paleotethyan oceanic crust. Therefore, the melt-peridotite reaction at the slab-mantle interface in the

  7. Self organizing map neural networks approach for lithologic interpretation of nuclear and electrical well logs in basaltic environment, Southern Syria.

    PubMed

    Asfahani, J; Ahmad, Z; Ghani, B Abdul

    2018-07-01

    An approach based on self organizing map (SOM) artificial neural networks is proposed herewith oriented towards interpreting nuclear and electrical well logging data. The well logging measurements of Kodana well in Southern Syria have been interpreted by applying the proposed approach. Lithological cross-section model of the basaltic environment has been derived and four different kinds of basalt have been consequently distinguished. The four basalts are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products- clay. The results obtained by SOM artificial neural networks are in a good agreement with the previous published results obtained by other different techniques. The SOM approach is practiced successfully in the case study of the Kodana well logging data, and can be therefore recommended as a suitable and effective approach for handling huge well logging data with higher number of variables required for lithological discrimination purposes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  9. Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.

    PubMed

    Dalrymple, G B; Moore, J G

    1968-09-13

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  10. Chlorine in Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  11. Crystallization behaviors and seal application of basalt based glass-ceramics

    NASA Astrophysics Data System (ADS)

    Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.

    2017-02-01

    Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.

  12. Response of fish assemblages to decreasing acid deposition in Adirondack Mountain lakes

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    The CAA and other federal regulations have clearly reduced emissions of NOx and SOx, acidic deposition, and the acidity and toxicity of waters in the ALTM lakes, but these changes have not triggered widespread recovery of brook trout populations or fish communities. The lack of detectable biological recovery appears to result from relatively recent chemical recovery and an insufficient period for species populations to take advantage of improved water quality. Recovery of extirpated species’ populations may simply require more time for individuals to migrate to and repopulate formerly occupied lakes. Supplemental stocking of selected species may be required in some lakes with no remnant (or nearby) populations or with physical barriers between the recovered lake and source populations. The lack of detectable biological recovery could also be related to our inability to calculate measures of uncertainty or error and, thus, examine temporal changes or differences in populations and community metrics in more depth (e.g., within individual lakes) using existing datasets. Indeed, recovery of brook trout populations and partial recovery of fish communities are documented in several lakes of the region, both with and without human intervention. Multiple fish surveys (annually or within the same year) or the use of mark and recapture methods within individual lakes would help alleviate the issue (provide measures of error for key fishery metrics) within the context of a more focused sampling strategy. Efforts to evaluate and detect recovery in fish assemblages from streams may be more effective than in lakes because various life stages, species’ populations, and entire assemblages are easier to quantify, with known levels of error, in streams than in lakes. Such long-term monitoring efforts could increase our ability to detect and quantify biological recovery in recovering (neutralizing) surface waters throughout the Adirondack Region.

  13. Nitrogen solutes in an Adirondack forested watershed: Importance of dissolved organic nitrogen

    USGS Publications Warehouse

    McHale, M.R.; Mitchell, M.J.; McDonnell, Jeffery J.; Cirmo, C.P.

    2000-01-01

    Nitrogen (N) dynamics were evaluated from 1 June 1995 through 31 May 1996 within the Arbutus Lake watershed in the Adirondack Mountains of New York State, U.S.A. At the Arbutus Lake outlet dissolved organic nitrogen (DON), NO3/- and NH4/+ contributed 61%, 33%, and 6% respectively, to the total dissolved nitrogen (TDN) flux (259 mol ha-1 yr-1). At the lake inlet DON, NO3/-, and NH4/+ constituted 36%, 61%, and 3% respectively, of TDN flux (349 mol ha-1 yr-1). Differences between the factors that control DON, NO3/-, and NH4+ stream water concentrations were evaluated using two methods for estimating annual N flux at the lake inlet. Using biweekly sampling NO3/- and NH4/+ flux was 10 and 4 mol ha-1 yr-1 respectively, less than flux estimates using biweekly plus storm and snowmelt sampling. DON flux was 18 mol ha-1 yr-1 greater using only biweekly sampling. These differences are probably not of ecological significance relative to the total flux of N from the watershed (349 mol ha-1 yr-1). Dissolved organic N concentrations were positively related to discharge during both the dormant (R2 = 0.31; P<0.01) and growing season (R2= 0.09; P<0.01). There was no significant relationship between NO3/- concentration and discharge during the dormant season, but a significant negative relationship was found during the growing season (R2 = 0.29; P<0.01). Biotic controls in the growing season appeared to have had a larger impact on stream water NO3- concentrations than on DON concentrations. Arbutus Lake had a major impact on stream water N concentrations of the four landscape positions sampled, suggesting the need to quantify within lake processes to interpret N solute losses and patterns in watershed-lake systems.

  14. Peridotites and basalts reveal broad congruence between two independent records of mantle fO2 despite local redox heterogeneity

    NASA Astrophysics Data System (ADS)

    Birner, Suzanne K.; Cottrell, Elizabeth; Warren, Jessica M.; Kelley, Katherine A.; Davis, Fred A.

    2018-07-01

    The oxygen fugacity (fO2) of the oceanic upper mantle has fundamental implications for the production of magmas and evolution of the Earth's interior and exterior. Mid-ocean ridge basalts and peridotites sample the oceanic upper mantle, and retain a record of oxygen fugacity. While fO2 has been calculated for mid-ocean ridge basalts worldwide (>200 locations), ridge peridotites have been comparatively less well studied (33 samples from 11 locations), and never in the same geographic location as basalts. In order to determine whether peridotites and basalts from mid-ocean ridges record congruent information about the fO2 of the Earth's interior, we analyzed 31 basalts and 41 peridotites from the Oblique Segment of the Southwest Indian Ridge. By measuring basalts and peridotites from the same ridge segment, we can compare samples with maximally similar petrogenetic histories. We project the composition and oxygen fugacity of each lithology back to source conditions, and evaluate the effects of factors such as subsolidus diffusion in peridotites and fractional crystallization in basalts. We find that, on average, basalts and peridotites from the Oblique Segment both reflect a source mantle very near the quartz-fayalite-magnetite (QFM) buffer. However, peridotites record a significantly wider range of values (nearly 3 orders of magnitude in fO2), with a single dredge recording a range in fO2 greater than that previously reported for mid-ocean ridge peridotites worldwide. This suggests that mantle fO2 may be heterogeneous on relatively short length scales, and that this heterogeneity may be obscured within aggregated basalt melts. We further suggest that the global peridotite fO2 dataset may not provide a representative sample of average basalt-source mantle. Our study motivates further investigation of the fO2 recorded by ridge peridotites, as peridotites record information about the fO2 of the Earth's interior that cannot be gleaned from analysis of basalts alone.

  15. Derivation of Apollo 14 High-Al Basalts from Distinct Source Regions at Discrete Times: New Constraints

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Shih, C.-Y.; Reese, Y.; Nyquist, L. E.; Kramer, G. Y.

    2006-01-01

    Apollo 14 basalts occur predominantly as clasts in breccias, but represent the oldest volcanic products that were returned from the Moon [1]. These basalts are relatively enriched in Al2O3 (11-16 wt%) compared to other mare basalts (7-11 wt%) and were originally classified into 5 compositional groups [2,3]. Neal et al. [4] proposed that a continuum of compositions existed. These were related through assimilation (of KREEP) and fractional crystallization (AFC). Age data, however, show that at least three volcanic episodes are recorded in the sample collection [1,5,6]. Recent work has demonstrated that there are three, possibly four groups of basalts in the Apollo 14 sample collection that were erupted from different source regions at different times [7]. This conclusion was based upon incompatible trace element (ITE) ratios of elements that should not be fractionated from one another during partial melting (Fig. 1). These groups are defined as Group A (Groups 4 & 5 of [3]), Group B (Groups 1 & 2 of [3]), and Group C (Group 3 of [3]). Basalt 14072 is distinct from Groups A-C.

  16. The interactions of the bacterium Cupriavidus metallidurans CH34 with basalt rock, on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Byloos, Bo; Van Houdt, Rob; Leys, Natalie; Ilyin, Vyacheslav; Nicholson, Natasha; Childers, Delma; Cockell, Charles; Boon, Nico

    2016-07-01

    Microbe-mineral interactions have become of interest for space exploration as microorganisms can biomine elements from extra-terrestrial materials, which could be used as nutrients in a life support system. This research is aimed at identifying the molecular mechanisms behind the interaction of Cupriavidus metallidurans CH34 with basalt, a lunar-type rock, and determining the influence of space flight conditions on this interaction. Survival and physiology of CH34 was monitored, with and without basalt, in mineral water over several months by flow cytometry, plate counts, ICP-MS, microscopy and proteomics. To study the influence of space conditions, a flight experiment on board the Russian FOTON-M4 capsule was performed. The results obtained from from water survival experiments on ground showed that CH34 was able to survive in mineral water, in the absence and presence of basalt, for several months. The total cell concentration remained stable but the cultivable fraction dropped to 10%, indicating a transition to a more dormant state. In the presence of basalt, this transition was less pronounced and cultivability was enhanced. In addition, with basalt, CH34 attached to the rock surface and formed a biofilm. The space flight experiment indicated more viable and cultivable cells compared to the ground experiment, both in the absence and presence of basalt, indicating a positive effect of space flight on survival. Chemical analysis indicated that basalt leaches out elements which may contribute to a positive effect of basalt on survival. Basalt may thus enhance survival and viability of CH34 both in ground and space flight experimental conditions. This study hopefully can contribute to a better understanding of microbe-mineral interactions, opening the door to future applications, in space, and on Earth. Acknowledgments: This work is supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the BIOROCK project. We thank Kai

  17. Lithostratigraphic and biostratigraphic evidence for brief and synchronous Early Mesozoic basalt eruption over the Maghreb (Northwest Africa)

    NASA Astrophysics Data System (ADS)

    Et-Touhami, M.; Et-Touhami, M.; Olsen, P. E.; Puffer, J.

    2001-05-01

    Previously very sparse biostratigraphic data suggested that the Early Mesozoic tholeiitic effusive and intrusive magmatism in the various basins of the Maghreb occurred over a long time (Ladinian-Hettangian). However, a detailed comparison of the stratigraphy underlying, interbedded with, and overlying the basalts in these basins shows not only remarkable similarities with each other, but also with sequences in the latest Triassic and earliest Jurassic of eastern North America. There, the sequences have been shown to be cyclical, controlled by Milankovitch-type climate cycles; the same seems to be true in at least part of the Maghreb. Thus, the Moroccan basins have cyclical sequences surrounding and interbedded with one or two basaltic units. In the Argana and Khemisset basins the Tr-J boundary is identified by palynology to be below the lowest basalt, and the remarkably close lithological similarity between the pre-basalt sequence in the other Moroccan basins and to the North American basins - especially the Fundy basin - suggests a tight correlation in time. Likewise, the strata above the lowest basalt in Morocco show a similar pattern to what is seen above the lowest basalt formation in eastern North America, as do the overlying sequences. Furthermore, geochemistry on basalts in the Argana, Bou Fekrane, Khemisset, and Iouawen basins indicate they are high-Ti quartz-normative tholeiites as are the Orange Mountain Basalt (Fundy basin) and the North Mountain Basalt (Newark basin). The remarkable lithostratigraphic similarity across the Maghreb of these strata suggest contemporaneous and synchronous eruption over a time span of less than 200 ky, based on Milankovitch calibration, and within a ~20 ky interval after the Triassic-Jurassic boundary. Differences with previous interpretations of the biostratigraphy can be rationalized as a result of: 1, an over-reliance on comparisons with northern European palynology; 2, over-interpretation of poorly preserved fossils

  18. Dissolution-precipitation reactions and permeability evolution from reactions of CO2-rich aqueous solutions with fractured basalt

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Xiong, W.; Bae, Y.; Sesti, E.; Skemer, P. A.; Giammar, D.; Conradi, M.; Ellis, B. R.; Hayes, S. E.

    2015-12-01

    The injection of CO2 into fractured basalts is one of several possible solutions to mitigate global climate change; however, research on carbonation in natural basalts in relation to carbon sequestration is limited, which impedes our understanding of the processes that may influence the viability of this strategy. We are conducting bench-scale experiments to characterize the mineral dissolution and precipitation and the evolution of permeability in synthetic and natural basalts exposed to CO2-rich fluids. Analytical methods include optical and electron microscopy, electron microprobe, Raman spectroscopy, nuclear magnetic resonance (NMR), and micro X-ray computed tomography (μCT) with variable flow rates. Reactive rock and mineral samples consist of 1) packed powders of olivine or natural basalt, and 2) sintered cores of olivine or a synthetic basalt mixture. Each sample was reacted in a batch reactor at 100 °C, and 100 bars CO2. Magnesite is detected within one day in olivine packed beds, and within 15 days in olivine sintered cores. Forsterite and synthetic basalt sinters were also reacted in an NMR apparatus at 102 °C and 65 bars CO2. Carbonate signatures are observed within 72 days of reaction. Longer reaction times are needed for carbonate precipitation in natural basalt samples. Cores from the Columbia River flood basalt flows that contain Mg-rich olivine and a serpentinized basalt from Colorado were cut lengthwise, the interface mechanically roughened or milled, and edges sealed with epoxy to simulate a fractured interface. The cores were reacted in a batch reactor at 50-150 °C and 100 bars CO2. At lower temperatures, calcite precipitation is rare within the fracture after 4 weeks. At higher temperatures, numerous calcite and aragonite crystals are observed within 1 mm of the fracture entrance along the roughened fracture surface. In flow-through experiments, permeability decreased along the fracture paths within a few hours to several days of flow.

  19. Separated two-phase flow and basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Jaupart, Claude

    1986-11-01

    Fluid dynamical models of volcanic eruptions are usually made in the homogeneous approximation where gas and liquid are constrained to move at the same velocity. Basaltic eruptions exhibit the characteristics of separated flows, including transitions in their flow regime, from bubbly to slug flow in Strombolian eruptions and from bubbly to annular flow in Hawaiian ones. These regimes can be characterized by a parameter called the melt superficial velocity, or volume flux per unit cross section, which takes values between 10-3 and 10-2 m/s for bubbly and slug flow, and about 1 m/s for annular flow. We use two-phase flow equations to determine under which conditions the homogeneous approximation is not valid. In the bubbly regime, in which many bubbles rise through the moving liquid, there are large differences between the two-phase and homogeneous models, especially in the predictions of gas content and pressure. The homogeneous model is valid for viscous lavas such as dacites because viscosity impedes bubble motion. It is not valid for basaltic lavas if bubble sizes are greater than 1 cm, which is the case. Accordingly, basaltic eruptions should be characterized by lower gas contents and lower values of the exit pressure, and they rarely erupt in the mist and froth regimes, which are a feature of more viscous lavas. The two-phase flow framework allows for the treatment of different bubble populations, including vesicles due to exsolution by pressure release in the volcanic conduit and bubbles from the magma chamber. This yields information on poorly constrained parameters including the effective friction coefficient for the conduit, gas content, and bubble size in the chamber. We suggest that the observed flow transitions record changes in the amount and size of gas bubbles in the magma chamber at the conduit entry.

  20. Rare-earth element geochemistry and the origin of andesites and basalts of the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Cole, J.W.; Cashman, K.V.; Rankin, P.C.

    1983-01-01

    Two types of basalt (a high-Al basalt associated with the rhyolitic centres north of Taupo and a "low-Al" basalt erupted from Red Crater, Tongariro Volcanic Centre) and five types of andesite (labradorite andesite, labradorite-pyroxene andesite, hornblende andesite, pyroxene low-Si andesite and olivine andesite/low-Si andesite) occur in the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Rare-earth abundances for both basalts and andesites are particularly enriched in light rare-earth elements. High-Al basalts are more enriched than the "low-Al" basalt and have values comparable to the andesites. Labradorite and labradorite-pyroxene andesites all have negative Eu anomalies and hornblende andesites all have negative Ce anomalies. The former is probably due to changing plagioclase composition during fractionation and the latter to late-stage hydration of the magma. Least-squares mixing models indicate that neither high-Al nor "low-Al" basalts are likely sources for labradorite/labradorite-pyroxene andesites. High-Al basalts are considered to result from fractionation of olivine and clinopyroxene from a garnet-free peridotite at the top of the mantle wedge. Labradorite/labradorite-pyroxene andesites are mainly associated with an older NW-trending arc. The source is likely to be garnet-free but it is not certain whether the andesites result from partial melting of the top of the subducting plate or a hydrated lower portion of the mantle wedge. Pyroxene low-Si andesites probably result from cumulation of pyroxene and calcic plagioclase within labradorite-pyroxene andesites, and hornblende andesites by late-stage hydration of labradorite-pyroxene andesite magma. Olivine andesites, low-Si andesites and "low-Al" basalts are related to the NNE-trending Taupo-Hikurangi arc structure. Although the initial source material is different for these lavas they have probably undergone a similar history to the labradorite/labradorite-pyroxene andesites. All lavas show evidence

  1. Role of melting process and melt-rock reaction in the formation of Jurassic MORB-type basalts (Alpine ophiolites)

    NASA Astrophysics Data System (ADS)

    Renna, Maria Rosaria; Tribuzio, Riccardo; Sanfilippo, Alessio; Thirlwall, Matthew

    2018-04-01

    This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco-Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt-rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco-Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4-0.3 vs. 0.2) and ZrN/YN (0.9-0.6 vs. 0.4-0.3) than that from the Bracco-Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial ɛ Nd from + 8.8 to + 8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint ( ɛ Nd at the time of basalt formation = - 5.5 and - 5.2, respectively). We propose that the Bracco-Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.

  2. Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ghent, Edward D.; Coleman, Robert Griffin; Hadley, Donald G.

    1979-01-01

    A variety of mafic and ultramafic inclusions occur within the pyroclastic components of the Al Birk basalt, erupted on the southern Red Sea coastal plain of Saudi Arabia from Pleistocene time to the present. Depleted harzburgites are the only inclusions contained within the basalts that were erupted through Miocene oceanic crust (15 km thick) in the vicinity of Jizan, whereas to the north in the vicinity of Al Birk, alkali basalts that were erupted through a thicker Precambrian crust (48 km thick) contain mixtures of harzburgites, cumulate gabbro, and websterite inclusions accompanied by large (> 2 cm) megacrysts of glassy alumina-rich clinopyroxene, plagioclase, and spinel. Microprobe analyses of individual minerals from the harzburgites, websterites, and cumulate gabbros reveal variations in composition that can be related to a complex mantle history during the evolution of the alkali basalts. Clinopyroxene and plagioclase megacrysts may represent early phases that crystallized from the alkali olivine basalt magma at depths less than 35 km. Layered websterites and gabbros with cumulate plagioclase and clinopyroxene may represent continuing crystallization of the alkali olivine basalt magma in the lower crust when basaltic magma was not rapidly ascending. It is significant that the megacrysts and cumulate inclusions apparently form only where the magmas have traversed the Precambrian crust, whereas the harzburgite-bearing basalts that penetrated a much thinner Miocene oceanic crust reveal no evidence of mantle fractionation. These alkali olivine basalts and their contained inclusions are related in time to present-day rifting in the Red Sea axial trough. The onshore, deep-seated, undersaturated magmas are separated from the shallow Red Sea rift subalkaline basalts by only 170 km. The contemporaneity of alkaline olivine and subalkaline basalts requires that they must relate directly to the separation of the Arabian plate from the African plate.

  3. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Xu, Ji-Feng; Liu, Yong-Sheng; Li, Jie; Chen, Jian-Lin; Li, Xi-Yao

    2017-05-01

    The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re-Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re-Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re-Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re-Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.

  4. Visible/near-infrared spectra and two-layer modeling of palagonite-coated Basalts

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.

    2001-01-01

    Fine-grained dust coatings on Martian rocks and soils obscure underlying surfaces and hinder mineralogic interpretations of both remote sensing and in-situ observations. We investigate laboratory visible/near-infrared spectra of various thicknesses of palagonite coatings on basalt substrates. We develop a two-layer Hapke scattering model incorporating porosity, grain size, and derived absorption coefficients of palagonite and basalt that reproduces the observed spectra only when the single scattering particle phase function is varied with wavelength.

  5. Volatile Behavior in Lunar and Terrestrial Basalts During Shock: Implications for Martian Magmas

    NASA Technical Reports Server (NTRS)

    Chaklader, Johny; Shearer, C. K.; Hoerz, F.; Newsom, H. E.

    2004-01-01

    The amount of water in martian magmas has significant ramifications for the martian atmosphere-hydrosphere cycle. Large D-enrichments have been observed in kaersutitic amphiboles in Zagami, Chassigny and Shergotty meteorites (delta-D values up to 4400 per mil) suggesting that substantial amounts of H escaped Mars in its past. Furthermore, martian meteorites with inclusions of biotite and apatite imply possible origins in a hydrous mantle. However, whether martian magmas ever possessed considerable proportions of water remains controversial and unclear. The H-content of mica and amphibole melt inclusions has been found to be low, while bulk-rock H2O content is also low ranging from 0.013 to 0.035 wt. % in Shergotty. Hydrous martian magmas were considered responsible for light lithophile element (LLE) zoning patterns observed in Nakhlite and Shergottite pyroxenes. Since LLEs, such as Li and B, partition into aqueous fluids at temperatures greater than 350 C, workers interpreted Li-B depletions in pyroxene rims as evidence that supercritical fluid exsolution occurred during magma degassing. In that many martian basalts experienced substantial shock (15-45 GPa) it is possible that the magmatic volatile record preserved in martian basalts has been disturbed. Previous shock experiments suggest that shock processes may effect water content and H/D. To better understand the possible effects of shock on this volatile record, we are studying the redistribution of volatile elements in naturally and experimentally shocked basalts. Here, we report the initial results from shocked basalts associated with the Lonar Crater, India and an experimentally shocked lunar basalt.

  6. Impact behavior of basalt/epoxy composite: Comparison between flat and twill fabric

    NASA Astrophysics Data System (ADS)

    Papa, I.; Ricciardi, M. R.; Antonucci, V.; Langella, A.; Lopresto, V.

    2018-05-01

    Two types of basalt fibre reinforced epoxy laminates were realized by overlapping flat and twill woven basalt fabrics by resin infusion. Rectangular specimens, cut from the panels were impacted at penetration and at increasing energy values, to investigate the damage onset and propagation. A non-destructive technique, Ultrasound testing (UT), was adopted to investigate the internal damage. Despite the difficulties to obtain information by UT method due to the high amount of signal absorbed, the technique, properly calibrated, proved to be very useful in providing information about the presence, the shape and the extent of the delaminations. The results were compared at the aim to investigate the effect of the fiber architecture (textile). The experimental results indicate a similar impact behavior between basalt flat and twill composites but in the case of the twill a minor delaminated area was detected, even if a higher absorbed energy was recorded

  7. Evolution of mare basalts - The complexity of the U-Th-Pb system

    NASA Technical Reports Server (NTRS)

    Unruh, D. M.; Tatsumoto, M.

    1977-01-01

    An attempt has been made to gain more insight into mare-basalt evolution by performing a very detailed leaching and mineral-separation U-Th-Pb systematics study on mare basalt 15085. It is found that about 20-50% of the U, Th, and Pb reside on the grain boundaries or in the mesostasis and that the Pb-207/Pb-206 ratios of the grain boundaries and crystal interiors are distinctly different. These distinct trends appear to represent either continuous or episodic postcrystallizational disturbances to the U-Th-Pb system of this rock. Using U and Pb partition coefficients, it is concluded that existing two- and three-stage U-Pb evolution models do not accurately describe mare-basalt genesis. An alternative two-stage + KREEP mixing model is proposed as a simple approximation to U-Pb evolution in lunar rocks. Most Rb-Sr and Sm-Nd data are compatible with this model.

  8. Constraining the Rheologic Properties of Channelized Basaltic Flows on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Ramsey, M. S.; Harris, A. J. L.; Crown, D. A.

    2015-12-01

    Basaltic volcanism is ubiquitous on the terrestrial planets and is the most common form of extrusive activity on Earth, with over half of the world's volcanoes consisting largely of basalt. Recently, new eruptions (or new phases of ongoing eruptions) have occurred at Tolbachik in Russia (2012-2013); Bardarbunga in Iceland (2014); Etna in Italy (2014); and Kilauea in Hawaii (2014-2015) emphasizing both the hazard potential and volumetric production of basaltic activity. Furthermore, new high-resolution data of flows on Arsia Mons volcano (Mars) show very similar features. Therefore, this style of effusive volcanism and especially its surface manifestation (lava flows) warrants continued study both from a fundamental science as well as a hazard mitigation point of view. Monitoring flow propagation direction and velocity are critical in these situations and a number of models have evolved over time focused on heat loss and down-flow topography to predict flow advance. In addition to topography, the dominant (internal) factors controlling flow propagation are the discharge rate combined with cooling and increasing viscosity. However, all these models rely on accurate temperature measurements derived from the cooling glassy surface using infrared (IR) non-contact instruments. New laboratory and field-based studies are attempting to characterize the cooling, formation, and dynamics of basaltic surfaces using IR data. Preliminary results are focused on resolving inconsistencies in the derived flow temperature, composition, texture and silicate structure, which can all impact the surface-leaving heat flux. Improved accuracy in these retrievals increases our ability to constrain and model flow surface and interior temperatures. The impact of this improved accuracy has now been assessed using flow model simulations of active terrestrial and well-preserved Martian flows, Results are improving our understanding of the initial eruption conditions of these channelized basaltic

  9. Numerical model of water flow in a fractured basalt vadose zone: Box Canyon Site, Idaho

    NASA Astrophysics Data System (ADS)

    Doughty, Christine

    2000-12-01

    A numerical model of a fractured basalt vadose zone has been developed on the basis of the conceptual model described by Faybishenko et al. [[his issue]. The model has been used to simulate a ponded infiltration test in order to investigate infiltration through partially saturated fractured basalt. A key question addressed is how the fracture pattern geometry and fracture connectivity within a single basalt flow of the Snake River Plain basalt affect water infiltration. The two-dimensional numerical model extends from the ground surface to a perched water body 20 m below and uses an unconventional quasi-deterministic approach with explicit but highly simplified representation of major fractures and other important hydrogeologic features. The model adequately reproduces the majority of the field observation and provides insights into the infiltration process that cannot be obtained by data collection alone, demonstrating its value as a component of field studies.

  10. Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal

    USGS Publications Warehouse

    Jarboe, Nicholas A.; Coe, Robert S.; Renne, Paul R.; Glen, Jonathan M. G.; Mankinen, Edward A.

    2008-01-01

    The Steens Basalt, now considered part of the Columbia River Basalt Group (CRBG), contains the earliest eruptions of this magmatic episode. Lava flows of the Steens Basalt cover about 50,000 km2 of the Oregon Plateau in sections up to 1000 m thick. The large number of continuously exposed, quickly erupted lava flows (some sections contain over 200 flows) allows for small loops in the magnetic field direction paths to be detected. For volcanic rocks, this detail and fidelity are rarely found outside of the Holocene and yield estimates of eruption durations at our four sections of ∼2.5 ka for 260 m at Pueblo Mountains, 0.5 to 1.5 ka for 190 m at Summit Springs, 1–3 ka for 170 m at North Mickey, and ∼3 ka for 160 m at Guano Rim. That only one reversal of the geomagnetic field occurred during the eruption of the Steens Basalt (the Steens reversal at approximately 16.6 Ma) is supported by comparing 40Ar/39Ar ages and magnetic polarities to the geomagnetic polarity timescale. At Summit Springs two 40Ar/39Ar ages from normal polarity flows (16.72 ± ± 0.29 Ma (16.61) and 16.92 ± ± 0.52 Ma (16.82); ± ± equals 2σ error) place their eruptions after the Steens reversal, while at Pueblo Mountains an 40Ar/39Ar age of 16.72 ± ± 0.21 Ma (16.61) from a reverse polarity flow places its eruption before the Steens reversal. Paleomagnetic field directions yielded 50 nontransitional directional-group poles which, combined with 26 from Steens Mountain, provide a paleomagnetic pole for the Oregon Plateau of 85.7°N, 318.4°E, K = 15.1, A95 = 4.3. Comparison of this new pole with a reference pole derived from CRBG flows from eastern Washington and a synthetic reference pole for North America derived from global data implies relative clockwise rotation of the Oregon Plateau of 7.4 ± 5.0° or 14.5 ± 5.4°, respectively, probably due to northward decreasing extension of the basin and range.

  11. Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal

    NASA Astrophysics Data System (ADS)

    Jarboe, Nicholas A.; Coe, Robert S.; Renne, Paul R.; Glen, Jonathan M. G.; Mankinen, Edward A.

    2008-11-01

    The Steens Basalt, now considered part of the Columbia River Basalt Group (CRBG), contains the earliest eruptions of this magmatic episode. Lava flows of the Steens Basalt cover about 50,000 km2 of the Oregon Plateau in sections up to 1000 m thick. The large number of continuously exposed, quickly erupted lava flows (some sections contain over 200 flows) allows for small loops in the magnetic field direction paths to be detected. For volcanic rocks, this detail and fidelity are rarely found outside of the Holocene and yield estimates of eruption durations at our four sections of ˜2.5 ka for 260 m at Pueblo Mountains, 0.5 to 1.5 ka for 190 m at Summit Springs, 1-3 ka for 170 m at North Mickey, and ˜3 ka for 160 m at Guano Rim. That only one reversal of the geomagnetic field occurred during the eruption of the Steens Basalt (the Steens reversal at approximately 16.6 Ma) is supported by comparing 40Ar/39Ar ages and magnetic polarities to the geomagnetic polarity timescale. At Summit Springs two 40Ar/39Ar ages from normal polarity flows (16.72 ± ± 0.29 Ma (16.61) and 16.92 ± ± 0.52 Ma (16.82); ± ± equals 2σ error) place their eruptions after the Steens reversal, while at Pueblo Mountains an 40Ar/39Ar age of 16.72 ± ± 0.21 Ma (16.61) from a reverse polarity flow places its eruption before the Steens reversal. Paleomagnetic field directions yielded 50 nontransitional directional-group poles which, combined with 26 from Steens Mountain, provide a paleomagnetic pole for the Oregon Plateau of 85.7°N, 318.4°E, K = 15.1, A95 = 4.3. Comparison of this new pole with a reference pole derived from CRBG flows from eastern Washington and a synthetic reference pole for North America derived from global data implies relative clockwise rotation of the Oregon Plateau of 7.4 ± 5.0° or 14.5 ± 5.4°, respectively, probably due to northward decreasing extension of the basin and range.

  12. Life and Death of a Flood Basalt: Evolution of a Magma Plumbing System in the Ethiopian Low-Ti Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Rooney, T. O.; Kappelman, J. W.; Yirgu, G.; Ayalew, D.

    2017-12-01

    Continental flood basalt provinces (CFBPs), which are thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insight into melt generation processes in Large Igneous Provinces (LIPs). Despite the utility of CFBPs in probing the composition of mantle plumes, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of this residence within the continental lithosphere provides additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well preserved stratigraphic section from flood basalt initiation to termination, and is thus an important target for study of CFBPs. We examine petrographic and whole rock geochemical variation within a stratigraphic framework and place these observations within the context of the magmatic evolution of the Ethiopian CFBP. We observe multiple pulses of magma recharge punctuated by brief shut-down events and an overall shallowing of the magmatic plumbing system over time. Initial flows are fed by magmas that have experienced deeper fractionation (clinopyroxene dominated and lower CaO/Al2O3 for a given MgO value), likely near the crust-mantle boundary. Subsequent flows are fed by magmas that have experienced shallower fractionation (plagioclase dominated and higher CaO/Al2O3 for a given MgO value) in addition to deeper fractionated magmas. Broad changes in flow thickness and modal mineralogy are consistent with fluctuating changes in magmatic flux through a complex plumbing system and indicate pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. Pulses of less differentiated magmas (MgO > 8 wt%) and high-An composition of plagioclase megacrysts (labradorite to bytownite) suggest a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of flood volcanism, though the magnitude of

  13. Evidence of biological activity in Hawaiian subsurface basalts

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.; Storrie-Lombardi, M. C.; Douglas, S.; Popa, R.; McDonald, G.; di Meo-Savoie, C.

    2003-12-01

    The Hawaii Scientific Drilling Program (HSDP) cored and recovered igneous rock from the surface to a depth of 3109 m near Hilo, Hawaii. Much of the deeper parts of the hole is composed of hyaloclastite (fractured basalt glass that has been cemented in situ with secondary minerals). Some hyaloclastite units have been altered in a manner attributed to microorganisms in volcanic rocks. Samples from one such unit (1336 m to 1404 m below sea level) were examined to test the hypothesis that the alteration was associated with microorganisms. Deep ultraviolet native fluorescence and resonance Raman spectroscopy indicate that nucleic acids and aromatic amino acids are present in clay inside spherical cavities (vesicles) within basalt glass. Chemical mapping shows that phosphorus and carbon were enriched at the boundary between the clay and volcanic glass of the vesicles. Environmental scanning electron microscopy (ESEM) reveals two to three micrometer coccoid structures in these same boundaries. ESEM-linked energy dispersive spectroscopy demonstrated carbon, phosphorous, chloride, and magnesium in these bodies significantly differing from unoccupied neighboring regions of basalt. These observations taken together indicate the presence of microorganisms at the boundary between primary volcanic glass and secondary clays. Amino acids and nucleic acids were extracted from bulk samples of the hyaloclastite unit. Amino acid abundance was low, and if the amino acids are derived from microorganisms in the rock, then there are less than 100,000 cells per gram of rock. Most nucleic acid sequences extracted from the unit were closely related to sequences of Crenarchaeota collected from the subsurface of the ocean floor.

  14. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  15. Origin of primitive ocean island basalts by crustal gabbro assimilation and multiple recharge of plume-derived melts

    NASA Astrophysics Data System (ADS)

    Borisova, Anastassia Y.; Bohrson, Wendy A.; Grégoire, Michel

    2017-07-01

    Chemical Geodynamics relies on a paradigm that the isotopic composition of ocean island basalt (OIB) represents equilibrium with its primary mantle sources. However, the discovery of huge isotopic heterogeneity within olivine-hosted melt inclusions in primitive basalts from Kerguelen, Iceland, Hawaii and South Pacific Polynesia islands implies open-system behavior of OIBs, where during magma residence and transport, basaltic melts are contaminated by surrounding lithosphere. To constrain the processes of crustal assimilation by OIBs, we employed the Magma Chamber Simulator (MCS), an energy-constrained thermodynamic model of recharge, assimilation and fractional crystallization. For a case study of the 21-19 Ma basaltic series, the most primitive series ever found among the Kerguelen OIBs, we performed sixty-seven simulations in the pressure range from 0.2 to 1.0 GPa using compositions of olivine-hosted melt inclusions as parental magmas, and metagabbro xenoliths from the Kerguelen Archipelago as wallrock. MCS modeling requires that the assimilant is anatectic crustal melts (P2O5 ≤ 0.4 wt.% contents) derived from the Kerguelen oceanic metagabbro wallrock. To best fit the phenocryst assemblage observed in the investigated basaltic series, recharge of relatively large masses of hydrous primitive basaltic melts (H2O = 2-3 wt%; MgO = 7-10 wt.%) into a middle crustal chamber at 0.2 to 0.3 GPa is required. Our results thus highlight the important impact that crustal gabbro assimilation and mantle recharge can have on the geochemistry of mantle-derived olivine-phyric OIBs. The importance of crustal assimilation affecting primitive plume-derived basaltic melts underscores that isotopic and chemical equilibrium between ocean island basalts and associated deep plume mantle source(s) may be the exception rather than the rule.

  16. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spane, F.A. Jr.; Vermeul, V.R.

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated usingmore » recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.« less

  17. The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Kerr, A. C.; Marriner, G. F.; Arndt, N. T.; Tarney, J.; Nivia, A.; Saunders, A. D.; Duncan, R. A.

    1996-04-01

    Gorgona Island, Colombia is remarkable not only because it contains the only Phanerozoic komatiites, but also because it has mafic to ultramafic lavas with a wide range of compositions, from moderately enriched to extremely depleted (relative to Bulk Earth). The komatiite flows are, in many respects similar to Archaean komatiites; they formed from MgO-rich (18%) liquids and have upper spinifex zones and lower cumulate zones. The cumulate zones of Archaean komatiites contain many solid grains, in contrast more than 90% of the olivine in the Gorgona cumulates is highly skeletal. This combined with the fact that the Gorgona cumulate zones are thinner than those in Archaean komatiites, suggests that the komatiite magma became strongly superheated en route to the surface. The komatiites have trace element contents intermediate between those of the basalts and the ultramafic tuffs. Some basalts have isotope compositions indicative of long-term enrichment in incompatible elements, whereas other basalts and ultramafic volcanics have isotopic signatures that imply corresponding depletion. It is apparent that the plume source region of the Gorgona magmas was markedly heterogeneous, with at least two source components contributing to the observed variation in composition. This heterogeneity may have resulted from the incorporation of different components into the plume source, or it may be the result of complex melting and melt extraction processes during the ascent of a heterogeneous plume. Despite earlier suggestions that there may have been a significant age gap between depleted komatiite and basalt flows and the enriched basalts, new 40Ar- 39Ar dating of basalts and gabbros are more consistent with all being generated at 87 Ma during formation of the Caribbean/Colombian plateau, possibly at the Galapagos hotspot.

  18. Phase equilibria modeling in igneous petrology: use of COMAGMAT model for simulating fractionation of ferro-basaltic magmas and the genesis of high-alumina basalt

    NASA Astrophysics Data System (ADS)

    Ariskin, Alexei A.

    1999-05-01

    A new version of COMAGMAT-3.5 model designed for computer simulations of equilibrium and fractional crystallization of basaltic magmas at low to high pressures is presented. The most important modifications of COMAGMAT include an ability to calculate more accurately the crystallization of magnetite and ilmenite, allowing the user to study numerically the effect of oxygen fugacity on basalt magma fractionation trends. Methodological principles of the use of COMAGMAT were discussed based on its thermodynamical and empirical basis, including specific details of the model calibration. Using COMAGMAT-3.5 a set of phase equilibria calculations (called Geochemical Thermometry) has been conducted for six cumulative rocks from the Marginal Border Series of the Skaergaard intrusion. As a result, initial magma temperature (1165±10°C) and trapped melt composition proposed to be parental magma to the Skaergaard intrusion were determined. Computer simulations of perfect fractionation of this composition as well as another proposed parent produced petrochemical trends opposite to those followed from natural observations. This is interpreted as evidence for an initial Skaergaard magma containing a large amount of olivine and plagioclase crystals (about 40-45%), so that the proposed and calculated parents are related through the melt trapped in the crystal-liquid mixture. This promotes the conclusion that the Skaergaard magma fractionation process was intermediate between equilibrium and fractional crystallization. In this case the classic Wager's trend should be considered an exception rather than a rule for the differentiation of ferro-basaltic magmas. A polybaric version of COMAGMAT has been applied for the genetic interpretation of a volcanic suite from the Klyuchevskoi volcano, Kamchatka, Russia. To identify petrological processes responsible for the observed suite ranging from high-magnesia to high-alumina basalts, we used the model to simulate the Klyuchevskoi suite

  19. Atmospheric Science Research at the Whiteface Mountain Adirondack High Peaks Observatory

    NASA Astrophysics Data System (ADS)

    Schwab, J. J.; Brandt, R. E.; Casson, P.; Demerjian, K. L.; Crandall, B. A.

    2014-12-01

    The Atmospheric Sciences Research Center established an atmospheric observatory at Whiteface Mountain in the Adirondacks in 1961. The current mountain top observatory building was built by the University at Albany in 1969-70 and the New York State Department of Environmental Conservation (DEC) began ozone measurements at this summit location in 1973. Those measurements continue to this day and constitute a valuable long term data record for tropospheric ozone in the northeastern U.S. The elevation of the summit is 1483 m above sea level, and is roughly 90 m above the tree line in this location. With a mean cloud base height of less than 1100 m at the summit, it is a prime location for cloud research. The research station headquarters, laboratories, offices, and a second measurement site are located at the Marble Mountain Lodge, perched on a shoulder northeast of the massif at an elevation of 604 m above sea level. Parameters measured at the site include meteorological variables, trace gases, precipitation chemistry, aerosol mass and components, and more. Precipitation and cloud chemistry has a long history at the lodge and summit locations, respectively, and continues to this day. Some data from the 40-year record will be shown in the presentation. In the late 1980's the summit site was outfitted with instrumentation to measure oxides of nitrogen and other ozone precursors. Measurements of many of these same parameters were added at the lodge site and continue to this day. In this poster we will give an overview of the Whiteface Mountain Observatory and its two measurement locations. We will highlight the parameters currently being measured at our sites, and indicate those measured by ASRC, as well as those measured by other organizations. We will also recap some of the historical activities and measurement programs that have taken place at the site, as alluded to above. Also included will be examples of the rich archive of trends data for gas phase species

  20. An anomalous basaltic meteorite from the innermost main belt.

    PubMed

    Bland, Philip A; Spurny, Pavel; Towner, Martin C; Bevan, Alex W R; Singleton, Andrew T; Bottke, William F; Greenwood, Richard C; Chesley, Steven R; Shrbeny, Lukas; Borovicka, Jiri; Ceplecha, Zdenek; McClafferty, Terence P; Vaughan, David; Benedix, Gretchen K; Deacon, Geoff; Howard, Kieren T; Franchi, Ian A; Hough, Robert M

    2009-09-18

    Triangulated observations of fireballs allow us to determine orbits and fall positions for meteorites. The great majority of basaltic meteorites are derived from the asteroid 4 Vesta. We report on a recent fall that has orbital properties and an oxygen isotope composition that suggest a distinct parent body. Although its orbit was almost entirely contained within Earth's orbit, modeling indicates that it originated from the innermost main belt. Because the meteorite parent body would likely be classified as a V-type asteroid, V-type precursors for basaltic meteorites unrelated to Vesta may reside in the inner main belt. This starting location is in agreement with predictions of a planetesimal evolution model that postulates the formation of differentiated asteroids in the terrestrial planet region, with surviving fragments concentrated in the innermost main belt.

  1. Valence State Partitioning of Cr and V Between Olivine-Melt and Pyroxene-Melt in Experimental Basalts of a Eucritic Composition

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Jones, J. H.; Le, L.

    2017-01-01

    The partitioning of multivalent elements in basaltic systems can elucidate the oxygen fugacity (fO2) conditions under which basalts formed on planetary bodies (Earth, Moon, Mars, asteroids). Chromium and V are minor and trace elements in basaltic melts, partition into several minerals that crystallize from basaltic melts, exist in multiple valence states at differing fO2 conditions, and can therefore be used as oxybarometers for basaltic melts. Chromium is mostly 3+ in terrestrial basaltic melts at relatively high fO2 values (= IW+3.5), and mostly 2+ in melts at low fO2 values (= IW-1), such as those on the Moon and some asteroids. At intermediate fO2s, (i.e., IW-1 to IW+3.5), basaltic melts contain both Cr3+ and Cr2+. Vanadium in basaltic melts is mostly 4+ at high fO2, mostly 3+ at low fO2, and a mix of V3+ and V4+ at intermediate fO2 con-ditions. Understanding the partitioning of Cr and V into silicate phases with changing fO2 is therefore critical to the employment of Cr and V oxybarometers. In this abstract we examine the equilibrium partitioning of Cr and V between olivine/melt and pyroxene/melt in experimental charges of a eucritic composition produced at differing fO2 conditions. This study will add to the experimental data on DCr and DV (i.e., olivine/melt, pyroxene/melt) at differing fO2, and in turn these D values will be used to assess the fO2 of eucrite basalts and perhaps other compositionally similar planetary basalts.

  2. Origin of major element chemical trends in DSDP Leg 37 basalts, Mid-Atlantic Ridge

    USGS Publications Warehouse

    Byerly, G.R.; Wright, T.L.

    1978-01-01

    In this paper we summarize the major element chemical variation for basalts from the Deep Sea Drilling Project Leg 37 and relate it to stratigraphic position in each of five drilling sites. Least-squares techniques are successfully used to quantify the nature and extent of alteration in these basalts, and to correct the major element analysis back to a magmatic, or alteration-free, composition on the assumption that alteration takes place in two ways: (1) secondary minerals are introduced into veins and vesicles, and (2) CO2 and H2O react with components in the rock to form a simple alteration assemblage. A chemical stratigraphy is defined for these basalts by grouping lavas whose chemistries are related by low-pressure phenocryst-liquid differentiation as identified by least-squares calculation. Major chemical-stratigraphic units are as much as 200 m thick; correlations of these units can be made between the holes at site 332 (about 100 m apart), but not between the other sites. Compositions of parental magmas are calculated by extrapolating low-pressure variations to a constant value of 9% MgO. The differences in these extrapolated compositions reflect high-pressure processes, and suggest that clinopyroxene may be an important phase in either intermediate-level fractionation of basaltic liquids, or as a residual phase during the partial melting which produces these basaltic liquids. Several of the basaltic liquids calculated as parental to the Leg 37 basalts have CaO contents greater than 14% and indicate that the oceanic mantle is richer in CaO and Al2O3 than values used in pyrolite models for the upper mantle. A model for magma generation and eruption beneath the Mid-Atlantic Ridge embodies the following characteristics: 1. (1) Separate magma batches are generated in the mantle. 2. (2) Each of these may be erupted directly or stored at shallow depth where significant fractionation takes place. Common fractionation processes are inferred to be gravitative

  3. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  4. A Modified CIPW Norm Calculation for Lunar Mare Basalts

    NASA Technical Reports Server (NTRS)

    Milliken, R. E.; Basu, A.

    2000-01-01

    CIPW norms of lunar mare basalts are anomalously low in pyroxene. A modified norm calculation allowing higher Ca, Ti, Al, Cr, and Mn in di' and hy' obtains closer matches between normative and modal mineralogy.

  5. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun

    2016-03-01

    Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.

  6. Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts

    NASA Astrophysics Data System (ADS)

    Draper, David S.; Johnston, A. Dana

    1992-12-01

    We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10 20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C 1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than ˜12 kbar.

  7. Basaltic rocks analyzed by the Spirit Rover in Gusev Crater.

    PubMed

    McSween, H Y; Arvidson, R E; Bell, J F; Blaney, D; Cabrol, N A; Christensen, P R; Clark, B C; Crisp, J A; Crumpler, L S; Des Marais, D J; Farmer, J D; Gellert, R; Ghosh, A; Gorevan, S; Graff, T; Grant, J; Haskin, L A; Herkenhoff, K E; Johnson, J R; Jolliff, B L; Klingelhoefer, G; Knudson, A T; McLennan, S; Milam, K A; Moersch, J E; Morris, R V; Rieder, R; Ruff, S W; De Souza, P A; Squyres, S W; Wänke, H; Wang, A; Wyatt, M B; Yen, A; Zipfel, J

    2004-08-06

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mössbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  8. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    USGS Publications Warehouse

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  9. Basaltic rocks analyzed by the Spirit Rover in Gusev Crater

    NASA Technical Reports Server (NTRS)

    McSween, H. Y.; Arvidson, R. E.; Bell, J. F., III; Blaney, D.; Cabrol, N. A.; Christensen, P. R.; Clark, B. C.; Crisp, J. A.; Crumpler, L. S.; DesMarais, D. J.; hide

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mossbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  10. Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands

    USGS Publications Warehouse

    Clague, D.A.; Holcomb, R.T.; Sinton, J.M.; Detrick, R. S.; Torresan, M.E.

    1990-01-01

    The North Arch volcanic field is located north of Oahu on the Hawaiian Arch, a 200-m high flexural arch formed by loading of the Hawaiian Islands. These flood basalt flows cover an area of about 25,000 km2; the nearly flat-lying sheet-like flows extend about 100 km both north and south from the axis of the flexural arch. Samples from 26 locations in the volcanic field range in composition from nephelinite to alkalic basalt. Ages estimated from stratigraphy, thickness of sediment on top of the flows, and thickness of palagonite alteration rinds on the recovered lavas, range from about 0.75-0.9 Ma for the youngest lavas to somewhat older than 2.7 Ma for the oldest lavas. Most of the flow field consists of extensive sheetflows of dense basanite and alkalic basalt. Small hills consisting of pillow basalt and hyaloclastite of mainly nephelinite and alkalic basalt occur within the flow field but were not the source vents for the extensive flows. Many of the vent lavas are highly vesicular, apparently because of degassing of CO2. The lavas are geochemically similar to the rejuvenated-stage lavas of the Koloa and Honolulu Volcanics and were generated by partial melting of sources similar to those of the Koloa Volcanics. Prior to eruption, these magmas may have accumulated at or near the base of the lithosphere in a structural trap created by upbowing of the lithosphere. ?? 1990.

  11. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    USGS Publications Warehouse

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  12. What Factors Control Platinum-Group Element (PGE) Abundances in Basalts From the Ontong Java Plateau?

    NASA Astrophysics Data System (ADS)

    Chazey, W. J.; Neal, C. R.

    2002-12-01

    Eleven samples encompassing four sites drilled by Ocean Drilling Program Leg 192 to the Ontong Java Plateau (OJP) were analyzed for major, trace and platinum-group (PGEs: Ir, Ru, Rh, Pt, and Pd) elements. Based on major and trace element chemistry, these are divided into two groups: a primitive group, which was newly discovered on Leg 192, and Kwaimbaita-type basalts, which are ubiquitous on the OJP (cf. Tejada et al., 2002, J. Pet. 43:449). The primitive group is relatively enriched in MgO, Ni, and Cr and relatively depleted in incompatible elements compared to the Kwaimbaita-type basalts. Petrography indicates that the fractionating phases during emplacement of both types of basalts were olivine and Cr-spinel +/- plagioclase +/- cpx. Normalized PGE profiles are fractionated, but exhibit a flattening between Ru and Ir and occasionally an enrichment in Ir. It has been shown that chromite can preferentially incorporate Os and Ru (Kd ?150) over Ir (Kd ?100), which may account for the Ir and Ru systematics. We do not consider sulfide to be a factor in fractionating the PGEs because it is either absent or present as a trace phase in these basalts and the OJP basalts are sulfur undersaturated (Michael and Cornell, 1996, EOS 77:714). Additionally, the primitive samples from the OJP also have Cu/Pd ratios (4500-8000) that are roughly similar to primitive mantle (7300), and have a generally flat transition from Pd to Y on a primitive mantle-normalized plot. It is unlikely that these samples reached sulfur saturation. The Kwaimbaita-type basalts have slightly elevated Cu/Pd ratios (9000-14000). While there are subtle differences between the PGE profiles of basalts from the Leg 192 drill cores compared to OJP basalts from subaerial outcrops in the Solomon Islands (e.g., the former have general lower Pt/Rh and higher Rh/Ru ratios), it is apparent that silicate and oxide phases are controlling the PGE profiles and abundances. For example, the six samples analyzed from Site

  13. A Structural and Paleomagnetic Analysis of the Basalts of Summit Creek, central Cascades, Washington

    NASA Astrophysics Data System (ADS)

    Fetrow, A. C.; Valentine, M. J.

    2013-12-01

    This study is a detailed analysis of the structural geology and paleomagnetism of the Basalts of Summit Creek. Located southeast of Mount Rainier, this section of layered basaltic flows formed during the Eocene Epoch (55 to 45 Ma). During the Eocene, this region underwent a time of unique volcanism that has shaped the modern landscape of the Pacific Northwest. Over the course of the available field season, five excursions were taken into the field to conduct structural mapping and paleomagnetic core drilling. Although exposure is limited by vegetation, nineteen sites were mapped and ten of those were drilled for cores. Cores were analyzed using alternating field demagnetization and thermal demagnetization. Mapping data was integrated into a preliminary structural map of the section. This study attempts to provide a greater understanding of the emplacement and deformation of the Basalts of the Summit Creek and any possible relationship with the Crescent Basalts located in the Olympic Peninsula of Washington state. Once paleomagnetic directions were corrected for core orientation and bedding tilt, none of the flows yielded orientations consistent enough to provide reliable magnetic directions for the section. This scatter is believed to be due, in part, to hydrothermal alteration that has subsequently influenced the Basalts of the Summit Creek. The scattered magnetic orientations are quite similar to those observed in the Crescent Basalts. This is does not demonstrate a definite connection between the two chemically similar Eocene volcanic sequences, but it does provide another similarity on the growing list. The lava flows along the north, middle, and south of the area and, with a few exceptions, have a northeast strike and a northwest dip. Along the middle transect of the section, nearest to Pony Creek and Carleton Ridge, bedding orientation has greater variability and suggests that there may still be unidentified structures that are influencing the area. Reflected

  14. Geomagnetic paleointensities by the Thelliers' method from submarine pillow basalts: Effects of seafloor weathering

    USGS Publications Warehouse

    Gromme, Sherman; Mankinen, Edward A.; Marshall, Monte; Coe, Robert S.

    1979-01-01

    Measurements of geomagnetic paleointensity using the Thelliers' double‐heating method in vacuum have been made on 10 specimens of submarine pillow basalt obtained from 7 fragments dredged from localities 700,000 years old or younger. In the magnetic minerals, the titanium/iron ratio parameter x and the cation deficiency (oxidation) parameter x were determined by X‐ray diffraction and Curie temperature measurement. Fresh material (z ≅ 0) provided excellent results: most of the natural remanent magnetization (NRM) could be thermally demagnetized before the magnetic minerals became altered, and the NRM‐TRM lines were straight and well constrained, and geologically reasonable paleointensities were obtained. Somewhat oxidized material (z ≅ 0.2) also provided apparently valid paleointensities: values were similar to those from fresh specimens cut from the same fragments, although only half or less of the NRM could be thermally demagnetized before alteration of the magnetic minerals. More highly oxidized material (z ≅ 0.6) gave a result seriously in error: the paleointensity value is much too low, because of continuous disproportionation of titanomaghemite during the heating experiments and because seafloor weathering had decreased the NRM intensity. From limited published data, the extent of oxidation of titanomagnetite to cation deficient titanomaghemite in pillow basalt exposed on the seafloor appears to be approximately z = 0.3 at 0.2–0.5 m.y., z = 0.6 at 1 m.y., and z = 0.8–1.0 at 10–100 m.y. This implies that valid paleointensities can be obtained from exposed submarine basalt, but only if the basalt is younger than a few hundred thousand years. Equally good paleointensities were obtained from strongly magnetized (L‐type) basalt and moderately magnetized (L‐type) basalt. The degree of low‐temperature oxidation of cubic iron‐titanium oxides in submarine basalts correlates very well with the diminution of amplitude of linear

  15. Mars weathering analogs - Secondary mineralization in Antarctic basalts

    NASA Technical Reports Server (NTRS)

    Berkley, J. L.

    1982-01-01

    Alkalic basalt samples from Ross Island, Antarctica, are evaluated as terrestrial analogs to weathered surface materials on Mars. Secondary alteration in the rocks is limited to pneumatolytic oxidation of igneous minerals and glass, rare groundmass clay and zeolite mineralization, and hydrothermal minerals coating fractures and vesicle surfaces. Hydrothermal mineral assemblages consist mainly of K-feldspar, zeolites (phillipsite and chabazite), calcite, and anhydrite. Low alteration rates are attributed to cold and dry environmental factors common to both Antarctica and Mars. It is noted that mechanical weathering (aeolian abrasion) of Martian equivalents to present Antarctic basalts would yield minor hydrothermal minerals and local surface fines composed of primary igneous minerals and glass but would produce few hydrous products, such as palagonite, clay or micas. It is thought that leaching of hydrothermal vein minerals by migrating fluids and redeposition in duricrust deposits may represent an alternate process for incorporating secondary minerals of volcanic origin into Martian surface fines.

  16. Trace Element Abundances in Eucrite Basalts: Enrichment or Depletion?

    NASA Astrophysics Data System (ADS)

    Castle, N. R.

    2018-05-01

    It is not clear how incompatible trace element (ITE) variation in eucrite basalts originated. Here, mechanisms for relative ITE enrichment or depletion are experimentally evaluated in an attempt to reconcile the Stannern and main group eucrites.

  17. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  18. The spatial and temporal distribution of lunar mare basalts as deduced from analysis of data for lunar meteorites

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Neukum, G.; Nyquist, L.

    2010-12-01

    In this work we analyze data for lunar meteorites with emphasis on the spatial and temporal distribution of lunar mare basalts. The data are mostly from the Lunar Meteorite Compendium ( http://www-curator.jsc.nasa.gov/antmet/lmc/contents.cfm cited hereafter as Compendium) compiled by Kevin Righter, NASA Johnson Space Center, and from the associated literature. Analysis of the data showed that (i) a significant part of the lunar meteorite source craters are not larger than hundreds of meters in diameter; (ii) cryptomaria seem to be rather abundant in lunar highlands; (iii) the ratios of lunar meteorites belonging to three broad petrologic groups (mare basalt/gabbro, feldspatic highland breccias, and mingled breccias which are a mixture of mare and highland components) seem to be roughly proportional to the areal distribution of these rocks on the lunar surface; and (iv) the meteorite mare basalt ages show a range from ˜2.5 to 4.3 Ga and fill the gaps in the Apollo/Luna basalt age distribution. The ages of mare basalt clasts from mingled breccias seem to be systematically higher than those of "normal" mare basalts, which supports the suggestion that mingled breccias originated mostly from cryptomaria.

  19. Basalt-flow imaging using a high-resolution directional borehole radar

    USGS Publications Warehouse

    Moulton, C.W.; Wright, D.L.; Hutton, S.R.; Smith, D.V.G.; Abraham, J.D.

    2002-01-01

    A new high-resolution directional borehole radar-logging tool (DBOR tool) was used to log three wells at the Idaho National Engineering and Environmental Laboratory (INEEL). The radar system uses identical directional cavity-backed monopole transmitting and receiving antennas that can be mechanically rotated while the tool is stationary or moving slowly in a borehole. Faster reconnaissance logging with no antenna rotation was also done to find zones of interest. The microprocessor-controlled motor/encoder in the tool can rotate the antennas azimuthally, to a commanded angle, accurate to a within few degrees. The three logged wells in the unsaturated zone at the INEEL had been cored with good core recovery through most zones. After coring, PVC casing was installed in the wells. The unsaturated zone consists of layered basalt flows that are interbedded with thin layers of coarse-to-fine grained sediments. Several zones were found that show distinctive signatures consistent with fractures in the basalt. These zones may correspond to suspected preferential flow paths. The DBOR data were compared to core, and other borehole log information to help provide better understanding of hydraulic flow and transport in preferential flow paths in the unsaturated zone basalts at the INEEL.

  20. The degassing and crystallisation behaviour of basaltic lavas

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Tuffen, H.; Pinkerton, H.; James, M. R.

    2010-12-01

    Degassing is a fundamental volcanic process that can play a major role in controlling eruptive styles. Volatile loss during magma ascent and decompression increases the liquidus temperature of the residual melt, resulting in undercooling that can trigger crystallisation (1,2). Late-stage crystallisation and vesiculation are significant factors in controlling the eruptive behaviour of volcanoes of intermediate composition (2), but their effects on basaltic volcanic activity have yet to be fully investigated. We present the results of experiments designed to measure the degassing and crystallisation behaviour of volcanic rocks at temperatures up to 1250°C, using thermo-gravimetric analysis coupled with differential scanning calorimetry and mass spectrometry (TGA-DSC-MS). During TGA-DSC-MS analysis, volatiles released from a sample under a controlled heating programme are identified in a mass spectrometer whilst changes to the sample weight and heat flow are simultaneously recorded. By subjecting samples of basaltic lava and bombs to two heating cycles, we have shown that the onset of degassing (mass loss) is systematically followed by crystallisation (exothermic events) on the first heating cycle. During the second cycle, when the sample has been fully degassed, no mass loss or crystallisation are recorded. Our results also highlight complexities in the processes; in some cases up to four pulses of degassing and crystallisation have been identified during a single heating cycle. Our results allow us to measure the total volatile content of samples, the onset temperatures of degassing and crystallisation and the time lag between the two processes, and the enthalpy, hence percentage, of crystallisation taking place. These results have important implications for our understanding of basaltic volcanic eruptions. During effusive basaltic eruptions, lava can travel many kilometres, threatening property and infrastructure. The final areal flow extent is partly dependent on

  1. Paleointensity of the 1.3 Ga Gardar Basalts, Southern Greenland

    NASA Astrophysics Data System (ADS)

    Carnes, L. K.; Kodama, K. P.

    2017-12-01

    Biggin et al. (2015) suggest that inner core nucleation (ICN) may have occurred 1.3 Ga based on Thomas's (1993) high paleointensity result for the Gardar Basalts in the Eriksfjord Formation of southern Greenland (VDMs up to 150 ZAm2). However, this result has been found to contradict the timing of ICN from recent thermal evolution models and modern paleointensity studies from nearly coeval rocks. We sampled the Gardar Basalts to conduct a modern paleointensity study to check the results of the Thomas (1993) study. We report results from a Thellier-Thellier experiment on 106 Gardar basalt samples collected from 39 flows using the IZZI protocol with pTRM and tail checks. Hysteresis measurements and FORC diagrams indicate that pseudo-single domain magnetite (Curie temperature of 580° C based on χ vs T) is the dominant magnetic mineral in the basalts. Low-temperature demagnetization (LTD) did not improve the paleointensity results so standard measurements of heating in a nitrogen controlled atmosphere are reported here. Thomas (1993) only interpreted his paleointensity results up to 450˚C and found a steep slope in the Arai plots indicating a high paleointensity. Heating at temperatures up to the Curie point showed a second component of magnetization and two slope behavior on the Arai plots with the high temperature results showing lower paleointensities. Between temperatures of 520-580 °C, good results were found for 35 samples yielding an average paleointensity of 5.02±4.32 μT. Thermal demagnetization yielded a mean direction for these flows of D=276.5˚, I=18.9˚, K=11.0, N=33. Based on the paleolatitude from the NRM measurements, an average virtual dipole moment (VDM) of 13.2 ± 11.3 ZAm2 was obtained for 19 of the Gardar flows based on 35 sample measurements. The best results came from the lower flow sequence far from the Illímaussaq intrusion. These VDMs are significantly lower than the previously published Gardar Basalt paleointensity results, suggesting

  2. Numerically Simulating Carbonate Mineralization of Basalt with Injection of Carbon Dioxide into Deep Saline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.

    2006-07-08

    The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock

  3. Crystallization of oxidized, moderately hydrous arc basalt at mid-to-lower crustal pressures

    NASA Astrophysics Data System (ADS)

    Blatter, D. L.; Sisson, T. W.; Hankins, W. B.

    2012-12-01

    Decades of experimental work show that dry, reduced, subalkaline basalts differentiate to produce tholeiitic (high Fe/Mg) daughter liquids, however the influences of H2O and oxidation on differentiation paths are not well established. Accordingly, we performed crystallization experiments on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic lavas erupted in the Cascades magmatic arc near Mount Rainier, Washington. Starting material was synthesized with 3 wt% H2O and run in 2.54 cm piston-cylinder vessels at 900, 700, and 400 MPa and 1200 to 925 degrees C. Samples were contained in Au75Pd25 capsules pre-saturated with Fe by reaction with magnetite at controlled fO2. Oxygen fugacity was controlled during high-pressure syntheses by the double capsule method using Re-ReO2 plus H2O-CO2 vapor in the outer capsule, mixed to match the expected fH2O of the vapor-undersaturated sample. Crystallization was similar at all pressures with a high temperature interval consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, FeTi-oxides replace spinel, olivine dissolves, and finally amphibole appears. Liquids at 900 MPa track along Miyashiro's (1974) tholeiitic vs. calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline by ~57 wt% SiO2 and greater. Although these evolved liquids are similar in most respects to common calc-alkaline andesites, they differ in having low-CaO due to early and abundant crystallization of augite prior to plagioclase, with the result that they become peraluminous (ASI: Al/(Na+K+Ca)>1) by ~55 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer, 2006 and references therein). A compilation of >7000 analyses of volcanic and intrusive rocks from the Cascades and the Sierra Nevada batholith shows that ASI in arc magmas increases continuously and linearly with SiO2 from

  4. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya: Petrogenesis

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    Strong mixing trends on a (Th-230/Th-232) versus Th diagram show that the basalts are mixed magmas which have undergone interaction with the crust. Instantaneous Th/U ratios are less than time integrated ones but these exceed the Th/U ratios in the MORB and OIB sources. This indicates that the mantle may have undergone some metasomatic fluxing, crustal contamination of the basalts will also enhance these ratios. Early activity on the Akira plain is represented by early basalts and hawaiites. The early basalt samples are known to predate the earliest comendites. The most recent phase of activity is represented by another cinder cone 40-50 m high being feldspar and clinopyroxene phyric. Inclusions which occur in the comendites vary in size and distribution. The largest and most porphyritic are the trachytes (up to 40 cm) with alkali feldspar phases up to 6 mm and small pyroxenes in the ground mass. The second set of inclusions are smaller (up to 10 cm) and are largely aphyric. The distribution of the inclusions are not uniform, the Broad Acres (C5) lavas contain 2-5 percent. The size of the inclusions decrease from south to north, as does the abundance of the trachytic inclusions. The major element variations in the Naivasha basalts, hawaiites and magmatic inclusions are discussed.

  5. Temperature constraints on the Ginkgo flow of the Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Ho, Anita M.; Cashman, Katharine V.

    1997-05-01

    This study provides the first quantitative estimate of heat loss for a Columbia River Basalt Group flow. A glass composition-based geothermometer was experimentally calibrated for a composition representative of the 500-km-long Ginkgo flow of the Columbia River Basalt Group to measure temperature change during transport. Melting experiments were conducted on a bulk sample at 1 atm between 1200 and 1050 °C. Natural glass was sampled from the margin of a feeder dike near Kahlotus, Washington, and from pillow basalt at distances of 120 km (Vantage, Washington), 350 km (Molalla, Oregon), and 370 km (Portland, Oregon). Ginkgo basalt was also sampled at its distal end at Yaquina Head, Oregon (500 km). Comparison of the glass MgO content, K2O in plagioclase, and measured crystallinities in the experimental charges and natural samples tightly constrains the minimum flow temperature to 1085 ± 5 °C. Glass and plagioclase compositions indicate an upper temperature of 1095 ± 5 °C; thus the maximum temperature decrease along the flow axis of the Ginkgo is 20 °C, suggesting cooling rates of 0.02 0.04 °C/km. These cooling rates, substantially lower than rates observed in active and historic flows, are inconsistent with turbulent flow models. Calculated melt temperatures and viscosities of 240 750 Pa · s allow emplacement either as a fast laminar flow under an insulating crust or as a slower, inflated flow.

  6. Apollo 12 feldspathic basalts 12031, 12038, and 12072; petrology, comparison and interpretations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaty, E.W.; Hill, S.M.R.; Albee, A.L.

    1979-01-01

    Modal and chemical data indicate that 12072, 12038, and 12031, the Apollo 12 feldspathic basalts, form a well-defined group which cannot be related to the other Apollo 12 rock types. 12072 contains phenocrysts of olivine and pigeonite and microphenocrysts of Cr-spinel set in a fine-grained, variolitic groundmass. 12038 is a medium-grained, equigranular basalt with a texture indicating it was multiply saturated. 12031 is a coarse-grained rock with granular to graphic intergrowths of pyroxene and plagioclase; it was also multiply saturated. Petrologic observations, as well as the bulk chemistry, are consistent with the interpretation that 12031 could be derived from 12072more » through fractionation of Cr-spinel, olivine, and pigeonite, the observed phenocryst assemblage. 12038, however, contains more pigeonite, less olivine, three times as much Ca-phosphate minerals, one-fifth as much troilite, and much more sodic plagioclase than 12072. These differences indicate that 12038 must have come from a separate igneous body. Consideration of the bulk compositions indicates that neither 12072 and 12031 nor 12038 could have been derived from the Apollo 12 olivine, pigeonite, or ilmenite basalts by crystal--liquid fractionation. The general petrologic similarities between 12072, 12031, and the other Apollo 12 basalts suggests that they were produced in either the same or similar source regions. 12038, however, is petrologically and chemically unique, and is probably exotic to the Apollo 12 landing site.« less

  7. Consortium reports on lunar meteorites Yamato 793169 and Asuka 881757, a new type of mare basalt

    NASA Technical Reports Server (NTRS)

    Yanai, Keizo; Takeda, Hiroshi; Lindstrom, M. M.; Tatsumoto, M.; Torigoe, N.; Misawa, K.; Warren, P. H.; Kallemeyn, G. W.; Koeberl, C.; Kojima, H.

    1993-01-01

    Consortium studies on lunar meteorites Yamato 793169 and Asuka 881757 (formerly Asuka-31) were performed to characterize these new samples from unknown locations in the lunar mare. Both meteorites are coarse-grained mare rocks having low Mg/Fe ratios (bulk mg'=30-35) and low TiO2 (1.5-2.5 percent in homogenized bulk samples). They are intermediate between VLT and low-Ti mare basalts. Although these meteorites are not identical to each other, their mineral and bulk compositions, isotopic systematics, and crystallization ages are remarkably similar and distinct from those of all other mare basalts. They appear to represent a new type of low-Ti mare basalt that crystallized at about 3.9Ga. These meteorites are inconsistent with the canonical correlation between the TiO2 contents and ages of mare basalts and suggest that our knowledge of lunar volcanism is far from complete.

  8. KREEP basalt petrogenesis: Insights from 15434,181

    NASA Astrophysics Data System (ADS)

    Cronberger, Karl; Neal, Clive R.

    2017-05-01

    Returned lunar KREEP basalts originated through impact processes or endogenous melting of the lunar interior. Various methods have been used to distinguish between these two origins, with varying degrees of success. Apollo 15 KREEP basalts are generally considered to be endogenous melts of the lunar interior. For example, sample 15434,181 is reported to have formed by a two-stage cooling process, with large orthopyroxene (Opx) phenocrysts forming first and eventually cocrystalizing with smaller plagioclase crystals. However, major and trace element analyses of Opx and plagioclase coupled with calculated equilibrium liquids are inconsistent with the large orthopyroxenes being a phenocryst phase. Equilibrium liquid rare earth element (REE) profiles are enriched relative to the whole rock (WR) composition, inconsistent with Opx being an early crystallizing phase, and these are distinct from the plagioclase REE equilibrium liquids. Fractional crystallization modeling using the Opx equilibrium liquids as a parental composition cannot reproduce the WR values even with crystallization of late-stage phosphates and zircon. This work concludes that instead of being a phenocryst phase, the large Opx crystals are actually xenocrysts that were subsequently affected by pyroxene overgrowths that formed intergrowths with cocrystallizing plagioclase.

  9. Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism

    NASA Astrophysics Data System (ADS)

    Leeman, William P.; Smith, Diane R.; Hildreth, Wes; Palacz, Zen; Rogers, Nick

    1990-11-01

    Major volcanoes of the Southern Washington Cascades (SWC) include the large Quaternary stratovolcanoes of Mount St. Helens (MSH) and Mount Adams (MA) and the Indian Heaven (IH) and Simcoe Mountain (SIM) volcanic fields. There are significant differences among these volcanic centers in terms of their composition and evolutionary history. The stratovolcanoes consist largely of andesitic to dacitic lavas and pyroclastics with minor basalt flows. IH consists dominantly of basaltic with minor andesite lavas, all erupted from monogenetic rift and cinder cone vents. SIM has a poorly exposed andesite to rhyolite core but mainly consists of basaltic lavas erupted from numerous widely dispersed vents; it has the morphology of a shield volcano. Distribution of mafic lavas across the SWC is related to north-northwest trending faults and fissure zones that indicate a significant component of east-west extension within the area. There is overlap in eruptive history for the areas studied, but it appears that peak activity was progressively older (MSH (<40 Ka), IH (mostly <0.5 Ma), MA (<0.5 Ma), SIM (1-4 Ma)) and more alkalic toward the east. A variety of compositionally distinct mafic magma types has been identified in the SWC, including low large ion lithophile element (LILE) tholeiitic basalts, moderate LILE calcalkalic basalts, basalts transitional between these two, LILE-enriched mildly alkalic basalts, and basaltic andesites. Compositional diversity among basaltic lavas, both within individual centers as well as across the arc, is an important characteristic of the SWC traverse. The fact that the basaltic magmas either show no correlation between isotopic and trace element components or show trends quite distinct from those of the associated evolved lavas, suggests that their compositional variability is attributable to subcrustal processes. Both the primitive nature of the erupted basalts and the fact that they are relatively common in the SWC sector also imply that such

  10. Back-arc basin development: Constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China)

    NASA Astrophysics Data System (ADS)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Pan, Fa-Bin; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Tao, Lu; Zhang, Li-Qi; Wu, Jing

    2018-06-01

    The Lajishan belt of the Central Qilian block was a back-arc basin during Early Paleozoic. The basaltic magmatism and temporal evolution in this basin provide an opportunity to study the development of back-arc basin in an active continental margin. In this study, we carry out an integrated study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic arc-like and OIB-like basalts. The Lajishan arc-like basalts are enriched in large ion lithophile element (LILE) and show negative Nb and Ta anomalies whereas the OIB-like basalts have high LILE abundances and show positive Nb and Ta anomalies. The arc-like basalts have initial 87Sr/86Sr values of 0.7050-0.7054 and εNd(t) values of +0.51-+2.63, and the OIB-like basalts have initial 87Sr/86Sr values of 0.7049-0.7050 and εNd(t) values of +0.66-+1.57. The geochemical and Sr-Nd isotopic compositions suggest that the arc-like basalts are derived from partial melting of a depleted mantle source metasomatized by slab-derived components at shallow depth levels, and the OIB-like basalts also originated from a metasomatized mantle wedge source. U-Pb zircon dating yielded the ages of 494 ± 4 Ma for the arc-like basalts and 468 ± 6 Ma for the OIB-like basalts. We argue that the arc-like basalts are products of back-arc extension before the back-arc rifting initiated in earlier stage, resulting from the northward subduction of the Qaidam-West Qinling oceanic slab, while the OIB-like basalts represent products of further back-arc spreading in response to rollback of the Qaidam-West Qinling oceanic lithospheric slab. The association of arc-like and OIB-like basalts in the Lajishan belt records the development of back-arc basin from initial rifting to subsequent spreading, offering insight into how basaltic magmatism generates in the formation of back-arc basin in subduction zone setting.

  11. A chemical model for generating the sources of mare basalts - Combined equilibrium and fractional crystallization of the lunar magmasphere

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.

    1992-01-01

    A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.

  12. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    USGS Publications Warehouse

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  13. DISCRIMINATION OF ALTERED BASALTIC ROCKS IN THE SOUTHWESTERN UNITED STATES BY ANALYSIS OF LANDSAT THEMATIC MAPPER DATA.

    USGS Publications Warehouse

    Davis, Philip A.; Berlin, Graydon L.; Chavez, Pat S.

    1987-01-01

    Landsat Thematic Mapper image data were analyzed to determine their ability to discriminate red cone basalts from gray flow basalts and sedimentary country rocks for three volcanic fields in the southwestern United States. Analyses of all of the possible three-band combinations of the six nonthermal bands indicate that the combination of bands 1, 4, and 5 best discriminates among these materials. The color-composite image of these three bands unambiguously discriminates 89 percent of the mapped red volcanic cones in the three volcanic fields. Mineralogic and chemical analyses of collected samples indicate that discrimination is facilitated by the presence of hematite as a major mineral phase in the red cone basalts (hematite is only a minor mineral phase in the gray flow basalts and red sedimentary rocks).

  14. Mapping the Concentration of Iron, Titanium, and Thorium in Mare Basalts in the Western Procellarum Region of the Moon

    NASA Technical Reports Server (NTRS)

    Flor, E. L.; Jolliff, B. L.; Gillis, J. J.

    2003-01-01

    Mare basalt flows in the Western Procellarum region (WPR) are extensive and include some of the youngest geologic features on the Moon. Compositional remote sensing by the Lunar Prospector gammaray spectrometer (LPGRS) indicates elevated Th concentrations in many of these flows relative to basalts sampled by the Apollo and Luna missions [1,2,3,4]. The primary goals of this investigation are to determine whether the Th enrichment in this region contributed to the extensive and prolonged volcanism in the WPR, and to determine whether the Th is inherent to the basalts themselves or a result of contamination from nonvolcanic material. Thorium enrichment indigenous to the basalts of the Western Procellarum Region would provide evidence that the general concentration of Th in the Procellarum region extends below the crust and possibly as deep as the sources for the basalts themselves.

  15. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    NASA Astrophysics Data System (ADS)

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<20 MPa in basalt and andesite, ca. 100 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at

  16. In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    NASA Astrophysics Data System (ADS)

    Masotta, M.; Ni, H.; Keppler, H.

    2014-02-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R) ranges from 3.4 × 10-6 to 5.2 × 10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B) at nucleation ranges from 7.9 × 104 mm-3 to 1.8 × 105 mm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow

  17. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  18. Landowner perceptions of three types of boating in the Saranac Lakes area of New York State׳s Adirondack Park

    USGS Publications Warehouse

    Kuehn, Diane; Schuster, Rudy; Nordman, Erik

    2015-01-01

    In order for natural resource managers to better understand conflicting landowner perspectives related to non-motorized, motorized, and personal watercraft use, this study examines the demographic and experiential characteristics, values, attitudes, and beliefs of landowners in the Saranac Lakes area of the Adirondack Park in New York State. A mixed-methods approach, composed of 20 in-depth interviews with land managers and a mail survey of 1000 landowners, was used. Three path analyses were completed, one for each type of boat use. Results indicate that resource-related values influence beliefs and attitudes related to boat use, supporting the cognitive hierarchy model of human behavior (Fulton, D. C., Manfredo, M. J., & Lipscomb, J. (1996). Wildlife value orientations: a conceptual and measurement approach. Human Dimensions of Wildlife, 1, 24–47). In addition, length of residence in the area, past participation in non-motorized and motorized boating, age, and education were found to influence attitudes towards certain types of boating. The results of this study can be used by natural resource managers to identify management strategies that better address the values and recreational interests of landowners.

  19. Spinel from Apollo 12 Olivine Mare Basalts: Chemical Systematics of Selected Major, Minor, and Trace Elements

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.; Spilde, M. N.

    2002-01-01

    Spinels from Apollo 12 Olivine basalts have been studied by Electron and Ion microprobe techniques. The zoning trends of major, minor and trace elements provide new insights into the conditions under which planetary basalts form. Additional information is contained in the original extended abstract.

  20. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    NASA Astrophysics Data System (ADS)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  1. Emplacement of Columbia River flood basalt

    NASA Astrophysics Data System (ADS)

    Reidel, Stephen P.

    1998-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  2. Systematics of Ni, Co, Cr and V in Olivine from Planetary Melt Systems: Martian Basalts

    NASA Technical Reports Server (NTRS)

    Herd, C. D. K.; Jones, J. H.; Shearer, C. K.; Papike, J. J.

    2001-01-01

    Secondary Ion Mass Spectrometry (SIMS) data for Ni, Co, Cr, and V in olivine in martian basalts is compared to data from lunar and terrestrial basalts. We use experimentally-derived and published D values to calculate as-yet unsampled, olivine-bearing, non-cumulus melt compositions. Additional information is contained in the original extended abstract.

  3. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon.

    PubMed

    Hales, T C; Abt, D L; Humphreys, E D; Roering, J J

    2005-12-08

    Flood basalts appear to form during the initiation of hotspot magmatism. The Columbia River basalts (CRB) represent the largest volume of flood basalts associated with the Yellowstone hotspot, yet their source appears to be in the vicinity of the Wallowa Mountains, about 500 km north of the projected hotspot track. These mountains are composed of a large granitic pluton intruded into a region of oceanic lithosphere affinity. The elevation of the interface between Columbia River basalts and other geological formations indicates that mild pre-eruptive subsidence took place in the Wallowa Mountains, followed by syn-eruptive uplift of several hundred metres and a long-term uplift of about 2 km. The mapped surface uplift mimics regional topography, with the Wallowa Mountains in the centre of a 'bull's eye' pattern of valleys and low-elevation mountains. Here we present the seismic velocity structure of the mantle underlying this region and erosion-corrected elevation maps of lava flows, and show that an area of reduced mantle melt content coincides with the 200-km-wide topographic uplift. We conclude that convective downwelling and detachment of a compositionally dense plutonic root can explain the timing and magnitude of Columbia River basalt magmatism, as well as the surface uplift and existence of the observed melt-depleted mantle.

  4. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu

    NASA Astrophysics Data System (ADS)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.

    2007-05-01

    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  5. Field observations of Flood Basalt structure: Implications for offshore interpretation and sub-volcanic investigation

    NASA Astrophysics Data System (ADS)

    Single, R.; Jerram, D.; Pearson, D.; Hobbs, R.

    2003-04-01

    Field investigations in Skye and Namibia have provided insight into structure and architecture of CFBs. The studies have been developed into lava sequence models in 3-D software GoCad. The understanding has been applied to interpretation of lavas in the Faeroe-Shetland trough. Volcanics hinder petroleum exploration in this play due to their complex internal geometries and velocity structure. Seismic resolution is poor beneath volcanics. Fieldwork has shown that lavas on Skye have developed from (olivine-phyric) compound basalts towards the base of the sequence, into more massive flows higher up the succession. Fieldwork in the Etendeka CFBs reveal a similar style of lava field development. The focus of the offshore study is through the area of the GFA-99 seismic data. Detailed 3-D interpretation over the central data area is 20x20km in dimensions. The lava sequence present may be sub-divided vertically and laterally into 4 zones between the following seismic picks: Base basalt/sub-basalt sills, top compound lava-dominated series, top Middle Series, top hyaloclastites, top massive basalt. Within the lava sequence, the surfaces have rugose topographies. Lower zone lavas are characterised by discontinuous, indistinct reflectors. These are interpreted to be sub-aerially effused basalts with compound-braided architecture. Middle Series basalts are considered to be a combination of compound lavas and more massive, tabular flows. Steeply dipping seismic reflectors also form part of the Middle Series and are interpreted as foreset-bedded hyaloclastites. The uppermost lavas have strong reflection characteristics and are laterally extensive. These are interpreted to be massive tabular lavas covering an area >8.4 x10^3 km^2. Such flows exist in upper parts of CFB sequences as evidenced from fieldwork. Complex stacking arrangements of lavas seen in the field, and the complexities observed in seismic, suggest that many factors need to be considered within CFBs for improved sub

  6. Products of a Subglacial Flood Basalt Eruption

    NASA Astrophysics Data System (ADS)

    Gorny, C. F.; White, J. D. L.; Gudmundsson, M. T.

    2015-12-01

    The Snæbýlisheiði unit, SE Iceland, is a ca. 26 km³ elongate, flat-topped ridge of volcaniclastic debris coupled with and intruded by coherent basalt stretching over 34 km from the eruption site perpendicular to the rift fissure source. It formed from a single subglacial flood basalt eruption during a recent glaciation, and its elongation reflects glacial control on dispersal via the hydraulic potential gradient at the glacier's base, which drove towards the glacier terminus the meltwater+debris formed during the eruption by quenching and fragmentation. High magma discharge and outgassing drove segregation of magma into down-flow propagating intrusions. Edifice growth was mediated by the extent of ice melting, extent and efficiency of meltwater+debris drainage, and hydraulic gradients locally favoring meltwater accumulation. Eruption style reflected magma flux, edifice stability, and accessibility of water to the vent area via flooding or infiltration. Deposits reflect these competing factors in their chaotic internal organization and stratigraphy, limited lithofacies continuity, and diverse particle populations from multiple source vents. Linear growth of the ridge down-gradient from the eruption site was driven primarily by propagation and continuous fragmentation of shoaling intrusions that formed an interconnected intrusive complex with extensive peperites. Advance was along gently meandering and locally bifurcating sub-ice conduits within hyaloclastite with sheet-lobe levees and lobate fingered intrusions. Irregular dikes, apophyses, horns, and tendrils extended from the main body and generated voluminous lapilli tuff and contorticlasts while providing additional heat to the system. Prolonged transport and deposition of debris produced complexly bedded volcaniclastic deposits derived from and intruded by the basalt sheet. The bedding and depositional features of volcaniclastic debris and relationship to their adjacent intrusions suggest transport and

  7. Volcanic Diapirs: Evidence of Volatile Driven Convection within Jurassic Flood Basalt Flows, Paterson, New Jersey

    NASA Astrophysics Data System (ADS)

    Puffer, J. H.; Laskowich, C.

    2009-12-01

    Volcanic diapirs are defined here as primary dome-shaped structures composed of vesicular colonnade that has displaced overlying entablatures. The diapirs of the Orange Mountain Basalt extend from the top of a lower colonnade to about 2 to over 20 m into an overlying entablature. The total thickness of the diapir bearing flow is about 70 m. Twenty-eight diapirs have been found in the first of the three flows of Orange Mountain Basalt; an additional large diapir was found in the first of five Preakness Basalt flows. One large active Paterson area trap-rock quarry was monitored on a nearly daily basis for 15 years where 9 diapirs were exposed at random but widely separated locations throughout a 15,000 square meters area. Orange Mountain diapirs and adjacent colonnade layers are composed of basalt characterized by poorly developed columnar jointing in contrast to overlying well developed entablatures. The cooling joint pattern of overlying entablatures radiates away from the diapirs indicating a primary igneous origin. The diapirs are distinctly enriched in sodic plagioclase and are chemically characterized by sodium, titanium, boron, and copper enrichment with depletion of aluminum, calcium, and potassium compared to entablature compositions. They contain abundant partially collapsed vesicles up to 1.5 m across lined with prehnite, calcite, copper sulfides, and trace amounts of zeolites (including heulandite, stilbite) and pectolite. They superficially resemble tumulus but are not developed at or near flow tops. Diapirs also resemble very large volcanic spiracles but are not developed at the basal contact of flows. The occurrence of diapirs within the Orange Mountain basalt demonstrates the ability of volatiles to vertically transport large masses of highly enriched melt or crystal mush into central to upper flow positions. Volatile driven convection has been proposed by several authors as a mechanism capable of emplacing pegmatoids and segregation veins within

  8. Assimilation of Consanguineous Mafic Intrutions: Layered Crustal Sill Complexes as Reactive Filters for Continental Basalts

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Vetter, S. K.

    2007-12-01

    Continental basalts commonly display variations in their chemical compositions that are inferred to reflect fractionational crystallization (FC), recharge-FC (RFC), assimilation-FC (AFC), or recharge-AFC (RAFC). The dominance of AFC-related processes reflects the intrinsic linkage between crystallization (which releases latent heat) and assimilation (which consumes latent heat). One of the central questions in any assimilation process, however, is what exactly is being assimilated. It is commonly assumed in most AFC models for the intrusion of basalt into continental crust that the contaminant is pre-existing continental crust - that is, felsic gneiss of roughly granodioritic to tonalitic composition, which is enriched in K2O and other large ion lithophiles relative to mantle-derived basalts. These continental gneisses are commonly Precambrian in age and are enriched in the lithophilic isotope ratios 87Sr/86Sr, 207Pb/204Pb, and 208Pb/204Pb, and depleted in 143Nd/144Nd. As a result, AFC-related processes involving this ancient continental crust component typically result in basaltic lavas that are enriched in LILE (e.g., K) relative to high-field strength elements (e.g., Ti, P) and enriched in the heavy isotopes of Sr, Pb, and Nd compared to the primary or parental magma. Contrary to these expectations, basalts of the Snake River volcanic province that display chemical variations diagnostic of AFC (e.g., increasing La/Lu with decreasing mg#) are commonly characterized by essentially constant isotopic ratios of Sr, Pb and Nd, and by LILE/HFSE ratios (e.g., K/P) that decrease with decreasing mg#. We propose that these basalts assimilated a ferrogabbro derived from a parent magma that was the same or similar to the magmas being intruded to recharge the system. Melts derived from this ferrogabbro would be low in K and enriched in Fe, Ti, P, and La/Lu relative to the primitive recharge magma; the isotopic composition would be the same as the primitive recharge magma. We

  9. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone. Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to

  10. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Shishevan, Farzin Azimpour; Akbulut, Hamid; Mohtadi-Bonab, M. A.

    2017-06-01

    In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

  11. Basalt Pb isotope analysis and the prehistoric settlement of Polynesia.

    PubMed Central

    Weisler, M I; Woodhead, J D

    1995-01-01

    The prehistoric settlement of the Pacific Ocean has intrigued scholars and stimulated anthropological debate for the past two centuries. Colonized over a few millennia during the mid to late Holocene, the islands of the Pacific--displaying a wide diversity of geological and biotic variability--provided the stage for endless "natural experiments" in human adaptation. Crucial to understanding the evolution and transformation of island societies is documenting the relative degree of interisland contacts after island colonization. In the western Pacific, ideal materials for archaeologically documenting interisland contact--obsidian, pottery, and shell ornaments--are absent or of limited geographic distribution in Polynesia. Consequently, archaeologists have relied increasingly on fine-grained basalt artifacts as a means for documenting colonization routes and subsequent interisland contacts. Routinely used x-ray fluorescence characterization of oceanic island basalt has some problems for discriminating source rocks and artifacts in provenance studies. The variation in trace and major element abundances is largely controlled by near-surface magma-chamber processes and is broadly similar between most oceanic islands. We demonstrate that Pb isotope analysis accurately discriminates rock source and is an excellent technique for charting the scale, frequency, and temporal span of imported fine-grained basalt artifacts found throughout Polynesia. The technique adds another tool for addressing evolutionary models of interaction, isolation, and cultural divergence in the eastern Pacific. PMID:7892194

  12. Release of Volatiles During North Atlantic Flood Basalt Volcanism and Correlation to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Pedersen, J. M.; Tegner, C.; Kent, A. J.; Ulrich, T.

    2017-12-01

    The opening of the North Atlantic Ocean between Greenland and Norway during the lower Tertiary led to intense flood basalt volcanism and the emplacement of the North Atlantic Igneous Province (NAIP). The volcanism is temporally overlapping with the Paleocene-Eocene Thermal Maximum (PETM), but ash stratigraphy and geochronology suggests that the main flood basalt sequence in East Greenland postdates the PETM. Significant environmental changes during the PETM have been attributed to the release of CO2 or methane gas due to either extensive melting of hydrates at the ocean floor or as a consequence of the interaction of mantle derived magmas with carbon rich sediments.Estimates suggest that a minimum of 1.8x106 km3 of basaltic lava erupted during North Atlantic flood basalt volcanism. Based on measurements of melt inclusions from the flood basalts our preliminary calculations suggest that approximately 2300 Gt of SO2 and 600 Gt of HCl were released into the atmosphere. Calculated yearly fluxes approach 23 Mt/y SO2 and 6 Mt/y HCl. These estimates are regarded as conservative.The S released into to the atmosphere during flood basalt volcanism can form acid aerosols that absorb and reflect solar radiation, causing an effective cooling effect. The climatic effects of the release of Cl into the atmosphere are not well constrained, but may be an important factor for extinction scenarios due to destruction of the ozone layer.The climatic changes due to the release of S and Cl in these amounts, and for periods extending for hundred thousand of years, although not yet fully constrained are likely to be significant. One consequence of the North Atlantic flood basalt volcanism may have been the initiation of global cooling to end the PETM.

  13. Mantle upwelling and trench-parallel mantle flow in the northern Cascade arc indicated by basalt geochemistry

    NASA Astrophysics Data System (ADS)

    Mullen, E.; Weis, D.

    2013-12-01

    Cascadia offers a unique perspective on arc magma genesis as an end-member ';hot' subduction zone in which relatively little water may be available to promote mantle melting. The youngest and hottest subducting crust (~5 Myr at the trench) occurs in the Garibaldi Volcanic Belt, at the northern edge of the subducting Juan de Fuca plate [1]. Geochemical data from GVB primitive basalts provide insights on mantle melting where a slab edge coincides with high slab temperatures. In subduction zones worldwide, including the Cascades, basalts are typically calc-alkaline and produced from a depleted mantle wedge modified by slab input. However, basalts from volcanic centers overlying the northern slab edge (Salal Glacier and Bridge River Cones) are alkalic [2] and lack a trace element subduction signature [3]. The mantle source of the alkalic basalts is significantly more enriched in incompatible elements than the slab-modified depleted mantle wedge that produces calc-alkaline basalts in the southern GVB (Mt. Baker and Glacier Peak) [3]. The alkalic basalts are also generated at temperatures and pressures of up to 175°C and 1.5 GPa higher than those of the calc-alkaline basalts [3], consistent with decompression melting of fertile, hot mantle ascending through a gap in the Nootka fault, the boundary between the subducting Juan de Fuca plate and the nearly stagnant Explorer microplate. Mantle upwelling may be related to toroidal mantle flow around the slab edge, which has been identified in southern Cascadia [4]. In the GVB, the upwelling fertile mantle is not confined to the immediate area around the slab edge but has spread southward along the arc axis, its extent gradually diminishing as the slab-modified depleted mantle wedge becomes dominant. Between Salal Glacier/Bridge River and Glacier Peak ~350 km to the south, there are increases in isotopic ratios (ɛHf = 8.3 to13.0, ɛNd = 7.3 to 8.5, and 208Pb*/206*Pb* = 0.914 to 0.928) and trace element indicators of slab

  14. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites

    NASA Astrophysics Data System (ADS)

    Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi

    2017-12-01

    Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.

  15. Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon

    USGS Publications Warehouse

    Keith, Terry E.C.; Staplese, Lloyd W.

    1985-01-01

    Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence that makes up part of the Eocene Siletz River Volcanics in the central Coast Range, Oregon. Regional zoning of zeolite assemblages is not apparent; the zeolites formed in joints, fractures, and interstices, although most occur in central cavities of basalt pillows. The zeolites and associated minerals identified, in general order of paragenetic sequence, are smectite, pyrite, calcite (small spheres), thomsonite, natrolite, analcime, scolecite, mesolite, stilbite, heulandite, apophyllite, chahazite, mordenite, calcite (scalenohedra and twinned rhombohedra), laumontite, and amethystine quartz. Common three-mineral assemblages are: natrolite-analcime-sfilbite, stilbite-heulandite-chabazite, stilbite-apophyllie-chabazite, and natrolite-mesolite-laumontite.Alteration of basaltic glass, which was initially abundant, appears to have been an important factor in formation of the zeolites. Isotopic data suggest that zeolitization occurred during a low-temperature (60 ~ 70°C submarine hydrothermal event, or by reactions of cold (~ 10°C meteoric water with basalt over a long time. The occurrence of different mineral assemblages in cavities of adjacent basalt pillows indicates that these minerals crystallized in dosed systems that were isolated as fractures and joints were sealed by deposition of smectite and early zeolites. Although the total chemical composition of the mineral assemblages in cavities is similar, different mineral species formed because of the sensitivity of zeolite minerals to slight variations in physical and chemical conditions within individual cavities.

  16. The compositional diversity of non-Vesta basaltic asteroids

    NASA Astrophysics Data System (ADS)

    Leith, Thomas B.; Moskovitz, Nicholas A.; Mayne, Rhiannon G.; DeMeo, Francesca E.; Takir, Driss; Burt, Brian J.; Binzel, Richard P.; Pefkou, Dimitra

    2017-10-01

    We present near-infrared (0.78-2.45 μm) reflectance spectra for nine middle and outer main belt (a > 2.5 AU) basaltic asteroids. Three of these objects are spectrally distinct from all classifications in the Bus-DeMeo system and could represent spectral end members in the existing taxonomy or be representatives of a new spectral type. The remainder of the sample are classified as V- or R-type. All of these asteroids are dynamically detached from the Vesta collisional family, but are too small to be intact differentiated parent bodies, implying that they originated from differentiated planetesimals which have since been destroyed or ejected from the solar system. The 1- and 2-μm band centers of all objects, determined using the Modified Gaussian Model (MGM), were compared to those of 47 Vestoids and fifteen HED meteorites of known composition. The HEDs enabled us to determine formulas relating Band 1 and Band 2 centers to pyroxene ferrosilite (Fs) compositions. Using these formulas we present the most comprehensive compositional analysis to date of middle and outer belt basaltic asteroids. We also conduct a careful error analysis of the MGM-derived band centers for implementation in future analyses. The six outer belt V- and R-type asteroids show more dispersion in parameter space than the Vestoids, reflecting greater compositional diversity than Vesta and its associated bodies. The objects analyzed have Fs numbers which are, on average, between five and ten molar percent lower than those of the Vestoids; however, identification and compositional analysis of additional outer belt basaltic asteroids would help to confirm or refute this result. Given the gradient in oxidation state which existed within the solar nebula, these results tentatively suggest that these objects formed at either a different time or location than 4 Vesta.

  17. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism

    NASA Astrophysics Data System (ADS)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine

    2018-05-01

    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field

  18. Rock elastic properties and near-surface structure at Taurus-Littrow. [strain measurement of lunar basalt and breccia

    NASA Technical Reports Server (NTRS)

    Trice, R.; Warren, N.; Anderson, O. L.

    1974-01-01

    Linear strain measurements are presented for two lunar basalts, 14310,82 and 71055,15 and one breccia, 15498,23 to 5 kb hydrostatic pressure. Compressional and shear acoustic velocities to 5 kb are also presented for the basalts, 14310,82 and 71055,15. These elastic properties, along with geological, seismological and rock mechanics considerations are consistent with a model of the structure of the Taurus-Littrow valley as follows, a thin surface regolith overlying a fractured mixture of basalt flows and ejecta material which in turn overlies a coherent breccia of highland ejecta debris.

  19. Mantle source heterogeneity of the Early Jurassic basalt of eastern North America

    NASA Astrophysics Data System (ADS)

    Gregory Shellnutt, J.; Dostal, Jaroslav; Yeh, Meng-Wan

    2018-04-01

    One of the defining characteristics of the basaltic rocks from the Early Jurassic Eastern North America (ENA) sub-province of the Central Atlantic Magmatic Province (CAMP) is the systematic compositional variation from South to North. Moreover, the tectono-thermal regime of the CAMP is debated as it demonstrates geological and structural characteristics (size, radial dyke pattern) that are commonly associated with mantle plume-derived mafic continental large igneous provinces but is considered to be unrelated to a plume. Mantle potential temperature ( T P) estimates of the northern-most CAMP flood basalts (North Mountain basalt, Fundy Basin) indicate that they were likely produced under a thermal regime ( T P ≈ 1450 °C) that is closer to ambient mantle ( T P ≈ 1400 °C) conditions and are indistinguishable from other regions of the ENA sub-province ( T Psouth = 1320-1490 °C, T Pnorth = 1390-1480 °C). The regional mantle potential temperatures are consistent along the 3000-km-long ENA sub-province suggesting that the CAMP was unlikely to be generated by a mantle plume. Furthermore, the mantle potential temperature calculation using the rocks from the Northern Appalachians favors an Fe-rich mantle (FeOt = 8.6 wt %) source, whereas the rocks from the South Appalachians favor a less Fe-rich (FeOt = 8.3 wt %) source. The results indicate that the spatial-compositional variation of the ENA basaltic rocks is likely related to differing amounts of melting of mantle sources that reflect the uniqueness of their regional accreted terranes (Carolinia and West Avalonia) and their post-accretion, pre-rift structural histories.

  20. A new basaltic glass microanalytical reference material for multiple techniques

    USGS Publications Warehouse

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only