Sample records for adirondack mountain lakes

  1. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  2. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  3. Lake acidification in the Adirondack Mountains of New York causes and consequences

    Treesearch

    Carl L. Schofield

    1976-01-01

    Current and historic geographic distributions of acidity in Adirondack lakes were examined in relation to regional edaphic, climatic, and physiographic features. Acid conditions are currently predominant in high elevation drainage lakes having small watershed/surface area ratios. Comparable levels of acidity were found only in small seepage lakes and bog ponds during...

  4. The Adirondack research center

    Treesearch

    Francis M. Rushmore

    1957-01-01

    Some of the first forest research done in North America was done in that lake-spangled land of forests and mountains in upper New York State that we know as the Adirondacks. The very name Adirondacks smacks of forest. The big Webster dictionary says that Adirondacks comes from a Mohawk Indian word, Hatirongtaks, which means literally, "they eat trees."

  5. Hydrologic analysis of two headwater lake basins of differing lake pH in the west-central Adirondack Mountains of New York

    USGS Publications Warehouse

    Murdoch, Peter S.; Peters, N.E.; Newton, R.M.

    1987-01-01

    Hydrologic analysis of two headwater lake basins in the Adirondack Mountains, New York, during 1980-81 indicates that the degree of neutralization of acid precipitation is controlled by the groundwater contribution to the lake. According to flow-duration analyses, daily mean outflow/unit area from the neutral lake (Panther Lake, pH 5-7) was more sustained and contained a higher percentage of groundwater than that of the acidic lake (Woods Lake, pH 4-5). Outflow recession rates and maximum base-flow rates, derived from individual recession curves, were 3.9 times and 1.5 times greater, respectively, in the neutral-lake basin than in the acidic-lake basin. Groundwater contribution to lake outflow was also calculated from a lake-water budget; the groundwater contribution to the neutral lake was about 10 times greater than that to the acidic lake. Thick sandy till forms the groundwater reservoir and the major recharge area in both basins but covers 8.5 times more area in the neutral-lake basin than in the acidic-lake basin. More groundwater storage within the neutral basin provides longer contact time with neutralizing minerals and more groundwater discharge. As a result, the neutral lake has relatively high pH and alkalinity, and more net cation transport. (USGS)

  6. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  7. A comparison of the temporally integrated monitoring of ecosystems and Adirondack Long Term-Monitoring programs in the Adirondack Mountain region of New Yrok

    EPA Science Inventory

    This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...

  8. Mercury contribution to an Adirondack lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrudato, R.J.; Long, D.; Weinbloom, R.

    1987-01-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipitation.

  9. Mercury contribution to an adirondack lake

    NASA Astrophysics Data System (ADS)

    Scrudato, R. J.; Long, D.; Weinbloom, Robert

    1987-10-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.

  10. Browning of Adirondack, NY Lakes: Rates and Effects

    NASA Astrophysics Data System (ADS)

    Driscoll, C. T.; Mota, Y.; Fakhraei, H.; Todorova, S.; Leach, T.; Rose, K. C.; O'Donnell, S.

    2017-12-01

    Browning, or increases in the concentrations of dissolved organic matter (DOM), is an intriguing recent phenomenon occurring in northern freshwaters. It is hypothesized that browning is a watershed response to decreases in acid deposition, although changing in climate may also contribute. The Adirondack region of NY is experiencing marked increases in lake concentrations of dissolved organic carbon (DOC), with 29 out of 48 lakes in the Adirondack Long-Term Monitoring (ALTM) program showing significant increases and two exhibiting decreases since 1992. Increases in DOC is altering the acid base status of Adirondack lakes largely due increases in DOM with strongly acidic functional groups. DOM mobilization limits increases in acid neutralizing capacity that can be achieved in recovery of surface waters from acid deposition. A subset of ALTM lakes also appear to be experiencing changes in their physical characteristics during the summer stratification period, consistent with increases in DOM and browning. Of 28 lakes monitored for water column profiles since 1994: 8 are showing declines in thermocline depth (5 significant, p<0.05); all are exhibiting increases in epilimnetic temperature (9 significant); 26 are experiencing increases in the difference between epilimnetic and hypolimnetic temperatures (6 significant); and 17 are experiencing decreases in hypolimnetic dissolved oxygen concentrations (6 significant decreases, 1 increase). These changes may be a manifestation of increases in the attenuation of light associated with increases in DOM, increasing the intensity and duration of thermal stratification.

  11. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  12. SEASONAL AND LONG-TERM TEMPORAL PATTERNS IN THE CHEMISTRY OF ADIRONDACK LAKES

    EPA Science Inventory

    There is considerable interest in the recovery of surface waters from acidification by acidic deposition. he Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. he objectives of this paper are to: 1) ...

  13. Aluminum toxicity risk reduction as a result of reduced acid deposition in Adirondack lakes and ponds.

    PubMed

    Michelena, Toby M; Farrell, Jeremy L; Winkler, David A; Goodrich, Christine A; Boylen, Charles W; Sutherland, James W; Nierzwicki-Bauer, Sandra A

    2016-11-01

    In 1990, the US Congress amended the Clean Air Act (CAA) to reduce regional-scale ecosystem degradation from SO x and NO x emissions which have been responsible for acid deposition in regions such as the Adirondack Mountains of New York State. An ecosystem assessment project was conducted from 1994 to 2012 by the Darrin Fresh Water Institute to determine the effect of these emission reduction policies on aquatic systems. The project investigated water chemistry and biota in 30 Adirondack lakes and ponded waters. Although regulatory changes made in response to the 1990 CAA amendments resulted in a reduction of acid deposition within the Adirondacks, the ecosystem response to these reductions is complicated. A statistical analysis of SO 4 , pH, Al, and DOC data collected during this project demonstrates positive change in response to decreased deposition. The changes in water chemistry also have lowered the risk of Al toxicity to brook trout (Salvelinus fontinalis [Mitchill]), which allowed the re-introduction of this species to Brooktrout Lake from which it had been extirpated. However, pH and labile aluminum (Al im ) fluctuate and are not strongly correlated to changes in acid deposition. As such, toxicity to S. fontinalis also is cyclic and provides rationale for the difficulties inherent in re-establishing resident populations in impacted aquatic environments. Overall, aquatic ecosystems of the Adirondacks show a positive response to reduced deposition driven by changes in environmental policy, but the response is more complex and indicates an ecosystem-wide interaction between aquatic and watershed components of the ecosystem.

  14. Response of fish assemblages to decreasing acid deposition in Adirondack Mountain lakes

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    The CAA and other federal regulations have clearly reduced emissions of NOx and SOx, acidic deposition, and the acidity and toxicity of waters in the ALTM lakes, but these changes have not triggered widespread recovery of brook trout populations or fish communities. The lack of detectable biological recovery appears to result from relatively recent chemical recovery and an insufficient period for species populations to take advantage of improved water quality. Recovery of extirpated species’ populations may simply require more time for individuals to migrate to and repopulate formerly occupied lakes. Supplemental stocking of selected species may be required in some lakes with no remnant (or nearby) populations or with physical barriers between the recovered lake and source populations. The lack of detectable biological recovery could also be related to our inability to calculate measures of uncertainty or error and, thus, examine temporal changes or differences in populations and community metrics in more depth (e.g., within individual lakes) using existing datasets. Indeed, recovery of brook trout populations and partial recovery of fish communities are documented in several lakes of the region, both with and without human intervention. Multiple fish surveys (annually or within the same year) or the use of mark and recapture methods within individual lakes would help alleviate the issue (provide measures of error for key fishery metrics) within the context of a more focused sampling strategy. Efforts to evaluate and detect recovery in fish assemblages from streams may be more effective than in lakes because various life stages, species’ populations, and entire assemblages are easier to quantify, with known levels of error, in streams than in lakes. Such long-term monitoring efforts could increase our ability to detect and quantify biological recovery in recovering (neutralizing) surface waters throughout the Adirondack Region.

  15. Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification

    NASA Astrophysics Data System (ADS)

    Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.

    1993-04-01

    Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish

  16. Kyanite-Bearing Migmatites at Ledge Mountain, Adirondack Highlands

    NASA Astrophysics Data System (ADS)

    Swanson, B.; Leech, M.; Metzger, E. P.

    2017-12-01

    Sillimanite-rich felsic migmatites exposed at Ledge Mountain represent the only location in the Adirondack Highlands where kyanite has been found. The texturally young kyanite is overprinted on sillimanite in largely undeformed pegmatitic leucosomes, suggesting a late episode of melting taking place deeper than previously thought, and requiring a counter-clockwise P-T path. A final phase of anatexis ca. 1050 Ma in the Eastern Adirondack Highlands is consistent with an influx of fluid or decompression from extension in sillimanite-bearing migmatites. Temperatures both from this study and previous work are consistent with granulite-facies metamorphism, however the presence of kyanite requires higher pressure conditions corresponding to deeper burial of these central Adirondack rocks. We used Perple_X to model phase equilibria using XRF+ICP-MS whole-rock chemistries for the kyanite-bearing migmatites. Pseudosection models suggest that the peak P-T mineral assemblage kyanite + mesoperthite + garnet + rutile formed at approximately 15-20kb and 1000°C which is higher than previously proposed for granulites in the region. These P-T conditions for peak metamorphism are similar to those reported for the distinctive and relatively rare assemblage that we observe kyanite + hypersolvus feldspar (now mesoperthite) + garnet + rutile. We have evidence of isothermal decompression to <11kb and 880°-1000°C based on Grt + Pl equilibrium in the assemblage Grt + Pl ± Kfs + Qz + Ilm + melt. The leucocratic melt phase comprises 16 vol. % of the rock at these P-T conditions which is sufficient for ductile flow in the deep crust. This melt phase is present syn-exhumation and helped to buoyantly exhume Ledge Moutain rocks beneath bounding normal faults as a granitic gneiss dome. Preliminary U-Pb SHRIMP zircon ages from Ledge Mountain kyanite-bearing migmatites show anatexis continuing well after high-grade metamorphism is believed to have ceased in the range. A counter-clockwise P

  17. Nitrate trends in the Adirondack Mountains, Northeastern US, 1993-2007

    EPA Science Inventory

    The Adirondack Mountains in New York State receive some of the highest rates of nitrogen deposition in the Northeastern U.S. Between 1993 and 2007, nitrogen deposition loads did not significantly change and average annual wet inorganic nitrogen deposition was 6 kg/ha (Figure 1)....

  18. Contemporary doming of the Adirondack mountains: Further evidence from releveling

    USGS Publications Warehouse

    Isachsen, Y.W.

    1981-01-01

    The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The dome has a NNE-SSW axis about 190 km long, and an east-west dimension of about 140 km. It has a structural relief of at least 1600 m, and a local topographic relief of up to 1200 m. First-order leveling in 1955, and again in 1973 along a north-south line at the eastern margin of the Adirondack shows an uplift rate of 2.2 mm/yr at the latitude of the center of the dome and a subsidence rate of 2.8 mm/yr at the northern end of the line near the Canadian border. The net amount of arching along this releveled line is 9 cm ?? 2 cm (Isachsen, 1975). To test the idea that this arching represented an "edge effect" of contemporary doming of the Adirondacks as a whole, the National Geodetic Survey was encouraged to relevel a 1931 north-south line between Utica and Fort Covington (near the Canadian border) which crosses the center of the dome. The releveling showed that the mountain mass is undergoing contemporary domical uplift at a rate which reaches 3.7 mm/yr near the center of the dome (compare with 1 mm/yr for the Swiss Alps). Three other releveled lines in the area support this conclusion. ?? 1981.

  19. Toward a better understanding of recreational boating in the Adirondack lakes region

    Treesearch

    Herbert E. Echelberger; George H. Moeller

    1973-01-01

    Results of a study to determine the relationship between physical characteristics of Adirondack lakes and variations in peak boat-use intensity indicated that 69 percent of the variation in peak use can be accounted for by the number of public and commercial boat-launching facilities per mile of lake shoreline. Other lake characteristics related to peak boat use were:...

  20. Impact of backcountry recreationists on the water quality of an Adirondack lake

    Treesearch

    Robert G. Werner; Raymond E. Leonard; James O. Crevelling; James O. Crevelling

    1985-01-01

    This study reports the effects of recreational use on the water quality of an Adirondack lake. Phosphates, nitrates, conductivity, fecal coliform, transparency, and temperature were regularly measured over a period of 2 years and related to the recreational use that the lake received during that time. An adjacent lake, which was not visited by recreationists, served as...

  1. Drainage basin control of acid loadings to two Adirondack lakes

    NASA Astrophysics Data System (ADS)

    Booty, W. G.; Depinto, J. V.; Scheffe, R. D.

    1988-07-01

    Two adjacent Adirondack Park (New York) calibrated watersheds (Woods Lake and Cranberry Pond), which receive identical atmospheric inputs, generate significantly different unit area of watershed loading rates of acidity to their respective lakes. A watershed acidification model is used to evaluate the watershed parameters which are responsible for the observed differences in acid loadings to the lakes. The greater overall mean depth of overburden on Woods Lake watershed, which supplies a greater buffer capacity as well as a longer retention time of groundwater, appears to be the major factor responsible for the differences.

  2. USE OF A LUMPED MODEL (MAGIC) TO BOUND THE ESTIMATION OF POTENTIAL FUTURE EFFECTS OF SULFUR AND NITROGEN DEPOSITION ON LAKE CHEMISTRY IN THE ADIRONDACK MOUNTAINS

    EPA Science Inventory

    Leaching of atmospherically deposited nitrogen from forested watersheds can acidify lakes and streams. Using a modified version of the Model of Acidification of Groundwater in Catchments, we made computer simulations of such effects for 36 lake catchments in the Adirondack Mount...

  3. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  4. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  5. Manganese biogeochemistry in a small Adirondack forested lake watershed

    USGS Publications Warehouse

    Shanley, James B.

    1986-01-01

    In September and October 1981, manganese (Mn) concentrations and pH were intensively monitored in a small forested lake watershed in the west-central Adirondack Mountains, New York, during two large acidic storms (each ∼5 cm rainfall, pH 4.61 and 4.15). The data were evaluated to identify biogeochemical pathways of Mn and to assess how these pathways are altered by acidic atmospheric inputs. Concentrations of Mn averaged 1.1 μg/L in precipitation and increased to 107 μg/L in canopy throughfall, the enrichment reflecting active biological cycling of Mn. Rain pH and throughfall Mn were negatively correlated, suggesting that foliar leaching of Mn was enhanced by rainfall acidity. The pulselike input of Mn to the forest floor in the high initial concentrations in throughfall (∼1000 μg/L) did not affect Mn concentrations in soil water (< 20 μg/L) or groundwater (usually < 40 μg/L), which varied little with time. In the inlet stream, Mn concentrations remained constant at 48 μg/L as discharge varied from 1.1 to 96 L/s. Manganese was retained in the vegetative cycle and regulated in the stream by adsorption in the soil organic horizon. The higher Mn levels in the stream may be linked to its high acidity (pH 4.2–4.3). Mixing of Mn-rich stream water with neutral lake water (pH 7.0) caused precipitation of Mn and deposition in lake sediment.

  6. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  7. Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isachsen, Y.W.

    1978-09-27

    Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similarmore » dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.« less

  8. Snow accumulations and melt under certain forest conditions in the Adirondacks

    Treesearch

    Howard W. Lull; Francis M. Rushmore

    1960-01-01

    The Adirondack region of New York is a land of many lakes and streams. It feeds water into Lake Champlain, Lake Ontario, the St. Lawrence River, and the Hudson River. Much of this streamflow comes from the melting of the spring snowpack in the Adirondacks.

  9. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; McPherson, G.T.

    2013-01-01

    This study documents the effects of acidic deposition and soil acid-base chemistry on the growth, regeneration, and canopy condition of sugar maple (SM) trees in the Adirondack Mountains of New York. Sugar maple is the dominant canopy species throughout much of the northern hardwood forest in the State. A field study was conducted in 2009 in which 50 study plots within 20 small Adirondack watersheds were sampled and evaluated for soil acid-base chemistry and SM growth, canopy condition, and regeneration. Atmospheric sulfur (S) and nitrogen (N) deposition were estimated for each plot. Trees growing on soils with poor acid-base chemistry (low exchangeable calcium and % base saturation) that receive relatively high levels of atmospheric S and N deposition exhibited little to no SM seedling regeneration, decreased canopy condition, and short-to long-term growth declines compared with study plots having better soil condition and lower levels of atmospheric deposition. These results suggest that the ecosystem services provided by SM in the western and central Adirondack Mountain region, including aesthetic, cultural, and monetary values, are at risk from ongoing soil acidification caused in large part by acidic deposition.

  10. Acid Rain Effects on Adirondack Streams - Results from the 2003-05 Western Adirondack Stream Survey (the WASS Project)

    USGS Publications Warehouse

    Lawrence, Gregory B.; Roy, Karen M.; Baldigo, Barry P.; Simonin, Howard A.; Passy, Sophia I.; Bode, Robert W.; Capone, Susan B.

    2009-01-01

    Traditionally lakes have been the focus of acid rain assessments in the Adirondack region of New York. However, there is a growing recognition of the importance of streams as environmental indicators. Streams, like lakes, also provide important aquatic habitat, but streams more closely reflect acid rain effects on soils and forests and are more prone to acidification than lakes. Therefore, a large-scale assessment of streams was undertaken in the drainage basins of the Oswegatchie and Black Rivers; an area of 4,585 km2 in the western Adirondack region where acid rain levels tend to be highest in New York State.

  11. Responses of 20 lake-watersheds in the Adirondack region of New York to historical and potential future acidic deposition.

    PubMed

    Zhou, Qingtao; Driscoll, Charles T; Sullivan, Timothy J

    2015-04-01

    Critical loads (CLs) and dynamic critical loads (DCLs) are important tools to guide the protection of ecosystems from air pollution. In order to quantify decreases in acidic deposition necessary to protect sensitive aquatic species, we calculated CLs and DCLs of sulfate (SO4(2-))+nitrate (NO3-) for 20 lake-watersheds from the Adirondack region of New York using the dynamic model, PnET-BGC. We evaluated lake water chemistry and fish and total zooplankton species richness in response to historical acidic deposition and under future deposition scenarios. The model performed well in simulating measured chemistry of Adirondack lakes. Current deposition of SO4(2-)+NO3-, calcium (Ca2+) weathering rate and lake acid neutralizing capacity (ANC) in 1850 were related to the extent of historical acidification (1850-2008). Changes in lake Al3+ concentrations since the onset of acidic deposition were also related to Ca2+ weathering rate and ANC in 1850. Lake ANC and fish and total zooplankton species richness were projected to increase under hypothetical decreases in future deposition. However, model projections suggest that lake ecosystems will not achieve complete chemical and biological recovery in the future. Copyright © 2014. Published by Elsevier B.V.

  12. Assessing Brook Trout populations in headwater streams of the Adirondack Mountains using environmental DNA -- Summary report

    USGS Publications Warehouse

    Baldigo, Barry P.; George, Scott D.; Sporn, Lee Ann; Ball, Jacob

    2016-01-01

    This project evaluated standard fish-survey and environmental DNA (eDNA) sampling methods to determine the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations in 40 headwater streams mainly in the western Adirondack Mountains during 2014–2015 (Figure 2). Standard 3-pass electrofishing surveys found that Brook Trout were absent from about 25 percent of study sites, and at low densities in 25 percent of sites, moderate densities in 25 percent of sites, and high densities in 25 percent of sites. Environmental DNA results correctly predicted the presence/absence of Brook Trout in 85.0 to 92.5 percent of study sites and explained 44.0 percent of the variability in density and 24 percent of the variability in biomass of their populations. The findings indicate that eDNA surveys will enable researchers to effectively characterize the presence as well as the abundance of Brook Trout and other species populations in headwater streams across the Adirondack Mountains and elsewhere.

  13. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    USGS Publications Warehouse

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in

  14. Using Critical Loads to Look at Improvements in Acidic Surface Water Conditions since the 1990 Amendments to the Clear Air Act: Case Study Adirondack, NY

    NASA Astrophysics Data System (ADS)

    Lynch, J. A.; Kolian, M. J.; Haeuber, R.

    2008-12-01

    Acid deposition has affected hundreds of lakes and thousands of miles of headwater streams in the Adirondack region of New York State. The diversity of life in these acidic waters has been greatly reduced. The poor buffering capacity of the thin, acidic soils in the Adirondack Mountains makes the lakes and ponds particularly susceptible to acidification. Since the mid-1990's, lakes in the Adirondack region are finally showing signs of recovery. The good news is that emissions of sulfur dioxide and nitrogen oxides have been reduced and as a result acidic deposition of sulfate and nitrate has decreased in surface waters approximately 26 and 13%, respectively. This has led to improvement in the acid neutralizing capacity (ANC) of these water bodies. Although improvement in water quality is a good sign, it does not tell us if a particular lake or a group of lakes have recovered from decades of acidic deposition. However, the critical loads approach does allow for evaluation of whether a water body has reached recovery for acidic deposition. Critical loads and exceedances for lake surface water and acidity were calculated for 187 lakes in the Adirondack region. The Steady-State Water Chemistry (SSWC) model was used to calculate the critical load, relying on water chemistry data from the TIME/LTM network. An ANC threshold of 50 μeq/L was selected for this case study. Exceedances were calculated from deposition for the period before implementation of the Acid Rain program (ARP) (1989-1991) and for the period of 2004-2006 to judge improvements as a result of the ARP. On average, the critical load for lakes in the Adirondack region is 164 meq/m2/yr, while it is 48 meq/m2/yr for the most sensitive lakes (i.e. ANC less than 100 μeq/L). For the period from 2004 to 2006, 65% of the lakes within the TIME/LTM network continued to receive levels of acid deposition that exceeded the lake's critical load down from 72% of lakes before implementation of the Acid Rain Program

  15. Isotopic assessment of NO3_ and SO42_ mobility during winter in two adjacent watersheds in the Adirondack Mountains, New York

    Treesearch

    John L. Campbell; Myron J. Mitchell; Bernhard Mayer

    2006-01-01

    Biogeochemical cycling of N and S was examined at two watersheds in the Adirondack Mountains, New York, to better understand the retention and loss of these elements during winter and spring snowmelt.

  16. Kyanite-bearing migmatites in the central Adirondack Mountains: Implications for late to post-orogenic metamorphism and melting in a collisional orogen

    NASA Astrophysics Data System (ADS)

    Reeder, J.; Metzger, E. P.; Bickford, M. E.; Leech, M. L.

    2016-12-01

    Sillimanite-rich felsic migmatites exposed at Ledge Mountain in the Central Adirondack Highlands (AH) represent the only location in the AH where kyanite is found. The texturally young kyanite is overprinted on sillimanite in largely undeformed pegmatitic leucosomes, suggesting a late episode of melting taking place deeper than previously thought, and requiring a counter-clockwise P-T path. A final phase of anatexis ca. 1050 Ma in the Eastern AH is consistent with an influx of fluid or decompression from extension in sillimanite-bearing migmatites. Temperatures both from this study and previous work are consistent with granulite-facies metamorphism; however, the presence of kyanite requires higher pressure conditions corresponding to deeper burial of rocks exposed in the central Adirondacks. The Adirondacks are associated with the Grenville Province of eastern North America, that formed during four orogenic events. The most recent (Grenville) orogeny consisted of two stages: crustal thickening and granulite facies metamorphism during the Ottawan phase (ca 1090-1020) then metamorphism and melting in the kyanite field during the much shorter Rigolet pulse (ca 1005-980 Ma). Preliminary U-Pb SHRIMP zircon ages from Ledge Mountain kyanite-bearing migmatites suggest that melting in the Central AH persisted into the Rigolet phase. On the basis of mineral composition and chemistry and the presence of distinctive quartz-sillimanite nodules, the Ledge Mountain migmatites closely resemble the K-rich phase of the Ottawan-age Lyon Mountain granite (LMG) and may represent LMG that was metamorphosed to sillimanite grade and then overprinted by a higher pressure, lower temperature assemblage. Kyanite-bearing felsic anatectites of Rigolet age have previously been observed only in the western portion of the Grenville Province. Documentation of a counterclockwise P-T path and post-Ottawan melting in the Ledge Mountain migmatites requires re-evaluation of current tectonic models for

  17. A monitor for continuous measurement of temperature, pH, and conductance of wet precipitation: Preliminary results from the Adirondack Mountains, New York

    USGS Publications Warehouse

    Johnsson, P.A.; Reddy, M.M.

    1990-01-01

    This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.

  18. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York

    NASA Astrophysics Data System (ADS)

    Fakhraei, Habibollah; Driscoll, Charles T.; Selvendiran, Pranesh; DePinto, Joseph V.; Bloomfield, Jay; Quinn, Scott; Rowell, H. Chandler

    2014-10-01

    Acidic deposition has impaired acid-sensitive surface waters in the Adirondack region of New York by decreasing pH and acid neutralizing capacity (ANC). In spite of air quality programs over past decades, 128 lakes in the Adirondacks were classified as “impaired” under Section 303(d) of the Clean Water Act in 2010 due to elevated acidity. The biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric sulfur (S) and nitrogen (N) deposition to changes in lake water chemistry. The model was calibrated and confirmed using observed soil and lake water chemistry data and then was applied to calculate the maximum atmospheric deposition that the impaired lakes can receive while still achieving ANC targets. Two targets of ANC were used to characterize the recovery of acid-impaired lakes: 11 and 20 μeq L-1. Of the 128 acid-impaired lakes, 97 currently have ANC values below the target value of 20 μeq L-1 and 83 are below 11 μeq L-1. This study indicates that a moderate control scenario (i.e., 60% decrease from the current atmospheric S load) is projected to recover the ANC of lakes at a mean rate of 0.18 and 0.05 μeq L-1 yr-1 during the periods 2022-2050 and 2050-2200, respectively. The total maximum daily load (TMDL) of acidity corresponding to this moderate control scenario was estimated to be 7.9 meq S m-2 yr-1 which includes a 10% margin of safety.

  19. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York.

    PubMed

    Sullivan, T J; Lawrence, G B; Bailey, S W; McDonnell, T C; Beier, C M; Weathers, K C; McPherson, G T; Bishop, D A

    2013-11-19

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  20. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  1. Recreation-related values, attitudes, and beliefs of business owners in the Saranac Lakes region of New York State's Adirondack Park

    Treesearch

    Diane Kuehn; Rudy Schuster

    2008-01-01

    Public forest management agencies often work with recreation-related business owners as they implement management policies. The main objective of this study is to quantify the values, beliefs, and attitudes of business owners in the Saranac Lakes Region of New York's Adirondack Park regarding motorboating, nonmotorized boating, and personal watercraft use. The...

  2. American Fisheries Society 136th Annual Meeting Lake Placid, NY 10-14 September, 2006

    USGS Publications Warehouse

    Einhouse, D.; Walsh, M.G.; Keeler, S.; Long, J.M.

    2005-01-01

    The New York Chapter of the American Fisheries Society and the New York State Department of Environmental Conservation invite you to experience the beauty of New York's famous Adirondack Park as the American Fisheries Society (AFS) convenes its 136th Annual Meeting in the legendary Olympic Village of Lake Placid, NY, 10-14 September 2006. Our meeting theme "Fish in the Balance" will explore the interrelation between fish, aquatic habitats, and man, highlighting the challenges facing aquatic resource professionals and the methods that have been employed to resolve conflicts between those that use or have an interest in our aquatic resources. As fragile as it is beautiful, the Adirondack Region is the perfect location to explore this theme. Bordered by Mirror Lake and its namesake, Lake Placid, the Village of Lake Placid has small town charm, but all of the conveniences that a big city would provide. Whether its reliving the magic of the 1980 hockey team's "Miracle on Ice" at the Lake Placid Olympic Center, getting a panoramic view of the Adirondack high peaks from the top of the 90 meter ski jumps, fishing or kayaking in adjacent Mirror Lake, hiking a mountain trail, or enjoying a quiet dinner or shopping excursion in the various shops and restaurants that line Main Street, Lake Placid has something for everyone.

  3. Hydrologic Analyses of Acidic and Alkaline Lakes

    NASA Astrophysics Data System (ADS)

    Chen, C. W.; Gherini, S. A.; Peters, N. E.; Murdoch, P. S.; Newton, R. M.; Goldstein, R. A.

    1984-12-01

    Woods and Panther lakes in the Adirondack Mountains of New York respond differently to the same acidic deposition. A mathematical model study has shown that lake water becomes acidic when hydrologic conditions force precipitation to flow to the lakes as surface flow or as lateral flow through the shallow organic soil horizon. Hydrographic data, capacity of flow through inorganic soil horizons, runoff recession curves, and groundwater level fluctuations of Woods and Panther lake basins provide independent evidence to support the thesis that the acidic state of a lake depends on the paths the tributary water takes as it passes thorough the terrestrial system. It is concluded thot Panther Lake is more alkaline than Woods Lake, because a larger proportion of the precipitation falling on the basin passes through deeper mineral soil horizons.

  4. Deep crustal deformation by sheath folding in the Adirondack Mountains, USA

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    As described by McLelland and Isachsen, the southern half of the Adirondacks are underlain by major isoclinal (F sub 1) and open-upright (F sub 2) folds whose axes are parallel, trend approximately E-W, and plunge gently about the horizontal. These large structures are themselves folded by open upright folds trending NNE (F sub 3). It is pointed out that elongation lineations in these rocks are parallel to X of the finite strain ellipsoid developed during progressive rotational strain. The parallelism between F sub 1 and F sub 2 fold axes and elongation lineations led to the hypothesis that progressive rotational strain, with a west-directed tectonic transport, rotated earlier F sub 1-folds into parallelism with the evolving elongation lineation. Rotation is accomplished by ductile, passive flow of F sub 1-axes into extremely arcuate, E-W hinges. In order to test these hypotheses a number of large folds were mapped in the eastern Adirondacks. Other evidence supporting the existence of sheath folds in the Adirondacks is the presence, on a map scale, of synforms whose limbs pass through the vertical and into antiforms. This type of outcrop pattern is best explained by intersecting a horizontal plane with the double curvature of sheath folds. It is proposed that sheath folding is a common response of hot, ductile rocks to rotational strain at deep crustal levels. The recognition of sheath folds in the Adirondacks reconciles the E-W orientation of fold axes with an E-W elongation lineation.

  5. Atmospheric Science Research at the Whiteface Mountain Adirondack High Peaks Observatory

    NASA Astrophysics Data System (ADS)

    Schwab, J. J.; Brandt, R. E.; Casson, P.; Demerjian, K. L.; Crandall, B. A.

    2014-12-01

    The Atmospheric Sciences Research Center established an atmospheric observatory at Whiteface Mountain in the Adirondacks in 1961. The current mountain top observatory building was built by the University at Albany in 1969-70 and the New York State Department of Environmental Conservation (DEC) began ozone measurements at this summit location in 1973. Those measurements continue to this day and constitute a valuable long term data record for tropospheric ozone in the northeastern U.S. The elevation of the summit is 1483 m above sea level, and is roughly 90 m above the tree line in this location. With a mean cloud base height of less than 1100 m at the summit, it is a prime location for cloud research. The research station headquarters, laboratories, offices, and a second measurement site are located at the Marble Mountain Lodge, perched on a shoulder northeast of the massif at an elevation of 604 m above sea level. Parameters measured at the site include meteorological variables, trace gases, precipitation chemistry, aerosol mass and components, and more. Precipitation and cloud chemistry has a long history at the lodge and summit locations, respectively, and continues to this day. Some data from the 40-year record will be shown in the presentation. In the late 1980's the summit site was outfitted with instrumentation to measure oxides of nitrogen and other ozone precursors. Measurements of many of these same parameters were added at the lodge site and continue to this day. In this poster we will give an overview of the Whiteface Mountain Observatory and its two measurement locations. We will highlight the parameters currently being measured at our sites, and indicate those measured by ASRC, as well as those measured by other organizations. We will also recap some of the historical activities and measurement programs that have taken place at the site, as alluded to above. Also included will be examples of the rich archive of trends data for gas phase species

  6. The influence of the Adirondacks on the wilderness preservation contributions of Robert Marshall and Howard Zahniser

    Treesearch

    Chad P. Dawson; Ed Zahniser

    2000-01-01

    Two wilderness visionaries, Robert Marshall and Howard Zahniser, were influenced by their personal wilderness experiences in the Adirondack Mountains of New York and the “forever wild” legislation that protected those Forest Preserve areas. Both learned from and contributed to the wilderness preservation movement in the Adirondacks and the nation. The wilderness...

  7. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  8. Use of stream chemistry for monitoring acidic deposition effects in the Adirondack region of New York

    USGS Publications Warehouse

    Lawrence, G.B.; Momen, B.; Roy, K.M.

    2004-01-01

    Acid-neutralizing capacity (ANC) and pH were measured weekly from October 1991 through September 2001 in three streams in the western Adirondack Mountain region of New York to identify trends in stream chemistry that might be related to changes in acidic deposition. A decreasing trend in atmospheric deposition of SO42- was observed within the region over the 10-yr period, although most of the decrease occurred between 1991 and 1995. Both ANC and pH were inversely related to flow in all streams; therefore, a trend analysis was conducted on (i) the measured values of ANC and pH and (ii) the residuals of the concentration-discharge relations. In Buck Creek, ANC increased significantly (p 0.10). In Bald Mountain Brook, ANC and residuals of ANC increased significantly (p < 0.01), although the trend was diatonic-a distinct decrease from 1991 to 1996 was followed by a distinct increase from 1996 to 2001. In Fly Pond outlet, ANC and residuals of ANC increased over the study period (p < 0.01), although the trend of the residuals resulted largely from an abrupt increase in 1997. In general, the trends observed in the three streams are similar to results presented for Adirondack lakes in a previous study, and are consistent with the declining trend in atmospheric deposition for this region, although the observed trends in ANC and pH in streams could not be directly attributed to the trends in acidic deposition.

  9. Critical loads of atmospheric deposition to Adirondack lake watersheds: A guide for policymakers

    USGS Publications Warehouse

    Burns, Douglas A.; Sullivan, Timothy J.

    2015-01-01

    Acid deposition is sometimes referred to as “acid rain,” although part of the acid load reaches the surface by means other than rainfall. In the eastern U.S., acid deposition consists of several forms of sulfur and nitrogen that largely originate as emissions to the atmosphere from sources such as electricity-generating facilities (coal, oil, and natural gas), diesel- and gasoline-burning vehicles, some agricultural activities, and smokestack industries. Acid deposition is known to cause deleterious effects to sensitive ecosystems of which the Adirondack region of New York State provides several well-known and well-studied examples. This largely forested region includes abundant lakes, streams, and wetlands and possesses several landscape features that result in high ecosystem sensitivity to acid deposition. These features include bedrock that weathers slowly, steep slopes, and thin, naturally acidic soils. An ecosystem is described as sensitive to, or affected by, acid deposition if prolonged exposure to acid deposition has resulted in detrimental ecosystem effects. Soils, streams, and lakes that are less sensitive are better able to buffer acid deposition. A principal reason that acidification is a concern for resource managers is because of the changes induced in native biota and their habitat on land and in water. As the chemistry of soils and surface waters in sensitive landscapes changes in response to prolonged exposure to acid deposition, organisms that cannot tolerate high acidity, such as sugar maple trees and many species of fish and aquatic insects, may be gradually eliminated from the ecosystem. Other biota such as red spruce may experience increased stress and reduced growth rates as a result of acidification, exposing these species to increased susceptibility to disease and other natural stressors and perhaps increased mortality. The ecological effects of acid deposition have been documented by extensive research that began in the U.S. in the

  10. Paleolimnological assessment of the effects of lake acidification on Chironomidae (Diptera) assemblages in the Adirondack region of New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uutala, A.J.

    1987-01-01

    The stratigraphies of larval chironomid and Chaoborus (Diptera: Chironomidae and Chaoboridae) remains were determined for cores from five Adirondack lakes. Big Moose Lake, Deep Lake, Brook trout Lake and Upper Wallface Pond are currently acidic, while Windfall Pond is near neutral. Altered chironomid assemblages were evident in the four acidic lakes, and acid deposition was the most likely cause for the inferred changes. Declining pH was indicated beginning after 1950 in Big Moose L., after 1930 in Deep L. and Upper Wallface P., and after 1920 in Brook trout L. No recent pH change was inferred for Windfall P. Shiftsmore » in the chironomid assemblages were concordant with indications of declining pH inferred from analyses of cladocera, chrysophyte and diatom remains. The best indicators among the chironomid taxa were Heterotrissocladius changi, Micropsectra and Zavreliina, which tended to decline, and Salutschia cf. briani, Psectrocladius (Psectrocladius) and Tanytarsus, which tended to increase in abundance in response to increased acidity. Long-term presence of Chaoborus americanus in Deep L. and Upper Wallface P. indicated that fishes were probably never abundant in these lakes. Increases in the accumulation rates of C. americanus remains in Deep L. and Upper Wallface P. reflected the poor success and eventual halt of fish stocking in these lakes.« less

  11. Thermal regimes of Rocky Mountain lakes warm with climate change

    PubMed Central

    Roberts, James J.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083

  12. Thermal regimes of Rocky Mountain lakes warm with climate change.

    PubMed

    Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  13. Thermal regimes of Rocky Mountain lakes warm with climate change

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  14. Nitrogen solutes in an Adirondack forested watershed: Importance of dissolved organic nitrogen

    USGS Publications Warehouse

    McHale, M.R.; Mitchell, M.J.; McDonnell, Jeffery J.; Cirmo, C.P.

    2000-01-01

    Nitrogen (N) dynamics were evaluated from 1 June 1995 through 31 May 1996 within the Arbutus Lake watershed in the Adirondack Mountains of New York State, U.S.A. At the Arbutus Lake outlet dissolved organic nitrogen (DON), NO3/- and NH4/+ contributed 61%, 33%, and 6% respectively, to the total dissolved nitrogen (TDN) flux (259 mol ha-1 yr-1). At the lake inlet DON, NO3/-, and NH4/+ constituted 36%, 61%, and 3% respectively, of TDN flux (349 mol ha-1 yr-1). Differences between the factors that control DON, NO3/-, and NH4+ stream water concentrations were evaluated using two methods for estimating annual N flux at the lake inlet. Using biweekly sampling NO3/- and NH4/+ flux was 10 and 4 mol ha-1 yr-1 respectively, less than flux estimates using biweekly plus storm and snowmelt sampling. DON flux was 18 mol ha-1 yr-1 greater using only biweekly sampling. These differences are probably not of ecological significance relative to the total flux of N from the watershed (349 mol ha-1 yr-1). Dissolved organic N concentrations were positively related to discharge during both the dormant (R2 = 0.31; P<0.01) and growing season (R2= 0.09; P<0.01). There was no significant relationship between NO3/- concentration and discharge during the dormant season, but a significant negative relationship was found during the growing season (R2 = 0.29; P<0.01). Biotic controls in the growing season appeared to have had a larger impact on stream water NO3- concentrations than on DON concentrations. Arbutus Lake had a major impact on stream water N concentrations of the four landscape positions sampled, suggesting the need to quantify within lake processes to interpret N solute losses and patterns in watershed-lake systems.

  15. Age and petrogenesis of the Diana Complex, Adirondack Mountains, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, N.; Yang, Yingping; Cliff, R.

    1992-01-01

    U-Pb zircon data show that the Diana Complex was emplaced 1152[plus minus]12 Ma ago along the Carthage-Colton Mylonite Zone (CCMZ), that marks the boundary between the Adirondack Highlands and the Lowlands. The tectonic setting of the Complex is uncertain because granitoid plutons of the same age were emplaced under syntectonic conditions in the Lowlands, while in the Highlands the same plutons have been viewed as anorogenic. Deformation focused on the CCMZ is reflected in whole-rock Rb-Sr isochron age of 1038[plus minus]97 Ma for the Complex. This resetting is typical of granitoid plutons within a 10 km-wide zone across the CCMZ,more » but is absent outside this zone elsewhere in the Lowlands. Although the chemical continuity of the Complex with Adirondack mafic rocks of the same presumed age demonstrates that crystal fractionation from a basic parent was a likely origin for the Complex, it is probable the magmas were modified by crustal assimilation. For example, the initial [sup 87]Sr/[sup 86]Sr[sub 1152] values for the Complex (0.7042[plus minus]3) are higher than the same ratios for Adirondack mafic rocks (0.7033[plus minus]6), and one zircon fraction lies to the right of the discordia defined by the other four analyzed fractions. The nature and age of the assimilant may be constrained by a metasedimentary xenolith with a whole-rock Rb-Sr isochron age of 1318[plus minus]15 Ma. Changes in TiO[sub 2] and P[sub 2]O[sub 5] abundances and La/Yb values indicate that the crystallization of both accessory (e.g., Fe-Ti oxides, apatite and zircon) and silicate phases were important in the fractionation of the Diana Complex syenites.« less

  16. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification

    USGS Publications Warehouse

    Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.

    2013-01-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  17. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification.

    PubMed

    Lawrence, Gregory B; Dukett, James E; Houck, Nathan; Snyder, Phil; Capone, Sue

    2013-07-02

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  18. Food Web Topology in High Mountain Lakes.

    PubMed

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.

  19. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revetta, F.A.; O'Brian, B.

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate withmore » the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.« less

  20. Factors associated with stocked cutthroat trout populations in high-mountain lakes

    USGS Publications Warehouse

    Bailey, Paul E.; Hubert, W.A.

    2003-01-01

    High-mountain lakes provide important fisheries in the Rocky Mountains; therefore we sought to gain an understanding of the relationships among environmental factors, accessibility to anglers, stocking rates, and features of stocks of cutthroat trout Oncorhynchus clarki in high-mountain lakes of the Bighorn Mountains, Wyoming. We sampled fish with experimental gill nets, measured lake habitat features, and calculated factors affecting angler access among 19 lakes that lacked sufficient natural reproduction to support salmonid fisheries and that were stocked at 1-, 2-, or 4-year intervals with fingerling cutthroat trout. We found that angler accessibility was probably the primary factor affecting stock structure, whereas stocking rates affected the densities of cutthroat trout among lakes. The maximum number of years survived after stocking appeared to have the greatest affect on biomass and population structure. Our findings suggest that control of harvest and manipulation of stocking densities can affect the density, biomass, and structure of cutthroat trout stocks in high-elevation lakes.

  1. The 2018 Lake Louise Acute Mountain Sickness Score.

    PubMed

    Roach, Robert C; Hackett, Peter H; Oelz, Oswald; Bärtsch, Peter; Luks, Andrew M; MacInnis, Martin J; Baillie, J Kenneth

    2018-03-01

    Roach, Robert C., Peter H. Hackett, Oswald Oelz, Peter Bärtsch, Andrew M. Luks, Martin J. MacInnis, J. Kenneth Baillie, and The Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 19:1-4, 2018.- The Lake Louise Acute Mountain Sickness (AMS) scoring system has been a useful research tool since first published in 1991. Recent studies have shown that disturbed sleep at altitude, one of the five symptoms scored for AMS, is more likely due to altitude hypoxia per se, and is not closely related to AMS. To address this issue, and also to evaluate the Lake Louise AMS score in light of decades of experience, experts in high altitude research undertook to revise the score. We here present an international consensus statement resulting from online discussions and meetings at the International Society of Mountain Medicine World Congress in Bolzano, Italy, in May 2014 and at the International Hypoxia Symposium in Lake Louise, Canada, in February 2015. The consensus group has revised the score to eliminate disturbed sleep as a questionnaire item, and has updated instructions for use of the score.

  2. Food Web Topology in High Mountain Lakes

    PubMed Central

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  3. Hydrogeologic comparison of an acidic-lake basin with a neutral-lake basin in the West-Central Adirondack Mountains, New York

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.

    1985-01-01

    Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4.7 to 7; that at Woods Lake (acidic) ranges from about 4.3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till. The difference in ground-water contribution is attributed to a more extensive distribution of thick till (<3m) in the neutral-lake basin than in the acidic-lake basin; average thickness of till in the neutral-lake basin is 24m whereas that in the other is 2.3m. During the snowmelt period, as much as three months of accumulated precipitation may be released within two weeks causing the lateral flow capacity of the deeper mineral soil to be exceeded in the neutral-lake basin. This excess water moves over and through the shallow acidic soil horizons and causes the lakewater pH to decrease during snowmelt.Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4. 7 to 7; that at Woods Lake (acidic) ranges from about 4. 3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that

  4. Impacts of acidification on macroinvertebrate communities in streams of the western Adirondack Mountains, New York, USA

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.; Bode, R.W.; Simonin, H.A.; Roy, K.M.; Smith, A.J.

    2009-01-01

    Limited stream chemistry and macroinvertebrate data indicate that acidic deposition has adversely affected benthic macroinvertebrate assemblages in numerous headwater streams of the western Adirondack Mountains of New York. No studies, however, have quantified the effects that acidic deposition and acidification may have had on resident fish and macroinvertebrate communities in streams of the region. As part of the Western Adirondack Stream Survey, water chemistry from 200 streams was sampled five times and macroinvertebrate communities were surveyed once from a subset of 36 streams in the Oswegatchie and Black River Basins during 2003-2005 and evaluated to: (a) document the effects that chronic and episodic acidification have on macroinvertebrate communities across the region, (b) define the relations between acidification and the health of affected species assemblages, and (c) assess indicators and thresholds of biological effects. Concentrations of inorganic Al in 66% of the 200 streams periodically reached concentrations toxic to acid-tolerant biota. A new acid biological assessment profile (acidBAP) index for macroinvertebrates, derived from percent mayfly richness and percent acid-tolerant taxa, was strongly correlated (R2 values range from 0.58 to 0.76) with concentrations of inorganic Al, pH, ANC, and base cation surplus (BCS). The BCS and acidBAP index helped remove confounding influences of natural organic acidity and to redefine acidification-effect thresholds and biological-impact categories. AcidBAP scores indicated that macroinvertebrate communities were moderately or severely impacted by acidification in 44-56% of 36 study streams, however, additional data from randomly selected streams is needed to accurately estimate the true percentage of streams in which macroinvertebrate communities are adversely affected in this, or other, regions. As biologically relevant measures of impacts caused by acidification, both BCS and acidBAP may be useful

  5. Rehabilitation of alpine vegetation in the Adirondack Mountains of New York State

    Treesearch

    E.H. Ketchledge; R.E. Leonard; N.A. Richards; P.F. Craul; A.R. Eschner; A.R. Eschner

    1985-01-01

    This paper describes field experiments in using sod-forming grasses from lower elevations as soil stabilizers, and discusses the effects of fertilizing and transplanting native vegetation as part of an integrated management plan for rehabilitating alpine plant communities in the Adirondacks. Results show that it is possible to stabilize severely degraded alpine...

  6. Biological studies of atmospheric deposition impact on biota in Kola North Mountain Lakes, Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, V.; Sharov, A.; Vandysh, O.

    1996-12-31

    In the framework of the AL:PE projects, biological studies of phyto-, zooplankton and zoobenthos communities of a small lakes situated in Chuna tundra and Chibiny mountains in Murmansk region were performed in 1993-1995. The lakes are the typical oligotrophic mountain lakes. In the Chibiny lake phytoplankton were presented mostly by species from rock catchment area. Summer phytoplankton state in the lakes showed no acidification in 1993-1995. However, the great number dead cells of acid tolerance diatoms, such as Tabellaria flocculosa found in the Chuna lake in summer period, may indicate a presence of acid episodes. Zooplankton of the lakes ismore » typical for high oligotrophic mountain lakes. However, lack of the acid sensitive daphniidae cladocerans seems to be a result of acidification effects. There were no significant relationships between benthic invertebrates species composition and present water acidity of the lakes. The typical for mountain lakes taxa (Prodiamesinae chironomids, stone flies and mayflies) were found in lake shore and streams. Despite the only little evidence of damage in biota, the further biological studies would be useful for long-term monitoring of the mountain lakes.« less

  7. Post-metamorphic fluid infiltration into granulites from the Adirondack Mountains, USA

    NASA Technical Reports Server (NTRS)

    Morrison, J.; Valley, John W.

    1988-01-01

    Post-metamorphic effects in the anorthosites of the Adirondacks, New York were described. Calcite-chlorite-sericite assemblages occur as veins, in disseminated form and as clots, and document retrograde fluid infiltration. These features are associated with late-state CO2-rich fluid inclusions. Stable isotope analyses of calcites indicates that the retrograde fluids interacted with meta-igneous and supracrustal lithologies, but the precise timing of the retrogression is as yet unknown.

  8. Bacteria and Turbidity Survey for Blue Mountain Lake, Arkansas, Spring and Summer, 1994

    USGS Publications Warehouse

    Lasker, A. Dwight

    1995-01-01

    Introduction Blue Mountain Lake darn is located at river mile 74.4 on the Petit Jean River in Logan and Yell Counties in west-central Arkansas (fig. 1). Drainage area above the darn is 488 square miles. Blue Mountain Lake is located between two national forests-the Ozark National Forest and the Ouachita National Forest. The primary purpose for Blue Mountain Lake is flood control, but the lake is used for a variety of recreational purposes. The U.S. Geological Survey (USGS) in cooperation with the U.s. Army Corps of Engineers, Little Rock District, conducted a bacterial and turbidity study of the Blue Mountain Lake Basin during the spring and suri1mer 1994. Samples were collected weekly at 11 locations within the lake basin from May through September 1994. Eight sampling sites were located on tributaries to the lake and three sampling sites were located on the lake with one of the sites located at a swim beach (fig. 2; table 1).

  9. SKY LAKES ROADLESS AREA AND MOUNTAIN LAKES WILDERNESS, OREGON.

    USGS Publications Warehouse

    Smith, James G.; Benham, John R.

    1984-01-01

    Based on a mineral survey of the Sky Lakes Roadless Area and the Mountain Lakes Wilderness, Oregon, the areas have little or no promise for the occurrence of metallic-mineral resources or geothermal energy resources. Nonmetallic resources exist in the areas, but other areas outside the roadless area and wilderness also contain resources of volcanic cinders, scoria, ash, breccia, and sand and gravel which are easier to obtain and closer to markets. The roadless area and wilderness are not geologically favorable for metallic deposits, or for coal, oil, or gas resources.

  10. Temporal patterns of glacial lake evolution in high-mountain environments

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Emmer, Adam; Viani, Cristina; Huggel, Christian

    2017-04-01

    Lakes forming at the front of retreating glaciers are characteristic features of high-mountain areas in a warming climate. Typically, lakes shift from the proglacial phase (lake is in direct contact with glacier) to a glacier-detached (no direct contact) and finally to a non-glacial phase (lake catchment is completely deglaciated) of lake evolution. Apart from changing glacier-lake interactions, each stage is characterized by particular features of lake growth, and by the lake's susceptibility to sudden drainage (lake outburst flood). While this concept appears to be valid globally, some mountain areas are rich in dynamically evolving proglacial lakes, while in others most lakes have already shifted to the glacier-detached or even non-glacial phase. In the present contribution we (i) explore and quantify the history of glacial lake formation and evolution over the past up to 70 years; (ii) assess the current situation of selected contrasting mountain areas (eastern and western European Alps, southern and northern Pamir, Cordillera Blanca); and (iii) link the patterns of lake evolution to the prevailing topographic and glaciological characteristics in order to improve the understanding of high-mountain geoenvironmental change. In the eastern Alps we identify only very few lakes in the proglacial stage. While many lakes appeared and dynamically evolved until the 1980s between 2550 m and 2800 m asl, most of them have lost glacier contact until the 2000s, whereas very few new proglacial lakes appeared at the same time. Even though a similar trend is observed in the higher western Alps, a more dynamic glacial lake evolution is observed there. The arid southern Pamir is characterized by a high number of proglacial lakes, mainly around 4500 m asl. There is strong evidence that glacial lake evolution is, after a highly dynamic phase between the 1970s and approx. 2000, decelerating. Few proglacial lakes exist in the higher and more humid, heavily glacierized northern Pamir

  11. Adirondack's Inner Self

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectrum - the first taken of a rock on another planet - reveals the different iron-containing minerals that makeup the martian rock dubbed Adirondack. It shows that Adirondack is a type of volcanic rock known as basalt. Specifically, the rock is what is called olivine basalt because in addition to magnetite and pyroxene, two key ingredients of basalt, it contains a mineral called olivine. This data was acquired by Spirit's Moessbauer spectrometer before the rover developed communication problems with Earth on the 18th martian day, or sol, of its mission.

  12. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains

    PubMed Central

    Kammerlander, Barbara; Breiner, Hans-Werner; Filker, Sabine; Sommaruga, Ruben; Sonntag, Bettina; Stoeck, Thorsten

    2015-01-01

    We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs97%, operational taxonomic units), Stramenopiles (34.0% OTUs97%), Cryptophyta (4.0% OTUs97%), Chloroplastida (3.6% OTUs97%) and Fungi (1.7% OTUs97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes. PMID:25764458

  13. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains.

    PubMed

    Kammerlander, Barbara; Breiner, Hans-Werner; Filker, Sabine; Sommaruga, Ruben; Sonntag, Bettina; Stoeck, Thorsten

    2015-04-01

    We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs 97%, operational taxonomic units), Stramenopiles (34.0% OTUs 97%), Cryptophyta (4.0% OTUs 97%), Chloroplastida (3.6% OTUs 97%) and Fungi (1.7% OTUs 97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs 97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes. © FEMS 2015.

  14. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  15. The effects of liming an Adirondack lake watershed on downstream water chemistry: Effects of liming on stream chemistry

    USGS Publications Warehouse

    Burns, Douglas A.

    1996-01-01

    Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO3- and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO42- and NO3- concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO42--reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO42- reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 ??eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+, as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+, H+, AlIM, and DOC revealed net downstream losses of

  16. High mountain lake Research Natural Areas in Idaho

    Treesearch

    Fred W. Rabe

    2001-01-01

    High mountain lakes in Idaho total about 1800 and represent one of the most pristine type ecosystems in the country. Limnological characteristics are described for 27 lakes and 20 ponds in 32 established and proposed Research Natural Areas (RNA) representing seven subregions in the state. Field collections were made from the 1960s through 1999 by different researchers...

  17. Mountain lakes of Russian subarctic as markers of air pollution: Acidification, metals and paleoecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseenko, T.I.; Dauvalter, V.A.; Kagan, L.Y.

    1996-12-31

    The Kola Peninsula mountain lakes reflect a real situation not only of the local air pollution but also polluted transborder emissions from Europe to Arctic and they are of interest for early detection and monitoring for acidification and pollution by heavy metals. Two monitoring mountain lakes had a discrepancy by their resistance to acidification: the Chuna lake is vulnerable and the Chibiny one is not, respectively. Despite the Chuna and Chibiny lakes are close tone of the main heavy metal pollution sources of the Kola Peninsula - smelters of the Severonickel Company, local emissions very slightly affect the mountain lakes,more » because heavily polluted air masses do not rise in altitude. Sulfur deposition on the Chuna lake catchment is 0.4 gSm{sup -2}, Chibiny lake is 0.6 gSm{sup -2}. In comparison with area at the foot of the mountain (less than 200 m above the sea level) sulfur deposition is 1.0-1.5 gSm{sup -2}. Water quality, sediment chemistry, and diatoms in sediment cores were studied.« less

  18. U-Pb age of the Diana Complex and Adirondack granulite petrogenesis

    USGS Publications Warehouse

    Basu, A.R.; Premo, W.R.

    2001-01-01

    U-Pb isotopic analyses of eight single and multi-grain zircon fractions separated from a syenite of the Diana Complex of the Adirondack Mountains do not define a single linear array, but a scatter along a chord that intersects the Concordia curve at 1145 ?? 29 and 285 ?? 204 Ma. For the most concordant analyses, the 207Pb/206Pb ages range between 1115 and 1150 Ma. Detailed petrographic studies revealed that most grains contained at least two phases of zircon growth, either primary magmatic cores enclosed by variable thickness of metamorphic overgrowths or magmatic portions enclosing presumably older xenocrystic zircon cores. The magmatic portions are characterized by typical dipyramidal prismatic zoning and numerous black inclusions that make them quite distinct from adjacent overgrowths or cores when observed in polarizing light microscopy and in back-scattered electron micrographs. Careful handpicking and analysis of the "best" magmatic grains, devoid of visible overgrowth of core material, produced two nearly concordant points that along with two of the multi-grain analyses yielded an upper-intercept age of 1118 ?? 2.8 Ma and a lower-intercept age of 251 ?? 13 Ma. The older age is interpreted as the crystallization age of the syenite and the younger one is consistent with late stage uplift of the Appalachian region. The 1118 Ma age for the Diana Complex, some 35 Ma younger than previously believed, is now approximately synchronous with the main Adirondack anorthosite intrusion, implying a cogenetic relationship among the various meta-igneous rocks of the Adirondacks. The retention of a high-temperature contact metamorphic aureole around Diana convincingly places the timing of Adirondack regional metamorphism as early as 1118 Ma. This result also implies that the sources of anomalous high-temperature during granulite metamorphism are the syn-metamorphic intrusions, such as the Diana Complex.

  19. Non-native Minnows Threaten Quillwort Populations in High Mountain Shallow Lakes.

    PubMed

    Gacia, Esperança; Buchaca, Teresa; Bernal-Mendoza, Nayeli; Sabás, Ibor; Ballesteros, Enric; Ventura, Marc

    2018-01-01

    Submersed aquatic plants are a key component of shallow, clear water lakes contributing to primary production and water quality. High mountain lakes are naturally fishless although invasive trout and most recently minnows have been introduced causing a major impact on fauna richness. The Pyrenean high mountain range has preserved soft-water oligotrophic boreal isoetids in their southern limit of distribution but the recent fish introduction is a potential factor of stress that needs to be addressed. We here work under the hypothesis that due to contrasting ecological features, trout will not be heavily affecting quillwort populations while minnows will have a stronger effect on zooplankton and zoobenthos that will promote algal growth and reduce light availability for the underwater meadows. Ten Pyrenean shallow lakes representative of three scenarios -fishless, with trout and with minnows-, were sampled for meadow structure, water column and benthic environment characterization in mid-summer 2015 and 2016. Quillwort biomass allocation (above vs. belowground), epiphytic load, and composition of the algal community (abundant cyanobacteria) differed in the presence of minnows. In trout lakes biomass allocation and epiphytic load were average and the algal community composed by chlorophytes and diatoms as in fishless lakes. Biomass ratio was close to thresholds of negative buoyancy in minnow lakes indicating that meadows were at risk of uprooting and consequent de-vegetation. Total and soluble carbohydrates were lower and the sporangia contained significantly less reserves to constrain growth and expansion in the presence of minnows. Lake scenarios were coupled to physicochemical differences with low light, high phosphorus and Chl-a (mesotrophia) in minnow lakes, while trout and fishless lakes remained oligotrophic. This is the first study assessing the impact of non-native fish on soft-water isoetids from mountain lakes and shows that minnows are a major threat to

  20. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  1. Integrating limnological characteristics of high mountain lakes into the landscape of a natural area

    USGS Publications Warehouse

    Larson, Gary L.; Wones, A.; McIntire, C.D.; Samora, B.

    1994-01-01

    A general conceptual watershed-lake model of the complex interactions among climatic conditions, watershed location and characteristics, lake morphology, and fish predation was used to evaluate limnological characteristics of high mountain lakes. Our main hypothesis was that decreasing elevation in mountainous terrain corresponds to an increase in diversity of watershed size and lake area, depth, temperature, nutrient concentrations, and productivity. A second hypothesis was that watershed location and aspect relative to climatic gradients within mountainous terrain influences the limnological characteristics of the lakes. We evaluated these hypotheses by examining watershed location, aspect and size; lake morphology; water quality; and phytoplankton and zooplankton community characteristics among high mountain forest and subalpine lakes in Mount Rainier National Park. Although many of the comparisons between all forest and subalpine lakes were statistically insignificant, the results revealed trends that were consistent with our hypotheses. The forest lake group included more lakes with larger watersheds, larger surface areas, greater depths, higher concentrations of nutrients, and higher algal biovolumes than did the group of subalpine lakes. Deep lakes, which were mostly of the forest lake type, exhibited thermal stratification and relatively high values of some of the water-quality variables near the lake bottoms. However, the highest near-surface water temperatures and phytoplankton densities and the taxonomic structures of the phytoplankton and zooplankton assemblages were more closely related to geographical location, which corresponded to a west-east climate gradient in the park, than to lake type. Some crustacean and rotifer taxa, however, were limited in distribution by lake type. Fish predation did not appear to play an important role in the structure of the crustacean zooplankton communities at the genus level with the exception of Mowich Lake, where

  2. Hydrogeologic Controls on Lake Level at Mountain Lake, Virginia

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Burbey, T. J.

    2011-12-01

    Mountain Lake in Giles County, Virginia has a documented history of severe natural lake-level changes involving groundwater seepage that extend over the past 4200 years. Featured in the 1986 movie Dirty Dancing, the natural lake dried up completely in September 2008 and levels have not yet recovered. A hydrogeologic investigation was undertaken in an effort to determine the factors influencing lake level changes. A daily water balance, dipole-dipole electrical resistivity surveying, well logging and chemical sampling have shed light on: 1) the influence of a fault not previously discussed in literature regarding the lake, 2) the seasonal response to precipitation of a forested first-order drainage system in fractured rock, and 3) the possibility of flow pathways related to karst features. Geologic controls on lake level were investigated using several techniques. Geophysical surveys using dipole-dipole resistivity located possible subsurface flowpaths both to and from the lake. Well logs, lineament analysis, and joint sampling were used to assess structural controls on lake hydrology. Major ions were sampled at wells, springs, streams, and the lake to evaluate possible mixing of different sources of water in the lake. Groundwater levels were monitored for correlation to lake levels, rainfall events, and possible seismic effects. The hydrology of the lake was quantified with a water balance on a daily time step. Results from the water balance indicate steady net drainage and significant recharge when vegetation is dormant, particularly during rain-on-snow melt events. The resistivity survey reveals discrete areas that represent flow pathways from the lake, as well as flowpaths to springs upgradient of the lake located in the vicinity of the fault. The survey also suggests that some flowpaths may originate outside of the topographic watershed of the lake. Chemical evidence indicates karst may underlie the lakebed. Historical data suggest that artificial intervention

  3. Wolf restoration to the Adirondacks: the advantages and disadvantages of public participation in the decision

    USGS Publications Warehouse

    Mech, L. David; Sharpe, V.A.; Norton, B.; Donnelley, S.

    2000-01-01

    The first time I ever saw a wolf in New York State's Adirondack Mountains was in 1956. It was a brush wolf, or coyote (Canis latrans), not a real wolf, but to an eager young wildlife student this distinction meant little. The presence of this large deer-killing canid let my fresh imagination view the Adirondacks as a real northern wilderness. Since then I have spent the last 40 years studying the real wolf: the gray wolf (Canis lupus). Although inhabiting nearby Quebec and Ontario, the gray wolf still has not made its way back to the Adirondacks as it has to Wisconsin, Michigan, and Montana. Those three states had the critical advantages of a nearby reservoir population of wolves and wilderness corridors through which dispersers from the reservoirs could immigrate. The Adirondacks, on the other hand, are geographically more similar to the greater Yellowstone area in that they are separated from any wolf reservoir by long distances and intensively human-developed areas aversive to wolves from the reservoir populations. If wolves are to return to the Adirondacks, they almost certainly will have to be reintroduced, as they were to Yellowstone National Park. Wolf reintroduction, as distinct from natural recovery, is an especially contentious issue, for it entails dramatic, deliberate action that must be open to public scrutiny, thorough discussion and review, and highly polarized debate. This is as it should be because once a wolf population is reintroduced to an area, it must be managed forever. There is no turning back. The wolf was once eradicated not just from the Adirondacks but from almost all of the 48 contiguous states. That feat was accomplished by a primarily pioneering society that applied itself endlessly to the task, armed with poison. We can never return to those days, so once the wolf is reintroduced successfully, it will almost certainly be here to stay.

  4. Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria

    NASA Astrophysics Data System (ADS)

    Emmer, Adam; Merkl, Sarah; Mergili, Martin

    2015-10-01

    Climate-induced environmental changes are triggering the dynamic evolution of high-mountain lakes worldwide, a phenomenon that has to be monitored in terms of lake outburst hazards. We analyzed the spatial distribution and recent temporal development of high-mountain lakes in a study area of 6139 km2, covering the central European Alps over most of the province of Tyrol and part of the province of Salzburg in western Austria. We identified 1024 natural lakes. While eight lakes are ice-dammed, one-third of all lakes are located in the immediate vicinity of recent glacier tongues, half of them impounded by moraines, half by bedrock. Two-thirds of all lakes are apparently related to LIA or earlier glaciations. One landslide-dammed lake was identified in the study area. The evolution of nine selected (pro)glacial lakes was analyzed in detail, using multitemporal remotely sensed images and field reconnaissance. Considerable glacier retreat led to significant lake growth at four localities, two lakes experienced stagnant or slightly negative areal trends, one lake experienced a more significant negative areal trend, and two lakes drained completely during the investigation period. We further (i) analyzed the susceptibility of selected lakes to glacial lake outburst floods (GLOFs), using two different methods; (ii) identified potential triggers and mechanisms of GLOFs; (iii) calculated possible flood magnitudes for predefined flood scenarios for a subset of the lakes; and (iv) delineated potentially impacted areas. We distinguished three phases of development of bedrock-dammed lakes: (a) a proglacial, (b) a glacier-detached, and (c) a nonglacial phase. The dynamics - and also the susceptibility of a lake to GLOFs - decrease substantially from (a) to (c). Lakes in the stages (a) and (b) are less prominent in our study area, compared to other glacierized high-mountain regions, leading us to the conclusion that (i) the current threat to the population by GLOFs is lower but

  5. Adirondack tourism: perceived consequences of acid rain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.C.

    This report seeks to place in perspective the perceived effects of acid precipitation on the tourist industry in the Adirondacks. The 9375-square mile park is host to almost nine million tourists annually, not including seasonal residents. Since the park was established almost 100 years ago, there have been many changes in tourist characteristics, available recreational facilities, kinds of activities, accessibility of the area, and land use and resource management policies. The tourist industry has been influenced by both controllable and uncontrollable factors. At present the overwhelming majority of recreational opportunities and natural resources important to the Adirondack tourist industry aremore » relatively unaffected by acid precipitation. Fishing, a significant component of the tourist industry, is the most vulnerable, but any presumed adverse economic effect has to be weighed against the location of the impacted waters, total Adirondack fishing habitat, substitution available, habitat usage, fisherman characteristics, resource management, and the declining importance of fishing as an Adirondack recreational attraction. Concern is expressed as to whether present minimal acidification impacts are the precursor of major future impacts on Adirondack terrestrial and aquatic environments, and ultimately tourism. Tourism in the Adirondacks is increasing, while many other regional employment sectors are declining. It is becoming a more stable multiseason industry. Its future growth and character will be affected by government, private organization, business community, and resident controversies regarding land use and resource management attitudes, policies, budgets, and regulations. The acid precipitation issue is only one of many related controversies. 65 references, 2 figures.« less

  6. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    PubMed

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  7. Contribution of Lake-Effect Snow to the Catskill Mountains Snowpack

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Digirolamo, Nicolo E.; Frei, Allan

    2017-01-01

    Meltwater from snow that falls in the Catskill Mountains in southern New York contributes to reservoirs that supply drinking water to approximately nine million people in New York City. Using the NOAA National Ice Centers Interactive Multisensor Snow and Ice Mapping System (IMS) 4km snow maps, we have identified at least 32 lake-effect (LE) storms emanating from Lake Erie andor Lake Ontario that deposited snow in the CatskillDelaware Watershed in the Catskill Mountains of southern New York State between 2004 and 2017. This represents a large underestimate of the contribution of LE snow to the Catskills snowpack because many of the LE snowstorms are not visible in the IMS snow maps when they travel over snow-covered terrain. Most of the LE snowstorms that we identified originate from Lake Ontario but quite a few originate from both Erie and Ontario, and a few from Lake Erie alone. Using satellite, meteorological and reanalysis data we identify conditions that contributed to LE snowfall in the Catskills. Clear skies following some of the storms permitted measurement of the extent of snow cover in the watershed using multiple satellite sensors. IMS maps tend to overestimate the extent of snow compared to MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat-derived snow-cover extent maps. Using this combination of satellite and meteorological data, we can begin to quantify the important contribution of LE snow to the Catskills Mountain snowpack. Changes that are predicted in LE snowfall from the Great Lakes could impact the distribution of rain vs snow in the Catskills which may affect future reservoir operations in the NYC Water Supply System.

  8. Spatial distribution and temporal development of high-mountain lakes in western Austria

    NASA Astrophysics Data System (ADS)

    Merkl, Sarah; Emmer, Adam; Mergili, Martin

    2015-04-01

    Glacierized high-mountain environments are characterized by active morphodynamics, favouring the rapid appearance and disappearance of lakes. On the one hand, such lakes indicate high-mountain environmental changes such as the retreat of glaciers. On the other hand, they are sometimes susceptible to sudden drainage, leading to glacial lake outburst floods (GLOFs) putting the downstream population at risk. Whilst high-mountain lakes have been intensively studied in the Himalayas, the Pamir, the Andes or the Western Alps, this is not the case for the Eastern Alps. A particular research gap, which is attacked with the present work, concerns the western part of Austria. We consider a study area of approx. 6,140 km², covering the central Alps over most of the province of Tyrol and part of the province of Salzburg. All lakes ≥250 m² located higher than 2000 m asl are mapped from high-resolution Google Earth imagery and orthophotos. The lakes are organized into seven classes: (i) ice-dammed; near-glacial (ii) moraine-dammed and (iii) bedrock-dammed; (iv) moraine-dammed and (v) bedrock-dammed distant to the recent glaciers; (vi) landslide-dammed; (vii) anthropogenic. The temporal development of selected lakes is investigated in detail, using aerial photographs dating back to the 1950s. 1045 lakes are identified in the study area. Only eight lakes are ice-dammed (i). One third of all lakes is located in the immediate vicinity of recent glacier tongues, half of them impounded by moraine (ii), half of them by bedrock (iii). Two thirds of all lakes are impounded by features (either moraines or bedrock) shaped by LIA or Pleistocenic glaciers at some distance to the present glacier tongues (iv and v). Only one landslide-dammed lake (vi) is identified in the study area, whilst 21 lakes are of anthropogenic origin (vii). 72% of all lakes are found at 2250-2750 m asl whilst less than 2% are found above 3000 m asl. The ratio of rock-dammed lakes increases with increasing

  9. Data-collection methods and quality-assurance/quality-control procedures used in the study of episodic stream acidification and its effect on fish and aquatic invertebrates in four Catskill Mountain streams, New York, 1988-90

    USGS Publications Warehouse

    Ranalli, Anthony J.; Baldigo, Barry P.; Horan-Ross, Debra; Allen, Ronald V.

    1997-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a 20-month study during 1988-90 to evaluate the effects of episodic acidification on fish and aquatic invertebrates in pristine headwater streams in the Catskill Mountains of New York. The study was part of the Episodic Response Project, a regional survey of episodic acidification by the U.S. Environmental Protection Agency, and was carried out simultaneously with other studies in the Adirondack Mountains of New York by the Adirondack Lake Survey Corporation and in central Pennsylvania by Pennsylvania State University. This report summarizes the methods used, describes the sampling sites, and presents the data collected from October 1, 1988 through May 30, 1990 at four headwater watersheds (Biscuit Brook, East Branch Neversink River, Black Brook, and High Falls Brook). The study entailed (1) monitoring the quantity and chemical quality of atmospheric deposition and the quality of discharge of streams, and (2) experiments to determine the effect of stream-water-quality changes on fish and invertebrate populations.

  10. Chemical data for bottom sediment, lake water, bottom-sediment pore water, and fish in Mountain Creek Lake, Dallas, Texas, 1994-96

    USGS Publications Warehouse

    Jones, S.A.; Van Metre, P.C.; Moring, J.B.; Braun, C.L.; Wilson, J.T.; Mahler, B.J.

    1997-01-01

    Mountain Creek Lake is a reservoir adjacent to two U.S. Department of the Navy facilities, the Naval Weapons Industrial Reserve Plant and the Naval Air Station in Dallas, Texas. A Resource Conservation and Recovery Act Facility Investigation found ground-water plumes containing chlorinated solvents on both facilities. These findings led to a U.S. Geological Survey study of Mountain Creek Lake adjacent to both facilities between June 1994 and August 1996. Bottom sediments, lake water, bottom-sediment pore water, and fish were collected for chemical analysis.

  11. Water quality of potential reference lakes in the Arkansas Valley and Ouachita Mountain ecoregions, Arkansas

    USGS Publications Warehouse

    Justus, B.G.; Meredith, Bradley J.

    2014-01-01

    This report describes a study to identify reference lakes in two lake classifications common to parts of two level III ecoregions in western Arkansas—the Arkansas Valley and Ouachita Mountains. Fifty-two lakes were considered. A screening process that relied on land-use data was followed by reconnaissance water-quality sampling, and two lakes from each ecoregion were selected for intensive water-quality sampling. Our data suggest that Spring Lake is a suitable reference lake for the Arkansas Valley and that Hot Springs Lake is a suitable reference lake for the Ouachita Mountains. Concentrations for five nutrient constituents—orthophosphorus, total phosphorus, total kjeldahl nitrogen, total nitrogen, and total organic carbon—were lower at Spring Lake on all nine sampling occasions and transparency measurements at Spring Lake were significantly deeper than measurements at Cove Lake. For the Ouachita Mountains ecoregion, water quality at Hot Springs Lake slightly exceeded that of Lake Winona. The most apparent water-quality differences for the two lakes were related to transparency and total organic carbon concentrations, which were deeper and lower at Hot Springs Lake, respectively. Our results indicate that when nutrient concentrations are low, transparency may be more valuable for differentiating between lake water quality than chemical constituents that have been useful for distinguishing between water-quality conditions in mesotrophic and eutrophic settings. For example, in this oligotrophic setting, concentrations for chlorophyll a can be less than 5 μg/L and diurnal variability that is typically associated with dissolved oxygen in more productive settings was not evident.

  12. Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Mosquera, Pablo V.; Hampel, Henrietta; Vázquez, Raúl F.; Alonso, Miguel; Catalan, Jordi

    2017-08-01

    The number, size, and shape of lakes are key determinants of the ecological functionality of a lake district. The lake area scaling relationships with lake number and volume enable upscaling biogeochemical processes and spatially considering organisms' metapopulation dynamics. These relationships vary regionally depending on the geomorphological context, particularly in the range of lake area <1 km2 and mountainous regions. The Cajas Massif (Southern Ecuador) holds a tropical mountain lake district with 5955 water bodies. The number of lakes deviates from a power law relationship with the lake area at both ends of the size range; similarly to the distributions found in temperate mountain ranges. The deviation of each distribution tail does not respond to the same cause. The marked relief limits the size of the largest lakes at high altitudes, whereas ponds are prompt to a complete infilling. A bathymetry survey of 202 lakes, selected across the full-size range, revealed a volume-area scaling coefficient larger than those found for other lake areas of glacial origin but softer relief. Water renewal time is not consistently proportional to the lake area due to the volume-area variation in midsize lakes. The 85% of the water surface is in lakes >104 m2 and 50% of the water resources are held in a few ones (˜10) deeper than 18 m. Therefore, midlakes and large lakes are by far more biogeochemically relevant than ponds and shallow lakes in this tropical mountain lake district.

  13. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    PubMed

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Physical Controls on Delta Formation and Carbon Storage in Mountain Lakes

    NASA Astrophysics Data System (ADS)

    Scott, D.; Wohl, E.

    2014-12-01

    Carbon acts as a component in greenhouse gases that regulate global climate. It is imperative to understand the transport and storage of carbon in order to understand and manage climate change. We examine terrestrial carbon storage in mountain lake deltas as a way of furthering our understanding of the terrestrial carbon sink, which is a poorly understood but significant contributor to the global carbon cycle. We examined subalpine lake deltas in the Washington Cascade Range and Colorado Front Range to test the following hypotheses: 1) The size of the deltaic carbon sink is strongly correlated with incision at the outlet of the lake and the topography of the basin. 2) Areas of high exhumation rates will have smaller and fewer deltas because a high exhumation rate should lead to more confined basins and more colluvium available to dam lake outlets, preventing lake level drop and corresponding delta formation. 3) High-energy deltas will transport more carbon to lakes, avoiding the deltaic carbon sink. At 27 lakes, we surveyed mountain lake deltas and took sediment samples, surveyed lake outlets in the field, and measured lake valley confinement in GIS to test hypotheses 1 and 3. Across the Snoqualmie and Skykomish watersheds in the Washington Cascades and the Colorado Front Range, we took a census of the number of natural lakes and the proportion of those lakes with deltas to test hypothesis 2. Preliminary results indicate that the Washington Cascades (high exhumation rate) have a higher density of lakes, but fewer deltas, than the Colorado Front Range (low exhumation rate). We also suspect that deltas in the Washington Cascades will have a lower carbon content than the Colorado Front Range due to generally higher energy levels on deltas. Finally, we found a substantial difference in the geomorphology and sediment type between beaver-affected and non-beaver-affected lakes in the Colorado Front Range.

  15. Discontinuities in stream nutrient uptake below lakes in mountain drainage networks

    USGS Publications Warehouse

    Arp, C.D.; Baker, M.A.

    2007-01-01

    In many watersheds, lakes and streams are hydrologically linked in spatial patterns that influence material transport and retention. We hypothesized that lakes affect stream nutrient cycling via modifications to stream hydrogeomorphology, source-waters, and biological communities. We tested this hypothesis in a lake district of the Sawtooth Mountains, Idaho. Uptake of NO3- and PO4-3 was compared among 25 reaches representing the following landscape positions: lake inlets and outlets, reaches >1-km downstream from lakes, and reference reaches with no nearby lakes. We quantified landscape-scale hydrographic and reach-scale hydrogeomorphic, source-water, and biological variables to characterize these landscape positions and analyze relationships to nutrient uptake. Nitrate uptake was undetectable at most lake outlets, whereas PO4-3 uptake was higher at outlets as compared to reference and lake inlet reaches. Patterns in nutrient demand farther downstream were similar to lake outlets with a gradual shift toward reference-reach functionality. Nitrate uptake was most correlated to sediment mobility and channel morphology, whereas PO 4-3 uptake was most correlated to source-water characteristics. The best integrated predictor of these patterns in nutrient demand was % contributing area (the proportion of watershed area not routing through a lake). We estimate that NO3- and PO 4-3 demand returned to 50% of pre-lake conditions within 1-4-km downstream of a small headwater lake and resetting of nutrient demand was slower downstream of a larger lake set lower in a watershed. Full resetting of these nutrient cycling processes was not reached within 20-km downstream, indicating that lakes can alter stream ecosystem functioning at large spatial scales throughout mountain watersheds. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  16. Sensitivity of stream methyl Hg concentrations to environmental change in the Adirondack mountains of New York, USA

    Treesearch

    Doug Burns; Karen Riva Murray; Elizabeth A. Nystrom; David M. Wolock; Geofrey Millard; Charles T. Driscoll

    2016-01-01

    The Adirondacks of New York have high levels of mercury (Hg) bioaccumulation as demonstrated by a region-wide fish consumption advisory for children and women who may become pregnant. The source of this Hg is atmospheric deposition that originates from regional, continental, and global emissions.

  17. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    PubMed

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  18. Morphology and biology of Cyclops scutifer Sars, 1863 in high mountain lakes of East Siberia (including Lake Amut)

    NASA Astrophysics Data System (ADS)

    Sheveleva, Natalya G.; Itigilova, Mydygma Ts.; Chananbaator, Ayushcuren

    2017-03-01

    Data on zooplankton from 13 high-mountain lakes of East Siberia have shown that the Holarctic copepod Cyclops scutifer Sars, 1863 dominates among crustaceans. In July, its abundance comprised 64%-98% of the total plankton fauna in the pelagial of these lakes, approximately 30% in the littoral zone and 10% in small northern thermokarst lakes. Biometric measurements and morphological descriptions based on scanning microscope images are supplemented by the data on its geographic distribution and phenology.

  19. Effects of Acidic Deposition and Soil Acidification on Sugar Maple Trees in the Adirondack Mountains, New York

    Treesearch

    T. J. Sullivan; G. B. Lawrence; S. W. Bailey; T. C. McDonnell; C. M. Beier; K. C. Weathers; G. T. McPherson; D. A. Bishop

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been...

  20. Landowner perceptions of three types of boating in the Saranac Lakes area of New York State׳s Adirondack Park

    USGS Publications Warehouse

    Kuehn, Diane; Schuster, Rudy; Nordman, Erik

    2015-01-01

    In order for natural resource managers to better understand conflicting landowner perspectives related to non-motorized, motorized, and personal watercraft use, this study examines the demographic and experiential characteristics, values, attitudes, and beliefs of landowners in the Saranac Lakes area of the Adirondack Park in New York State. A mixed-methods approach, composed of 20 in-depth interviews with land managers and a mail survey of 1000 landowners, was used. Three path analyses were completed, one for each type of boat use. Results indicate that resource-related values influence beliefs and attitudes related to boat use, supporting the cognitive hierarchy model of human behavior (Fulton, D. C., Manfredo, M. J., & Lipscomb, J. (1996). Wildlife value orientations: a conceptual and measurement approach. Human Dimensions of Wildlife, 1, 24–47). In addition, length of residence in the area, past participation in non-motorized and motorized boating, age, and education were found to influence attitudes towards certain types of boating. The results of this study can be used by natural resource managers to identify management strategies that better address the values and recreational interests of landowners.

  1. Changes in the chemistry of acidified Adirondack streams from the early 1980s to 2008

    USGS Publications Warehouse

    Lawrence, G.B.; Simonin, H.A.; Baldigo, Barry P.; Roy, K.M.; Capone, S.B.

    2011-01-01

    Lakes in the Adirondack region of New York have partially recovered in response to declining deposition, but information on stream recovery is limited. Here we report results of Adirondack stream monitoring from the early 1980s to 2008. Despite a 50% reduction in atmospheric deposition of sulfur, overall increases in pH of only 0.28 and ANC of 13 μeq L-1 were observed in 12 streams over 23 years, although greater changes did occur in streams with lower initial ANC, as expected. In the North Tributary of Buck Creek with high dissolved organic carbon (DOC) concentrations, SO(4)(2-) concentrations decreased from 1999 to 2008 at a rate of 2.0 μmol L-1 y-1, whereas in the neighboring South Tributary with low DOC concentrations, the decrease was only 0.73 μmol L-1 y-1. Ca2+ leaching decreased in the North Tributary due to the SO(4)(2-) decrease, but this was partially offset by an increase in Ca2+ leaching from increased DOC concentrations.

  2. Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.

    2000-01-01

    Hypolimnetic chlorophyll maxima are common in clear lakes and often occur at depths with between 1 and 0.1% of the surface incident light. Little is known, however, about the concentrations of chlorophyll in thermally unstratified mountain ponds and how these concentrations compare to epilimnetic and hypolimnetic concentrations in mountain lakes. The objectives of this study were to document the concentrations of chlorophyll in thermally unstratified ponds and stratified lakes in Mount Rainier National Park (MORA) and to compare the results with concentrations and distributions of chlorophyll in clear-deep lakes in the Oregon Cascade Range and the Sierra Nevada Range. Thirty-two ponds (<2.5 m deep) and 14 lakes(>9.9 m deep) were sampled primarily during the summers of 1992 to 1996 at MORA. Water samples from near the surface (0.1–0.5 m) of ponds and near the surface and near the bottom of lakes were collected over the deepest part of each system. One exception, Mowich Lake, was sampled at seven depths between the surface and 50 m (Z=58.6 m). Chlorophyll concentrations were low in all systems, but higher in ponds (average 1.8 μg·L−1) than in lakes. Chlorophyll concentrations were higher in hypolimnetic lake samples (average 0.7 μg·L−1) than in epilimnetic lake samples (average 0.2 μg·L−1). Elevated concentrations of chlorophyll in mountain ponds, relative to those in hypolimnetic lake samples, may have been influenced by increased nutrient availability from interactions at the mud-water interface and, in this park, defecation by elk that used many of the ponds as wallows. Mowich Lake showed a chlorophyll maximum (~1.5 μg·L−1) near the lake bottom. Based on Secchi disk clarity readings, the depth of 1.0% incident surface solar radiation was greater than the maximum depths of the ponds and lakes. Comparative data from other clear-deep lakes in the Oregon Cascade Range and Sierra Nevada Range suggested that deep-chlorophyll maxima (~1.5 μg·L−1

  3. Chronic and episodic acidification of Adirondack streams from acid rain in 2003-2005

    USGS Publications Warehouse

    Lawrence, G.B.; Roy, K.M.; Baldigo, Barry P.; Simonin, H.A.; Capone, S.B.; Sutherland, J.W.; Nierzwicki-Bauer, S. A.; Boylen, C.W.

    2008-01-01

    Limited information is available on streams in the Adirondack region of New York, although streams are more prone to acidification than the more studied Adirondack lakes. A stream assessment was therefore undertaken in the Oswegatchie and Black River drainages; an area of 4585 km2 in the western part of the Adirondack region. Acidification was evaluated with the newly developed base-cation surplus (BCS) and the conventional acid-neutralizing capacity by Gran titration (ANCG). During the survey when stream water was most acidic (March 2004), 105 of 188 streams (56%) were acidified based on the criterion of BCS < 0 ??eq L-1, whereas 29% were acidified based on an ANCG value < 0 ??eq L-1. During the survey when stream water was least acidic (August 2003), 15 of 129 streams (12%) were acidified based on the criterion of BCS < 0 ??eq L-1, whereas 5% were acidified based on ANCG value < 0 ??eq L -1. The contribution of acidic deposition to stream acidification was greater than that of strongly acidic organic acids in each of the surveys by factors ranging from approximately 2 to 5, but was greatest during spring snowmelt and least during elevated base flow in August. During snowmelt, the percentage attributable to acidic deposition was 81%, whereas during the October 2003 survey, when dissolved organic carbon (DOC) concentrations were highest, this percentage was 66%. The total length of stream reaches estimated to be prone to acidification was 718 km out of a total of 1237 km of stream reaches that were assessed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  4. Fluid-absent metamorphism in the Adirondacks

    NASA Technical Reports Server (NTRS)

    Valley, J. W.

    1986-01-01

    Results on late Proterozoic metamorphism of granulite in the Adirondacks are presented. There more than 20,000 sq km of rock are at granulite facies. Low water fugacites are implied by orthopyroxene bearing assemblages and by stability of k'spar-plag-quartz assemblages. After mentioning the popular concept of infiltration of carbon dioxide into Precambrian rocks and attendent generation of granulite facies assemblages, several features of Adirondack rocks pertinent to carbon dioxide and water during their metamorphism are summarized: wollastonite occurs in the western lowlands; contact metamorphism by anorthosite preceeding granulite metamorphism is indicated by oxygen isotopes. Oxygen fugacity lies below that of the QFM buffer; total P sub water + P sub carbon dioxide determined from monticellite bearing assemblages are much less than P sub total (7 to 7.6 kb). These and other features indicate close spatial association of high- and low-P sub carbon dioxide assemblages and that a vapor phase was not present during metamorphism. Thus Adirondack rocks were not infiltrated by carbon dioxide vapor. Their metamorphism, at 625 to 775 C, occurred either when the protoliths were relatively dry or after dessication occurred by removal of a partial melt phase.

  5. Hydrologic data from the integrated lake-watershed acidification study in the west-central Adirondack Mountains, New York : October 1977 through January 1982

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.; Dalton, F.N.

    1987-01-01

    Hydrologic data were collected from three forested headwater lake watersheds in Herkimer and Hamilton Counties from October 1977 through early January 1982 as part of the Integrated Lake-Watersheds Acidification Study (ILWAS). ILWAS was established in 1977 to determine why these lakes differ in pH when all receive equal amounts of acidic atmospheric deposition. Woods Lake is acidic (pH ranges from 4 to 5), Panther Lake is neutral (pH ranges from 5 to 7.5), and Sagamore Lake is intermediate (pH ranges from 5 to 6). The data tabulated herein include discharge at the three lake outlets and in a tributary to each lake; lake-water stage at each lake; chemical quality of lake water, including total concentrations of zinc, iron, manganese, and lead, at each lake outlet and at Lost Brook (a tributary to Sagamore Lake); groundwater stage from 29 wells; major ion concentrations of groundwater from 22 of these wells; temperature of soil from three depths at one site in each watershed; soil-moisture tension at three depths at eight sites - four in the neutral-lake basin, three in the acidic-lake basin , and one in the intermediate-lake basin; and average snowpack depths and water equivalents at approximately 20 snow-course sites in each basin for three sampling periods during the 1979-80 winter. (USGS)

  6. 76 FR 72444 - Notice of Lodging of Consent Decree Resolving Claims for Contamination of Mountain Lake in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Resolving Claims for Contamination of Mountain Lake in the Presidio of San Francisco Notice is hereby given that on November 10, 2011, a proposed... of Mountain Lake sediment contamination, to pay $4 million for repair or replacement of the overflow...

  7. 76 FR 41753 - Sierra National Forest, Bass Lake Ranger District, California, Grey's Mountain Ecosystem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of... a series of ecological restoration treatments, north of the community of Bass Lake, California, south of Soquel Meadow, east of Nelder Grove Historical Area and west of Graham Mountain. Treatment...

  8. Adirondack Under the Microscope-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.

  9. A database of georeferenced nutrient chemistry data for mountain lakes of the Western United States

    PubMed Central

    Williams, Jason; Labou, Stephanie G.

    2017-01-01

    Human activities have increased atmospheric nitrogen and phosphorus deposition rates relative to pre-industrial background. In the Western U.S., anthropogenic nutrient deposition has increased nutrient concentrations and stimulated algal growth in at least some remote mountain lakes. The Georeferenced Lake Nutrient Chemistry (GLNC) Database was constructed to create a spatially-extensive lake chemistry database needed to assess atmospheric nutrient deposition effects on Western U.S. mountain lakes. The database includes nitrogen and phosphorus water chemistry data spanning 1964–2015, with 148,336 chemistry results from 51,048 samples collected across 3,602 lakes in the Western U.S. Data were obtained from public databases, government agencies, scientific literature, and researchers, and were formatted into a consistent table structure. All data are georeferenced to a modified version of the National Hydrography Dataset Plus version 2. The database is transparent and reproducible; R code and input files used to format data are provided in an appendix. The database will likely be useful to those assessing spatial patterns of lake nutrient chemistry associated with atmospheric deposition or other environmental stressors. PMID:28509907

  10. ESTIMATION OF SURPLUS BIOMASS OF CLUPEIDS IN SMITH MOUNTAIN LAKE, VIRGINIA

    EPA Science Inventory

    Mean annual estimates of surplus biomass of alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum in Smith Mountain Lake, Virginia, were calculated using data on the biomass, growth, and mortality of each clupeid species. Surplus biomass, defined as production over a...

  11. Phytoplankton dynamics in three Rocky Mountain lakes, Colorado, USA

    USGS Publications Warehouse

    McKnight, Diane M.; Smith, R.L.; Bradbury, J.P.; Baron, Jill S.; Spaulding, S.

    1990-01-01

    In 1984 and 1985 seasonal changes in phytoplankton were studied in a system of three lakes in Loch Vale, Rocky Mountain National Park, Colorado. Three periods were evident: (1) A spring bloom, during snowmelt, of the planktonic diatom Asterionella formosa, (2) a mid-summer period of minimal algal abundance, and (3) a fall bloom of the blue-green alga Oscillatoria limnetica. Seasonal phytoplankton dynamics in these lakes are controlled partially by the rapid flushing rate during snowmelt and the transport of phytoplankton from the highest lake to the lower lakes by the stream, Icy Brook. During snowmelt, the A. formosa population in the most downstream lake has a net rate of increase of 0.34 d-1, which is calculated from the flushing rate and from the A. formosa abundance in the inflow from the upstream lake and in the downstream lake. Measurement of photosynthetic rates at different depths during the three periods confirmed the rapid growth of A. formosa during the spring. The decline in A. formosa after snowmelt may be related to grazing by developing zooplankton populations. The possible importance of the seasonal variations in nitrate concentrations were evaluated in situ enrichment experiments. For A. formosa and O. limnetica populations, growth stimulation resulted from 8- or 16-micromolar amendments of calcium nitrate and sulfuric acid, but the reason for this stimulation could not be determined from these experiments.

  12. Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97

    USGS Publications Warehouse

    Sarver, K.M.; Steiner, B.C.

    1998-01-01

    Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium

  13. Coping, crowding and satisfaction: a study of Adirondack wilderness hikers

    Treesearch

    Andrew K. Johnson; Chad Dawson

    2002-01-01

    Hikers in the wilderness areas of New York's Adirondack Park use a combination of physical and cognitive coping behaviors to maintain satisfaction with their wilderness experience. A total of 102 hikers in 16 Adirondack wilderness areas were interviewed and asked to complete a single-page survey. The in-depth interviews and surveys of hikers' importance and...

  14. TROPHIC DYNAMICS OF STRIPED BASS IN SMITH MOUNTAIN LAKE, VIRGINIA

    EPA Science Inventory

    We examined the adequacy of the forage base to meet demand of striped bass in Smith Mountain Lake, Virginia. In regards to prey supply, mean alewife biomass from 1993-1998 was 37 kg/ha and mean gizzard shad biomass from 1990-1997 was 112 kg/ha. Mean annual alewife surplus produ...

  15. [Decompression problems in diving in mountain lakes].

    PubMed

    Bühlmann, A A

    1989-08-01

    The relationship between tolerated high-pressure tissue nitrogen and ambient pressure is practically linear. The tolerated nitrogen high pressure decreases at altitude, as the ambient pressure is lower. Additionally, tissues with short nitrogen half-times have a higher tolerance than tissues which retain nitrogen for longer duration. For the purpose of determining safe decompression routines, the human body can be regarded as consisting of 16 compartments with half-times from 4 to 635 minutes for nitrogen. The coefficients for calculation of the tolerated nitrogen-high pressure in the tissues can be deduced directly from the half-times for nitrogen. We show as application the results of 573 simulated air dives in the pressure-chamber and 544 real dives in mountain lakes in Switzerland (1400-2600 m above sea level) and in Lake Titicaca (3800 m above sea level). They are in accordance with the computed limits of tolerance.

  16. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  17. 77 FR 75186 - Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains in Utah County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... Closure, Target Shooting Public Safety Closure on the Lake Mountains in Utah County, UT AGENCY: Bureau of... Lake Mountains in Utah County, Utah, to recreational target shooting to protect public safety. This... shooting closure within the described area will remain in effect no longer than two years from December 19...

  18. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA)

    USGS Publications Warehouse

    Beier, Colin M.; Caputo, Jesse; Lawrence, Gregory B.; Sullivan, Timothy J.

    2017-01-01

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global ‘hot-spot’ of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils – an estimated loss of ∼ $10,000 ha−1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact – relative to the effects of surficial geology and till depth – on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8–5.5, but are costly and limited in scope. Although any estimates of the monetary ‘damages’ of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition.

  19. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  20. Evidence for migratory spawning behavior by morphologically distinct Cisco (Coregonus artedi) from a small inland lake

    USGS Publications Warehouse

    Ross, Alexander J.; Weidel, Brian C.; Leneker, Mellisa; Solomon, Christopher T.

    2017-01-01

    Conservation and management of rare fishes relies on managers having the most informed understanding of the underlying ecology of the species under investigation. Cisco (Coregonus artedi), a species of conservation concern, is a cold-water pelagic fish that is notoriously variable in morphometry and life history. Published reports indicate, at spawning time, Cisco in great lakes may migrate into or through large rivers, whereas those in small lakes move inshore. Nonetheless, during a sampling trip to Follensby Pond, a 393 ha lake in the Adirondack Mountains, New York, we observed gravid Cisco swimming over an outlet sill from a narrow shallow stream and into the lake. We opportunistically dip-netted a small subsample of 11 individuals entering the lake from the stream (three female, eight male) and compared them to fish captured between 2013 and 2015 with gillnets in the lake. Stream-captured Cisco were considerably larger than lake-captured individuals at a given age, had significantly larger asymptotic length, and were present only as mature individuals between age of 3 and age 5. These results could suggest either Cisco are migrating from a nearby lake to spawn in Follensby Pond, or that a distinct morphotype of Cisco from Follensby Pond migrates out to the stream and then back in at spawning time. Our results appear to complement a handful of other cases in which Cisco spawning migrations have been documented and to provide the first evidence for such behavior in a small inland lake.

  1. Sensitivity of Stream Methyl Hg Concentrations to Environmental Change in the Adirondack Mountains of New York, USA

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Nystrom, E.; Millard, G.; Driscoll, C. T.

    2014-12-01

    The Adirondacks of New York have high levels of mercury (Hg) bioaccumulation as demonstrated by a region-wide fish consumption advisory for children and women who may become pregnant. The source of this Hg is atmospheric deposition that originates from regional, continental, and global emissions. Soils in the region have large Hg stores equivalent to several decades of atmospheric deposition suggesting that the processes controlling Hg transport from soils to surface waters may greatly affect Hg concentrations and loads in surface waters. Furthermore, Hg can be converted to its neuro-toxic methyl form (MeHg), particularly in riparian and wetland soils where biogeochemical conditions favor net methylation. We measured MeHg concentrations during 33 months at Fishing Brook, a 65 km2 catchment in the upper Hudson River basin in the Adirondacks. Seasonal variation in stream MeHg concentrations was more than tenfold, consistent with temperature-driven variation in net methylation rates in soils and sediment. These data also indicate greater than twofold annual variation in stream MeHg concentrations among the three monitored growing seasons. The driest growing season had the lowest MeHg concentrations, and these values were greater during the two wetter growing seasons. We hypothesize that contact of the riparian water table with abundant organic matter and MeHg stored in the shallowest soil horizons is a dominant control on MeHg transport to the stream. An empirical model was developed that accounted for 81% of the variation in stream MeHg concentrations. Water temperature and the length of time the simulated riparian water table remained in the shallow soil were key predictive variables, highlighting the sensitivity of MeHg to climatic variation. Future changes in other factors such as Hg emissions and deposition and acid deposition will likely also influence stream MeHg concentrations and loads. For example, lime application to an Adirondack stream to increase pH and

  2. Long-term trends in breeding birds in an old-growth Adirondack forest and the surrounding region

    USGS Publications Warehouse

    McNulty, S.A.; Droege, S.; Masters, R.D.

    2008-01-01

    Breeding bird populations were sampled between 1954 and 1963, and 1990 and 2000 in an old-growth forest, the Natural Area of Huntington Wildlife Forest (HWF), in the Adirondack Mountains of New York. Trends were compared with data from regional North American Breeding Bird Surveys (BBS) and from a forest plot at Hubbard Brook Experimental Forest, New Hampshire. Trends for 22 species in the HWF Natural Area were negative, eight were positive, and one was zero; 20 were significant. Fifteen of 17 long-distance migrants declined, whereas 7 of 14 short-distance migrants and permanent residents declined. Most (74%) HWF Natural Area species, despite differences in sampling periods and local habitat features, matched in sign of trend when compared to Adirondack BBS routes, 61% matched northeastern BBS routes, and 71% matched eastern United States BBS routes, while 66% matched Hubbard Brook species. The agreement in population trends suggests that forest interior birds, especially long-distance migrants, are affected more by regional than local factors. The analysis indicated that bird trends generated from BBS routes may not be as biased toward roads as previously suggested.

  3. Responses of Ambystoma gracile to the removal of introduced nonnative fish from a mountain lake

    USGS Publications Warehouse

    Hoffman, Robert L.; Larson, Gary L.; Samora, B.

    2004-01-01

    Introduced, nonnative brook trout (Salvelinus fontinalis) were removed from a mountain lake in Mount Rainier National Park, Washington, to examine the capacity of native Ambystoma gracile (Northwestern Salamander) in the lake to respond to the intentional removal of fish. Temporal trends (N) were calculated for A. gracile larvae/neotene and egg mass relative abundances in the Fish Removal and an adjacent Fishless Lake. The diel and spatial patterns of A. gracile in the lakes were also enumerated during time-intervals of fish presence in and after fish removal from the Fish Removal Lake. Sixty-six fish were removed from the Fish Removal Lake. The Ns for relative abundances in the Fish Removal Lake were positive for the study period and indicated that the number of larvae/neotenes and egg masses observed in the lake increased concurrent with the removal and extirpation of fish from the lake. Numbers of larvae/neotenes and egg masses observed in the Fishless Lake varied annually, but no overall positive or negative trends were evident during the study. Ambystoma gracile in the Fish Removal Lake, during fish presence, were predominantly nocturnal and located in the shallow, structurally complex nearshore area of the lake. After fish were removed, the number of A. gracile observed in the lake increased, especially during the day and in the deeper, less structurally complex offshore area of the lake. Fishless Lake A. gracile were readily observed day and night in all areas of the lake throughout the study. The A. gracile in the Fish Removal Lake behaviorally adapted to the presence of introduced fish and were able to recover from the affects of the fish following fish removal. This study underscores the important relationship between species life history and the variability of responses of montane aquatic-breeding amphibians to fish introductions in mountain lakes.

  4. Chloride cycling in two forested lake watersheds in the west-central Adirondack Mountains, New York, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.

    1991-01-01

    The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of

  5. Tracking climate change in oligotrophic mountain lakes: Recent hydrology and productivity synergies in Lago de Sanabria (NW Iberian Peninsula).

    PubMed

    Jambrina-Enríquez, Margarita; Recio, Clemente; Vega, José Carlos; Valero-Garcés, Blas

    2017-07-15

    Mountain lakes are particularly sensitive to global change as their oligotrophic conditions may be rapidly altered after reaching an ecological threshold, due to increasing human impact and climate change. Sanabria Lake, the largest mountain lake in the Iberian Peninsula and with a recent history of increased human impact in its watershed, provides an opportunity to investigate recent trends in an oligotrophic, hydrologically-open mountain lake, and their relationship with climate, hydrological variability and human pressure. We conducted the first systematic and detailed survey of stable isotope compositions of Sanabria Lake and Tera River together with limnological analyses during 2009-2011. δ 18 O lakewater and δD lakewater seasonal fluctuations are strongly linked to river discharges, and follow the monthly mean isotopic composition of precipitation, which is controlled by NAO dynamics. δ 13 C POM and δ 13 C DIC revealed higher contribution of allochthonous organic matter in winter and spring due to higher river inflow and lower primary productivity. Increased phytoplankton biomass in late summer correlated significantly with higher pH and Chl-a, and higher nutrient input and lower river inflow. However, the small δ 13 C POM seasonal amplitude underlines the stability of the oligotrophic conditions and the isotopic variation in POM and DIC reflect small seasonal fluctuations mostly as a consequence of strong throughflow. The stability of hydrology and productivity patterns is consistent with Holocene and last millennium reconstructions of past limnological changes in Sanabria Lake. The results of this study indicate that trophic state in this hydrologically-open mountain lake is strongly controlled by climate variability, but recent changes in human-land uses have increased sediment delivery and nutrients supply to the lake and have to be considered for management policies. Monitoring surveys including isotope techniques provide snapshots of modern isotope

  6. Variation in reciprocal subsidies between lakes and land: perspectives from the mountains of California

    Treesearch

    Jonah Piovia-Scott; Steven Sadro; Roland A. Knapp; James Sickman; Karen L. Pope; Sudeep Chandra

    2016-01-01

    Lakes are connected to surrounding terrestrial habitats by reciprocal flows of energy and nutrients. We synthesize data from California’s mountain lake catchments to investigate how these reciprocal subsidies change along an elevational gradient and with the introduction of a top aquatic predator. At lower elevations, well-developed terrestrial vegetation provides...

  7. Monitoring and assessment of anthropogenic activities in mountain lakes: a case of the Fifth Triglav Lake in the Julian Alps.

    PubMed

    Ravnikar, Tina; Bohanec, Marko; Muri, Gregor

    2016-04-01

    The Fifth Triglav Lake is a remote mountain lake in the Julian Alps. The area of the Julian Alps where the lake is situated is protected by law and lies within the Triglav National Park. Mountain lakes in Slovenia were considered for a long time as pristine, unpolluted lakes, but analyses in the last decade revealed considerable human impact even in such remote places. Eutrophication or excessive accumulation of nutrients is the main problem of most lakes in the temperate climatic zone, also in Slovenia. Since the introduction of fish in 1991, the lake is going through a series of changes for which we do not know exactly where they lead, so the monitoring and assessment of anthropogenic activities are of great importance. For this purpose, a qualitative multiattribute decision model was developed with DEX method to assess ecological effects on the lake. The extent of the ecological effects on the lake is assessed using four main parameters: the trophic state, lake characteristics, environmental parameters, and anthropogenic stressors. Dependence of environmental impact on various external factors beyond human control, such as temperature, precipitation, retention time, and factors on which we have influence, such as the amount of wastewater and the presence of fish in the lake, were also evaluated. The following data were measured: chlorophyll a, nutrients, TP, oxygen, C/N ratio, nutrients in sediment, temperature, precipitation, retention time, and volume. We made assumptions about fish and wastewater, which we could not measure. The main contributions of this work are the designed model and the obtained findings for the Fifth Triglav Lake that can help not only scientists in understanding the complexity of lake-watershed systems and interactions among system components but also local authorities to manage and monitor the lake aquatic environment in an effective and efficient way. The model is flexible and can be also used for other lakes, assuming that the used

  8. Anthropogenic and climatic factors enhancing hypolimnetic anoxia in a temperate mountain lake

    NASA Astrophysics Data System (ADS)

    Sánchez-España, Javier; Mata, M. Pilar; Vegas, Juana; Morellón, Mario; Rodríguez, Juan Antonio; Salazar, Ángel; Yusta, Iñaki; Chaos, Aida; Pérez-Martínez, Carmen; Navas, Ana

    2017-12-01

    Oxygen depletion (temporal or permanent) in freshwater ecosystems is a widespread and globally important environmental problem. However, the factors behind increased hypolimnetic anoxia in lakes and reservoirs are often diverse and may involve processes at different spatial and temporal scales. Here, we evaluate the combined effects of different anthropogenic pressures on the oxygen dynamics and water chemistry of Lake Enol, an emblematic mountain lake in Picos de Europa National Park (NW Spain). A multidisciplinary study conducted over a period of four years (2013-2016) indicates that the extent and duration of hypolimnetic anoxia has increased dramatically in recent years. The extent and duration of hypolimnetic anoxia is typical of meso-eutrophic systems, in contrast with the internal productivity of the lake, which remains oligo-mesotrophic and phosphorus-limited. This apparent contradiction is ascribed to the combination of different external pressures in the catchment, which have increased the input of allochthonous organic matter in recent times through enhanced erosion and sediment transport. The most important among these pressures appears to be cattle grazing, which affects not only the import of carbon and nutrients, but also the lake microbiology. The contribution of clear-cutting, runoff channelling, and tourism is comparatively less significant. The cumulative effects of these local human impacts are not only affecting the lake metabolism, but also the import of sulfate, nitrate- and ammonium-nitrogen, and metals (Zn). However, these local factors alone cannot explain entirely the observed oxygen deficit. Climatic factors (e.g., warmer and drier spring and autumn seasons) are also reducing oxygen levels in deep waters through a longer and increasingly steep thermal stratification. Global warming may indirectly increase anoxia in many other mountain lakes in the near future.

  9. Simulation of growth of Adirondack conifers in relation to global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.; Raynal, D.J.

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of treesmore » are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.« less

  10. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA).

    PubMed

    Beier, Colin M; Caputo, Jesse; Lawrence, Gregory B; Sullivan, Timothy J

    2017-04-15

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global 'hot-spot' of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils - an estimated loss of ∼ $10,000 ha -1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact - relative to the effects of surficial geology and till depth - on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8-5.5, but are costly and limited in scope. Although any estimates of the monetary 'damages' of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. High-mountain lakes as a hotspot of dissolved organic matter production in a changing climate

    NASA Astrophysics Data System (ADS)

    Abood, P. H.; Williams, M. W.; McKnight, D. M.; Hood, E. H.

    2004-12-01

    Changes in climate may adversely affect mountain environments before downstream ecosystems are affected. Steep topography, thin soils with limited extent, sparse vegetation, short growing seasons, and climatic extremes (heavy snowfalls, cold temperatures, high winds), all contribute to the sensitivity of high mountain environments to perturbations. Here we evaluate the role of oligatrophic high-elevation lakes as "hot spots" of aquatic production that may respond to changes in temperature, precipitation amount, and pollution deposition faster and more directly than co-located terrestrial ecosystems. Our research was conducted in the Rocky Mountains, USA. Water samples were collected for dissolved organic carbon (DOC), other solutes, and water isotopes over the course of the runoff season along a longitudinal transect of North Boulder Creek in the Colorado Front Range from the continental divide and alpine areas to downstream forested systems. Sources of DOC were evaluated using chemical fractionation with XAD-8 resins and fluorescence spectroscopy. There was net DOC production in the two alpine lakes but not for the forested subalpine lake. Oxygen-18 values showed that water residence times in lakes increased dramatically in late summer compared to snowmelt. Chemical fractionation of DOC showed there was a increase in the non-humic acid content across the summer of 2003 at all elevations, with alpine waters showing greater increases than subalpine waters. The fluorescence properties of DOC and water isotopes suggested that DOC in aquatic systems was primarily derived from terrestrial precursor material during snowmelt. However, fluorescence properties of DOC in high-elevation lakes on the recession limb of the hydrograph suggest DOC derived from algal and microbial biomass in the lakes was a more important source of DOC in late summer and fall. Alpine lakes produced 14 times more DOC on unit area basis compared to the surrounding terrestrial ecosystems. We

  12. Metagenomics Reveals a Novel Virophage Population in a Tibetan Mountain Lake

    PubMed Central

    Oh, Seungdae; Yoo, Dongwan; Liu, Wen-Tso

    2016-01-01

    Virophages are parasites of giant viruses that infect eukaryotic organisms and may affect the ecology of inland water ecosystems. Despite the potential ecological impact, limited information is available on the distribution, diversity, and hosts of virophages in ecosystems. Metagenomics revealed that virophages were widely distributed in inland waters with various environmental characteristics including salinity and nutrient availability. A novel virophage population was overrepresented in a planktonic microbial community of the Tibetan mountain lake, Lake Qinghai. Our study identified coccolithophores and coccolithovirus-like phycodnaviruses in the same community, which may serve as eukaryotic and viral hosts of the virophage population, respectively. PMID:27151658

  13. Fishes of the Adirondack Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, C.J.

    1980-01-01

    This review of the ichthyology of the area of the Adirondack Park contained within the blue line centers on biological surveys of the six major watersheds of the study area done in 1930-1935. The total area of 9261 square miles contains 2000-3000 water bodies. The ichthyofauna consists of 96 forms, including four kinds of hybrids commonly produced and used in stock programs; of the remaining 92 forms, 23 may be classified as Boreal or peri-glacial. The Atlantian group consists of 20 species and the Mississippian and adjacent Pleistocene refugia have provided about 45 members of the fauna. Two of themore » fauna are the rainbow and steelhead trout and the Kokanee salmon, introduced from the west coast; three species are from the old world. Spraying for insect control, introduction of exotic plant species, and acid precipitation have all measurably impacted fish populations in recent years, often in complex and synergistic ways. For example, a decline of fish populations in Big Moose Lake is probably the complex result of present and past lumbering, fishing, stocking, forest fires and hurricane damage, as well as acid precipitation. As the system diversifies, many populations of Boreal forms are being lost, and new forms of Atlantian and Mississippian heritage are being established. 253 references, 7 tables.« less

  14. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake.

    PubMed

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Carrillo, Presentación; Bedmar, Eulogio J; Medina-Sánchez, Juan M

    2017-01-01

    Wet deposition of reactive nitrogen (Nr) species is considered a main factor contributing to N inputs, of which nitrate ([Formula: see text]) is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N 2 ) in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain) as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N 2 O) production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZ I and nosZ II genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZ I gene as a molecular marker. In addition to genera Polymorphum , Paracoccus , Azospirillum , Pseudomonas , Hyphomicrobium , Thauera , and Methylophaga , which were present in the clone libraries, Arthrobacter , Burkholderia , and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N 2 O production and determined denitrifiers' community structure. All these results indicate

  15. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake

    PubMed Central

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Carrillo, Presentación; Bedmar, Eulogio J.; Medina-Sánchez, Juan M.

    2017-01-01

    Wet deposition of reactive nitrogen (Nr) species is considered a main factor contributing to N inputs, of which nitrate (NO3−) is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2) in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain) as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O) production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers’ community structure. All these results indicate that denitrification could be a

  16. High-levels of microplastic pollution in a large, remote, mountain lake.

    PubMed

    Free, Christopher M; Jensen, Olaf P; Mason, Sherri A; Eriksen, Marcus; Williamson, Nicholas J; Boldgiv, Bazartseren

    2014-08-15

    Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km(-2), Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. NCCN Mountain Lakes Monitoring Strategy: Guidelines to Resolution

    USGS Publications Warehouse

    Hoffman, Robert L.; Huff, Mark H.

    2008-01-01

    The North Coast and Cascades Network (NCCN) Inventory and Monitoring Program provides funds to its Network Parks to plan and implement the goals and objectives of the National Park Services? (NPS) Inventory and Monitoring (I&M) Program. The primary purpose of the I&M program is to develop and implement a long-term monitoring program in each network. The purpose of this document is to describe the outcome of a meeting held to find solutions to obstacles inhibiting development of a unified core design and methodology for mountain lake monitoring.

  18. Perspective View, New York State, Long Island to Lake Ontario

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom), this perspective view shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania, New Jersey and Rhode Island. The high'bumpy' area in the upper right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest rocks in the eastern United States. On the left side are the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills, a wide valley contains the Mohawk River and the Erie Canal. To the northwest (upper left) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire area as recently as 18,000 years ago. The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshire Hills are between the Hudson and Connecticut valleys.

    This image was generated using a single swath of data acquired in 68 seconds by SRTM and an enhanced false-color mosaic of images from the Landsat 5 satellite. Lush vegetation appears green, water appears dark blue, and cities are generally light blue. White clouds occur in the upper right and lower right. Topographic shading in the image was enhanced with false shading derived from the elevation model. Topographic expression is exaggerated 5X.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar

  19. High similarity between bacterioneuston and airborne bacterial community compositions in a high mountain lake area.

    PubMed

    Hervas, Anna; Casamayor, Emilio O

    2009-02-01

    The bacterioneuston (bacteria inhabiting the air-water interface) is poorly characterized and possibly forms a unique community in the aquatic environment. In high mountain lakes, the surface film is subjected to extreme conditions of life, suggesting the development of a specific and adapted bacterioneuston community. We have studied the surface film of a remote high mountain lake in the Pyrenees by cloning the PCR-amplified 16S rRNA gene and comparing with bacteria present in underlying waters (UW), and airborne bacteria from the dust deposited on the top of the snow pack. We did not detect unusual taxa in the neuston but rather very common and widespread bacterial groups. Betaproteobacteria and Actinobacteria accounted for >75% of the community composition. Other minor groups were Gammaproteobacteria (between 8% and 12%), Alphaproteobacteria (between 1% and 5%), and Firmicutes (1%). However, we observed segregated populations in neuston and UW for the different clades within each of the main phylogenetic groups. The soil bacterium Acinetobacter sp. was only detected in the snow-dust sample. Overall, higher similarities were found between bacterioneuston and airborne bacteria than between the former and bacterioplankton. The surface film in high mountain lakes appears as a direct interceptor of airborne bacteria useful for monitoring long-range bacterial dispersion.

  20. Evidence for multiple metamorphic events in the Adirondack Mountains, N. Y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLelland, J.; Lochhead, A.; Vyhnal, C.

    1988-05-01

    Field evidence consisting of: (1) rotated, foliated xenoliths, (2) country rock foliation truncated by isoclinally folded igneous intrusions bearing granulite facies assemblages document one, or more, early dynamothermal event(s) of regional scale and high grade. Early metamorphism resulted in pronounced linear and planar fabric throughout the Adirondacks and preceded the emplacement of the anorthosite-mangerite-charnockite-granite-alaskite (AMCA) suite which contains xenoliths of the metamorphosed rocks. Olivine metagabbros, believed to be approximately contemporaneous with the AMCA-suite, also crosscut and contain xenoliths of, strongly foliated metasediments. These intrusive rocks caused contact metamorphism in the metasediments which locally exhibit both anatectite and restite assemblages. Subsequently,more » this already complex framework underwent three phases of folding, including an early recumbent isoclinical event, and was metamorphosed to granulite facies P,T conditions. The age of the early metamorphism cannot yet be narrowly constrained, but isotopic results suggest that it may be as young as approx. 1200 Ma or older than approx. 1420 Ma. U-Pb zircon ages indicate emplacement of the AMCA-(metagabbro)-suite in the interval 1160-1130 Ma and place the peak of granulite facies metamorphism between 1070-1025 Ma. The anorogenic character of the AMCA-suite, and the occurrence of metadiabase dike swarms within it, are further evidence of the separate nature of the metamorphic events that precede and postdate AMCA emplacement.« less

  1. An Investigation of the Impacts of Climate and Environmental Change on Alpine Lakes in the Uinta Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Moser, K. A.; Hundey, E. J.; Porinchu, D. F.

    2007-12-01

    Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant

  2. Glacial lake inventory and lake outburst potential in Uzbekistan.

    PubMed

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Geohydrologic reconnaissance of Lake Mead National Recreation Area; Las Vegas Wash to Opal Mountain, Nevada

    USGS Publications Warehouse

    Laney, R.L.

    1981-01-01

    The study is a geohydrologic reconnaissance of about 170 square miles in the Lake Mead National Recreation Area from Las Vegas Wash to Opal Mountain, Nevada. The study is one of a series that describes the geohydrology of the recreation area and that indentifies areas where water supplies can be developed. Precipitation in this arid area is about 5 inches per year. Streamflow is seasonal and extremely variable except for that in the Colorado River, which adjoins the area. Pan evaporation is more than 20 times greater than precipitation; therefore, regional ground-water supplies are meager except near the Colorado River, Lake Mead, and Lake Mohave. Large ground-water supplies can be developed near the river and lakes, and much smaller supplies may be obtained in a few favorable locations farther from the river and lakes. Ground water in most of the areas probably contains more than 1,000 milligrams per liter of dissolved solids, but water that contains less than 1,000 milligrams per liter of dissolved solids can be obtained within about 1 mile of the lakes. Crystalline rocks of metamorphic, intrusive and volcanic origin crop out in the area. These rocks are overlain by conglomerate and mudstone of the Muddy Creek Formation, gravel and conglomerate of the older alluvium, and sand and gravel of the Chemehuevi Formation and younger alluvium. The crystalline rocks, where sufficiently fractured, yield water to springs and would yield small amounts of water to favorably located wells. The poorly cemented and more permeable beds of the older alluvium, Chemehuevi Formation, and younger alluvium are the better potential aquifers, particularly along the Colorado River and Lakes Mead and Mohave. Thermal springs in the gorge of the Colorado River south of Hoover Dam discharge at least 2,580 acre-feet per year of water from the volcanic rocks and metamorphic and plutonic rocks. The discharge is much greater than could be infiltrated in the drainage basin above the springs

  4. How long do people look and listen to forest-oriented exhibits?

    Treesearch

    James William Shiner; Elwood L., Jr. Shafer

    1975-01-01

    To gain a better understanding of public reaction to I & E displays, average visitor-viewing time was measured for a variety of exhibits at the Adirondack Museum, Blue Mountain Lake, N.Y. Visitors viewed displays 15 to 64 percent of the time required to read or listen to the total message presented. The longer the message per exhibit, the less time was spent...

  5. Mountain Lake, Presidio National Park, San Francisco: Paleoenvironment, heavy metal contamination, sedimentary record rescue, remediation, and public outreach

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.

    2014-12-01

    Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to

  6. Campers' perspectives about boating in the Saranac Lakes Wild Forest, New York

    Treesearch

    Diane Kuehn; Rudy Schuster

    2009-01-01

    This study examines the beliefs and attitudes of campers in the Saranac Lakes Wild Forest in New York's Adirondack Park with respect to participation in nonmotorized boating, motorized boating, and personal watercraft use. Initially, qualitative interviews with land managers provided insight into campers' beliefs and attitudes about boating; these insights...

  7. Abrupt lake-level changes in the Rocky Mountains and surrounding regions since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Shuman, B. N.; Serravezza, M.

    2016-12-01

    The paleohydrologic record of western North America since the last glacial maximum reveals a wide range of hydroclimatic variability and distinctive patterns associated with abrupt climate changes. To evaluate the sequence of abrupt hydroclimatic shifts and centennial-to-millennial hydrologic variability in western North America over the past 17 ka, we reconstruct lake-level histories from two high-elevation lakes in the Beartooth and Bighorn Mountains. The lakes represent the headwaters of the Missouri River drainage in northern Wyoming, but also have the potential to capture regional hydroclimate variability that links the northern Rocky Mountains to the mid-continent, Pacific Northwest, and the Great Basin. We first discuss the stratigraphic record of lake-level changes in small mid-latitude lakes and then use ground-penetrating radar (GPR) and sediment cores to track the elevations of shoreline sediments within the lakes through time. We compare the stratigraphies to the records from four other lakes in Wyoming and Colorado, and find widespread evidence for a Terminal Pleistocene Drought from 15-11 ka, an early Holocene humid period from 11-8 ka, and a period of severe mid-Holocene aridity from 8-5.7 ka. The northern Wyoming lakes also provide evidence of high levels before ca. 15 ka, including rapid hydroclimatic changes at ca. 16.8 ka during Heinrich Event 1. We place the changes in a broad context by summarizing and mapping water-level changes from 107 additional, previously studied lakes. Important patterns include 1) extensive drying across the western U.S. after 15 ka; 2) coherent sub-regional differences during the Younger Dryas and Pleistocene-Holocene transition; 3) a north-south contrast from 9-6 ka consistent with a northward shift in storm tracks as the influence of the Laurentide Ice Sheet diminished; and 4) rapid increases in effective moisture across much of western North America from 6-4 ka.

  8. Lake Sediment Particle Size Analysis for Holocene Paleoenvironmental Study of Steens Mountain, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Morris, J.; Stoner, J. S.; Reilly, B. T.; Hatfield, R. G.; Konyndyk, D.; Abbott, M. B.; Finkenbinder, M. S.; Hillman, A. L.

    2016-12-01

    In order to better understand climate trends in the late Pleistocene and Holocene in southeast Oregon, we present a sedimentological analysis of Fish Lake, Harney County, Oregon. Fish Lake (42° 44' 15" N, 118° 38' 57" W, 2,246.7 m) sits on the west slope of Steens Mountain, a fault-block mountain of Miocene basalt, adjacent to a glacial moraine. The present environment is high desert with sub alpine steppe vegetation, receiving approximately 12" of precipitation annually. The lake was cored in August 2013 with a series of overlapping drives, correlated by six distinct tephra and magnetic susceptibility. The composite section provides a 7.5 m continuous record of at least the last 13 ka, constrained by an age model built with 13 terrestrial macrofossil 14C dates. The recovered sediments, consisting of fine terrigenous and biogenous material in varying proportions, were analyzed with computed tomography (CT) scans, x-ray fluorescence (XRF) scans, magnetic measurements, loss on ignition (LOI), and sediment grain-size. CT and LOI data reveal a low density, high organic interval in the early Holocene ( 8.5-11 ka) with relatively coarse and well-sorted grain-size, suggesting an extended period of low lake level and low precipitation. Sediment grain-sizes are variable through the middle and late Holocene with high amplitude longer period features from 3 ka to the present. We investigate these grain-size fluctuations in the context of regional Holocene records.

  9. Quantitative calibration of remote mountain lake sediments as climatic recorders of ice-cover duration

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Price, D.

    2003-04-01

    Using a thermal degree modelling approach ice cover duration on European mountain lakes is found to be very sensitive to temperature change. For example our thermal degree model (which incorporates a weather generator) predicts a 100 day shortening in ice-cover duration for a 3 degree Centigrade temperature rise for north facing catchments at elevations of 1200m in the southern Alps, and 1500m in the Pyrenees. 30% higher sensitivities (130d/3oC) are found for the more maritime lakes of Scotland, while lakes in NW Finland, in a more continental setting, have only half the sensitivity (50d/3oC). A pan European data set of the species abundance of 252 diatom taxa in 462 mountain and sub Arctic lakes has been compiled. Taxonomic harmonisation is based on a team effort carried out as an integral part of the AL:PE, CHILL and EMERGE projects. Transfer functions have been created relating ice-cover duration to diatom species composition based on a weighted averaging - partial least squares (WA-PLS) approach. Cross validation was used to test the transfer functions. The pan European data set yields an R-squared of 0.73, an R-squared(jack) of 0.58, and an RMSEP error of 23 days. A regional, northern Scandinavian transect, (151 lakes, 122 taxa) yields an R-squared(jack) of 0.50, and an RMSEP of 9 days. The pan European database displays greatest skill when reconstructing winter or spring temperatures. This contrasts with the summer temperatures normally studied when using local elevation gradients. The northern Scandinavian transect has a remarkably low winter RMSEP of 0.73 oC.

  10. Environmental characteristics and benthic invertebrate assemblages in Colorado mountain lakes

    USGS Publications Warehouse

    LaFrancois, B.M.; Carlisle, D.M.; Nydick, K.R.; Johnson, B.M.; Baron, Jill S.

    2003-01-01

    Twenty-two high-elevation lakes (>3000 m) in Rocky Mountain National Park and Indian Peaks Wilderness Area, Colorado, were surveyed during summer 1998 to explore relationships among benthic invertebrates, water chemistry (particularly nitrate concentrations), and other environmental variables. Water samples were collected from the deepest portion of each lake and analyzed for ions and other water chemistry parameters. Benthic invertebrates were collected from the littoral zone using both a sweep net and Hess sampler. Physical and geographical measurements were derived from maps. Relationships among benthic invertebrate assemblages and environmental variables were examined using canonical correspondence analysis, and the importance of sampling methodology and taxonomie resolution on these relationships was evaluated. Choice of sampling methodology strongly influenced the outcome of statistical analyses, whereas taxonomie resolution did not. Presence/absence of benthic invertebrate taxa among the study lakes was best explained by elevation and presence of fish. Relative abundance and density of benthic invertebrate taxa were more strongly influenced by sampling date and water chemistry. Nitrate (NO₃⁻) concentration, potentially on the rise due to regional nitrogen deposition, was unrelated to benthic invertebrate distribution regardless of sampling method or taxonomie resolution.

  11. Determining the Influence of Dust on Post-Glacial Lacustrine Sedimentation in Bald Lake, Uinta Mountains, Utah

    NASA Astrophysics Data System (ADS)

    O'Keefe, S. S.; McElroy, R.; Munroe, J. S.

    2016-12-01

    Dust is increasingly recognized as an important component of biogeochemical cycling and ecosystem function in mountain environments. Previous work has shown that delivery of dust to the Uinta Mountains of northeastern Utah has influenced pedogenesis, soil nutrient status, and surface water chemistry. An array of passive and active samplers in the alpine zone of the Uintas provides detailed information about contemporary dust fluxes, along with physical and geochemical properties of modern dust. Reconstruction of changes in the dust system over time, however, requires continuous sedimentary archives sensitive to dust inputs. A radiocarbon-dated 3.5-m core (spanning 12.7 kyr) collected from subalpine Bald Lake may provide such a record. Passive dust collectors in the vicinity of the lake constrain the geochemical properties of modern dust, whereas samples of regolith constrain properties of the local surficial material within the watershed. Together, these represent two end member sources of clastic sediment to Bald Lake basin: allochthonous dust and autochthonous regolith. Ba and Eu are found in higher abundances in the dust than in the watershed regolith. Zr and Th are found to be lower in the dust than in the watershed. Geochemical analysis of the sediment core allows the relative contribution of exotic and local material to the lake to be considered as a time series covering the post-glacial interval when indicator elements are plotted. Findings suggest Bald Lake's dust record tracks regional aridity and corresponds to low-stands of large lakes in the southwestern United States. Spatial variability of elemental abundances in the watershed suggests there are more than two input sources contributing to the lake over time.

  12. Chemical quality of water, sediment, and fish in Mountain Creek Lake, Dallas, Texas, 1994-97

    USGS Publications Warehouse

    Van Metre, Peter C.; Jones, S.A.; Moring, J. Bruce; Mahler, B.J.; Wilson, Jennifer T.

    2003-01-01

    The occurrence, trends, and sources of numerous inorganic and organic contaminants were evaluated in Mountain Creek Lake, a reservoir in Dallas, Texas. The study, done in cooperation with the Southern Division Naval Facilities Engineering Command, was prompted by the Navy’s concern for potential off-site migration of contaminants from two facilities on the shore of Mountain Creek Lake, the Naval Air Station Dallas and the Naval Weapons Industrial Reserve Plant. Sampling of stormwater (including suspended sediment), lake water, bottom sediment (including streambed sediment), and fish was primarily in Mountain Creek Lake but also was in stormwater outfalls from the Navy facilities, nearby urban streams, and small streams draining the Air Station.Volatile organic compounds, predominantly solvents from the Reserve Plant and fuel-related compounds from the Air Station, were detected in stormwater from both Navy facilities. Fuel-related compounds also were detected in Mountain Creek Lake at two locations, one near the Air Station inlet where stormwater from a part of the Air Station enters the lake and one at the center of the lake. Concentrations of volatile organic compounds at the two lake sites were small, all less than 5 micrograms per liter.Elevated concentrations of cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc, from 2 to 4 times concentrations at background sites and urban reference sites, were detected in surficial bottom sediments in Cottonwood Bay, near stormwater outfalls from the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, compared to background and urban reference sites, were detected in surficial sediments in Cottonwood Bay. Elevated concentrations of polycyclic aromatic hydrocarbons, indicative of urban sources, also were detected in Cottonwood Creek, which drains an urbanized area apart from the Navy facilities. Elevated concentrations of polychlorinated biphenyls were

  13. Tracking hydrothermal alteration and mineralization in rock-forming and accessory minerals from the Lyon Mountain Granite and related iron oxide apatite (IOA) ores from the Adirondack Mountains, New York State

    NASA Astrophysics Data System (ADS)

    Buchanan, A.; Hanchar, J. M.; Steele-MacInnis, M. J.; Crowley, J. L.; Valley, P. M.; Fisher, C. M.; Fedo, C.; Piccoli, P. M.; Fournelle, J.

    2012-12-01

    The Lyon Mountain granite (LMG) is located in the northeastern Adirondack Mountains in New York State and hosts several low-titanium iron oxide apatite (IOA) ore deposits. The ores are predominately hosted by perthite bearing granite, which has been extensively altered to albite and microcline granite by Na and K metasomatism. This alteration results in several distinct groups of rocks that are dominated by either K or Na addition and a group composed of mixed Na and K addition. The different groups of altered perthite also lie on a trend suggestive of addition of Fe to each, consistent with a secondary mineralization origin. Previous work showed that the host rocks of the IOA ores have zircon with ~1150 Ma cores and 1060-1050 Ma rims and whole grains. This study aims to further constrain the timing of LMG emplacement, subsequent hydrothermal alteration, and Fe mineralization through geochemical analysis of the major, minor, and accessory phases and geochronology of accessory phases. SIMS analyses of zircon from several of the IOA ores reveal at least two periods of growth after LMG magmatism, at 1039 +/- 4.4 Ma and 1016 +/- 7 Ma to 1000 +/- 9 Ma. In situ EMPA and LA-ICPMS trace element analyses of the zircon rims and cores reveal that in two samples the zircon rims are enriched in rare earth elements (REE) compared to their cores, potentially pointing to a hydrothermal origin. Apatite has unusually high REE and Y concentrations (some total REE2O3 > 20 wt. % oxide and up to 8 wt. % oxide Y2O3), as does titanite, which allowed for the in situ analysis of Sm-Nd in apatite and titanite by LA-MC-ICP-MS. Initial Nd isotopic composition of both ore and host rock apatite and host rock titanite are consistent with published Adirondack initial Nd whole rock data, suggesting a local source for REE in these ores. EMPA and LA-ICPMS trace-element analyses of the major rock-forming minerals indicate that the feldspar have undergone Na-metasomatism and are depleted in REEs

  14. Paired moraine-dammed lakes: a key landform for glaciated high mountain areas in the tropical Andes of Peru

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam

    2016-04-01

    The tropical mountain range of the Cordillera Blanca hosts one of the main concentrations of proglacial lakes in high-mountain settings worldwide, which have formed as a result of the dominant trend of modern glacier retreat. Based on empirical data from field research in over 20 valleys and the analysis of air and satellite images, a genetic classification of major lake types with their barriers and a generalized model for the distribution of the present lakes and paleolakes was set up. The origin of the lakes and their recurrent distribution pattern are associated with the individual stages of the Pleistocene to modern glaciation and their corresponding geomorphological landforms. Characteristic repetitive moraine sequences are found in the upper parts of numerous valleys of the Cordillera Blanca. In terms of the spatial arrangement of the lake types, combined lakes are classified as a distinct composite lake type. These lakes occur at nearly the same elevation or at successively lower elevations, and form characteristic lake sequences of two or more lakes. They may occur as multi-moraine-dammed lakes or mixed combined lakes such as moraine-rock-dammed lakes or multi-debris-dammed lakes. From special interest are in this study the paired moraine-dammed lakes (e.g. Lagunas Qoyllurcochas, Lagunas Safuna Alta and Baja). They are composed of the Great Endmoraine (GEM), primarily formed during the Little Ice Age and earlier, and the pre-GEM, formed during the Holocene. Both moraines are located in rather close vicinity to each other at a distance of 1-3 km. In contrast to the prominent sharp-crested GEM, the pre-GEM is a low-amplitude end-moraine complex, which usually does not exceed a few meters to tens of meters in height. The latter is often composed of several inserted moraine ridges or an irregular hummocky moraine landscape. It is argued here that the process of formation of these combined lakes is mainly controlled by a combination of distinct topographical

  15. Recreation-related perceptions of natural resource managers in the Saranac Lakes wild forest area

    Treesearch

    Diane Kuehn; Mark Mink; Rudy Schuster

    2007-01-01

    Public forest managers often work with diverse stakeholder groups as they implement forest management policies. Within the Saranac Lakes Wild Forest area of New York State's Adirondack Park, stakeholder groups such as visitors, business owners, and landowners often have conflicting perceptions about issues related to water-based recreation in the region's...

  16. Ball Mountain Lake, Jamaica, Vermont. Master Plan for Recreation Resources Development.

    DTIC Science & Technology

    1977-12-01

    Springfield, Vermont 15,695 Brattleboro, Vermont 21,294 Bennington , Vermont 22,536 The balance of the population in the Ball Mountain area is contained...A CORPS OF ENGINEERS WALTHAM A NEW ENGLAND DIV F/6 13/2 DECL MUNTAIN LAKE, JAMAICA. VERMONT . MASTER PL.AN FOR RECREATIO--ETCIU) DE 7ENLSIFE ESG EN-Eh...JAMAICA, VERMONT MASTERPA FOR RECREATION RESOURCES DEVELOPMENT JO - 0 DESIGN MEMORANDUM DW~RIBtMfON STATIEMNT -A DE E B R 1977 Approved for public releris

  17. Efficacy of environmental DNA to detect and quantify Brook Trout populations in headwater streams of the Adirondack Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob

    2016-01-01

    Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.

  18. VALUATION OF NATURAL RESOURCE IMPROVEMENTS IN THE ADIRONDACKS

    EPA Science Inventory

    The benefits of improving natural resources in the Adirondacks are estimated to be between $336 million and $1.1 billion per year (2003$), according to a new study by Resources for the Future. The five-year study, supported by an EPA grant, estimates New Yorkers willingness-to-...

  19. Hydrologic and Isotopic Sensitivity of Alpine Lakes to Climate Change in the Medicine Bow Mountains, Wyoming

    NASA Astrophysics Data System (ADS)

    Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.

    2017-12-01

    Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons

  20. The application of an integrated biogeochemical model (PnET-BGC) to five forested watersheds in the Adirondack and Catskill regions of New York

    USGS Publications Warehouse

    LiJun, Chen; Driscoll, C.T.; Gbondo-Tugbawa, S.; Mitchell, M.J.; Murdoch, Peter S.

    2004-01-01

    PnET-BGC is an integrated biogeochemical model formulated to simulate the response of soil and surface waters in northern forest ecosystems to changes in atmospheric deposition and land disturbances. In this study, the model was applied to five intensive study sites in the Adirondack and Catskill regions of New York. Four were in the Adirondacks: Constable Pond, an acid-sensitive watershed; Arbutus Pond, a relatively insensitive watershed; West Pond, an acid-sensitive watershed with extensive wetland coverage; and Willy's Pond, an acid-sensitive watershed with a mature forest. The fifth was Catskills: Biscuit Brook, an acid-sensitive watershed. Results indicated model-simulated surface water chemistry generally agreed with the measured data at all five sites. Model-simulated internal fluxes of major elements at the Arbutus watershed compared well with previously published measured values. In addition, based on the simulated fluxes, element and acid neutralizing capacity (ANC) budgets were developed for each site. Sulphur budgets at each site indicated little retention of inputs of sulphur. The sites also showed considerable variability in retention of NO3-. Land-disturbance history and in-lake processes were found to be important in regulating the output of NO3- via surface waters. Deposition inputs of base cations were generally similar at these sites. Various rates of base cation outputs reflected differences in rates of base cation supply at these sites. Atmospheric deposition was found to be the largest source of acidity, and cation exchange, mineral weathering and in-lake processes served as sources of ANC. ?? 2004 John Wiley and Sons, Ltd.

  1. Native salamanders and introduced fish: Changing the nature of mountain lakes and ponds

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.

    2003-01-01

    During the last century, many fishless mountain lakes and ponds in the Pacific Northwest were stocked with non-native fish, such as brook trout, for recreational purposes. These introduced fish replaced long-toed and northwestern salamander larvae as the top aquatic vertebrate predator by preying on salamander larvae. This predatory interaction has been shown to reduce the abundances of larval salamander populations. We conducted studies in two national parks to assess the abundances of salamander larvae in lakes with and without introduced fish. These studies suggest that the two salamander species were affected quite differently by the presence of introduced fish because of different life-history traits and different distributions of salamanders and fish within each park.

  2. Perspective View, New York State, Lake Ontario to Long Island

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From Lake Ontario and the St. Lawrence River (at the bottom of the image) and extending to Long Island (at the top), this perspective view shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania, New Jersey and Rhode Island. The high 'bumpy' area in the left foreground is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest rocks in the eastern United States. On the right side are the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills, A wide valley contains the Mohawk River and the Erie Canal. To the northwest (lower right) of the Catskills are the Finger Lakes of central New York . They were carved by the vast glacier that covered this entire area as recently as 18,000 years ago. The Hudson River runs along a straight valley from left center (near Glens Falls), widening out as it approaches New York City at the upper right on the image. The Connecticut River valley has a similar north-south trend further to the east (across the upper left corner of the image). The Berkshire Hills are between the Hudson and Connecticut valleys.

    This image was generated using a single swath of data acquired in 68 seconds by SRTM and an enhanced false-color mosaic of images from the Landsat 5 satellite. Lush vegetation appears green, water appears dark blue, and cities are generally light blue. White clouds occur in the upper left and lower left. Topographic shading in the image was enhanced with false shading derived from the elevation model. Topographic expression is exaggerated 5X.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  3. Widespread sugar maple decline and regeneration failure in the Adirondacks

    Treesearch

    Jerry C. Jenkins; Elizabeth Moffett; Daphne Ross

    1999-01-01

    Over large areas of the Adirondacks, hardwood stands whose canopies are dominated by or contain abundant mature sugar maple (Acer saccharum Marsh.) have almost no sugar maple saplings or seedlings in the understory.

  4. Laurentide ice sheet meltwater routing along the Iro-Mohawk River, eastern New York, USA

    NASA Astrophysics Data System (ADS)

    Porreca, Charles; Briner, Jason P.; Kozlowski, Andrew

    2018-02-01

    The rerouting of meltwater as the configuration of ice sheets evolved during the last deglaciation is thought to have led to some of the most significant perturbations to the climate system in the late Quaternary. However, the complex pattern of ice sheet meltwater drainage off the continents, and the timing of rerouting events, remains to be fully resolved. As the Laurentide Ice Sheet (LIS) retreated north of the Adirondack Uplands of northeastern New York State during the last deglaciation, a large proglacial lake, Lake Iroquois, found a lower outlet that resulted in a significant flood event. This meltwater rerouting event, from outflow via the Iro-Mohawk River valley (southern Adirondack Mountains) to the spillway at Covey Hill (northeastern Adirondack Mountains), is hypothesized to have taken place 13.2 ka and disturbed meridional circulation in the North Atlantic Ocean. However, the timing of the rerouting event is not certain because the event has not been directly dated. With improving the history of Lake Iroquois drainage in mind, we obtained cosmogenic 10Be exposure ages on a strath terrace on Moss Island, along the Iro-Mohawk River spillway. We hypothesize that Moss Island's strath terrace became abandoned during the rerouting event. Six 10Be ages from the strath surface average 14.8 ± 1.3 ka, which predates the previously published bracketing radiocarbon ages of 13.2 ka. Several possibilities for the discrepancy exist: (1) the 10Be age accurately represents the timing of a decrease in discharge through the Iro-Mohawk River spillway; (2) the age is influenced by inheritance. The 10Be ages from glacially sculpted surfaces on Moss Island above the strath terrace predate the deglaciation of the site by 5 to 35 ky; and (3) the abandonment of the Moss Island strath terrace relates to knickpoint migration and not the final abandonment of the Iro-Mohawk River as the Lake Iroquois spillway. Further study and application of cosmogenic 10Be exposure dating in the

  5. The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, P.; Vilanova, R.M.; Martinez, C.

    2000-05-15

    Historical records of the deposition fluxes of polycyclic aromatic hydrocarbons (PAH) in 10 remote high altitude lakes distributed throughout Europe have been studied. Cores from each site were dated radiometrically, and the results were used for the reconstruction of the pollutant changes between 1830 and present. In general, both PAH pyrolytic fluxes and concentrations increased from uniform background levels at the turn of the century to maximum values in 1960--1980. After these peak values a slight decrease to present day levels has been observed in some lakes, though they are still 3--20 times greater than the preindustrial period. Distinctive featuresmore » in the downcore PAH profiles and concentrations between sites allowed for differentiation between five regions in Europe: peripheral areas (Norway and the Liberian Peninsula), Pyrenees and western Alps, central Alps, Tatra Mountains, and the Arctic. Atmospheric PAH inventories were estimated from the vertical integration of sedimentary inventories using {sup 210}Pb to correct for post depositional transport processes. This approach consistently reduces variability among lakes from the same region. The results obtained define the lakes in the Tatra mountains and that on Spits Bergen Island as those of highest and lowest atmospheric PAH input. The other lakes exhibit lower differences although their atmospheric inventory values group consistently with the above-mentioned regions.« less

  6. Geometry and kinematics of the eastern Lake Mead fault system in the Virgin Mountains, Nevada and Arizona

    USGS Publications Warehouse

    Beard, Sue; Campagna, David J.; Anderson, R. Ernest

    2010-01-01

    The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural

  7. Evolution and hazard analysis of high-mountain lakes in the Cordillera Vilcabamba (Southern Peru) from 1991 to 2014

    NASA Astrophysics Data System (ADS)

    Guardamino, Lucía; Drenkhan, Fabian

    2015-04-01

    In recent decades, glaciers in high-mountain regions have experienced unprecedented glacier retreat since the Little Ice Age (LIA). This development triggers the formation and growth of glacier lakes, which in combination with changes in glacier parameters might produce more frequent conditions for the occurrence of disasters, such as Glacier Lake Outburst Floods (GLOF). Facing such a scenario, the analysis of changing lake characteristics and identification of new glacier lakes are imperative in order to identify and reduce potential hazards and mitigate or prevent future disasters for adjacent human settlements. In this study, we present a multi-temporal analysis with Landsat TM 5 and OLI 8 images between 1991 and 2014 in the Cordillera Vilcabamba region (Southern Peru), a remote area with difficult access and climate and glaciological in-situ data scarcity. A semi-automatic model was developed using the band ratios Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) in order to identify glacier and lake area changes. Results corroborate a strong glacier area reduction of about 51% from 1991 (200.3 km²) to 2014 (98.4 km²). At the same time, the number of lakes (total lake surface) has increased at an accelerated rate, from 0.77% (0.48%) in 1991 to 2.31% (2.49%) in 2014. In a multiple criteria analysis to identify potential hazards, 90 out of a total of 329 lakes in 2014 have been selected for further monitoring. Additionally, 29 population centers have been identified as highly exposed to lake related hazards from which 25 indicate a distance less than 1 km to an upstream lake and four are situated in a channel of potential debris flow. In these areas human risks are particularly high in view of a low HDI below Peru's average and hence pronounced vulnerability. We suggest more future research on measurements and monitoring of glacier and lake characteristics in these remote high-mountain regions, which include comprehensive risk

  8. Alteration Mineralogy of Adirondack-class Rocks in Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Ruff, S. W.

    2009-12-01

    The rock Adirondack is the type example of a class of basaltic rocks analyzed by the Mars Exploration Rover Spirit in Gusev crater. Thermal infrared spectra of Adirondack-class rocks acquired by the Mini-TES instrument are distinguishable from spectra of other rock classes by the presence of an emissivity peak at 430 cm-1 and a minimum near 510 cm-1, which are characteristic of olivine. This is the primary spectral class on the plains of Gusev, but spectra of rocks exhibiting similar low wavenumber spectral character have been acquired along the rover traverse in the Columbia Hills, and we have confirmed that these also are Adirondack-class. Linear mixture modeling of their infrared spectra (enabled by applying a correction for dust on the Mini-TES optics) suggests that they are mafic with sulfate minerals present as alteration phases (up to 25%) in the majority of these rocks, broadly consistent with APXS-measured chemistry. The RAT-brushed surface of an unusual plains rock referred to as Mazatzal exhibits a spectral shape and modeled mineralogy consistent with the absence of olivine and the presence of amorphous phases low in silica, and is a coating unlike any other observed on Mars. We have also used a previously-demonstrated factor analysis and target transformation (FATT) technique with Adirondack-class rock spectra to retrieve the spectral shapes of independently-varying components within the data set. Using this approach, we have identified four shapes attributable to two distinct surface components, fine particulate surface dust, and a second dust component similar to downwelling sky radiance and/or dust on the Mini-TES optics. The two surface shapes do not resemble those of the two canonical surface types measured from orbit. One of the surface shapes is very similar to that of the lherzolitic Shergottite ALH A77005. Preliminary linear mixture analysis of this shape shows that it is dominated by olivine (~57%, ~Fo45) and pyroxene (~28%), with minor

  9. [Spatiotemporal characteristics of nitrogen and phosphorus in a mountainous urban lake].

    PubMed

    Bao, Jing-Yue; Bao, Jian-Guo; Li, Li-Qing

    2014-10-01

    Longjing Lake in Chongqing Expo Garden is a typical representative of mountainous urban lake. Based on water quality monitoring of Longjing Lake, spatiotemporal characteristics of nitrogen and phosphorus and their relations were analyzed, combined with natural and human factors considered. The results indicated that annual average concentrations of TN and TP in overall lake were (1.42 ± 0.46) mg · L(-1) and (0.09 ± 0.03) mg · L(-1), nitrogen and phosphorus concentrations fluctuated seasonally which were lower during the flooding season than those during the dry season. Nitrogen and phosphorus concentration in main water area, open water areas and bay areas of Longjing Lake were distributed with temporal and spatial heterogeneity by different regional influencing factors. The seasonal variation of the main water area was basically consistent with overall lake. Two open water areas respectively connected the main water area with the upstream region, bay areas. TN and TP concentrations were gradually reduced along the flow direction. Upstream water quality and surrounding park functional layout impacted nitrogen and phosphorus nutrient concentrations of open water areas. Nutrient concentrations of typical bay areas were higher than those of main water area and open water areas. The mean mass fraction of PN/TN and PP/TP accounted for a large proportion (51.7% and 72.8%) during the flooding season, while NO(3-)-N/TN and SRP/TP accounted for more (42.0% and 59.4%) during the dry season. The mass fraction of ammonia nitrogen and dissolved organic nitrogen in total nitrogen were relatively stable. The annual mean of N/P ratio was 18.429 ± 7.883; the period of nitrogen limitation was 5.3% while was 21.2% for phosphorus limitation.

  10. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes.

    PubMed

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-07-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For

  11. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes

    PubMed Central

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-01-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran’s eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For

  12. Lake-specific responses to elevated atmospheric nitrogen deposition in the Colorado Rocky Mountains, U.S.A.

    USGS Publications Warehouse

    Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.; Johnson, B.M.

    2003-01-01

    We explored variability among subalpine lakes sharing very similar climate and atmospheric conditions, but differing in watershed characteristics, hydrology, and food web structure. Special attention was given to nitrogen (N) dynamics because the study area receives some of the highest levels of atmospheric N deposition in the Rocky Mountains. We asked if the effect of regional N deposition would be manifested uniformly among neighboring lakes both in terms of ambient conditions and responses to greater nutrient inputs. Catchment vegetation appeared to be the main determinant of ambient nitrate (NO3), phosphate (PO4), and dissolved organic carbon (DOC) concentrations, although in-lake differences in recycling produced variable and contrasting NH4 levels. Phytoplankton chlorophyll a temporarily responded to early season NO3 peaks in the lakes with rocky watersheds, but chlorophyll means over the ice-free season were remarkably similar among lakes despite differences in both nutrient supply and zooplankton grazing. In most cases, phosphorus was limiting to phytoplankton growth, although the importance of N deficiencies was greater in lakes with forested watersheds and fringing wetlands.

  13. Lake-specific responses to elevated atmospheric nitrogen deposition in the Colorado Rocky Mountains, U.S.A

    USGS Publications Warehouse

    Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.; Johnson, B.M.

    2003-01-01

    We explored variability among subalpine lakes sharing very similar climate and atmospheric conditions, but differing in watershed characteristics, hydrology, and food web structure. Special attention was given to nitrogen (N) dynamics because the study area receives some of the highest levels of atmospheric N deposition in the Rocky Mountains. We asked if the effect of regional N deposition would be manifested uniformly among neighboring lakes both in terms of ambient conditions and responses to greater nutrient inputs. Catchment vegetation appeared to be the main determinant of ambient nitrate (NO3), phosphate (PO4), and dissolved organic carbon (DOC) concentrations, although in-lake differences in recycling produced variable and contrasting NH4 levels. Phytoplankton chlorophyll atemporarily responded to early season NO3 peaks in the lakes with rocky watersheds, but chlorophyll means over the ice-free season were remarkably similar among lakes despite differences in both nutrient supply and zooplankton grazing. In most cases, phosphorus was limiting to phytoplankton growth, although the importance of N deficiencies was greater in lakes with forested watersheds and fringing wetlands.

  14. Effects of Parameter Uncertainty on Long-Term Simulations of Lake Alkalinity

    NASA Astrophysics Data System (ADS)

    Lee, Sijin; Georgakakos, Konstantine P.; Schnoor, Jerald L.

    1990-03-01

    A first-order second-moment uncertainty analysis has been applied to two lakes in the Adirondack Park, New York, to assess the long-term response of lakes to acid deposition. Uncertainty due to parameter error and initial condition error was considered. Because the enhanced trickle-down (ETD) model is calibrated with only 3 years of field data and is used to simulate a 50-year period, the uncertainty in the lake alkalinity prediction is relatively large. When a best estimate of parameter uncertainty is used, the annual average alkalinity is predicted to be -11 ±28 μeq/L for Lake Woods and 142 ± 139 μeq/L for Lake Panther after 50 years. Hydrologic parameters and chemical weathering rate constants contributed most to the uncertainty of the simulations. Results indicate that the uncertainty in long-range predictions of lake alkalinity increased significantly over a 5- to 10-year period and then reached a steady state.

  15. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    ... scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained ... Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake ...

  16. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges

    NASA Astrophysics Data System (ADS)

    Haeberli, Wilfried; Schaub, Yvonne; Huggel, Christian

    2017-09-01

    While glacier volumes in most cold mountain ranges rapidly decrease due to continued global warming, degradation of permafrost at altitudes above and below glaciers is much slower. As a consequence, many still existing glacier and permafrost landscapes probably transform within decades into new landscapes of bare bedrock, loose debris, sparse vegetation, numerous new lakes and steep slopes with slowly degrading permafrost. These new landscapes are likely to persist for centuries if not millennia to come. During variable but mostly extended future time periods, such new landscapes will be characterized by pronounced disequilibria within their geo- and ecosystems. This especially involves long-term stability reduction of steep/icy mountain slopes as a slow and delayed reaction to stress redistribution following de-buttressing by vanishing glaciers and to changes in mechanical strength and hydraulic permeability caused by permafrost degradation. Thereby, the probability of far-reaching flood waves from large mass movements into lakes systematically increases with the formation of many new lakes and systems of lakes in close neighborhood to, or even directly at the foot of, so-affected slopes. Results of recent studies in the Swiss Alps are reviewed and complemented with examples from the Cordillera Blanca in Peru and the Mount Everest region in Nepal. Hot spots of future hazards from potential flood waves caused by large rock falls into new lakes can already now be recognized. To this end, integrated spatial information on glacier/permafrost evolution and lake formation can be used together with scenario-based models for rapid mass movements, impact waves and flood propagation. The resulting information must then be combined with exposure and vulnerability considerations related to settlements and infrastructure. This enables timely planning of risk reduction options. Such risk reduction options consist of two components: Mitigation of hazards, which in the present

  17. [Limnology of high mountain tropical lake, in Ecuador: characteristics of sediments and rate of sedimentation].

    PubMed

    Gunkel, Günter

    2003-06-01

    Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (< 20 degrees C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.

  18. Exploring satisfaction among paddlers in two Adirondack canoeing areas

    Treesearch

    Becky J. Pfaffenbach; Harry C. Zinn; Chad P. Dawson

    2003-01-01

    An exploratory study examining the relationships between visitor satisfaction, perceived crowding, and expected crowding was conducted using both quantitative and qualitative methods. The study sample consisted of non-motorized watercraft users in two adjacent popular canoe areas in New York State's Adirondack Forest Preserve: the Saint Regis Canoe Area (SRCA) and...

  19. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    USGS Publications Warehouse

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  20. Anaglyph of Shaded Relief New York State, Lake Ontario to Long Island

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom) this image shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania and New Jersey. The high 'bumpy' area in the middle to top right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest exposed rocks in the eastern U.S.

    On the left side is the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills is a wide valley that contains the Mohawk River and the Erie Canal. On the northwest (top) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire region as recently as 18,000 years ago.

    The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshires are between the Hudson and Connecticut valleys. Closer to the coast are the more deeply eroded rocks of the area around New York City, where several resistant rock units form topographic ridges.

    This image product is derived from a preliminary SRTM elevation model, processed with preliminary navigation information from the Space Shuttle. Broad scale and fine detail distortions in the model seen here will be corrected in the final elevation model.

    This anaglyph was generated by first creating a shaded relief image from the elevation data, masking the large water bodies, and draping the result back over the elevation model. Two differing perspectives were then calculated, one for each eye. When viewed through special glasses, the result is a vertically

  1. Acid-base characteristics of the Grass Pond watershed in the Adirondack Mountains of New York State, USA: interactions among soil, vegetation and surface waters

    NASA Astrophysics Data System (ADS)

    McEathron, K. M.; Mitchell, M. J.; Zhang, L.

    2013-07-01

    Grass Pond watershed is located within the southwestern Adirondack Mountain region of New York State, USA. This region receives some of the highest rates of acidic deposition in North America and is particularly sensitive to acidic inputs due to many of its soils having shallow depths and being generally base poor. Differences in soil chemistry and tree species between seven subwatersheds were examined in relation to acid-base characteristics of the seven major streams that drain into Grass Pond. Mineral soil pH, stream water BCS (base-cation surplus) and pH exhibited a positive correlation with sugar maple basal area (p = 0.055; 0.48 and 0.39, respectively). Black cherry basal area was inversely correlated with stream water BCS, ANC (acid neutralizing capacity)c and NO3- (p = 0.23; 0.24 and 0.20, respectively). Sugar maple basal areas were positively associated with watershed characteristics associated with the neutralization of atmospheric acidic inputs while in contrast, black cherry basal areas showed opposite relationships to these same watershed characteristics. Canonical correspondence analysis indicated that black cherry had a distinctive relationship with forest floor chemistry apart from the other tree species, specifically a strong positive association with forest floor NH4, while sugar maple had a distinctive relationship with stream chemistry variables, specifically a strong positive association with stream water ANCc, BCS and pH. Our results provide evidence that sugar maple is acid-intolerant or calciphilic tree species and also demonstrate that black cherry is likely an acid-tolerant tree species.

  2. Geological and geochemical investigations of uranium occurrences in the Arrastre Lake area of the Medicine Bow Mountains, Wyoming

    USGS Publications Warehouse

    Miller, W. Roger; Houston, R.S.; Karlstrom, K.E.; Hopkins, D.M.; Ficklin, W.H.

    1977-01-01

    Metasedimentary rocks of Precambrian X age in and near the Snowy Range wilderness study area of southeastern Wyoming are lithologically and chronologically similar to those on the north shore of Lake Huron in Canada. The rocks in Canada contain major deposits of uranium in quartz-pebble conglomerates near the base of the metasedimentary sequence. Similar conglomerates in the Deep Lake Formation in the Medicine Bow Mountains of southeastern Wyoming are slightly radioactive and may contain deposits of uranium and other valuable heavy metals. During the summer of 1976, a geological and geochemical pilot study was conducted in the vicinity of Arrastre Lake in the Medicine Bow Mountains to determine the most effective exploration methods for evaluating the uranium potential of the Snowy Range wilderness study area. The area around Arrastre Lake was selected because of the presence of a radioactive lens within a quartz-pebble conglomerate of the Deep Lake Formation. The results of the survey indicate possible uranium mineralization in the subsurface rocks of this formation. The radon content of the dilute waters of the area is much higher than can be accounted for by the uranium content of the surface rocks. Two sources for the high content of the radon are possible. In either case, the high values of radon obtained in this study are a positive indication of uranium mineralization in the subsurface rocks. The determination of the radon content of water samples is the recommended geochemical technique for uranium exploration in the area. The determination of uranium in water and in organic-rich bog material is also recommended.

  3. Mountain Island Lake, North Carolina; analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics, 1996–97

    USGS Publications Warehouse

    Bales, Jerad D.; Sarver, Kathleen M.; Giorgino, Mary J.

    2001-01-01

    Mountain Island Lake is an impoundment of the Catawba River in North Carolina and supplies drinking water to more than 600,000 people in Charlotte, Gastonia, Mount Holly, and several other communities. The U.S. Geological Survey, in cooperation with the Charlotte-Mecklenburg Utilities, conducted an investigation of the reservoir to characterize hydrologic and water-quality conditions and to develop and apply a simulation model to predict the response of the reservoir to changes in constituent loadings or the flow regime.During 1996–97, flows into Mountain Island Lake were dominated by releases from Cowans Ford Dam on Lake Norman, with more than 85 percent of the total inflow to the reservoir coming from Lake Norman. Riverbend Steam Station discharges accounted for about 12 percent of the inflows to the reservoir, and inflows from tributary streams contributed less than 1.5 percent of the total inflows. Releases through Mountain Island Dam accounted for about 81 percent of outflows from the reservoir, while Riverbend Steam Station withdrawals, which were equal to discharge from the facility, constituted about 13 percent of the reservoir withdrawals. About 5.5 percent of the withdrawals from the reservoir were for water supply.Strong thermal stratification was seldom observed in Mountain Island Lake during April 1996-September 1997. As a result, dissolved-oxygen concentrations were only infrequently less than 4 milligrams per liter, and seldom less than 5 milligrams per liter throughout the entire reservoir, including the coves. The Riverbend Steam Station thermal discharge had a pronounced effect on surface-water temperatures near the outfall.McDowell Creek, which drains to McDowell Creek cove, receives treated wastewater from a large municipal facility and has exhibited signs of poor water-quality conditions in the past. During April 1996-September 1997, concentrations of nitrate, ammonia, total phosphorus, and chlorophyll a were higher in McDowell Creek cove

  4. 42. Peaks of Otter, Abbott Lake. View across lake to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Peaks of Otter, Abbott Lake. View across lake to peaks of Outter Lodge, completed in 1964. Construction of the lake got underway in 1964. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  5. Diatom diversity in chronically versus episodically acidified adirondack streams

    USGS Publications Warehouse

    Passy, S.I.; Ciugulea, I.; Lawrence, G.B.

    2006-01-01

    The relationship between algal species richness and diversity, and pH is controversial. Furthermore, it is still unknown how episodic stream acidification following atmospheric deposition affects species richness and diversity. Here we analyzed water chemistry and diatom epiphyton dynamics and showed their contrasting behavior in chronically vs. episodically acidic streams in the Adirondack region. Species richness and diversity were significantly higher in the chronically acidic brown water stream, where organic acidity was significantly higher and the ratio of inorganic to organic monomeric aluminum significantly lower. Conversely, in the episodically acidic clear water stream, the inorganic acidity and pH were significantly higher and the diatom communities were very species-poor. This suggests that episodic acidification in the Adirondacks may be more stressful for stream biota than chronic acidity. Strong negative linear relationships between species diversity, Eunotia exigua, and dissolved organic carbon against pH were revealed after the influence of non-linear temporal trends was partialled out using a novel way of temporal modeling. ?? 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

  6. Three new Psammothidium species from lakes of Olympic and Cascade Mountains in Washington State, USA

    USGS Publications Warehouse

    Enache, Mihaela D.; Potapova, Marina; Sheibley, Rich; Moran, Patrick

    2013-01-01

    Populations of several Psammothidium species were found in core sediments from nine remote, high elevation, ultraoligotrophic and oligotrophic, Olympic and Cascade Mountain lakes. Three of these species, P. lacustre, P. alpinum, and P. nivale, are described here as new. The morphology of the silica frustules of these species was documented using light and scanning electron microscopy. We discuss the similarities and differences with previously described Psammothidium species.

  7. Reacidification modeling and dose calculation procedures for calcium-carbonate-treated lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheffe, R.D.

    1987-01-01

    Two dose calculation models and a reacidification model were developed and applied to two Adirondack acid lakes (Woods Lake and Cranberry Pond) that were treated with calcite during May 30-31, 1985 as part of the EPRI-funded Lake Acidification Mitigation Project. The first dose model extended Sverdrup's (1983) Lake Liming model by incorporating chemical equilibrium routines to eliminate empirical components. The model simulates laboratory column water chemistry profiles (spatially and temporally) and dissolution efficiencies fairly well; however, the model predicted conservative dissolution efficiencies for the study lakes. Time-series water chemistry profiles of the lakes suggest that atmospheric carbon dioxide intrusion ratemore » was far greater than expected and enhanced dissolution efficiency. Accordingly, a second dose model was developed that incorporated ongoing CO/sub 2/ intrusion and added flexibility in the handling of solid and dissolved species transport. This revised model simulated whole-lake water chemistry throughout the three week dissolution period. The Acid Lake Reacidification Model (ALaRM) is a general mass-balance model developed for the temporal prediction of the principal chemical species in both the water column and sediment pore water of small lakes and ponds.« less

  8. Eradication of non-native fish from a small mountain lake: gill netting as a non-toxic alternative to the use of rotenone.

    Treesearch

    R.A. Knapp; K.R. Matthews

    1998-01-01

    Nearly all mountain lakes in the western United States were historically fishless, but most now contain introduced trout populations. As a result of the impacts of these introductions on ecosystem structure and function, there is increasing interest in restoring some lakes to a fishless condition. To date, however, the only effective method of fish eradication is the...

  9. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large

  10. NO3 uptake in shallow, oligotrophic, mountain lakes: The influence of elevated NO3 concentrations

    USGS Publications Warehouse

    Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.

    2004-01-01

    Nutrient enrichment experiments were conducted in 1.2-m deep enclosures in 2 shallow, oligotrophic, mountain lakes. 15N-NO3 isotope tracer was used to compare the importance of phytoplankton and benthic compartments (epilithon, surface sediment [epipelon], and subsurface sediment) for NO3 uptake under high and low NO3 conditions. NO3 uptake approached saturation in the high-N lake, but not in the low-N lake. The capacity of phytoplankton and benthic compartments to take up NO3 differed among treatments and between lakes, and depended on water-column nutrient conditions and the history of NO3 availability. Phytoplankton productivity responded strongly to addition of limiting nutrients, and NO3 uptake was related to phytoplankton biomass and photosynthesis. However, more NO3 usually was taken up by benthic compartments (57–92% combined) than by phytoplankton, even though the response of benthic algal biomass to nutrient additions was less pronounced than that of phytoplankton and benthic NO3 uptake was unrelated to benthic algal biomass. In the low-N lake where NO3 uptake was unsaturated, C content or % was related to NO3 uptake in benthic substrates, suggesting that heterotrophic bacterial processes could be important in benthic NO3 uptake. These results suggest that phytoplankton are most sensitive to nutrient additions, but benthic processes are important for NO3 uptake in shallow, oligotrophic lakes.

  11. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    USGS Publications Warehouse

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  12. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA

    USGS Publications Warehouse

    Rosenberry, D.O.; Winter, T.C.; Buso, D.C.; Likens, G.E.

    2007-01-01

    Few detailed evaporation studies exist for small lakes or reservoirs in mountainous settings. A detailed evaporation study was conducted at Mirror Lake, a 0.15 km2 lake in New Hampshire, northeastern USA, as part of a long-term investigation of lake hydrology. Evaporation was determined using 14 alternate evaporation methods during six open-water seasons and compared with values from the Bowen-ratio energy-budget (BREB) method, considered the standard. Values from the Priestley-Taylor, deBruin-Keijman, and Penman methods compared most favorably with BREB-determined values. Differences from BREB values averaged 0.19, 0.27, and 0.20 mm d-1, respectively, and results were within 20% of BREB values during more than 90% of the 37 monthly comparison periods. All three methods require measurement of net radiation, air temperature, change in heat stored in the lake, and vapor pressure, making them relatively data intensive. Several of the methods had substantial bias when compared with BREB values and were subsequently modified to eliminate bias. Methods that rely only on measurement of air temperature, or air temperature and solar radiation, were relatively cost-effective options for measuring evaporation at this small New England lake, outperforming some methods that require measurement of a greater number of variables. It is likely that the atmosphere above Mirror Lake was affected by occasional formation of separation eddies on the lee side of nearby high terrain, although those influences do not appear to be significant to measured evaporation from the lake when averaged over monthly periods. ?? 2007 Elsevier B.V. All rights reserved.

  13. New lakes in deglaciating high-mountain areas: Regional intercomparison of current and future risks from impact waves due to rock/ice avalanches in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Schaub, Y.; Huggel, C.; Serraino, M.; Haeberli, W.

    2012-04-01

    The changes in high-mountain environments are increasingly fast and complex. GIS-based models of the Swiss Alps show that numerous topographic overdeepenings are likely to appear on progressively exposed glacier beds, which are considered as potential sites of future lake formation. In many cases these newly forming lakes will be situated in an over-steepened and destabilized high-mountain environment and are, therefore, prone to impact waves from landslides. The risk of glacier lake outburst floods, endangering infrastructure, residential areas and persons further downvalley, is increasing with further lake formation and glacier recession. This risk may persist for many decades if not centuries. Future-oriented hazard assessments have to be integrative and must deal with all possible process chains. Reference studies and methodologies are still scarce, however. We present an approach to compare risks resulting from high-mountain lakes in the Swiss Alps amongst each other. Already existing lakes are thereby as much included in the analysis as future ones. The presented risk assessment approach integrates the envisaged high-mountain hazard process chain with present and future socio-economic conditions. Applying the concept of integral risk management, the hazard and damage potentials have to be analyzed. The areas that feature the topographic potential for rock/iceavalanches to reach a lake were analyzed regarding their susceptibility to slope failure including the factors slope inclination, permafrost occurrence, glacier recession and bedrock lithology. Together with the analysis of the lakes (volume and runout path of potential outburst floods), the hazard analysis of the process chain was completed. As an example, high long-term hazard potentials in the Swiss Alps have, for instance, to be expected in the area of the Great Aletsch glacier. A methodology for the assessment of the damage potential was elaborated and will be presented. In order to estimate the

  14. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks. Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed. Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in ??18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences. The range of Adirondack carbonate ??18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their

  15. Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): A response to anthropogenic nitrogen deposition

    USGS Publications Warehouse

    Wolfe, A.P.; Van Gorp, A.C.; Baron, Jill S.

    2003-01-01

    Dated sediment cores from five alpine lakes (>3200 m asl) in Rocky Mountain National Park (Colorado Front Range, USA) record near-synchronous stratigraphic changes that are believed to reflect ecological and biogeochemical responses to enhanced nitrogen deposition from anthropogenic sources. Changes in sediment proxies include progressive increases in the frequencies of mesotrophic planktonic diatom taxa and diatom concentrations, coupled with depletions of sediment δ15N and C : N values. These trends are especially pronounced since approximately 1950. The most conspicuous diatoms to expand in recent decades are Asterionella formosa and Fragilaria crotonensis. Down-core species changes are corroborated by a year-long sediment trap experiment from one of the lakes, which reveals high frequencies of these two taxa during autumn and winter months, the interval of peak annual limnetic [NO3-]. Although all lakes record recent changes, the amplitude of stratigraphic shifts is greater in lakes east of the Continental Divide relative to those on the western slope, implying that most nitrogen enrichment originates from urban, industrial and agricultural sources east of the Rocky Mountains. Deviations from natural trajectories of lake ontogeny are illustrated by canonical correspondence analysis, which constrains the diatom record as a response to changes in nitrogen biogeochemistry. These results indicate that modest rates of anthropogenic nitrogen deposition are fully capable of inducing directional biological and biogeochemical shifts in relatively pristine ecosystems.

  16. Spatial and Temporal Variability of Dust Deposition in the San Juan Mountains, CO: A Network of Late Holocene Lake Sediment Records

    NASA Astrophysics Data System (ADS)

    Arcusa, S.; Routson, C.; McKay, N.

    2017-12-01

    Millions of stakeholders living in the arid southwestern US rely on snowmelt from the San Juan Mountains of Colorado. However, dust deposition on snow accelerates snowmelt, challenging water management. Dustiness in the southwestern US is primarily mediated by drought, which is projected to increase in frequency and severity. Over the past several millennia, multidecadal-length megadroughts are hypothesized to have enhanced regional dustiness. These past megadroughts were more frequent during the Roman (ca. 1-400 CE) and Medieval (ca. 800-1300 CE) time periods and were similar in duration and severity to those projected for the future. Developing an understanding of the temporal and spatial patterns of past dust deposition in the San Juan Mountains will help inform adaptation strategies for future droughts. A network of short sediment cores from six alpine lakes in the San Juan Mountains were collected in 2016 and 2017 to investigate the spatial patterns of dust deposition. The range in lake basin characteristics in the network, such as catchment size, helps to constrain the influence of secondary dust deposition. Grain size analysis and X-ray Fluorescence were combined with radiocarbon dating to trace the temporal patterns in dust flux over the Late Holocene (the last 2000 years). The End-member Modelling Algorithm (EMMA) was used to estimate the dust proportion in the lake sediment, distinguishing from locally derived catchment material. Comparisons to modern dust-on-snow samples were made to identify the dust size distribution. The results show that deposition trends were not uniform between the south-eastern and north-western San Juans, with increasing trends towards the present in the former, possibly reflecting a shift in dust sources associated with changes in wind speed and direction. Dust levels greater than long term averages were recorded during the Medieval and Roman periods. The network also showed the influence of lake basin parameters, such as the

  17. Ion chromatographic determination of lithium at trace level concentrations. Application to a tracer experiment in a high-mountain lake.

    PubMed

    Nickus, U; Thies, H

    2001-06-22

    The water residence time of a high-mountain seepage lake in the Austrian Alps was derived from the flushing rate of a tracer substance. A diluted lithium chloride solution was injected into the lake during holomictic conditions in order to favour the homogeneous distribution of the tracer. The exponential decline of the mass of lithium in the lake revealed a water residence time of 1.5 to 3 months for summer and almost no lake water exchange during winter. Lithium concentrations ranged from background values of 0.06 microg l(-1) to about 3 microg l(-1) immediately after the tracer injection. Lake water samples were analyzed with ion-exchange chromatography using a Dionex device with a CS 12A separation column. The method detection limit determined according to the definition of the US Envirinmental Protection Agency amounted to 0.009 microg l(-1).

  18. Late glacial aridity in southern Rocky Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, O K; Pitblado, B L

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lakemore » (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.« less

  19. Monitoring the dynamics of glacial lakes in the High Mountain Asia region through time series Landsat images

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Chen, F.

    2017-12-01

    Glacial lakes have been developing dramatically in the High Mountain Asia (HMA) region associated with human activities and persistent climatic warming. This leads to increased probability of glacial lake outburst floods (GLOF), pose potential threats to the downstream lives and properties of people. However, comprehensive information is lacking about the annual distribution, evolution and the driving mechanism of glacial lakes in the entire HMA due to the low accessibility and harsh natural conditions, with most studies focused either on certain portion of this region or at most several time intervals effort at monitoring glacial lakes at coarse resolution remote sensing. In this research, we produce yearly map of glacial lake extents in HMA from 2008 to 2016 using Landsat series satellites images, and further study the formation, distribution and dynamics of glacial lakes. In total 6197 and 8256 glacial lakes were detected in 2008 and 2016, respectively, mainly located at altitudes between 4400 m and 5600 m. The annual expansion rate is approximately 4.68 % from 2008 to 2016. To explore the cause of rapid expansion for some typical glacial lakes, we investigated their changing patterns through long-term expansion rates measured from change in shoreline positions. The results show that glacial lake expansion rates at some points change substantially (> 30 m/yr) and the formation of proglacial lakes may be dominated by different orientation-driving forces from parent glacier. The accelerating rate of ice and snow melting from glacier caused by global warming are primary contributor to glacial lake growth. The results may provide information for understanding the mechanism of lake dynamics, which also facilitate the scientific recognition of the potential glacial lakes hazards in this region.

  20. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  1. Variability of Plant Wax Concentrations and Carbon Isotope Values in Surface Lake Sediments Provide Clues into Their Transport and Deposition

    NASA Astrophysics Data System (ADS)

    Bates, B.; Lowell, T. V.; Diefendorf, A. F.; Freimuth, E. J.; Stewart, A. K.

    2017-12-01

    Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine

  2. Climbers' attitudes toward recreation resource impacts in the Adirondack Park

    Treesearch

    Christopher A. Monz; Katherine E. Smith; Leah Knickerbocker

    2006-01-01

    Climbers arriving at trailheads to popular climbing areas in Adirondack Park, NY were surveyed as to the types of resource impacts they found to be offensive. Climbers were also asked about their degree of concern regarding crowding, noise and management of climbing areas. Some resource impacts, such as damage to trees as a result of poor climbing practices, are...

  3. Transport of pollutants from cow feedlots in eastern Colorado into Rocky Mountain alpine lakes

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, S.; Schumacher, R. S.

    2012-12-01

    Concentrated Animal Feeding Operations (CAFOs), also called factory farms, are known for raising tens of millions head of livestock including cows (beef and dairy), swine, and poultry. With as many as 250 head of cattle per acre, a United States Department of Agriculture's (USDA) Agricultural Research Service (ARS) report showed beef cattle from CAFOs in the United States produce as much as 24.1 million tons of manure annually. Gases released from cow manure include methane (CH4), nitrous oxide (N2O), hydrogen sulfide (H2S), and ammonia (NH3). During boreal summers Colorado experiences fewer synoptic weather systems, allowing the diurnal cycle to exert greater control of meteorological events along the mountain-plains interface. Anabatic, or upslope winds induced by the diurnal cycle, contribute largely to the transport of gases and particulates from feedlots in eastern Colorado into the Rocky Mountains, presenting a potential harm to natural alpine ecosystems. This study focuses on locating the source of transport of gases from feedlots along the eastern Front Range of Colorado into alpine lakes of the Rocky Mountains. Source regions are approximated using backward time simulation of a Lagrangian Transport model.

  4. Effects of watershed and in-stream liming on macroinvertebrate communities in acidified tributaries to an Adirondack lake

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.; Lawrence, Gregory B.; Fuller, Randall L.

    2018-01-01

    Liming techniques are being explored as a means to accelerate the recovery of aquatic biota from decades of acid deposition in many regions. The preservation or restoration of native sportfish populations has typically been the impetus for liming programs, and as such, less attention has been given to its effects on other biological assemblages such as macroinvertebrates. Furthermore, the differing effects of various lime application strategies such as in-stream and watershed applications are not well understood. In 2012, a program was initiated using in-stream and aerial (whole-watershed) liming to improve water quality and Brook Trout (Salvelinus fontinalis) recruitment in three acidified tributaries of a high-elevation Adirondack lake in New York State. Concurrently, macroinvertebrates were sampled annually between 2013 and 2016 at 3 treated sites and 3 untreated reference sites to assess the effects of each liming technique on this community. Despite improvements in water chemistry in all three limed streams, our results generally suggest that neither liming technique succeeded in improving the condition of macroinvertebrate communities. The watershed application caused an immediate and unsustained decrease in the density of macroinvertebrates and increase in the proportion of sensitive taxa. These changes were driven primarily by a one-year 71 percent reduction of the acid-tolerant Leuctra stoneflies and likely represent an initial chemistry shock from the lime application rather than a recovery response. The in-stream applications appeared to reduce the density of macroinvertebrates, particularly in one stream where undissolved lime covered the natural substrate. The close proximity of our study sites to the in-stream application points (50 and 1230 m) may partly explain these negative effects. Our results are consistent with prior studies of in-stream liming which indicate that this technique often fails to restore macroinvertebrate communities to a pre

  5. Stereo Pair of Height as Color & Shaded Relief, New York State, Lake Ontario to Long Island

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom) this image shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania and New Jersey. The high 'bumpy' area in the middle to top right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest exposed rocks in the eastern U.S.

    On the left side is the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills is a wide valley that contains the Mohawk River and the Erie Canal. On the northwest (top) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire image as recently as 18,000 years ago.

    The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshires are between the Hudson and Connecticut valleys. Closer to the coast are the more deeply eroded rocks of the area around New York City, where several resistant rock units form topographic ridges.

    This image product is derived from a preliminary SRTM elevation model, processed with preliminary navigation information from the Space Shuttle. Broad scale and fine detail distortions in the model seen here will be corrected in the final elevation model.

    This stereoscopic image was generated by first creating and combining a shaded relief image and a height as color image, both of which were derived from the elevation model. Large water bodies were then masked, and the result was then draped back over the elevation model. Two differing perspectives were then

  6. Baektu Mountain, China & North Korea

    NASA Image and Video Library

    2014-07-14

    This image from NASA Terra spacecraft shows Baektu Mountain, an active volcano on the border between North Korea and China. Rising to 2744 m, its summit caldera is filled with a crater lake, Heaven Lake.

  7. Special Forest Products on the Green Mountain and Finger Lakes National Forests: a research-based approach to management

    Treesearch

    Marla R. Emery; Clare Ginger

    2014-01-01

    Special forest products (SFPs) are gathered from more than 200 vascular and fungal species on the Green Mountain National Forest (GMNF) and Finger Lakes National Forest (FLNF). This report documents those SFPs and proposes an approach to managing them in the context of legislation directing the U.S. Forest Service to institute a program of active SFP management. Based...

  8. Skiing in the Eocene Uinta Mountains? Isotopic evidence in the Green River Formation for snow melt and large mountains

    NASA Astrophysics Data System (ADS)

    Norris, Richard D.; Jones, Lawrence S.; Corfield, Richard M.; Cartlidge, Julie E.

    1996-05-01

    Isotopic analysis of lacustrine carbonates from the Eocene Green River Formation suggests that lake waters were derived partly from snow melt. This evidence for cool climates is in marked contrast to paleontological and model evidence for mild temperatures in the continental interior. Oxygen isotope ratios of carbonates frequently reach -12‰ to nearly -16‰ (Peedee belemnite), which suggests that lake waters probably had δ18O of <-13‰ (standard mean ocean water). Consideration of the evaporative 18O enrichment that typically occurs in modern large saline lakes suggests that the source waters to the Green River basin had a δ18O of <-18‰. These ratios are consistent with snow melt and are too negative to be easily accounted for by distillation in the atmosphere during heavy rainfall. The Green River lakes formed in a closed basin encircled by large mountains; this suggests that the snow melt was locally produced. The mountains surrounding the lake must have been high enough to occasionally supply significant melt water to the much lower lake. Lapse rate calculations suggest minimum altitudes of >3000 m for the mountains encircling the Green River basin.

  9. 1. OVERALL VIEW OF KIDNEY LAKE, LOOKING SOUTHWEST High ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF KIDNEY LAKE, LOOKING SOUTHWEST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  10. 1. OVERALL VIEW OF MILK LAKE, LOOKING NORTHEAST High ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF MILK LAKE, LOOKING NORTHEAST - High Mountain Dams in Upalco Unit, Milk Lake Dam, Ashley National Forest, 9.4 miles Northwest of Swift Creek Campground, Mountain Home, Duchesne County, UT

  11. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  12. Rural plastic emissions into the largest mountain lake of the Eastern Carpathians.

    PubMed

    Mihai, Florin-Constantin

    2018-05-01

    The lack of proper waste collection systems leads to plastic pollution in rivers in proximity to rural communities. This environmental threat is more widespread among mountain communities which are prone to frequent flash floods during the warm season. This paper estimates the amounts of plastic bottles dumped into the Izvoru Muntelui lake by upstream rural communities. The plastic pollution dimension between seasonal floods which affected the Bistrita catchment area during 2005-2012 is examined. The floods dumped over 290 tonnes of plastic bottles into the lake. Various scenarios are tested in order to explain each amount of plastic waste collected by local authorities during sanitation activities. The results show that rural municipalities are responsible for 85.51% of total plastic bottles collected during 2005-2010. The source of plastic pollution is mainly local. The major floods of July 2008 and June 2010 collected most of the plastic bottles scattered across the Bistrita river catchment (56 villages) and dumped them into the lake. These comparisons validate the proposed method as a reliable tool in the assessment process of river plastic pollution, which may also be applied in other geographical areas. Tourism and leisure activities are also found to be responsible for plastic pollution in the study area. A new regional integrated waste management system should improve the waste collection services across rural municipalities at the county level when it is fully operational. This paper demonstrates that rural communities are significant contributors of plastics into water bodies.

  13. Western Mountain Initiative - Background

    Science.gov Websites

    , and degraded water quality in mountain lakes and streams. In each case, ecosystem thresholds were dynamics; and the consequences of an altered water cycle for terrestrial and aquatic ecosystems and . Third, Western mountain ecosystems are important to society, providing water, wood products, carbon

  14. 1. OVERALL VIEW OF BROWN DUCK LAKE, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF BROWN DUCK LAKE, LOOKING SOUTHWEST - High Mountain Dams in Upalco Unit, Brown Duck Lake Dam, Ashley National Forest, 4.4 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  15. 2. OVERALL VIEW OF BROWN DUCK LAKE, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF BROWN DUCK LAKE, LOOKING WEST - High Mountain Dams in Upalco Unit, Brown Duck Lake Dam, Ashley National Forest, 4.4 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  16. Conservation easements in the Adirondack Park of New York state

    Treesearch

    Chad P. Dawson; Steven Bick; Peter D' Luhosch; Matthew Nowak; Diane Kuehn

    2015-01-01

    The use of conservation easements to keep private lands undeveloped and protect open space and large scale landscapes has grown rapidly. The New York State Adirondack Park includes 2.5 million acres (1 million ha) of state owned land and 3 million acres (1.2 million ha) of private lands; over 781,000 acres (316,194 ha) of these private lands were under publicly held...

  17. New lakes in de-glaciating high-mountain regions - a challenge for integrative research about hazard protection and sustainable use

    NASA Astrophysics Data System (ADS)

    Haeberli, W.

    2012-12-01

    As a consequence of rapid glacier vanishing, an increasing number of smaller and larger lakes are forming in high-mountain regions worldwide. Such new lakes can be touristic landscape attractions and may also represent interesting potentials for hydropower production. However, they more and more often come into existence at the foot of very large and steep icy mountain walls, which are progressively destabilizing due to changing surface and subsurface ice conditions. The probability of far-reaching flood and debris flow catastrophes caused by impact waves from large rock/ice avalanches into lakes may still appear to be small now but steadily increases for long time periods to come. Corresponding projects related to hazard protection and sustainable use should be combined in an integrative and participatory planning process. This planning process must start soon, because the development in nature is fast and most likely accelerating. Technical tools for creating the necessary scientific knowledge basis at local to regional scales exist and can be used. The location of future new lakes in topographic bed depressions of now still glacier-covered areas can be quite safely assessed on the basis of morphological criteria or by applying ice thickness estimates using digital terrain information. Models for ice-thickness estimates couple the depth to bedrock via the basal shear stress with the surface slope and provide a (relative) bed topography which is much more robust than the (absolute) value of the calculated ice thickness. Numerical models at various levels of sophistication can be used to simulate possible future glacier changes in order to establish the probable time of lake formation and the effects of glacier shrinking on runoff seasonality and water supply. The largest uncertainties thereby relate to the large uncertainties of (absolute) ice thickness and mass/energy fluxes at the surface (climate scenarios, precipitation and albedo changes, etc.). Combined

  18. Sampling protocol for monitoring abiotic and biotic characteristics of mountain ponds and lakes

    USGS Publications Warehouse

    Hoffman, Robert L.; Tyler, Torrey J.; Larson, Gary L.; Adams, Michael J.; Wente, Wendy; Galvan, Stephanie

    2005-01-01

    This document describes field techniques and procedures used for sampling mountain ponds and lakes. These techniques and procedures will be used primarily to monitor, as part of long-term programs in National Parks and other protected areas, the abiotic and biotic characteristics of naturally occurring permanent montane lentic systems up to 75 ha in surface area. However, the techniques and procedures described herein also can be used to sample temporary or ephemeral montane lentic sites. Each Standard Operating Procedure (SOP) section addresses a specific component of the limnological investigation, and describes in detail field sampling methods pertaining to parameters to be measured for each component.

  19. Organochlorine compounds and current-use pesticides in snow and lake sediment in Rocky Mountain National Park, Colorado, and Glacier National Park, Montana, 2002-03

    USGS Publications Warehouse

    Mast, M. Alisa; Foreman, William T.; Skaates, Serena V.

    2006-01-01

    Organochlorine compounds and current-use pesticides were measured in snow and lake-sediment samples from Rocky Mountain National Park in Colorado and Glacier National Park in Montana to determine their occurrence and distribution in high-elevation aquatic ecosystems. The U.S. Geological Survey, in cooperation with the National Park Service, collected snow samples at eight sites in Rocky Mountain National Park and at eight sites in Glacier National Park during spring of 2002 and 2003 just prior to the start of snowmelt. Surface sediments were collected from 11 lakes in Rocky Mountain National Park and 10 lakes in Glacier National Park during summer months of 2002 and 2003. Samples were analyzed for organochlorine compounds by gas chromatography with electron-capture detection and current-use pesticides by gas chromatography with electron-impact mass spectrometry. A subset of samples was reanalyzed using a third instrumental technique (gas chromatography with electron-capture negative ion mass spectrometry) to verify detected concentrations in the initial analysis and to investigate the presence of additional compounds. For the snow samples, the pesticides most frequently detected were endosulfan, dacthal, and chlorothalonil, all of which are chlorinated pesticides that currently are registered for use in North America. Concentrations of these pesticides in snow were very low, ranging from 0.07 to 2.36 nanograms per liter. Of the historical-use pesticides, hexachlorobenzene, dieldrin, and trans-nonachlor were detected in snow but only in one sample each. Annual deposition rates of dacthal, endosulfan, and chlorothalonil were estimated at 0.7 to 3.0 micrograms per square meter. These estimates are likely biased low because they do not account for pesticide deposition during summer months. For the lake-sediment samples, DDE (p,p'-dichlorodiphenyldichoroethene) and DDD (p,p'-dichlorodiphenyldichoroethane) were the most frequently detected organochlorine compounds. DDE

  20. Long-term dataset on aquatic responses to concurrent climate change and recovery from acidification

    NASA Astrophysics Data System (ADS)

    Leach, Taylor H.; Winslow, Luke A.; Acker, Frank W.; Bloomfield, Jay A.; Boylen, Charles W.; Bukaveckas, Paul A.; Charles, Donald F.; Daniels, Robert A.; Driscoll, Charles T.; Eichler, Lawrence W.; Farrell, Jeremy L.; Funk, Clara S.; Goodrich, Christine A.; Michelena, Toby M.; Nierzwicki-Bauer, Sandra A.; Roy, Karen M.; Shaw, William H.; Sutherland, James W.; Swinton, Mark W.; Winkler, David A.; Rose, Kevin C.

    2018-04-01

    Concurrent regional and global environmental changes are affecting freshwater ecosystems. Decadal-scale data on lake ecosystems that can describe processes affected by these changes are important as multiple stressors often interact to alter the trajectory of key ecological phenomena in complex ways. Due to the practical challenges associated with long-term data collections, the majority of existing long-term data sets focus on only a small number of lakes or few response variables. Here we present physical, chemical, and biological data from 28 lakes in the Adirondack Mountains of northern New York State. These data span the period from 1994-2012 and harmonize multiple open and as-yet unpublished data sources. The dataset creation is reproducible and transparent; R code and all original files used to create the dataset are provided in an appendix. This dataset will be useful for examining ecological change in lakes undergoing multiple stressors.

  1. Rural plastic emissions into the largest mountain lake of the Eastern Carpathians

    PubMed Central

    2018-01-01

    The lack of proper waste collection systems leads to plastic pollution in rivers in proximity to rural communities. This environmental threat is more widespread among mountain communities which are prone to frequent flash floods during the warm season. This paper estimates the amounts of plastic bottles dumped into the Izvoru Muntelui lake by upstream rural communities. The plastic pollution dimension between seasonal floods which affected the Bistrita catchment area during 2005–2012 is examined. The floods dumped over 290 tonnes of plastic bottles into the lake. Various scenarios are tested in order to explain each amount of plastic waste collected by local authorities during sanitation activities. The results show that rural municipalities are responsible for 85.51% of total plastic bottles collected during 2005–2010. The source of plastic pollution is mainly local. The major floods of July 2008 and June 2010 collected most of the plastic bottles scattered across the Bistrita river catchment (56 villages) and dumped them into the lake. These comparisons validate the proposed method as a reliable tool in the assessment process of river plastic pollution, which may also be applied in other geographical areas. Tourism and leisure activities are also found to be responsible for plastic pollution in the study area. A new regional integrated waste management system should improve the waste collection services across rural municipalities at the county level when it is fully operational. This paper demonstrates that rural communities are significant contributors of plastics into water bodies. PMID:29892426

  2. 2. VIEW SHOWING NATURAL SAND BEACH ON KIDNEY LAKE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SHOWING NATURAL SAND BEACH ON KIDNEY LAKE, LOOKING WEST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  3. Late Holocene climate change at Goat Lake, Kenai Mountains, south-central Alaska

    NASA Astrophysics Data System (ADS)

    Daigle, T. A.; Kaufman, D. S.

    2006-12-01

    Lake sediments, glacier extents, and tree rings were used to reconstruct late Holocene climate changes from Goat Lake in the Kenai Mountains, south-central Alaska (60° 14' N/149° 54' W). Two sediment cores (3.7 and 5.6 m long) were dated with 16 AMS 14C ages and record changes in watershed (organic- matter content) and within-lake (biogenic silica) productivity since ~9500 cal yr BP. Sediment analyses focused on the last 1000 yr; this interval includes a sharp transition from gyttja to inorganic mud at ~1660 AD, which marks the fist time since Pleistocene deglaciation that the north goat outlet glacier (NGO) of the Harding Icefield overtopped the drainage divide at 590 m asl to spill meltwater into Goat Lake. One 14C age of ~1535 AD from a subfossil log in the NGO valley requires ~125 yr for the NGO to thicken 150 m to the elevation of the drainage divide where it remained until ~1930. Since ~1930, the NGO has thinned 150 m and retreated 1.4 km. Equilibrium-line altitudes (ELA) were reconstructed for 12 cirque glaciers nearby Goat Lake based on the accumulation-area ratio (AAR) method following field mapping of ice-marginal features formed during the maximum Little Ice Age (LIA) in the 19th century. Maximum LIA ELA data (AAR = 0.58) were compared with 1950 ELA and yield an average lowering of 50 ± 20 m. Application of the local lapse rate of 0.47°C/100 m indicates an average ablation-season temperature reduction of 0.3°C during the maximum LIA compared to 1950, assuming no change in winter precipitation. A new tree-ring chronology from 27 hemlock trees in the Goat Lake watershed correlates with mean March through August temperature from Kenai airport (r = 0.35) and a 207 yr reconstruction indicates an average temperature reduction of 1.0°C from 1800-1900 compared with 1930-1950. Assuming no change in winter precipitation, then a 1°C cooling should have been associated with an ELA lowering by 200 m. This did not occur, and we suggest that some degree of

  4. Temporal variations of water quality and the taxonomic structures of phytoplankton and zooplankton assemblages in mountain lakes, Mount Rainier National Park, Washington USA

    USGS Publications Warehouse

    Larson, Gary L.; McIntire, C.D.; Jacobs, Ruth W.; Truitt, R.

    1999-01-01

    A synoptic inventory of physical and chemical properties and plankton assemblages of 27 mountain lakes was conducted at Mount Rainier National Park in 1988. From 1990–1993, die opportunity was presented to resurvey six of these lakes to determine inter-annual change within die set of characteristics surveyed in 1988. If changes were evident, a second objective was to provide guidance to park management about the value of a long-term lake monitoring program.Secchi-disk clarity, water temperature, and pH of the lakes in 1988 were within the range of values obtained between 1990 and 1993. Conductivities and concentration of nutrients in some lakes were not consistent in 1990–1993 with the values recorded in 1988. Although the dominant phytoplankton taxa in die lakes varied among years, die taxa in individual lakes were in consistent among years, with die exception of two lakes. Rotifer assemblages were consistent among years, but most of die lakes exhibited dramatic changes in some years, as did crustacean zooplankton assemblages. Suggestions were made about die need for a long-term monitoring program to evaluate die status and trends of park lakes.

  5. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains

    NASA Astrophysics Data System (ADS)

    Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot

    2017-10-01

    Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).

  6. Lake Baikal, Russia as seen by STS-60

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Lake Baikal, in southeastern Siberia, is the largest freshwater lake in the world. This view shows the northern end of the lake, and was taken in the early morning with low sun highlighting the mountain ranges rimming the lake basin. Pristine forests surround the lake.

  7. 3. OVERALL VIEW OF DEER LAKE AND UPRIGHT OUTLET GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL VIEW OF DEER LAKE AND UPRIGHT OUTLET GATE WHEEL, STEM AND STEM GUIDE, LOOKING NORTH - High Mountain Dams in Upalco Unit, Deer Lake Dam, Ashley National Forest, 5.8 miles North of Swift Creek Campground, Mountain Home, Duchesne County, UT

  8. Genesis of recent silicic magmatism in the Medicine Lake Highland, California - Evidence from cognate inclusions found at Little Glass Mountain

    NASA Technical Reports Server (NTRS)

    Mertzman, S. A.; Williams, R. J.

    1981-01-01

    Sparse, granular inclusions of early-formed minerals found within the Little Glass Mountain rhyolite flows in northern California are shown to provide a means of characterizing the physical conditions, at depth, beneath the Medicine Lake Highland during the latest phase of volcanic activity. Mineral compositions, in combination with thermodynamic calculations and experiments, suggest crystalization at a pressure of 5,200 bars within a 966-836 C temperature range; implying that mineral segregation and equilibration occurred at a depth of 15-18 km beneath the surface. In addition, mass balance calculations indicate that the Medicine Lake flow is a close approximation to the parental magma for the latest silicic lavas.

  9. Solar and atmospheric forcing on mountain lakes.

    PubMed

    Luoto, Tomi P; Nevalainen, Liisa

    2016-10-01

    We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Attributes affecting campsite selection at two types of campgrounds in the Adirondack Park

    Treesearch

    Kye-Young Choi; Chad P. Dawson

    2003-01-01

    This study compared the important attributes affecting campers' decisions in selecting their preferred campsites at two different types of New York State Department of Environmental Conservation (NYSDEC) campgrounds in the Adirondack Park. Mail surveys were sent to campers using six NYSDEC campgrounds (three less-developed campgrounds and three more-developed...

  11. Water quality of Fremont Lake and New Fork Lakes, western Wyoming; a progress report

    USGS Publications Warehouse

    Peterson, D.A.; Averett, R.C.; Mora, K.L.

    1987-01-01

    Fremont Lake and New Fork Lakes in the New Fork River drainage of western Wyoming were selected for a comprehensive study of hydrologic processes affecting mountain lakes in the Rocky Mountains. Information is needed about lakes in this area to assess their response to existing and planned development. The concerns include regional issues such as acid precipitation from gas-sweetening plants, coal-fired powerplants, and smelters, as well as local issues, such as shoreline development and raising outlet control structures. Onsite measurements indicated strong thermal stratification in the lakes during the summer. Isothermal conditions occurred during December 1983 and May 1984. Mean phytoplankton concentrations were less than 5,000 cells/ml, and chlorophyll a concentrations were weakly correlated with phytoplankton concentrations. Zooplankton concentrations were small, less than 6 organisms/L. The numbers of benthic invertebrates/unit area in Fremont Lake were extremely small. The lake waters and inflow and outflow streams were chemically dilute solutions. Mean dissolved-solids concentrations were 13 mg/L in Fremont Lake and 24 mg/L in New Fork Lakes. Calcium and bicarbonate were the predominant ions. Concentrations of phosphorus and nitrogen usually were less than detection limits. Trace-metals concentrations in the lakes were similar to those in precipitation and generally were small. Dissolved organic-carbon concentrations were about 1 mg/L. Concentrations of fulvic and humic acids were relatively large in the inlet of Fremont Lake during the spring. Pine Creek has deposited 800 metric tons of sediment, on an annual average, to the delta of Fremont Lake. Most sediment is deposited during spring runoff. (USGS)

  12. Southern California climate, hydrology and vegetation over the past ~96 ka from Baldwin Lake, San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Glover, K. C.; Kirby, M. E.; Rhodes, E. J.; Silveira, E.; Stevens, L. R.; Lydon, S. E.; Whitaker, A.; MacDonald, G. M.

    2015-12-01

    Continuous paleoclimate records are scarce from terrestrial sites in Southern California beyond the Last Glacial Period (i.e. Marine Isotope Stage 2, MIS 2). Baldwin Lake in the Big Bear Valley, San Bernardino Mountains (SBM), is a playa lake in the ecotone between desert and Mediterranean climate and vegetation. We recovered a 27 m core from the site in 2012, which spans ~96 - 10 ka, based upon radiocarbon dating, infrared stimulated luminescence dating, and orbital tuning. Total organic content, total carbonate content, density, magnetic susceptibility, x-ray fluorescence, and grain size data show a lake system that responded in tandem with Marine Isotope State transitions. After the basin closed during MIS 5b, Baldwin Lake was productive for MIS 5a, then cycled through an inorganic phase to a highly organic lowstand by the end of MIS 4. A stratified lake of rapidly-deposited organic silt prevailed throughout MIS 3, then shifted to an inorganic, slow sedimentation regime during MIS 2. Paleoecological data (charcoal and fossil pollen) suggest that the Valley was most prone to wildfire during climate transitions (e.g. the end of the Last Glacial Maximum, ~21 ka). Forest cover was dominated by pine for much of the basin's history, save for the dry period at the onset of MIS 2, and a greater presence of oak woodland at the beginning of MIS 3. The reduced pine cover and increased sagebrush steppe in early MIS 2 suggests a more arid landscape of sagebrush steppe c. 29 - 25 ka, before reverting to wet conditions by the LGM. Throughout MIS 5a - 2, lake organic content fluctuates in tandem with solar radiation values; a possible link between lake productivity and insolation is currently being explored with biogenic silica (BiSi) analysis. The lake was desiccated by ~10 ka, perhaps driven by increasing insolation rates at the onset of MIS 1.

  13. Habitat Suitability Index Models: Lake trout (exclusive of the Great Lakes)

    USGS Publications Warehouse

    Marcus, Michael D.; Hubert, Wayne A.; Anderson, Stanley H.

    1984-01-01

    The lake trout is an important commercial and sport fish in North America. In the Central Rocky Mountain regi on, 1ake trout are common ly referred to as "mackinaw". There is good evidence that lake trout should be called "1 ake charr" (Morton 1980). No subspecies of lake trout is presently recognized (Robins et al. 1980). The species, however, has extreme variability throughout its range, making it difficult to draw general conclusions about its biology (Martin and Olver 1980).

  14. Mono Lake, California

    NASA Image and Video Library

    2017-03-24

    In eastern California, along the western edge of the Great Basin, sits Mono Lake. This is a salty remnant of a wetter era. Estimates are that the lake existed for at least 760,000 years. Now surrounded by mountain ranges, however, Mono Lake has no outlet; water entering the lake can only evaporate away, so Mono Lake is saltier than the ocean. South of the lake appear some of the geologic features known as Mono Craters. Geologists estimate that the Mono Craters last erupted about 650 years ago. The image was acquired July 7, 2016, covers an area of 22.6 by 34 km, and is located at 37.9 degrees north, 119 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21518

  15. Distribution of polycyclic aromatic hydrocarbons in the food web of a high mountain lake, Pyrenees, Catalonia, Spain.

    PubMed

    Vives, Ingrid; Grimalt, Joan O; Ventura, Marc; Catalan, Jordi

    2005-06-01

    We investigated the contents of polycyclic aromatic hydrocarbons (PAHs) in the food web organisms included in the diet of brown trout from a remote mountain lake. The preferential habitat and trophic level of the component species have been assessed from the signature of stable isotopes (delta13C and delta15N). Subsequently, the patterns of accumulation and transformation of these hydrocarbons in the food chain have been elucidated. Most of the food web organisms exhibit PAH distributions largely dominated by phenanthrene, which agrees with its predominance in atmospheric deposition, water, and suspended particles. Total PAH levels are higher in the organisms from the littoral habitat than from the deep sediments or the pelagic water column. However, organisms from deep sediments exhibit higher proportions of higher molecular weight PAH than those in other lake areas. Distinct organisms exhibit specific features in their relative PAH composition that point to different capacities for uptake and metabolic degradation. Brown trout show an elevated capacity for metabolic degradation because they have lower PAH concentrations than food and they are enriched strongly in lower molecular weight compounds. The PAH levels in trout highly depend on organisms living in the littoral areas. Fish exposure to PAH, therefore, may vary from lake to lake according to the relative contribution of littoral organisms to their diet.

  16. The importance of geomorphic and hydrologic factors in shaping the sensitivity of alpine/subalpine lake volumes to shifts in climate

    NASA Astrophysics Data System (ADS)

    Mercer, J.; Liefert, D. T.; Shuman, B. N.; Befus, K. M.; Williams, D. G.; Kraushaar, B.

    2017-12-01

    Alpine and subalpine lakes are important components of the hydrologic cycle in mountain ecosystems. These lakes are also highly sensitive to small shifts in temperature and precipitation. Mountain lake volumes and their contributions to mountain hydrology may change in response to even minor declines in snowpack or increases in temperature. However, it is still not clear to what degree non-climatic factors, such as geomorphic setting and lake geometry, play in shaping the sensitivity of high elevation lakes to climate change. We investigated the importance of lake geometry and groundwater connectivity to mountain lakes in the Snowy Range, Wyoming using a combination of hydrophysical and hydrochemical methods, including stable water isotopes, to better understand the role these factors play in controlling lake volume. Water isotope values in open lakes were less sensitive to evaporation compared to those in closed basin lakes. Lake geometry played an important role, with wider, shallower lakes being more sensitive to evaporation over time. Groundwater contributions appear to play only a minor role in buffering volumetric changes to lakes over the growing season. These results confirm that mountain lakes are sensitive to climate factors, but also highlight a significant amount of variability in that sensitivity. This research has implications for water resource managers concerned with downstream water quantity and quality from mountain ecosystems, biologists interested in maintaining aquatic biodiversity, and paleoclimatologists interested in using lake sedimentary information to infer past climate regimes.

  17. New explorations along the northern shores of Lake Bonneville

    USGS Publications Warehouse

    Oviatt, Charles G.; Miller, D.M.

    1997-01-01

    This field trip begins in Salt Lake City and makes a clockwise circuit of Great Salt Lake, with primary objectives to observe stratigraphie and geomorphic records of Lake Bonneville. Stops include Stansbury Island, Puddle Valley, gravel pits at Lakeside and the south end of the Hogup Mountains, several stops in Curlew Valley and Hansel Valley, and a final stop at the north end of Great Salt Lake east of the Promontory Mountains. Stratigraphie observations at gravel-pit and natural exposures will be linked to interpretations of lake-level change, which were caused by climate change. Evidence of paleoseismic and volcanic activity will be discussed at several sites, and will be tied to the lacustrine stratigraphic record. The trip provides an overview of the history of Lake Bonneville and introduces participants to some new localities with excellent examples of Lake Bonneville landforms and stratigraphy.

  18. Estimating costs of improving Adirondack timber stands by killing culls with frills and sodium arsenite

    Treesearch

    Robert O. Curtis

    1956-01-01

    Although it has been known for many years that sodium arsenite solution applied in ax frills is an effective means of killing cull trees (1), no published information could be found on the cost of stand-improvement work with this method under Adirondack conditions.

  19. Chemical data for bottom sediment in Mountain Creek Lake, Dallas, Texas, 1999-2000

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2002-01-01

    Mountain Creek Lake is a reservoir adjacent to the Naval Weapons Industrial Reserve Plant and the former Naval Air Station in Dallas, Texas. The U.S. Geological Survey began studies of water, sediment, and biota in the reservoir in 1994 after a Resource Conservation and Recovery Act Facility Investigation detected concentrations of organic chemicals on both facilities. Additional reservoir bottom sediment samples were collected during December 1999–January 2000 at the request of the Southern Division Naval Facilities Engineering Command to further define the occurrence and distribution of selected constituents and to supplement available data. The U.S. Geological Survey National Water Quality Laboratory analyzed bottom-sediment samples from 16 box cores and 5 gravity cores for major and trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, grain size, and cesium-137.

  20. Origin of coronas in metagabbros of the Adirondack mts., N. Y

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1973-01-01

    Metagabbros from two widely separated areas in the Adirondacks show development of coronas. In the Southern Adirondacks, these are cored by olivine which is enclosed in a shell of orthopyroxene that is partially, or completely, rimmed by symplectites consisting of clinopyroxene and spinel. Compositions of the corona phases have been determined by electron probe and are consistent with a mechanism involving three partial reactions, thus: (a) Olivine=Orthopyroxene+(Mg, Fe)++. (b) Plagioclase+(Mg, Fe)+++Ca++=Clinopyroxene+Spinel+Na+. (c) Plagioclase+(Mg, Fe)+++Na+=Spinel+more sodic plagioclase+Ca++. Reaction (a) occurs in the inner shell of the corona adjacent to olivine; reaction (b) in the outer shell; and (c) in the surrounding plagioclase, giving rise to the spinel clouding which is characteristic of the plagioclase in these rocks. Alumina and silica remain relatively immobile. These reactions, when balanced, can be generalized to account for the aluminous nature of the pyroxenes and for changing plagioclase composition. Summed together, the partial reactions are equivalent to: (d) Olivine + Anorthite = Aluminous orthopyroxene + Aluminous Clinopyroxene + Spinel (Kushiro and Yoder, 1966). In the Adirondack Highlands, coronas between olivine and plagioclase commonly have an outer shell of garnet replacing the clinopyroxene/spinel shell. The origin of the garnet can also be explained in terms of three partial reactions: (e) Orthopyroxene+Ca++=Clinopyroxene+(Mg, Fe)++. (f) Clinopyroxene+Spinel+Plagioclase+(Mg, Fe)++=Garnet+Ca+++Na+. (g) Plagioclase+(Mg, Fe)+++Na+=Spinel + more sodic plagioclase+Ca++. These occur in the inner and outer corona shell and the surrounding plagioclase, respectively, and involve the products of reactions (a)-(d). Alumina and silica are again relatively immobile. Balanced, and generalized to account for aluminous pyroxenes and variable An content of plagioclase, they are equivalent to: (h) Orthopyroxene+Anorthite+Spinel=Garnet (Green and

  1. A new species and new distribution records for Braconidae from Mountain Lake Biological Station in southwestern Virginia and a redescription of Pentapleura foveolata Viereck

    USDA-ARS?s Scientific Manuscript database

    One new species of Alysiinae, Coelinius wrayi Kula, is described. Pentapleura foveolata Viereck, also in Alysiinae and previously known only from a male collected at the type locality in Connecticut, is redescribed based on six females and two males collected at Mountain Lake Biological Station (MLB...

  2. Holocene environmental changes inferred from biological and sedimentological proxies in a high elevation Great Basin lake in the northern Ruby Mountains, Nevada, USA

    USGS Publications Warehouse

    Wahl, David B.; Starratt, Scott W.; Anderson, Lysanna; Kusler, Jennifer E.; Fuller, Christopher C.; Addison, Jason A.; Wan, Elmira

    2015-01-01

    Multi-proxy analyses were conducted on a sediment core from Favre Lake, a high elevation cirque lake in the northern Ruby Mountains, Nevada, and provide a ca. 7600 year record of local and regional environmental change. Data indicate that lake levels were lower from 7600-5750 cal yr BP, when local climate was warmer and/or drier than today. Effective moisture increased after 5750 cal yr BP and remained relatively wet, and possibly cooler, until ca. 3750 cal yr BP. Results indicate generally dry conditions but also enhanced climatic variability from 3750-1750 cal yr BP, after which effective moisture increased. The timing of major changes in the Favre Lake proxy data are roughly coeval and in phase with those recorded in several paleoclimate studies across the Great Basin, suggesting regional climatic controls on local conditions and similar responses at high and low altitudes.

  3. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China

    NASA Astrophysics Data System (ADS)

    Tan, Hongbing; Chen, Jun; Rao, Wenbo; Zhang, Wenjie; Zhou, Huifang

    2012-06-01

    Some rivers on the northern slope of the eastern Kunlun Mountains in the Qaidam Basin, China, show very high concentrations of boron and lithium. Correspondingly, the salt lakes fed by these rivers show an unusual enrichment of boron and lithium, and become an important economic resource. The origin of boron and lithium has long been debated. The aim of this study is to analyze the water chemistry and hydrogen and oxygen isotopic composition of river water to understand the unusual enrichment of boron and lithium in the salt lakes of the Qaidam Basin. Oxygen and hydrogen isotope data show that the source of river water in the winter and summer originates from the Kunlun Mountain ice and snow melt water, respectively. The water chemistry shows that boron and lithium contents are high but little variable with seasons in the Nalenggele River and Wutumeiren River waters. By contrast, other rivers have much lower lithium and boron contents. Moreover, the contents of B3+ and Li+ in the river loads or bed sands show little difference amongst the rivers. This indicates that removal by adsorption or input by surface rock weathering is not the main controlling factor of the B3+ and Li+ variation in the rivers. Rivers with high B3+ and Li+ content are chemically similar to geothermal waters in the Tibetan Plateau. In addition, the source area of the Nalenggele River is located in a collision zone of the Kunlun Mountains and Altun Mountains. Large and deep faults can serve as conduits for geothermal fluids. Thus, deep geothermal waters in the source area can easily migrate to the surface and discharge as springs feeding the rivers. They are an important source of B3+ and Li+ to the rivers. The abnormally high contents of B3+ and Li+ in the Nalenggele and Wutumeiren Rivers also suggest that the geothermal source area may be a future target for boron and lithium resources.

  4. Decadal and Seasonal Variations of Alpine Lakes in Glacierized areas of Central Asia during 1990-2015

    NASA Astrophysics Data System (ADS)

    Li, J.; Warner, T.; Chen, X.; Bao, A.

    2016-12-01

    Central Asia is one of the world's most vulnerable areas responding to global change. Glacier lakes in the alpine regions remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study shows that glaciers in Central Asia have retreated dramatically, leading to the expansion of the existing glacial lakes and the emergence of many new glacier lakes. The existence of these lakes increases the possibility of outburst flood during the ice melting season, which can bring a disaster to the downstream area. Mapping glacial lakes and monitoring their changes would improve our understanding of regional climate change and glacier-related hazards. Glacial lakes in Central Asia are mainly located at the Tianshan Mountains, the Altai Mountains, the Kunlun Mountains and the Pamirs with average elevation more than 1500 meters. Most of these lakes are supplied with the glaciers or snowmelt water during the summer seasons. Satellite remote sensing provides an efficient and objective tool to analyze the status and variations of glacial lakes. The increased availability of remote sensing sensors with appropriate spatial and temporal resolutions, broad coverage makes lake investigations more feasible and cost-effective. The paper intends to map glacier lake changes in glacierized alpine mountains with Landsat TM/ETM+ imagery. More than 600 scenes of Landsat images in circa 1990, circa 2000, circa 2010 and circa 2015 are used to map the decadal glacial lake changes over the Central Asia, and about 8 expanding glacial lakes are selected to map seasonal changes. Over 12000 glacial lakes were mapped in circa 1990, and in 2015, lake number are more than 16000, most of these new lakes are emerging in the last 10 years. The result shows that the number and area of the glacial lakes in the Altain Mountain remain stable, while the Tianshan Mountain have experienced expanding changes in the last two decades, and about a half number of lake areas are

  5. Himalayan Mountain Range, India/Tibet

    NASA Image and Video Library

    1973-06-22

    SL2-102-900 (22 June 1973) --- The Great Himalayan Mountain Range, India/Tibet (30.5N, 81.5E) is literally the top of the world where mountains soar to over 20,000 ft. effectively isolating Tibet from the rest of the world. The two lakes seen in the center of the image are the Laga Co and the Kunggyu Co located just inside the Tibet border. Although clouds and rainfall are rare in this region, snow is always present on the mountain peaks. Photo credit: NASA

  6. Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA

    USGS Publications Warehouse

    Fellers, G.M.; McConnell, L.L.; Pratt, D.; Datta, S.

    2004-01-01

    In 1997, pesticide concentrations were measured in mountain yellow-legged frogs (Rana muscosa) from two areas in the Sierra Nevada Mountains of California, USA. One area (Sixty Lakes Basin, Kings Canyon National Park) had large, apparently healthy populations of frogs. A second area (Tablelands, Sequoia National Park) once had large populations, but the species had been extirpated from this area by the early 1980s. The Tablelands is exposed directly to prevailing winds from agricultural regions to the west. When an experimental reintroduction of R. muscosa in 1994 to 1995 was deemed unsuccessful in 1997, the last 20 (reintroduced) frogs that could be found were collected from the Tablelands, and pesticide concentrations in both frog tissue and the water were measured at both the Tablelands and at reference sites at Sixty Lakes. In frog tissues, dichlorodiphenyldichloroethylene (DDE) concentration was one to two orders of magnitude higher than the other organochlorines (46 ?? 20 ng/g wet wt at Tablelands and 17 ?? 8 Sixty Lakes). Both ??-chlordane and trans-nonachlor were found in significantly greater concentrations in Tablelands frog tissues compared with Sixty Lakes. Organophosphate insecticides, chlorpyrifos, and diazinon were observed primarily in surface water with higher concentrations at the Tablelands sites. No contaminants were significantly higher in our Sixty Lakes samples.

  7. The origin of garnet in the anorthosite-charnockite suite of the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1977-01-01

    Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: {Mathematical expression}, where ?? is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ?? orthopyroxene ?? quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies. ?? 1977 Springer-Verlag.

  8. Yamzho Yumco Lake, Tibet

    NASA Image and Video Library

    2017-02-01

    Yamzho Yumco (Sacred Swan) Lake in Tibet is surrounded by snow-capped mountains and is one of the three largest sacred lakes. It is highly crenellated with many bays and inlets. The lake is home to Samding Monastery, headed by a female re-incarnation (Wikipedia). The image was acquired March 6, 2014, covers an area of 49.8 by 60 km, and is centered at 28.9 degrees north, 90.6 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA21304

  9. 10. ELECTRICAL SWITCHING STATION FOR IRON MOUNTAIN BRINGS ELECTRICITY FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. ELECTRICAL SWITCHING STATION FOR IRON MOUNTAIN BRINGS ELECTRICITY FROM HOOVER DAM COMPLEX. - Iron Mountain Pump Plant, South of Danby Lake, north of Routes 62 & 177 junction, Rice, San Bernardino County, CA

  10. Hurricane Mountain Formation melange: history of Cambro-Ordovician accretion of the Boundary Mountains terrane within the northern Appalachian orthotectonic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, G.M.; Boudette, E.L.

    1985-01-01

    The Hurricane Mountain Formation (HMF) melange and associated ophiolitic and volcanogenic formations of Cambrian and lowermost Ordovician age bound the SE margin of the Precambrian Y (Helikian) Chain Lakes Massif in western Maine. HMF melange matrix, though weakly metamorphosed, contains a wide variety of exotic greenschist to amphibolite facies blocks as components of its polymictic assemblage, but blocks of high-grade cratonal rocks such as those of Chain Lakes or Grenville affinity are lacking. Formations of melange exposed in structural culminations of Cambrian and Ordovician rocks NE of the HMF in Maine and in the Fournier Group in New Brunswick aremore » lithologically similar and probably tectonically correlative with the HMF; taken together, they may delineate a common pre-Middle Ordovician tectonic boundary. The authors infer that the Hurricane Mountain and St. Daniel melange belts define the SE and NW margins of the Boundary Mountains accreted terrane (BMT), which may consist of cratonal basement of Chain Lakes affinity extending from eastern Gaspe (deBroucker and St. Julien, 1985) to north-central New Hampshire. The Laurentian continental margin, underlain by Grenville basement, underplated the NW margin of this terrane, marked by the SDF suture zone, in late Cambrian to early Ordovician time, while terranes marked by Cambrian to Tremadocian (.) lithologies dissimilar to the Boundary Mountains terrane were accreted to its outboard margin penecontemporaneously. The docking of the Boundary Mountains terrane and the initiation of its peripheral melanges are equated to the Penobscottian disturbance.« less

  11. Mid-late Holocene climate and vegetation in northeastern part of the Altai Mountains recorded in Lake Teletskoye

    NASA Astrophysics Data System (ADS)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Babich, Valery; Kalugin, Ivan; Daryin, Andrei

    2015-04-01

    We report the first high-resolution (with intervals ca. 20-50 years) late-Holocene (4200 yr BP) pollen record from Lake Teletskoye, Altai Mountains, obtained from the underwater Ridge of Sofia Lepneva in 2006 (core Tel 2006). The study presents (i) the results of palynological analysis of Tel 2006; (ii) the results of spectral analysis of natural cycles based on the periodical fluctuation of taiga-biome curve; and (iii) quantitative reconstructions of the late-Holocene regional vegetation, woody coverage and climate in northern part of the Altai Mountains in order to define place of Northeast Altai on the map of the late-Holocene Central Asian environmental history. Late Holocene vegetation of the northeastern part of Altai recorded in Tel 2006 core is characterized by spread of dark-coniferous forest with structure similar to modern. Dominant trees, Siberian pine (Pinus sibirica) and Siberian fir (Abies sibirica), are the most ecological sensitive taxa between Siberian conifers (Shumilova, 1962), that as a whole suggests mild and humid climatic conditions during last 4200 years. However, changes of pollen taxa percentages and results of numerical analysis reveal pronounced fluctuation of climate and vegetation. Relatively cool and dry stage occurred prior to ca. 3500 cal yr BP. Open vegetation was widespread in the region with maximum deforestation and minimal July temperatures between 3800-3500 cal yr BP. Steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae could grow on the open sites around Lake Teletskoye. Reconstructed woody coverage is very low and varies between 29-35%. After ca. 3500 cal yr BP the area of dark-coniferous mountain taiga has significantly enlarged with maximums of woody coverages and taiga biome scores between ca. 2470-1040 cal yr BP. In the period of ~3500-2500 cal yr BP the averages July temperatures increased more than 1 0C. Climate became warmer and wetter. During last millennium (after 1040 cal yr BP) average July

  12. An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed

    USGS Publications Warehouse

    Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen

    2014-01-01

    Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.

  13. Increased Calcium Availability Leads to Greater Forest Floor Accumulation in an Adirondack Forest

    NASA Astrophysics Data System (ADS)

    Melvin, A.; Goodale, C. L.

    2010-12-01

    Nutrient availability in Northeastern US forests has been dramatically altered by anthropogenic activities. Acid deposition has not only increased nitrogen (N) availability, but has also been linked to soil acidification and a loss of base cations, largely calcium (Ca). We are studying the long-term effects of a Ca addition on carbon (C) and N cycling in a forested catchment in the Adirondack Park, New York. In 1989, calcium carbonate (lime) was added to two subcatchments within the Woods Lake Watershed to ameliorate the effects of soil Ca depletion. Two additional subcatchments were left as controls. Eighteen years after the Ca application, both soil pH and exchangeable Ca concentrations remain elevated in the organic horizons and upper mineral soils of the treated subcatchments. The forest floor mass in this watershed is very large and measurements show that the organic layer in the limed subcatchments is significantly larger than in the controls (212 t/ha vs. 116 t/ha), resulting in greater C and N stocks in the Ca-amended soils. This finding suggests that Ca may stabilize soil organic matter (SOM), resulting in greater C storage under high soil Ca conditions. We are investigating potential drivers of this SOM accumulation in the limed subcatchments, including rates of leaf litter production and the decomposition rate of forest floor material. This work will provide important insights into how long-term changes in soil Ca availability influence SOM stabilization, retention and nutrient cycling.

  14. Lake-levels, vegetation and climate in Central Asia during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail

    2014-05-01

    Central Asian region is bounded in the east corner of the Greater Khingan Range and the Loess Plateau, and to the west - the Caspian Sea. This representation of region boundaries is based on classical works of A.Humboldt and V.Obruchev. Three typical features of Central Asia nature are: climate aridity, extensive inland drainage basins with numerous lakes and mountain systems with developed glaciation. Nowadays the extensive data is accumulated about lake-levels during the Last Glacial Maximum (LGM) in Central Asia. Data compilation on 20 depressions, where lakes exist now or where they existed during LGM, shows that most of them had usually higher lake-level than at present time. This regularity could be mentioned for the biggest lakes (the Aral Sea, the Balkhash, the Ysyk-Kol etc.) and for small ones that located in the mountains (Tien Shan, Pamir and Tibet). All of these lake basins get the precipitation due to westerlies. On the other hand lakes, which are located in region's east rimland (Lake Qinghai and lakes in Inner Mongolia) and get the precipitation due to summer East Asian monsoons, do not comply with the proposed regularity. During LGM these lake-levels were lower than nowadays. Another exception is Lake Manas, its lake-level was also lowered. Lake Manas is situated at the bottom of Junggar Basin. There are many small rivers, which come from the ranges and suffer the violent fluctuation in the position of its lower channel. It is possible to assume that some of its runoff did not get to Lake Manas during LGM. Mentioned facts suggest that levels of the most Central Asian lakes were higher during LGM comparing to their current situation. However, at that period vegetation was more xerophytic than now. Pollen data confirm this information for Tibet, Pamir and Tien Shan. Climate aridization of Central Asia can be proved by data about the intensity of loess accumulation during LGM. This evidence received for the east part of region (the Loess Plateau) and

  15. Chemistry of selected high-elevation lakes in seven national parks in the western United States

    USGS Publications Warehouse

    Clow, David W.; Striegl, Robert G.; Nanus, Leora; Mast, M. Alisa; Campbell, Donald H.; Krabbenhoft, David P.

    2002-01-01

    A chemical survey of 69 high-altitude lakes in seven national parks in the western United States was conducted during the fallof 1999; the lakes were previously sampled during the fall of 1985, as part of the Western Lake Survey. Lakes in parks in the Sierra/southern Cascades (Lassen Volcanic, Yosemite, Sequoia/Kings Canyon National Parks) and in the southern RockyMountains (Rocky Mountain National Park) were very dilute; medianspecific conductance ranged from 4.4 to 12.2 μS cm-1 andmedian alkalinity concentrations ranged from 32.2 to 72.9 μeqL-1. Specific conductances and alkalinity concentrations were substantially higher in lakes in the central and northernRocky Mountains parks (Grand Teton, Yellowstone, and GlacierNational Parks), probably due to the prevalence of more reactivebedrock types. Regional patterns in lake concentrations of NO3 and SO4 were similar to regional patterns in NO3 and SO4 concentrations in precipitation, suggestingthat the lakes are showing a response to atmospheric deposition.Concentrations of NO3 were particularly high in Rocky Mountain National Park, where some ecosystems appear to be undergoing nitrogen saturation.

  16. Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA

    USGS Publications Warehouse

    Riva-Murray, Karen; Bradley, Paul M.; Chasar, Lia C.; Button, Daniel T.; Brigham, Mark E.; Eikenberry, Barbara C. Scudder; Journey, Celeste A.; Lutz, Michelle A.

    2013-01-01

    We studied lower food webs in streams of two mercury-sensitive regions to determine whether variations in consumer foraging strategy and resultant dietary carbon signatures accounted for observed within-site and among-site variations in consumer mercury concentration. We collected macroinvertebrates (primary consumers and predators) and selected forage fishes from three sites in the Adirondack Mountains of New York, and three sites in the Coastal Plain of South Carolina, for analysis of mercury (Hg) and stable isotopes of carbon (δ13C) and nitrogen (δ15N). Among primary consumers, scrapers and filterers had higher MeHg and more depleted δ13C than shredders from the same site. Variation in δ13C accounted for up to 34 % of within-site variation in MeHg among primary consumers, beyond that explained by δ15N, an indicator of trophic position. Consumer δ13C accounted for 10 % of the variation in Hg among predatory macroinvertebrates and forage fishes across these six sites, after accounting for environmental aqueous methylmercury (MeHg, 5 % of variation) and base-N adjusted consumer trophic position (Δδ15N, 22 % of variation). The δ13C spatial pattern within consumer taxa groups corresponded to differences in benthic habitat shading among sites. Consumers from relatively more-shaded sites had more enriched δ13C that was more similar to typical detrital δ13C, while those from the relatively more-open sites had more depleted δ13C. Although we could not clearly attribute these differences strictly to differences in assimilation of carbon from terrestrial or in-channel sources, greater potential for benthic primary production at more open sites might play a role. We found significant variation among consumers within and among sites in carbon source; this may be related to within-site differences in diet and foraging habitat, and to among-site differences in environmental conditions that influence primary production. These observations suggest that different

  17. Physical Controls on Carbon Flux from a Temperate Lake During Autumn Cooling

    NASA Astrophysics Data System (ADS)

    Czikowsky, M. J.; Miller, S. D.; Tedford, E. W.; MacIntyre, S.

    2011-12-01

    Seasonally-stratified temperate lakes are a source of carbon dioxide to the atmosphere during autumn overturning as CO2 trapped below the thermocline becomes available to the surface for release to the atmosphere. We made continuous measurements of the vertical profile of pCO2 in a ~600 ha temperate lake (Lake Pleasant, maximum depth ~24 m) in southwestern Adirondack Park, New York from mid-September to mid-October 2010 from a moored pontoon boat. Continuous eddy covariance flux measurements of momentum, sensible and latent heat, and CO2 were made in situ, and the water column thermal structure was measured using thermistor chains. The spatial variability (horizontal and vertical) of pCO2 throughout the lake was characterized periodically using a roving profiling system. At the beginning of the study interval, pCO2 at the pontoon boat varied from 500 ppm at the surface to > 3000 ppm below the thermocline. The vertical profile of pCO2 changed markedly during the campaign due to the effects of wind forcing and evaporation (buoyancy), with nearly uniform, high pCO2 throughout the water column at the end of the campaign (Figure 1). The elevated surface water pCO2 increased CO2 emission to the atmosphere.

  18. Altitudes between Lake Superior and the Rocky Mountains

    USGS Publications Warehouse

    Upham, Warren

    1891-01-01

    In the survey of Lake Agassiz, a preliminary report of which forms Bulletin No. 39, it was found necessary to ascertain the altitudes determined within its area by railroad surveys as the basis for leveling along the shore lines of that glacial lake, and learning their relations in height to each other, to the great lakes of the St. Lawrence and Nelson Rivers, and to the ocean. From the time of the first observations and description of the upper beaches of Lake Agassiz by the author in 1879 and 1881, for the Geological Survey of Minnesota, and especially since the work was extended in 1885, under the U. S. Geological Survey, to include both sides of this lacustrine area in Minnesota and North Dakota now drained by the Red River of the North, much attention has been given to this collection of altitudes, and to the means of referring them to the sea level. The greater part of Lake Agassiz, however, was in Manitoba and adjacent British Territory, stretching north to the Saskatchewan; and in 1887, jointly for the Geological Surveys of the United States and of Canada, the author continued his examination of the beaches and deltas on the west side of the lake along a distance of a hundred miles north from the international boundary, across the prairie region of southwestern Manitoba, the leveling in this work being based on the altitudes of the Canadian Pacific Railway and its branches and connecting railways.

  19. Numerical modeling of the Snowmass Creek paleoglacier, Colorado, and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara

    2014-04-01

    Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model resultsmore » indicate that a temperature depression of about 6.7°C compared with the present (1971–2000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2°C and 9.1°C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1°C.« less

  20. Predicting future glacial lakes in Austria using different modelling approaches

    NASA Astrophysics Data System (ADS)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  1. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees.

    PubMed

    Santolaria, Zoe; Arruebo, Tomas; Urieta, José Santiago; Lanaja, Francisco Javier; Pardo, Alfonso; Matesanz, José; Rodriguez-Casals, Carlos

    2015-01-01

    Increasing the understanding of high mountain lake dynamics is essential to use these remote aquatic ecosystems as proxies of global environmental changes. With this aim, at Sabocos, a Pyrenean cirque glacial lake or tarn, this study shows the main results of a morphological and catchment characterization, along with statistical analyses of its hydrochemical trends and their concomitant driving factors from 2010 to 2013. Dissolved oxygen, water temperature stratification, and its snow and ice cover composition and dynamics have been also investigated. According to morphological analyses, Sabocos can be classified as a medium-large and deep lake, having a circular contour and a long water retention time as compared to Pyrenean glacial lake average values. Sabocos hydrochemistry is mainly determined by very high alkalinity, pH and conductivity levels, and high Ca(2+), Mg(2+), and SO4(2-) content, coming from the easily weatherable limestone-dolomite bedrock. Thus, lake water is well buffered, and therefore, Sabocos tarn is non-sensitive to acidification processes. On the other hand, the main source of K(+), Na(+), and Cl(-) (sea salts) and nutrients (NH4(+), NO3(-), and phosphorous) to lake water appears to be atmospheric deposition. Primary production is phosphorous limited, and due to the N-saturation stage of the poorly developed soils of Sabocos catchment, NO3(-) is the chief component in the total nitrogen pool. External temperature seems to be the major driver regulating lake productivity, since warm temperatures boot primary production. Although precipitation might also play an important role in lake dynamics, especially regarding to those parameters influenced by the weathering of the bedrock, its influence cannot be easily assessed due to the seasonal isolation produced by the ice cover. Also, as occurs in the whole Pyrenean lake district, chemical composition of bulk deposition is highly variable due to the contribution of air masses with different origin.

  2. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    NASA Astrophysics Data System (ADS)

    Rhea, James R.; Young, Thomas C.

    1987-10-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a multiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values about the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  3. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhea, J.R.; Young, T.C.

    1987-01-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a nultiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values and the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  4. Air-water gas exchange of chlorinated pesticides in four lakes spanning a 1,205 meter elevation range in the Canadian Rocky Mountains.

    PubMed

    Wilkinson, Andrew C; Kimpe, Lynda E; Blais, Jules M

    2005-01-01

    Concentrations of selected persistent organic pollutants (POPs) in air and water were measured from four lakes that transect the Canadian Rocky Mountains. These data were used in combination with wind velocity and temperature-adjusted Henry's law constants to estimate the direction and magnitude of chemical exchange across the air-water interface of these lakes. Bow Lake (1,975 m above sea level [masl]) was studied during the summers of 1998 through 2000; Donald (770 masl) was studied during the summer of 1999; Dixon Dam Lake (946 masl) and Kananaskis Lake (1,667 masl) were studied during the summer of 2000. Hexachlorobenzene (HCB) and dieldrin volatilized from Bow Lake in spring and summer of 1998 to 2000 at a rate of 0.92 +/-1.1 and 0.55+/-0.37 ng m(-2) d(-1), respectively. The alpha-endosulfan deposited to Bow Lake at a rate of 3.4+/-2.2 ng m(-2) d(-1). Direction of gas exchange for gamma-hexachlorocyclohexane (gamma-HCH) changed from net deposition in 1998 to net volatilization in 1999, partly because of a surge in y-HCH concentrations in the water at Bow Lake in 1999. Average gamma-HCH concentrations in air declined steadily over the three-year period, from 0.021 ng m(-3) in 1998, to 0.0023 ng m(-3) in 2000, and to volatilization in 1999 and 2000. Neither the concentrations of organochlorine compounds (OCs) in air and water, nor the direction and rate of air-water gas exchange correlate with temperature or elevation. In general, losses of pesticides by outflow were greater than the amount exchanged across the air-water interface in these lakes.

  5. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    PubMed

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Some effects of stand density and deer browsing on reproduction in an Adirondack hardwood stand

    Treesearch

    Robert O. Curtis; F.M. Rushmore

    1958-01-01

    The northern hardwood stands of the Adirondack region of New York constitute a major natural resource, the basis of one of the few year-round industries of the area. However, knowledge of their silviculture and potential productivity is limited. The results of an exploratory study begun in 1938 provide some information about the problems involved in the management of...

  7. Glacier change and glacial lake outburst flood risk in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Kougkoulos, Ioannis; Cook, Simon J.; Edwards, Laura A.; Dortch, Jason; Hoffmann, Dirk

    2017-04-01

    Glaciers of the Bolivian Andes represent an important water resource for Andean cities and mountain communities, yet relatively little work has assessed changes in their extent over recent decades. In many mountain regions, glacier recession has been accompanied by the development of proglacial lakes, which can pose a glacial lake outburst flood (GLOF) hazard. However, no studies have assessed the development of such lakes in Bolivia despite recent GLOF incidents here. Our mapping from satellite imagery reveals an overall areal shrinkage of 228.1 ± 22.8 km2 (43.1%) across the Bolivian Cordillera Oriental between 1986 and 2014. Shrinkage was greatest in the Tres Cruces region (47.3%), followed by the Cordillera Apolobamba (43.1%) and Cordillera Real (41.9%). A growing number of proglacial lakes have developed as glaciers have receded, in accordance with trends in most other deglaciating mountain ranges, although the number of ice-contact lakes has decreased. The reasons for this are unclear, but the pattern of lake change has varied significantly throughout the study period, suggesting that monitoring of future lake development is required as ice continues to recede. Ultimately, we use our 2014 database of proglacial lakes to assess GLOF risk across the Bolivian Andes. We identify 25 lakes that pose a potential GLOF threat to downstream communities and infrastructure. We suggest that further studies of potential GLOF impacts are urgently required.

  8. Glacier change and glacial lake outburst flood risk in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Cook, Simon J.; Kougkoulos, Ioannis; Edwards, Laura A.; Dortch, Jason; Hoffmann, Dirk

    2016-10-01

    Glaciers of the Bolivian Andes represent an important water resource for Andean cities and mountain communities, yet relatively little work has assessed changes in their extent over recent decades. In many mountain regions, glacier recession has been accompanied by the development of proglacial lakes, which can pose a glacial lake outburst flood (GLOF) hazard. However, no studies have assessed the development of such lakes in Bolivia despite recent GLOF incidents here. Our mapping from satellite imagery reveals an overall areal shrinkage of 228.1 ± 22.8 km2 (43.1 %) across the Bolivian Cordillera Oriental between 1986 and 2014. Shrinkage was greatest in the Tres Cruces region (47.3 %), followed by the Cordillera Apolobamba (43.1 %) and Cordillera Real (41.9 %). A growing number of proglacial lakes have developed as glaciers have receded, in accordance with trends in most other deglaciating mountain ranges, although the number of ice-contact lakes has decreased. The reasons for this are unclear, but the pattern of lake change has varied significantly throughout the study period, suggesting that monitoring of future lake development is required as ice continues to recede. Ultimately, we use our 2014 database of proglacial lakes to assess GLOF risk across the Bolivian Andes. We identify 25 lakes that pose a potential GLOF threat to downstream communities and infrastructure. We suggest that further studies of potential GLOF impacts are urgently required.

  9. A Functional Approach to Zooplankton Communities in Mountain Lakes Stocked With Non-Native Sportfish Under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Redmond, Laura E.; Loewen, Charlie J. G.; Vinebrooke, Rolf D.

    2018-03-01

    Cumulative impacts of multiple stressors on freshwater biodiversity and ecosystem function likely increase with elevation, thereby possibly placing alpine communities at greatest risk. Here, consideration of species traits enables stressor effects on taxonomic composition to be translated into potential functional impacts. We analyzed data for 47 taxa across 137 mountain lakes and ponds spanning large latitudinal (491 km) and elevational (1,399 m) gradients in western Canada, to assess regional and local factors of the taxonomic composition and functional structure of zooplankton communities. Multivariate community analyses revealed that small body size, clonal reproduction via parthenogenesis, and lack of pigmentation were species traits associated with both introduced non-native sportfish and also environmental conditions reflecting a warmer and drier climate—namely higher water temperatures, shallower water depths, and more chemically concentrated water. Thus, historical introductions of sportfish appear to have potentially induced greater tolerance in zooplankton communities of future climatic warming, especially in previously fishless alpine lakes. Although alpine lake communities occupied a relatively small functional space (i.e., low functional diversity), they were contained within the broader regional functional structure. Therefore, our findings point to the importance of dispersal by lower montane species to the future functional stability of alpine communities.

  10. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1991-11-01

    We use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) United States. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. We attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by SO 4, because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  11. Response of surface water chemistry to reduced levels of acid precipitation: Comparison of trends in two regions of New York, USA

    USGS Publications Warehouse

    Burns, Douglas A.; McHale, M.R.; Driscoll, C.T.; Roy, K.M.

    2006-01-01

    In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984-2001 and 1992-2001) and surface water chemistry (1992-2001) were determined in two of the most acid-sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42-), nitrate (NO3-), and base cation (CB) concentrations and increasing pH during 1984-2001, but few significant trends during 1992-2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42- concentrations at all sites, and decreasing trends in NO3-, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid-neutralizing capacity (ANC increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42- trends, but it caused several significant non-flow-corrected trends in NO3- and ANC to become non-significant, suggesting that trend results for flow-sensitive constituents are affected by flow-related climate variation. SO42- concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation-surface water comparisons, reflecting a strong link between S emissions, precipitation SO42- concentrations, and the processes that affect S cycling within these regions. NO3- and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation-surface water comparisons, indicating that variation in local-scale processes driven by factors such as climate are affecting trends in acid-base chemistry in these two regions. Copyright ?? 2005 John Wiley & Sons, Ltd.

  12. Extreme Flood Events Over the Past 300 Years Recorded in the Sediments of a Mountain Lake in the Altay Mountains, Northwestern China

    NASA Astrophysics Data System (ADS)

    Wu, J.; Zhou, J.; Shen, B.; Zeng, H.

    2017-12-01

    Global climate change has the potential to accelerate the hydrological cycle, which may further enhance the temporal frequency of regional extreme floods. Climatic models predict that intra-annual rainfall variability will intensify, which will shift current rainfall regimes towards more extreme systems with lower precipitation frequencies, longer dry periods, and larger individual precipitation events worldwide. Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, currently available instrumental data are not long enough for capturing the most extreme events, thus the acquisition of long duration datasets for historical floods that extend beyond available instrumental records is clearly an important step in discerning trends in flood frequency and magnitude with respect to climate change. In this study, a reconstruction of paleofloods over the past 300 years was conducted through an analysis of grain sizes from the sediments of Kanas Lake in the Altay Mountains of northwestern China. Grain parameters and frequency distributions both demonstrate that two abrupt environment changes exist within the lake sedimentary sequence. Based on canonical discriminant analysis (CDA) and C-M pattern analysis, two flood events corresponding to ca. 1760 AD and ca. 1890 AD were identified, both of which occurred during warmer and wetter climate conditions according to tree-ring records. These two flood events are also evidenced by lake sedimentary records in the Altay and Tianshan areas. Furthermore, through a comparison with other records, the flood event in ca. 1760 AD seems to have occurred in both the arid central Asia and the Alps in Europe, and thus may have been associated with changes in the North Atlantic Oscillation (NAO) index.

  13. Subepilimnetic phytoplankton communities in Rocky Mountain lakes: The influence of climate on biomass and species composition with implications for the effects of global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denoyelles, F.; Dewey, S.L.; Bergin, S.

    Below the epilimnion in some lakes dense bands of phytolankton biomass of species rare or absent in the epilimnion can develop. With adequate light for photosynthesis reaching these often nutrient-rich depths and with at least a few weeks of stratification to allow time for their development, certain species become abundant from growth in place. The quantity of light and duration of stratification greatly influence these very sensitive phytoplankton conditions. Because these important environmental conditions are controlled-greatly by climate, deep-dwelling algal communities were affected by climate differences associated with elevation, in a 5-year study of 10 lakes ranging in elevation betweenmore » 2938 and 3353 m in the Medicine Bow Mountains of SE Wyoming. These results suggest that with even a slight change in climatic conditions at a given latitude and elevation, subepilimnetic phytoplankton communities in higher elevation lakes will rapidly become more like those in lower elevation lakes (warming trend), and vice versa (cooling trend).« less

  14. Great Salt Lake, Utah, USA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  15. Great Salt Lake, Utah, USA

    NASA Image and Video Library

    1990-03-04

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  16. Geologic map database of the El Mirage Lake area, San Bernardino and Los Angeles Counties, California

    USGS Publications Warehouse

    Miller, David M.; Bedford, David R.

    2000-01-01

    This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.

  17. A multiproxy study of Holocene water-depth and environmental changes in Lake St Ana, Eastern Carpathian Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Magyari, E. K.; Buczkó, K.; Braun, M.; Jakab, G.

    2009-04-01

    This study presents the results of a multi-disciplinary investigation carried out on the sediment of a crater lake (Lake Saint Ana, 950 m a.s.l.) from the Eastern Carpathian Mountains. The lake is set in a base-poor volcanic environment with oligotrophic and slightly acidic water. Loss-on-ignition, major and trace element, pollen, plant macrofossil and siliceous algae analyses were used to reconstruct Holocene environmental and water-depth changes. Diatom-based transfer functions were applied to estimate the lake's trophic status and pH, while reconstruction of the water-depth changes was based on the plant macrofossil and diatom records. The lowest Holocene water-depths were found between 9,000 and 7,400 calibrated BP years, when the crater was occupied by Sphagnum-bog and bog-pools. The major trend from 7,400 years BP was a gradual increase, but the basin was still dominated by poor-fen and poor fen-pools. Significant increases in water-depth, and meso/oligotrophic lake conditions were found from 5,350(1), 3,300(2) and 2,700 years BP. Of these, the first two coincided with major terrestrial vegetation changes, namely the establishment of Carpinus betulus on the crater slope (1), and the replacement of the lakeshore Picea abies forest by Fagus sylvatica (2). The chemical record clearly indicated significant soil changes along with the canopy changes (from coniferous to deciduous), that in turn led to increased in-lake productivity and pH. A further increase in water-depth around 2,700 years BP resulted in stable thermal stratification and hypolimnetic anoxia that via P-release further increased in-lake productivity and eventually led to phytoplankton blooms with large populations of Scenedesmus cf. S. brasiliensis. High productivity was depressed by anthropogenic lakeshore forest clearances commencing from ca. 1,000 years BP that led to the re-establishment of Picea abies on the lakeshore and consequent acidification of the lake-water. On the whole, these data

  18. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  19. Deglaciation and postglacial timberline in the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Carrara, P.E.; Mode, W.N.; Rubin, M.; Robinson, S.W.

    1984-01-01

    Lake Emma, which no longer exists because of a mining accident, was a tarn in a south-facing cirque near the headwaters of the Animas River in the San Juan Mountains of southwestern Colorado. During the Pinedale glaciation, this area was covered by a large transection glacier centered over the Lake Emma region. Three radiocarbon dates on basal organic sediment from Lake Emma indicate that by ca. 15,000 yr B.P. this glacier, one of the largest in the southern Rocky Mountains, no longer existed. Twenty-two radiocarbon dates on Picea and Abies krummholz fragments in the Lake Emma deposits indicate that from ca. 9600 to 7800 yr B.P., from 6700 to 5600 yr B.P., and at 3100 yr B.P. the krummholz limit was at least 70 m higher than present. These data, in conjunction with Picea:Pinus pollen ratios from both the Lake Emma site and the Hurricane Basin site of J. T. Andrews, P. E. Carrara, F. B. King, and R. Struckenrath (1975, Quaternary Research 5, 173-197) suggest than from ca. 9600 to 3000 yr B.P. timberline in the San Juan Mountains was higher than present. Cooling apparently began ca. 3000 yr B.P. as indicated by decreases in both the percentage of Picea pollen and Picea:Pinus pollen ratios at the Hurricane Basin site (Andrews et al., 1975). Cooling is also suggested by the lack of Picea or Abies fragments younger than 3000 yr B.P. at either the Lake Emma or the Hurricane Basin site. ?? 1984.

  20. Early Paleozoic development of the Maine-Quebec boundary Mountains region

    USGS Publications Warehouse

    Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.

    2006-01-01

    Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.

  1. Tapping rocks for Terror Lake hydro project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieber, O.V.

    The Terror Lake hydro project in Alaska is described. Terror Lake is a small alpine lake surrounded by barren glacier-scoured, rocky mountain tops and plateaus that do not retain moisture. The method for obtaining more water for the hydro project in Kodiak is unique. The basic program was to dam up the outlet of Terror Lake and raise the water level 170 ft. from approximately 1250 ft. above sea level to 1420 ft. Although the megawatt output of the project is small, the concept of the Terror Lake Project has an epic scale to it.

  2. An emerging c. 100 ka record of climate change from Baldwin Lake, San Bernardino Mountains, CA, U.S

    NASA Astrophysics Data System (ADS)

    Glover, K. C.; MacDonald, G. M.; Kirby, M. E.; Rhodes, E. J.

    2013-12-01

    Big Bear Valley (elevation ~2060 m) is situated in the east-west trending San Bernardino Mountains of California, close to the transition between Mediterranean and Mojave Desert ecoregions. Baldwin Lake is the older of two basins occupying the valley, with a sediment sequence that demonstrates a high rate of deposition and an apparent synchronicity with marine isotope and global paleoclimate records. Chronology has been established with both AMS radiocarbon and infra-red stimulated luminescence (IRSL) dates. This offers the potential to further investigate paleoclimate change over the past c. 100 ka for Southern California at a high temporal resolution. Baldwin Lake's basal date of 95.9 +/- 6.7 ka is derived from IRSL on feldspar grains, placing the onset of sedimentation into the modern basin during cool MIS 5(b). Phases of high productivity in the lake, including values of up to 35% total organic matter and marl facies, correlate with warm events MIS 5(a) and MIS 3. Glacial stages are largely defined by inorganic sedimentation, though depositional regime varies between high-energy MIS 5(b) and MIS 4, and a relatively quiescent MIS 2. Future work will reconstruct vegetation change prior to MIS 1, in order to elucidate millennial-scale changes in alpine groundcover and forests in Southern California during these globally pervasive Stages.

  3. Long-Term Patterns in C-Q Relations in an Adirondack Stream Reveal Decreasing Severity of Episodic Acidification

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Lawrence, G. B.; Driscoll, C. T.; Sullivan, T. J.; Shao, S.; McDonnell, T. C.

    2017-12-01

    Episodic acidification occurs when surface water pH and ANC decrease temporarily during rain events and snowmelt. The principal drivers of episodic acidification are increases in sulfuric acid, nitric acid, organic acids, and dilution of base cations. In regions where surface waters are sensitive to acid deposition, ANC values may approach or decline below 0 µeq/L during high flows, which may result in deleterious effects to sensitive aquatic biota. The Adirondack Mountains of New York have abundant streams and lakes, many of which are highly sensitive to the effects of acid deposition. Long-term monitoring data indicate that pH and ANC in regional surface waters are increasing in response to decreases in the acidity of atmospheric deposition that result from decreasing SO2 and NOx emissions as the Clean Air Act and its ancillary rules and amendments have been implemented. Most surface-water monitoring focuses on low-flow and broad seasonal patterns, and less is known about how episodic acidification has responded to emissions decreases. Here, we report on spatial and temporal patterns in episodic acidification through analysis of C-Q relations from surveys that target varying flow conditions as well as data from a few long-term intensively sampled stream monitoring sites. Each stream sample was assigned a Q percentile value based on a resident or nearby gage, and a statistical relation between ANC values and Q percentile was developed. The magnitude of episodic decreases in ANC increases as low-flow ANC increases, a pattern that likely results from an increasing influence of dilution, especially evident when low-flow ANC values exceed 100 µeq/L. Chronically acidic streams with low-flow ANC near 0 µeq/L show little episodic acidification, whereas streams with low-flow ANC values of about 50 µeq/L generally show ANC decreases to less than 0 µeq/L at high flow. Preliminary analysis of a 24-yr data set (1991-2014) at Buck Creek indicates that increases in high

  4. Climatic and limnologic setting of Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Dean, W.E.; Wurtsbaugh, W.A.; Lamarra, V.A.

    2009-01-01

    Bear Lake is a large alkaline lake on a high plateau on the Utah-Idaho border. The Bear River was partly diverted into the lake in the early twentieth century so that Bear Lake could serve as a reservoir to supply water for hydropower and irrigation downstream, which continues today. The northern Rocky Mountain region is within the belt of the strongest of the westerly winds that transport moisture during the winter and spring over coastal mountain ranges and into the Great Basin and Rocky Mountains. As a result of this dominant winter precipitation pattern, most of the water entering the lake is from snowmelt, but with net evaporation. The dominant solutes in the lake water are Ca 2+, Mg2+, and HCO32-, derived from Paleozoic carbonate rocks in the Bear River Range west of the lake. The lake is saturated with calcite, aragonite, and dolomite at all depths, and produces vast amounts of carbonate minerals. The chemistry of the lake has changed considerably over the past 100 years as a result of the diversion of Bear River. The net effect of the diversion was to dilute the lake water, especially the Mg2+ concentration. Bear Lake is oligotrophic and coprecipitation of phosphate with CaCO3 helps to keep productivity low. However, algal growth is colimited by nitrogen availability. Phytoplankton densities are low, with a mean summer chlorophyll a concentration of 0.4 mg L-1. Phytoplankton are dominated by diatoms, but they have not been studied extensively (but see Moser and Kimball, this volume). Zooplankton densities usually are low (<10 L-1) and highly seasonal, dominated by calanoid copepods and cladocera. Benthic invertebrate densities are extremely low; chironomid larvae are dominant at depths <30 m, and are partially replaced with ostracodes and oligochaetes in deeper water. The ostracode species in water depths >10 m are all endemic. Bear Lake has 13 species of fi sh, four of which are endemic. Copyright ?? 2009 The Geological Society of America.

  5. Response of benthic macroinvertebrates to whole-lake, non-native fish removals in mid-elevation lakes of the Trinity Alps, California

    Treesearch

    Karen Pope; Erin C. Hannelly

    2013-01-01

    Introduced fish reduce the abundance and diversity of native aquatic fauna, but the effect can be reduced in complex habitats. We manipulated fish populations in forested mountain lakes to determine whether or not fish affected benthic macroinvertebrate composition across lakes with differing habitat complexity. We compared abundance, biomass, body-length, and...

  6. Yellowstone Lake/National Park

    NASA Image and Video Library

    1994-09-30

    STS068-247-061 (30 September-11 October 1994) --- Photographed through the Space Shuttle Endeavour's flight windows, this 70mm frame centers on Yellowstone Lake in the Yellowstone National Park. North will be at the top if picture is oriented with series of sun glinted creeks and river branches at top center. The lake, at 2,320 meters (7,732 feet) above sea level, is the largest high altitude lake in North America. East of the park part of the Absaroka Range can be traced by following its north to south line of snow capped peaks. Jackson Lake is southeast of Yellowstone Park, and the connected Snake River can be seen in the lower left corner. Yellowstone, established in 1872 is the world's oldest national park. It covers an area of 9,000 kilometers (3,500 square miles), lying mainly on a broad plateau of the Rocky Mountains on the Continental Divide. It's average altitude is 2,440 meters (8,000 feet) above sea level. The plateau is surrounded by mountains exceeding 3,600 meters (12,000 feet) in height. Most of the plateau was formed from once-molten lava flows, the last of which is said to have occurred 100,000 years ago. Early volcanic activity is still evident in the region by nearly 10,000 hot springs, 200 geysers and numerous vents found throughout the park.

  7. Mono Lake, California

    NASA Image and Video Library

    1994-10-01

    STS068-150-020 (30 September-11 October 1994) --- An exceptionally clear, high-contrast view of the desert basins east and south of Mono Lake, California. Light clouds dot the mountain ranges; the clouds were transparent to radar beams from the Space Radar Laboratory 2 (SRL-2) payload.

  8. Variation in fish mercury concentrations in streams of the Adirondack region, New York: A simplified screening approach using chemical metrics

    USGS Publications Warehouse

    Burns, Douglas A.; Riva-Murray, Karen

    2018-01-01

    Simple screening approaches for the neurotoxicant methylmercury (MeHg) in aquatic ecosystems may be helpful in risk assessments of natural resources. We explored the development of such an approach in the Adirondack Mountains of New York, USA, a region with high levels of MeHg bioaccumulation. Thirty-six perennial streams broadly representative of 1st and 2nd order streams in the region were sampled during summer low flow and analyzed for several solutes and for Hg concentrations in fish. Several landscape and chemical metrics that are typically strongly related to MeHg concentrations in aquatic biota were explored for strength of association with fish Hg concentrations. Data analyses were based on site mean length-normalized and standardized Hg concentrations (assumed to be dominantly MeHg) in whole juvenile and adult Brook Trout Salvelinus fontinalis, Creek Chub Semotilus atromaculatus, Blacknose Dace Rhinichthys atratulus, and Central Mudminnow Umbra limi, as well as on multi-species z-scores. Surprisingly, none of the landscape metrics was related significantly to regional variation in fish Hg concentrations or to z-scores across the study streams. In contrast, several chemical metrics including dissolved organic carbon (DOC) concentrations, sulfate concentrations (SO42−), pH, ultra-violet absorbance (UV254), and specific ultra-violet absorbance were significantly related to regional variation in fish Hg concentrations. A cluster analysis based on DOC, SO42−, and pH identified three distinct groups of streams: (1) high DOC, acidic streams, (2) moderate DOC, slightly acidic streams, and (3) low DOC circum-neutral streams with relatively high SO42−. Preliminary analysis indicated no significant difference in fish Hg z-scores between the moderate and high DOC groups, so these were combined for further analysis. The resulting two groups showed strong differences (p < 0.001) in DOC and SO42−concentrations as well as in pH and UV254 values. Median

  9. Analysis and mitigation of remote geohazards in high mountain areas of Tajikistan with special emphasis on glacial lake outburst floods

    NASA Astrophysics Data System (ADS)

    Schneider, Jean F.; Mergili, Martin; Schneider, Demian

    2010-05-01

    Remote geohazard events in the mountains of Tajikistan have repeatedly caused disasters during the past decades. The rock avalanche of Khait in1949 and the glacial lake outburst flood (GLOF) in Dasht in 2002 are only two examples. However, the awareness among stakeholders and the local people is limited since the source areas are far away and the frequency of events is low. The major objective of the research outlined here is to identify and to highlight potential source areas and pathways of remote geohazard events, particularly of GLOFs, in order to allow for well-designed mitigation procedures. The geohazard assessment was carried out in a four-step procedure: • Pre-assessment: GIS and remote sensing techniques were employed for detecting potential source areas and pathways of remote geohazard processes. Relevant features were mapped from medium-resolution datasets and specific areas of interest were deducted from the mapping results. • Helicopter survey: the areas of interest identified during the Pre-assessment were screened from the helicopter. The knowledge gained this way was used to select the areas for the field assessment. • Field assessment: the areas of specific interest were visited in the field by international groups of 4 researchers. These areas were analyzed and mapped in detail and the level of hazard emanating from the lakes or slopes was estimated. • Post-assessment. Based on the field assessment, areas of particular hazard were selected for further analysis. Scenarios of dam breaks and flood waves were built and the possible impact farther down the valley was assessed using computer models. Based on that, recommendations how to mitigate the hazard will be given to the relevant agencies and stakeholders as well as to the local population. In the Southern Pamir, a number of growing glacial lakes was identified. Resulting flood waves could trigger process chains with catastrophic consequences for the population dozens of kilometres

  10. Water chemistry of Rocky Mountain Front Range aquatic ecosystems

    Treesearch

    Robert C. Musselman; Laura Hudnell; Mark W. Williams; Richard A. Sommerfeld

    1996-01-01

    A study of the water chemistry of Colorado Rocky Mountain Front Range alpine/subalpine lakes and streams in wilderness ecosystems was conducted during the summer of 1995 by the USDA Forest Service Arapaho and Roosevelt National Forests and Rocky Mountain Forest and Range Experiment Station, and the University of Colorado Institute of Alpine and Arctic Research. Data...

  11. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps.

    PubMed

    Peter, Hannes; Hörtnagl, Paul; Reche, Isabel; Sommaruga, Ruben

    2014-12-01

    The diversity of airborne microorganisms that potentially reach aquatic ecosystems during rain events is poorly explored. Here, we used a culture-independent approach to characterize bacterial assemblages during rain events with and without Saharan dust influence arriving to a high mountain lake in the Austrian Alps. Bacterial assemblage composition differed significantly between samples with and without Saharan dust influence. Although alpha diversity indices were within the same range in both sample categories, rain events with Atlantic or continental origins were dominated by Betaproteobacteria, whereas those with Saharan dust intrusions were dominated by Gammaproteobacteria. The high diversity and evenness observed in all samples suggests that different sources of bacteria contributed to the airborne assemblage collected at the lake shore. During experiments with bacterial assemblages collected during rain events with Saharan dust influence, cell numbers rapidly increased in sterile lake water from initially ∼3 × 103 cell ml-1 to 3.6-11.1 x105 cells ml-1 within 4-5 days, and initially, rare taxa dominated at the end of the experiment. Our study documents the dispersal of viable bacteria associated to Saharan dust intrusions travelling northwards as far as 47° latitude.

  12. Growth response of conifers in Adirondack plantations to changing environment: Model approaches based on stem-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.

    1993-01-01

    Based on model approaches, three conifer species, red pine, Norway spruce and Scots pine grown in plantations at Pack Demonstration Forest, in the southeastern Adirondack mountains of New York, were chosen to study growth response to different environmental changes, including silvicultural treatments and changes in climate and chemical environment. Detailed stem analysis data provided a basis for constructing tree growth models. These models were organized into three groups: morphological, dynamic and predictive. The morphological model was designed to evaluate relationship between tree attributes and interactive influences of intrinsic and extrinsic factors on the annual increments. Three types of morphological patternsmore » have been characterized: space-time patterns of whole-stem rings, intrinsic wood deposition pattern along the tree-stem, and bolewood allocation ratio patterns along the tree-stem. The dynamic model reflects the growth process as a system which responds to extrinsic signal inputs, including fertilization pulses, spacing effects and climatic disturbance, as well as intrinsic feedback. Growth signals indicative of climatic effects were used to construct growth-climate models using both multivariate analysis and Kalman filter methods. The predictive model utilized GCMs and growth-climate relationships to forecast tree growth responses in relation to future scenarios of CO[sub 2]-induced climate change. Prediction results indicate that different conifer species have individualistic growth response to future climatic change and suggest possible changes in future growth and distribution of naturally occurring conifers in this region.« less

  13. Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France).

    PubMed

    Lehours, Anne-Catherine; Evans, Paul; Bardot, Corinne; Joblin, Keith; Gérard, Fonty

    2007-03-01

    The compositions of archaeal and bacterial populations at different depths (60 m [mixolimnion-chemocline interface], 70 m [chemocline-subchemocline interface], 90 m, and 92 m [the water-sediment interface]) in the anoxic zone of the water column in Lake Pavin, a freshwater permanently stratified mountain lake in France, were determined. Phylogenetic trees were constructed from sequences to assess archaeal and bacterial diversity at the four sites.

  14. Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain National Park

    EPA Science Inventory

    An analytical method was developed for the trace analysis of 98 semi-volatile organic compounds (SOCs) in remote, high elevation lake sediment. Sediment cores from Lone Pine Lake (West of the Continental Divide) and Mills Lake (East of the Continental Divide) in Rocky Mountain Na...

  15. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes.

    PubMed

    Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K

    2016-09-01

    Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.

  16. Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho

    NASA Astrophysics Data System (ADS)

    Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.

    2002-12-01

    Variations in magnetic properties within an interval of Bear Lake sediments correlative with oxygen isotope stage 2 (OIS 2) and OIS 3 provide a record of glacial flour production for the Uinta Mountains. Like sediments of the same age from Upper Klamath Lake (OR), these Bear Lake sediments have high magnetic susceptibilities (MS) relative to non-glacial-age sediments and contain well-defined millennial-scale variations in magnetic properties. In contrast to glacial flour derived from volcanic rocks surrounding Upper Klamath Lake, glacial flour derived from the Uinta Mountains and deposited in Bear Lake by the Bear River has low magnetite content but high hematite content. The relatively low MS values of younger and older non-glacial-age sediments are due entirely to dilution by non-magnetic endogenic carbonate and to the effects of sulfidic alteration of detrital Fe-oxides. Analysis of samples from streams entering Bear Lake and from along the course of the Bear River demonstrates that, in comparison to other areas of the catchment, sediment derived from the Uinta Mountains is rich in hematite (high HIRM) and aluminum, and poor in magnetite (low MS) and titanium. Within the glacial-age lake sediments, there are strong positive correlations among HIRM, Al/Ti, and fine sediment grain size. MS varies inversely with theses three variables. These relations indicate that the observed millennial-scale variations in magnetic and chemical properties arise from varying proportions of two detrital components: (1) very fine-grained glacial flour derived from Proterozoic metasedimentary rocks in the Uinta Mountains and characterized by high HIRM and low MS, and (2) somewhat coarser material, characterized by higher MS and lower HIRM, derived from widespread sedimentary rocks along the course of the Bear River and around Bear Lake. Measurement of glacial flour incorporated in lake sediments can provide a continuous history of alpine glaciation, because the rate of accumulation

  17. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  18. Lake Balkhash, Kazakhstan seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-209-081 (9-20 April 1994) --- Lake Balkhash, in eastern Kazakhstan, is some 300 miles long. The lake, frozen in this scene, thawed noticeably during the mission. The shape of the lake is controlled by the delta of the Ili River, which flows from the Tien Shan Mountains in western China across this arid steppe. SRL scientists will use radar data to study the microwave effects of differences in soil moisture, and in freezing or thawing, on the deltaic sediments. Hasselblad camera.

  19. 77 FR 8895 - Jimbilnan, Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ..., Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon..., Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon Wilderness Areas, Lake Mead... wilderness character; providing for reasonable use of Spirit Mountain and adjacent areas in a manner meeting...

  20. Persistence of an unusual pelagic zooplankton assemblage in a clear, mountain lake

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; C. David, McIntire

    2002-01-01

    The planktonic zooplankton assemblage in Mowich Lake, Mount Rainier National Park (MORA), was composed almost entirely of rotifers in 1966 and 1967. Adult pelagic crustacean taxa were rare. Their paucity was attributed to predation by kokanee salmon (Oncorhynchus nerka), which had been stocked in 1961. During a park-wide survey of 24 lakes in 1988, Mowich Lake was the only one that did not contain at least one planktonic crustacean species. Given the apparent persistence of the unusual pelagic zooplankton assemblage in Mowich Lake, the first objective of this study was to document the interannual variation in the taxonomic structure of the zooplankton assemblages in the lake from 1988 through 1999. A second objective was to determine if it was possible to predict the taxonomic composition of the pelagic crustacean zooplankton assemblage in Mowich Lake prior to the stocking of kokanee salmon. The Mowich Lake zooplankton assemblages in 1988-1999 were consistent with those in 1966 and 1967. Crustacean taxa were extremely rare, but they included most of the primary taxa collected from 23 MORA lakes surveyed in 1988. Nonetheless, the 1988 collections showed that the September rotifer assemblage in Mowich Lake was similar to 10 of the 24 lakes sampled. Seven of the 10 lakes were dominated by cladocerans, primarily Daphnia rosea and Holopedium gibberum. Therefore, it appeared that either one or both of these species may have numerically dominated the crustacean zooplankton assemblage in the lake prior to 1961.

  1. Persistence of an unusual pelagic zooplankton assemblage in a clear mountain lake

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; McIntire, C.D.

    2002-01-01

    The planktonic zooplankton assemblage in Mowich Lake, Mount Rainier National Park (MORA), was composed almost entirely of rotifers in 1966 and 1967. Adult pelagic crustacean taxa were rare. Their paucity was attributed to predation by kokanee salmon (Oncorhynchus nerka), which had been stocked in 1961. During a park-wide survey of 24 lakes in 1988, Mowich Lake was the only one that did not contain at least one planktonic crustacean species. Given the apparent persistence of the unusual pelagic zooplankton assemblage in Mowich Lake, the first objective of this study was to document the interannual variation in the taxonomic structure of the zooplankton assemblages in the lake from 1988 through 1999. A second objective was to determine if it was possible to predict the taxonomic composition of the pelagic crustacean zooplankton assemblage in Mowich Lake prior to the stocking of kokanee salmon. The Mowich Lake zooplankton assemblages in 1988a??1999 were consistent with those in 1966 and 1967. Crustacean taxa were extremely rare, but they included most of the primary taxa collected from 23 MORA lakes surveyed in 1988. Nonetheless, the 1988 collections showed that the September rotifer assemblage in Mowich Lake was similar to 10 of the 24 lakes sampled. Seven of the 10 lakes were dominated by cladocerans, primarily Daphnia rosea and Holopedium gibberum. Therefore, it appeared that either one or both of these species may have numerically dominated the crustacean zooplankton assemblage in the lake prior to 1961.

  2. Toward mountains without permanent snow and ice

    NASA Astrophysics Data System (ADS)

    Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R. S.; Clague, J. J.; Vuille, M.; Buytaert, W.; Cayan, D. R.; Greenwood, G.; Mark, B. G.; Milner, A. M.; Weingartner, R.; Winder, M.

    2017-05-01

    The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier- and moraine-dammed lakes will threaten downstream populations. Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice.

  3. Earthquake prediction; new studies yield promising results

    USGS Publications Warehouse

    Robinson, R.

    1974-01-01

    On Agust 3, 1973, a small earthquake (magnitude 2.5) occurred near Blue Mountain Lake in the Adirondack region of northern New York State. This seemingly unimportant event was of great significance, however, because it was predicted. Seismologsits at the Lamont-Doherty geologcal Observatory of Columbia University accurately foretold the time, place, and magnitude of the event. Their prediction was based on certain pre-earthquake processes that are best explained by a hypothesis known as "dilatancy," a concept that has injected new life and direction into the science of earthquake prediction. Although much mroe reserach must be accomplished before we can expect to predict potentially damaging earthquakes with any degree of consistency, results such as this indicate that we are on a promising road. 

  4. Calcium Sulfate in Atacama Desert Basalt: A Possible Analog for Bright Material in Adirondack Basalt, Gusev Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    The Atacama Desert in northern Chile is one of the driest deserts on Earth (< 2mm/y). The hyper-arid conditions allow extraordinary accumulations of sulfates, chlorides, and nitrates in Atacama soils. Examining salt accumulations in the Atacama may assist understanding salt accumulations on Mars. Recent work examining sulfate soils on basalt parent material observed white material in the interior vesicles of surface basalt. This is strikingly similar to the bright-white material present in veins and vesicles of the Adirondack basalt rocks at Gusev Crater which are presumed to consist of S, Cl, and/or Br. The abundance of soil gypsum/anhydrite in the area of the Atacama basalt suggested that the white material consisted of calcium sulfate (Ca-SO4) which was later confirmed by SEM/EDS analysis. This work examines the Ca-SO4 of Atacama basalt in an effort to provide insight into the possible nature of the bright material in the Adirondack basalt of Gusev Crater. The objectives of this work are to (i) discuss variations in Ca-SO4 crystal morphology in the vesicles and (ii) examine the Ca-SO4 interaction(s) with the basalt interior.

  5. Rhone River Valley & Lower Lake Geneva, Switzerland as seen from STS-60

    NASA Image and Video Library

    1994-02-09

    STS060-90-007 (3-11 Feb 1994) --- Parts of the Swiss Cantons of Vaud and Valois and the French province of Chablais are shown. These mountains were created in the last great mountain-building episode in Europe around 50 million years ago. They have been reshaped by glaciers during the Pleistocene. The glaciers created the wide valley of the Rhone River by scouring a pre-existing stream. The fertile Swiss Plateau runs northwest from the shore of Lake Geneva and is visible in the upper right. The Franco-Swiss border is located in the center of the lake and follows a mountain divide east of the Rhone Valley. According to NASA geologists eutrofication is a problem in Lake Geneva. In 1971 a Swiss Commission was formed to try to slow the problem. Strong discharge laws were enacted, but they are hard to enforce due to the multi-national and multi-organizational parties contributing to the problem.

  6. Thickness and character of regolith on mountain slopes in the vicinity of Mountain Lake, Virginia, as indicated by seismic refraction, and implications for hillslope evolution

    NASA Astrophysics Data System (ADS)

    Mills, Hugh H.

    1990-06-01

    Seismic refraction was used to determine the variation in thickness and seismic velocities of regolith on boulder-mantled mountain flanks underlain by shale in the Valley and Ridge province near Mountain Lake, southwestern Virginia. Emphasis was on cross-slope variations, particularly the difference between dells (hollows) and noses. Four types of material were distinguished on the basis of seismic velocity. Soil material within 1-2 m of the ground surface affected by pedogenesis had a velocity generally less than 400 m/s. Unconsolidated bouldery colluvium, up to 6 m thick, had a velocity of about 400-800 m/s. Old, weathered and consolidated colluvium had a velocity of 800-2000 m/s. Bedrock residuum and highly weathered bedrock showed similar velocities, however, so that all material in this range was collectively termed "weathered regolith." Its thickness exceeded 30 m in places. Relatively unweathered bedrock showed velocities of at least 2000 m/s. On average, seismic profiles showed regolith thicknesses in excess of 10 m, the greater part being residuum or weathered bedrock. This finding contrasts with one study near the glacial border in Pennsylvania, which showed that colluvium generally directly overlies bedrock. This difference may reflect less-intense Pleistocene periglacial erosion in Virginia than in Pennsylvania. Topography generally was not a good predictor of regolith thickness. Hollows showed greater thicknesses of ypung colluvium than did noses, but dells and noses showed little difference in total regolith thickness. Both dells and noses showed great variation in regolith thickness. The largest systematic difference was found between dell floors (or parts thereof) that seemed to be undergoing long-term downcutting and those that appeared to be relict features no longer associated with active drainageways. The former were underlain by a mean of 5.5 m of weathered regolith, whereas the latter were underlain by a mean of 14.0 m, indicative of a greater

  7. Mono Lake, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-154-160 (9-20 April 1994) --- Orient with Mono Lake, California at the lower right; then the view is westward across the Sierra Nevada into the San Joaquin River drainage. A tiny network of ski trails can be seen on the Mono Lake side of the Sierras, on a line between Mono Lake and the snow-free San Joaquin headwaters. The ski trails mark Mammoth Mountain, where SRL investigators are studying microwave measurements of the water content of snowpacks. Linhof camera.

  8. 27 CFR 9.108 - Ozark Mountain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Creek; (xii) Then northeastward along Rock Creek to Petit Jean Creek; (xiii) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map); (xiv) Then generally eastward along the Petit Jean River, flowing through Blue Mountain Lake, until the...

  9. 27 CFR 9.108 - Ozark Mountain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Creek; (xii) Then northeastward along Rock Creek to Petit Jean Creek; (xiii) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map); (xiv) Then generally eastward along the Petit Jean River, flowing through Blue Mountain Lake, until the...

  10. 27 CFR 9.108 - Ozark Mountain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Creek; (xii) Then northeastward along Rock Creek to Petit Jean Creek; (xiii) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map); (xiv) Then generally eastward along the Petit Jean River, flowing through Blue Mountain Lake, until the...

  11. 27 CFR 9.108 - Ozark Mountain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Creek; (xii) Then northeastward along Rock Creek to Petit Jean Creek; (xiii) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map); (xiv) Then generally eastward along the Petit Jean River, flowing through Blue Mountain Lake, until the...

  12. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-03

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations.

  13. Analyses and descriptions of geochemical samples, Mountain Lake Wilderness Study Area, Virginia and West Virginia

    USGS Publications Warehouse

    Mei, Leung; Fletcher, J.D.; Rait, Norma; Lesure, F.G.

    1978-01-01

    Semiquantitative emission spectrographic analyses for 64 elements on 95 stream sediment and 122 rock samples from Mountain Lake Wilderness Study Area, Giles and Craig Counties, Virginia and Monroe County, West Virginia, are reported here in detail. Locations for all samples are in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of these iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc than in average sandstone, but they do not suggest the presence of economic deposits of these metals. A few samples of Tuscarora Quartzite contain moderate amounts of manganese. These are from a submarginal manganese resource. No other obviously anomalous-values related to mineralized rock are present in the data.

  14. Mountain cartography: revival of a classic domain

    NASA Astrophysics Data System (ADS)

    Häberling, Christian; Hurni, Lorenz

    The abstract representation of landscape objects such as mountain peaks, valleys, river networks, lakes, cultivated land and nonproductive areas (forests, pastures, boulder fields, glaciers), settlement areas, infrastructure and traffic networks has been the main concept behind all kind of maps for a long time. For over 300 years, mountain regions became an appropriate subject to be extensively explored and mapped. Together with the growing importance of mountainous areas, the demand for adequate cartographic representations with respect to its contents, graphic design and the presentation media has given new life to a classic domain of cartography: Mountain cartography. This paper gives an overview of the development and the current state of mountain cartography. After a brief description of the beginnings and the historic achievements, basic concepts of cartography such as map purpose, data management, cartographic design and map production and their application in modern mountain cartography are summarised. The paper then provides an overview of different kinds of cartographic representations in mountain cartography like topographic maps, maps derived from Geographical Information Systems (GIS) data, image maps, animations, perspective views and personalised maps. Finally, selected examples of modern mountain map applications are presented.

  15. Space Radar Image of Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  16. Space Radar Image of Salt Lake City, Utah

    NASA Image and Video Library

    1999-04-15

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program. http

  17. Monitoring mountain lakes in a changing Alpine cryosphere: the Lago Nero project (Ticino, Switzerland)

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Bruder, Andreas; Domenici, Mattia; Lepori, Fabio; Pera, Sebastian; Pozzoni, Maurizio; Rioggi, Stefano; Colombo, Luca

    2017-04-01

    Mountain lakes and their catchments of the Alpine cryosphere are facing global pressures including climate warming and deposition of atmospheric pollutants. Due to their remoteness, often low buffer capacities and sensitive biotic communities, alpine lake catchments are particularly well suited as sentinels of environmental change. Lago Nero is the object of an intensive survey, aimed at developing predictive models of catchment-wide ecosystem responses to environmental change (Bruder et al. 2016). Lago Nero is located at the head of Val Bavona (Canton Ticino, southern Switzerland), in a southwest-facing catchment, with altitude ranging from 2385 to 2842 m asl. The substrate is dominated by gneissic bedrock with patches of grassy vegetation and shallow soils. The catchment is snow-covered approximately from November to May. For a similar period, the lake is ice-covered. Lago Nero is an oligotrophic, soft-water lake with a surface of approximatively 13 ha and a maximal depth of 73 m. According to the regional model of potential permafrost distribution in the southern Swiss Alps (Scapozza & Mari 2010), the presence of discontinuous permafrost is probable in almost the entire surface of the catchment covered by loose debris. A direct evidence of permafrost occurrence is the presence of a small active/inactive rock glacier in the south-eastern part of the catchment (front altitude: 2560 m asl). Monitoring of the site began in summer 2014, with an initial phase aimed at developing and testing methodologies and at evaluating the suitability of the catchment and the feasibility of the monitoring program. The intensive survey at Lago Nero measures a wide array of ecosystem responses, including runoff quantity and chemistry, catchment soil temperature (also on the rock glacier) and composition of terrestrial vegetation. Sampling frequency depends on the parameter measured, varying from nearly continuous (e.g. runoff and temperature) to five-year intervals (e.g. soil and

  18. Direct and indirect effects of vertical mixing, nutrients and ultraviolet radiation on the bacterioplankton metabolism in high-mountain lakes from southern Europe

    NASA Astrophysics Data System (ADS)

    Durán, C.; Medina-Sánchez, J. M.; Herrera, G.; Villar-Argaiz, M.; Villafañe, V. E.; Helbling, E. W.; Carrillo, P.

    2014-05-01

    As a consequence of global change, modifications in the interaction among abiotic stressors on aquatic ecosystems have been predicted. Among other factors, UVR transparency, nutrient inputs and shallower epilimnetic layers could alter the trophic links in the microbial food web. Currently, there are some evidences of higher sensitiveness of aquatic microbial organisms to UVR in opaque lakes. Our aim was to assess the interactive direct and indirect effects of UVR (through the excretion of organic carbon - EOC - by algae), mixing regime and nutrient input on bacterial metabolism. We performed in situ short-term experiments under the following treatments: full sunlight (UVR + PAR, >280 nm) vs. UVR exclusion (PAR only, >400 nm); ambient vs. nutrient addition (phosphorus (P; 30 μg PL-1) and nitrogen (N; up to final N : P molar ratio of 31)); and static vs. mixed regime. The experiments were conducted in three high-mountain lakes of Spain: Enol [LE], Las Yeguas [LY] and La Caldera [LC] which had contrasting UVR transparency characteristics (opaque (LE) vs. clear lakes (LY and LC)). Under ambient nutrient conditions and static regimes, UVR exerted a stimulatory effect on heterotrophic bacterial production (HBP) in the opaque lake but not in the clear ones. Under UVR, vertical mixing and nutrient addition HBP values were lower than under the static and ambient nutrient conditions, and the stimulatory effect that UVR exerted on HBP in the opaque lake disappeared. By contrast, vertical mixing and nutrient addition increased HBP values in the clear lakes, highlighting for a photoinhibitory effect of UVR on HBP. Mixed regime and nutrient addition resulted in negative effects of UVR on HBP more in the opaque than in the clear lakes. Moreover, in the opaque lake, bacterial respiration (BR) increased and EOC did not support the bacterial carbon demand (BCD). In contrast, bacterial metabolic costs did not increase in the clear lakes and the increased nutrient availability even

  19. Trace-metal concentrations, waters from selected sky lakes, streams and springs, northern Shawangunk Mountains, New York: geologic and ecologic implications

    USGS Publications Warehouse

    Friedman, J.D.; Huth, P.C.; Smiley, D.

    1990-01-01

    Reconnaissance sampling and chemical analysis of water from selected lakes, streams and springs of the northern Shawangunk Mountains in 1987 to 1988 to determine the influence of lithology on trace-metal concentrations in surface water, and to establish a base level of concentration of 27 selected metals by ICP-AES and Hg by cold-vapor AAS methods, for geochemical exploration, ecologic, acid-rain, and climatic-change studies, have yielded trace-metal concentrations greater than detection limits for 10 metallic elements. Eighteen additional metallic elements were also present in trace quantities below the quantitative detection limit. Two distinct geochemical populations are related to source lithology and pH. -from Authors

  20. Developing recreational harvest regulations for an unexploited lake trout population

    USGS Publications Warehouse

    Lenker, Melissa A; Weidel, Brian C.; Jensen, Olaf P.; Solomon, Christopher T.

    2016-01-01

    Developing fishing regulations for previously unexploited populations presents numerous challenges, many of which stem from a scarcity of baseline information about abundance, population productivity, and expected angling pressure. We used simulation models to test the effect of six management strategies (catch and release; trophy, minimum, and maximum length limits; and protected and exploited slot length limits) on an unexploited population of Lake Trout Salvelinus namaycush in Follensby Pond, a 393-ha lake located in New York State’s Adirondack Park. We combined field and literature data and mark–recapture abundance estimates to parameterize an age-structured population model and used the model to assess the effects of each management strategy on abundance, catch per unit effort (CPUE), and harvest over a range of angler effort (0–2,000 angler-days/year). Lake Trout density (3.5 fish/ha for fish ≥ age 13, the estimated age at maturity) was similar to densities observed in other unexploited systems, but growth rate was relatively slow. Maximum harvest occurred at levels of effort ≤ 1,000 angler-days/year in all the scenarios considered. Regulations that permitted harvest of large postmaturation fish, such as New York’s standard Lake Trout minimum size limit or a trophy size limit, resulted in low harvest and high angler CPUE. Regulations that permitted harvest of small and sometimes immature fish, such as a protected slot or maximum size limit, allowed high harvest but resulted in low angler CPUE and produced rapid declines in harvest with increases in effort beyond the effort consistent with maximum yield. Management agencies can use these results to match regulations to management goals and to assess the risks of different management options for unexploited Lake Trout populations and other fish species with similar life history traits.

  1. Phylogenetic Diversity of Archaea and Bacteria in the Anoxic Zone of a Meromictic Lake (Lake Pavin, France)▿ †

    PubMed Central

    Lehours, Anne-Catherine; Evans, Paul; Bardot, Corinne; Joblin, Keith; Gérard, Fonty

    2007-01-01

    The compositions of archaeal and bacterial populations at different depths (60 m [mixolimnion-chemocline interface], 70 m [chemocline-subchemocline interface], 90 m, and 92 m [the water-sediment interface]) in the anoxic zone of the water column in Lake Pavin, a freshwater permanently stratified mountain lake in France, were determined. Phylogenetic trees were constructed from sequences to assess archaeal and bacterial diversity at the four sites. PMID:17261512

  2. Pollen-based reconstruction of vegetational and climatic change over the past ~30 ka at Shudu Lake in the Hengduan Mountains of Yunnan, southwestern China.

    PubMed

    Yao, Yi-Feng; Song, Xiao-Yan; Wortley, Alexandra H; Wang, Yu-Fei; Blackmore, Stephen; Li, Cheng-Sen

    2017-01-01

    The Hengduan Mountains, with a distinct altitudinal differentiation and strong vertical vegetation zonation, occupy an important position in southwestern China as a global hotspot of biodiversity. Pollen analysis of lake sediments sampled along an altitudinal gradient in this region helps us to understand how this vegetation zonation arose and how it has responded to climate change and human impacts through time. Here we present a ~30-ka pollen record and interpret it in terms of vegetational and climatic change from a 310 cm-long core from Shudu Lake, located in the Hengduan Mountains region. Our results suggest that from 30 to 22 cal. ka BP, the vegetation was dominated by steppe/grassland (comprising mainly Artemisia, Poaceae and Polygonaceae) and broad-leaved forest (primarily Quercus, Betula and Castanopsis) in the lake catchment, reflecting a relatively warm, wet climate early in this phase and slightly warmer, drier conditions late in the phase. The period between 22 and 13.9 cal. ka BP was marked by a large expansion of needle- and broad-leaved mixed forest (Pinus, Abies and Quercus) and a decline in the extent of steppe/grassland, indicating warming, drying climatic conditions followed by a cold, wet period. Between 13.9 and 3 cal. ka BP, steppe/grassland expanded and the area covered by needle- and broad-leaved mixed forest reduced, implying a fluctuating climate dominated by warm and humid conditions. After 3 cal. ka BP, the vegetation was characterized by an increase in needle-leaved forest and reduction in steppe/grassland, suggesting warming and drying climate. A synthesis of palynological investigations from this and other sites suggests that the vegetation succession patterns seen along an altitudinal gradient in northwestern Yunnan since the Late Pleistocene are comparable, but that each site has its own characteristics probably due to the influences of altitude, topography, microclimate and human impact.

  3. Preliminary surficial geologic map of a Calico Mountains piedmont and part of Coyote Lake, Mojave desert, San Bernardino County, California

    USGS Publications Warehouse

    Dudash, Stephanie L.

    2006-01-01

    This 1:24,000 scale detailed surficial geologic map and digital database of a Calico Mountains piedmont and part of Coyote Lake in south-central California depicts surficial deposits and generalized bedrock units. The mapping is part of a USGS project to investigate the spatial distribution of deposits linked to changes in climate, to provide framework geology for land use management (http://deserts.wr.usgs.gov), to understand the Quaternary tectonic history of the Mojave Desert, and to provide additional information on the history of Lake Manix, of which Coyote Lake is a sub-basin. Mapping is displayed on parts of four USGS 7.5 minute series topographic maps. The map area lies in the central Mojave Desert of California, northeast of Barstow, Calif. and south of Fort Irwin, Calif. and covers 258 sq.km. (99.5 sq.mi.). Geologic deposits in the area consist of Paleozoic metamorphic rocks, Mesozoic plutonic rocks, Miocene volcanic rocks, Pliocene-Pleistocene basin fill, and Quaternary surficial deposits. McCulloh (1960, 1965) conducted bedrock mapping and a generalized version of his maps are compiled into this map. McCulloh's maps contain many bedrock structures within the Calico Mountains that are not shown on the present map. This study resulted in several new findings, including the discovery of previously unrecognized faults, one of which is the Tin Can Alley fault. The north-striking Tin Can Alley fault is part of the Paradise fault zone (Miller and others, 2005), a potentially important feature for studying neo-tectonic strain in the Mojave Desert. Additionally, many Anodonta shells were collected in Coyote Lake lacustrine sediments for radiocarbon dating. Preliminary results support some of Meek's (1999) conclusions on the timing of Mojave River inflow into the Coyote Basin. The database includes information on geologic deposits, samples, and geochronology. The database is distributed in three parts: spatial map-based data, documentation, and printable map

  4. Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. Interior, kitchen and dining area, viewing north. - Timber Creek Bunkhouse & Mess Hall, Trail Ridge Road, Grand Lake, Grand County, CO

  5. Roadside camping on forest preserve lands in the Adirondack Park: A qualitative exploration of place attachment and resource substitutability

    Treesearch

    David A. Graefe; Chad Dawson; Rudolph M. Schuster

    2012-01-01

    Roadside camping is a popular and widespread public outdoor recreation activity on New York State Forest Preserve (FP) lands within the Adirondack Park (AP). While several roadside camping areas exist on FP lands throughout the Park, little is known about these camping areas or the visitors who use them. Recently, debate has developed over how to define and manage...

  6. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    USGS Publications Warehouse

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  7. A report from Lake Tahoe: Observation from an ideal platform for adaptive management

    Treesearch

    Dennis D. Murphy; Patricia N. Manley

    2009-01-01

    The Lake Tahoe basin is in environmenal distress. The lake is still one of the world’s most transparent bodies of water, but its fabled clarity has declined by half since discovery of the high-mountain lake basin by explorers a century and a half ago. At that time, incredibly, objects could be observed on the lake’s bottom a hundred feet down. Two-thirds of the lake’s...

  8. Response of lake chemistry to atmospheric deposition and climate in selected Class I wilderness areas in the western United States, 1993-2009

    USGS Publications Warehouse

    Mast, M. Alisa

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, conducted a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. Understanding how and why lake chemistry is changing in mountain areas is essential for effectively managing and protecting high-elevation aquatic ecosystems. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) were evaluated over a similar period of record. A main objective of the study was to determine if changes in atmospheric deposition of contaminants in the Rocky Mountain region have resulted in measurable changes in the chemistry of high-elevation lakes. A second objective was to investigate linkages between lake chemistry and air temperature and precipitation to improve understanding of the sensitivity of mountain lakes to climate variability.

  9. Mercury in the soil of two contrasting watersheds in the eastern United States

    USGS Publications Warehouse

    Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.

    2014-01-01

    Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p2 = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.

  10. 'They of the Great Rocks'-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and is interpreted by some to mean 'They of the great rocks.'

  11. 'They of the Great Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.'

  12. Spatial and seasonal changes in optical properties of autochthonous and allochthonous chromophoric dissolved organic matter in a stratified mountain lake.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Nannicini, Luciano; Picchi, Maria Pia; Ricci, Maso; Santinelli, Chiara; Seritti, Alfredo; Tognazzi, Antonio; Rossi, Claudio

    2010-03-01

    In this study, we present results on seasonal and spatial changes in CDOM absorption and fluorescence (fCDOM) in a deep mountain lake (Salto Lake, Italy). A novel approach was used to describe the shape of CDOM absorption between 250-700 nm (distribution of the spectral slope, S(lambda)) and a new fluorescence ratio is used to distinguish between humic and amino acid-like components. Solar ultraviolet irradiance, dissolved organic carbon (DOC), DOM fluorescence and absorption measurements were analysed and compared to other physicochemical parameters. We show that in the UV-exposed mixed layer: (i) fluorescence by autochthonous amino acid-like CDOM, (ii) values of S(lambda) across UV-C and UV-B wavebands increased during the summer months, whereas (i) average molar absorption coefficient and (ii) fluorescence by allochthonous humic CDOM decreased. In the unexposed deep layer of the water column (and in the entire water column in winter), humic-like CDOM presented high values of molar absorption coefficients and low values of S(lambda). UV attenuation coefficients correlated with both chlorophyll a concentrations and CDOM absorption. In agreement with changes in CDOM, minimal values in UV attenuation were found in summer. The S(lambda) curve was used as a signature of the mixture between photobleached and algal-derived CDOM with respect to the unexposed chromophoric dissolved compounds in this thermal stratified lake. Furthermore, S(lambda) curves were useful to distinguish between low and high molecular weight CDOM.

  13. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspirationmore » at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.« less

  14. Sustainability and economics: The Adirondack Park experience, a forest economic-ecological model, and solar energy policy

    NASA Astrophysics Data System (ADS)

    Erickson, Jon David

    The long-term sustainability of human communities will depend on our relationship with regional environments, our maintenance of renewable resources, and our successful disengagement from nonrenewable energy dependence. This dissertation investigates sustainability at these three levels, following a critical analysis of sustainability and economics. At the regional environment level, the Adirondack Park of New York State is analyzed as a potential model of sustainable development. A set of initial and ongoing conditions are presented that both emerge from and support a model of sustainability in the Adirondacks. From these conditions, a clearer picture emerges of the definition of regional sustainability, consequences of its adoption, and lessons from its application. Next, an economic-ecological model of the northern hardwood forest ecosystem is developed. The model integrates economic theory and intertemporal ecological concepts, linking current harvest decisions with future forest growth, financial value, and ecosystem stability. The results indicate very different economic and ecological outcomes by varying opportunity cost and ecosystem recovery assumptions, and suggest a positive benefit to ecological recovery in the forest rotation decision of the profit maximizing manager. The last section investigates the motives, economics, and international development implications of renewable energy (specifically photovoltaic technology) in rural electrification and technology transfer, drawing on research in the Dominican Republic. The implications of subsidizing a photovoltaic market versus investing in basic research are explored.

  15. Using Satellite Imagery to Assess Large-Scale Habitat Characteristics of Adirondack Park, New York, USA

    NASA Astrophysics Data System (ADS)

    McClain, Bobbi J.; Porter, William F.

    2000-11-01

    Satellite imagery is a useful tool for large-scale habitat analysis; however, its limitations need to be tested. We tested these limitations by varying the methods of a habitat evaluation for white-tailed deer ( Odocoileus virginianus) in the Adirondack Park, New York, USA, utilizing harvest data to create and validate the assessment models. We used two classified images, one with a large minimum mapping unit but high accuracy and one with no minimum mapping unit but slightly lower accuracy, to test the sensitivity of the evaluation to these differences. We tested the utility of two methods of assessment, habitat suitability index modeling, and pattern recognition modeling. We varied the scale at which the models were applied by using five separate sizes of analysis windows. Results showed that the presence of a large minimum mapping unit eliminates important details of the habitat. Window size is relatively unimportant if the data are averaged to a large resolution (i.e., township), but if the data are used at the smaller resolution, then the window size is an important consideration. In the Adirondacks, the proportion of hardwood and softwood in an area is most important to the spatial dynamics of deer populations. The low occurrence of open area in all parts of the park either limits the effect of this cover type on the population or limits our ability to detect the effect. The arrangement and interspersion of cover types were not significant to deer populations.

  16. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Enders, S.K.; Pagani, M.; Pantoja, S.; Baron, Jill S.; Wolfe, A.P.; Pedentchouk, N.; Nunez, L.

    2008-01-01

    Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ???60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60??? excursion in the hydrogen isotope composition of algal-derived palmitic acid, are coincident with changes in nitrogen cycling. The confluence of these trends is attributed to an increase in biologically available nitrogenous compounds caused by an expansion of anthropogenic influences and temporal changes in catchment hydrology and nutrient delivery associated with meltwater dynamics. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  17. Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State

    USGS Publications Warehouse

    Peters, N.E.; Driscoll, C.T.

    1987-01-01

    Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  18. Roughing It Smoothly.

    ERIC Educational Resources Information Center

    Turner, Donna

    1988-01-01

    A mother of a 17-year-old son with spina bifida recounts the family's experiences camping in the Adirondack Mountains. Her son has enjoyed swimming, modified waterskiing, riding to the top of a mountain during the summer on a ski chair lift, and blueberry picking from a toboggan rather than his wheelchair. (VW)

  19. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  20. Regional analysis of the effect of paved roads on sodium and chloride in lakes.

    PubMed

    Kelting, Daniel L; Laxson, Corey L; Yerger, Elizabeth C

    2012-05-15

    Salinization of surface water from sodium chloride (road salt) applied to paved roads is a widely recognized environmental concern in the northern hemisphere, yet practical information to improve winter road management to reduce the environmental impacts of this deicer is lacking. The purpose of our study was to provide such information by developing baseline concentrations for sodium and chloride for lakes in watersheds without paved roads, and then determining the relationship between these ions and density, type, and proximity of paved roads to shoreline. We used average summer (June-September) sodium and chloride data for 138 lakes combined in a watershed based analysis of paved road networks in the Adirondack Park of New York, U.S.A. The watersheds used in our study represented a broad range in paved road density and type, 56 of which had no paved roads. Median lake sodium and chloride concentrations in these 56 watersheds averaged 0.55 and 0.24 mg/L, respectively. In contrast, the median sodium and chloride concentrations for the 82 lakes in watersheds with paved roads were 3.60 and 7.22 mg/L, respectively. Paved road density (lane-km/km(2)) was positively correlated with sodium and chloride concentrations, but only state roads were significantly correlated with sodium and chloride while local roads were not. State road density alone explained 84 percent of the variation in both ions. We also successfully modeled the relationship between road proximity to shoreline and sodium and chloride concentrations in lakes, which allowed us to identify sections of road that contributed more to explaining the variation in sodium and chloride in lakes. This model and our approach could be used as part of larger efforts to identify environmentally sensitive areas where alternative winter road management treatments should be applied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Reconnaissance geologic map and mineral resource potential of the Gearhart Mountain Wilderness and Roadless Area (6225), Lake and Klamath counties, Oregon

    USGS Publications Warehouse

    Walker, George W.; Ridenour, James

    1982-01-01

    The Gearhart Mountain Wilderness, Lake and Klamath Counties, Oreg., is devoid of mines and mineral prospects and there are no known mining claims within the area. Furthermore, the results of this mineral appraisal indicate that there is little likelihood that commercial deposits of metallic minerals will be found in the area. Commercial uranium deposits, like those at the White King and Lucky Lass mines about 16 mi (~25 km) to the southeast of the wilderness, and deposits of mercury, like those south-southeast of the wilderness, are not likely to be found within the wilderness, even though all of these areas are characterized by middle and late Cenozoic intrusive and extrusive volcanic rocks. Rock of low commercial value for construction purposes is present, but better and more accessible deposits are present in adjacent regions. There is no evidence to indicate that mineral fuels are present in the area. Higher than normal heat floe characterizes the region containing Gerheart Mountain, indicating that it may have some, as yet undefined, potential for the development of geothermal energy. Data are not available to determine whether this higher than normal heat flow is meaningful in terms of a potential energy source or as a guide to possible future exploration; lack of thermal springs or other evidence of localized geothermal anomalies within the Gerhart Mountain suggest, however, that the potential for the development of geothermal energy is probably low.

  2. Facility rehabilitation

    Treesearch

    Edwin H. Ketchledge

    1971-01-01

    Restoration of vegetation on damaged sites is the most perplexing challenge in facility rehabilitation. In the Adirondack Mountains, the ecological impact of recreationists on the natural environment has become critical in two high-quality interior areas: on the steep higher slopes where trails soon become eroding stream channels, washing away the thin mountain soils;...

  3. Lake Sarez, Tajikistan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Sarez (top), deep in the Pamir mountains of Tajikistan, was created 90 years ago when a strong earthquake triggered a massive landslide that, in turn, became a huge dam along the Murghob River, now called the Usoi Dam. The resulting lake is perched above surrounding drainages at an elevation greater than 3000m, and is part of the watershed that drains the towering Akademi Nauk Range (see the regional image, lower). The lake is 61 km long and as deep as 500 m, and holds an estimated 17 cubic km of water. The area experiences considerable seismic activity, and scientists fear that part of the right bank may slump into the lake, creating a huge wave that will top over and possibly breach the natural dam. Such a wave would create a catastrophic flood downstream along the Bartang, Panj and Amu Darya Rivers, perhaps reaching all the way to the Aral Sea. Currently, central Asian governments, as well as the World Bank and the UN are monitoring the dam closely, and have proposed gradually lowering the lake level as a preventive measure. More information about the lake is available at the following web sites: Lake Sarez Study group, UN Report, Reliefweb Digital photograph numbers ISS002-E-7771 and ISS002-E-7479 were taken in the spring of 2001 from Space Station Alpha and are provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  4. Grand Canyon, Lake Powell, and Lake Mead

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A snowfall in the American West provides contrast to the landscape's muted earth tones and indicates changes in topography and elevation across (clockwise from top left) Nevada, Utah, Colorado, New Mexico, Arizona, and California. In Utah, the southern ranges of the Wasatch Mountains are covered in snow, and the Colorado River etches a dark ribbon across the red rock of the Colorado Plateau. In the center of the image is the reservoir created by the Glen Canyon Dam. To the east are the gray-colored slopes of Navaho Mountain, and to the southeast, dusted with snow is the region called Black Mesa. Southwest of Glen Canyon, the Colorado enters the Grand Canyon, which cuts westward through Arizona. At a deep bend in the river, the higher elevations of the Keibab Plateau have held onto snow. At the end of the Grand Canyon lies another large reservoir, Lake Mead, which is formed by the Hoover Dam. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  5. Changes in aquatic insect emergence in response to whole-lake experimental manipulations of introduced trout

    Treesearch

    Karen L. Pope; Jonah Piovia-Scott; Sharon P. Lawler

    2009-01-01

    1. Insects emerging from mountain lakes provide an important food source for many terrestrial predators. The amount of insect subsidy that emerges from lakes is influenced by predator composition, but predator effects could be ameliorated by greater habitat complexity. We conducted a replicated whole-lake experiment to test the effects of introduced fish...

  6. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010.

    PubMed

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  7. Glacial Lake Expansion in the Central Himalayas By Landsat Images, 1990-2010

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Liu, Q.; Liu, S.

    2014-12-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  8. Estimating the volume of Alpine glacial lakes

    NASA Astrophysics Data System (ADS)

    Cook, S. J.; Quincey, D. J.

    2015-09-01

    Supraglacial, moraine-dammed and ice-dammed lakes represent a potential glacial lake outburst flood (GLOF) threat to downstream communities in many mountain regions. This has motivated the development of empirical relationships to predict lake volume given a measurement of lake surface area obtained from satellite imagery. Such relationships are based on the notion that lake depth, area and volume scale predictably. We critically evaluate the performance of these existing empirical relationships by examining a global database of measured glacial lake depths, areas and volumes. Results show that lake area and depth are not always well correlated (r2 = 0.38), and that although lake volume and area are well correlated (r2 = 0.91), there are distinct outliers in the dataset. These outliers represent situations where it may not be appropriate to apply existing empirical relationships to predict lake volume, and include growing supraglacial lakes, glaciers that recede into basins with complex overdeepened morphologies or that have been deepened by intense erosion, and lakes formed where glaciers advance across and block a main trunk valley. We use the compiled dataset to develop a conceptual model of how the volumes of supraglacial ponds and lakes, moraine-dammed lakes and ice-dammed lakes should be expected to evolve with increasing area. Although a large amount of bathymetric data exist for moraine-dammed and ice-dammed lakes, we suggest that further measurements of growing supraglacial ponds and lakes are needed to better understand their development.

  9. Lake Titicaca, Peru and Bolivia, South America

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Titicaca, high in the Andean Altiplano of South America, is on the border between Peru and Bolivia (15.5S, 70.0W). At an altitude of 12,500 ft, an area of 3,206 sq. mi. and a depth of about 900 ft., it is the world's highest navigable fresh water lake. La Paz, the capital city of Bolivia, may be seen near the center left of the image on the eastern downslope side of the mountains. 3,206 sq mi (8,303 sqkm), 12,

  10. Look to the hardwoods!

    Treesearch

    W. E. McQuilken

    1957-01-01

    The northeast is hardwood country. To be sure, central and northern Maine and the higher elevations of the Green Mountains, White Mountains, and Adirondacks have their spruce-fir; cool, moist sites throughout the region typically support some hemlock; and white pine - the original foundation of the lumber industry in North America - is widely represented by scattered...

  11. Aluminum mobilization and calcium depletion in the forest floor of red spruce forests in the northeastern United States

    Treesearch

    Gregory B. Lawrence; Mark B. David; Walter C. Shortle

    1996-01-01

    Mechanisms of Ca depletion were investigated as part of a regional study of relations among acidic deposition, soil chemistry and red spruce decline. Comparison with results from studies in the Adirondack Mountains of New York and the White Mountains of New Hampshire indicates that current acid-extractable Ca concentrations in the Oa horizon are less than one-half the...

  12. NPDES Permit for Rocky Mountain Arsenal Recycled Water Pipeline in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-0035009, the U.S. Department of Interior's Fish and Wildlife Service is authorized to discharge from the Rocky Mountain Arsenal recycled water pipeline to Lower Derby Lake in Adams County, Colo.

  13. Transfer of marine mercury to mountain lakes.

    PubMed

    Hansson, Sophia V; Sonke, Jeroen; Galop, Didier; Bareille, Gilles; Jean, Séverine; Le Roux, Gaël

    2017-10-05

    Stocking is a worldwide activity on geographical and historical scales. The rate of non-native fish introductions have more than doubled over the last decades yet the effect on natural ecosystems, in the scope of biologically mediated transport and biomagnification of Hg and Hg-isotopes, is unknown. Using geochemistry (THg) and stable isotopes (N, Sr and Hg), we evaluate natal origin and trophic position of brown trout (Salmo trutta fario), as well as mercury biomagnification trends and potential pollution sources to three high-altitude lakes. Farmed trout show Hg-isotope signatures similar to marine biota whereas wild trout shows Hg-isotope signatures typical of fresh water lakes. Stocked trout initially show Hg-isotope signatures similar to marine biota. As the stocked trout age and shifts diet to a higher trophic level, THg concentrations increase and the marine Hg isotope signatures, induced via farm fish feed, shift to locally produced MeHg with lower δ 202 Hg and higher Δ 199 Hg. We conclude that stocking acts a humanly induced biovector that transfers marine Hg to freshwater ecosystems, which is seen in the Hg-isotopic signature up to five years after stocking events occurred. This points to the need of further investigations of the role of stocking in MeHg exposure to freshwater ecosystems.

  14. Paleomagnetism of the Middle Proterozoic Electra Lake Gabbro, Needle Mountains, southwestern Colorado

    USGS Publications Warehouse

    Harlan, S.S.; Geissman, J.W.

    1998-01-01

    The Electra Lake Gabbro is a small 1.435 Ga pluton that intrudes 1.7 to 1.6 Ga gneisses and schists of the Needle Mountains in southwestern Colorado. Paleomagnetic samples were collected from the main phases of the gabbro, diabase dikes, granite, and alaskite dikes that cut the gabbro and from a partially melted zone in gneiss along the southern margin of the pluton. Gabbro, diabase, and some melt zone samples have a single-polarity characteristic magnetization of northeast declination (D) and moderate negative inclination (I). Demagnetization behavior and rock magnetic characteristics indicate that the remanence is carried by nearly pure magnetite. After correction for the minor west dip of overlying Paleozoic strata, we obtain a mean direction of D = 32.1??, I = -41.9?? (k = 94, ??95 = 3.3??, N = 21 sites) and a paleomagnetic pole at 21.1?? S, 221.1 ??E, (K= 89, A95 = 3.4??). This pole is similar to poles from the Middle Proterozoic Belt Supergroup but is located at a higher southerly latitude than poles from other 1.47-1.44 Ga plutons from North America, most of which plot at equatorial latitudes. The reason for this discrepancy is not clear but may result from a combination of factors, including unrecognized tilting of the gabbro, the failure of this relatively small pluton to fully average paleosecular variation, and uncertainties in the overall reliability of other 1.5-1.4 Ga poles of the North American apparent polar wander path.

  15. Rocky Mountains

    NASA Image and Video Library

    2015-05-06

    On April 29, 2015 the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured a true-color image of a typical spring scene in the western United State: snow-crowned Rocky Mountains rising above the faintly greening plains. The Rocky Mountains stretch from British Columbia, Canada to the Rio Grande in New Mexico, a span of roughly 3,000 miles, and contains many of the highest peaks in the continental United States. The tallest, Mount Elbert, rises 14,400 ft. (4,401 m) above sea level, and is located in the San Isabel National Forest, near Leadville, Colorado. This image covers seven Rocky Mountain states. From north to south they are: Montana and Idaho, Wyoming; Utah (with the Great Salt Lake visible) and Colorado; Arizona and New Mexico. To the east, the Great Plain states captured are, from north to south: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma and northwestern Texas. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Pleistocene lake level changes in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The

  17. Dynamic coupling of volcanic CO2 flow and wind at the HorseshoeLake tree kill, Mammoth Mountain, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewicki, J.L.; Hilley, G.E.; Tosha, T.

    2006-11-20

    We investigate spatio-temporal relationships between soilCO2 flux (FCO2), meteorological variables, and topography over a ten-dayperiod (09/12/2006 to 09/21/2006) at the Horseshoe Lake tree kill,Mammoth Mountain, CA. Total CO2 discharge varied from 16 to 52 t d-1,suggesting a decline in CO2 emissions over decadal timescales. Weobserved systematic changes in FCO2 in space and time in association witha weather front with relatively high wind speeds from the west and lowatmospheric pressures. The largest FCO2 changes were observed inrelatively high elevation areas. The variations in FCO2 may be due todynamic coupling of wind-driven airflow through the subsurface and flowof source CO2 at depth.more » Our results highlight the influence of weatherfronts on volcanic gas flow in the near-surface environment and how thisinfluence can vary spatially within a study area.« less

  18. Phytoplankton assemblages in high-elevation lakes in the northern Cascade Mountains, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.; McIntire, C.D.; Truitt, R.E.; Liss, W.J.; Hoffman, Robert L.; Deimling, E.; Lomnicky, G.A.

    1998-01-01

    Phytoplankton assemblages in high-elevation lakes of North Cascades National Park Service Complex were studied during the open-water period in 1989. Collectively, 93 taxa were identified in 55 samples from 51 lakes. Based on cell densities, cyanobacteria had the highest relative abundance (36.7 %), followed by chlorophytes (29.8 %), and chrysophytes (19.6 %). Aphanocapsa delicatissima had the highest proportional abundance (14.0 %). Only 15.1 % percent of the taxa occurred in more than 20 samples. Phytoplankton cell densities increased following a gradient of increasing lake-water temperature, alkalinity, and concentration of total Kjeldahl-N with decreasing lake elevation. Chrysophytes and cyanobacteria were quantitatively (relative abundance) the most important taxa in alpine and subalpine lakes, whereas cyanobacteria had the highest relative abundances in high-forest and low-forest lakes. Chlorophytes had their highest relative abundance in high-forest lakes. Although low in relative abundance, diatoms and dinoflagellates were most abundant in alpine lakes. An ordination by correspondence analysis indicated that most alpine, subalpine, and high-forest lakes had similar floras. Although a few subalpine lakes exhibited deviations from this pattern, the main differences in phytoplankton composition were found in a group of low-forest and high-forest lakes. Canonical correspondence analysis (CCA) provided evidence that the distribution of samples and taxa in ordination space was correlated with a gradient of decreasing lake elevation and increasing water temperature, alkalinity, and concentration of nitrogen. When CCA was used to examine relationships among phytoplankton taxa and vegetation zones, a continuous distribution of taxa was found from the low-forest zone to the subalpine zone, with a large number of taxa occurring primarily in the subalpine and high-forest zones. Three phytoplankton taxa occurred primarily in alpine lakes, whereas five taxa co-occurred in

  19. Fremont Lake, Wyoming - Preliminary survey of a large mountain lake: A section in Geological Survey research 1972, Chapter D

    USGS Publications Warehouse

    Rickert, David A.; Leopold, Luna Bergere

    1972-01-01

    Fremont Lake, at an altitude of 2,261 m, has an area of 20.61 km2 and a volume of 1.69 km3. The maximum depth is 185 m, which makes it the seventh deepest natural lake in the conterminous United States. Theoretical renewal time is 11.1 years. Temperature data for 1971 indicate that vernal circulation extended to a depth of less than 90 m. The summer heat income was 19,450 cal/cm2. The dissolved-oxygen curve is orthograde, with a slight metalimnetic maximum, and a tendency toward decreasing concentrations at depth. At 180 m, oxygen was at 80 percent of saturation in late July 1970. The lake has a remarkably low dissolved-solids content of 12.8 mg/l, making it one of the most dilute medium-sized lakes in the world. Detailed chemical data are given for the water column at three sites in the lake and for the influent and effluent streams. Net plankton included representatives of seven genera of phytoplankters and three genera of zooplankters. A reconnaissance indicated substantially no bacteriological contamination in the lake, but there was an appreciable amount in two minor streams in the vicinity of a summer-home colony.

  20. Ouachita Mountains, Oklahoma as seen from STS-58

    NASA Image and Video Library

    1993-10-30

    STS058-91-058 (18 Oct-1 Nov 1993) --- In this unusually clear view, the Ouachita Mountains of southeastern Oklahoma are framed on the north by Lake Eufaula on the South Canadian River, and on the south by the Red River. Sandstone, shale and chert (similar to flint) deposited in a sea several thousand feet deep were squeezed up to form the mountains about 250 million years ago. During the ensuing time, erosion of the western end of the Ouachita Mountains has emphasized linear ridges of resistant rock in the plunging anticlines and synclines, causing relief of 800 meters (2,600 feet) or more. Clouds formed by upslope winds border both the north and south sides of one of the most dramatic plunging synclines (in a syncline the rock layers dip toward the center of the structure). Toward the west, densely forested mountains give way to gently rolling, less rocky terrain and a drier climate which is better suited to farming. The mountains centered on Broken Bow, in the lower right corner of the scene, display abundant timber clearcuts that are being regenerated.

  1. AVIRIS data calibration information: Oquirrh and East Tintic mountains, Utah

    USGS Publications Warehouse

    Rockwell, Barnaby W.; Clark, Roger N.; Livo, K. Eric; McDougal, Robert R.; Kokaly, Raymond F.

    2002-01-01

    The information contained herein pertains to the original reflectance calibration derived solely from the Saltair beach site on the shores of Great Salt Lake.  The reflectance data derived from this calibration becomes markedly affected by residual absorptions due to atmospheric water vapor and carbon dioxide within short horizontal and vertical distances from the calibration site due to the presence of what is believed to be a distinct microclimate by the lake.  Subsequent to the development of this web site, a new reflectance calibration was derived which mitigated these effects.  Reflectance spectra of bright areas of known composition in the East Tintic Mountains, far from Great Salt Lake, were sampled from the calibrated high altitude AVIRIS data cubes and edited, or "polished," to identify artifacts related to residual absorptions of atmospheric gases, particulates, and sensor noise.  The subtle artifacts identified in this way were incorporated into the multiplier spectra derived from the original calibration site, generating new multiplier spectra that were used to re-calibrate the ATREM- and path radiance-corrected cubes to reflectance.  This process generated a reflectance calibration customized for the Oquirrh/East Tintic Mountain region.

  2. Spatiotemporal patterns of mercury accumulation in lake sediments of western North America

    USGS Publications Warehouse

    Drevnick, Paul; Cooke, Colin A.; Barraza, Daniella; Blais, Jules M.; Coale, Kenneth; Cumming, Brian F.; Curtis, Chris; Das, Biplob; Donahue, William F.; Eagles-Smith, Collin A.; Engstrom, Daniel R.; Fitzgerald, William F.; Furl, Chad V.; Gray, John R.; Hall, Roland I.; Jackson, Togwell A.; Laird, Kathleen R.; Lockhart, W. Lyle; Macdonald, Robie W.; Mast, M. Alisa; Mathieu, Callie; Muir, Derek C.G.; Outridge, Peter; Reinemann, Scott; Rothenberg, Sarah E.; Ruiz-Fernandex, Ana Carolina; St. Louis, V.L.; Sanders, Rhea; Sanei, Hamed; Skierszkan, Elliott; Van Metre, Peter C.; Veverica, Timothy; Wiklund, Johan A.; Wolfe, Brent B.

    2016-01-01

    For the Western North America Mercury Synthesis, we compiled mercury records from 165 dated sediment cores from 138 natural lakes across western North America. Lake sediments are accepted as faithful recorders of historical mercury accumulation rates, and regional and sub-regional temporal and spatial trends were analyzed with descriptive and inferential statistics. Mercury accumulation rates in sediments have increased, on average, four times (4×) from 1850 to 2000 and continue to increase by approximately 0.2 μg/m2 per year. Lakes with the greatest increases were influenced by the Flin Flon smelter, followed by lakes directly affected by mining and wastewater discharges. Of lakes not directly affected by point sources, there is a clear separation in mercury accumulation rates between lakes with no/little watershed development and lakes with extensive watershed development for agricultural and/or residential purposes. Lakes in the latter group exhibited a sharp increase in mercury accumulation rates with human settlement, stabilizing after 1950 at five times (5×) 1850 rates. Mercury accumulation rates in lakes with no/little watershed development were controlled primarily by relative watershed size prior to 1850, and since have exhibited modest increases (in absolute terms and compared to that described above) associated with (regional and global) industrialization. A sub-regional analysis highlighted that in the ecoregion Northwestern Forest Mountains, <1% of mercury deposited to watersheds is delivered to lakes. Research is warranted to understand whether mountainous watersheds act as permanent sinks for mercury or if export of “legacy” mercury (deposited in years past) will delay recovery when/if emissions reductions are achieved.

  3. High-mountain lakes provide a seasonal niche for migrant American dippers

    Treesearch

    J. M. Garwood; K. L. Pope; R. M. Bourque; M. D. Larson

    2009-01-01

    We studied summer use of high elevation lakes by American Dippers (Cinclus mexicanus) in the Trinity Alps Wilderness, California by conducting repeated point-count surveys at 16 study lakes coupled with a 5-year detailed survey of all available aquatic habitats in a single basin. We observed American Dippers during 36% of the point-count surveys...

  4. 32. Otter Lake Dam. View from downstream show how the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Otter Lake Dam. View from downstream show how the dam blends into its environment. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  5. Geologic map of the Mohave Mountains area, Mohave County, western Arizona

    USGS Publications Warehouse

    Howard, K.A.; Nielson, J.E.; Wilshire, W.G.; Nakata, J.K.; Goodge, J.W.; Reneau, Steven L.; John, Barbara E.; Hansen, V.L.

    1999-01-01

    Introduction The Mohave Mountains area surrounds Lake Havasu City, Arizona, in the Basin and Range physiographic province. The Mohave Mountains and the Aubrey Hills form two northwest-trending ranges adjacent to Lake Havasu (elevation 132 m; 448 ft) on the Colorado River. The low Buck Mountains lie northeast of the Mohave Mountains in the alluviated valley of Dutch Flat. Lowlands at Standard Wash separate the Mohave Mountains from the Bill Williams Mountains to the southeast. The highest point in the area is Crossman Peak in the Mohave Mountains, at an elevation of 1519 m (5148 ft). Arizona Highway 95 is now rerouted in the northwestern part of the map area from its position portrayed on the base map; it now also passes through the southern edge of the map area. Geologic mapping was begun in 1980 as part of a program to assess the mineral resource potential of Federal lands under the jurisdiction of the U.S. Bureau of Land Management (Light and others, 1983). Mapping responsibilities were as follows: Proterozoic and Mesozoic rocks, K.A. Howard; dikes, J.K. Nakata; Miocene section, J.E. Nielson; and surficial deposits, H.G. Wilshire. Earlier geologic mapping includes reconnaissance mapping by Wilson and Moore (1959). The present series of investigations has resulted in reports on the crystalline rocks and structure (Howard and others, 1982a), dikes (Nakata, 1982), Tertiary stratigraphy (Pike and Hansen, 1982; Nielson, 1986; Nielson and Beratan, 1990), surficial deposits (Wilshire and Reneau, 1992), tectonics (Howard and John, 1987; Beratan and others, 1990), geophysics (Simpson and others, 1986), mineralization (Light and McDonnell, 1983; Light and others, 1983), field guides (Nielson, 1986; Howard and others, 1987), and geochronology (Nakata and others, 1990; Foster and others, 1990).

  6. The glacial/deglacial history of sedimentation in Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Rosenbaum, J.G.; Heil, C.W.

    2009-01-01

    Bear Lake, in northeastern Utah and southern Idaho, lies in a large valley formed by an active half-graben. Bear River, the largest river in the Great Basin, enters Bear Lake Valley ???15 km north of the lake. Two 4-m-long cores provide a lake sediment record extending back ???26 cal k.y. The penetrated section can be divided into a lower unit composed of quartz-rich clastic sediments and an upper unit composed largely of endogenic carbonate. Data from modern fluvial sediments provide the basis for interpreting changes in provenance of detrital material in the lake cores. Sediments from small streams draining elevated topography on the east and west sides of the lake are characterized by abundant dolomite, high magnetic susceptibility (MS) related to eolian magnetite, and low values of hard isothermal remanent magnetization (HIRM, indicative of hematite content). In contrast, sediments from the headwaters of the Bear River in the Uinta Mountains lack carbonate and have high HIRM and low MS. Sediments from lower reaches of the Bear River contain calcite but little dolomite and have low values of MS and HIRM. These contrasts in catchment properties allow interpretation of the following sequence from variations in properties of the lake sediment: (1) ca. 26 cal ka-onset of glaciation; (2) ca. 26-20 cal ka-quasicyclical, millennial-scale variations in the concentrations of hematite-rich glacial fl our derived from the Uinta Mountains, and dolomite- and magnetite-rich material derived from the local Bear Lake catchment (reflecting variations in glacial extent); (3) ca. 20-19 cal ka-maximum content of glacial fl our; (4) ca. 19-17 cal ka-constant content of Bear River sediment but declining content of glacial fl our from the Uinta Mountains; (5) ca. 17-15.5 cal ka-decline in Bear River sediment and increase in content of sediment from the local catchment; and (6) ca. 15.5-14.5 cal ka-increase in content of endogenic calcite at the expense of detrital material. The onset

  7. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010

    PubMed Central

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  8. Hypsometry and the distribution of high-alpine lakes in the European Alps

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Otto, Jan-Christoph; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Climate change strongly affects alpine landscapes. Cold-climate processes shape the terrain in a typical way and ice-free overdeepenings in cirques and glacial valleys as well as different types of moraines favor the formation of lakes. These water bodies act as sediment sinks and high-alpine water storage but may also favor outburst and flooding events. Glacier retreat worldwide is associated with an increasing number and size of high-alpine lakes which implies a concurrent expansion of sediment retention and natural hazard potential. Rising temperatures are regarded to be the major cause for this development, but other factors such as the distribution of area over elevation and glacier erosional and depositional dynamics may play an important role as well. While models of ice flow and glacial erosion are employed to understand the impact of glaciers on mountain landscapes, comprehensive datasets and analyses on the distribution of existing high-alpine lakes are lacking. In this study we present an exhaustive database of natural lakes in the European Alps and analyze lake distribution with respect to hypsometry. We find that the distribution of lake number and lake area over elevation only weakly coincides with hypsometry. Unsurprisingly, largest lakes are often tectonically influenced and located at the fringe of the mountain range and in prominent inter-montane basins. With increasing elevation, however, the number of lakes, lake area and total area decrease until a local minimum is reached around the equilibrium line latitude (ELA) of the last glacial maximum (LGM). Above the LGM ELA, total area further decreases, but lake number and area increase again. A local maximum in lake area coincides with an absolute maximum in lake number between the ELAs of the LGM and the little ice age around 2500 m. We conclude that glacial erosional and depositional dynamics control the distribution and size of high-alpine lakes and thus demand for exceptional attention when

  9. Geology of 1. 7 GA ( ) Baldwin gneiss in the Baldwin Lake type area, San Bernardino Mountains, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.P.; Ehlig, P.L.; Wooden, J.L.

    1993-04-01

    Precambrian gneisses in the San Bernardino Mountains were first identified and described in the vicinity of Baldwin Lake by Guillou (1953). Five lithologic units mappable at 1:24,000 scale are recognized: biotite [+-] muscovite quartzofeldspathic gneiss, amphibolite, pyroxene metagabbro, augen gneiss, and biotite [+-] muscovite granitic gneiss. Baldwin gneiss with this L < S tectonite fabric is unconformably overlain by latest Proterozoic, upright, greenschist/hornfels facies quartzite (Big Bear Group). North and northeast of Baldwin Lake, the gneissic fabric is rotated toward the northwest, subparallel to the Doble fault. Along this fault, Baldwin gneiss is structurally underlain by overturned Paleozoic quartzite andmore » marble (Zabriskie Quartzite and Carrara Formation). Regional relations suggest that the Doble fault is a northeast-directed basement thrust fault of pre-Late Cretaceous age, and may be contemporaneous with late Paleozoic deformation and metamorphism of Paleozoic rocks further west in the range. Field relations suggest that Baldwin gneiss in its type area largely retains Proterozoic fabrics and mineral assemblages, despite marginal Phanerozoic reworking. Silver (1971) reported a U-Pb zircon age of ca. 1,730 Ma for Baldwin augen ( ) gneiss, from an unknown locality, and Miller and Morton (1980) reported Late Cretaceous mica K-Ar ages from a sample of augen gneiss. Preliminary Pb isotopic ratios in galena, feldspar and whole rock samples of Baldwin gneiss, and feldspars in Mesozoic plutons suggest isotopic affinity to the Mojave crustal province of Wooden and Miller (1990).« less

  10. Estimating the volume of Alpine glacial lakes

    NASA Astrophysics Data System (ADS)

    Cook, S. J.; Quincey, D. J.

    2015-12-01

    Supraglacial, moraine-dammed and ice-dammed lakes represent a potential glacial lake outburst flood (GLOF) threat to downstream communities in many mountain regions. This has motivated the development of empirical relationships to predict lake volume given a measurement of lake surface area obtained from satellite imagery. Such relationships are based on the notion that lake depth, area and volume scale predictably. We critically evaluate the performance of these existing empirical relationships by examining a global database of glacial lake depths, areas and volumes. Results show that lake area and depth are not always well correlated (r2 = 0.38) and that although lake volume and area are well correlated (r2 = 0.91), and indeed are auto-correlated, there are distinct outliers in the data set. These outliers represent situations where it may not be appropriate to apply existing empirical relationships to predict lake volume and include growing supraglacial lakes, glaciers that recede into basins with complex overdeepened morphologies or that have been deepened by intense erosion and lakes formed where glaciers advance across and block a main trunk valley. We use the compiled data set to develop a conceptual model of how the volumes of supraglacial ponds and lakes, moraine-dammed lakes and ice-dammed lakes should be expected to evolve with increasing area. Although a large amount of bathymetric data exist for moraine-dammed and ice-dammed lakes, we suggest that further measurements of growing supraglacial ponds and lakes are needed to better understand their development.

  11. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation

    USGS Publications Warehouse

    Owen, L.A.; Finkel, R.C.; Haizhou, M.; Barnard, P.L.

    2006-01-01

    The Qaidam Basin in Northern Tibet is one of the largest hyper-arid intermontane basins on Earth. Alluvial fans, pediment surfaces, shorelines and a thick succession of sediments within the basin, coupled with moraines and associated landforms in the adjacent high mountain catchments of the Kunlun Mountains, record a complex history of Late Quaternary paleoenvironmental change and landscape evolution. The region provides an ideal natural laboratory to examine the interaction between tectonics and climate within a continent-continent collision zone, and to quantify rates of landscape evolution as controlled by climate and the associated glacial and hydrological changes in hyper-arid and adjacent high-altitude environments. Geomorphic mapping, analysis of landforms and sediments, and terrestrial cosmogenic radionuclide surface exposure and optically stimulated luminescence dating serve to define the timing of formation of Late Quaternary landforms along the southern and northwestern margins of the Qaidam Basin, and in the Burhan Budai Shan of the Kunlun Mountains adjacent to the basin on the south. These dates provide a framework that suggests links between climatic amelioration, deglaciation, lake desiccation and alluvial fan evolution. At least three glacial advances are defined in the Burham Budai Shan of the Kunlun Mountains. On the northern side of this range these occurred in the penultimate glacial cycle or early in the last glacial cycle, during the Last Glacial Maximum (LGM)/Lateglacial and during the Holocene. On the south side of the range, advances occurred during the penultimate glacial cycle, MIS-3, and possibly the LGM, Lateglacial or Holocene. Several distinct phases of alluvial fan sedimentation are likewise defined. Alluvial fans formed on the southern side of the Kunlun Mountains prior to 200 ka. Ice-contact alluvial fans formed during the penultimate glacial and during MIS-3. Extensive incised alluvial fans that form the main valley fills north of

  12. An inventory of glacial lakes in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Buckel, Johannes; Otto, Jan-Christoph; Keuschnig, Markus; Götz, Joachim

    2016-04-01

    The formation of lakes is one of the consequences of glacier retreat due to climate change in mountain areas. Numerous lakes have formed in the past few decades in many mountain regions around the globe. Some of these lakes came into focus due to catastrophic hazard events especially in the Himalayas and the Andes. Glacial lake development and lifetime is controlled by the complex interplay of glacier dynamics, geomorphological process activity and geological boundary conditions. Besides the hazard potential new lakes in formerly glaciated areas will significantly contribute to a new landscape setting and to changing geomorphologic, hydrologic and ecologic conditions at higher alpine altitudes. We present an inventory of high alpine lakes in the Austrian Alps located above an altitude of 1700 m asl. Most of these lakes are assumed to be of glacial origin, but other causes for development, like mass movements are considered as well. The inventory is a central part of the project FUTURELAKES that aims at modelling the potential development of glacial lakes in Austria (we refer to the presentation by Helfricht et al. during the conference for more details on the modelling part). Lake inventory data will serve as one basis for model validation since modelling is performed on different time steps using glacier inventory data. The purpose of the lake inventory is to get new insights into boundary conditions for lake formation and evolution by analysing existing lake settings. Based on these information the project seeks to establish a model of lake sedimentation after glacier retreat in order to assess the potential lifetime of the new lakes in Austria. Lakes with a minimum size of 1000 m² were mapped using multiple aerial imagery sources. The dataset contains information on location, geometry, dam type, and status of sedimentation for each lake. Additionally, various geologic, geomorphic and morphometric parameters describe the lake catchments. Lake data is related to

  13. How can acute mountain sickness be quantified at moderate altitude?

    PubMed

    Roeggla, G; Roeggla, M; Podolsky, A; Wagner, A; Laggner, A N

    1996-03-01

    Reports of acute mountain sickness (AMS) at moderate altitude show a wide variability, possibly because of different investigation methods. The aim of our study was to investigate the impact of investigation methods on AMS incidence. Hackett's established AMS score (a structured interview and physical examination), the new Lake Louise AMS score (a self-reported questionnaire) and oxygen saturation were determined in 99 alpinists after ascent to 2.94 km altitude. AMS incidence was 8% in Hackett's AMS score and 25% in the Lake Louise AMS score. Oxygen saturation correlated inversely with Hackett's AMS score with no significant correlation with the Lake Louise AMS score. At moderate altitude, the new Lake Louise AMS score overestimates AMS incidence considerably. Hackett's AMS score remains the gold standard for evaluating AMS incidence.

  14. How can acute mountain sickness be quantified at moderate altitude?

    PubMed Central

    Roeggla, G; Roeggla, M; Podolsky, A; Wagner, A; Laggner, A N

    1996-01-01

    Reports of acute mountain sickness (AMS) at moderate altitude show a wide variability, possibly because of different investigation methods. The aim of our study was to investigate the impact of investigation methods on AMS incidence. Hackett's established AMS score (a structured interview and physical examination), the new Lake Louise AMS score (a self-reported questionnaire) and oxygen saturation were determined in 99 alpinists after ascent to 2.94 km altitude. AMS incidence was 8% in Hackett's AMS score and 25% in the Lake Louise AMS score. Oxygen saturation correlated inversely with Hackett's AMS score with no significant correlation with the Lake Louise AMS score. At moderate altitude, the new Lake Louise AMS score overestimates AMS incidence considerably. Hackett's AMS score remains the gold standard for evaluating AMS incidence. PMID:8683517

  15. Mercury in the Soil of Two Contrasting Watersheds in the Eastern United States

    PubMed Central

    Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.

    2014-01-01

    Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p<0.001), but a linear relation at Fishing Brook was weak (r2 = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks. PMID

  16. Allogenic sedimentary components of Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Rosenbaum, J.G.; Dean, W.E.; Reynolds, R.L.; Reheis, M.C.

    2009-01-01

    Bear Lake is a long-lived lake filling a tectonic depression between the Bear River Range to the west and the Bear River Plateau to the east, and straddling the border between Utah and Idaho. Mineralogy, elemental geochemistry, and magnetic properties provide information about variations in provenance of allogenic lithic material in last-glacial-age, quartz-rich sediment in Bear Lake. Grain-size data from the siliciclastic fraction of late-glacial to Holocene carbonate-rich sediments provide information about variations in lake level. For the quartz-rich lower unit, which was deposited while the Bear River fl owed into and out of the lake, four source areas are recognized on the basis of modern fluvial samples with contrasting properties that reflect differences in bedrock geology and in magnetite content from dust. One of these areas is underlain by hematite-rich Uinta Mountain Group rocks in the headwaters of the Bear River. Although Uinta Mountain Group rocks make up a small fraction of the catchment, hematite-rich material from this area is an important component of the lower unit. This material is interpreted to be glacial fl our. Variations in the input of glacial flour are interpreted as having caused quasi-cyclical variations in mineralogical and elemental concentrations, and in magnetic properties within the lower unit. The carbonate-rich younger unit was deposited under conditions similar to those of the modern lake, with the Bear River largely bypassing the lake. For two cores taken in more than 30 m of water, median grain sizes in this unit range from ???6 ??m to more than 30 ??m, with the coarsest grain sizes associated with beach or shallow-water deposits. Similar grain-size variations are observed as a function of water depth in the modern lake and provide the basis for interpreting the core grain-size data in terms of lake level. Copyright ?? 2009 The Geological Society of America.

  17. Diatom-inferred Holocene record of moisture variability in Lower Bear Lake, San Bernardino Mountains, California, USA

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Kirby, M. E.

    2014-12-01

    Although Holocene diatom records from southern California lakes have been difficult to obtain, diatoms have been found in Lower Bear Lake (LBL) sediments, providing a 9200-year hydroclimatological record for the San Bernardino Mountains. Based on several physical and chemical properties as well as gastropod and ostracod assemblages. Kirby et al. (2012, QSR,46:57-65) inferred nine decadal to multi-centennial pluvial episodes (five major (PE-V to PE-I), four minor (PE-IIIa-c, PE-IIa) in sediment core BBLVC05-1 (34o15'20" N, 116o55'20" W; 4.5 m long). Here, we consider the implications of this new diatom data. The diatom record shows a gradual increase in salinity during the Holocene, corroborating the inference of decreasing lake size made by Kirby et al. (2012). The longest pluvial (PE-V; 9170?-8250 cal yr BP), is dominated by small fragilaroid taxa, indicating fresh, slightly alkaline waters. An increase in halophilic taxa at ~8700 cal yr BP suggests a several-decades-long drier interval within the pluvial. PE-IV (7000-6400 cal yr BP) is dominated by benthic taxa, including relatively high numbers of epiphytic taxa, indicating an increase in aquatic macrophytes. The abundance of Aulacoseira in PE-IV and PE-III (3350-3000 cal yr BP) suggests increased turbulence due to increased storminess. PE-III and PE-II (850-700 cal yr BP) contain greater abundances of benthic (epiphytic) and halophilic species, although the latter never dominate the assemblage. PE-I (500-476 cal yr BP) was not sampled. Aerophilic taxa comprise up to 3% of the assemblage during pluvial events suggesting increased erosion during those periods and the presence of symbiotic species throughout the record indicates nitrogen-depleted waters. The diatom data generally support the occurrence of multiple pluvials over the Holocene with the most sustained occurring in the early Holocene. Furthermore, the diatom data suggest LBL likely diminished in size through the Holocene becoming more saline in the

  18. A Dendroclimatic Analysis of Fluctuations in the Great Salt Lake.

    DTIC Science & Technology

    1986-01-01

    in the Great Salt Lake drainage basin , and are therefore only an estimate of the amount of precipitation falling there; Tree ring indices end, for the...Express Nevada PONY Pinyon Pine 30 39 49’N 114 37’W 1400 - 1982 Uinta Mountains, Site D Utah UINTAD Pinyon Pine 8 40 37’N 109 57’W 1430 - 1971 Conners Pass...Single Leaf Pinyon 14 39 16’N 114 07’W 1610 - 1978 Uinta Mountains, North Utah UINTAN Englemann Spruce 18 40 57’N 110 26’W 1610 - 1971 Uinta Mountains

  19. A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials

    NASA Astrophysics Data System (ADS)

    Frey, Holger; Haeberli, Wilfried; Huggel, Christian; Linsbauer, Andreas

    2010-05-01

    Due to the expected atmospheric warming, mountain glaciers will retreat, potentially collapse or even vanish completely during the 21st century. When overdeepened parts of the glacier bed are exposed in the course of glacier retreat, glacier lakes can form. Such lakes have a potential for hydropower production, which is an important source of renewable energy. Furthermore they are important elements in the perception of high-mountain landscapes and they can compensate the loss of landscape attractiveness from glacier shrinkage to a certain degree. However, glacier lakes are also a potential source of serious flood and debris flow hazards, especially in densely populated mountain ranges. Thus, methods for early detection of sites with potential lake formation are important for early planning and development of protection concepts. In this contribution we present a multi-scale approach to detect sites with potential future lake formation on four different levels of detail. The methods are developed, tested and - as far as possible - verified in the Swiss Alps; but they can be applied to mountain regions all over the world. On a first level, potential overdeepenings are estimated by selecting flat parts (slope < 5°) of the current glacier surface based on a digital elevation model (DEM) and digital glacier outlines. The same input data are used on the second level for a manual detection of overdeepenings, which are expected at locations where the following three criteria apply: (a) A distinct increase of the glacier surface slope in down-glacier direction; (b) an enlarged width followed by a narrow glacier part; and (c) regions with compressive flow (no crevasses) followed by extending flow (heavily crevassed). On the third level, more sophisticated approaches to model the glacier bed topography are applied to get more quantitative information on potential future lakes. Based on the results of this level, scenarios of future lake outbursts can be modeled with simple

  20. Paleomagnetism of the Middle Proterozoic Electra Lake Gabbro, Needle Mountains, southwestern Colorado

    NASA Astrophysics Data System (ADS)

    Harlan, Stephen S.; Geissman, John W.

    1998-07-01

    The Electra Lake Gabbro is a small 1.435 Ga pluton that intrudes 1.7 to 1.6 Ga gneisses and schists of the Needle Mountains in southwestern Colorado. Paleomagnetic samples were collected from the main phases of the gabbro, diabase dikes, granite, and alaskite dikes that cut the gabbro and from a partially melted zone in gneiss along the southern margin of the pluton. Gabbro, diabase, and some melt zone samples have a single-polarity characteristic magnetization of northeast declination (D) and moderate negative inclination (I). Demagnetization behavior and rock magnetic characteristics indicate that the remanence is carried by nearly pure magnetite. After correction for the minor west dip of overlying Paleozoic strata, we obtain a mean direction of D = 32.1°, I = -41.9° ( k: = 94, α95 = 3.3°, N = 21 sites) and a paleomagnetic pole at 21.1°S, 221.1°E, (K = 89, A95 = 3.4°). This pole is similar to poles from the Middle Proterozoic Belt Supergroup but is located at a higher southerly latitude than poles from other 1.47-1.44 Ga plutons from North America, most of which plot at equatorial latitudes. The reason for this discrepancy is not clear but may result from a combination of factors, including unrecognized tilting of the gabbro, the failure of this relatively small pluton to fully average paleosecular variation, and uncertainties in the overall reliability of other 1.5-1.4 Ga poles of the North American apparent polar wander path.

  1. Differences of atmospheric boundary layer characteristics between pre-monsoon and monsoon period over the Erhai Lake

    NASA Astrophysics Data System (ADS)

    Xu, Lujun; Liu, Huizhi; Du, Qun; Wang, Lei; Yang, Liu; Sun, Jihua

    2018-01-01

    The differences in planetary boundary layer characteristics, in particular atmospheric boundary layer height (ABLH), humidity, and local circulations in pre-monsoon and monsoon period over the Erhai Lake, were simulated by the lake-atmosphere coupled model WRF v3.7.1. No lake simulations were also conducted to investigate lake effects over complex topography. During pre-monsoon period, local circulation was fully developed under weak synoptic system. The ABLH ran up to 2300 m or so. During monsoon period, temperature difference between land and lake became smaller, resulting in weaker local circulations. The height of circulation reduced by 500 m, and ABLH ran up to 1100 m during the day. Enhanced soil moisture and low surface temperature due to monsoon rainfalls in July could be the main reason for the slightly lower ABLH over the Erhai Lake area. Specific humidity of the boundary layer increased 8.8 g kg-1 or so during monsoon period. The Erhai Lake enlarged thermal contrast between valley and mountain slope in the Dali Basin. The lake reduced air temperature by 2 3 °C during daytime and increased air temperature by nearly 2 °C in the evening. Due to its small roughness length and large thermal capacity, the Erhai Lake enlarged lake-land temperature difference and local wind speed. A cyclonic circulation was maintained by the combination of mountain breeze and land breeze in the south of the lake. The lake decreased air temperature, increased specific humidity, and reduced ABLH during daytime, whereas the opposite effect is presented at night.

  2. Effect of whole catchment liming on the episodic acidification of two adirondack streams

    USGS Publications Warehouse

    Newton, R.M.; Burns, Douglas A.; Blette, V.L.; Driscoll, C.T.

    1996-01-01

    During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 ??eq/L in one of the streams and more than 1000 ??eq/L in the other, from pre-liming values which ranged from -25 to +40 ??eq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams. After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO3- concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO3- concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO3- concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment. In stream WO2 (40ha), Ca2+ concentrations were much

  3. Preliminary report on radioactive conglomerates of Middle Precambrian age in the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming

    USGS Publications Warehouse

    Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest

    1977-01-01

    Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.

  4. Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana

    2014-05-01

    Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since

  5. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    The dynamic physiography and population growth within the Great Salt Lake Basin provide the opportunity to observe climate and human-induced land-surface changes affecting water availability, water quality, and water use, thereby making the Great Salt Lake Basin a microcosm of contemporary water resource issues and an excellent site to pursue interdisciplinary and integrated hydrologic science. Important societal concerns center on: How do climate variability and human-induced landscape changes affect hydrologic processes, water quality and availability, and aquatic ecosystems over a range of scales? What are the resource, social, and economic consequences of these changes? The steep topography and large climatic gradients of the Great Salt Lake Basin yield hydrologic systems that are dominated by non-linear interactions between snow deposition and snow melt in the mountains, stream flow and groundwater recharge in the mid-elevations, and evaporative losses from the desert floor at lower elevations. Because the Great Salt Lake Basin terminates in a closed basin lake, it is uniquely suited to closing the water, solute, and sediment balances in a way that is rarely possible in a watershed of a size sufficient for coupling to investigations of atmospheric processes. Proposed infrastructure will include representative densely instrumented focus areas that will be nested within a basin-wide network, thereby quantifying fluxes, residence times, pathways, and storage volumes over a range of scales and land uses. The significant and rapid ongoing urbanization presents the opportunity for observations that quantify the interactions among hydrologic processes, human induced changes and social and economic dynamics. One proposed focus area will be a unique, highly instrumented mountain-to-basin transect that will quantify hydrologic processes extending from the mountain ridge top to the Great Salt Lake. The transect will range in elevation from about 1200 m to 3200 m, with a

  6. Geochronology of archean gneisses in the Lake Helen area, Southwestern Big Horn Mountains, Wyoming

    USGS Publications Warehouse

    Arth, Joseph G.; Barker, F.; Stern, T.W.

    1980-01-01

    The RbSr and UPb methods were used to study gneisses in the 7 1 2-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite. A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ?? 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ?? 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ?? 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source. A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ?? 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ?? 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source. ?? 1980.

  7. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    USGS Publications Warehouse

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  8. Geologic Map of the Sheep Hole Mountains 30' x 60' Quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.

    2002-01-01

    This data set describes and maps the geology of the Sheep Hole Mountains 30' x 60' quadrangle in southern California. The quadrangle covers an area of the Mojave Desert characterized by desert ranges separated by broad basins. Ranges include parts of the Old Woman, Ship, Iron, Coxcomb, Pinto, Bullion, and Calumet mountains as well as Lead Mountain and the Kilbeck Hills. Basins include part of Ward Valley, part of Cadiz Valley including Cadiz Lake playa, and broad valleys occupied by the Bristol Lake and Dale Lake playas. Bedrock geologic units in the ranges range in age from Proterozoic to Quaternary. The valleys expose Neogene and Quaternary deposits. Proterozoic granitoids in the quadrangle include the Early Proterozoic Fenner Gneiss, Kilbeck Gneiss, Dog Wash Gneiss, granite of Joshua Tree, the (highly peraluminous granite) gneiss of Dry Lakes valley, and a Middle Proterozoic granite. Proterozoic supracrustal rocks include the Pinto Gneiss of Miller (1938) and the quartzite of Pinto Mountain. Early Proterozoic orogeny left an imprint of metamorphic mineral assemblages and fabrics in the older rocks. A Cambrian to Triassic sequence deposited on the continental shelf lies above a profound nonconformity developed on the Proterozoic rocks. Small metamorphosed remnants of this sequence in the quadrangle include rocks correlated to the Tapeats, Bright Angel, Bonanza King, Redwall, Bird Spring, Hermit, Coconino, Kaibab, and Moenkopi formations. The Dale Lake Volcanics (Jurassic), and the McCoy Mountains Formation of Miller (1944)(Cretaceous and Jurassic?) are younger Mesozoic synorogenic supracrustal rocks in the quadrangle. Mesozoic intrusions form much of the bedrock in the quadrangle, and represent a succession of magmatic arcs. The oldest rock is the Early Triassic quartz monzonite of Twentynine Palms. Extensive Jurassic magmatism is represented by large expanses of granitoids that range in composition from gabbro to syenogranite. They include the Virginia May

  9. Anaglyph, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM

  10. Specific ultra-violet absorbance as an indicator measurement of merucry sources in an Adirondack River basin

    USGS Publications Warehouse

    Burns, Douglas A.; Aiken, George R.; Bradley, Paul M.; Journey, Celeste A.; Schelker, Jakob

    2013-01-01

    The Adirondack region of New York has been identified as a hot spot where high methylmercury concentrations are found in surface waters and biota, yet mercury (Hg) concentrations vary widely in this region. We collected stream and groundwater samples for Hg and organic carbon analyses across the upper Hudson River, a 493 km2 basin in the central Adirondacks to evaluate and model the sources of variation in filtered total Hg (FTHg) concentrations. Variability in FTHg concentrations during the growing seasons (May-Oct) of 2007-2009 in Fishing Brook, a 66-km2 sub-basin, was better explained by specific ultra-violet absorbance at 254 nm (SUVA254), a measure of organic carbon aromaticity, than by dissolved organic carbon (DOC) concentrations, a commonly used Hg indicator. SUVA254 was a stronger predictor of FTHg concentrations during the growing season than during the dormant season. Multiple linear regression models that included SUVA254 values and DOC concentrations could explain 75 % of the variation in FTHg concentrations on an annual basis and 84 % during the growing season. A multiple linear regression landscape modeling approach applied to 27 synoptic sites across the upper Hudson basin found that higher SUVA254 values are associated with gentler slopes, and greater riparian area, and lower SUVA254 values are associated with an increasing influence of open water. We hypothesize that the strong Hg?SUVA254 relation in this basin reflects distinct patterns of FTHg and SUVA254 that are characteristic of source areas that control the mobilization of Hg to surface waters, and that the seasonal influence of these source areas varies in this heterogeneous basin landscape.

  11. Lake Geneva, France/Italy/Switzerland

    NASA Image and Video Library

    1994-09-30

    STS068-243-076 (30 September-11 October 1994) --- Parts of the Swiss Cantons of Vaud and Valois, the French province of Chablis and parts of northwestern Italy are seen in this widely stretching image photographed from the Space Shuttle Endeavour. Pennine Alps, said to have been created 50 million years ago, have been reshaped by glaciers during Pleistocene. The glaciers created the wide valley of the Rhone River by scourting a pre-existing seam. The fertile Swiss Plateau runs northwest from the shore of Lake Geneva and is visible in lower left. The Franco-Swiss border is located in the center of the lake and follows a mountain divide east of Rhone Valley. Italy lies south of the Rhone.

  12. The importance of visitors' knowledge of the cultural and natural history of the Adirondacks in influencing sense of place in the high peaks region

    Treesearch

    Laura Fredrickson

    2002-01-01

    This study examined various dimensions of the sense of place experience felt by visitors to the High Peaks of the Adirondack Park. More specifically, a 6-page questionnaire (mail-back postage-paid) was distributed to 803 people over a three-month period (June, July & August, 1999). The two primary objectives of this study were to: 1) explore the various...

  13. Schlumberger soundings near Medicine Lake, California

    USGS Publications Warehouse

    Zohdy, A.A.R.; Bisdorf, R.J.

    1990-01-01

    The use of direct current resistivity soundings to explore the geothermal potential of the Medicine Lake area in northern California proved to be challenging because of high contact resistances and winding roads. Deep Schlumberger soundings were made by expanding current electrode spacings along the winding roads. Corrected sounding data were interpreted using an automatic interpretation method. Forty-two maps of interpreted resistivity were calculated for depths extending from 20 to 1000 m. Computer animation of these 42 maps revealed that: 1) certain subtle anomalies migrate laterallly with depth and can be traced to their origin, 2) an extensive volume of low-resistivity material underlies the survey area, and 3) the three areas (east of Bullseye Lake, southwest of Glass Mountain, and northwest of Medicine Lake) may be favorable geothermal targets. Six interpreted resistivity maps and three cross-sections illustrate the above findings. -from Authors

  14. 9. DETAIL OF DIVERSION STRUCTURE WEST OF DERBY LAKE (SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF DIVERSION STRUCTURE WEST OF DERBY LAKE (SECTION 2) SHOWING DIVERSION GATE TO LAKE LADORA. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  15. Geochronology and geology of late Oligocene through Miocene volcanism and mineralization in the western San Juan Mountains, Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Hon, Ken; Budding, Karin E.; Slack, John F.; Snee, Lawrence W.; Yeoman, Ross A.

    2001-01-01

    This paper presents 25 new 40Ar/39Ar dates from the main calc-alkaline ash-flow sheets and related younger plutons of the western San Juan volcanic field, the ash-flow sheets of the Lake City caldera cycle, and veins and other altered rocks in the Lake City region. The goal of the study was to produce similar quality 40Ar/39Ar ages to those currently published for the eastern and central San Juan Mountains. These new data provide a much more precise chronological framework for interpreting durations of events and their relationship to mineralization than do previously published conventional K-Ar dates for the western San Juan Mountains.

  16. Earth Observation taken during the Expedition 36 mission

    NASA Image and Video Library

    2013-08-24

    ISS036-E-035635 (24 Aug. 2013) --- Plankton bloom and Lake Ontario are featured in this image photographed by an Expedition 36 crew member on the International Space Station. This photograph highlights a late summer plankton bloom visible throughout much of Lake Ontario (one of the Great Lakes, together with Michigan, Superior, Erie, and Huron). Cyanobacteria, or blue-green algae, can reach such large concentrations that they color the water to such an extent that the change is visible from orbit. Harmful algal blooms, or HABs, have been observed in all of the Great Lakes – particularly Lake Erie - and are associated with a variety of causative factors including changes in precipitation; drought; invasive species (quagga, zebra mussels, Asian carp); nutrient loading from runoff and sewage (nitrogen and phosphorus); and warmer average temperatures. In addition to reduced water quality and human health concerns, algal blooms can also lead to hypoxia (reduction of oxygen in the bottom waters) that kills large numbers of fish and other aquatic life. Lake Ontario, like the other Great Lakes Erie, Huron, and Superior is roughly divided between the USA and Canada. The USA side of Lake Ontario has its shoreline along the state of New York, while its Canadian shoreline lies within the province of Ontario. The city of Kingston, Ontario, is visible near the Saint Lawrence River outflow from the lake. Several other landscape features of New York State are visible in the image, including the Finger Lakes region to the west of Syracuse, NY (upper left). To the northeast of Syracuse, the dark wooded slopes of the Adirondack Mountains are visible at lower right. Patchy white cloud cover obscures much of the land surface to the west of Lake Ontario.

  17. Climate during the Last Glacial Maximum in the Wasatch Mountains Inferred from Glacier Mass-Balance and Ice-Flow Modeling

    NASA Astrophysics Data System (ADS)

    Bash, E. A.; Laabs, B. J.

    2006-12-01

    The Wasatch Mountains of northern Utah contained numerous valley glaciers east and immediately downwind of Lake Bonneville during the Last Glacial Maximum (LGM). While the extent and chronology of glaciation in the Wasatch Mountains and the rise and fall of Lake Bonneville are becoming increasingly well understood, inferences of climatic conditions during the LGM for this area and elsewhere in the Rocky Mountains and northern Great Basin have yielded a wide range of temperature depression estimates. For example, previous estimates of temperature depression based on glacier and lake reconstructions in this region generally range from 7° to 9° C colder than modern. Glacier modeling studies for Little Cottonwood Canyon (northern Wasatch Mountains) suggest that such temperature depressions would have been accompanied by precipitation increases of about 3 to 1x modern, respectively (McCoy and Williams, 1985; Laabs et al., 2006). However, interpretations of other proxies suggest that temperature depression in this area may have been significantly greater, up to 13° C (e.g., Kaufman 2003), which would likely have been accompanied by less precipitation than modern. To address this issue, we reconstructed ice extent in the American Fork Canyon of the Wasatch Mountains and applied glacier modeling methods of Plummer and Phillips (2003) to infer climatic conditions during the LGM. Field mapping indicates that glaciers occupied an area of more than 20 km2 in the canyon and reached maximum lengths of about 9 km. To link ice extent to climatic changes, a physically based, two- dimensional numerical model of glacier mass balance and ice flow was applied to these valleys. The modeling approach allows the combined effects of temperature, precipitation and solar radiation on net mass balance of a drainage basin to be explored. Results of model experiments indicate that a temperature depression of less than 9° C in the American Fork Canyon would have been accompanied by greater

  18. U-Pb zircon geochronology and evolution of some Adirondack meta-igneous rocks

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    An update was presented of the recent U-Pb isotope geochronology and models for evolution of some of the meta-igneous rocks of the Adirondacks, New York. Uranium-lead zircon data from charnockites and mangerites and on baddeleyite from anorthosite suggest that the emplacement of these rocks into a stable crust took place in the range 1160 to 1130 Ma. Granulite facies metamorphism was approximately 1050 Ma as indicated by metamorphic zircon and sphene ages of the anorthosite and by development of magmatitic alaskitic gneiss. The concentric isotherms that are observed in this area are due to later doming. However, an older contact metamorphic aureole associated with anorthosite intrusion is observed where wollastonite develops in metacarbonates. Zenoliths found in the anorthosite indicate a metamorphic event prior to anorthosite emplacement. The most probable mechanism for anorthosite genesis is thought to be ponding of gabbroic magmas at the Moho. The emplacement of the anorogenic anorthosite-mangerite-charnockite suite was apparently bracketed by compressional orogenies.

  19. Eruptive history of Mammoth Mountain and its mafic periphery, California

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2016-07-13

    Many geographic names that appear in this report are informal despite having been in local use for decades. Most appear on maps distributed by the Town of Mammoth Lakes or the Mammoth Mountain Ski Area and can be found here on map figures 2–5, on several photo figures, and on the geologic map.

  20. Geochemical evolution of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Jones, B.F.; Naftz, D.L.; Spencer, R.J.; Oviatt, Charles G.

    2009-01-01

    The Great Salt Lake (GSL) of Utah, USA, is the largest saline lake in North America, and its brines are some of the most concentrated anywhere in the world. The lake occupies a closed basin system whose chemistry reflects solute inputs from the weathering of a diverse suite of rocks in its drainage basin. GSL is the remnant of a much larger lacustrine body, Lake Bonneville, and it has a long history of carbonate deposition. Inflow to the lake is from three major rivers that drain mountain ranges to the east and empty into the southern arm of the lake, from precipitation directly on the lake, and from minor groundwater inflow. Outflow is by evaporation. The greatest solute inputs are from calcium bicarbonate river waters mixed with sodium chloride-type springs and groundwaters. Prior to 1930 the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage, but since then salt precipitation and re-solution, primarily halite and mirabilite, have periodically modified lake-brine chemistry through density stratification and compositional differentiation. In addition, construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, leading to halite precipitation in the north. These and other conditions have created brine differentiation, mixing, and fractional precipitation of salts as major factors in solute evolution. Pore fluids and diagenetic reactions have been identified as important sources and especially sinks for CaCO3, Mg, and K in the lake, depending on the concentration gradient and clays. ?? U.S. Geological Survey 2008.

  1. A 15,400-year record of environmental magnetic variations in sub-alpine lake sediments from the western Nanling Mountains in South China: Implications for palaeoenvironmental changes

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Wei, Zhiqiang; Shang, Shentan; Ye, Susu; Tang, Xiaowen; Zhu, Chan; Xue, Jibin; Ouyang, Jun; Smol, John P.

    2018-04-01

    A detailed environmental magnetic investigation has been performed on a sub-alpine sedimentary succession deposited over the past 15,400 years in Daping Swamp in the western Nanling Mountains of South China. Magnetic parameters reveal that fine grains of pseudo-single domain (PSD) magnetite or titanomagnetite are the dominant magnetic minerals in the lake sediments and surface soils collected from the catchment, which suggests that magnetic minerals in lake sediments mainly originated from surface soil erosion of the catchment. Variation of surface runoff caused by rainfall is interpreted as the main process for transportation of weathered soils into the lake. In the Last Deglacial period (LGP, 15,400-11,500 cal a BP), the influx of magnetic minerals of detrital material may have been significantly affected by the severe dry and cold conditions of the Last Glacial Maximum. Stabilised conditions of the catchment associated with increased vegetation coverage (e.g., 8000-4500 and 2500-1000 cal a BP) limited the input of magnetic minerals. Intensive soil erosion caused by increased human activity may have given rise to abnormal increases in multiple magnetic parameters after 1000 cal a BP. Because changes in runoff and vegetation coverage are closely related to Asian summer monsoon (ASM) intensity, the sedimentary magnetism of Daping Swamp provides another source of information to investigate the evolution of the ASM.

  2. 10. CONCRETE DIVERSION CHANNEL EXTENDING TOWARD LAKE LADORA FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONCRETE DIVERSION CHANNEL EXTENDING TOWARD LAKE LADORA FROM THE DIVERSION STRUCTURE WEST OF LOWER DERBY LAKE (SECTION 2). - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  3. Lake Waiau and Púupōhaku - two unusual lakes on Maunakea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Leopold, Matthias; Schorghofer, Norbert

    2017-04-01

    High mountain lakes are often a valuable buffer for water availability throughout the year. This is especially the case in alpine deserts like the high alpine areas of the Hawaiian Volcanoes above 3000 m altitude, since the porous and coarse cinder material and basalt boulders do not favor water storage. Púupōhaku ( 4,000m asl), a cinder cone near the summit of Maunakea volcano, Hawaii, has a sporadic pond of water and also nearby Lake Waiau is perched within a cinder cone known as Púuwaiau ( 3600 m asl) which makes it the highest lake on the Hawaiian Islands. With only 210 mm annual precipitation mostly caused by single storm events, and a potential evaporation of up to 5mm/d, permanent water sources are extremely rare in this environment. Several hypotheses were discussed as a possible cause for perching the water in this environment such as an impermeable permafrost base, a massive block of lava or clay layers. We applied geomorphic mappings and electric resistivity tomography to portray the shallow subsurface in the vicinity of the two water bodies. We also used current and unpublished older temperature loggings to evaluate the thermal regime around the lakes. Based on our results, specific electric resistivity values are too low and ground temperatures are too high to be interpreted either as ice rich permafrost or basaltic massive rock. Much more, fine grained material such as ash and its clay-rich weathering products likely cause the perched water table at both study sites. At Lake Waiau we discovered a layer of high electric conductivity that may constitute a significant water reservoir outside of the lake and further be responsible for perching the water towards the lake. Understanding the nature of the two permanent water bodies will help to manage the sensitive alpine environment which includes several endemic species.

  4. Bighorn sheep response to road-related disturbances in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Keller, B.J.; Bender, L.C.

    2007-01-01

    Bighorn sheep (Ovis canadensis) use of Sheep Lakes mineral site, Rocky Mountain National Park, Colorado, USA, has decreased since 1996. Officials were concerned that human disturbance may have been contributing to this decline in use. We evaluated effects of vehicular traffic and other road-related disturbance on bighorn use of Sheep Lakes in the summers of 2002 and 2003. We found that the time and number of attempts required by bighorn to reach Sheep Lakes was positively related to the number of vehicles and people present at Sheep Lakes. Further, the number of bighorn individuals and groups attempting to visit Sheep Lakes were negatively affected by disturbance associated with the site. The number of vehicles recorded the hour before bighorn tried to access Sheep Lakes best predicted an animal's failure to cross Fall River Road and reach Sheep Lakes. We conclude that human and road-related disturbance at Sheep Lakes negatively affected bighorn use of the mineral site. Because Sheep Lakes may be important for bighorn sheep, especially for lamb production and survival, the negative influence of disturbance may compromise health and productivity of the Mummy Range bighorn sheep.

  5. Traditional Medicine in the Pristine Village of Prokoško Lake on Vranica Mountain, Bosnia and Herzegovina

    PubMed Central

    Šarić-Kundalić, Broza; Fritz, Elisabeth; Dobeš, Christoph; Saukel, Johannes

    2010-01-01

    The results of an ethnobotanical study conducted in the pristine village of Prokoško Lake (Vranica Mountain, Bosnia and Herzegovina) in summer 2007 is presented. Informal interviews involving 12 informants known as “traditional healers” provided data from 43 plants used in 82 prescriptions. The applied plants were used for a broad spectrum of indications. The most frequent were gastro-intestinal tract ailments, blood system disorders, skin ailments, respiratory tract ailments and urinary-genital tract ailments. The most frequent preparation was an infusion. Other often used preparations were ointments or balms and decocts. The special Bosnian balms known as “mehlems” were prepared from freshly chopped or freshly pressed herbal parts of various plant species. Warmed resins from Abies or Picea species, raw cow or pig lard, olive oil and honey served as basis. The traditional doctors, who usually worked as a team, enjoyed such a good reputation that people from all over the country were visiting in search of alternative ways to cure their ailments and diseases. The practical techniques applied by the healers and some of their attitudes and values are reported. PMID:21179347

  6. 'They of the Great Rocks'-3

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D perspective image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because it has a flat surface and is relatively free of dust - ideal conditions for grinding into the rock to expose fresh rock underneath. Clean surfaces also are better for examining a rock's top coating.Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.' Data from the panoramic camera's red, green and blue filters were combined to create this approximate true color image.

  7. Contrasting stream water NO3- and Ca2+ in two nearly adjacent catchments: the role of soil Ca and forest vegetation

    Treesearch

    Sheila F. Christopher; Blair D. Page; John L. Campbell; Myron J. Mitchell

    2006-01-01

    Two nearly adjacent subcatchments, located in the Adirondack Mountains of New York State, US, with similar atmospheric inputs of N (0.6 kmol ha-1 yr-1), but markedly different stream water solute concentrations, provided a unique opportunity to evaluate the mechanisms causing this variation.

  8. The Distribution of Antarctic Subglacial Lake Environments With Implications for Their Origin and Evolution

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Young, D. A.; Carter, S. P.

    2006-12-01

    Ice-penetrating radar records across the Antarctic Ice Sheet show regions with strong flat mirror-like reflections from the subglacial interface that are interpreted to be from subglacial lakes. The majority of subglacial lakes are found in East Antarctica, primarily in topographically low areas of basins beneath the thick ice divides. Occasionally lakes are observed "perched" at higher elevations within local depressions of rough morphological regions. In addition, a correlation between the "onset" of enhanced glacial flow and subglacial lakes was identified. The greatest concentration of known lakes was found in the vicinity of Dome C. A second grouping of lakes lying near Ridge B includes Lake Vostok and several smaller lakes. Subglacial lakes were also discovered near the South Pole, within eastern Wilkes Land, west of the Transantarctic Mountains, and within West Antarctica's Whitmore Mountains. Aside from Lake Vostok, typical lengths of subglacial lakes were found to range from a few to about 20 kilometers. A recent inventory includes 145 subglacial lakes. Approximately 81% of detected lakes lie at elevations less than a few hundred meters above sea level while the majority of the remaining lakes are "perched" at higher elevations. We present the locations from the subglacial lake inventory on local "ice divides" calculated from the satellite derived surface elevations with and find the distance of each lake from these divides. Most significantly, we found that 66% of the lakes identified lie within 50 km of a local ice divide and 88% lie within 100 km of a local divide. In particular, note that lakes located far from the Dome C/Ridge B cluster and even those associated with very narrow catchments lie either on or within a few tens of kilometers of the local divide marked by the catchment boundary. The distance correlation of subglacial lakes with local ice divides leads to a fundamental question for the evolution of subglacial lake environments: Does the

  9. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  10. Using noble gases to investigate mountain-front recharge

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  11. Lacustrine Basal Ages Constrain the Last Deglaciation in the Uinta Mountains, Utah, USA

    NASA Astrophysics Data System (ADS)

    Munroe, Jeffrey; Laabs, Benjamin

    2013-04-01

    Basal radiocarbon ages from 21 high-elevation lakes limit the timing of final Pleistocene deglaciation in the Uinta Mountains of northeastern Utah, USA. The lakes are located in glacial valleys and cirques 5 to 20 km upstream from LGM terminal moraines at elevations from 2830 to 3475 m. Many are impounded behind recessional moraines. Cores were retrieved from a floating platform with a percussion corer driven to the point of refusal. All penetrated inorganic silty clay beneath gyttja. AMS radiocarbon analyses were made on terrestrial macrofossils, daphnia ephippia, pollen concentrates, and bulk sediment retrieved from the base of each core. No radiocarbon reservoir effect was observed when bulk dates were checked against terrestrial material. Radiocarbon results were converted to calendar years using the IntCal09 calibration curve in OxCal 4.1. Given the stratigraphy observed in the cores, these calibrated basal ages are considered close limits on the timing of the local deglaciation and lake formation. The oldest three lakes have basal radiocarbon ages that calibrate to a few centuries after the Bölling/Alleröd warming, indicating that the landscape was becoming ice free at this time. These are followed by an overlapping group of five lakes with basal ages between 13.5 and 13.0 ka BP. Five more cores, from four separate lakes, have basal ages tightly clustered between 13.0 and 12.5 ka BP. Three of these lakes are dammed by moraines, suggesting glacial activity during the early part of the Younger Dryas interval. The lone kettle lake in the study yielded a basal age of 12.3 ka BP, considerably younger than the basal age of 13.9 ka BP from a nearby lake filling a bedrock basin, indicating that buried ice may have been locally stable for more than a millennium after deglaciation. The remaining seven lakes have basal ages between 12.0 and 11.0 ka BP. Four of these lakes are also dammed by moraines. These two non-overlapping clusters of basal ages for moraine

  12. Glaciers, Glacial lakes and Glacial Lake Outburst Floods in the Koshi Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, F.; Gao, X.; Khanal, N. R.; Maharjan, S. B.; Bajracharya, S. R.; Shrestha, R. B.; Lizong, W.; Mool, P. K.

    2016-12-01

    Glacier is a vital water resources for mountain communities. Recession in glacier area either increased the glacial lake size or develop a new lake. The consequences of these changes in lake has become one of the major issue in the management of GLOF risk. This paper presents the distribution of, and changes in, glaciers, glacial lakes in the Koshi basin and also looks at past GLOF events that have occurred in the basin and their distance of impact. Data on the number of glaciers and glacial lakes and their areas were generated for the years 1977, 1990, 2000, and 2010 using Landsat images. The study revealed that there were a total of 845 glaciers (Nepal side) and 2,168 glacial lakes (Nepal and China side) with a total area of 1,103 km2 and 127.608 km2 in 2010. The number of glacier increased by 15% (109) and area decreased by 26% (396 km2) over 33 years. In case of glacier lakes, the number and area increased from 1,160 to 2,168 and from 94.444 km2 to 127.608 km2 during 33 years with an overall growth rates of 86.9% and 35.1%. A large number of glacial lakes are small in size (≤ 0.1 km2). End moraine dammed lakes with area ≥ 0.1 km2 were selected to analyse the change characteristics of glacial lakes. The results show that there were 134 lakes ≥ 0.1 km2 in 2010; these lakes had a total area of 43.06 km2 in 1997, increased to 64.35 km2 in 2010. The distribution of lakes on the north side of the Himalayas (in China) was three times higher than on the south side of the Himalayas (in Nepal). Comparing the mean growth rate in area and length for the 33 years, the growth rate on the north side was found to be a little slower than that on the south side. This relationship did not hold true for length change in the different periods. The study identified 42 rapidly growing large lakes that are dangerous in terms of GLOF risk. In the past, 18 GLOF events have been reported. The downstream distance impacted by those events was up to 90 km. Among them, 13 GLOF events

  13. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats.

    PubMed

    Keeton, William S; Kraft, Clifford E; Warren, Dana R

    2007-04-01

    Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in

  14. Predicting exotic earthworm distribution in the northern Great Lakes region

    Treesearch

    Lindsey M. Shartell; Erik A. Lilleskov; Andrew J. Storer

    2013-01-01

    Identifying influences of earthworm invasion and distribution in the northern Great Lakes is an important step in predicting the potential extent and impact of earthworms across the region. The occurrence of earthworm signs, indicating presence in general, and middens, indicating presence of Lumbricus terrestris exclusively, in the Huron Mountains...

  15. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  16. Large rock-slope failures impacting on lakes - Reconstruction of events and deciphering mobility processes at Lake Oeschinen (CH) and Lake Eibsee (D)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Anselmetti, Flavio; Gilli, Adrian; Krautblatter, Michael; Hajdas, Irka

    2017-04-01

    Among single event landslide disasters large rock-slope failures account for 75% of disasters with more than 1000 casualties. The precise determination of recurrence rates and failure volumes combined with an improved understanding of mobility processes are essential to better constrain runout models and establish early warning systems. Here we present the data sets from the two alpine regions Lake Oeschinen (CH) and Lake Eibsee (D) to show how lake studies can help to decipher the multistage character of rock-slope failures and to improve the understanding of the processes related to rock avalanche runout dynamics. We focus on such that impacted on a (paleo-) lake for two main reasons. First, the lake background sedimentation acts as a natural chronometer, which enables the stratigraphic positioning of events and helps to reconstruct the event history. This way it becomes possible to (i) decipher the multistage character of the failure of a certain rock slope and maybe detect progressive failure, (ii) determine the recurrence rates of failures at that certain rock slope, and (iii) consider energies based on estimated failure volumes, fall heights and deposition patterns. Hence, the interactions between a rock-slope failure, the water reservoir and the altered rock-slope are better understood. Second, picturing a rock avalanche running through and beyond a lake, we assume the entrainment of water and slurry to be crucial for the subsequent flow dynamics. The entrainment consumes a large share of the total energy, and orchestrates the mobility leading to fluidization, a much higher flow velocity and a longer runout-path length than expected. At Lake Oeschinen (CH) we used lake sediment cores and reflection seismic profiles in order to reconstruct the 2.5 kyrs spanning rock-slope failure history including 10 events, six of which detached from the same mountain flank, and correlated them with (pre-) historical data. The Lake Eibsee records provide insights into the

  17. Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun-Deok Choi; Thomas M. Holsen; Philip K. Hopke

    2008-08-15

    Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (HgP) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and HgP were 1.4 {+-} 0.4 ng m{sup -3}, 1.8 {+-} 2.2 pg m{sup -3}, and 3.2 {+-} 3.7 pg m{sup -3}, respectively. RGM represents <3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and HgP represents <3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, andmore » HgP were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory. 51 refs., 7 figs., 1 tab.« less

  18. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique

    NASA Astrophysics Data System (ADS)

    Li, Jia; Li, Zhi-wei; Wu, Li-xin; Xu, Bing; Hu, Jun; Zhou, Yu-shan; Miao, Ze-lang

    2018-04-01

    We investigated the interactions of Lake Merzbacher with the Southern Inylchek Glacier (Central Tien Shan) using the Synthetic Aperture Radar (SAR) Pixel Offset-Small Baseline Subset (PO-SBAS) to derive a time series of three-dimensional (3D) glacier motion. The measurements of 3D glacier velocity were ∼17% more precise than a previous study that did not use the SBAS estimation. The velocities of the glacier were up to 58 cm/day east, 70 cm/day north, and 113 cm/day vertically. Combining these data with Landsat images indicated that movement of the glacier is sensitive to changes of Lake Merzbacher. Specifically, the entry of more lake water into the glacier during the ablation season increased englacial ablation due to thermal erosion. Moreover, ice calving begins when the lake water gradually lifts the ice dam. Calving can cause greater loss of glacier mass than normal ablation. Trying to replenish the front mass loss, the distributary accelerates and the mass loss further intensifies. A time series of the vertical velocity indicates that the glacier tongue has a huge englacial cavity. We suggest that the lake outburst is directly related to the crack of this cavity. Bursting of the lake triggers a mini-surge at the glacier tongue. The vertical velocity at the ice dam was ∼+60 cm/day before the lake outburst, and ∼-113 cm/day afterwards. After drainage of the lake, flow velocities at the distributary, do not sharply decrease because pre-drainage mass loss needs to be replenished by fast flow. Based on comparisons with previous measurements, our results indicate that the lake had an increasing influence on the glacier from 2005 to 2009. This study demonstrates that a time series of 3D glacier motion based on the PO-SBAS technique is effective for assessing the dynamics of a mountain glacial system and interactions with its glacial lake.

  19. Glacial lake monitoring in the Karakoram Range using historical Landsat Thematic Mapper archive (1982 - 2014)

    NASA Astrophysics Data System (ADS)

    Chan, J. Y. H.; Kelly, R. E. J.; Evans, S. G.

    2014-12-01

    Glacierized regions are one of the most dynamic land surface environments on the planet (Evans and Delaney, In Press). They are susceptible to various types of natural hazards such as landslides, glacier avalanches, and glacial lake outburst floods (GLOF). GLOF events are increasingly common and present catastrophic flood hazards, the causes of which are sensitive to climate change in complex high mountain topography (IPCC, 2013). Inundation and debris flows from GLOF events have repeatedly caused significant infrastructure damages and loss of human lives in the high mountain regions of the world (Huggel et al, 2002). The research is designed to develop methods for the consistent detection of glacier lakes formation during the Landsat Thematic Mapper (TM) era (1982 - present), to quantify the frequency of glacier lake development and estimate lake volume using Landsat imagery and digital elevation model (DEM) data. Landsat TM scenes are used to identify glacier lakes in the Shimshal and Shaksgam valley, particularly the development of Lake Virjeab in year 2000 and Kyagar Lake in 1998. A simple thresholding technique using Landsat TM infrared bands, along with object-based segmentation approaches are used to isolate lake extent. Lake volume is extracted by intersecting the lake extent with the DEM surface. Based on previous studies and DEM characterization in the region, Shuttle Radar Topography Mission (SRTM) DEM is preferred over Advanced Spaceborne Thermal Emission and Reflection (ASTER) GDEM due to higher accuracy. Calculated errors in SRTM height estimates are 5.81 m compared with 8.34 m for ASTER. SRTM data are preferred because the DEM measurements were made over short duration making the DEM internally consistent. Lake volume derived from the Landsat TM imagery and DEM are incorporated into a simple GLOF model identified by Clague and Matthews (1973) to estimate the potential peak discharge (Qmax) of a GLOF event. We compare the simple Qmax estimates with

  20. Snowmelt Timing as a Determinant of Lake Inflow Mixing

    NASA Astrophysics Data System (ADS)

    Roberts, D. C.; Forrest, A. L.; Sahoo, G. B.; Hook, S. J.; Schladow, S. G.

    2018-02-01

    Snowmelt is a significant source of carbon, nutrient, and sediment loads to many mountain lakes. The mixing conditions of snowmelt inflows, which are heavily dependent on the interplay between snowmelt and lake thermal regime, dictate the fate of these loads within lakes and their ultimate impact on lake ecosystems. We use five decades of data from Lake Tahoe, a 600 year residence-time lake where snowmelt has little influence on lake temperature, to characterize the snowmelt mixing response to a range of climate conditions. Using stream discharge and lake profile data (1968-2017), we find that the proportion of annual snowmelt entering the lake prior to the onset of stratification increases as annual snowpack decreases, ranging from about 50% in heavy-snow years to close to 90% in warm, dry years. Accordingly, in 8 recent years (2010-2017) where hourly inflow buoyancy and discharge could be quantified, we find that decreased snowpack similarly increases the proportion of annual snowmelt entering the lake at weak to positive buoyancy. These responses are due to the stronger effect of winter precipitation conditions on streamflow timing and temperature than on lake stratification, and point toward increased nearshore and near-surface mixing of inflows in low-snowpack years. The response of inflow mixing conditions to snowpack is apparent when isolating temperature effects on snowpack. Snowpack levels are decreasing due to warming temperatures during winter precipitation. Thus, our findings suggest that climate change may lead to increased deposition of inflow loads in the ecologically dynamic littoral zone of high-residence time, snowmelt-fed lakes.

  1. Light attenuation characteristics of glacially-fed lakes

    NASA Astrophysics Data System (ADS)

    Rose, Kevin C.; Hamilton, David P.; Williamson, Craig E.; McBride, Chris G.; Fischer, Janet M.; Olson, Mark H.; Saros, Jasmine E.; Allan, Mathew G.; Cabrol, Nathalie

    2014-07-01

    Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400-700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.

  2. Patterns of hydroclimatic change in the Rocky Mountains and surrounding regions since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Shuman, Bryan N.; Serravezza, Marc

    2017-10-01

    The paleohydrologic record of western North America since the last glacial maximum reveals a wide range of hydroclimatic variability in time and space. To improve the understanding of abrupt hydroclimatic shifts and millennial-scale hydrologic changes in the central Rocky Mountains, we reconstruct the lake-level histories of two small lakes in the Beartooth and Bighorn Mountains in northern Wyoming over the past 17 ka. To do so, we use ground-penetrating radar (GPR) and sediment cores to track the elevations of shoreline sediments within the lakes through time. We compare the stratigraphies with those from four other lakes in Wyoming and Colorado, and find widespread evidence for a Terminal Pleistocene Drought from 15 to 11 ka, an early Holocene humid period from 11 to 8 ka, and mid-Holocene aridity from 8 to 5.5 ka. The northern Wyoming lakes also provide evidence of high levels in the Pleistocene, possibly before ca. 15 ka, and rapid hydroclimatic changes that may have correlated with Heinrich Event 1 (ca. 16.8 ka). We place the changes in a broad context by summarizing and mapping water-level changes from 107 additional, previously studied lakes. Important patterns include 1) extensive drying across the western U.S. after 15 ka; 2) sub-regional differences during the Pleistocene-Holocene transition; 3) a north-south contrast from 9 to 6 ka consistent with a northward shift in storm tracks as the influence of the Laurentide Ice Sheet diminished; and 4) rapid increases in effective moisture across much of western North America from 6 to 4 ka.

  3. The “anomalous cedar trees” of Lake Ashi, Hakone Volcano, Japan

    USGS Publications Warehouse

    Oki, Y.

    1984-01-01

    On the bottom of Lake Ashi at Hakone, Japan, there stand great trees that, since ancient times, have been widely known as the "Anomalous Cedar Trees" of Ashi. It is not known why these trees grow on the bottom of the lake, and it remains one of the mysteries of Hakone. It was formerly thought that, at the time Lake Ashi was born, a great forest of cedar trees which was growing in the caldera of the volcano sank into the water. From radioactive carbon dating techniques, it is known that a steam explosion in the Kami Mountains created the caldera approximately 3,000 years ago. The age of the "Anomalous Cedars" is placed at approximately. 

  4. Towards an improved inventory of Glacial Lake Outburst Floods in the Himalayas

    NASA Astrophysics Data System (ADS)

    Veh, Georg; Walz, Ariane; Korup, Oliver; Roessner, Sigrid

    2016-04-01

    The retreat of glaciers in the Himalayas and the associated release of meltwater have prompted the formation and growth of thousands of glacial lakes in the last decades. More than 2,200 of these lakes have developed in unconsolidated moraine material. These lakes can drain in a single event, producing potentially destructive glacial lake outburst floods (GLOFs). Only 44 GLOFs in the Himalayas have been documented in more detail since the 1930s, and evidence for a change, let alone an increase, in the frequency of these flood events remains elusive. The rare occurrence of GLOFs is counterintuitive to our hypothesis that an increasing amount of glacial lakes has to be consistent with a rising amount of outburst floods. Censoring bias affects the GLOF record, such that mostly larger floods with commensurate impact have been registered. Existing glacial lake inventories are also of limited help for the identification of GLOFs, as they were created in irregular time steps using different methodological approach and covering different regional extents. We discuss the key requirements for generating a more continuous, close to yearly time series of glacial lake evolution for the Himalayan mountain range using remote sensing data. To this end, we use sudden changes in glacial lake areas as the key diagnostic of dam breaks and outburst floods, employing the full archive of cloud-free Landsat data (L5, L7 and L8) from 1988 to 2015. SRTM and ALOS World 3D topographic data further improve the automatic detection of glacial lakes in an alpine landscape that is often difficult to access otherwise. Our workflow comprises expert-based classification of water bodies using thresholds and masks from different spectral indices and band ratios. A first evaluation of our mapping approach suggests that GLOFs reported during the study period could be tracked independently by a significant reduction of lake size between two subsequent Landsat scenes. This finding supports the feasibility

  5. Impacts of Recent Wetting on Snow Processes and Runoff Generation in a Terminal Lake Basin, Devils Lake, North Dakota.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Van Hoy, D.

    2016-12-01

    The Devils Lake Basin, only terminal lake basin in North America, drains to a terminal lake called Devils Lake. Terminal lakes are susceptible to climate and land use changes as their water levels fluctuate to these changes. The streamflow from the headwater catchments of the Devils Lake basin exerts a strong control on the water level of the lake. Since, the mid-1980s, the Devils Lake Basin as well as other basins in the northern Great Plains have faced a large and abrupt surge in precipitation regime resulting in a series of wetter climatic condition and flooding around the Devils Lake area. Nevertheless, the impacts of the recent wetting on snow processes such as snow accumulations, blowing snow transport, in-transit sublimation, frozen soil infiltration and snowmelt runoff generations in a headwater catchment of the Devils Lake basin are poorly understood. In this study, I utilize a physically-based, distributed cold regions hydrological model to simulate the hydrological responses in the Mauvais Coulee basin that drains to Devils Lake. The Mauvais Coulee basin ( 1072 km2), located in the north-central North Dakota, is set in a gently rolling landscape with low relief ( 220 m) and an average elevation of 500 m. Major land covers are forest areas in turtle mountains ( 10%) and crops ( 86%), with wheat ( 25%) and canola ( 20%) as the major crops. The model set up includes ten sub-basins, each of which is divided into several hydrological response units (HRUs): riparian forest, river channel, reservoir, wheat, canola, other crops, and marsh. The model is parameterized using local and regional measurements and the findings from previous scientific studies. The model is evaluated against streamflow observations at the Mauvais Coulee gauge (USGS) during 1994-2013 periods using multiple performance criteria. Finally, the impacts of recent increases in precipitation on hydrologic responses are investigated using modeled hydrologic processes.

  6. Late Pleistocene and Holocene vegetation and climate changes in the Lake Baikal region

    NASA Astrophysics Data System (ADS)

    Demske, D.; Heumann, G.; Granoszewski, W.; Mamakowa, K.; Piotrowska, N.; Bluszcz, A.; Goslar, T.

    2003-04-01

    Palynological high-resolution records from Lake Baikal sediments document strong vegetational changes during the transitions from an open landscape to Late Glacial shrublands and Holocene forests. For three core sites, investigated within EU-Project CONTINENT, sporomorph concentrates were used for AMS 14C dating of environmental changes. The pollen record from the northern lake site, located in vicinity to the Barguzin Mountains, shows pronounced maxima of Salix and Picea corresponding to late Pleistocene warming. A peak maximum in Alnus fruticosa during the Younger Dryas cooling coincided with low abundance of green algae in the lake and a decline in Picea trees. Fern-rich forests with Picea, Larix and Betula developed during early Holocene. With an abrupt expansion of Pteridium ferns Abies appeared in the northeastern Baikal region, reflecting optimum conditions for dark taiga. Among pines Pinus sibirica prevailed prior to the spread of P. sylvestris. Expansion of pines points to a distinct decrease in precipitation. A palynological sequence from the same site reflects the vegetation development during the last interglacial, with differences indicated by higher abundance of Abies. The upper part of the interglacial record comprises the transition to stadial conditions. Further pollen spectra are probably equivalent to first interstadials of the early glacial period (Zyryansk). Comparison with southern sites, in vicinity to the Selenga Delta and the Khamar-Daban Mountains, reveals that regional and temporal differentiation of Holocene vegetation development and climate conditions was closely related to the distribution of mountain ranges.

  7. Revised age of deglaciation of Lake Emma based on new radiocarbon and macrofossil analyses

    USGS Publications Warehouse

    Elias, S.A.; Carrara, P.E.; Toolin, L.J.; Jull, A.J.T.

    1991-01-01

    Previous radiocarbon ages of detrital moss fragments in basal organic sediments of Lake Emma indicated that extensive deglaciation of the San Juan Mountains occurred prior to 14,900 yr B.P. (Carrara et al., 1984). Paleoecological analyses of insect and plant macrofossils from these basal sediments cast doubt on the reliability of the radiocarbon ages. Subsequent accelerator radiocarbon dates of insect fossils and wood fragments indicate an early Holocene age, rather than a late Pleistocene age, for the basal sediments of Lake Emma. These new radiocarbon ages suggest that by at least 10,000 yr B.P. deglaciation of the San Juan Mountains was complete. The insect and plant macrofossils from the basal organic sediments indicate a higher-than-present treeline during the early Holocene. The insect assemblages consisted of about 30% bark beetles, which contrasts markedly with the composition of insects from modern lake sediments and modern specimens collected in the Lake Emma cirque, in which bark beetles comprise only about 3% of the assemblages. In addition, in the fossil assemblages there were a number of flightless insect species (not subject to upslope transport by wind) indicative of coniferous forest environments. These insects were likewise absent in the modern assemblage. ?? 1991.

  8. Principal facts for 408 gravity stations in the vicinity of the Talkeetna Mountains, south-central Alaska

    USGS Publications Warehouse

    Morin, Robert L.; Glen, Jonathan M.G.

    2003-01-01

    Gravity data were collected between 1999 and 2002 along transects in the Talkeetna Mountains of south-central Alaska as part of a geological and geophysical study of the framework geology of the region. The study area lies between 61° 30’ and 63° 45’ N. latitude and 145° and 151° W. longitude. This data set includes 408 gravity stations. These data, combined with the pre-existing 3,286 stations, brings the total data in this area to 3,694 gravity stations. Principal facts for the 408 new gravity stations and the 15 gravity base stations used for control are listed in this report. During the summer of 1999, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 55 gravity stations were made. One gravity base station was used for control for this survey. This base station, STEP, is located at the Stephan Lake Lodge on Stephan Lake. The observed gravity of this station was calculated based on an indirect tie to base station ANCL in Anchorage. The temporary base used to tie between STEP and ANCL was REGL in Anchorage. During the summer of 2000, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 56 gravity stations were made. One gravity base station was used for control for this survey. This base station, GRHS, is located at the Gracious House Lodge on the Denali Highway. The observed gravity of this station was calculated based on multiple ties to base stations D87, and D57 along the Denali Highway. During the summer of 2001, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 90 gravity stations were made. One gravity base station was used for control for this survey. This base station, HLML, is located at the High Lake Lodge. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, WASA in Wasilla, and TLKM in Talkeetna. Also during the summer of 2001, a gravity survey was conducted in the vicinity

  9. Late Pleistocene and Holocene paleolimnology of two mountain lakes in western Tasmania.

    USGS Publications Warehouse

    Platt, Bradbury J.

    1986-01-01

    The analysis of diatoms from two lake-sediment cores from southwestern Tasmania that span the Pleistocene-Holocene boundary provides insight about paleolimnological and paleoclimatic change in this region. Both Lake Vera and Eagle Tarn have lacustrine records that begin about 12 000 yr ago. Both lakes have had similar limnological histories. Each appears to have been larger and more alkaline 12 000 yr ago and both became shallower through time. Fossil diatom assemblages about 11 000 yr old indicate shallow- water environments that fluctuated in pH, and between dilute and possibly slightly saline hydrochemical conditions. Beginning 11 500 yr ago, limnological conditions of shallow, dilute water of neutral pH prevailed, indicating reduction of moisture stress. A subsequent transition to diatom assemblages indicative of acidic conditions about 10 000 yr ago parallels the establishment of rain-forest vegetation and essentially modern climatic conditions with excess precipitation over evaporation. Changes at these separate and distinctive sites suggests a regional paleoclimatic cause rather than local environmental effects. Latest Pleistocene climates were apparently more continental and drier than Holocene climates in southwestern Tasmania.-from Author

  10. A preliminary synthesis of structural, stratigraphic, and magnetic data from part of the northwest Adirondacks, New York

    USGS Publications Warehouse

    Foose, M.P.; Brown, C. Ervin

    1976-01-01

    Synthesis of recent work in the NW Adirondacks, New York allows the development of a coherent geologic picture. Mapping of the Precambrian rock units enables the recognition of four major units which are, from bottom to top, 1) Granitic Gneiss (alaskite), 2) Lower Marble, 3) Major Gneiss, and 4) Upper Marble. Additionally, lenses of amphibolite and granite occur as intrusives within this succession. These rock units have been complexly deformed by three major folding episodes, and by two distinctly different styles of faulting. The result has been to produce large northeast-southwest trending dome and basin structures. Patterns of magnetic intensity closely parallel distribution of rock units and provide additional information for a structural and stratigraphic synthesis-.

  11. Identifying Common Patterns in Diverse Systems: Effects of Exurban Development on Birds of the Adirondack Park and the Greater Yellowstone Ecosystem, USA

    NASA Astrophysics Data System (ADS)

    Glennon, Michale J.; Kretser, Heidi E.; Hilty, Jodi A.

    2015-02-01

    We examined the impacts of exurban development on bird communities in Essex County, New York and Madison County, Montana by comparing differences in abundance of songbirds between subdivisions and control sites in both regions. We hypothesized that impacts to bird communities would be greater in the relatively homogeneous, closed canopy Adirondack forest of northern New York State than they would be in the more naturally heterogeneous grasslands interspersed with trees and shrubs of the Greater Yellowstone Ecosystem. We examined birds in five functional groups expected to be responsive to exurban development, and determined relative abundance within subdivisions and control sites across these two distinct regions. We found little support for our hypothesis. For birds in the area-sensitive, low nesting, and Neotropical migrant functional groups, relative abundance was lower in subdivisions in the Adirondacks and in Madison County, while relative abundance of edge specialists was greater in subdivisions in both regions. The direction and magnitude of change in the avian communities between subdivisions and controls was similar in both regions for all guilds except microhabitat specialists. These similarities across diverse ecosystems suggest that the ecological context of the encompassing region may be less important than other elements in shaping avian communities in exurban systems. This finding suggests that humans and their specific behaviors and activities in exurban areas may be underappreciated but potentially important drivers of change in these regions.

  12. Three-year decline of magmatic CO2 emissions from soils of a Mammoth Mountain tree kill: Horseshoe Lake, CA, 1995-1997

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1998-01-01

    We used the closed chamber method to measure soil CO2 efflux over a three-year period at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain in central eastern California. Efflux contour maps show a significant decline in the areas and rates of CO2 emission from 1995 to 1997. The emission rate fell from 350 t d-1 (metric tons per day) in 1995 to 130 t d-1 in 1997. The trend suggests a return to background soil CO2 efflux levels by early to mid 1999 and may reflect exhaustion of CO2 in a deep reservoir of accumulated gas and/or mechanical closure or sealing of fault conduits transmitting gas to the surface. However, emissions rose to 220 t d-1 on 23 September 1997 at the onset of a degassing event that lasted until 5 December 1997. Recent reservoir recharge and/or extension-enhanced gas flow may have caused the degassing event.

  13. Stereo Pair, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture

  14. Coherent late-Holocene climate-driven shifts in the structure of three Rocky Mountain lakes

    USGS Publications Warehouse

    Stone, Jeffery R.; Saros, Jasmine E.; Pederson, Gregory T.

    2016-01-01

    Large-scale atmospheric pressure centers, such as the Aleutian and Icelandic Low, have a demonstrated relationship with physical lake characteristics in contemporary monitoring studies, but the responses to these phenomena are rarely observed in lake records. We observe coherent changes in the stratification patterns of three deep (>30 m) lakes inferred from fossil diatom assemblages as a response to shifts in the location and intensity of the Aleutian Low and compare these changes with similar long-term changes observed in the δ18O record from the Yukon. Specifically, these records indicate that between 3.2 and 1.4 ka, the Aleutian Low shifted westward, resulting in an increased frequency of storm tracks across the Pacific Northwest during winter and spring. This change in atmospheric circulation ultimately produced deeper mixing in the upper waters of these three lake systems. Enhanced stratification between 4.5 and 3.3 ka and from 1.3 ka to present suggests a strengthened Aleutian Low and more meridional circulation.

  15. Potential for Loss of Breeding Habitat for Imperiled Mountain Yellow-legged Frog ( Rana muscosa) in High Sierra Nevada Mountain Water Bodies due to Reduced Snowpack: Interaction of Climate Change and an Introduced Predator

    NASA Astrophysics Data System (ADS)

    Lacan, I.; Matthews, K. R.

    2005-12-01

    Year to year variation in snowpack (20-200% average) and summer rain create large fluctuations in the volume of water in ponds and small lakes of the higher elevation (> 3000 m) Sierra Nevada. These water bodies are critical habitat for the imperiled mountain yellow-legged frog, Rana muscosa, which has decreased in abundance by 90% during the past century, due in part to the loss of suitable habitat and introduction of a fish predator (trout, Oncorhynchus spp.). Climate change is predicted to reduce the amount of snowpack, potentially impacting amphibian habitats throughout the Sierra Nevada by further reducing the lake and pond water levels and resulting in drying of small lakes during the summer. Mountain yellow-legged frogs are closely tied to water during all life stages, and are unique in having a three- to four-year tadpole phase. Thus, tadpole survival and future recruitment of adult frogs requires adequate water in lakes and ponds throughout the year, but larger lakes are populated with fish that prey on frogs and tadpoles. Thus, most successful frog breeding occurs in warm, shallow, fishless ponds that undergo wide fluctuations in volume. These water bodies would be most susceptible to the potential climate change effects of reduced snowpack, possibly resulting in lower tadpole survival. This study explores the link between the changes in water availability -- including complete pond drying -- and the abundance and recruitment of mountain yellow-legged frog in Dusy Basin, Kings Canyon National Park, California, USA. We propose using the low-snowpack years (1999, 2002, 2004) as comparative case studies to predict future effects of climate change on aquatic habitat availability and amphibian abundance and survival. To quantify the year to year variation and changes in water volume available to amphibians, we initiated GPS lake mapping in 2002 to quantify water volumes, water surface area, and shoreline length. We tracked these changes by repeated mapping of

  16. ALPINE LAKES WILDERNESS STUDY AREA, WASHINGTON.

    USGS Publications Warehouse

    Gualtieri, J.L.; Thurber, H.K.

    1984-01-01

    The Alpine Lakes Wilderness study area, located in the central part of the Cascade Mountains of Washington was examined for its mineral-resource potential. On the basis of that study the area was found to contain deposits of copper, other base metals, and gold and silver. Probable or substantiated mineral-resource potential exists for these commodities in the southwest-central, northwest, and southeast-central parts of the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  17. Metal contaminations impact archaeal community composition, abundance and function in remote alpine lakes.

    PubMed

    Compte-Port, Sergi; Borrego, Carles M; Moussard, Hélène; Jeanbille, Mathilde; Restrepo-Ortiz, Claudia Ximena; de Diego, Alberto; Rodriguez-Iruretagoiena, Azibar; Gredilla, Ainara; Fdez-Ortiz de Vallejuelo, Silvia; Galand, Pierre E; Kalenitchenko, Dimitri; Rols, Jean-Luc; Pokrovsky, Oleg S; Gonzalez, Aridane G; Camarero, Lluis; Muñiz, Selene; Navarro-Navarro, Enrique; Auguet, Jean-Christophe

    2018-04-24

    Using the 16S rRNA and mcrA genes, we investigated the composition, abundance and activity of sediment archaeal communities within 18 high-mountain lakes under contrasted metal levels from different origins (bedrock erosion, past-mining activities and atmospheric depositions). Bathyarchaeota, Euryarchaeota and Woesearchaeota were the major phyla found at the meta-community scale, representing 48%, 18.3% and 15.2% of the archaeal community respectively. Metals were equally important as physicochemical variables in explaining the assemblage of archaeal communities and their abundance. Methanogenesis appeared as a process of central importance in the carbon cycle within sediments of alpine lakes as indicated by the absolute abundance of methanogen 16S rRNA and mcrA gene transcripts (10 5 to 10 9 copies g -1 ). We showed that methanogen abundance and activity were significantly reduced with increasing concentrations of Pb and Cd, two indicators of airborne metal contaminations. Considering the ecological importance of methanogenesis in sediment habitats, these metal contaminations may have system wide implications even in remote area such as alpine lakes. Overall, this work was pioneer in integrating the effect of long-range atmospheric depositions on archaeal communities and indicated that metal contamination might significantly compromise the contribution of Archaea to the carbon cycling of the mountain lake sediments. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Changes of glacier, glacier-fed rivers and lakes in Altai Tavan Bogd National Park, Western Mongolia, based on multispectral satellite data from 1990 to 2017

    NASA Astrophysics Data System (ADS)

    Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, N.

    2017-12-01

    Impacts on glaciers and water resource management have been altering through climate changes in Mongolia territory characterized by dry and semi-arid climate with low precipitation. Melting glaciers are early indicators of climate change unlike the response of the forests which is slower and takes place over a long period of time. Mountain glaciers are important environmental components of local, regional, and global hydrological cycles. The study calculates an overview of changes for glacier, glacier-fed rivers and lakes in Altai Tavan Bogd mountain, the Western Mongolia, based on the indexes of multispectral data and the methods typically applied in glacier studies. Were utilized an integrated approach of Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) to combine Landsat, MODIS imagery and digital elevation model, to identify glacier cover are and quantify water storage change in lakes, and compared that with and climate parameters including precipitation, land surface temperature, evaporation, moisture. Our results show that melts of glacier at the study area has contributed to significantly increase of water storage of lakes in valley of The Altai Tavan Bogd mountain. There is hydrologic connection that lake basin is directly fed by glacier meltwater.

  19. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850-2000)

    NASA Astrophysics Data System (ADS)

    Kopcek, J.; Vesel, J.; Stuchlk, E.

    Major fluxes of sulphur and dissolved inorganic nitrogen were estimated in Central European mountain ecosystems of the Bohemian Forest (forest lakes) and Tatra Mountains (alpine lakes) over the industrial period. Sulphur outputs from these ecosystems were comparable to inputs during a period of relatively stable atmospheric deposition (10-35 mmol m-2 yr-1) around the 1930s. Atmospheric inputs of sulphur increased by three- to four-fold between the 1950s and 1980s to ~140 and ~60 mmol mm-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively. Sulphur outputs were lower than inputs due to accumulation in soils, which was higher in forest soils than in the sparser alpine soils and represented 0.8-1.6 and 0.2-0.3 mol m-2, respectively, for the whole 1930-2000 period. In the 1990s, atmospheric inputs of sulphur decreased 80% and 50% in the Bohemian Forest and Tatra Mountains, respectively, and sulphur outputs exceeded inputs. Catchment soils became pronounced sources of sulphur with output fluxes averaging between 15 and 31 mmol m-2 yr-1. Higher sulphur accumulation in the forest soils has delayed (by several decades) recovery of forest lakes from acidification compared to alpine lakes. Estimated deposition of dissolved inorganic nitrogen was 53-75 mmol m-2 yr-1 in the Bohemian Forest and 35-45 mmol m-2 yr-1 in the Tatra Mountains in the 1880- 1950 period, i.e. below the empirically derived threshold of ~70 mmol m-2 yr-1, above which nitrogen leaching often occurs. Dissolved inorganic nitrogen was efficiently retained in the ecosystems and nitrate export was negligible (0-7 mmol m-2 yr-1). By the 1980s, nitrogen deposition increased to ~160 and ~80 mmol m-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively, and nitrogen output increased to 120 and 60 mmol m-2 yr-1. Moreover, assimilation of nitrogen in soils declined from ~40 to 10-20 mmol m-2 yr-1 in the alpine soils and even more in the Bohemian Forest, where one of the catchments has even become

  20. An improved active contour model for glacial lake extraction

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  1. Principal facts for gravity stations and physical property measurements in the Lake Mead 30' by 60' quadrangle, Nevada and Arizona

    USGS Publications Warehouse

    Langenheim, V.E.; Davidson, J.G.; Anderson, M.L.; Blank, H.R.

    1999-01-01

    The U.S. Geological Survey (USGS) collected 811 gravity stations on the Lake Mead 30' by 60' quadrangle from October, 1997 to September, 1999. These data were collected in support of geologic mapping of the Lake Mead quadrangle. In addition to these new data, gravity stations were compiled from a number of sources. These stations were reprocessed according to the reduction method described below and used for the new data. Density and magnetic susceptibility measurements were also performed on more than 250 rock samples. The Lake Mead quadrangle ranges from 360 to 360 30' north latitude and from 114° to 115° west longitude. It spans most of Lake Mead (see index map, below), the largest manmade lake in the United States, and includes most of the Lake Mead National Recreation Area. Its geology is very complex; Mesozoic thrust faults are exposed in the Muddy Mountains, Precambrian crystalline basement rocks are exhumed in tilted fault blocks near Gold Butte, extensive Tertiary volcanism is evident in the Black Mountains, and strike-slip faults of the right-lateral Las Vegas Valley shear zone and the left-lateral Lake Mead fault system meet near the Gale Hills. These gravity data and physical property measurements will aid in the 3-dimensional characterization of structure and stratigraphy in the quadrangle as part of the Las Vegas Urban Corridor mapping project.

  2. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009)

    PubMed Central

    Liu, Hongxing; Chen, Yaning; Shu, Song; Wu, Qiusheng; Wang, Shujie

    2017-01-01

    This study utilizes ICESat Release 33 GLA14 data to analyse water level variation of Xinjiang’s lakes and reservoirs from 2003 to 2009. By using Landsat images, lakes and reservoirs with area larger than 1 km2 are numerically delineated with a software tool. Based on ICESat observations, we analyse the characteristics of water level variation in different geographic environments, as well as investigate the reasons for the variation. Results indicate that climatic warming contributes to rising water levels in lakes in mountainous areas, especially for lakes that are recharged by snow and glacial melting. For lakes in oases, the water levels are affected jointly by human activity and climate change, while the water levels of reservoirs are mainly affected by human activity. Comparing the annual average rates of water levels, those of lakes are higher than those of reservoirs in oasis areas. The main reasons for the decreasing water levels in desert regions are the reduction of recharged runoff and high evaporation. By analysing the variation of water levels and water volume in different geologic environments, it is found that water level and volume increased in mountainous regions, and decreased in oasis regions and desert regions. Finding also demonstrate that decreasing volume is greater than increasing volume, which results in decreasing total volume of Xinjiang lakes and reservoirs. PMID:28873094

  3. Mechanisms and Magnitude of Cenozoic Crustal Extension in the Vicinity of Lake Mead, Nevada and the Beaver Dam Mountains, Utah: Geochemical, Geochronological,Thermochronological and Geophysical Constraints

    NASA Astrophysics Data System (ADS)

    Almeida, Rafael V.

    The central Basin and Range Province of Nevada and Utah was one of the first areas in which the existence of widespread low-angle normal faults or detachments was first recognized. The magnitude of associated crustal extension is estimated by some to be large, in places increasing original line lengths by as much as a factor of four. However, rock mechanics experiments and seismological data cast doubt on whether these structures slipped at low inclination in the manner generally assumed. In this dissertation, I review the evidence for the presence of detachment faults in the Lake Mead and Beaver Dam Mountains areas and place constraints on the amount of extension that has occurred there since the Miocene. Chapter 1 deals with the source-provenance relationship between Miocene breccias cropping out close to Las Vegas, Nevada and their interpreted source at Gold Butte, currently located 65 km to the east. Geochemical, geochronological and thermochronological data provide support for that long-accepted correlation, though with unexpected mismatches requiring modification of the original hypothesis. In Chapter 2, the same data are used to propose a refinement of the timing of ~1.45 Ga anorogenic magmatism, and the distribution of Proterozoic crustal boundaries. Chapter 3 uses geophysical methods to address the subsurface geometry of faults along the west flank of the Beaver Dam Mountains of southwestern Utah. The data suggest that the range is bounded by steeply inclined normal faults rather than a regional-scale detachment fault. Footwall folding formerly ascribed to Miocene deformation is reinterpreted as an expression of Cretaceous crustal shortening. Fission track data presented in Chapter 4 are consistent with mid-Miocene exhumation adjacent to high-angle normal faults. They also reveal a protracted history dating back to the Pennsylvanian-Permian time, with implications for the interpretation of other basement-cored uplifts in the region. A key finding of this

  4. Home destruction examination: Grass Valley Fire, Lake Arrowhead, California

    Treesearch

    Jack D. Cohen; Richard D. Stratton

    2008-01-01

    The Grass Valley Fire started October 22, 2007 at approximately 0508, one-mile west of Lake Arrowhead in the San Bernardino Mountains. Fuel and weather conditions were extreme due to drought, dry Santa Ana winds, and chaparral and conifer vegetation on steep terrain. The fire proceeded south through the Grass Valley drainage one-mile before impacting an area of dense...

  5. Lake Buchannan, Great Dividing Range, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Buchannan, a small but blue and prominent in the center of the view, lies in the Great Dividing of Queensland, Australia (22.0S, 146.0E). The mountain range in this case is a low plateau of no more than 2,000 to 3,000 ft altitude. The interior is dry, mostly in pasture but the coastal zone in contrast, is wet tropical country where bananas and sugarcane are grown.

  6. The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.

    2009-12-01

    Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has

  7. Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA

    NASA Astrophysics Data System (ADS)

    Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.

    2017-12-01

    Soda lakes represent unique ecosystems characterized by extremes of pH, salinity and distinct geochemical cycling. Despite these extreme conditions, soda lakes are important repositories of biological adaptation and have a highly functional microbial system. We investigated the biogeochemical cycling of sulfur and nitrogen compounds in Mono Lake, California, located east of the Sierra Nevada mountains. Mono lake is characterized by hyperalkaline, hypersaline and high sulfate concentrations and can enter prolonged periods of meromixis due to freshwater inflow. Typically, the microbial sulfur cycle is highly active in soda lakes with both oxidation and reduction of sulfur compounds. However, the biological sulfur cycle is connected to many other main elemental cycles such as carbon, nitrogen and metals. Here we investigated the interaction between sulfur and nitrogen cycling in Mono lake using a combination of molecular, isotopic, and geochemical observations to explore the links between microbial phylogenetic composition and functionality. Metagenomic and 16S rRNA gene amplicon sequencing were determined at two locations and five depths in May 2017. 16S rRNA gene amplicon sequencing analysis revealed organisms capable of both sulfur and nitrogen cycling. The relative abundance and distribution of functional genes (dsrA, soxAB, nifH, etc) were also determined. These genetic markers indicate the potential in situ relevance of specific carbon, nitrogen, and sulfur pathways in the water column prior to the transition to meromictic stratification. However, genes for sulfide oxidation, denitrification, and ammonification were present. Genome binning guided by the most abundant dsrA sequences, GC content, and abundance with depth identified a Thioalkalivibrio paradoxus bin containing genes capable of sulfur oxidation, denitrification, and nitrate reduction. The presence of a large number of sulfur and nitrogen cycling genes associated with Thioalkalivibrio paradoxus

  8. Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan.

    PubMed

    Tandon, Kshitij; Yang, Shan-Hua; Wan, Min-Tao; Yang, Chia-Chin; Baatar, Bayanmunkh; Chiu, Chih-Yu; Tsai, Jeng-Wei; Liu, Wen-Cheng; Tang, Sen-Lin

    2018-04-21

    Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes-located 21 km apart and with disparate trophic characteristics-and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.

  9. Exploring the Causes of Mid-Holocene Drought in the Rocky Mountains Using Hydrologic Forward Models

    NASA Astrophysics Data System (ADS)

    Meador, E.; Morrill, C.

    2017-12-01

    We present a quantitative model-data comparison for mid-Holocene (6 ka) lake levels in the Rocky Mountains, with the goals of assessing the skill coupled climate models and hydrologic forward models in simulating climate change and improving our understanding of the factors causing past changes in water resources. The mid-Holocene climate in this area may in some ways be similar to expected future climate, thus improved understanding of the factors causing past changes in water resources have the potential to aid in the process of water allocation for large areas that share a relatively small water source. This project focuses on Little Windy Hill Pond in the Medicine Bow Forest in the Rocky Mountains in southern Wyoming. We first calibrated the Variable Infiltration Capacity (VIC) catchment hydrologic model and the one-dimensional Hostetler Bartlein lake energy-balance model to modern observations, using U.S. Geological Survey stream discharge data and Snow Telemetry (SNOTEL) data to ensure appropriate selection of model parameters. Once the models were calibrated to modern conditions, we forced them with output from eight mid-Holocene coupled climate model simulations completed as part of the Coupled Model Intercomparison Project, Phase 5. Forcing from nearly all of the CMIP5 models generates intense, short-lived droughts for the mid-Holocene that are more severe than any we modeled for the past six decades. The severity of the mid-Holocene droughts could be sufficient, depending on sediment processes in the lake, to account for low lake levels recorded by loss-on-ignition in sediment cores. Our preliminary analysis of model output indicates that the combined effects of decreased snowmelt runoff and increased summer lake evaporation cause low mid-Holocene lake levels. These factors are also expected to be important in the future under anthropogenic climate change.

  10. Risk factors for exposure to feline pathogens in California mountain lions (Puma concolor).

    PubMed

    Foley, Janet E; Swift, Pamela; Fleer, Katryna A; Torres, Steve; Girard, Yvette A; Johnson, Christine K

    2013-04-01

    The primary challenge to mountain lion population viability in California is habitat loss and fragmentation. These habitat impacts could enhance disease risk by increasing contact with domestic animals and by altering patterns of exposure to other wild felids. We performed a serologic survey for feline pathogens in California mountain lions (Puma concolor) using 490 samples from 45 counties collected from 1990 to 2008. Most mountain lions sampled were killed because of depredation or public safety concerns and 75% were adults. Pathogens detected by serosurvey in sampled mountain lions included feline panleukopenia virus (39.0%), feline calicivirus (33.0%), feline coronavirus (FCoV, 15.1%), feline herpesvirus (13.0%), heartworm (12.4%), feline leukemia virus (5.4%), and canine distemper virus (3%). An outbreak of heartworm exposure occurred from 1995 to 2003 and higher than expected levels of FCoV-antibody-positive mountain lions were observed from 2005 to 2008, with foci in southern Mendocino and eastern Lake counties. We show that the majority of mountain lions were exposed to feline pathogens and may be at risk of illness or fatality, particularly kittens. Combined with other stressors, such as ongoing habitat loss, infectious disease deserves recognition for potential negative impact on mountain lion health and population viability.

  11. Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail; Strelkov, Ivan

    2017-04-01

    A lake genesis and lake-level increasing during the Last Glacial Maximum (LGM) are the paramount issues in paleoclimatology. Investigating these problems reveals the regularities of lake development and figures out an arid territory conditions at the LGM stage. Pluvial theory is the most prevalent conception of lake formation during the LGM. This theory is based on a fact that the water bodies emerged and their level increased due to torrential rainfalls. In this study, it is paid attention to an alternative assumption of lake genesis at the LGM stage, which is called climate cryoaridization. In accordance with this hypothesis, the endorheic water basins had their level enlarged because of a simultaneous climate aridity and temperature decrease. In this research, a lake-level increasing in endorheic regions of Central Asia and South American Altiplano of the Andes is described. The lake investigation is related to its conditions during the LGM. The study also includes a lake catalogue clearly presenting the basin conditions at the LGM stage and nowadays. The data compilation partly consists of information from an earlier work of Mikhail Amosov, Lake-levels, Vegetation And Climate In Central Asia During The Last Glacial Maximum (EGU2014-3015). According to the investigation, a lake catalogue on 27 lakes showed that most of the water bodies had higher level. This feature could be mentioned for the biggest lakes of the Aral Sea, Lake Balkhash, Issyk-Kul etc. and for the small ones located in the mountains, such as Pamir, Tian-Shan and Tibet. Yet some lakes that are situated in Central Asian periphery (Lake Qinghai and lakes in Inner Mongolia) used to be lower than nowadays. Also, the lake-level increasing of Altiplano turned to be a significant feature during the LGM in accordance with the data of 5 lakes, such as Titicaca, Coipasa-Uyuni, Lejia, Miscanti and Santa-Maria. Most of the current endorheic basins at the LGM stage were filled with water due to abundant

  12. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining

  13. An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block

    USGS Publications Warehouse

    Manning, Andrew H.; Solomon, D. Kip

    2005-01-01

    The subsurface transfer of water from a mountain block to an adjacent basin (mountain block recharge (MBR)) is a commonly invoked mechanism of recharge to intermountain basins. However, MBR estimates are highly uncertain. We present an approach to characterize bulk fluid circulation in a mountain block and thus MBR that utilizes environmental tracers from the basin aquifer. Noble gas recharge temperatures, groundwater ages, and temperature data combined with heat and fluid flow modeling are used to identify clearly improbable flow regimes in the southeastern Salt Lake Valley, Utah, and adjacent Wasatch Mountains. The range of possible MBR rates is reduced by 70%. Derived MBR rates (5.5–12.6 × 104 m3 d−1) are on the same order of magnitude as previous large estimates, indicating that significant MBR to intermountain basins is plausible. However, derived rates are 50–100% of the lowest previous estimate, meaning total recharge is probably less than previously thought.

  14. Linking Foreign Language to Occupational Education in a Rural High School: Foreign Language with Criminal Justice and Travel & Tourism.

    ERIC Educational Resources Information Center

    Connors, William R.

    Ticonderoga High School (New York) has succeeded in increasing enrollments in foreign language courses beyond the college bound, Regents-level students who usually choose such courses. The school is located in the Adirondack Mountains, a region that, in the past decade, has seen increases both in prison construction and in tourism by…

  15. New York's TUNDRA.

    ERIC Educational Resources Information Center

    Kalinowski, Thomas

    1983-01-01

    Found at the summit of some of the highest peaks of New York State's Adirondack Mountains are low-growing plants similar, and in many cases, identical to plants growing in the Arctic. Describes these plants and the environment in which they are found. Includes a color plate of alpine tundra plants. (Author/JN)

  16. Macroinvertebrates as indicators of fish absence in naturally fishless lakes

    USGS Publications Warehouse

    Schilling, Emily Gaenzle; Loftin, C.S.; Huryn, Alexander D.

    2009-01-01

    1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish-containing lakes (n = 18) of similar size, location and maximum depth. We used non-metric multidimensional scaling to assess differences in community structure and t-tests for taxon-specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish-containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish-containing lakes, especially taxa that are large, active and free-swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus

  17. Mountain-Top-to-Mountain-Top Optical Link Demonstration. Part 1

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Wright, M. W.

    2002-01-01

    A mountain-top-to-mountain-top optical link was demonstrated between JPL's Table Mountain Facility (TMF), Wrightwood, California, and Strawberry Peak (SP), Lake Arrowhead, California, during the months of June, August, and September of 2000. The bidirectional laser link was nearly horizontal at an altitude of 2 km and spanned a range of 46.8 km. The 780-nm beacon laser transmitted from TMF comprised eight co-propagating mutually incoherent laser beams. The normalized variance or scintillation index (SI) of the individual beacon lasers measured by recording the signal received through 8.50-cm-diameter spotting telescopes on three different nights (June 28-30, 2000) was 1.05 +/- 0.2, 1.76 +/- 0.6, and 0.96 +/- 0.24, respectively. These measurements agreed with values predicted by a heuristic model. The SI of the signal received at SP was found to decrease progressively with an increasing number of beams, and a factor of 3 to 3.5 reduction was achieved for all eight beams. The beam divergence determined by mapping out the point spread function of a few of the individual laser footprints received at SP was 85 to 150 microrad, compared to a design goal of 120 microrad. The 852-nm communications laser beam received at TMF through a 60-cm-diameter telescope on the nights of August 4 and September 14 and 15, 2000, yielded SI values of 0.23 +/- 0.04, 0.32 +/- 0.01, and 0.49 +/- 0.18, respectively, where the reduction was attributed to aperture averaging. The probability distribution functions of the received signal at either end, mitigated by multi-beam averaging in one direction and by aperture averaging in the other direction, displayed lognormal behavior. Consequently, the measured fade statistics showed good agreement with a lognormal model.

  18. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California

    USGS Publications Warehouse

    Grove, T.L.; Donnelly-Nolan, J. M.; Housh, T.

    1997-01-01

    Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust.

  19. Shifts in alpine lakes' ecosystems in Japan driven by increasing Asian dusts

    NASA Astrophysics Data System (ADS)

    Tsugeki, N. K.; Tani, Y.; Ueda, S.; Agusa, T.; Toyoda, K.; Kuwae, M.; Oda, H.; Tanabe, S.; Urabe, J.

    2011-12-01

    Recently in East Asia the amount of fossil fuel combustion have increased with economic growth. It has caused a problem of trans-boundary air pollution in the whole of eastern Asia. Furthermore, Asian dust storms contribute episodically to the global aerosol load. However, the effects of increased Asian dusts on aquatic ecosystems are not well understood. If biologically important nutrients such as nitrogen (N) and phosphorus (P) are transported via air dust, the atmospheric deposition of the dust may have serious impacts on recipient aquatic ecosystems because the biological production is limited by these nutrient elements. A previous report using sedimentary records has evaluated that atmospheric P inputs to the alpine lakes in the United States increased fivefold following the increased western settlement to this country during the nineteenth century. Since P is the most deficient nutrient for production in many lakes increase in P loading through atmospheric deposition of anthropogenically-derived dust might greatly affect the lake ecosystems. We examined fossil pigments and zooplankton remains from Pb-dated sediments taken from a high mountain lake of Hourai-Numa, located in the Towada-Hachimantai National Park of Japan, to uncover historical changes in the phyto- and zooplankton community over the past 100 years. Simultaneously, we measured the biogeochemical variables of TOC, TN, TP, δ13C, δ15N, and 206Pb/207Pb, 208Pb/207Pb in the sediments to identify environmental factors causing such changes. As a result, despite little anthropogenic activities in the watersheds, alpine lakes in Japan Islands increased algal and herbivore plankton biomasses by 3-6 folds for recent years depending on terrestrial the surrounded vegetations and landscape conditions. Biological and biogeochemical proxies recorded in the lake sediments indicate that this eutrophication occurred after the 1990s when P deposition increased due to atmospheric loading transported from Asian

  20. Lakes, Seas, Mountains and Volcanoes on Titan: Implications for Geologic History

    NASA Astrophysics Data System (ADS)

    Stofan, E.; Hayes, A. G.; Wall, S. W.; Wood, C. A.

    2013-09-01

    The surface of Titan exhibits abundant evidence for erosional and depositional processes, with bodies of liquid hydrocarbons at both poles. While the portion of Titan's geologic history that we can access through its current surface is dominated by exogenic processes, remnant mountains and a few cryovolcanic features hint at a more endogenic past.

  1. Development of LANDSAT Derived Forest Cover Information for Integration into Adirondack Park GIS

    NASA Technical Reports Server (NTRS)

    Curran, R. P.; Banta, J. S.

    1982-01-01

    Based upon observed changes in timber harvest practices partially attributable to forest biomass removable for energy supply purposes, the Adirondack Park Agency began in 1979 a multi-year project to implement a digital geographic information system (GIS). An initial developmental task was an inventory of forest cover information and analysis of forest resource change and availability. While developing the GIS, a pilot project was undertaken to evaluate the usefulness of LANDSAT derived land cover information for this purpose, and to explore the integration of LANDSAT data into the GIS. The prototype LANDSAT analysis project involved: (1) the use of both recent and historic data to derive land cover information for two dates; and (2) comparison of land cover over time to determine quantitative and geographic changes. The "recent data," 1978 full foliage data over portions of four LANDSAT scenes, was classified, using ground truth derived training samples in various forested and non-forested categories. Forested categories include the following: northern hardwoods, pine, spruce-fir, and pine plantation, while nonforested categories include wet-conifer, pasture, grassland, urban, exposed soil, agriculture, and water.

  2. Impact of tebuthiuron on biodiversity of high elevation mountain big sagebrush communities

    Treesearch

    Barbara A. Wachocki; Mohammad Sondossi; Stewart C. Sanderson; Bruce L. Webb; E. Durant McArthur

    2001-01-01

    The objectives of this study were to determine tebuthiuron’s (1) effectiveness at low application rates in thinning dense, high elevation stands of mountain big sagebrush, (2) impact on understory herbaceous plants and soil microflora, and (3) movement and stability in soil. Four study sites were established in the Fish Lake National Forest and adjacent Bureau of Land...

  3. Bathymetry and Geology of the Floor of Yellowstone Lake, Yellowstone National Park, Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lee, G.K.; Webring, M.W.

    2007-01-01

    High-resolution, multi-beam sonar mapping of Yellowstone Lake was conducted by the U.S. Geological Survey in conjunction with the National Park Service from 1999 to 2002. Yellowstone Lake is the largest high-altitude lake in North America, at an altitude of 2,357 m with a surface area of 341 km2. More than 140 rivers and streams flow into Yellowstone Lake. The Yellowstone River, which enters at the southern end of the lake into the Southeast Arm, dominates the inflow of water and sediment (Shanks and others, 2005). The only outlet from the lake is at Fishing Bridge where the Yellowstone River flows northward discharging 375 to 4,600 cubic feet per second. The multi-beam sonar mapping occurred over a four-year period beginning in 1999 with mapping of the northern basin, continued in 2000 in West Thumb basin, in 2001 in the central basin, and in 2002 in the southern part of the lake including the Flat Mountain, South, and Southeast Arms.

  4. Evaluating regional patterns in nitrate sources to watersheds in national parks of the Rocky Mountains using nitrate isotopes

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Elliott, E.M.; Kendall, C.

    2008-01-01

    In the Rocky Mountains, there is uncertainty about the source areas and emission types that contribute to nitrate (NO3) deposition, which can adversely affect sensitive aquatic habitats of high-elevation watersheds. Regional patterns in NO3 deposition sources were evaluated using NO3 isotopes in five National Parks, including 37 lakes and 7 precipitation sites. Results indicate that lake NO3 ranged from detection limit to 38 μeq/L, δ18O (NO3) ranged from −5.7 to +21.3‰, and δ15N (NO3) ranged from −6.6 to +4.6‰. δ18O (NO3) in precipitation ranged from +71 to +78‰. δ15N (NO3) in precipitation and lakes overlap; however, δ15N (NO3) in precipitation is more depleted than δ15N (NO3) in lakes, ranging from −5.5 to −2.0‰. δ15N (NO3) values are significantly related (p < 0.05) to wet deposition of inorganic N, sulfate, and acidity, suggesting that spatial variability of δ15N (NO3) over the Rocky Mountains may be related to source areas of these solutes. Regional patterns show that NO3 and δ15N (NO3) are more enriched in lakes and precipitation from the southern Rockies and at higher elevations compared to the northern Rockies. The correspondence of high NO3 and enriched δ15N (NO3) in precipitation with high NO3and enriched δ15N (NO3) in lakes, suggests that deposition of inorganic N in wetfall may affect the amount of NO3 in lakes through a combination of direct and indirect processes such as enhanced nitrification.

  5. Investigation of the detection and monitoring of forest insect infestations in the Sierra Nevada Mountains of California

    NASA Technical Reports Server (NTRS)

    Hall, R. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. It is possible to detect all major areas of lodgepole pine defoliated by the needle miner within a given target area. Ground checking and helicopter observations have confirmed that accurate designations have been obtained for the following areas: (1) timbered v.s. non-timbered areas, (2) damaged v.s. undamaged timber areas, (3) lakes, (4) dome shadows which resemble lakes, (5) mountain meadows, (6) pasture land, (7) agricultural land, (8) desert, and (9) riparian vegetation.

  6. Relating actual with subfossil chironomid assemblages. Holocene habitat changes and paleoenvironmental reconstruction of Basa de la Mora Lake (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Tarrats, Pol; Rieradevall, Maria; González-Sampériz, Penélope; Pérez-Sanz, Ana; Valero-Garcés, Blas; Moreno, Ana

    2014-05-01

    Analyses of subfossil and actual macroinvertebrate fauna and Chironomidae larvae (Insecta: Diptera) assemblages of Basa de la Mora Lake (Central Pyrenees, Spain, 1914 m a.s.l.) improves the environmental calibration for lake paleoreconstruction and allow to infer lake habitat changes throughout the Holocene. The results of the actual Chironomidae community are consistent with other mountain lake studies (either in the Pyrenees or other regions), with a few mismatching due to lake specific conditions. The actual and the subfossil Chironomidae taxa present in Basa de la Mora Lake are the same, which is an essential requirement to apply the analogue methods. Although we could not find habitat-specific taxa, significant differences between the different habitats present in the lake were found. This circumstance allowed applying the Modern Analogue Technique (MAT) to infer lake habitat changes. The MAT method relates the actual community, defined from the species abundance matrix and an environmental variable (which is the object of the inference), and the past community, defined from the species abundance matrix downcore. Because the first axis of DCA carried out for the study of the actual Chironomidae larvae explained the assemblage changes between the different habitats, the scores of this first axis were used as representative of the environmental variable (dominant habitat type) to be inferred. The application of the MAT has allowed identifying two periods of lake productivity increase through the Holocene: i) around 2800 cal. yrs BP, which coincides with the first documented human occupation of the area, and ii) the last four centuries, synchronous to the maximum population of mountain areas in the Pyrenees and development of stockbreeding activities.

  7. Anatomy of the Midcontinent Rift beneath Lake Superior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.D.; McGinnis, L.D.; Ervin, C.P.

    1994-09-01

    The structure and geometry of the 1.1-b.y.-old Midcontinent Rift system under Lake Superior is interpreted from 20 seismic reflection profiles recorded during the early and mid-1980s. The seismic data reveal that rift basins under Lake Superior are variable in depth and are partially filled with Keweenawan age sediments to depths of 7 km or more and volcanic flows to depths of 36 km. These rift basins form a continuous and sinuous feature that widens in the Allouez Basin and Marquette Basin in the western and central lake and narrows between White Ridge and the Porcupine Mountains. The rift basin bendsmore » southeast around the Keweenaw Peninsula, widens to about 100 km as it extends into the eastern half of Lake Superior, and exists the lake with its axis in the vicinity of Au Sable Point in Pictured Rocks National Lake Shore, about 50 km northeast of Munising, Michigan. The axis of the rift may exit the western end of the lake near Chequamegon Bay in Wisconsin. However, lack of data in that area limits interpretation at this time. Prior to late-stage reverse-faulting, a continuous basin of more uniform thickness was present beneath the lake. Crustal extension during rifting of approximately 50 km was followed by plate convergence and crustal shortening of approximately 30 km, with the major component of thrust from the southeast. Crustal shortening occurred after development of rift grabens and their filling with lava flows, but before deposition of the final sag basin sediments. Integration of information obtained from outcrops with data reported here indicates that the Lake Superior section of the rift is associated with as many as three major boundary faults.« less

  8. Biomarkers and Metabolic Patterns in the Sediments of Evolving Glacial Lakes as a Proxy for Planetary Lake Exploration.

    PubMed

    Parro, Víctor; Blanco, Yolanda; Puente-Sánchez, Fernando; Rivas, Luis A; Moreno-Paz, Mercedes; Echeverría, Alex; Chong-Díaz, Guillermo; Demergasso, Cecilia; Cabrol, Nathalie A

    2018-05-01

    Oligotrophic glacial lakes in the Andes Mountains serve as models to study the effects of climate change on natural biological systems. The persistent high UV regime and evolution of the lake biota due to deglaciation make Andean lake ecosystems potential analogues in the search for life on other planetary bodies. Our objective was to identify microbial biomarkers and metabolic patterns that represent time points in the evolutionary history of Andean glacial lakes, as these may be used in long-term studies as microscale indicators of climate change processes. We investigated a variety of microbial markers in shallow sediments from Laguna Negra and Lo Encañado lakes (Región Metropolitana, Chile). An on-site immunoassay-based Life Detector Chip (LDChip) revealed the presence of sulfate-reducing bacteria, methanogenic archaea, and exopolymeric substances from Gammaproteobacteria. Bacterial and archaeal 16S rRNA gene sequences obtained from field samples confirmed the results from the immunoassays and also revealed the presence of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, as well as cyanobacteria and methanogenic archaea. The complementary immunoassay and phylogenetic results indicate a rich microbial diversity with active sulfate reduction and methanogenic activities along the shoreline and in shallow sediments. Sulfate inputs from the surrounding volcanic terrains during deglaciation may explain the observed microbial biomarker and metabolic patterns, which differ with depth and between the two lakes. A switch from aerobic and heterotrophic metabolisms to anaerobic ones such as sulfate reduction and methanogenesis in the shallow shores likely reflects the natural evolution of the lake sediments due to deglaciation. Hydrodynamic deposition of sediments creates compartmentalization (e.g., sediments with different structure and composition surrounded by oligotrophic water) that favors metabolic transitions. Similar phenomena would be expected to occur on other

  9. To evaluate ERTS-1 data for the usefulness as a geological sensor in the diverse geological terranes of New York State

    NASA Technical Reports Server (NTRS)

    Isachsen, Y. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The straight NNE-trending escarpment that marks the easternmost extent of the Catskill Mountains appears, from ERTS-1 imagery (1079-15124) to be related to a set of parallel topographic lineaments which occur over a distance of 40 km to the west. The October 11 imagery of the Adirondacks (1080-15174) displays the pre-Paleozoic erosion surface along the western and northern margin of the Adirondack Mountains dome. The northern portion of this paleoplain is terminated to the southeast by an escarpment following an ENE topographic linear to produce a pseudo-cuesta. The snow covered terrain in the Mohawk Valley between Albany and Rome (1170-15182 and 1169-15123) displays with sculptural clarity a drumlin field having a cloud-free area of about 2600 sq km; glacial flow directions can be plotted readily because the stoss and lee sides of the drumlins can be distinguished. In the imagery of summer and fall, agricultural patterns obscured the detail which is visible in the winter imagery.

  10. Episodic acidification of small streams in the northeastern united states: ionic controls of episodes

    USGS Publications Warehouse

    Wigington, P.J.; DeWalle, David R.; Murdoch, Peter S.; Kretser, W.A.; Simonin, H.A.; Van Sickle, J.; Baker, J.P.

    1996-01-01

    As part of the Episodic Response Project (ERP), we intensively monitored discharge and stream chemistry of 13 streams located in the Northern Appalachian region of Pennsylvania and in the Catskill and Adirondack Mountains of New York from fall 1988 to spring 1990. The ERP clearly documented the occurrence of acidic episodes with minimum episodic pH ??? 5 and inorganic monomeric Al (Alim) concentrations >150 ??g/L in at least two study streams in each region. Several streams consistently experienced episodes with maximum Alim concentrations >350 ??g/L. Acid neutralizing capacity (ANC) depressions resulted from complex interactions of multiple ions. Base cation decreases often made the most important contributions to ANC depressions during episodes. Organic acid pulses were also important contributors to ANC depressions in the Adirondack streams, and to a lesser extent, in the Catskill and Pennsylvania streams. Nitrate concentrations were low in the Pennsylvania streams, whereas the Catskill and Adirondack study streams had high NO3- concentrations and large episodic pulses (???54 ??eq/L). Most of the Pennsylvania study streams also frequently experienced episodic pulses of SO42- (???78 ??eq/L), whereas the Adirondack and Catskill streams did not. High baseline concentrations of SO42- (all three study areas) and NO3- (Adirondacks and Catskills) reduced episodic minimum ANC, even when these ions did not change during episodes. The ion changes that controlled the most severe episodes (lowest minimum episodic ANC) differed from the ion changes most important to smaller, more frequent episodes. Pulses of NO3- (Catskills and Adirondacks), SO42- (Pennsylvania), or organic acids became more important during major episodes. Overall, the behavior of streamwater SO42- and NO4- is an indicator that acidic deposition has contributed to the severity of episodes in the study streams.

  11. Assessing glacial lake outburst flood risk

    NASA Astrophysics Data System (ADS)

    Kougkoulos, Ioannis; Cook, Simon; Jomelli, Vincent; Clarke, Leon; Symeonakis, Elias

    2017-04-01

    Glaciers across the world are thinning and receding in response to atmospheric warming. Glaciers tend to erode subglacial basins and deposit eroded materials around their margins as lateral-frontal terminal moraines. Recession into these basins and behind impounding moraines causes meltwater to pond as proglacial and supraglacial lakes. Consequently, there has been a general trend of increasing number and size of these lakes associated with glacier melting in many mountainous regions around the globe, in the last 30 years. Glacial lake outburst floods (GLOFs) then may occur where the glacial lake dam (ice, rock, moraine, or combination thereof) is breached, or overtopped, and thousands of people have lost their lives to such events in the last few decades, especially in the Andes and in the Himalaya. Given the ongoing and arguably increasing risk posed to downstream communities, and infrastructure, there has been a proliferation of GLOF studies, with many seeking to estimate GLOF hazard or risk in specific regions, or to identify 'potentially dangerous glacial lakes'. Given the increased scientific interest in GLOFs, it is timely to evaluate critically the ways in which GLOF risk has been assessed previously, and whether there are improvements that can be made to the ways in which risk assessment is achieved. We argue that, whilst existing GLOF hazard and risk assessments have been extremely valuable they often suffer from a number of key shortcomings that can be addressed by using different techniques as multi-criteria decision analysis and hydraulic modelling borrowed from disciplines like engineering, remote sensing and operations research.

  12. View east over the Rocky Mountains and Great Plains

    NASA Image and Video Library

    1974-02-01

    SL4-138-3875 (February 1974) --- A color oblique photograph looking east over the Rocky Mountains and Great Plains. This view covers a portion of the States of Colorado, Wyoming, and Nebraska. A Skylab 4 crewmen took this picture with a hand-held 70mm Hasselblad camera. This entire region, covered with a blanket of snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Man's only apparent change to the snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. Grand Junction, Colorado on the western slope of the Rocky Mountains is just off the photograph at left center bottom. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton and Yale form the high region of the Collegiate Range which is the pronounced mountain area in the right center. Snow cover not only enhances mountain features but also the drainage patterns. East of Denver (right corner) the sinuous trace of the South Platte River (center) and its junction with the North Platte River near North Platte, Nebraska. Lake McConaughy in Nebraska is the body of water (black) near the river intersection. The trace of the Republic River in southern Nebraska is visible near the right corner of the photography. Geologic and hydro logic studies using this photograph will be conducted by Dr. Roger Morrison, U.S. Geological Survey. Photo credit: NASA

  13. Supraglacial lakes on Himalayan debris-covered glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Fujita, K.

    2013-12-01

    Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water

  14. Evidence of Regional Warming during the 20th Century in Alpine and Subalpine Lakes in the Western United States

    NASA Astrophysics Data System (ADS)

    Porinchu, D.; Reinemann, S.; Potito, A.; Moser, K.; MacDonald, G.; Munroe, J.; Mark, B.; Box, J.

    2007-12-01

    Subfossil midge analyses have been used to develop high-resolution (sub-decadal) reconstructions of 20th century temperature change in the Sierra Nevada, CA with success. Expansion of this earlier work to additional sites in the western United States suggests that a widespread increase in lake water temperatures has occurred in this region during the late 20th and early 21st centuries. Inference models for summer surface water temperature (SSWT) were developed combining midge abundance data from 56 lakes in the eastern Sierra Nevada, California, with subfossil midge remains from the Uinta Mountains, UT. The newly merged Sierra Nevada-Uinta Mountains calibration set contains a greater diversity of chironomid assemblages and spans a wider SSWT range than the previously published Sierra Nevada calibration set. The lakes in the merged calibration set spanned elevation, depth, and SSWT temperature ranges of 900 m, 12.7 m, and 11.3 °C, respectively. A robust inference model for SSWT (3-component WA-PLS), based on 90 lakes, had a high coefficient of determination (r2jack = 0.66) and a low RMSEP (1.4 °C). The midge-based SSWT inference model was applied to subfossil chironomid remains extracted from well-dated sediment sequences recovered from alpine and subalpine lakes in the Sierra Nevada, CA, Snake Range, NV and Uinta Mountains, UT. A close correspondence exists between the chironomid-inferred temperature profiles for the 20th and 21st centuries and mean July or summer temperatures measured at nearby meteorological stations. Application of this midge-based SSWT inference model to other intact, late Quaternary sedimentary sequences found in subalpine and alpine lakes in the Great Basin will help resolve the impact of late Quaternary and recent climate change in this region, improve our understanding of regional climate and aquatic ecosystem variability, and can be used to monitor the effects of climate change on aquatic ecosystems and establish 'baseline' conditions

  15. Tectonic-karstic origin of the alleged "impact crater" of Lake Isli (Imilchil district, High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Ibouh, Hassan; Michard, André; Charrière, André; Benkaddour, Abdelfattah; Rhoujjati, Ali

    2014-03-01

    The scenic lakes Tislit and Isli of the Imilchil area in the central High Atlas of Morocco have been recently promoted to the rank of "dual impact crater" by a group of geoscientists. This was promptly denied by a group of meteorite specialists, but the first team reiterated their impact crater interpretation, now restricted to Lake Isli. This alleged 40-kyr-old impact crater would be associated with the Agoudal meteorite recognized further in the southeast. Here, we show that the lake formed during the Lowe-Middle Pleistocene in a small Pliocene (?) pull-apart basin through additional collapsing due to karst phenomena in the underlying limestones. This compares with the formation of a number of lakes of the Atlas Mountains. None of the "proofs" produced in support of a meteoritic origin of Lake Isli coincides with the geology of the area.

  16. Seismic investigation of Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Naudts, L.; De Mol, L.; De Batist, M.

    2012-04-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan mountains in Kyrgyzstan, Central Asia. It has formed in a tectonically active region with W-E striking major thrust zones north and south of the lake. The lake's modern surface level is at 1607 m above sea level, maximum depth in the central basin of the lake is roughly 670 m, and the total water volume is around 1736 km3. The lake is elongated with 180 km in west-east and 60 km in south-north direction. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher altitudes. The lake is characterized by two large delta areas at its western and eastern end, with the deltaic area being as wide as up to 60 km in the eastern and 40 km in the western part, and by steep slopes at the northern and southern shore with only a rather narrow shallower shelf area. The lake contains the sediments of the past up to several million years, and has been proposed as a future target for deep drilling within ICDP. Three seismic surveys by Russian and Belgian groups in 1982, 1997 and 2001 revealed a thick sediment infill in Lake Issyk-Kul. At both the western and the eastern end of the lake, large delta systems were formed by actual and previous inlets, namely the Tyup and Djyrgalan rivers in the eastern part of the lake (still active) and the Chu River at the western end (currently bypassing the lake). Large sub-aquatic channel systems are visible in the lake's bathymetry in the shallower part of the delta systems close to the river mouths. They were quite likely formed by these rivers during a former lake level lowstand. The delta system consists of stacked prograding delta lobes with a characteristic topset-foreset-bottomset configuration. These lobes together with sub-aerial terraces found at several spots around the lake witness lake level fluctuations of up to >400 m. The sediments in the central plain of Lake Issyk-Kul are mainly well-layered with many turbiditic sequences

  17. Regional trends in aquatic recovery from acidification in North America and Europe

    USGS Publications Warehouse

    Stoddard, J.L.; Jeffries, D.S.; Lukewille, A.; Clair, T.A.; Dillon, P.J.; Driscoll, C.T.; Forsius, M.; Johannessen, M.; Kahl, J.S.; Kellogg, J.H.; Kemp, A.; Mannlo, J.; Monteith, D.T.; Murdoch, Peter S.; Patrick, S.; Rebsdorl, A.; Skjelkvale, B.L.; Stainton, M.P.; Traaen, T.; Van Dam, H.; Webster, K.E.; Wleting, J.; Wllander, A.

    1999-01-01

    Rates of acidic deposition from the atmosphere ('acid rain') have decreased throughout the 1980s and 1990s across large portions of North America and Europe. Many recent studies have attributed observed reversals in surface-water acidification at national and regional scales to the declining deposition. To test whether emissions regulations have led to widespread recovery in surface-water chemistry, we analysed regional trends between 1980 and 1995 in indicators of acidification (sulphate, nitrate and base-cation concentrations, and measured (Gran) alkalinity) for 205 lakes and streams in eight regions of North America and Europe. Dramatic differences in trend direction and strength for the two decades are apparent. In concordance with general temporal trends in acidic deposition, lake and stream sulphate concentrations decreased in all regions with the exception of Great Britain all but one of these regions exhibited stronger downward trends in the 1990s than in the 1980s. In contrast, regional declines in lake and stream nitrate concentrations were rare and, when detected, were very small. Recovery in alkalinity, expected wherever strong regional declines in sulphate concentrations have occurred, was observed in all regions of Europe, especially in the 1990s, but in only one region (of five) in North America. We attribute the lack of recovery in three regions (south/central Ontario, the Adirondack/Catskill mountains and midwestern North America) to strong regional declines in base-cation concentrations that exceed the decreases in sulphate concentrations.

  18. Development of a Multimetric Indicator of Pelagic Zooplankton Assemblage Condition for the 2012 National Lakes Assessment

    EPA Science Inventory

    We used zooplankton data collected for the 2012 National Lakes Assessment (NLA) to develop multimetric indices (MMIs) for five aggregated ecoregions of the conterminous USA (Coastal Plains, Eastern Highlands, Plains, Upper Midwest, and Western Mountains and Xeric [“West&rsq...

  19. Differential response of vegetation in Hulun Lake region at the northern margin of Asian summer monsoon to extreme cold events of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, Shengrui; Xiao, Jule; Xu, Qinghai; Wen, Ruilin; Fan, Jiawei; Huang, Yun; Yamagata, Hideki

    2018-06-01

    The response of vegetation to extreme cold events during the last deglaciation is important for assessing the impact of possible extreme climatic events on terrestrial ecosystems under future global warming scenarios. Here, we present a detailed record of the development of regional vegetation in the northern margin of Asian summer monsoon during the last deglaciation (16,500-11,000 cal yr BP) based on a radiocarbon-dated high-resolution pollen record from Hulun Lake, northeast China. The results show that the regional vegetation changed from subalpine meadow-desert steppe to mixed coniferous and deciduous forest-typical steppe during the last deglaciation. However, its responses to the Heinrich event 1 (H1) and the Younger Dryas event (YD) were significantly different: during the H1 event, scattered sparse forest was present in the surrounding mountains, while within the lake catchment the vegetation cover was poor and was dominated by desert steppe. In contrast, during the YD event, deciduous forest developed and the proportion of coniferous forest increased in the mountains, the lake catchment was occupied by typical steppe. We suggest that changes in Northern Hemisphere summer insolation and land surface conditions (ice sheets and sea level) caused temperature and monsoonal precipitation variations that contributed to the contrasting vegetation response during the two cold events. We conclude that under future global warming scenarios, extreme climatic events may cause a deterioration of the ecological environment of the Hulun Lake region, resulting in increased coniferous forest and decreased total forest cover in the surrounding mountains, and a reduction in typical steppe in the lake catchment.

  20. Investigating potential effects of heli-skiing on golden eagles in the Wasatch Mountains, Utah

    Treesearch

    Teryl G. Grubb; David K. Delaney; William W. Bowerman

    2007-01-01

    Implementing further research was beyond the scope of the U.S. Forest Service's 2004 Final Environmental Impact Statement (FEIS) and 2005 Wasatch Powderbird Guides (WPG) Special Use Permit Renewal process for heli-skiing in the Tri-Canyon Area in the Wasatch Mountains, just east of Salt Lake City, Utah. However, in their Record of Decision the Wasaatch-Cache (WCNF...

  1. The wildland-urban interface fire problem

    Treesearch

    Jack Cohen

    2010-01-01

    The fire destruction of hundreds of homes associated with wildfires has occurred in the United States for more than a century. From 1870 to 1920, massive wildfires occurred principally in the Lake States but also elsewhere. Wildfires such as Peshtigo (Wisconsin, 1871), Michigan (1881), Hinckley (Minnesota, 1894), Adirondack (New York, 1903), the Big Blowup (Idaho-...

  2. The wildland-urban interface fire problem: A consequence of the fire exclusion paradigm

    Treesearch

    Jack Cohen

    2008-01-01

    The fire destruction of hundreds of homes associated with wildfires has occurred in the United States for more than a century. From 1870 to 1920, massive wildfires occurred principally in the Lake States but also elsewhere. Wildfires such as Peshtigo (Wisconsin, 1871), Michigan (1881), Hinckley (Minnesota, 1894), Adirondack (New York, 1903), the Big Blowup (Idaho-...

  3. Lake Stability and Winter-Spring Transitions: Decoupled Ice Duration and Winter Stratification

    NASA Astrophysics Data System (ADS)

    Daly, J.; Dana, S.; Neal, B.

    2016-12-01

    Ice-out is an important historical record demonstrating the impact of warmer air temperatures on lake ice. To better understand regional differences in ice-out trends, to characterize the thermal dynamics of smaller mountain lakes, and to develop baseline data for Maine's high elevations landscapes, sub-hourly water temperatures have been collected in over a dozen of Maine's mountain lakes since 2010. Both surface water and hypolimnion temperature data are recorded year-round, facilitating the determination of ice-in, ice-out, and the duration of winter stratification. The multi-year record from sites across as 250 km transect allows us to compare spatial variability related to lake morphometry and location with inter-annual variability related to local weather. All of the study lakes are large enough to stratify during the summer and mix extensively during the fall. Most years, our data show that the onset of winter stratification is nearly synchronous across the study area and is associated with cold air temperatures. Winter stratification can begin days to weeks before ice-in; the timing of ice-in shows more variability, with both elevation and basin aspect influencing the timing. Ice-out shows both the anticipated spatial and interannual variability; some years there is strong coherence between locations while other years show high variability, possibly a function of differences in snowpack. Ice-out is not always immediately followed by the end of winter stratification, there is sometimes a lag of days to weeks before the lakes mix. If the warm temperatures that lead to ice-out are followed by calm days without significant wind, the surface of some lakes begins to warm quickly maintaining the density difference and prolonging winter stratification. The longer the lag time, the stronger the density difference becomes which may also result in a very brief period of mixing in the spring prior to set-up of summer stratification. This year's El Niño event resulted

  4. Identifying and Evaluating Possible Trigger Mechanisms for Glacial Lake Outburst Floods in the Hindu Kush Himalayas Using Remote Sensing Satellite Data

    NASA Astrophysics Data System (ADS)

    Hess, T. G.; Haritashya, U. K.

    2014-12-01

    Glacierized basins in high-altitude and mountainous areas, such as the Himalayas, have seen an increase in the number of glacial lakes over the years as a result of a changing climate. As the meltwater becomes more prevalent, the runoff can accumulate in a depression left behind by the receding glacier and can be bound by the walls of frontal and lateral moraines. These moraines, however, often are comprised of loose, unconsolidated sediment and can prove to be unstable dam structures for proglacial lakes. The factor of instability associated with the moraines poses a serious threat for failure and severe flooding. If the moraines were to be breached by the lake water, a phenomenon known as a glacial lake outburst flood (GLOF) can occur, potentially putting lives and infrastructure in harm's way. Consequently, this study examines the likelihood of a GLOF occurrence by analyzing potential trigger mechanisms associated with three proglacial lakes in the Hindu Kush Himalayan region. Using ASTER satellite imagery, one lake from Nepal, India, and Bhutan have each been assessed for possible trigger mechanisms. Our results suggest that steep-sided moraines, rugged topography, unstable masses on the upper reaches of steep slopes, and smaller lakes perched high above can all be classified as possible trigger mechanisms for the areas of study. It is imperative to be able to successfully identify potential trigger mechanisms using satellite data so that further ground observations can be made and mitigation efforts can be incorporated where needed. As lakes continue to grow, so does the cause for concern for possible GLOFs. Glacial lake outburst floods are being studied more extensively now due to the greater number of glacial lakes in high-mountainous areas. It is vitally important to understand the dynamics of a GLOF, especially the potential trigger mechanisms associated with it.

  5. Selected hydrologic data for Salt Lake Valley, Utah, October 1968 to October 1985

    USGS Publications Warehouse

    Seiler, R.L.

    1986-01-01

    This report contains hydrologic data collected in Salt Lake Valley from October 1968 to October 1985. The report area is bounded by the Wasatch Range on the east, the Oquirrh Mountains on the west, the Traverse Mountains on the south, and the boundary between Davis and Salt Lake Counties on the north. Hely and others (1971) defined two aquifers of major importance in the valley the principal aquifer and the shallow aquifer. The principal aquifer is a source of water for public supply and industry, whereas the shallow aquifer in many places contains water that is contaminated and is unsuitable for public supply (Seiler and Waddell, 1984). Most of the data in this report were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Granger-Hunter Improvement District, Magna Water Co. and Improvement District, City of Midvale, Salt Lake City Department of Public Utilities, City of Sandyr City of South Salt Lake, Taylorsville Bennion Improvement District, City of West Jordan, Holladay Water Company, and White City Water Co. Some of the data were published previously by Hely, Mower, and Horr (1967, 1968, and 1969), lorns, Mower, and Horr (1966a and b), Marine and Price (1963), and Seiler and Waddell (1984).The purpose of this report is to provide hydrologic data for use by the general public and by officials who manage water resources and to supplement interpretive reports for the area. Information about wells, water levels in wells, and the chemical and physical properties of ground water is given in tables 1-4, and the well locations are shown on plate 1.

  6. Extent of Pleistocene lakes in the western Great Basin

    USGS Publications Warehouse

    Reheis, Marith C.

    1999-01-01

    During the Pliocene to middle Pleistocene, pluvial lakes in the western Great Basin repeatedly rose to levels much higher than those of the well-documented late Pleistocene pluvial lakes, and some presently isolated basins were connected. Sedimentologic, geomorphic, and chronologic evidence at sites shown on the map indicates that Lakes Lahontan and Columbus-Rennie were as much as 70 m higher in the early-middle Pleistocene than during their late Pleistocene high stands. Lake Lahontan at its 1400-m shoreline level would submerge present-day Reno, Carson City, and Battle Mountain, and would flood other now-dry basins. To the east, Lakes Jonathan (new name), Diamond, Newark, and Hubbs also reached high stands during the early-middle(?) Pleistocene that were 25-40 m above their late Pleistocene shorelines; at these very high levels, the lakes became temporarily or permanently tributary to the Humboldt River and hence to Lake Lahontan. Such a temporary connection could have permitted fish to migrate from the Humboldt River southward into the presently isolated Newark Valley and from Lake Lahontan into Fairview Valley. The timing of drainage integration also provides suggested maximum ages for fish to populate the basins of Lake Diamond and Lake Jonathan. Reconstructing and dating these lake levels also has important implications for paleoclimate, tectonics, and drainage evolution in the western Great Basin. For example, shorelines in several basins form a stair-step sequence downward with time from the highest levels, thought to have formed at about 650 ka, to the lowest, formed during the late Pleistocene. This descending sequence indicates progressive drying of pluvial periods, possibly caused by uplift of the Sierra Nevada and other western ranges relative to the western Great Basin. However, these effects cannot account for the extremely high lake levels during the early middle Pleistocene; rather, these high levels were probably due to a combination of increased

  7. Seismic investigations of ancient Lake Ohrid (Macedonia/Albania): a pre-site survey for the SCOPSCO ICDP-drilling campaign

    NASA Astrophysics Data System (ADS)

    Lindhorst, K.; Krastel, S.; Schwenk, T.; Kurschat, S.; Daut, G.; Wessel, M.; Wagner, B.

    2009-04-01

    Lake Ohrid (Macedonia/Albania) is probably the oldest lake in Europe (2-5 Ma), and has been found as an important archive to study the sedimentary evolution of a graben system over several million years. Lake Ohrid has a length of 30 km (N-S) and a width of 15 km (W-E) and covers an area of 360 sqkm. Two major mountain chains surround the lake, on the west side the Mocra Mountains (app. 1500 m) and on the east side the Galicica Mountain (app. 2250 m). With more than 210 endemic species described, the lake is a unique aquatic ecosystem that is of worldwide importance. An international group of scientists has recently submitted a full drilling proposal entitled SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) to ICDP in order to (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. The lake was the target of several geophysical pre-site surveys starting with a first shallow seismic campaign in spring 2004 using a high resolution parametric sediment echosounder (INNOMAR SES-96 light). Airgun multichannel seismic data were collected during two surveys in 2007 and 2008, resulting in a dense grid of seismic lines over the entire lake. In total 650 km of shallow seismic lines 400 km of airgun multichannel seismics demonstrates the potential of Lake Ohrid as target for ICDP. Seismic profiles show that the lake can be divided into slope areas and a large central basin. The slope areas are characterized by a dense net of faults

  8. Perspective View with Landsat Overlay, Salt Lake City Olympics Venues, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This computer generated perspective image provides a northward looking 'view from space' that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling, and the nearby Snow Basin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City area ski resorts host the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and a Landsat 5 satellite image mosaic. Topographic expression is exaggerated four times.

    For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site]

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  9. Glacial lakes in Austria - Distribution and formation since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Buckel, J.; Otto, J. C.; Prasicek, G.; Keuschnig, M.

    2018-05-01

    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000 m a.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20 years in the Austrian Alps.

  10. Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.

  11. Tectonic and climatic controls on fan systems: The Kohrud mountain belt, Central Iran

    NASA Astrophysics Data System (ADS)

    Jones, Stuart J.; Arzani, Nasser; Allen, Mark B.

    2014-04-01

    Late Pleistocene to Holocene fans of the Kohrud mountain belt (Central Iran) illustrate the problems of differentiating tectonic and climatic drivers for the sedimentary signatures of alluvial fan successions. It is widely recognised that tectonic processes create the topography that causes fan development. The existence and position of fans along the Kohrud mountain belt, NE of Esfahan, are controlled by faulting along the Qom-Zefreh fault system and associated fault zones. These faults display moderate amounts of historical and instrumental seismicity, and so may be considered to be tectonically active. However, fluvial systems on the fans are currently incising in response to low Gavkhoni playa lake levels since the mid-Holocene, producing incised gullies on the fans up to 30 m deep. These gullies expose an interdigitation of lake deposits (dominated by fine-grained silts and clays with evaporites) and coarse gravels that characterise the alluvial fan sediments. The boundaries of each facies are mostly sharp, with fan sediments superimposed on lake sediments with little to no evidence of reworking. In turn, anhydrite-glauberite, mirabilite and halite crusts drape over the gravels, recording a rapid return to still water, shallow ephemeral saline lake sedimentation. Neither transition can be explained by adjustment of the hinterland drainage system after tectonic uplift. The potential influence in Central Iran of enhanced monsoons, the northward drift of the Intertopical Convergence Zone (ITCZ) and Mediterranean climates for the early Holocene (~ 6-10 ka) point to episodic rainfall (during winter months) associated with discrete high magnitude floods on the fan surfaces. The fan sediments were deposited under the general influence of a highstand playa lake whose level was fluctuating in response to climate. This study demonstrates that although tectonism can induce fan development, it is the sensitive balance between aridity and humidity resulting from changes in

  12. Three dimensional perspective view of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective of Mammoth Mountain, California. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Shuttle Endeavour on its 67th orbit, April 13, 1994. This view was constructed by overlaying a SIR-C radar iamage on a U.S. Geological Survey digital elevation Map. Vertical exaggeration is 2X. The image is centered at 37.6 degrees north, 119.0 degrees west. In this color representation, red is C-band HV-polarization, green is C-Band VV-polarization and blue is the ratio of C-Band VV to C-Band HV. Blue areas are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. Crowley Lake is in the foreground and Highway 395 crosses in the middle of the image. Mammoth Mountain is shown in the upper right. The Jet Propulsion Laboratory alternative photo number is P-43933.

  13. Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo

    2016-04-01

    The Cordillera Blanca mountain range is the highest in Peru and contains many of the world's tropical glaciers. This region is severely impacted by climate change causing accelerated glacier retreat. Secondary impacts of climate change on glacier retreat include stress on water resources and the risk of glacial lake outburst floods (GLOFs) from the many lakes that are forming and growing at the base of glaciers. A number of GLOFs originating from lakes in the Cordillera Blanca have occurred over the last century, several of which have had catastrophic impacts on cities and communities downstream. Glaciologists and engineers in Peru have been studying the lakes of the Cordillera Blanca for many years and have identified several lakes that are considered dangerous. However, a systematic analysis of all the lakes in the Cordillera Blanca has never before been attempted. Some methodologies for this type of systematic analysis have been proposed (eg. Emmer and Vilimek 2014; Wang, et al. 2011), but as yet they have only been applied to a few select lakes in the Cordillera Blanca. This study uses remotely sensed data to study all of the lakes of the Glacial Lake Inventory published by the Glaciology and Water Resources Unit of Peru's National Water Authority (UGRH 2011). The objective of this study is to assign a level of potential hazard to each glacial lake in the Cordillera Blanca and to ascertain if any of the lakes beyond those that have already been studied might pose a danger to nearby populations. A number of parameters of analysis, both quantitative and qualitative, have been selected to assess the hazard level of each glacial lake in the Cordillera Blanca using digital elevation models, satellite imagery, and glacier outlines. These parameters are then combined to come up with a preliminary assessment of the hazard level of each lake; the equation weighting each parameter draws on previously published methodologies but is tailored to the regional characteristics

  14. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    USGS Publications Warehouse

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  15. Effects of ultraviolet radiation and nutrients on the structure-function of phytoplankton in a high mountain lake.

    PubMed

    Korbee, Nathalie; Carrillo, Presentación; Mata, M Teresa; Rosillo, Silvia; Medina-Sánchez, Juan Manuel; Figueroa, Félix L

    2012-06-01

    The combined effect of high solar ultraviolet radiation (UVR) and nutrient supply in a phytoplankton community of a high mountain lake is analyzed in a in situ experiment for 6 days with 2 × 2 factorial design. Interactive UVR × nutrient effects on structural and functional variables (algal biomass, chlorophyll a (chl a), primary production (PP), maximal electron transport rate (ETR(max)), and alkaline phosphatase activity (APA)), as well as stoichiometric ones (sestonic N per cell and N:P ratio) were found. Under non-nutrient enriched conditions, no deleterious effects of UVR on structural variables, PP, photosynthetic efficiency and ETR(max) were observed, whereas only particulate and total APA were affected by UVR. However, percentage excreted organic carbon (%EOC), dissolved APA and sestonic C and P per cell increased under UVR, leading to a decrease in algal C:P and N:P ratios. After nutrient enrichment, chl a, total algal biomass and PP were negatively affected by UVR whereas %EOC, ETR(max) and internal C, P and N content increased. We suggest that the mechanism of algal acclimation to UVR in this high UVR flux ecosystem seems to be related to the increase of internal algal P-content mediated by physiological mechanisms to save P and by a stimulatory UVR effect on dissolved extracellular APA. The mechanism involved in the unmasking effect of UVR after nutrient-enrichment may be the result of a greater sensitivity to UVR-induced cell damage, making the negative UVR effects more evident.

  16. Denitrification Temperature Dependence in Remote, Cold, and N-Poor Lake Sediments

    NASA Astrophysics Data System (ADS)

    Palacin-Lizarbe, Carlos; Camarero, Lluís.; Catalan, Jordi

    2018-02-01

    The reservoir size and pathway rates of the nitrogen (N) cycle have been deeply modified by the human enhancement of N fixation, atmospheric emissions, and climate warming. Denitrification (DEN) transforms nitrate into nitrogenous gas and thus removes reactive nitrogen (Nr) back to the atmospheric reservoir. There is still a rather limited knowledge of the denitrification rates and their temperature dependence across ecosystems; particularly, for the abundant cold and N-poor freshwater systems (e.g., Arctic and mountain lakes). We experimentally investigated the denitrification rates of mountain lake sediments by manipulating nitrate concentration and temperature on field collected cores. DEN rates were nitrate limited in field conditions and showed a large potential for an immediate DEN increase with both warming and higher Nr load. The estimated activation energy (Ea) for denitrification at nitrate saturation was 46 ± 7 kJ mol-1 (Q10 1.7 ± 0.4). The apparent Ea increased with nitrate (μM) limitation as Ea = 46 + 419 [NO3-]-1. Accordingly, we suggest that climate warming may have a synergistic effect with N emission reduction to readjusting the N cycle. Changes of nitrate availability might be more relevant than direct temperature effects on denitrification.

  17. The aspen mortality summit; December 18 and 19, 2006; Salt Lake City, UT

    Treesearch

    Dale L. Bartos; Wayne D. Shepperd

    2010-01-01

    The USDA Forest Service Rocky Mountain Research Station sponsored an aspen summit meeting in Salt Lake City, Utah, on December 18 and19, 2006, to discuss the rapidly increasing mortality of aspen (Populus tremuloides) throughout the western United States. Selected scientists, university faculty, and managers from Federal, State, and non-profit agencies with experience...

  18. ERTS computer compatible tape data processing and analysis. Appendix 1: The utility of imaging radars for the study of lake ice

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Thomson, F. J.; Porcello, L. J.; Sattinger, I. J.; Malila, W. A.; Wezernak, C. T.; Horvath, R.; Vincent, R. K. (Principal Investigator); Bryan, M. L.

    1972-01-01

    There are no author-identified significant results in this report. Remotely sensed multispectral scanner and return beam vidicon imagery from ERTS-1 is being used for: (1) water depth measurements in the Virgin Islands and Upper Lake Michigan areas; (2) mapping of the Yellowstone National Park; (3) assessment of atmospheric effects in Colorado; (4) lake ice surveillance in Canada and Great Lakes areas; (5) recreational land use in Southeast Michigan; (6) International Field Year on the Great Lakes investigations of Lake Ontario; (7) image enhancement of multispectral scanner data using existing techniques; (8) water quality monitoring of the New York Bight, Tampa Bay, Lake Michigan, Santa Barbara Channel, and Lake Erie; (9) oil pollution detection in the Chesapeake Bay, Gulf of Mexico southwest of New Orleans, and Santa Barbara Channel; and (10) mapping iron compounds in the Wind River Mountains.

  19. Timing of the last glaciation and subsequent deglaciation in the Ruby Mountains, Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Laabs, Benjamin J. C.; Munroe, Jeffrey S.; Best, Laura C.; Caffee, Marc W.

    2013-01-01

    The timing of the last Pleistocene glaciation in western North America is becoming increasingly well understood, largely due to improved methods of obtaining numerical ages of glacial deposits and landforms. Among these, cosmogenic radionuclide surface-exposure dating has been widely applied to moraines of mountain glaciers, providing the framework for understanding terrestrial climate change during and since the last glaciation in western North America. During the Late Pleistocene, the Great Basin of the western United States hosted numerous mountain glaciers, the deposits of which can provide valuable records of past climate changes if their ages can be precisely determined. In this study, twenty-nine cosmogenic radionuclide 10Be surface-exposure ages from a suite of moraines in Seitz Canyon, western Ruby Mountains, limit the timing of the last glacial episode in the interior Great Basin, known as the Angel Lake Glaciation. Results indicate that deposition of a terminal moraine and two recessional moraines began just prior to ˜20.5 ka and continued until ˜20.0 ka. Retreat from the next younger recessional moraine began at ˜17.2 ka, and final deglaciation began at ˜14.8 ka. These ages are broadly consistent with cosmogenic surface-exposure ages from the eastern Sierra Nevada and the western Wasatch Mountains, in the western and eastern extremes of the Great Basin respectively. Furthermore, these ages suggest that the valley glacier in Seitz Canyon was at or near its maximum extent before and during the hydrologic maxima of Pleistocene lakes in the Great Basin, supporting previous suggestions that a cool and wet climate persisted in this region during the early part of the last glacial-interglacial transition.

  20. Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes

    NASA Astrophysics Data System (ADS)

    Szumińska, Danuta

    2016-07-01

    The main aim of the study is the analysis of changes in surface area of lake Böön Tsagaan (45°35‧N, 99°8‧E) and lake Orog (45°3‧N, 100°44‧E) taking place in the last 40 years in the context of climate conditions and permafrost degradation. The lakes, located in Central Mongolia, at the borderline of permafrost range are fed predominantly by river waters and groundwater from the surrounding mountain areas, characterized by continuous and discontinuous permafrost occurrence - mostly the Khangai. The analysis of the Böön Tsagaan and Orog lake surface area in 1974-2013 was conducted based on satellite images, whereas climate conditions were analysed using the NOAA climate data and CRU dataset. Principal Component Analysis (PCA) was used to study the relationship patterns between the climatic factors and changes in the surface area of the lakes. A tendency for a decrease in surface area, intermittent with short episodes of resupply, was observed in both studied lakes. Climate changes recorded in the analysed period had both direct and indirect impacts on water supply to lakes. Taking into account the results of PCA analysis, the most significant factors include: fluctuation of annual precipitation, increase in air temperature and thickness of snow cover. The extended duration of snow cover in the last decades of the 20th century may constitute a key factor in relation to permafrost degradation.