Science.gov

Sample records for adirondack mountain region

  1. A comparison of the temporally integrated monitoring of ecosystems and Adirondack Long Term-Monitoring programs in the Adirondack Mountain region of New Yrok

    EPA Science Inventory

    This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...

  2. Possible evidence for contemporary doming of the Adirondack Mountains, New York, and suggested implications for regional tectonics and seismicity

    USGS Publications Warehouse

    Isachsen, Y.W.

    1975-01-01

    The Adirondack Mountain massif is a dissected elongate dome having a north-northeast axis about 190 km long, and an east-west dimension of about 140 km. The dome exposes a core of Proterozoic metamorphic rocks from which the Paleozoic cover rocks have been eroded, except in several north-northeast-trending graben. The minimum amplitude of the dome, based on a 'reconstruction' of the Proterozoic-Paleozoic unconformity is 1600 m. The Adirondack dome is an anomalous feature of the eastern edge of the North American craton. It differs from other uplifts in the Interior Lowlands of the craton not only in terms of the greater combined amplitude and area of its uplift, but in the present high elevation of its Mountains (up to 1600 m) which are unequalled on the craton except along the Rocky Mountain front and in the Torngat Mountains of northernmost Labrador. This prompted an interest in the possibility that the Adirondack dome has undergone neotectonic regeneration and may be undergoing domical uplift at the present time. Accordingly, leveling records were consulted at the National Geodetic Survey data base in Rockville, Maryland, and used to construct leveling profiles. The most informative of these extends north-south along the block-faulted eastern flank of the Adirondack dome, extending from Saratoga Springs to Rouses Point, a distance of 245 km. A comparison of the level lines for 1955 and 1973 demonstrates that arching has occurred. An uplift of 40 mm along the central portion of the line, and a corresponding subsidence of 50 mm at the northern end, has produced a net increase in the amplitude of arching of 90 mm in the 18-year interval. This differential uplift, particularly with subsidence at the northern end, argues for a tectonic rather than glacio-isostatic mechanism. Pending releveling across the center of the Adirondack dome, it is tempting to extrapolate the releveling profile and suggest that the Adirondacks as a whole may be undergoing contemporary doming

  3. The reflectance and fluorescence properties of Adirondack mountain region lakes applied to the remote sensing of lake chemistry

    SciTech Connect

    Vertucci, F.A.

    1988-01-01

    This study defines the feasibility of the remote monitoring of lake chemistry in the Adirondack Region of New York. The purpose of this thesis is to determine the relationship between the optical properties of lakes and their chemical constituents. The work is intended to derive useful relationships between lake chemistry and lake spectral properties so that lake chemistry can be estimated by remote means. Chemical constituents associated with lake acidification are of particular interest. Constituents of the water column which are known to directly affect lake optical properties (plant pigments, dissolved organic carbon (DOC) and turbidity) correlated well with field reflectance measurements and allowed for a consistent prediction of the concentrations of these constituents using reflectance measurements. However, parameters associated with acidification (pH, alkalinity and aluminum concentrations) correlated poorly with reflectance measurements and no models for prediction of these constituents were possible. A relationship does exist between DOC and fluorescence intensity and also between lake pH, aluminum and DOC concentrations and spectral fluorescence and intensity. In the Adirondack Region, water column constituents which directly affect lake optical properties may e remotely estimated with reflectance measures while constituents correlated with DOC composition may be estimated by laser fluorsensing, including pH and aluminum.

  4. Contemporary doming of the Adirondack mountains: Further evidence from releveling

    USGS Publications Warehouse

    Isachsen, Y.W.

    1981-01-01

    The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The dome has a NNE-SSW axis about 190 km long, and an east-west dimension of about 140 km. It has a structural relief of at least 1600 m, and a local topographic relief of up to 1200 m. First-order leveling in 1955, and again in 1973 along a north-south line at the eastern margin of the Adirondack shows an uplift rate of 2.2 mm/yr at the latitude of the center of the dome and a subsidence rate of 2.8 mm/yr at the northern end of the line near the Canadian border. The net amount of arching along this releveled line is 9 cm ?? 2 cm (Isachsen, 1975). To test the idea that this arching represented an "edge effect" of contemporary doming of the Adirondacks as a whole, the National Geodetic Survey was encouraged to relevel a 1931 north-south line between Utica and Fort Covington (near the Canadian border) which crosses the center of the dome. The releveling showed that the mountain mass is undergoing contemporary domical uplift at a rate which reaches 3.7 mm/yr near the center of the dome (compare with 1 mm/yr for the Swiss Alps). Three other releveled lines in the area support this conclusion. ?? 1981.

  5. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  6. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  7. Post-granulite facies fluid infiltration in the Adirondack Mountains

    SciTech Connect

    Morrison, J.; Valley, J.W.

    1988-06-01

    Granulite facies lithologies from the Adirondack Mountains of New York contain alteration assemblages composed dominantly of calcite +/- chlorite +/- sericite. These assemblages document fluid infiltration at middle to upper crustal levels. Cathodoluminescence of samples from the Marcy anorthosite massif indicates that the late fluid infiltration is more widespread than initially indicated by transmitted-light petrography alone. Samples that appear unaltered in transmitted light show extensive anastomosing veins of calcite (< 0.05 mm wide) along grain boundaries, in crosscutting fractures, and along mineral cleavages. The presence of the retrograde calcite documents paleopermeability in crystalline rocks and is related to the formation of high-density CO/sub 2/-rich fluid inclusions. Recognition of this process has important implications for studies of granulite genesis and the geophysical properties of the crust.

  8. Nitrate trends in the Adirondack Mountains, Northeastern US, 1993-2007

    EPA Science Inventory

    The Adirondack Mountains in New York State receive some of the highest rates of nitrogen deposition in the Northeastern U.S. Between 1993 and 2007, nitrogen deposition loads did not significantly change and average annual wet inorganic nitrogen deposition was 6 kg/ha (Figure 1)....

  9. Impacts of acidification on macroinvertebrate communities in streams of the western Adirondack Mountains, New York, USA

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.; Bode, R.W.; Simonin, H.A.; Roy, K.M.; Smith, A.J.

    2009-01-01

    Limited stream chemistry and macroinvertebrate data indicate that acidic deposition has adversely affected benthic macroinvertebrate assemblages in numerous headwater streams of the western Adirondack Mountains of New York. No studies, however, have quantified the effects that acidic deposition and acidification may have had on resident fish and macroinvertebrate communities in streams of the region. As part of the Western Adirondack Stream Survey, water chemistry from 200 streams was sampled five times and macroinvertebrate communities were surveyed once from a subset of 36 streams in the Oswegatchie and Black River Basins during 2003-2005 and evaluated to: (a) document the effects that chronic and episodic acidification have on macroinvertebrate communities across the region, (b) define the relations between acidification and the health of affected species assemblages, and (c) assess indicators and thresholds of biological effects. Concentrations of inorganic Al in 66% of the 200 streams periodically reached concentrations toxic to acid-tolerant biota. A new acid biological assessment profile (acidBAP) index for macroinvertebrates, derived from percent mayfly richness and percent acid-tolerant taxa, was strongly correlated (R2 values range from 0.58 to 0.76) with concentrations of inorganic Al, pH, ANC, and base cation surplus (BCS). The BCS and acidBAP index helped remove confounding influences of natural organic acidity and to redefine acidification-effect thresholds and biological-impact categories. AcidBAP scores indicated that macroinvertebrate communities were moderately or severely impacted by acidification in 44-56% of 36 study streams, however, additional data from randomly selected streams is needed to accurately estimate the true percentage of streams in which macroinvertebrate communities are adversely affected in this, or other, regions. As biologically relevant measures of impacts caused by acidification, both BCS and acidBAP may be useful

  10. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  11. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York.

    PubMed

    Sullivan, T J; Lawrence, G B; Bailey, S W; McDonnell, T C; Beier, C M; Weathers, K C; McPherson, G T; Bishop, D A

    2013-11-19

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  12. Homogeneous /sup 18/O enrichment of the Marcy Anorthosite Massif, Adirondack Mountains, New York

    SciTech Connect

    Morrison, J.; Valley, J.W.

    1985-01-01

    The Marcy Anorthosite Massif in the Adirondack Mountains, New York, is a composite intrusion that was metamorphosed to granulite facies at approx. 1.1 Ga. The massif is dominantly anorthosite but ranges from anorthosite (1-10% mafics) to oxide-rich pyroxenite layers (up to 98% mafics). In the St Regis Quad (SRQ) systematic variations in the percentage of mafics (POM) roughly parallel the foliation and increase toward the contacts (Davis, 1971). In 47 SRQ samples studied the POM varies from 2-25%; garnet ranges from 0-11%, pyroxene from <1-16% and oxides from <1-8%. Percent phenocrysts varies between 1-80. The Port Kent-Westport Unit (PKW) and an associated hybrid unit show significantly greater textural variability. The POM Varies from 1-50%; garnet ranges from 0-18%, pyroxene from 0-15%, oxides from 0-3% and phenocrysts vary from 0-80%. A total of 28 unaltered plagioclase phenocrysts have been analyzed for delta/sup 18/O: in 13 SRQ samples delta/sup 18/O = 9.0-9.8 (x=9.4. sigma=0.2) and in 15 samples from the PKW and hybrid units values of delta/sup 18/O=8.5-10.5 (x=9.5.sigma0.5). No correlations exist between the modal parameters and delta/sup 18/O. The results from SRQ demonstrate an extreme homogeneity suggesting for the first time a pristine magmatic character which is supported by the virtual absence of metasedimentary inclusions. This contrasts with PKW where inclusions are common and delta/sup 18/O values are more heterogeneous. Further analyses will evaluate the possibility of an anomalous source region as a cause of the /sup 18/O enrichment in the anorthosite.

  13. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  14. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  15. Persistent mortality of brook trout in episodically acidified streams of the Southwestern Adirondack Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.; Simonin, H.

    2007-01-01

    Water chemistry, discharge, and mortality of caged brook trout Salvelinus fontinalis were characterized in six headwater streams in the southwestern Adirondack Mountains of New York during spring 2001-2003. Results were compared with mortality recorded during similar tests during 1984-1985, 1988-1990, and 1997 to assess contemporary relations between stream acidification and brook trout mortality, the effects of exposure duration on mortality, and the effects of decreased rates of acidic deposition on water quality and fish mortality. Water quality and mortality of caged, young-of-the-year brook trout were evaluated during 30-d exposure periods from mid-April to late May during the most recent tests. In 2001-2003, mortality ranged from 0% to 100% and varied among streams and years, depending on the timing of toxicity tests in relation to the annual snowmelt and on the ability of each watershed to neutralize acids and prevent acutely toxic concentrations of inorganic monomeric aluminum (Alim) during high-flow events. Mortality rates in 2001-2003 tests were highly variable but similar to those observed during earlier tests. This similarity suggests that stream water quality in the southwestern Adirondack Mountains has not changed appreciably over the past 20 years. Concentrations of Alim greater than 2.0 and 4.0 ??mol/L were closely correlated with low and high mortality rates, respectively, and accounted for 83% of the variation in mortality. Two to four days of exposure to Alim concentrations greater than 4.0 ??mol/L resulted in 50-100% mortality. The extended periods (as long as 6 months) during which Alim concentrations exceeded 2.0 and 4.0 ??mol/L in one or more streams, combined with the low tolerance of many other fish species to acid and elevated Al concentrations, indicate a high potential for damage to fish communities in these and other poorly buffered streams of the Northeast. ?? Copyright by the American Fisheries Society 2007.

  16. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times

    SciTech Connect

    Cumming, B.F.; Smol, J.P.; Kingston, J.C.; Charles, D.F.; Birks, H.J.B.

    1992-01-01

    Preindustrial and present-day lake water pH, acid neutralizing capacity (ANC), total monomeric aluminum Al(sub m), and dissolved organic carbon (DOC) were inferred from the species composition of diatom and chrysophyte microfossils in the tops (present-day inferences) and bottoms (pre-1850 inferences) of sediment cores collected from a statistically selected set of Adirondack lakes. Results from the study lakes were extrapolated to a predefined target population of 675 low-alkalinity Adirondack region lakes. Estimates of preindustrial to present-day changes in lake water chemistry show that approximately 25-35% of the target population has acidified. The magnitude of acidification was greatest in the low-alkalinity lakes of the southwestern Adirondacks, an area with little geological ability to neutralize acidic deposition and receives the highest annual average rainfall in the region. The authors estimate that approximately 80% of the target population lakes with present-day measured pH = or < 5.2 and 30-45% of lakes with pH between 5.2 and 6.0 have undergone large declines in pH and ANC, and concomitant increases in Al(sub m). Estimated changes in (DOC) were small and show no consistent pattern in the acidified lakes. The study provides the first statistically based regional evaluation of the extent of lake acidification in the Adirondacks.

  17. Long-term trends in breeding birds in an old-growth Adirondack forest and the surrounding region

    USGS Publications Warehouse

    McNulty, S.A.; Droege, S.; Masters, R.D.

    2008-01-01

    Breeding bird populations were sampled between 1954 and 1963, and 1990 and 2000 in an old-growth forest, the Natural Area of Huntington Wildlife Forest (HWF), in the Adirondack Mountains of New York. Trends were compared with data from regional North American Breeding Bird Surveys (BBS) and from a forest plot at Hubbard Brook Experimental Forest, New Hampshire. Trends for 22 species in the HWF Natural Area were negative, eight were positive, and one was zero; 20 were significant. Fifteen of 17 long-distance migrants declined, whereas 7 of 14 short-distance migrants and permanent residents declined. Most (74%) HWF Natural Area species, despite differences in sampling periods and local habitat features, matched in sign of trend when compared to Adirondack BBS routes, 61% matched northeastern BBS routes, and 71% matched eastern United States BBS routes, while 66% matched Hubbard Brook species. The agreement in population trends suggests that forest interior birds, especially long-distance migrants, are affected more by regional than local factors. The analysis indicated that bird trends generated from BBS routes may not be as biased toward roads as previously suggested.

  18. Acid precipitation effects on algal productivity and biomass in Adirondack Mountain lakes

    SciTech Connect

    Hendrey, G.R.

    1982-12-01

    Relationships between phytoplankton communities and lake acidity in three Adirondack Mountain lakes were studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly to maxima six weeks after ice-out, instead of occurring very close to ice-out. Contributions of netplankton, nannoplankton and ultraplankton to productivity per m/sup 2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification is suspected of leading to decreased availability of phosphorus). This was consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. 11 references, 2 tables.

  19. Middle Proterozoic emplacement and deformation of metanorthosite and related rocks in the northeastern Marcy massif, Adirondack Mountains, New York

    SciTech Connect

    Fakundiny, R.H. ); Muller, P.D. . Dept. of Earth Sciences)

    1993-03-01

    Geologic mapping in the Elizabethtown and Mount Marcy 15 foot quadrangles in the northeastern Adirondack Mountains has shown that Middle Proterozoic anorthosite suite rocks of the Marcy massif were intruded in at least two temporally distinguishable episodes separated by a period of localized ductile shearing. Strain was concentrated in a 100 m to > 1 km thick zone consisting mainly of metamorphosed gabbroic anorthosite, ferrodiorite, and ferrosyenite gneiss with subordinate granite gneiss, calc-silicate gneiss, amphibolite, and marble. This zone of flat to steeply-dipping layered gneisses, designated the Elizabethtown ductile deformation zone (EDDZ) for exposures along Rt 9 south of Elizabethtown, appears to extend from Lake Champlain on the east to at least Lake Placid on the west. Its upper boundary is most clearly evident where it occurs in olivine metagabbro bodies of Jay and Iron Mountain. Massive metagabbro is sheared and recrystallized into amphibolite gneiss. The lower boundary of the zone is more difficult to map, but commonly lies within contaminated metamorphosed gabbroic anorthosite and ferrodiorite gneiss that characterize the margins of the massif in the area. Rocks of the EDDZ display pervasive mesoscopic S and LS fabrics, but exhibit totally recrystallized microtextures. Kinematic indicators such as winged porphyroclasts and S-C fabrics are sporadically developed and provide a regionally ambiguous sense of shear. The authors favor a regional extension origin for the fabrics. Mineral assemblages defining the EDDZ fabrics are consistent with granulite facies conditions during shear-zone development and suggest a lower crustal position. Mapping suggests that the younger anorthosite intrusions were mainly domical and generated a chaotic contact zone typified by block structure and dikes of ferrodiorite, ferromonzonite, and ferrosyenite.

  20. Geochemistry and origin of albite gneisses, northeastern Adirondack Mountains, New York

    NASA Astrophysics Data System (ADS)

    Whitney, Philip R.; Olmsted, James F.

    1988-08-01

    Albite gneisses containing up to 8.7 percent Na2O and as little as 0.1% K2O comprise a significant part of the Proterozoic Lyon Mountain Gneiss in the Ausable Forks Quadrangle of the northeastern Adirondacks, New York State. Two distinct types of albite gneisses are present. One is a trondhjemitic leucogneiss (LAG) consisting principally of albite (Ab95 Ab98) and quartz with minor magnetite and, locally, minor amounts of amphibole or acmiterich pyroxene. LAG probably originated by metamorphism of a rhyolitie or rhyodacitic ash-flow tuff with A-type geochemical affinities, following post-depositional analcitization in a saline or saline-alkaline environment. The other type is a mafic albite gneiss (MAG) containing albite and pyroxene along with 0 45 percent quartz, minor amphibole, and titanite. MAG locally displays pinstripe banding and contains albite (Ab98) megacrysts up to 5 cm across. Its precursor may have been a sediment composed of diagenetic analcite or albite, dolomite, and quartz. Both types of albite gneiss are interlayered with granitic gneisses (LMG) of variable composition derived from less altered tuffs. A potassium-rich (up to 9.7% K2O) microcline gneiss facies may have had a protolith rich in diagenetic K feldspar. We propose that the albite gneisses and associated granitic gneisses are the granulite-facies metamorphic equivalent of a bimodal, dominantly felsic, volcanic suite with minor intercalated sediments, probably including evaporites. The volcanics were erupted in an anorogenic setting, such as an incipient or failed intracontinental rift. Deposition took place in a closed-basin, playa lake environment, where diagenetic alteration resulted in redistribution of the alkalis and strong oxidation.

  1. Geochemistry and origin of albite gneisses, northeastern Adirondack Mountains, New York

    USGS Publications Warehouse

    Whitney, P.R.; Olmsted, J.F.

    1988-01-01

    Albite gneisses containing up to 8.7 percent Na2O and as little as 0.1% K2O comprise a significant part of the Proterozoic Lyon Mountain Gneiss in the Ausable Forks Quadrangle of the northeastern Adirondacks, New York State. Two distinct types of albite gneisses are present. One is a trondhjemitic leucogneiss (LAG) consisting principally of albite (Ab95-Ab98) and quartz with minor magnetite and, locally, minor amounts of amphibole or acmiterich pyroxene. LAG probably originated by metamorphism of a rhyolitie or rhyodacitic ash-flow tuff with A-type geochemical affinities, following post-depositional analcitization in a saline or saline-alkaline environment. The other type is a mafic albite gneiss (MAG) containing albite and pyroxene along with 0-45 percent quartz, minor amphibole, and titanite. MAG locally displays pinstripe banding and contains albite (Ab98) megacrysts up to 5 cm across. Its precursor may have been a sediment composed of diagenetic analcite or albite, dolomite, and quartz. Both types of albite gneiss are interlayered with granitic gneisses (LMG) of variable composition derived from less altered tuffs. A potassium-rich (up to 9.7% K2O) microcline gneiss facies may have had a protolith rich in diagenetic K feldspar. We propose that the albite gneisses and associated granitic gneisses are the granulite-facies metamorphic equivalent of a bimodal, dominantly felsic, volcanic suite with minor intercalated sediments, probably including evaporites. The volcanics were erupted in an anorogenic setting, such as an incipient or failed intracontinental rift. Deposition took place in a closed-basin, playa lake environment, where diagenetic alteration resulted in redistribution of the alkalis and strong oxidation. ?? 1988 Springer-Verlag.

  2. Geologic controls on the sources of water to Lake George, Southeastern Adirondack Mountains of New York

    SciTech Connect

    Shuster, E.L.; LaFleur, R.G.; McCaffrey, R. . Dept. of Earth and Environmental Sciences); Boylen, C.W. . Rensselaer Fresh Water Inst.)

    1993-03-01

    Lake George is a long, deep, fault-bounded lake in the Adirondack Mountains, with relatively undeformed Paleozoic sediments in its valley floor and fractured high-grade meta-igneous and meta-sedimentary Proterozoic rocks in the drainage basins's upland. Overlying these rocks is a thin mantle of glacial deposits, consisting of sandy tills, kamic sands and glacio-lacustrine clays. Stratified ice-contact deposits and glacio-lacustrine deposits are generally restricted to the basins's lower elevations. The configuration of fractured bedrock and glacial overburden deposits of varying hydraulic conductivities suggests a variety of potential hydrogeologic flow routes, which can be generally categorized as reflect near-surface and deep groundwater flow systems. A hydrologic survey of the lake suggests that groundwater contributes approximately 20% to Lake George's annual hydrologic budget, with precipitation directly onto the lake's surface and tributary streamflow comprising the remaining 25% and 55%, respectively. Separating streamflow responses to precipitation by formal inversion into quick-, intermediate-, and slow-recession curves (originating from soils, unconsolidated surficial deposits, and fractured bedrock, respectively) suggests that as much as 40 to 50% of the tributary streamflow during the summer of 1988 originated from the slowest return route, a similar percentage has followed the intermediate route, and less than 10% of the streamflow originated as soil water ( runoff''). The flow-partitioning calculations typically suggest decay constants for these exponential recession curves on the order of 1, 10, and 100 days for the quick-, intermediate-, and slow-flow components to tributary streamflow, respectively.

  3. Characterization of atmospheric aerosols in the Adirondack Mountains using PIXE, SEM/EDX, and Micro-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Vineyard, M. F.; LaBrake, S. M.; Ali, S. F.; Nadareski, B. J.; Safiq, A. D.; Smith, J. W.; Yoskowitz, J. T.

    2015-05-01

    We are making detailed measurements of the composition of atmospheric aerosols collected in the Adirondack Mountains as a function of particle size using proton-induced X-ray emission, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and Micro-Raman spectroscopy. These measurements provide valuable data to help identify the sources and understand the transport, transformation, and effects of airborne pollutants in upstate New York. Preliminary results indicate significant concentrations of sulfur in small particles that can travel great distances, and that this sulfur may be in the form of oxides that can contribute to acid rain.

  4. Evidence for multiple metamorphic events in the Adirondack Mountains, N. Y

    SciTech Connect

    McLelland, J.; Lochhead, A.; Vyhnal, C.

    1988-05-01

    Field evidence consisting of: (1) rotated, foliated xenoliths, (2) country rock foliation truncated by isoclinally folded igneous intrusions bearing granulite facies assemblages document one, or more, early dynamothermal event(s) of regional scale and high grade. Early metamorphism resulted in pronounced linear and planar fabric throughout the Adirondacks and preceded the emplacement of the anorthosite-mangerite-charnockite-granite-alaskite (AMCA) suite which contains xenoliths of the metamorphosed rocks. Olivine metagabbros, believed to be approximately contemporaneous with the AMCA-suite, also crosscut and contain xenoliths of, strongly foliated metasediments. These intrusive rocks caused contact metamorphism in the metasediments which locally exhibit both anatectite and restite assemblages. Subsequently, this already complex framework underwent three phases of folding, including an early recumbent isoclinical event, and was metamorphosed to granulite facies P,T conditions. The age of the early metamorphism cannot yet be narrowly constrained, but isotopic results suggest that it may be as young as approx. 1200 Ma or older than approx. 1420 Ma. U-Pb zircon ages indicate emplacement of the AMCA-(metagabbro)-suite in the interval 1160-1130 Ma and place the peak of granulite facies metamorphism between 1070-1025 Ma. The anorogenic character of the AMCA-suite, and the occurrence of metadiabase dike swarms within it, are further evidence of the separate nature of the metamorphic events that precede and postdate AMCA emplacement.

  5. Empirical Relationships Between Watershed Attributes and Headwater Lake Chemistry in the Adirondack Region

    SciTech Connect

    Hunsaker, C.T.

    1987-01-01

    Surface water acidification may be caused or influenced by both natural watershed processes and anthropogenic actions. Empirical models and observational data can be useful for identifying watershed attributes or processes that require further research or that should be considered in the development of process models. This study focuses on the Adirondack region of New York and has two purposes: to (1) develop empirical models that can be used to assess the chemical status of lakes for which no chemistry data exist and (2) determine on a regional scale watershed attributes that account for variability in lake pH and acid-neutralizing capacity (ANC). Headwater lakes, rather than lakes linked to upstream lakes, were selected for initial analysis. The Adirondacks Watershed Data Base (AWDB), part of the Acid Deposition Data Network maintained at Oak Ridge National Laboratory (ORNL), integrates data on physiography, bedrock, soils, land cover, wetlands, disturbances, beaver activity, land use, and atmospheric deposition with the water chemistry and morphology for the watersheds of 463 headwater lakes. The AWD8 facilitates both geographic display and statistical analysis of the data. The report, An Adirondack Watershed Data Base: Attribute and Mapping Information for Regional Acidic Deposition Studies (ORNL/TM--10144), describes the AWDB. Both bivariate (correlations and Wilcoxon and Kruskal-Wallis tests) and multivariate analyses were performed. Fifty-seven watershed attributes were selected as input variables to multiple linear regression and discriminant analysis. For model development -200 lakes for which pH and ANC data exist were randomly subdivided into a specification and a verification data set. Several indices were used to select models for predicting lake pH (31 variables) and ANC (27 variables). Twenty-five variables are common to the pH and ANC models: four lake morphology, nine soil/geology, eight land cover, three disturbance, and one watershed aspect. An

  6. Post-metamorphic fluid infiltration into granulites from the Adirondack Mountains, USA

    NASA Technical Reports Server (NTRS)

    Morrison, J.; Valley, John W.

    1988-01-01

    Post-metamorphic effects in the anorthosites of the Adirondacks, New York were described. Calcite-chlorite-sericite assemblages occur as veins, in disseminated form and as clots, and document retrograde fluid infiltration. These features are associated with late-state CO2-rich fluid inclusions. Stable isotope analyses of calcites indicates that the retrograde fluids interacted with meta-igneous and supracrustal lithologies, but the precise timing of the retrogression is as yet unknown.

  7. Efficacy of environmental DNA to detect and quantify Brook Trout populations in headwater streams of the Adirondack Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob

    2016-01-01

    Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.

  8. A monitor for continuous measurement of temperature, pH, and conductance of wet precipitation: Preliminary results from the Adirondack Mountains, New York

    USGS Publications Warehouse

    Johnsson, P.A.; Reddy, M.M.

    1990-01-01

    This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.

  9. Sensitivity of Stream Methyl Hg Concentrations to Environmental Change in the Adirondack Mountains of New York, USA

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Nystrom, E.; Millard, G.; Driscoll, C. T.

    2014-12-01

    The Adirondacks of New York have high levels of mercury (Hg) bioaccumulation as demonstrated by a region-wide fish consumption advisory for children and women who may become pregnant. The source of this Hg is atmospheric deposition that originates from regional, continental, and global emissions. Soils in the region have large Hg stores equivalent to several decades of atmospheric deposition suggesting that the processes controlling Hg transport from soils to surface waters may greatly affect Hg concentrations and loads in surface waters. Furthermore, Hg can be converted to its neuro-toxic methyl form (MeHg), particularly in riparian and wetland soils where biogeochemical conditions favor net methylation. We measured MeHg concentrations during 33 months at Fishing Brook, a 65 km2 catchment in the upper Hudson River basin in the Adirondacks. Seasonal variation in stream MeHg concentrations was more than tenfold, consistent with temperature-driven variation in net methylation rates in soils and sediment. These data also indicate greater than twofold annual variation in stream MeHg concentrations among the three monitored growing seasons. The driest growing season had the lowest MeHg concentrations, and these values were greater during the two wetter growing seasons. We hypothesize that contact of the riparian water table with abundant organic matter and MeHg stored in the shallowest soil horizons is a dominant control on MeHg transport to the stream. An empirical model was developed that accounted for 81% of the variation in stream MeHg concentrations. Water temperature and the length of time the simulated riparian water table remained in the shallow soil were key predictive variables, highlighting the sensitivity of MeHg to climatic variation. Future changes in other factors such as Hg emissions and deposition and acid deposition will likely also influence stream MeHg concentrations and loads. For example, lime application to an Adirondack stream to increase pH and

  10. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, NY

    SciTech Connect

    Charles, D.F.; Binford, M.W.; Furlong, E.T.; Hites, R.A.; Mitchell, M.J.

    1990-01-01

    Paleoecological analysis of the sediment record of 12 Adirondack lakes reveals that the 8 clearwater lakes with current pH<5.5 and alkalinity <10 microeq/l have acidified recently. The onset of the acidification occurred between 1920 and 1970. Loss of alkalinity, based on quantitative analysis of diatom assemblages, ranged from 2 to 35 microeq/l. The acidification trends are substantiated by several lines of evidence including stratigraphies of diatom, chrysophyte, chironomid, and cladoceran remains, Ca:Ti and Mn:Ti ratios, sequentially extracted forms of Al, and historical fish data. Acidification trends appear to be continuing in some lakes, despite reductions in atmospheric sulfur loading that began in the early 1970s. The primary cause of the acidification trend is clearly increased atmospheric deposition of strong acids derived from the combustion of fossil fuels. Natural processes and watershed disturbances cannot account for the changes in water chemistry that have occurred, but they may play a role. Sediment core profiles of Pb, Cu, V, Zn, S, polycyclic aromatic hydrocarbons, magnetic particles, and coal and oil soot provide a clear record of increased atmospheric input of materials associated with the combustion of fossil fuels beginning in the late 1800s and early 1900s.

  11. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  12. Adirondack Under the Microscope-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.

  13. Mountain regions in peril

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The United Nations has declared 2002 the International Year of Mountains (IYM) to bring attention to a number of threats that affect ecosystems and human populations in mountainous and highland regions around the world.“More than half of humanity—3 billion people—relies on mountains for safe, fresh water, water to grow food, to produce electricity to sustain industries and, most important, water to drink,“ said Jacques Diouf, director-general of the U.N. Food and Agriculture Organization, the primary IYM sponsor. “Yet, mountain glaciers, the source of water for many of the world's river systems and people, are melting at unprecedented rates.”

  14. Acid-base characteristics of the Grass Pond watershed in the Adirondack Mountains of New York State, USA: interactions among soil, vegetation and surface waters

    NASA Astrophysics Data System (ADS)

    McEathron, K. M.; Mitchell, M. J.; Zhang, L.

    2013-07-01

    Grass Pond watershed is located within the southwestern Adirondack Mountain region of New York State, USA. This region receives some of the highest rates of acidic deposition in North America and is particularly sensitive to acidic inputs due to many of its soils having shallow depths and being generally base poor. Differences in soil chemistry and tree species between seven subwatersheds were examined in relation to acid-base characteristics of the seven major streams that drain into Grass Pond. Mineral soil pH, stream water BCS (base-cation surplus) and pH exhibited a positive correlation with sugar maple basal area (p = 0.055; 0.48 and 0.39, respectively). Black cherry basal area was inversely correlated with stream water BCS, ANC (acid neutralizing capacity)c and NO3- (p = 0.23; 0.24 and 0.20, respectively). Sugar maple basal areas were positively associated with watershed characteristics associated with the neutralization of atmospheric acidic inputs while in contrast, black cherry basal areas showed opposite relationships to these same watershed characteristics. Canonical correspondence analysis indicated that black cherry had a distinctive relationship with forest floor chemistry apart from the other tree species, specifically a strong positive association with forest floor NH4, while sugar maple had a distinctive relationship with stream chemistry variables, specifically a strong positive association with stream water ANCc, BCS and pH. Our results provide evidence that sugar maple is acid-intolerant or calciphilic tree species and also demonstrate that black cherry is likely an acid-tolerant tree species.

  15. Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State

    USGS Publications Warehouse

    Peters, N.E.; Driscoll, C.T.

    1987-01-01

    Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  16. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  17. Comparison of MAGIC and Diatom paleolimnological model hindcasts of lakewater acidification in the Adirondack region of New York

    SciTech Connect

    Sullivan, T.J.; Bernert, J.A.; Eliers, J.M. ); Jenne, E.A. ); Cosby, B.J. . School of Forestry and Environmental Studies); Charles, D.F.; Selle, A.R. . Environmental Research Lab.)

    1991-03-01

    Thirty-three lakes that had been statistically selected as part of the US Environmental Protection Agency's Eastern Lake Survey and Direct Delayed Response Project (DDRP) were used to compare the MAGIC (watershed) and Diatom (paleolimnological) models. The study lakes represented a well-defined group of Adirondack lakes, each larger than 4 ha in area and having acid-neutralizing capacity (ANC) <400 {mu}eq L{sup {minus}1}. The study first compared current and pre-industrial (before 1850) pH and ANC estimates from Diatom and MAGIC as they were calibrated in the preceding Paleocological Investigation of Recent Lake Acidification (PIRLA) and DDRP studies, respectively. Initially, the comparison of hindcasts of pre-industrial chemistry was confounded by seasonal and methodological differences in lake chemistry data used in calibration of the model. Although certain differences proved to be of little significance for comparison, MAGIC did predict significantly higher pre-industrial ANC and pH values than did Diatom, using calibrations in the preceding studies. Both models suggest acidification of low ANC Adirondack region lakes since preindustrial times, but differ primarily in that MAGIC inferred greater acidification and that acidification has occurred in all lakes in the comparison, whereas Diatom inferred that acidification has been restricted to low ANC lakes (

  18. Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA.

    PubMed

    Riva-Murray, Karen; Bradley, Paul M; Chasar, Lia C; Button, Daniel T; Brigham, Mark E; Scudder Eikenberry, Barbara C; Journey, Celeste A; Lutz, Michelle A

    2013-01-01

    We studied lower food webs in streams of two mercury-sensitive regions to determine whether variations in consumer foraging strategy and resultant dietary carbon signatures accounted for observed within-site and among-site variations in consumer mercury concentration. We collected macroinvertebrates (primary consumers and predators) and selected forage fishes from three sites in the Adirondack Mountains of New York, and three sites in the Coastal Plain of South Carolina, for analysis of mercury (Hg) and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N). Among primary consumers, scrapers and filterers had higher MeHg and more depleted δ(13)C than shredders from the same site. Variation in δ(13)C accounted for up to 34 % of within-site variation in MeHg among primary consumers, beyond that explained by δ(15)N, an indicator of trophic position. Consumer δ(13)C accounted for 10 % of the variation in Hg among predatory macroinvertebrates and forage fishes across these six sites, after accounting for environmental aqueous methylmercury (MeHg, 5 % of variation) and base-N adjusted consumer trophic position (Δδ(15)N, 22 % of variation). The δ(13)C spatial pattern within consumer taxa groups corresponded to differences in benthic habitat shading among sites. Consumers from relatively more-shaded sites had more enriched δ(13)C that was more similar to typical detrital δ(13)C, while those from the relatively more-open sites had more depleted δ(13)C. Although we could not clearly attribute these differences strictly to differences in assimilation of carbon from terrestrial or in-channel sources, greater potential for benthic primary production at more open sites might play a role. We found significant variation among consumers within and among sites in carbon source; this may be related to within-site differences in diet and foraging habitat, and to among-site differences in environmental conditions that influence primary production. These observations

  19. Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA

    USGS Publications Warehouse

    Riva-Murray, Karen; Bradley, Paul M.; Chasar, Lia C.; Button, Daniel T.; Brigham, Mark E.; Eikenberry, Barbara C. Scudder; Journey, Celeste; Lutz, Michelle A.

    2013-01-01

    We studied lower food webs in streams of two mercury-sensitive regions to determine whether variations in consumer foraging strategy and resultant dietary carbon signatures accounted for observed within-site and among-site variations in consumer mercury concentration. We collected macroinvertebrates (primary consumers and predators) and selected forage fishes from three sites in the Adirondack Mountains of New York, and three sites in the Coastal Plain of South Carolina, for analysis of mercury (Hg) and stable isotopes of carbon (δ13C) and nitrogen (δ15N). Among primary consumers, scrapers and filterers had higher MeHg and more depleted δ13C than shredders from the same site. Variation in δ13C accounted for up to 34 % of within-site variation in MeHg among primary consumers, beyond that explained by δ15N, an indicator of trophic position. Consumer δ13C accounted for 10 % of the variation in Hg among predatory macroinvertebrates and forage fishes across these six sites, after accounting for environmental aqueous methylmercury (MeHg, 5 % of variation) and base-N adjusted consumer trophic position (Δδ15N, 22 % of variation). The δ13C spatial pattern within consumer taxa groups corresponded to differences in benthic habitat shading among sites. Consumers from relatively more-shaded sites had more enriched δ13C that was more similar to typical detrital δ13C, while those from the relatively more-open sites had more depleted δ13C. Although we could not clearly attribute these differences strictly to differences in assimilation of carbon from terrestrial or in-channel sources, greater potential for benthic primary production at more open sites might play a role. We found significant variation among consumers within and among sites in carbon source; this may be related to within-site differences in diet and foraging habitat, and to among-site differences in environmental conditions that influence primary production. These observations suggest that different

  20. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    USGS Publications Warehouse

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in

  1. Sedimentology of basal Potsdam sandstone in Adirondack border region, New York, southeastern Ontario, and southwestern Quebec

    SciTech Connect

    McRae, L.E.; Johnson, G.D.

    1986-05-01

    Field evidence supports the relatively widespread presence of nonmarine facies within the basal Potsdam formation of the Adirondack border areas of northern New York, southeastern Ontario, and southwestern Quebec. Detailed observations of areal extent, analysis of sedimentary structures and paleocurrent directions, and petrographic studies have been combined with the paleomagnetic determination of the temporal relationships of these strata to establish depositional patterns and facies trends within basal Potsdam units. Four distinct nonmarine lithofacies have been identified: massive matrix-supported conglomerate, stratified framework-supported conglomerate, conglomerate-arkose, and pebble conglomerate-arkose fining-upward sequences, interpreted to represent debris flows, proximal gravelly braided-stream deposits, intermediate to distal gravelly braided-stream deposits, and proximal sandy braided-stream deposits, respectively. Facies of eolian or possibly tidal, and shallow marine origin have also been identified at the base of the Potsdam sequence. Most basal Potsdam sediments are compositionally and texturally immature, derived directly from the crystalline detritus of the extensively weathered Precambrian surface and regoliths that may have locally developed on the craton. The desert-like environment of the Precambrian surface allowed for rapid transport and deposition of relatively unweathered sediments and the subsequent construction of a braided alluvial plain system. Field relations and evidence derived from consideration of the paleomagnetic properties in five localities of fine-grained alluvium suggest that terrestrial Potsdam deposition in the Early and Middle Cambrian largely preceded the marine transgression that deposited the thick, shallow marine units typifying most of the Potsdam sequence.

  2. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  3. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  4. Hydrologic analysis of two headwater lake basins of differing lake pH in the west-central Adirondack Mountains of New York

    USGS Publications Warehouse

    Murdoch, Peter S.; Peters, N.E.; Newton, R.M.

    1987-01-01

    Hydrologic analysis of two headwater lake basins in the Adirondack Mountains, New York, during 1980-81 indicates that the degree of neutralization of acid precipitation is controlled by the groundwater contribution to the lake. According to flow-duration analyses, daily mean outflow/unit area from the neutral lake (Panther Lake, pH 5-7) was more sustained and contained a higher percentage of groundwater than that of the acidic lake (Woods Lake, pH 4-5). Outflow recession rates and maximum base-flow rates, derived from individual recession curves, were 3.9 times and 1.5 times greater, respectively, in the neutral-lake basin than in the acidic-lake basin. Groundwater contribution to lake outflow was also calculated from a lake-water budget; the groundwater contribution to the neutral lake was about 10 times greater than that to the acidic lake. Thick sandy till forms the groundwater reservoir and the major recharge area in both basins but covers 8.5 times more area in the neutral-lake basin than in the acidic-lake basin. More groundwater storage within the neutral basin provides longer contact time with neutralizing minerals and more groundwater discharge. As a result, the neutral lake has relatively high pH and alkalinity, and more net cation transport. (USGS)

  5. Concentration and flux of solutes from snow and forest floor during snowmelt in the West-Central Adirondack region of New York

    USGS Publications Warehouse

    Rascher, C.M.; Driscoll, C.T.; Peters, N.E.

    1987-01-01

    Decreases in pH and increases in the concentration of Al and NO3- have been observed in surface waters draining acid-sensitive regions in the northeastern U.S. during spring snowmelt. To assess the source of this acidity, we evaluated solute concentrations in snowpack, and in meltwater collected from snow and forest floor lysimeters in the west-central Adirondack Mountains of New York during the spring snowmelt period, 29 March through 15 April 1984. During the initial phase of snowmelt, ions were preferentially leached from the snowpack resulting in elevated concentrations in snowmelt water (e.g. H+ = 140 ??eq.l-1; NO42- = 123 ??eq.l-1; SO3- = 160 ??eq.l-1). Solute concentrations decreased dramatically within a few days of the initial melt (< 50 ??eq.l-1). The concentrations of SO42- and NO3- in snowpack and snowmelt water were similar, whereas NO-3 in the forest floor leachate was at least two times the concentration of SO42-. Study results suggest that the forest floor was a sink for snowmelt inputs of alkalinity, and a net source of H+, NO3-, dissolved organic carbon, K+ and Al inputs to the mineral soil. The forest floor was relatively conservative with respect to snowmelt inputs of Ca2+, SO42- and Cl-. These results indicate that mineralization of N, followed by nitrification in the forest floor may be an important process contributing to elevated concentrations of H+ and NO3- in streams during the snowmelt period. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  6. Adirondack tourism: perceived consequences of acid rain

    SciTech Connect

    Metz, W.C.

    1984-03-01

    This report seeks to place in perspective the perceived effects of acid precipitation on the tourist industry in the Adirondacks. The 9375-square mile park is host to almost nine million tourists annually, not including seasonal residents. Since the park was established almost 100 years ago, there have been many changes in tourist characteristics, available recreational facilities, kinds of activities, accessibility of the area, and land use and resource management policies. The tourist industry has been influenced by both controllable and uncontrollable factors. At present the overwhelming majority of recreational opportunities and natural resources important to the Adirondack tourist industry are relatively unaffected by acid precipitation. Fishing, a significant component of the tourist industry, is the most vulnerable, but any presumed adverse economic effect has to be weighed against the location of the impacted waters, total Adirondack fishing habitat, substitution available, habitat usage, fisherman characteristics, resource management, and the declining importance of fishing as an Adirondack recreational attraction. Concern is expressed as to whether present minimal acidification impacts are the precursor of major future impacts on Adirondack terrestrial and aquatic environments, and ultimately tourism. Tourism in the Adirondacks is increasing, while many other regional employment sectors are declining. It is becoming a more stable multiseason industry. Its future growth and character will be affected by government, private organization, business community, and resident controversies regarding land use and resource management attitudes, policies, budgets, and regulations. The acid precipitation issue is only one of many related controversies. 65 references, 2 figures.

  7. USE OF A LUMPED MODEL (MAGIC) TO BOUND THE ESTIMATION OF POTENTIAL FUTURE EFFECTS OF SULFUR AND NITROGEN DEPOSITION ON LAKE CHEMISTRY IN THE ADIRONDACK MOUNTAINS

    EPA Science Inventory

    Leaching of atmospherically deposited nitrogen from forested watersheds can acidify lakes and streams. Using a modified version of the Model of Acidification of Groundwater in Catchments, we made computer simulations of such effects for 36 lake catchments in the Adirondack Mount...

  8. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large

  9. Adirondack's Inner Self

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectrum - the first taken of a rock on another planet - reveals the different iron-containing minerals that makeup the martian rock dubbed Adirondack. It shows that Adirondack is a type of volcanic rock known as basalt. Specifically, the rock is what is called olivine basalt because in addition to magnetite and pyroxene, two key ingredients of basalt, it contains a mineral called olivine. This data was acquired by Spirit's Moessbauer spectrometer before the rover developed communication problems with Earth on the 18th martian day, or sol, of its mission.

  10. The application of an integrated biogeochemical model (PnET-BGC) to five forested watersheds in the Adirondack and Catskill regions of New York

    USGS Publications Warehouse

    Chen, L.; Driscoll, C.T.; Gbondo-Tugbawa, S.; Mitchell, M.J.; Murdoch, Peter S.

    2004-01-01

    PnET-BGC is an integrated biogeochemical model formulated to simulate the response of soil and surface waters in northern forest ecosystems to changes in atmospheric deposition and land disturbances. In this study, the model was applied to five intensive study sites in the Adirondack and Catskill regions of New York. Four were in the Adirondacks: Constable Pond, an acid-sensitive watershed; Arbutus Pond, a relatively insensitive watershed; West Pond, an acid-sensitive watershed with extensive wetland coverage; and Willy's Pond, an acid-sensitive watershed with a mature forest. The fifth was Catskills: Biscuit Brook, an acid-sensitive watershed. Results indicated model-simulated surface water chemistry generally agreed with the measured data at all five sites. Model-simulated internal fluxes of major elements at the Arbutus watershed compared well with previously published measured values. In addition, based on the simulated fluxes, element and acid neutralizing capacity (ANC) budgets were developed for each site. Sulphur budgets at each site indicated little retention of inputs of sulphur. The sites also showed considerable variability in retention of NO3-. Land-disturbance history and in-lake processes were found to be important in regulating the output of NO3- via surface waters. Deposition inputs of base cations were generally similar at these sites. Various rates of base cation outputs reflected differences in rates of base cation supply at these sites. Atmospheric deposition was found to be the largest source of acidity, and cation exchange, mineral weathering and in-lake processes served as sources of ANC. ?? 2004 John Wiley and Sons, Ltd.

  11. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  12. Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1982-01-01

    Oxygen isotopic analysis of wollastonites from the Willsboro Mine, Adirondack Mountains, New York reveals a 400-ft wide zone of 18O depletion at anorthosite contacts. Values of ??18O vary more sharply with distance and are lower (to -1.3) than any yet reported for a granulite fades terrain. Exchange with circulating hot meteoric water best explains these results and implies that the anorthosite was emplaced at relatively shallow depths, <10 km, in marked contrast to the depth of granulite fades metamorphism (23 km). These 18O depletions offer the first strong evidence for shallow emplacement of anorthosite within the Grenville Province and suggest that regional metamorphism was a later and tectonically distinct event. ?? 1982 Nature Publishing Group.

  13. Chemical characteristics of Adirondack lakes

    SciTech Connect

    Driscoll, C.T.; Newton, R.M.

    1985-11-01

    This paper discussed the role of atmospheric deposition of mineral acids in the acidification of low-ionic-strength (dilute) surface waters in remote regions. Surface water acidification has been attributed to the atmospheric deposition of sulfuric acid, sulfur dioxide, and nitric acid, the oxidation of organic nitrogen from the soil, the production of soluble organic acids through the decay of dead plants and animals in soil, the oxidation of naturally occurring sulfide minerals, and the changes in land use. The research reported here was conducted as part of the Regionalized Integrated Lake-Watershed Acidification Study (RILWAS). The intent was to evaluate the general chemical characteristics of lakes in the Adirondack region of New York and to access the mechanisms that regulate the acid-base chemistry of these waters. 36 references, 5 figures, 3 tables.

  14. Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1982-01-01

    Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6-10% TiO2) and the hornblende (3-6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages: (a) Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene??Biotite +more-sodic Plagioclase (b) Hornblende+Orthopyroxene??Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature. ?? 1983 Springer-Verlag.

  15. U-Pb age of the Diana Complex and Adirondack granulite petrogenesis

    USGS Publications Warehouse

    Basu, A.R.; Premo, W.R.

    2001-01-01

    U-Pb isotopic analyses of eight single and multi-grain zircon fractions separated from a syenite of the Diana Complex of the Adirondack Mountains do not define a single linear array, but a scatter along a chord that intersects the Concordia curve at 1145 ?? 29 and 285 ?? 204 Ma. For the most concordant analyses, the 207Pb/206Pb ages range between 1115 and 1150 Ma. Detailed petrographic studies revealed that most grains contained at least two phases of zircon growth, either primary magmatic cores enclosed by variable thickness of metamorphic overgrowths or magmatic portions enclosing presumably older xenocrystic zircon cores. The magmatic portions are characterized by typical dipyramidal prismatic zoning and numerous black inclusions that make them quite distinct from adjacent overgrowths or cores when observed in polarizing light microscopy and in back-scattered electron micrographs. Careful handpicking and analysis of the "best" magmatic grains, devoid of visible overgrowth of core material, produced two nearly concordant points that along with two of the multi-grain analyses yielded an upper-intercept age of 1118 ?? 2.8 Ma and a lower-intercept age of 251 ?? 13 Ma. The older age is interpreted as the crystallization age of the syenite and the younger one is consistent with late stage uplift of the Appalachian region. The 1118 Ma age for the Diana Complex, some 35 Ma younger than previously believed, is now approximately synchronous with the main Adirondack anorthosite intrusion, implying a cogenetic relationship among the various meta-igneous rocks of the Adirondacks. The retention of a high-temperature contact metamorphic aureole around Diana convincingly places the timing of Adirondack regional metamorphism as early as 1118 Ma. This result also implies that the sources of anomalous high-temperature during granulite metamorphism are the syn-metamorphic intrusions, such as the Diana Complex.

  16. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  17. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, D. W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.

  18. Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition.

    PubMed

    Gerson, Jacqueline R; Driscoll, Charles T; Roy, Karen M

    2016-09-01

    With decreases in acid deposition, nitrogen : phosphorus (N:P) ratios in lakes are anticipated to decline, decreasing P limitation of phytoplankton and potentially changing current food web dynamics. This effect could be particularly pronounced in the Adirondack Mountains of New York State, a historic hotspot for effects of acid deposition. In this study, we evaluate spatial patterns of nutrient dynamics in Adirondack lakes and use these to infer potential future temporal trends. We calculated Mann-Kendall tau correlations among total phosphorus (TP), chlorophyll a, dissolved organic carbon (DOC), acid neutralizing capacity (ANC), and nitrate (NO3(-) ) concentrations in 52 Adirondack Long Term Monitoring (ALTM) program lakes using samples collected monthly during 2008-2012. We evaluated the hypothesis that decreased atmospheric N and S deposition will decrease P limitation in freshwater ecosystems historically impacted by acidification. We also compared these patterns among lake watershed characteristics (i.e., seepage or lacking a surface outlet, chain drainage, headwater drainage, thin glacial till, medium glacial till). We found that correlations (P < 0.05) were highly dependent upon the different hydrologic flowpaths of seepage vs. drainage lakes. Differentiations among watershed till depth were also important in determining correlations due to water interaction with surficial geology. Additionally, we found low NO3(-) :TP (N:P mass) values in seepage lakes (2.0 in winter, 1.9 in summer) compared to chain drainage lakes (169.4 in winter, 49.5 in summer) and headwater drainage lakes (97.0 in winter, 10.9 in summer), implying a high likelihood of future shifts in limitation patterns for seepage lakes. With increasing DOC and decreasing NO3(-) concentrations coinciding with decreases in acid deposition, there is reason to expect changes in nutrient dynamics in Adirondack lakes. Seepage lakes may become N-limited, while drainage lakes may become less P

  19. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA).

    PubMed

    Caputo, Jesse; Beier, Colin M; Sullivan, Timothy J; Lawrence, Gregory B

    2016-09-15

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification - and their implications for the sustainability of SM and its economic and cultural benefits - have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production - although not feasible across the vast areas where acid impairment has occurred - may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern hardwood

  20. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA)

    USGS Publications Warehouse

    Caputo, Jesse PhD.; Beier, Colin M.; Sullivan, Timothy J.; Lawrence, Gregory B.

    2016-01-01

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification – and their implications for the sustainability of SM and its economic and cultural benefits – have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100 years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production – although not feasible across the vast areas where acid impairment has occurred – may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern

  1. Eskers as an aid to the understanding of deglaciation in the Northern Adirondacks

    SciTech Connect

    King, G.S. . Geology Dept.)

    1993-03-01

    Eskers in the Northern Adirondack Mountains of New York State have been examined in order to gain a better understanding of their origin, their relationship to other glacial landforms, and to determine the relative timing of their formation. Ultimately, it is hoped that eskers can be used to construct a model of the former ice sheet for the region. Cross sections and longitudinal profiles were constructed to give a better understanding of esker form. Subsequent fieldwork was designed to confirm and compliment these morphometric analyses. The sedimentology of an esker and adjacent fan was logged and interpreted. The spatial relations between the eskers, fans, and delta complexes were identified. Results indicate that the eskers of the Northern Adirondack Mountains formed at different stages in the retreat of the ice sheet and are not related to an integrated subglacial drainage system. The presence of a lacustrine fan at the south end of the St. Regis Esker indicates that a glacial lake was present at the ice sheet margin and delimits an ice marginal position. The morphology and distribution of eskers may be useful as an indicator in the timing of continental deglaciation of northern New York State. Research for this project was funded by a University of Dayton Research Council Grant to D. Pair.

  2. Acid Rain Effects on Adirondack Streams - Results from the 2003-05 Western Adirondack Stream Survey (the WASS Project)

    USGS Publications Warehouse

    Lawrence, Gregory B.; Roy, Karen M.; Baldigo, Barry P.; Simonin, Howard A.; Passy, Sophia I.; Bode, Robert W.; Capone, Susan B.

    2009-01-01

    Traditionally lakes have been the focus of acid rain assessments in the Adirondack region of New York. However, there is a growing recognition of the importance of streams as environmental indicators. Streams, like lakes, also provide important aquatic habitat, but streams more closely reflect acid rain effects on soils and forests and are more prone to acidification than lakes. Therefore, a large-scale assessment of streams was undertaken in the drainage basins of the Oswegatchie and Black Rivers; an area of 4,585 km2 in the western Adirondack region where acid rain levels tend to be highest in New York State.

  3. Spirit Takes a Turn for Adirondack

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This rear hazard-identification camera image looks back at the circular tracks made in the martian soil when the Mars Exploration Rover Spirit drove about 3 meters (10 feet) toward the mountain-shaped rock called Adirondack, Spirit's first rock target. Spirit made a series of arcing turns totaling approximately 1 meter (3 feet). It then turned in place and made a series of short, straightforward movements totaling approximately 2 meters (6.5 feet). The drive took about 30 minutes to complete, including time stopped to take images. The two rocks in the upper left corner of the image are called 'Sashimi' and 'Sushi.' In the upper right corner is a portion of the lander, now known as the Columbia Memorial Station.

  4. Tectonic and neotectonic framework of the Yucca Mountain Region

    SciTech Connect

    Schweickert, R.A.

    1992-09-30

    Highlights of major research accomplishments concerned with the tectonics and neotectonics of the Yucca Mountain Region include: structural studies in Grapevine Mountains, Bullfrog Hills, and Bare Mountain; recognition of significance of pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; compilation of map of quaternary faulting in Southern Amargosa Valley; and preliminary paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain.

  5. Atmosphere Processes Dynamic and Mountain Region Climate

    NASA Astrophysics Data System (ADS)

    Davitashvili, T.; Khvedelidze, Z.; Javakhishvili, Kh.; Sharikadze, I.

    As is known, on the whole regional climate is depended on the Sun's lope relation to the horizon and the characteristics of the Earth relief. In the mountain regions (Caucasian region) compound relief conduce additional turbulence craetion and flow round stream increasing or decreasing. All that bring climate change special feature in the mountain regions. Climate formation and change internal factors are enough interconnected. We had study reverse connection between temperature, moisture, cloudness radiation balance, the Sun's activity and its components on the basis of the data over last 140 years. For the central months of the seasons, there was comparison day-night, monthly an annual motion of the radiation and temperature, temperature and Sun's activity, with account of cloud and moisture. Reverse connection between climate elements was valuated with help of correlation coefficient (r>0.8), but period of its reiteration analysis of the calculated fields the available natural data and the semiempirical calculation it was shown, that in the Western Georgia temperature was not increased unlike the Eastern Georgia.

  6. Geochemical affinities of a Late Precambrian basaltic dike, Adirondack Lowlands, Northern New York

    SciTech Connect

    Badger, R.L. . Dept. of Geology)

    1993-03-01

    Late Precambrian rifting and the opening of the Iapetus Ocean basin have produced a series of NE-trending basaltic dikes in the Adirondack Lowlands of New York. Twelve samples were taken from the largest of these dikes, a 14 km long body, in order to study the chemical variability along and across strike and to characterize the source region. The dike consists of an assemblage of plagioclase, Ti-rich clinopyroxene, magnetite/ilmenite and a hydrated phase that was probably olivine. All analyzed samples contain normative olivine, and most contain normative nepheline, indicative of alkalic affinities. Chemical variations are relatively minor, with generally as much variation occurring across strike (max. width 10m) as along strike. SiO[sub 2] varies from 43.9--45.0 wt%; TiO[sub 2]: 4.8--5.1 wt%; P[sub 2]O[sub 5]: 0.8--1.1 wt%; Ni: 55--79 ppm; Sr:P 300--600 ppm; Rb: 35--66 ppm; Y/Nb = 1.1; Zr/Nb = 8. Chondrite normalized REE patterns show strong LREE enrichment. Tectonic discrimination plots (Zr--Ti/100--Y[star]) are indicative of within plate magmatism, and plots of Y/nb vs. Zr/Nb suggest an enriched, OIB-type mantle plume source. Trace element characteristics suggest a genetic correlation with Late Precambrian, rift related magmas of the Ottawa Graben and of the eastern Adirondack Mountains and western Vermont.

  7. Simulation of growth of Adirondack conifers in relation to global climate change

    SciTech Connect

    Pan, Y.; Raynal, D.J. )

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of trees are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.

  8. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  9. Geology and geography of the Henry Mountains region, Utah

    USGS Publications Warehouse

    Hunt, Charles B.; Averitt, Paul; Miller, Ralph L.

    1953-01-01

    The Henry Mountains region in southeastern Utah is one of the classic areas in geology because of the study made there by Grove Karl Gilbert in 1875 and 1876. His report on the geology of the mountains was the first to recognize that intrusive bodies may deform their host rocks and the first to show clearly the significance of the evenly eroded plains, now known as pediments, at the foot of desert mountains.The Henry Mountains with the surrounding structural basin is a rugged, dry, and sparsely settled region, a part of the Colorado Plateaus province. The natural obstacles of the region-the aridity and ruggedness-have kept it primitive. It has not been penetrated by modern methods of transportation and thus it persists as a roadless frontier. Even the Indians seem to have made little use of the region; explorers did not enter it until 1869 and settlements were not started until the eighties.

  10. Wolf restoration to the Adirondacks: the advantages and disadvantages of public participation in the decision

    USGS Publications Warehouse

    Mech, L. David; Sharpe, V.A.; Norton, B.; Donnelley, S.

    2000-01-01

    The first time I ever saw a wolf in New York State's Adirondack Mountains was in 1956. It was a brush wolf, or coyote (Canis latrans), not a real wolf, but to an eager young wildlife student this distinction meant little. The presence of this large deer-killing canid let my fresh imagination view the Adirondacks as a real northern wilderness. Since then I have spent the last 40 years studying the real wolf: the gray wolf (Canis lupus). Although inhabiting nearby Quebec and Ontario, the gray wolf still has not made its way back to the Adirondacks as it has to Wisconsin, Michigan, and Montana. Those three states had the critical advantages of a nearby reservoir population of wolves and wilderness corridors through which dispersers from the reservoirs could immigrate. The Adirondacks, on the other hand, are geographically more similar to the greater Yellowstone area in that they are separated from any wolf reservoir by long distances and intensively human-developed areas aversive to wolves from the reservoir populations. If wolves are to return to the Adirondacks, they almost certainly will have to be reintroduced, as they were to Yellowstone National Park. Wolf reintroduction, as distinct from natural recovery, is an especially contentious issue, for it entails dramatic, deliberate action that must be open to public scrutiny, thorough discussion and review, and highly polarized debate. This is as it should be because once a wolf population is reintroduced to an area, it must be managed forever. There is no turning back. The wolf was once eradicated not just from the Adirondacks but from almost all of the 48 contiguous states. That feat was accomplished by a primarily pioneering society that applied itself endlessly to the task, armed with poison. We can never return to those days, so once the wolf is reintroduced successfully, it will almost certainly be here to stay.

  11. Decline of red spruce in the Adirondacks, New York

    SciTech Connect

    Scott, J.T.; Siccama, T.G.; Johnson, A.H.; Breisch, A.R.

    1984-01-01

    Thirty-two stands in the spruce-fir forests of Whiteface Mountain in the Adirondacks, originally sampled from 1964-66, were resurveyed in 1982. From 10-25 Bitterlich points were used in each stand in 1982 to obtain an estimate of basal area per hectare. Data were summarized for low elevation (<900m) and high elevation (> or = 900m) forests. Red spruce declined by 40-60% in basal area for the low elevation forests and by 60-70% above 900m. Balsam fir decreased by 35% at high elevations, due to natural disturbance in several of the stands, but was unchanged when only undisturbed stands were considered. The decline of red spruce accounted for about three quarters of the total decrease in basal area for both the high- and low-elevation forests. Spruce seedling frequency for the high-elevation sample decreased by 80%, but was unchanged below 900m. The pattern of spruce decline in the Adirondacks is similar to findings for New England. The cause of the decline is speculative at the time.

  12. Coal-bed gas resources of the Rocky Mountain region

    USGS Publications Warehouse

    Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.

    2001-01-01

    The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.

  13. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    SciTech Connect

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-10-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data.

  14. Geologic map of the Yucca Mountain region, Nye County, Nevada

    USGS Publications Warehouse

    Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.

    2002-01-01

    Yucca Mountain, Nye County, Nev., has been identified as a potential site for underground storage of high-level radioactive waste. This geologic map compilation, including all of Yucca Mountain and Crater Flat, most of the Calico Hills, western Jackass Flats, Little Skull Mountain, the Striped Hills, the Skeleton Hills, and the northeastern Amargosa Desert, portrays the geologic framework for a saturated-zone hydrologic flow model of the Yucca Mountain site. Key geologic features shown on the geologic map and accompanying cross sections include: (1) exposures of Proterozoic through Devonian strata inferred to have been deformed by regional thrust faulting and folding, in the Skeleton Hills, Striped Hills, and Amargosa Desert near Big Dune; (2) folded and thrust-faulted Devonian and Mississippian strata, unconformably overlain by Miocene tuffs and lavas and cut by complex Neogene fault patterns, in the Calico Hills; (3) the Claim Canyon caldera, a segment of which is exposed north of Yucca Mountain and Crater Flat; (4) thick densely welded to nonwelded ash-flow sheets of the Miocene southwest Nevada volcanic field exposed in normal-fault-bounded blocks at Yucca Mountain; (5) upper Tertiary and Quaternary basaltic cinder cones and lava flows in Crater Flat and at southernmost Yucca Mountain; and (6) broad basins covered by Quaternary and upper Tertiary surficial deposits in Jackass Flats, Crater Flat, and the northeastern Amargosa Desert, beneath which Neogene normal and strike-slip faults are inferred to be present on the basis of geophysical data and geologic map patterns. A regional thrust belt of late Paleozoic or Mesozoic age affected all pre-Tertiary rocks in the region; main thrust faults, not exposed in the map area, are interpreted to underlie the map area in an arcuate pattern, striking north, northeast, and east. The predominant vergence of thrust faults exposed elsewhere in the region, including the Belted Range and Specter Range thrusts, was to the east

  15. Task 5 -- Tectonic and neotectonic framework of the Yucca Mountain region

    SciTech Connect

    Schweickert, R.A.

    1994-12-31

    Progress on the tectonics of the Yucca Mountain region is described. Results are reported in the following: regional overview of structure and geometry of Meozoic thrust faults and folds in the area around Yucca Mountain; Evaluation of pre-middle Miocecne structure of Grapevine Mountains and it`s relation to Bare Mountain; Kinematic analysis of low and high angle normal faults in the Bare Mountain area, and comparison of structures with the Grapevine Mountains; and Evaluation of paleomagnetic character of tertiary and pre-tertiary units in the Yucca Mountain region.

  16. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  17. Climate change velocity underestimates climate change exposure in mountainous regions

    NASA Astrophysics Data System (ADS)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  18. Airborne geophysical surveys over the eastern Adirondacks, New York State

    USGS Publications Warehouse

    Shah, Anjana K.

    2016-01-01

    Airborne geophysical surveys were conducted in the eastern Adirondacks from Dec. 7, 2015 - Dec. 21, 2015, by Goldak Airborne Surveys. The area was flown along a draped surface with a nominal survey height above ground of 200 meters. The flight line spacing was 250 meters for traverse lines and 2500 meters for control lines. Here we present downloadable magnetic and radiometric (gamma spectrometry) data from those surveys as image (Geotiff) and flight line data (csv format).BackgroundThe Eastern Adirondacks region was known for iron mining in the 1800's and 1900's but it also contains deposits of rare earth minerals. Rare earth minerals are used in advanced technology such as in cell phones, rechargeable batteries and super-magnets. In many areas rare earth minerals appear to be associated with iron ore.The surveys were flown in order to map geologic variations in three dimensions. Magnetic surveys measure subtle changes in Earth's magnetic field that reflect different types of buried rock, such as iron-rich ore bodies. Radiometric methods detect naturally occurring gamma particles. The energy spectra of these particles can be used to estimate relative amounts of potassium, uranium and thorium (also referred to as gamma ray spectrometry), which are sometimes associated with rare earth elements. Together, these data provide insights into the regional tectonic and magmatic history as well as mineral resources in the area.

  19. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  20. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  1. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  2. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  3. 40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  4. 40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  5. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  6. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  7. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  8. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  9. 40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  10. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  11. 40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  12. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  13. 40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  14. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  15. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  16. Diatom diversity in chronically versus episodically acidified adirondack streams

    USGS Publications Warehouse

    Passy, S.I.; Ciugulea, I.; Lawrence, G.B.

    2006-01-01

    The relationship between algal species richness and diversity, and pH is controversial. Furthermore, it is still unknown how episodic stream acidification following atmospheric deposition affects species richness and diversity. Here we analyzed water chemistry and diatom epiphyton dynamics and showed their contrasting behavior in chronically vs. episodically acidic streams in the Adirondack region. Species richness and diversity were significantly higher in the chronically acidic brown water stream, where organic acidity was significantly higher and the ratio of inorganic to organic monomeric aluminum significantly lower. Conversely, in the episodically acidic clear water stream, the inorganic acidity and pH were significantly higher and the diatom communities were very species-poor. This suggests that episodic acidification in the Adirondacks may be more stressful for stream biota than chronic acidity. Strong negative linear relationships between species diversity, Eunotia exigua, and dissolved organic carbon against pH were revealed after the influence of non-linear temporal trends was partialled out using a novel way of temporal modeling. ?? 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

  17. Mountains

    SciTech Connect

    Fuller, M.

    1989-01-01

    This book covers the following topics: Above the forest: the alpine tundra; Solar energy, water, wind and soil in mountains; Mountain weather; Mountain building and plate tectonics; Mountain walls: forming, changing, and disappearing; Living high: mountain ecosystems; Distribution of mountain plants and animals; On foot in the mountains: how to hike and backpack; Ranges and peaks of the world. Map and guidebook sources, natural history and mountain adventure trips, mountain environmental education centers and programs, and sources of information on trails for the handicapped are included.

  18. Tectonic and neotectonic framwork of the Yucca Mountain region, Task 5

    SciTech Connect

    Schweickert, R.A.

    1993-09-30

    Research continued on the tectonic and neotectonics of the Yucca Mountain region. Highlights from projects include: structural studies in Grapevine Mountains, Funeral Mountains, Bullfrog Hills, and Bare Mountain; development of structural models for pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; Paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain; sampling of pegmatites in Bullfrog Hills and Funeral Mountains for U-Pb isotopic analysis; and review and analysis of Mesozoic structure between eastern sierra and Nevada test Site.

  19. Episodic acidification of Adirondack lakes during snowmelt

    SciTech Connect

    Schaefer, D.A.; Driscoll, C.T.; Van Dreason, R.; Yatsko, C.P.

    1990-07-01

    Maximum values of acid neutralizing capacity (ANC) in Adirondack, New York lake outlets generally occur during summer and autumn. During spring snowmelt, transport of acidic water through acid-sensitive watersheds causes depression of upper lake water ANC. In some systems lake outlet ANC reaches negative values. The authors examined outlet water chemistry from II Adirondack lakes during 1986 and 1987 snowmelts. In these lakes, SO concentrations were diluted during snowmelt and did not depress ANC. For lakes with high baseline ANC values, springtime ANC depressions were primarily accompanied by basic cation dilution. For lakes with low baseline ANC, No increases dominated ANC depressions. Lakes with intermediate baseline ANC were affected by both processes and exhibited larger ANC depressions. Ammonium dilution only affected wetland systems. A model predicting a linear relationship between outlet water ANC minima and autumn ANC was inappropriate. To assess watershed response to episodic acidification, hydrologic flow paths must be considered. (Copyright (c) 1990 by the American Geophysical Union.)

  20. Characteristics of Wintertime Precipitation in Two Western Wyoming Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Ikeda, K.; Weeks, C.; Rasmussen, R.; Axisa, D.; Xue, L.

    2015-12-01

    High-resolution (4 km grid spacing) climate simulations using the Weather Research and Forecasting (WRF) model have been run to study precipitation over the Colorado Headwaters region. These simulations have also been used to study the behavior of wintertime precipitation over two mountainous regions in western Wyoming: the Salt River and Wyoming Ranges, which are a set of narrow, north-south oriented mountains nearly parallel to one another, and the Wind River Range, which is oriented from the northwest to southeast extending into central Wyoming. The simulations have been compared against SNOTEL precipitation gauge measurements, which has shown that at most SNOTEL sites the WRF simulations represent the precipitation quite well. This paper will present the results of the model and SNOTEL gauge analysis, as well as compare and contrast the behavior of precipitation between the two regions. Of note are the differences in the importance of an easterly upslope precipitation wind regime between the regions, and the potential for cloud seeding in each region given the presence of supercooled liquid water in the orographic clouds.

  1. 40 CFR 81.241 - Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southwestern Mountains-Augustine... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.241 Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region. The Southwestern Mountains-Augustine Plains Intrastate...

  2. 40 CFR 81.241 - Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Southwestern Mountains-Augustine... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.241 Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region. The Southwestern Mountains-Augustine Plains Intrastate...

  3. 40 CFR 81.241 - Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Southwestern Mountains-Augustine... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.241 Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region. The Southwestern Mountains-Augustine Plains Intrastate...

  4. 40 CFR 81.241 - Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Southwestern Mountains-Augustine... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.241 Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region. The Southwestern Mountains-Augustine Plains Intrastate...

  5. 40 CFR 81.241 - Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Southwestern Mountains-Augustine... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.241 Southwestern Mountains-Augustine Plains Intrastate Air Quality Control Region. The Southwestern Mountains-Augustine Plains Intrastate...

  6. Fluid-absent metamorphism in the Adirondacks

    NASA Technical Reports Server (NTRS)

    Valley, J. W.

    1986-01-01

    Results on late Proterozoic metamorphism of granulite in the Adirondacks are presented. There more than 20,000 sq km of rock are at granulite facies. Low water fugacites are implied by orthopyroxene bearing assemblages and by stability of k'spar-plag-quartz assemblages. After mentioning the popular concept of infiltration of carbon dioxide into Precambrian rocks and attendent generation of granulite facies assemblages, several features of Adirondack rocks pertinent to carbon dioxide and water during their metamorphism are summarized: wollastonite occurs in the western lowlands; contact metamorphism by anorthosite preceeding granulite metamorphism is indicated by oxygen isotopes. Oxygen fugacity lies below that of the QFM buffer; total P sub water + P sub carbon dioxide determined from monticellite bearing assemblages are much less than P sub total (7 to 7.6 kb). These and other features indicate close spatial association of high- and low-P sub carbon dioxide assemblages and that a vapor phase was not present during metamorphism. Thus Adirondack rocks were not infiltrated by carbon dioxide vapor. Their metamorphism, at 625 to 775 C, occurred either when the protoliths were relatively dry or after dessication occurred by removal of a partial melt phase.

  7. Monitoring of Permafrost in the Hovsgol Mountain Region, Mongolia

    NASA Astrophysics Data System (ADS)

    Sharkhuu, A.; Natsagdorj, S.; Etzelmuller, B.; Heggem, E. S.; Nelson, F. E.; Shiklomanov, N.; Goulden, C.

    2005-12-01

    The Hovsgol Mountain Region is located between the coordinates of N 49°-52° and E 98°-102 ° in territory of Hovsgol Province, Mongolia. The territory is characterized by mountain permafrost, sporadic to continuous in its distribution, and occupies the southern fringe of the Siberian continuous permafrost zone. The main goal of permafrost monitoring in the region is to study recent degradation of permafrost under the influence of climate warming and human activities. Monitoring of permafrost is conducted within the framework of the Circumpolar Active Layer Monitoring (CALM) and the Global Terrestrial Network for Permafrost (GTN-P) programs. The main parameters being monitored are active layer depth and mean annual permafrost temperature at the level of the zero annual amplitude. Long-term CALM and GTN-P programs are based on ground temperature measurements in shallow to deep boreholes. Each borehole for monitoring is installed using instrumentation designed specifically to protect against air convection in them. Temperature measurements in the boreholes are made using identical thermo-resistors at corresponding depths, and carried out on the same dates each year. In addition, temperature dataloggers and thaw tubes are installed in most of the boreholes. At present, there are eight long-term (15-35 years) CALM and GTN-P active borehole sites. Boreholes are located in the Sharga valley (southwest), Burehkhan and Hovsgol phosphorite areas and Hatgal village (central part of the region) and in the Darhad depression. Initial results of the long term monitoring show that average rates of increase in active layer depth and mean annual permafrost temperature under influence of recent climate warming in the Hovsgol Mountain Region are 5-15 cm and 0.15-0.25°C per decade, respectively. The rate of permafrost degradation in bedrock is greater than in unconsolidated sediments, in ice-poor sediments more than ice-rich ones, and on north-facing slopes more than on south

  8. Water beetles in mountainous regions in southeastern Brazil.

    PubMed

    Segura, M O; Fonseca-Gessner, A A; Spies, M R; Siegloch, A E

    2012-05-01

    Inventories provide information on the state of biodiversity at a site or for a geographic region. Species inventories are the basis for systematic study and critical to ecology, biogeography and identification of biological indicators and key species. They also provide key information for assessments of environmental change, for natural resource conservation or recovery of degraded ecosystems. Thus, inventories play a key role in planning strategies for conservation and sustainable use. This study aimed to inventory the fauna of water beetles, larvae and adults, in two mountainous regions in the state of São Paulo, in Serra da Mantiqueira (Parque Estadual de Campos do Jordão and Pindamonhangaba region) and in Serra do Mar (Santa Virgínia and Picinguaba Divisions) as well as to generate information about the habitats used by the different genera recorded. Specimens were collected in lotic and lentic systems, between the years 2005 to 2010. In total 14,492 specimens were collected and 16 families and 50 genera of Coleoptera were identified. This study in mountainous regions showed a significant portion of the faunal composition of South America and the state of São Paulo. The composition of the fauna, in terms of richness and abundance by family, indicated the predominance of Elmidae, followed by Hydrophilidae and Dytiscidae. Despite the diversity found, the results of estimated richness indicated the need for additional sampling effort for both regions, since the curves of estimated richness did not reach an asymptote, suggesting that new species can be found in future surveys.

  9. Regional metamorphism in the Condrey Mountain Quadrangle, north-central Klamath Mountains, California

    USGS Publications Warehouse

    Hotz, Preston Enslow

    1979-01-01

    Fork in this region is composed of siliceous phyllite and phyllitic quartzite and is believed to be the metamorphosed equivalent of rocks over which it is thrust. In the Yreka-Fort Jones area, potassium-argon determinations on mica from the blueschist facies in the Stuart Fork gave ages of approximately 220 m.y. (Late Triassic) for the age of metamorphism. Rocks of the amphibolite facies structurally overlie the Condrey Mountain Schist along a moderate to steeply dipping thrust fault. The amphibolite terrane is composed of amphibolite and metasedimentary rocks in approximately equal amounts accompanied by many bodies of serpentinite and a number of gabbro and dioritic plutons. Most of the amphibolite is foliated, but some is nonfoliated; the nonfoliated amphibolite has an amphibolite mineralogy and commonly a relict volcanic rock texture. The nonfoliated amphibolite occurs on the southern and eastern borders of the amphibolite terrane between the areas offoliated amphibolite and the overly ing metavolcanic and metasedimentary rocks. Hornblende and plagioclase (An30-35) are the characteristic minerals, indicating that the rocks are of the almandine-amphibolite metamorphic facies. The metasedimentary rocks interbedded with the amphibolites include siliceous schist and phyllite, minor quartzite, and subordinate amounts of marble. Potassium-argon age dates obtained on hornblende from foliated amphibolite yield ages of 146?4 and 148? 4 m.y., suggesting a Late Jurassic metamorphic episode. Mafic and ultramafic rocks are widespread in the amphibolite terrane but are almost entirely absent from the area of greenschist facies metavolcanic and metasedimentary rocks. The ultramafic rocks, predominantly serpentinite, occur as a few large bodies and many small tabular concordant bodies interleaved with the foliated rocks. The ultramafic rocks include harzburgite and d1lIlite and their serpentinized equivalents. In the Condrey Mountain quadrangle, probably more t

  10. Mercury contribution to an adirondack lake

    NASA Astrophysics Data System (ADS)

    Scrudato, R. J.; Long, D.; Weinbloom, Robert

    1987-10-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.

  11. Mercury contribution to an Adirondack lake

    SciTech Connect

    Scrudato, R.J. ); Long, D. ); Weinbloom, R. )

    1987-01-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipitation.

  12. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    NASA Astrophysics Data System (ADS)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  13. Regional prioritisation of flood risk in mountainous areas

    NASA Astrophysics Data System (ADS)

    Rogelis, M. C.; Werner, M.; Obregón, N.; Wright, G.

    2015-07-01

    A regional analysis of flood risk was carried out in the mountainous area surrounding the city of Bogotá (Colombia). Vulnerability at regional level was assessed on the basis of a principal component analysis carried out with variables recognised in literature to contribute to vulnerability; using watersheds as the unit of analysis. The area exposed was obtained from a simplified flood analysis at regional level to provide a mask where vulnerability variables were extracted. The vulnerability indicator obtained from the principal component analysis was combined with an existing susceptibility indicator, thus providing an index that allows the watersheds to be prioritised in support of flood risk management at regional level. Results show that the components of vulnerability can be expressed in terms of four constituent indicators; socio-economic fragility, which is composed of demography and lack of well-being; lack of resilience, which is composed of education, preparedness and response capacity, rescue capacity, social cohesion and participation; and physical exposure is composed of exposed infrastructure and exposed population. A sensitivity analysis shows that the classification of vulnerability is robust for watersheds with low and high values of the vulnerability indicator, while some watersheds with intermediate values of the indicator are sensitive to shifting between medium and high vulnerability. The complex interaction between vulnerability and hazard is evidenced in the case study. Environmental degradation in vulnerable watersheds shows the influence that vulnerability exerts on hazard and vice versa, thus establishing a cycle that builds up risk conditions.

  14. Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona

    USGS Publications Warehouse

    Lasky, S.G.; Webber, B.N.

    1944-01-01

    The manganese deposits of the Artillery Mountains region lie within an area of about 25 square miles between the Artillery and Rawhide Mountains, on the west side of the Bill Williams River in west-central Arizona. The richest croppings are on the northeast side of this area, among the foothills of the Artillery Mountains. They are 6 to 10 miles from Alamo. The nearest shipping points are Congress, about 50 miles to the east, and Aguila, about 50 miles to the southeast. The principal manganese deposits are part of a sequence of alluvial fan and playa material, probably of early Pliocene age, which were laid down in a fault basin. They are overlain by later Pliocene (?) basalt flows and sediments and by Quaternary basalt and alluvium. The Pliocene (?) rocks are folded into a shallow composite S1ncline ttat occupies the valley between the Artillery and Rawhide Mountains, and the folded rocks along either side of the valley, together with the overlying Quaternary basalt, are broken by faults that have produced a group of horsts, grabens, and step-fault blocks. The manganiferous beds, lie at two zones, 750 to 1,000 feet apart stratigraphically, each of which is locally as much as 300 to 400 feet thick. The main, or upper, zone contains three kinds of ore - sandstone ore, clay ore, and 'hard' ore. The sandstone and clay ores differ from the associated barren sandstone and clay, with which they are interlayered and into which they grade, primarily in containing a variable proportion of amorphous manganese oxides, besides iron oxides and clayey material such as are present in the barren beds. The 'hard' ore is sandstone that has been impregnated with opal and calcite and in which the original amorphous manganese oxides have been largely converted to psilomelane and manganite. The average manganese content of the sandstone and clay ores is between 3 and 4 percent and that of the 'hard' ore is between 6 and 7 percent. The ore contains an average of 3 percent of iron, 0

  15. Cultural ecosystem services of mountain regions: Modelling the aesthetic value

    PubMed Central

    Schirpke, Uta; Timmermann, Florian; Tappeiner, Ulrike; Tasser, Erich

    2016-01-01

    Mountain regions meet an increasing demand for pleasant landscapes, offering many cultural ecosystem services to both their residents and tourists. As a result of global change, land managers and policy makers are faced with changes to this landscape and need efficient evaluation techniques to assess cultural ecosystem services. This study provides a spatially explicit modelling approach to estimating aesthetic landscape values by relating spatial landscape patterns to human perceptions via a photo-based survey. The respondents attributed higher aesthetic values to the Alpine landscape in respect to areas with settlements, infrastructure or intensive agricultural use. The aesthetic value of two study areas in the Central Alps (Stubai Valley, Austria and Vinschgau, Italy) was modelled for 10,215 viewpoints along hiking trails according to current land cover and a scenario considering the spontaneous reforestation of abandoned land. Viewpoints with high aesthetic values were mainly located at high altitude, allowing long vistas, and included views of lakes or glaciers, and the lowest values were for viewpoints close to streets and in narrow valleys with little view. The aesthetic values of the reforestation scenario decreased mainly at higher altitudes, but the whole area was affected, reducing aesthetic value by almost 10% in Stubai Valley and 15% in Vinschgau. Our proposed modelling approach allows the estimation of aesthetic values in spatial and qualitative terms for most viewpoints in the European Alps. The resulting maps can be used as information and the basis for discussion by stakeholders, to support the decision-making process and landscape planning. This paper also discusses the role of mountain farming in preserving an attractive landscape and related cultural values. PMID:27482152

  16. Regional crustal thickness and precipitation in young mountain chains.

    PubMed

    Ernst, W G

    2004-10-19

    Crustal thickness is related to climate through precipitation-induced erosion. Along the Andes, the highest mountains and thickest crust (approximately 70 km) occur at 25 degrees south, a region of low precipitation. Westerly winds warm passing over the Atacama Desert; precipitation is modest in the High Andes and eastward over the Altiplano. Severe aridity, hence low erosion rates, helps to account for the elevated volcanogenic contractional arc and high, internally draining plateau in its rain shadow. Weak erosion along the north-central arc provides scant amounts of sediment to the Chile-Peru Trench, starving the subduction channel. Subcrustal removal might be expected to reduce the crustal thickness, but is not a factor at 25 degrees south. The thickness of the gravitationally compensated continental crust cannot reflect underplating and/or partial fusion of sediments, but must be caused chiefly by volcanism-plutonism and contraction. Contrasting climate typifies the terrain at 45 degrees south where moisture-laden westerly winds encounter a cool margin, bringing abundant precipitation. The alpine landscape is of lower average elevation compared with the north-central Andes and is supported by thinner continental crust (approximately 35 km). Intense erosion supplies voluminous clastic debris to the offshore trench, and vast quantities are subducted. However, the southern Andean crust is only about half as thick as that at 25 degrees south, suggesting that erosion, not subcrustal sediment accretion or anatexis, is partly responsible for the thickness of the mountain belt. The Himalayas plus Tibetan Plateau, the Sierra Nevada plus Colorado Plateau, and the Japanese Islands exhibit analogous relationships between crustal thickness and climate.

  17. Regional prioritisation of flood risk in mountainous areas

    NASA Astrophysics Data System (ADS)

    Rogelis, María Carolina; Werner, Micha; Obregón, Nelson; Wright, Nigel

    2016-03-01

    In this paper a method is proposed to identify mountainous watersheds with the highest flood risk at the regional level. Through this, the watersheds to be subjected to more detailed risk studies can be prioritised in order to establish appropriate flood risk management strategies. The prioritisation is carried out through an index composed of a qualitative indicator of vulnerability and a qualitative flash flood/debris flow susceptibility indicator. At the regional level, vulnerability was assessed on the basis of a principal component analysis carried out with variables recognised in literature to contribute to vulnerability, using watersheds as the unit of analysis. The area exposed was obtained from a simplified flood extent analysis at the regional level, which provided a mask where vulnerability variables were extracted. The vulnerability indicator obtained from the principal component analysis was combined with an existing susceptibility indicator, thus providing an index that allows the watersheds to be prioritised in support of flood risk management at regional level. Results show that the components of vulnerability can be expressed in terms of three constituent indicators: (i) socio-economic fragility, which is composed of demography and lack of well-being; (ii) lack of resilience and coping capacity, which is composed of lack of education, lack of preparedness and response capacity, lack of rescue capacity, cohesiveness of the community; and (iii) physical exposure, which is composed of exposed infrastructure and exposed population. A sensitivity analysis shows that the classification of vulnerability is robust for watersheds with low and high values of the vulnerability indicator, while some watersheds with intermediate values of the indicator are sensitive to shifting between medium and high vulnerability.

  18. Neotectonic inversion of the Hindu Kush-Pamir mountain region

    USGS Publications Warehouse

    Ruleman, C.A.

    2011-01-01

    The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.

  19. Preorogenic history of the Adirondacks as an elsonian anorogenic caldera complex

    SciTech Connect

    McLelland, J.

    1985-01-01

    The Adirondack Highlands are characterized by the close association of a distinctive trinity of metaigneous rocks: (1) anorthosites, (2) mangeritic and quartz mangeritic gneisses that tend to envelop the anorthosites, and (3) alaskitic and trondjhemitic gneisses many of which represent metamorphosed volcanic material. All rocks within the province exhibit high concentrations of iron (FeO/FeO + MgO approx. 0.8), and both titaniferous and non-titaniferous iron oxide deposits occur. The mangeritic rocks are alkaline to peralkaline while the alaskitic gneisses are meta- to peraluminous. A/CNK, KN/C, as well as oxides vs SiO/sub 2/ plots yield patterns identical to those cited by J. L. Anderson (1983) as diagnostic of Proterozoic anorogenic plutonism. Within North American this plutonism corresponds to the Elsonian magmatic event with most ages falling between 1.5 - 1.3 b.y. This belt is characterized by high-level anorogenic bimodal magmatism developed in caldera complexes with zoned magma chambers and widespread rhyolitic ash-flow tuffs. Examples of this activity are found in the St. Francois Mountains, Missouri; the Wolf River batholith, Wisconsin; and the Nain Province. The Adirondacks lie along this trend and exhibit the same bulk chemistry and chemical variation as the other complexes. In addition they show enrichment in halogens (esp. F), REE, Zr, and other trace elements associated with calderas. Fayalite and ferroaugite are widely developed. These similarities strongly suggest that prior to the Grenville Orogeny, the Adirondacks consisted of bimodal caldera complexes which were part of the Elsonian anorogenic magmatism extending across North America.

  20. Manganese biogeochemistry in a small Adirondack forested lake watershed

    USGS Publications Warehouse

    Shanley, James B.

    1986-01-01

    In September and October 1981, manganese (Mn) concentrations and pH were intensively monitored in a small forested lake watershed in the west-central Adirondack Mountains, New York, during two large acidic storms (each approximately 5 cm rainfall, pH 4. 61 and 4. 15). The data were evaluated to identify biogeochemical pathways of Mn and to assess how these pathways are altered by acidic atmospheric inputs. Concentrations of Mn averaged 1. 1 mu g/L in precipitation and increased to 107 mu g/L in canopy throughfall, the enrichment reflecting active biological cycling of Mn. Rain pH and throughfall Mn were negatively correlated, suggesting that foliar leaching of Mn was enhanced by rainfall acidity. The pulse-like input of Mn to the forest floor in the high initial concentrations in throughfall (approximately 1000 mu g/L) did not affect Mn concentrations in soil water ( less than 20 mu g/L) or groundwater (usually less than 40 mu g/L), which varied little with time. In the inlet stream, Mn concentrations remained constant at 48 mu g/L as discharge varied from 1. 1 to 96 L/s. Manganese was retained in the vegetative cycle and regulated in the stream by adsorption in the soil organic horizon. The higher Mn levels in the stream may be linked to its high acidity (pH 4. 2-4. 3). Mixing of Mn-rich stream water with neutral lake water (pH 7. 0) caused precipitation of Mn and deposition in lake sediment.

  1. Natural and anthropogenic radioactivity in the environment of mountain region of Serbia.

    PubMed

    Mitrović, B; Vitorović, G; Vitorović, D; Pantelić, G; Adamović, I

    2009-02-01

    The activity concentrations of (40)K, (238)U, (232)Th and (137)Cs have been measured using a gamma spectrometric method in different samples from the environment of two mountains in Serbia (altitude 1000-1100 m), during the period 2002-2007. The mountains Maljen and Tara (popular tourist destinations) are near Belgrade. On mountain Maljen, samples were taken at 4 different altitudes (200 m, 650 m, 1000 m and 1100 m), and on mountain Tara at altitudes of 1000 m and 1100 m. On mountain Maljen it was found that the level of (137)Cs activity increased with altitude in samples of soil, grass, hay and cow, sheep and goat milk. On the contrary, (40)K activity decreased with altitude in samples of soil, grass and hay. The highest activity concentrations of (137)Cs were found in bioindicators: sheep meat, venison, wild boar meat, moss and mushrooms. These results indicate that (137)Cs is present in mountain region of Serbia even 20 years after the nuclear accident in Chernobyl. Deposition of (137)Cs was almost two times higher on the Maljen mountain compared to Tara mountain. An average annual dose arising from (137)Cs was 7.4 microSv due to ingestion of cow milk and 6.3 microSv due to ingestion of mushrooms at the Maljen mountain.

  2. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls

    USGS Publications Warehouse

    Gleeson, T.; Manning, A.H.

    2008-01-01

    This study uses numerical simulations to define the salient controls on regional groundwater flow in 3-D mountainous terrain by systematically varying topographic and hydrogeologic variables. Topography for idealized multiple-basin mountainous terrain is derived from geomatic data and literature values. Water table elevation, controlled by the ratio of recharge to hydraulic conductivity, largely controls the distribution of recharged water into local, regional, and perpendicular flow systems, perpendicular flow being perpendicular to the regional topographic gradient. Both the relative (%) and absolute (m 3/d) values of regional flow and perpendicular flow are examined. The relationship between regional flow and water table elevation is highly nonlinear. With lower water table elevations, relative and absolute regional flow dramatically increase and decrease, respectively, as the water table is lowered further. However, for higher water table elevations above the top of the headwater stream, changes in water table elevation have little effect on regional flow. Local flow predominates in high water table configurations, with regional and perpendicular flow <15% and <10%, respectively, of total recharge in the models tested. Both the relative and the maximum absolute regional flow are directly controlled by the degree of incision of the mountain drainage network; the elevation of mountain ridges is considerably less important. The percentage of the headwater stream with perennial streamflow is a potentially powerful indicator of regional flow in all water table configurations and may be a good indicator of the susceptibility of mountain groundwater systems to increased aridity. Copyright 2008 by the American Geophysical Union.

  3. Geology of the Blue Mountains region of Oregon, Idaho, and Washington: Petrology and tectonic evolution of pre-tertiary rocks of the Blue Mountains region. Professional paper

    SciTech Connect

    Vallier, T.L.; Brooks, H.C.

    1995-12-31

    U.S. Geological Survey Professional Paper 1438 is one volume of a five-volume series on the geology, paleontology, and mineral resources of the Blue Mountains region eastern Oregon, western Idaho, and southeastern Washington. This professional paper deals specifically with petrology and tectonic evolution.

  4. Acid precipitation effects on algal productivity and biomass in Adirondack Lakes. Final completion report

    SciTech Connect

    Hendrey, G.R.

    1982-12-01

    Relationships between phytoplankton communities and lake acidity in three Adirondack Mountain Lakes were studied at Woods Lake, Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed were Woods 45, Sagamore 55, and Panther 85, conforming to observations at many other sites that species numbers decrease with increasing acidity. The smaller plankton are relatively more important in the more acid lakes, Woods > Sagamore > Panther. This pattern could be determined by nutrient availability (lake acidification is suspected of leading to decreased availability of phosphorus). The amount of 14C-labelled dissolved photosynthate (14C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther.

  5. Birds of the Kilbuck and Ahklun mountain region, Alaska

    USGS Publications Warehouse

    Petersen, Margaret R.; Weir, Douglas N.; Dick, Matthew H.

    1991-01-01

    Between 1952 and 1988, we studied the abundance, distribution, occurrence, and habitats used by birds in the northwest portion of Bristol Bay and the adjacent Kilbuck and Ahklun mountains. In the 809 days we were present, we conducted 53 studies or surveys of birds in the region. We gathered information on 185 species, of which 65% (121) nested, 10% (19) probably nested, and 11% (21) were permanent residents in the region. Most breeding or probably breeding forms were of North American (58%; 81) or Beringian (24%; 33) affinity, while the remainder of the species were of Panboreal (17%; 24) and Old World (1%; 2) affinity. Similarly, most of the 44 migrants and visitants were of North American (41%; 18) affinity, while the remainder were of Beringian (32%; 14) and Panboreal (27%; 12) affinity. Of the 140 species that nested or probably nested, 53% (73) were abundant to fairly common, 29% (40) were uncommon to very rare, and 20% (27) were localized. Shrub thicket, dwarf shrub mat, coniferous forest, deciduous forest, mixed deciduous-coniferous forest, and fluviatile water and shoreline habitats supported the greatest diversity of species breeding and suspected of breeding. The highest concentrations of birds occurred in the estuaries of Nanvak, Chagvan, and Goodnews bays during spring and fall migrations and on the coastal and island cliffs during the breeding season.The information presented here provides the basis for range extensions of several species. Our records further clarify the known or probable Alaska breeding ranges of 11 species (fork-tailed storm-petrel, Oceanodroma furcata; double-crested cormorant, Phalacrocorax auritus; red-faced cormorant, Phatacrocorax utile, brant, Branta bernicla; king eider, Somateria spectabilis; white-tailed ptarmigan, Lagopus leucurus; black-bellied plover, Pluvialis squatarola; Pacific golden-plover, Pluvialis fulva; lesser yellowlegs, Tringa flavipes; Say's phoebe, Sayomis saya; and Bohemian waxwing, Bombycilla garrulus). We

  6. Chronic and episodic acidification of Adirondack streams from acid rain in 2003-2005

    USGS Publications Warehouse

    Lawrence, G.B.; Roy, K.M.; Baldigo, Barry P.; Simonin, H.A.; Capone, S.B.; Sutherland, J.W.; Nierzwicki-Bauer, S. A.; Boylen, C.W.

    2008-01-01

    Limited information is available on streams in the Adirondack region of New York, although streams are more prone to acidification than the more studied Adirondack lakes. A stream assessment was therefore undertaken in the Oswegatchie and Black River drainages; an area of 4585 km2 in the western part of the Adirondack region. Acidification was evaluated with the newly developed base-cation surplus (BCS) and the conventional acid-neutralizing capacity by Gran titration (ANCG). During the survey when stream water was most acidic (March 2004), 105 of 188 streams (56%) were acidified based on the criterion of BCS < 0 ??eq L-1, whereas 29% were acidified based on an ANCG value < 0 ??eq L-1. During the survey when stream water was least acidic (August 2003), 15 of 129 streams (12%) were acidified based on the criterion of BCS < 0 ??eq L-1, whereas 5% were acidified based on ANCG value < 0 ??eq L -1. The contribution of acidic deposition to stream acidification was greater than that of strongly acidic organic acids in each of the surveys by factors ranging from approximately 2 to 5, but was greatest during spring snowmelt and least during elevated base flow in August. During snowmelt, the percentage attributable to acidic deposition was 81%, whereas during the October 2003 survey, when dissolved organic carbon (DOC) concentrations were highest, this percentage was 66%. The total length of stream reaches estimated to be prone to acidification was 718 km out of a total of 1237 km of stream reaches that were assessed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Characterization of an organic acid analog model in Adirondack, New York, surface waters

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.

    2013-12-01

    Natural waters include a variety of organic matter that differs in composition and functional groups. Dissolved organic matter is important but difficult to characterize acidic and metal binding (e.g., Al) functional groups in chemical equilibrium models. In this study data from Adirondack Lake Survey were used to calibrate an organic acid analog model in order to quantify the influence of organic acids on surface water chemistry. The study sites in the Adirondack region of New York have diverse levels of dissolved organic carbon (DOC), used as a surrogate for organic acids. DOC in 55 Adirondack surface waters varies from 180 μmol C/l (in Little Echo Pond) to 1263 μmol C/l (in Sunday Pond). To reduce the variability inherited in the large raw data set, suite of mean observations was constructed by grouping and averaging measured data into pH intervals of 0.05 pH units from pH 4.15 to 7.3. A chemical equilibrium model, which includes major solutes in natural waters, was linked to an optimization algorithm (genetic algorithm) to calibrate a triprotic organic analog model which includes proton and aluminum binding by adjusting the dissociation constants and site density of DOC. The object of fitting procedure was to simultaneously minimize the discrepancy between observed and simulated pH, acid neutralizing capacity (ANC), organic monomeric aluminum and inorganic monomeric aluminum. A sensitivity analysis on calibrated values indicate that the speciation of the modeled solutes are most responsive to the dissociation constant of AlOrg= Al3+ + Org3- reaction (Org3- represents organic anion), the site density of DOC and the second H+ dissociation constant of the triprotic organic analog (i.e. H2Org- = 2H+ + Org3- reaction).

  8. Changes in vegetation cover and composition in the Swedish mountain region.

    PubMed

    Hedenås, Henrik; Christensen, Pernilla; Svensson, Johan

    2016-08-01

    Climate change, higher levels of natural resource demands, and changing land use will likely lead to changes in vegetation configuration in the mountain regions. The aim of this study was to determine if the vegetation cover and composition have changed in the Swedish region of the Scandinavian Mountain Range, based on data from the long-term landscape biodiversity monitoring program NILS (National Inventory of Landscapes in Sweden). Habitat type and vegetation cover were assessed in 1740 systematically distributed permanent field plots grouped into 145 sample units across the mountain range. Horvitz-Thompson estimations were used to estimate the present areal extension of the alpine and the mountain birch forest areas of the mountain range, the cover of trees, shrubs, and plants, and the composition of the bottom layer vegetation. We employed the data from two subsequent 5-year monitoring periods, 2003-2007 and 2008-2012, to determine if there have been any changes in these characteristics. We found that the extension of the alpine and the mountain birch forest areas has not changed between the inventory phases. However, the total tree canopy cover increased in the alpine area, the cover of graminoids and dwarf shrubs and the total cover of field vegetation increased in both the alpine area and the mountain birch forest, the bryophytes decreased in the alpine area, and the foliose lichens decreased in the mountain birch forest. The observed changes in vegetation cover and composition, as assessed by systematic data in a national and regional monitoring scheme, can validate the results of local studies, experimental studies, and models. Through benchmark assessments, monitoring data also contributes to governmental policies and land-management strategies as well as to directed cause and effect analyses.

  9. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  10. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  11. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  12. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  13. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  14. Geology of the Blue Mountains region of Oregon, Idaho, and Washington

    SciTech Connect

    Walker, G.W. )

    1990-01-01

    This volume reports on the geology of the Blue Mountains region, consists of six chapters having various individual authorship. This book focuses on the stratigraphy, ages, structure, and chemical characteristics of terrestrial Cenozoic volcanic and volcaniclastic rocks of the region and on the relation of the Cenozoic volcanism to tectonism.

  15. Tectonic evolution of the central Brooks Range mountain front: Evidence from the Atigun Gorge region

    USGS Publications Warehouse

    Mull, C.G.; Glenn, R.K.; Adams, K.E.

    1997-01-01

    Atigun Gorge, at the northern front of the eastern Endicott Mountains, contains well-exposed rocks of the upper part of the Endicott Mountains allochthon and rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. These allochthons contain rocks as young as Early Cretaceous (Valanginian) and are separated by a nearly vertical fault zone that contains exotic blocks of Triassic and Jurassic chert and silicified mudstone. Siliceous rocks of this type are not present in the Endicott Mountains allochthon but are characteristic of the Picnic Creek, Ipnavik River, and some of the other allochthons that structurally overlie the Endicott Mountains allochthon in the central and western Brooks Range. These exotic blocks, therefore indicate that structurally higher rocks of either the Picnic Creek or Ipnavik River allochthon were emplaced during the Early Cretaceous and are preserved along the northern flank of the eastern Endicott Mountains. The deformed thickness of this higher allochthon in the subsurface north of the mountains is unknown but probably exceeds 2 kilometers. Similar relations are mapped east of Atigun Gorge in an area of structural transition from the eastern Endicott Mountains into the northern Philip Smith Mountains, which are formed by the parautochthonous North Slope stratigraphic assemblage. The allochthonous rocks at the mountain front are regionally unconformably overlain by proximal Lower Cretaceous (Albian) foredeep conglomerate at the southern flank of the Colville basin, but at Atigun Gorge, the base of these deposits is interpreted as a possible back thrust at a triangle zone. Conglomerate clasts in the foredeep deposits are dominantly chert, mafic igneous rock, and other lithologies characteristic of the Picnic Creek and Ipnavik River allochthons and scattered clasts from the Endicott Mountains allochthon. The conglomerates show that the chert-rich allochthonous rocks and the Endicott Mountains allochthon were emplaced in the

  16. Assessing climate change impacts on water resources in remote mountain regions

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  17. Wetland vegetation responses to liming an Adirondack watershed

    SciTech Connect

    Mackun, I.R.

    1993-01-01

    Watershed liming as a long-term mitigation strategy to neutralize lake acidity, from increasing acid deposition, was initiated in North America at Woods Lake in the west central Adirondack region of New York. In October 1989, a dose of 10 MT lime (83.5% CaCO[sub 3]) ha[sup [minus]1] was aerially applied to 48% of the watershed. The wetlands adjacent to Woods Lake showed two distinct community types: one dominated by Chamaedaphne calyculata, and one dominated by graminoids and other herbaceous species. Within two years, liming did not alter the structure of either community type, and changed the cover or frequency of only 6 of 64 individual taxa. Most of these changes occurred in the herbaceous community type. The only strong positive response to liming was a nearly threefold increase in cover of the rhizomatous sedge Cladium mariscoides. The cover of Carex interior and Sphagnum spp. benefited from lime addition, while cover of Drosera intermedia and Muhlenbergia uniflora, and frequency of Hypericum canadense responded negatively to lime. Liming influenced the competitive release of only three taxa, all forbs with small growth forms. The tissue chemistry of foliage and twigs of Myrica gale, Chamaedaphne calyculata, and Carex stricta in the Chamaedaphne calyculata community type clearly illustrated species-specific patterns of nutrient accumulation and allocation both before and after liming. Concentrations of 17 of 20 elements responded to liming, although the responses varied among species and plant parts. Carex foliage was least responsive to liming, and Chamaedaphne twigs were most responsive. Elemental changes in plant tissues will be reflected in litter and many influence long-term nutrient dynamics in the wetland community.

  18. Mesoscale aspects of storms producing floods over regions of arid mountainous terrain

    NASA Astrophysics Data System (ADS)

    Houze, R.; Romatschke, U.; Rasmussen, K. L.

    2011-12-01

    We have used the TRMM satellite's Precipitation Radar (PR) to develop a climatology of extreme convection in the regions of the Andes and Himalayas. This work shows that intense convection often occurs in arid regions but does not usually produce large amounts of rain. Large quantities of rain falling in mountainous regions is associated with the convective systems that have the greatest horizontal scales. When such wide systems occur over arid mountains, they can produce lethal floods. The Pakistan flood of 2010 is a case in point. Wide convective systems with large stratiform components became situated over the arid mountains of that region, with the result of the Indus River overflowed with disastrous consequences over a huge area. The potential of heavy rain in the region could have been inferred from the forecast synoptic-scale circulation, which indicated the occurrence of a great buildup of moisture in the region. Although the synoptic conditions were well forecast, that information alone was insufficient for predicting the flood conditions. It would have been necessary to anticipate also the mesoscale structure of the storms. Our TRMM satellite climatology of rainstorm structures in this region indicated that the mesoscale convective rainstorms responsible for the floods were of a type that does not normally occur in this region. Rather, this type of storm usually occurs and produces copious monsoon rain far to the east, over the mountains and wetlands of northeastern India and Bangladesh. In this event, catastrophic runoff and flooding resulted as these rainstorms occurred far to the west of where they usually occur, over an arid and mountainous region unaccustomed to such storms. This study indicates that taking into account the mesoscale structures of the cloud systems as well as the synoptic conditions in which they are embedded is essential for forecasting floods in this region of complex terrain.

  19. Geology of the Blue Mountains region of Oregon, Idaho, and Washington; petrology and tectonic evolution of pre-Tertiary rocks of the Blue Mountains region

    USGS Publications Warehouse

    Vallier, T. L.; Brooks, H.C.

    1995-01-01

    This Professional Paper contains 14 chapters on the Blue Mountains region of Oregon, Idaho, and Washington. The authors discuss petrology and tectonic evolution of an island arc that formed in the ancestral Pacific Ocean during the Permian to Cretaceous interval. The island arc was accreted to cratonal North America in the Early Cretaceous and thereby became one of the several exotic terranes in western North America.

  20. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  1. Changes in the chemistry of acidified Adirondack streams from the early 1980s to 2008

    USGS Publications Warehouse

    Lawrence, G.B.; Simonin, H.A.; Baldigo, Barry P.; Roy, K.M.; Capone, S.B.

    2011-01-01

    Lakes in the Adirondack region of New York have partially recovered in response to declining deposition, but information on stream recovery is limited. Here we report results of Adirondack stream monitoring from the early 1980s to 2008. Despite a 50% reduction in atmospheric deposition of sulfur, overall increases in pH of only 0.28 and ANC of 13 μeq L-1 were observed in 12 streams over 23 years, although greater changes did occur in streams with lower initial ANC, as expected. In the North Tributary of Buck Creek with high dissolved organic carbon (DOC) concentrations, SO(4)(2-) concentrations decreased from 1999 to 2008 at a rate of 2.0 μmol L-1 y-1, whereas in the neighboring South Tributary with low DOC concentrations, the decrease was only 0.73 μmol L-1 y-1. Ca2+ leaching decreased in the North Tributary due to the SO(4)(2-) decrease, but this was partially offset by an increase in Ca2+ leaching from increased DOC concentrations.

  2. Spatial patterns of mercury in biota of Adirondack, New York lakes.

    PubMed

    Yu, Xue; Driscoll, Charles T; Montesdeoca, Mario; Evers, David; Duron, Melissa; Williams, Kate; Schoch, Nina; Kamman, Neil C

    2011-10-01

    We studied the spatial distribution patterns of mercury (Hg) in lake water, littoral sediments, zooplankton, crayfish, fish, and common loons in 44 lakes of the Adirondacks of New York State, USA, a region that has been characterized as a "biological Hg hotspot". Our study confirmed this pattern, finding that a substantial fraction of the lakes studied had fish and loon samples exceeding established criteria for human and wildlife health. Factors accounting for the spatial variability of Hg in lake water and biota were lake chemistry (pH, acid neutralizing capacity (ANC), percent carbon in sediments), biology (taxa presence, trophic status) and landscape characteristics (land cover class, lake elevation). Hg concentrations in zooplankton, fish and common loons were negatively associated with the lake water acid-base status (pH, ANC). Bioaccumulation factors (BAF) for methyl Hg (MeHg) increased from crayfish (mean log(10) BAF = 5.7), to zooplankton (5.9), to prey fish (6.2), to larger fish (6.3), to common loons (7.2). MeHg BAF values in zooplankton, crayfish, and fish (yellow perch equivalent) all increased with increasing lake elevation. Our findings support the hypothesis that bioaccumulation of MeHg at the base of the food chain is an important controller of Hg concentrations in taxa at higher trophic levels. The characteristics of Adirondack lake-watersheds (sensitivity to acidic deposition; significant forest and wetland land cover; and low nutrient inputs) contribute to elevated Hg concentrations in aquatic biota.

  3. Process identification of soil erosion in steep mountain regions

    NASA Astrophysics Data System (ADS)

    Konz, N.; Baenninger, D.; Konz, M.; Nearing, M.; Alewell, C.

    2010-04-01

    Mountainous soil erosion processes were investigated in the Urseren Valley (Central Switzerland) by means of measurements and simulations. The quantification of soil erosion was performed on hill slope scale (2·20 m) for three different land use types: hayfields, pastures with dwarf shrubs and pastures without dwarf shrubs with three replicates each. Erosion rates during growing season were measured with sediment traps between June 2006 and November 2007. Long-term soil erosion rates were estimated based on Cs- 137 redistribution. In addition, soil moisture and surface flow were recorded during the growing season in the field and compared to model output. We chose the WEPP model (Water Erosion Prediction Project) to simulate soil erosion during the growing season. Model parameters were determined in the field (slope, plant species, fractional vegetation cover, initial saturation level), by laboratory analyses (grain size, organic matter) and by literature study. The WEPP model simulates sheet erosion processes (interrill and splash erosion processes, please note that no rill erosion occurs at our sites). Model output resulted in considerable smaller values than the measured erosion rates with sediment traps for the same period. We attribute the differences to observed random gravity driven erosion of soil conglomerates. The Cs-137 measurements deliver substantially higher mean annual erosion rates, which are most likely connected to snow cover related processes such as snow gliding and avalanche activities.

  4. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities.

  5. Past and future changes in frost day indices on Catskill Mountain Region of New York

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in frost indices in the New York’s Catskill Mountains region, the location of water supply reservoirs for New York City, have potentially important implications. Frost day is defined as a day with Tmin < 0ºC. The objective of this study was to investigate past and predicted changes in minimu...

  6. Past and future changes in frost day indices on Catskill Mountains region of New York

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in frost indices in New York's Catskill Mountains region, the location of water supply reservoirs for New York City, have potentially important implications. Frost day is defined as a day with Tmin < 0 deg C. The objective of this study was to investigate past and predicted changes in minimu...

  7. Ground magnetic studies along a regional seismic-reflection profile across Bare Mountain, Crater Flat and Yucca Mountain, Nevada

    SciTech Connect

    Langenheim, V.E.; Ponce, D.A.

    1995-12-31

    Ground magnetic data were collected along a 26-km-long regional seismic-reflection profile in southwest Nevada that starts in the Amargosa Desert, crosses Bare Mountain, Crater Flat and Yucca Mountain, and ends in Midway Valley. Parallel ground magnetic profiles were also collected about 100 m to either side of the western half of the seismic-reflection line. The magnetic data indicate that the eastern half of Crater Flat is characterized by closely-spaced faulting (1--2 km) in contrast to the western half of Crater Flat. Modeling of the data indicates that the Topopah Spring Tuff is offset about 250 m on the Solitario Canyon fault and about 50 m on the Ghost Dance fault. These estimates of fault offset are consistent with seismic-reflection data and geologic mapping. A broad magnetic high of about 500--600 nT is centered over Crater Flat. Modeling of the magnetic data indicates that the source of this high is not thickening and doming of the Bullfrog Tuff, but more likely lies below the Bullfrog Tuff. Possible source lithologies for this magnetic high include altered argillite of the Eleana Formation, Cretaceous or Tertiary intrusions, and mafic sills.

  8. Development stages of hazardous mountain lakes and simulation of their outbursts (Central Caucasus, Russia; Sichuan mountain region, China).

    NASA Astrophysics Data System (ADS)

    Kidyaeva, Vera; Krylenko, Inna; Chernomorets, Sergey; Petrakov, Dmitry

    2013-04-01

    The importance of mountain lakes studies is related to the increasing threat of natural disasters, associated with lake outbursts and debris flows formation, because of population growth on exposed areas. The outburst hazard has not been sufficiently researched, there is a lack of data because of the lakes inaccessibility and remote sensing data is usually not detailed enough. The main scientific topics include assessment of outburst possibility and further simulation of possible outbursts scenarios. There are two types of mountain lakes: glacial (cirque, cirque-moraine, barrier-moraine, glacial-barrier, etc.) lakes and barrier (landslide, rockfall, debris flow, etc.) lakes. The first type was studied in the Central Caucasus (Russia), and the second type - in the Sichuan mountain region (China). The group of scientists, including authors, has been monitoring glacial lakes in the Mnt. Elbrus area for more than ten years. The unique data were collected, including detailed hydrological characteristics of more than ten lakes (water level dynamics, temperature, morphometrical characteristics, water balance components, etc.). Outbursts of at least three glacial lakes were observed. Hydrological characteristics of landslide Tangjiashan Lake were collected with Chinese colleagues during field studies in 2010 and 2011 years. Analysis of the collected data was used to understand the outburst mechanisms, formation factors, dam breaking factors, development stages of mountain lakes. Statistical methods of analysis in this case can be applied with some limitations because of the lack of sufficient monitoring objects, and therefore the results has been verified by experts. All types of possible outbursts mechanisms were divided by the authors into five groups: geomorphologic (caused by changes in lake dams), seismic, or geodynamic (caused by seiches, waves from rockfalls, landslides), glacial (caused by breaks in impounding glaciers, ice floating and melting), water

  9. Professional School Counseling in the Rocky Mountain Region: Graduation Rates of CACREP vs. Non-CACREP Accredited Programs

    ERIC Educational Resources Information Center

    Hancock, Mary D.; Boes, Susan R.; Snow, Brent M.; Chibbaro, Julia S.

    2010-01-01

    School Counseling in the Rocky Mountain region of the United States was explored with a focus on the production of professional school counselors in the Rocky Mountain region of the Association for Counselor Education and Supervision (RMACES). Comparisons of program graduates are made by state and program as well as by accreditation status. State…

  10. On Using CO2 Concentration Measurements at Mountain top and Valley Locations in Regional Flux Studies.

    NASA Astrophysics Data System (ADS)

    de Wekker, S. F.; Song, G.; Stephens, B. B.

    2007-12-01

    Data from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) are used to investigate atmospheric controls on temporal and spatial variability of CO2 in mountainous terrain and the usefulness of mountain top and valley measurement for the estimation of regional CO2 fluxes. Rocky RACCOON consists of four sites installed in fall of 2005 and spring of 2006: Niwot Ridge, near Ward, Colorado; Storm Peak Laboratory near Steamboat Springs, Colorado; Fraser Experimental Forest, near Fraser Colorado; and Hidden Peak, near Snowbird, Utah. The network uses the NCAR-developed Autonomous Inexpensive Robust CO2 Analyzer. These units measure CO2 concentrations at three levels on a tower, producing individual measurements every 2.5 minutes precise to 0.1 ppm CO2 and closely tied to the WMO CO2 scale. Three of the sites are located on a mountain top while one site is located in a valley. Initial analyses show interesting relationships between CO2 concentration and atmospheric parameters, such as wind speed and direction, temperature, and incoming solar radiation. The nature of these relationships is further investigated with an atmospheric mesoscale model. Idealized and realistic simulations are able to capture the observed behavior of spatial and temporal CO2 variability and reveal the responsible physical processes. The implications of the results and the value of the measurements for providing information on local to regional scale respiration and photosynthesis rates in the Rockies are discussed.

  11. Early Paleozoic development of the Maine-Quebec boundary Mountains region

    USGS Publications Warehouse

    Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.

    2006-01-01

    Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.

  12. Molecular tracking of mountain lions in the Yosemite valley region in California: genetic analysis using microsatellites and faecal DNA.

    PubMed

    Ernest, H B; Penedo, M C; May, B P; Syvanen, M; Boyce, W M

    2000-04-01

    Twelve microsatellite loci were characterized in California mountain lions (Puma concolor) and sufficient polymorphism was found to uniquely genotype 62 animals sampled at necropsy. Microsatellite genotypes obtained using mountain lion faecal DNA matched those from muscle for all of 15 individuals examined. DNA from potential prey species and animals whose faeces could be misidentified as mountain lion faeces were reliably distinguished from mountain lions using this microsatellite panel. In a field application of this technique, 32 faecal samples were collected from hiking trails in the Yosemite Valley region where seven mountain lions previously had been captured, sampled, and released. Twelve samples yielded characteristic mountain lion genotypes, three displayed bobcat-type genotypes, and 17 did not amplify. The genotype of one of the 12 mountain lion faecal samples was identical to one of the mountain lions that previously had been captured. Three of the 12 faecal samples yielded identical genotypes, and eight new genotypes were detected in the remaining samples. This analysis provided a minimum estimate of 16 mountain lions (seven identified by capture and nine identified by faecal DNA) living in or travelling through Yosemite Valley from March 1997 to August 1998. Match probabilities (probabilities that identical DNA genotypes would be drawn at random a second time from the population) indicated that the samples with identical genotypes probably came from the same mountain lion. Our results demonstrate that faecal DNA analysis is an effective method for detecting and identifying individual mountain lions.

  13. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    SciTech Connect

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  14. Comparisons of Rain Estimates from Ground Radar and Satellite Over Mountainous Regions

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Kidd, Chris; Tao, Jing; Barros, Ana

    2016-01-01

    A high-resolution rainfall product merging surface radar and an enhanced gauge network is used as a reference to examine two operational surface radar rainfall products over mountain areas. The two operational rainfall products include radar-only and conventional-gauge-corrected radar rainfall products. Statistics of rain occurrence and rain amount including their geographical, seasonal, and diurnal variations are examined using 3-year data. It is found that the three surface radar rainfall products in general agree well with one another over mountainous regions in terms of horizontal mean distributions of rain occurrence and rain amount. Frequency of rain occurrence and fraction of rain amount also indicate similar distribution patterns as a function of rain intensity. The diurnal signals of precipitation over mountain ridges are well captured and joint distributions of coincident raining samples indicate reasonable correlations during both summer and winter. Factors including undetected low-level precipitation, limited availability of gauges for correcting the Z-R relationship over the mountains, and radar beam blocking by mountains are clearly noticed in the two conventional radar rainfall products. Both radar-only and conventional-gauge-corrected radar rainfall products underestimate the rain occurrence and fraction of rain amount at intermediate and heavy rain intensities. Comparison of PR and TMI against a surface radar-only rainfall product indicates that the PR performs equally well with the high-resolution radar-only rainfall product over complex terrains at intermediate and heavy rain intensities during the summer and winter. TMI, on the other hand, requires improvement to retrieve wintertime precipitation over mountain areas.

  15. Long-Term Trends in Trace Metals Concentrations in Sediment in Lakes in Adirondack Park, NY

    NASA Astrophysics Data System (ADS)

    Bari, A.; Judd, C. D.; Swami, K.; Ahmed, T.; Husain, L.

    2007-12-01

    The industrial Midwestern states consume large quantities of fossil fuel and emit large quantities of trace elements, SO2 and other chemicals. Owing to their long residence time these pollutants can be transported hundreds of miles downwind. These chemical species are removed from the atmosphere by wet and dry deposition and are ultimately deposited in lake sediments. Through the sedimentation process the pollution records can be stored for centuries. In this work we have attempted to retrieve the deposition of 25 trace elements for the past ~170 years by analyzing lake sediment cores from lakes located in the Adirondack Mountains. Sediment cores were collected from four lakes (Clear Pond, West Pine Pond, Bear Pond and Deer Pond) located in the Adirondack Park, NY. These lakes are at high altitude and some are inaccessible except by boat, and have minimum human activity (no motor boats, no camping and away from major roads). Coring was carried out by a gravity driven coring device. The cores were sectioned, weighed, freeze-dried, ground to a fine powder, and homogenized for analysis. The sediment cores were dated using 210Pb radioactive dating. The 137Cs activity was measured for an independent verification of 210Pb technique. Trace metals concentration were determined by microwave digestion method followed by inductively coupled plasma mass spectrometric (ICP-MS) analysis. The top sixteen sections of the West Pine Pond sediment core (representing from about 1835 to 2005) were analyzed for Sr, Ba, As, Se, Mo, Cd, Sn, Sb, Co, Ni, Cu, Ag,Ti, V, Cr, Mn, Fe, Zn, K, Na, Ca, Mg, Be, Tl, and Pb. During pre industrial era the concentrations of Pb, Se and Tl were very low and constant. Pb showed a sharp increase in concentration after around 1880 and a sharp decrease in concentration after about 1990. The concentration of Se increased slowly after pre industrial era. The concentrations of about eight of these elements were determined in quarterly composites of daily aerosol

  16. The regional thermochronological record as evaluation criterion for uplift models of the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Lisker, Frank; Prenzel, Jannis; Läufer, Andreas; Spiegel, Cornelia

    2013-04-01

    The Transantarctic Mountains represent the exposed shoulder of the Cenozoic West Antarctic Rift System. Their uplift has been explained by various models that can be divided into three general groups: thermally driven uplift, mechanically driven uplift (and the combination of these two), or topographic reversal due to the collapse of a Mesozoic West Antarctic plateau. These models usually rely on geophysical evidence and numerical experiments, but not all of them are supported equally by field observation, structural geology, and thermochronological data. Conversely, each of the general uplift mechanisms produces a characteristic range of potential thermal histories for different crustal levels, stratigraphic positions and segments of the Transantarctic Mountains. Accordingly, thermal history modelling of existing thermochronological data and the generation of synthetic data sets are useful tools to evaluate and refine uplift models. The thermochronological record of the Transantarctic Mountains comprises more than 500 apatite fission track ages between ~25 and ~350 Ma and associated proxies, and a few apatite (U-Th)/He ages that are usually 10-20 Ma younger than corresponding fission track ages (43 - 92 Ma). So far, most published thermochronological data were interpreted qualitatively, while thermal history modelling has hardly been conducted yet. First systematic inverse thermal history modelling of representative vertical profiles from basement rocks beneath ~180 Ma Ferrar volcanoclastics in the Terra Nova Bay region rely on a well-established thermal frame. The model suite reveals that the Jurassic surface was heated to temperatures of 60° - 100°C before cooling again to surface temperatures in late Paleogene times. The analogy of the geological setting between Scott Glacier and northern Victoria Land suggests that the Transantarctic Mountains experienced a rather homogenous geological history and landscape development along its entire length. The region was

  17. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    SciTech Connect

    J.S. Stuckless; D. O'Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  18. Regional analysis of changes in snow pack in mountainous basins in the central Danube region

    NASA Astrophysics Data System (ADS)

    Balint, Gabor; Juričeková, Katarina; Gauzer, Balazs; Hlavčová, Kamila; Kohnová, Silvia; Szolgay, Jan; Zsideková, Beata

    2013-04-01

    Accurate estimation of the volume of water stored in the snow pack and its rate of release is essential to predict the flow during the snowmelt period. In mountainous drainage basins water stored in the snow pack represents an important component of the water budget. Two modelling tools are compared. The first, HOLV snowmelt model is developed by the Hungarian National Hydrological Forecasting Service (VITUKI NHFS) for regional assessment of snow accumulation and ablation of the central Danube. The model originates from the early 80's and it is under continuous development, while its recent distributed version over a grid with 0.1 degree resolution is in use. The snowmelt model has a flexible structure; it is able to change its own structure in function of data availability. In case when only precipitation and air temperature data are available temperature index method is used. When also other data are accessible (cloudiness, dew point, wind speed) using of energy balance model is to be preferred. If there are suitable data available for calculation of the energy terms, the energy balance method can be applied. The second semi-distributed Hron model, developed at the Slovak University of Technology was applied to a smaller sub-basin to represent spatial distribution of snow cover by simulated snow water equivalent. The upper Hron river basin with an area of 1766 km2 is located in central Slovakia. The conceptual semi-distributed tool applied contains three basic storage components with 15 calibrated parameters, as the flow routing component the cascade of linear reservoirs is used as opposed to the original simple triangular routing function. The snow sub-model uses the temperature index (degree-day) method for snow accumulation and snowmelt calculations. Uncertainty of model parameters was reduced by multi-calibration on the mean daily discharges in the basin outlet and measured stations data of snow water equivalent. Changes in the model parameters during the

  19. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz

    2017-01-01

    The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.

  20. AVIRIS data calibration information: Wasatch Mountains and Park City region, Utah

    USGS Publications Warehouse

    Rockwell, Barnaby W.; Clark, Roger N.; Livo, K. Eric; McDougal, Robert R.; Kokaly, Raymond F.

    2002-01-01

    This report contains information regarding the reflectance calibration of spectroscopic imagery acquired over the Wasatch Mountains and Park City region, Utah, by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor on August 5, 1998. This information was used by the USGS Spectroscopy Laboratory to calibrate the Park City AVIRIS imagery to unitless reflectance prior to spectral analysis.  The Utah AVIRIS data were analyzed as a part of the USEPA-USGS Utah Abandoned Mine Lands Imaging Spectroscopy Project.

  1. The importance of atmospheric ammonia in the Rocky Mountain region of the western U.S

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Benedict, K. B.; Chen, D.; Day, D.; Prenni, A. J.; Li, Y.; Kreidenweis, S. M.; Schichtel, B. A.; McDade, C.; Malm, W. C.

    2013-12-01

    Although it is not a regulated pollutant, ammonia is an important contributor to several air quality problems. Included among these are the formation of fine particles that contribute to visibility degradation and adverse health effects as well as contributions to excess nitrogen deposition to sensitive ecosystems. Because it is not regulated, gaseous ammonia and fine particle ammonium have traditionally not been routinely measured in many air quality monitoring networks. Measurements of ammonium wet deposition by the National Atmospheric Deposition Program, however, clearly indicate an increasing contribution to reactive nitrogen deposition. Here we report observations of several recent research efforts to characterize atmospheric ammonia and ammonium in the Rocky Mountain region of the western United States. These include measurements made as part of the Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) deposition study (2006-10), the Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) (2011), and through pilot-scale operation of an NHx (NHx = gaseous NH3 plus fine particle NH4+) monitoring effort at 9 sites within the Interagency Monitoring of PROtected Visual Environments (IMPROVE) program (2011-12). Measurements during RoMANS clearly reveal the importance of agricultural source emission contributions to both dry and wet reactive nitrogen deposition in Rocky Mountain National Park. The importance of ammonia and ammonium deposition is even greater at Grand Teton National Park, which often sits downwind of extensive agricultural operations in central Idaho and northern Utah. Over a year of measurements in the IMPROVE NHx pilot network reveals strong spatial gradients in reduced nitrogen concentrations across the Rocky Mountain region, with higher concentrations in regions closer to agricultural sources and at locations and times strongly impacted by wildfires. These observations, along with additional observations from other related studies in the

  2. GIS-based climatic regionalization of potato late blight in mountain areas of Southwest Sichuan

    NASA Astrophysics Data System (ADS)

    Luo, Qing; Peng, Guozhao; Ruan, Jun; Cao, Yanqiu; Fang, Peng; Li, Dazhong; Armuzhong, .; Huang, Doumin; Hu, Qiaojuan; Chen, Yuanzhi

    2008-10-01

    Through the geographic insemination test in installments on five phases of potato late blight in four areas of Mianning and Zhaojue with the altitude of 1,600m, 1,800m, 2,100m and 2,500m respectively, this paper researches the meteorological causes, leading factors and climatic indexes for potato late blight in mountain areas of southwest Sichuan in detail. Based on that, short-term section climatic inspection data of mountain areas, observation data from meteorological post and latest data from automatic weather station are extensively collected, organized and processed by extension, based on which the Spatial Distribution Model of climatic indexes for potato late blight in mountain areas of southwest Sichuan is established in association with the routine surface observation data, y=f(h,φ,l,β). With the geographic information data of 1:250000 and GIS technology, southwest Sichuan is divided into climatic liable region of potato blight, climatic secondary liable region and climatic non-liable region by factor setting and optimization method. Providing scientific basis for selection, distribution and prevention decision making for late blight resistant species of potato in southwest Sichuan, it has important value for production and application.

  3. Climate variability in the Carpathian Mountains Region over 1961-2010

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Birsan, Marius-Victor; Dumitrescu, Alexandru

    2014-07-01

    The Carpathian Mountains Region (CMR) lies over parts of the territories of seven Central and Southeastern European countries, and the mountain chain induces major changes in the temperate climate specific to the latitudes between 43° and 49°N. Different administrations govern the long-term meteorological networks; the infrastructure, collection protocols, and storage capacities are specific to each country, so that a comprehensive study on the climate of the area has met considerable difficulties along time. Climate of the Carpathian Region (CARPATCLIM) is a regional initiative developed between 2010 and 2013 aiming to enhance the climatic information in the area by providing comprehensive, temporally and spatially homogenous data sets of the main meteorological variables. Based on daily data aggregated to a monthly scale at 10-km resolution, this study exploits and promotes the results of the CARPATCLIM project, documenting the variability of the main climatic variables over 1961-2010. For each month, the significant increasing or decreasing trends were identified, mapped and placed in the context of previous studies and climate change perspectives. The study has revealed several patterns in the climatic variability, i.e., positive or negative trends prevailing over the entire area, very distinct delineation between various trends induced by the Carpathian Mountain chain, and pledges for further scientific approaches, i.e., causes of the variability and applications in other domains.

  4. A Regional Atmospheric Continuous CO2 Network In The Rocky Mountains (Rocky RACCOON)

    NASA Astrophysics Data System (ADS)

    Stephens, B.; de Wekker, S.; Watt, A.; Schimel, D.

    2005-12-01

    We have established a continuous CO2 observing network in the Rocky Mountains, building on technological and modeling advances made during the Carbon in the Mountains Experiment (CME), to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). We will present a description of the Rocky RACCOON network and early results from the first three sites. There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. NACP aims to address these concerns through a dramatic expansion in observations and modeling capabilities over North America. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. However, plans for new continuous CO2 observing sites have omitted the mountain west. This resulted from expensive instrumentation in the face of limited resources, and a perception that current atmospheric transport models are not sophisticated enough to interpret CO2 measurements made in complex terrain. Through our efforts in CME, we have a new autonomous, inexpensive, and robust CO2 analysis system and are developing mountain CO2 modeling tools that will help us to overcome these obstacles. Preliminary observational and modeling results give us confidence that continuous CO2 observations from mountain top observatories will provide useful constraints on regional carbon cycling and will be valuable in the continental inverse modeling efforts planned for NACP. We began at three Colorado sites in August 2005 and hope to add three to six sites in other western states in subsequent years, utilizing existing observatories to the maximum extent possible. The first three sites are at Niwot Ridge, allowing us to have an ongoing intercomparison with flask measurements made by NOAA CMDL; at Storm Peak Laboratory near Steamboat Springs, allowing us to investigate comparisons between these

  5. Age and character of basaltic rocks of the Yucca Mountain region, southern Nevada

    USGS Publications Warehouse

    Fleck, R.J.; Turrin, B.D.; Sawyer, D.A.; Warren, R.G.; Champion, D.E.; Hudson, M.R.; Minor, S.A.

    1996-01-01

    Volcanism in the Yucca Mountain region of southern Nevada in the last 5 m.y. is restricted to moderate-to-small volumes of subalkaline basaltic magmas, produced during at least 6 intervals, and spanning an age range from 4.6 Ma to about 125 ka. Where paleomagnetic evidence is available, the period of volcanism at individual eruptive centers apparently was geologically short-lived, even where multiple eruptions involved different magma types. K-Ar studies are consistent with most other geochronologic information, such as the minimum ages of exposure-dating techniques, and show no evidence of renewed volcanism after a significant quiescence at any of the centers in the Yucca Mountain region. A volcanic recurrence interval of 860 ?? 350 kyr is computed from a large K-Ar data set and an evaluation of their uncertainties. Monte Carlo error propagations demonstrate the validity of uncertainties obtained for weighted-mean ages when modified using the goodness of fit parameter, MSWD. Elevated 87Sr/86Sr initial ratios (Sri) in the basalts, nearly constant at 0.707, combined with low SiO2 and Rb/Sr ratios indicate a subcontinental, lithospheric mantle source, previously enriched in radiogenic Sr and depleted in Rb. Beginning with eruptions of the most voluminous eruptive center, the newly dated Pliocene Thirsty Mountain volcano, basaltic magmas have decreased in eruptive volume, plagioclase-phenocryst content, various trace element ratios, and TiO2, while increasing in light rare earth elements, U, Th, P2O5, and light REE/heavy REE ratios. These time-correlated changes are consistent with either increasing depths of melting or a decreasing thermal gradient in the Yucca Mountain region during the last 5 m.y.

  6. Impacts of mountains on black carbon aerosol under different synoptic meteorology conditions in the Guanzhong region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Shuyu; Tie, Xuexi; Cao, Junji; Zhang, Qiang

    2015-10-01

    The Xi'an City and the surrounding area (the Guan-Zhong-GZ region) in western China have been suffering severe air pollutions during wintertime in recent years. In-situ black carbon (BC) measurement combined with a regional dynamical and chemical model (WRF-Chem model) is used to investigate the formation of a haze episode occurred from Jan. 3rd to Jan. 13th 2013. The results show that the measured BC concentrations exhibit a large day-to-day variability. The impacts of synoptic weather systems, local meteorological parameters and mountain effect on the BC variability are studied. Because the GZ region is surrounded by two major mountains, the Loess Plateau in the north and the Qinling Mountains in the south, especially the peak of the Qinling Mountains higher than 3000 m, we particularly analyze the effects of the Qinling Mountains on the BC pollution. The analysis shows that the BC pollution in Xi'an City and the GZ region is strongly affected by the synoptic weather systems, local meteorological winds and the Qinling Mountains. Under a typical northeast wind condition, winds are blocked by the Qinling Mountains, and BC particles are trapped at the foothill of the mountains, resulting in high BC concentrations in the city of Xi'an. Under a typical east wind condition, BC particles are transported along a river valley and the foothill of the Qinling Mountains. In this case, the mountain-river valley plays a role to accelerate the east wind, resulting in a reduction of the BC pollution. Under a typical calm wind condition, the BC particles are less diffused from their source region, and there is a mountain breeze from the Qinling Mountains to the city of Xi'an, and BC particles accumulate in the city, especially in the north side of the city. This study illustrates that while locating between complicated terrain conditions, such as the GZ region, the mountains play very important roles for the formation of hazes in the region.

  7. Drainage basin control of acid loadings to two Adirondack lakes

    NASA Astrophysics Data System (ADS)

    Booty, W. G.; Depinto, J. V.; Scheffe, R. D.

    1988-07-01

    Two adjacent Adirondack Park (New York) calibrated watersheds (Woods Lake and Cranberry Pond), which receive identical atmospheric inputs, generate significantly different unit area of watershed loading rates of acidity to their respective lakes. A watershed acidification model is used to evaluate the watershed parameters which are responsible for the observed differences in acid loadings to the lakes. The greater overall mean depth of overburden on Woods Lake watershed, which supplies a greater buffer capacity as well as a longer retention time of groundwater, appears to be the major factor responsible for the differences.

  8. Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region

    NASA Astrophysics Data System (ADS)

    Gruber, Stephan; Fleiner, Renate; Guegan, Emilie; Panday, Prajjwal; Schmid, Marc-Olivier; Stumm, Dorothea; Wester, Philippus; Zhang, Yinsheng; Zhao, Lin

    2017-01-01

    The cryosphere reacts sensitively to climate change, as evidenced by the widespread retreat of mountain glaciers. Subsurface ice contained in permafrost is similarly affected by climate change, causing persistent impacts on natural and human systems. In contrast to glaciers, permafrost is not observable spatially and therefore its presence and possible changes are frequently overlooked. Correspondingly, little is known about permafrost in the mountains of the Hindu Kush Himalaya (HKH) region, despite permafrost area exceeding that of glaciers in nearly all countries. Based on evidence and insight gained mostly in other permafrost areas globally, this review provides a synopsis on what is known or can be inferred about permafrost in the mountains of the HKH region. Given the extreme nature of the environment concerned, it is to be expected that the diversity of conditions and phenomena encountered in permafrost exceed what has previously been described and investigated. We further argue that climate change in concert with increasing development will bring about diverse permafrost-related impacts on vegetation, water quality, geohazards, and livelihoods. To better anticipate and mitigate these effects, a deepened understanding of high-elevation permafrost in subtropical latitudes as well as the pathways interconnecting environmental changes and human livelihoods are needed.

  9. Climate Change Responses of Hydrologic Flowpaths in Mountainous and Polar Regions

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Gooseff, M. N.; Kirchner, J. W.; Tague, C.

    2009-12-01

    Hydrologic processes in mountainous and polar regions may respond differently to changes in the catchment energy budget that are anticipated to occur as climate changes. In the Sierra Nevada Mountains of California, warmer winter temperatures are expected to shift the phase of precipitation from snow to rain across a range of elevations. We examine whether this phase change will alter subsequent low flow regimes during the dry Mediterranean summers of this region. We show that changes in the phase of precipitation as well as changes in evapotranspiration losses from vegetation are key drivers in the hydrologic response of these mountains to climate change. In northern Alaska, the depth of the active layer above permafrost evolves over space and time, affecting subsurface flowpaths. Large changes in water or energy flows may lead to catastrophic loss of ground ice, known as thermokarst development. Thermokarst features can deliver large pulses of sediment and nutrients to lakes and streams, and further alter the hydrology because they expose previously insulated permafrost to the ground surface, and thus higher heat fluxes. Here we show the spatial and temporal development of the active layer inside of and outside of thermokarst features over the course of the warming season. We explore the importance of changes in subsurface topography as a driver of hydrologic response to climate change in arctic tundra catchments.

  10. Phytoplankton limitation by phosphorus and zooplankton grazing in an acidic Adirondack lake

    SciTech Connect

    Singer, R.; Evans, G.L.; Pratt, N.C.

    1984-08-01

    Lakes which are believed to have been acidified by atmospheric deposition of anthropogenic substances are known for their unusually high water clarity and low nutrient concentrations. Some evidence indicates that alterations in predator/prey relationships, an indirect effect of acidification, bring about the increase in water clarity. Enclosures were used to study the effects of phosphorus addition and zooplankton removal on the phytoplankton of an acidic lake in the Adirondack Mountains of New York. Fertilized enclosures had significantly lower alkalinities and contained significantly more dissolved oxygen after the incubation period than did unfertilized enclosures. The P concentration remained at or near the limit of detection in the unfertilized enclosures. The phytoplankton population bloomed after the addition of 80 micro g/liter of phosphate as KH/sub 2/PO/sub 4/. The response was measured by cell counts of the dominant phytoplankton. Chlamydomonas, and by changes in chlorophyll a concentration. About half the number of algal cells were present after the two week incubation when zooplankton were not removed, indicating that zooplankton herbivory can influence, but not totally control, the algal production. 46 references.

  11. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack Lakes

    SciTech Connect

    Charles, D.F.

    1985-06-01

    Relationships between surface sediment diatom assemblages and lakewater characteristics were studied in 38 lakes in the Adirondack Mountains of northern New York. Most of the lakes are dilute, poorly buffered, and oligotrophic to mesotrophic. The diatom flora typical for circumneutral to acidic lakes. The purposes of this study were to identify the environmental factors most strongly related to the distributions of diatom taxa and the overall composition of diatom assemblages, and to derive equations to infer lakewater pH from diatom assemblage data. Relationships between diatom assemblages and environmental gradients were analyzed using reciprocal averaging ordination (RA). Correlations between Ra axis 1 and pH-related factors were strong. Correlations were weaker (but still statistically significant) with elevation, epilimnion temperature, and concentrations of SO/sub 4/, Cl, and Si. Total P, chlorophyll a, water color, and mean depth were not important in explaining differences among assemblages. Predictive equations were derived for inferring lakewater pH from diatom assemblage data. Agreement between predicted and measured pH was very good. These predictive relationships can be used to interpret stratigraphic diatom assemblages to reconstruct lake pH histories.

  12. Social and economic assessment: A technical report used in amending the Rocky Mountain regional guide

    SciTech Connect

    Not Available

    1992-05-01

    The purpose of the Socio-economic Assessment is threefold in nature: to describe the socio-economic forces at work within the rural and urban areas throughout the Rocky Mountain Region (the Region); to develop social and economic profiles for the Region as a whole and each of its eight subregions; and, finally, to describe the potential impacts of the above mentioned forces on the Region and to make recommendations for developing future strategies to facilitate coordination between the Forest Service, the various state, local, and other federal agencies, and Native American Indian tribes. This project involved the analysis of various social and economic variables in an attempt to determine the social and economic situation in the Rocky Mountain Region, and how it has been altered over the last three decades. To this end, data was collected on demographic changes, income growth, employment and unemployment, payrolls, number and size of firms, and SIC industrial breakdowns for various industries within each subregion and economic impact area.

  13. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Meyers, Philip A.; Liu, Xingtu; Wang, Guoping; Ma, Xuehui; Li, Xiaoyu; Yuan, Yuxiang; Wen, Bolong

    2016-11-01

    A continuous peat sequence collected in the Altai Mountains, Xinjiang Province, northwestern China, provides a new opportunity to reconstruct the Holocene climate history in the arid central mountain region of Asia. Based on AMS 14C dating, high resolution records of the humification degree and n-alkane distributions reveal that the region experienced a relatively warm and dry early Holocene (10.0-8.0 ka) and a cold and wet early mid-Holocene (8.0-6.3 ka), followed by a warm and dry mid-Holocene (6.3-5.5 ka). A shift to cold and wet conditions occurred between 5.5 and 4.0 ka, and then the climate entered into a warmer period from 4.0 to 2.5 ka. In the late Holocene (2.5-1.0 ka), the region experienced a colder and wetter climate. A gradual shift to warm and dry conditions occurred during the last 1.0 ky in this region. The regional climate patterns have been generally dominated by alternations of warm-dry and cold-wet episodes during the Holocene that were quite different from the warm-wet and cool-dry episodes in the Asian summer monsoon region. Regional comparisons indicate that the climate changes in arid central Asia have been mainly influenced by the North Atlantic Ocean sea surface temperatures (SSTs) via the westerlies. However, owing to the mountainous character of the study areas, glacial meltwater, and other local factors, the climate changes in the Altai Mountains region have not always been concordant with variations of North Atlantic Ocean SSTs. We postulate that the history of moisture balance between regional precipitation, glacier and snow meltwater, and evaporation has been modulated by air temperatures that were mainly influenced by changes in the summer insolation of the Northern Hemisphere.

  14. Sustainability and economics: The Adirondack Park experience, a forest economic-ecological model, and solar energy policy

    NASA Astrophysics Data System (ADS)

    Erickson, Jon David

    The long-term sustainability of human communities will depend on our relationship with regional environments, our maintenance of renewable resources, and our successful disengagement from nonrenewable energy dependence. This dissertation investigates sustainability at these three levels, following a critical analysis of sustainability and economics. At the regional environment level, the Adirondack Park of New York State is analyzed as a potential model of sustainable development. A set of initial and ongoing conditions are presented that both emerge from and support a model of sustainability in the Adirondacks. From these conditions, a clearer picture emerges of the definition of regional sustainability, consequences of its adoption, and lessons from its application. Next, an economic-ecological model of the northern hardwood forest ecosystem is developed. The model integrates economic theory and intertemporal ecological concepts, linking current harvest decisions with future forest growth, financial value, and ecosystem stability. The results indicate very different economic and ecological outcomes by varying opportunity cost and ecosystem recovery assumptions, and suggest a positive benefit to ecological recovery in the forest rotation decision of the profit maximizing manager. The last section investigates the motives, economics, and international development implications of renewable energy (specifically photovoltaic technology) in rural electrification and technology transfer, drawing on research in the Dominican Republic. The implications of subsidizing a photovoltaic market versus investing in basic research are explored.

  15. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.

    PubMed

    Krishnaswamy, Jagdish; John, Robert; Joseph, Shijo

    2014-01-01

    Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture

  16. A new reference section for palynostratigraphic zonation of Paleocene rocks in the Rocky Mountain region

    USGS Publications Warehouse

    Nichols, D.J.; Flores, R.M.

    2006-01-01

    A biostratigraphic (palynostratigraphic) zonation of Paleocene rocks was established in the northeastern Wind River Basin near Waltman, Natrona County, Wyoming, in 1978 and subsequently applied extensively by various workers throughout the Rocky Mountain region. Because the original study on which the zonation was based was proprietary, precise details about the locations of the two reference sections and the samples on which the zonation was based were not published and are no longer retrievable. Therefore, it is useful (although not required) to designate formally a new reference section for the Paleocene biozones. Accordingly, exposures of Paleocene and associated strata within and west of the Castle Gardens Petroglyph Site in Fremont County, Wyoming, in the east-central part of the Wind River Basin, were selected for this purpose. At this location, composite stratigraphic sections encompassing 740 m of strata were measured, described, and sampled. Productive samples yielded characteristic Maastrichtian palynomorphs from the lower part of the sampled interval and diagnostic species of the six palynological biozones zones widely known as P1 (lower Paleocene) through P6 (upper Paleocene), through an interval of about 580 m. The Paleocene biozones are present in the same consistent stratigraphic order in the Castle Gardens area as observed in the 1978 study and subsequent studies throughout the Rocky Mountain region. In accordance with the North American Stratigraphic Code, the historical background is presented; intent to establish the Castle Gardens reference section is declared; the category, rank, and formal names of biostratigraphic units within it are specified; and the features of the biozonation are described, including biozone boundaries, ages, and regional relations. Occurrences of biostratigraphically significant palynological species within each biozone in the reference section are tabulated, and presence of these and other species in correlative

  17. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Wang, Yu-jie; Du, Cui; Wang, Yun-qi; Li, Yun-peng

    2016-11-01

    Debris flows in the mountain regions surrounding Beijing have been occurring for a long time and have resulted in great economic losses. In this study, 23 rainstorm events, surficial sediments, and debris flow deposits were analyzed to quantify the area's rainfall threshold and to investigate how such conditions may be used to predict debris flow in this region. Rainfall threshold of intensity-duration (I-D) functions after vegetation recovery was higher than before recovery and also higher than I-D levels in other regions where debris flows are closely associated with runoff. Field investigations revealed that surficial sediments were characterized by coarse-grained sediments and that debris flow deposits lacked fine particles. Local debris flows can be triggered by runoff; however, no single standard equation is used to predict the conditions that lead to runoff-triggered debris flow; and commonly used equations give different values. Here, we propose an empirical function that takes into account peak discharge per width and particle diameter. This model should be verified with further investigations so that it can be used as a reference to analyze the conditions that lead to debris flow in the study area. Finally, debris flows may have been related to occasional storms in the study area, which has been experiencing substantially increased temperatures and decreased annual precipitation. This work provides important information about the conditions that initiated debris flow in the Beijing mountain regions in the last few decades.

  18. Mercury in Wetlands, Adirondack Region of New York State

    NASA Astrophysics Data System (ADS)

    Yavitt, J. B.; Kalicin, M.; Driscoll, C. T.; Newton, R.; Munson, R.

    2001-05-01

    Wetlands play a prominent role in the cycling of mercury by harboring bacteria that transform mercury into methyl mercury, a neurotoxin, and by having high concentrations of dissolved organic carbon (DOC) that interact with mercury transport. We are measuring total mercury and methyl mercury in vegetation, soil, surface water, and ground water in the Sunday Lake watershed, in which wetlands cover 274 ha of the 1340-ha watershed area. Three wetland types occur: (1) riparian wetlands adjacent to low-order streams that drain the upland forested watershed; (2) peat-forming wetlands dominated by Carex sedges; and, (3) low shrub, Sphagnum (bog moss) dominated peatlands. Total mercury concentrations in wetland ground waters were greater in the riparian wetland (10.6 ng/L) and in sites with shallow peat than deep peat, suggesting water moves more readily around the peat than through it. The highest rates of microbial activity occurred in the top 10-cm of the sedge-derived peat, presumably being fueled by the freshest organic matter, although there was no relationship between microbial activity and DOC. Microbial sulfate reduction, which can methylate inorganic mercury, occurred in sites closest to low-order streams, presumably being fueled by sulfate brought into wetlands in surface water. Sites located away from the stream had microbial methane production, where demethylation might be occurring. Overall the wetlands are the primary source of methyl mercury within the watershed, and we are measuring water flow pathways and microbial processes to learn more about wetland controls of mercury cycling in watersheds.

  19. Regional geochemical studies in the Patagonia Mountains, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Chaffee, M.A.; Hill, R.H.; Sutley, S.J.; Watterson, J.R.

    1981-01-01

    The Patagonia Mountains in southern Arizona contain the deeply buried porphyry copper system at Red Mountain as well as a number of other base- and precious-metal mines and prospects. The range contains complex Basin and Range geology with units ranging in age from Precambrian to Holocene. Rock types present include igneous intrusive and extrusive units as well as sedimentary and metamorphic units, most of which have been tectonically disturbed. A total of 264 stream-sediment samples were collected and analyzed for 32 elements. Geochemical maps for Sb, Ag, Pb, Te, B, Mn, Au, Zn, Cu (total), Cu (cold-extractable), and Mo, as well as for Cu (cold-extractable)/Cu (total) and Fe/Mn, are presented. Anomaly patterns for these elements generally occur over the Red Mountain deposit and (or) along a north-northwest trend parallel to the major Harshaw Creek Fault. Much of the entire area sampled contains widespread anomalies for Pb, Te, and Cu; the other elements are only locally anomalous. Various plots of ratios of Cu (cold-extractable) to Cu (total) did not produce any new information not readily apparent on either one of the two copper maps. A plot of ratios of Fe to Mn delineated many areas of pyrite mineralization. Several of these areas may represent the pyritic halos around deeply buried porphyry copper systems. The best ore guide for the Red Mountain porphyry system is the coincidence of positive anomalies of Mo, Pb, and Te and a negative anomaly of Mn. Other areas with anomalies of the same suite of elements are present within the Patagonia Mountains. It is concluded that geochemical sampling, even in a highly contaminated area, can be useful in delineating major geologic features, such as porphyry copper belts and major faults. Multielement geochemical surveys on a regional scale can effectively locate large, deeply buried, zoned mineral systems such as that at Red Mountain. Plots of element ratios, where adequately understood, can provide geochemical information

  20. A process-based stream temperature modelling approach for mountain regions

    NASA Astrophysics Data System (ADS)

    MacDonald, Ryan J.; Boon, Sarah; Byrne, James M.

    2014-04-01

    Mountain streams have thermal regimes that provide critical habitat for native aquatic organisms. However, understanding stream temperature response to environmental change in mountain regions is difficult because there is typically a lack of observations. This work aims to address this issue by coupling two process-based models to simulate stream temperature in a groundwater-dominated mountain catchment, Alberta, Canada, and using a reach-scale field study for model development and verification. Results suggest that it is possible to produce spatial simulations of hydrometeorological variables needed for process-based stream temperature modelling. Simulated stream energy budget estimates compare well with results from field-based studies, and errors in stream temperature simulations (RMSE < 1.6) are similar to other modelling studies, providing confidence in the methods developed. Model sensitivity analysis demonstrates the importance of incorporating meteorological, hydrological, and geomorphological controls on stream temperature in modelling studies. This study also demonstrates the current lack of process knowledge regarding in-stream ice cover and snowmelt effects on stream temperature, both of which can contribute substantially to stream thermal regimes. Future field-based and modelling studies should consider these processes in order to fully understand stream temperature response to environmental change.

  1. Landscape level estimate of lands and waters impacted by road runoff in the Adirondack Park of New York State.

    PubMed

    Regalado, Sean A; Kelting, Daniel L

    2015-08-01

    Road runoff is understood to be a significant stressor in terrestrial and aquatic ecosystems, yet the effects of this stressor are poorly understood at large spatial scales. We developed an efficient method for estimating the spatial impact of road runoff on lands and waters over large geographic areas and then applied our methodology to the 2.4 million ha Adirondack Park in New York State. We used TauDEM hydrologic modeling and a series of ESRI GIS processes to delineate surface flow downslope of paved roads, illustrating the potential movement of pollutants originating from paved roads through the USGS 10 m DEM topography. We then estimated the land and surface water areas, number of water bodies, and total stream length potentially impacted by road runoff from paved roads. We found that as much as 11% of land area, 77% of surface water area, 1/3 of the water bodies, and 52% of stream length in the Adirondack Park may be impacted by road runoff. The high degree of hydrologic association between paved roads and the lands and waters of this region strongly suggests that the environmental impacts of road runoff should be evaluated along with other regional stressors currently being studied. Being able to estimate the spatial impact of road runoff is important for designing monitoring programs that can explicitly monitor this stressor while also providing opportunities to understand the interaction of multiple environmental stressors.

  2. GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.

    USGS Publications Warehouse

    Spencer, Charles W.

    1985-01-01

    The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.

  3. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise

    NASA Astrophysics Data System (ADS)

    Radić, Valentina; Hock, Regine

    2011-02-01

    The contribution to sea-level rise from mountain glaciers and ice caps has grown over the past decades. They are expected to remain an important component of eustatic sea-level rise for at least another century, despite indications of accelerated wastage of the ice sheets. However, it is difficult to project the future contribution of these small-scale glaciers to sea-level rise on a global scale. Here, we project their volume changes due to melt in response to transient, spatially differentiated twenty-first century projections of temperature and precipitation from ten global climate models. We conduct the simulations directly on the more than 120,000 glaciers now available in the World Glacier Inventory, and upscale the changes to 19 regions that contain all mountain glaciers and ice caps in the world (excluding the Greenland and Antarctic ice sheets). According to our multi-model mean, sea-level rise from glacier wastage by 2100 will amount to 0.124+/-0.037m, with the largest contribution from glaciers in Arctic Canada, Alaska and Antarctica. Total glacier volume will be reduced by 21+/-6%, but some regions are projected to lose up to 75% of their present ice volume. Ice losses on such a scale may have substantial impacts on regional hydrology and water availability.

  4. Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions

    USGS Publications Warehouse

    Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.

    1983-01-01

    The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.

  5. Nature of migrabitumen and their relation to regional thermal maturity, Ouachita Mountains, Oklahoma

    USGS Publications Warehouse

    Cardott, Brian J.; Ruble, Tim E.; Suneson, Neil H.

    1993-01-01

    Two grahamite and three impsonite localities are within an 82-km-long segment of the Ouachita Mountains of southeastern Oklahoma. Grab samples were collected to study the petrographic and geochemical characteristics of the migrabitumen at the grahamite-impsonite transition and the relation of the migrabitumen to the regional thermal maturity pattern. Maximum and random bitumen reflectance values increased from 0.75 to 1.80% from west to east, consistent with the regional thermal maturation trend. Mean bireflectance values increased from 0.04 to 0.38%. The two grahamite samples are classified at the grahamite-impsonite boundary with conflicting petrographic (bitumen reflectance) and bulk chemical (volatile matter) maturity indicators. The regional maturation trend, based on vitrinite reflectance and bitumen reflectance values, was confirmed by a detailed geochemical investigation of bitumen extracts. Although biomarker analyses were influenced by extensive biodegradation effects, molecular parameters based on the phenanthrenes, dibenzothiophenes, and tricyclic terpanes were identified as useful maturity indicators.

  6. Modelling Sub-canopy Shortwave Under Needle-Leaf Forests in Mountain Regions

    NASA Astrophysics Data System (ADS)

    Ellis, C.; Pomeroy, J. W.

    2006-12-01

    Snowmelt is one of the most important hydrological events in mountain regions, responsible for soil moisture recharge, vegetation growth, and ecosystem productivity. Mountain snowmelt is also of tremendous importance to the downstream water resource of many North American regions, from where over 80% of river- flows may originate. As mountain regions are covered largely by needle-leaf forests, turbulent energy exchanges are suppressed and snowmelt is driven primarily by shortwave irradiance energy transmitted to the sub-canopy Thus, effective prediction of the timing and magnitude of mountain snowmelt runoff for the purposes reservoir operation, land-use planning, and flood forecasting require accurate estimation of shortwave irradiance transmission through sloping forest-cover. This paper outlines and evaluates a physically-based model requiring minimal calibration designed to estimate shortwave irradiance transmission through needle-leaf forest cover with respect to surface orientation. Transmission was estimated using forest-survey data to calculate the fractions of forest occupied by non-transmitting trunks, partially-transmitting crowns and fully-transmitting gaps with respect to both above-canopy diffuse and beam irradiance. Simulations were conducted for continuous and uniform lodgepole pine forests on level and north-facing slopes and a discontinuous, non-uniform forest on a southeast-facing slope during snowmelt at the Marmot Creek Research Basin, Alberta, Canada. Mean observed daily transmissivity values were 0.09 at the north-facing forest, 0.21 at the level forest and 0.36 at the southeast-facing forest. Modelled and observed results indicate that sub-canopy shortwave irradiance snowmelt energy exhibited greatest variation with change in sky condition and forest-cover density under south-facing forests and the least variation under north-facing forests. This suggests the timing and rate of snowmelt may vary more for south-facing forests than for forests

  7. Physical processes and effects of magmatism in the Yucca Mountain region

    SciTech Connect

    Valentine, G.A.; Crowe, B.M.; Perry, F.V.

    1991-12-31

    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth`s surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii.

  8. Literature review and ethnohistory of Native American occupancy and use of the Yucca Mountain Region; Yucca Mountain Project, Interim report

    SciTech Connect

    Stoffle, R.W.; Olmsted, J.E.; Evans, M.J.

    1990-01-01

    This report presents a review of the literature concerning Native American occupancy and use of the Yucca Mountain area and vicinity. It draws on a wide range of material, including early traveler reports, government documents, ethnographic and historical works, and local newspapers. The report complements two other concurrent studies, one focused on the cultural resources of Native American people in the study area and the other an ethnobotanical study of plant resources used by Native American people in the study area. The literature review has had two principal purposes: to determine the completeness of the Yucca Mountain Native American study design and to contribute to the understanding of the presence of Native American people in the Yucca Mountain area. A review of the existing literature about the Yucca Mountain area and southern Nye County, supplemented by the broader literature about the Great Basin, has verified three aspects of the study design. First, the review has aided in assessing the completeness of the list of Native American ethnic groups that have traditional or historical ties to the site. Second, it has aided in the production of a chronology of Native American activities that occurred on or near the site during the late nineteenth and early twentieth centuries. Third, it has helped to identify the location of cultural resources, including burials and other archaeological sites, in the study area and vicinity. 200 refs., 16 figs., 6 tabs.

  9. Adirondack lakes survey: An interpretive analysis of fish communities and water chemistry, 1984--1987

    SciTech Connect

    Baker, J.P. , Raleigh, NC ); Gherini, S.A.; Munson, R.K. ); Christensen, S.W. ); Driscoll, C.T. ); Gallagher, J. ); Newton, R.M. ); Reckhow, K.H. ); Schofield, C.L. (Co

    1990-01-01

    The Adirondack Lakes Survey Corporation (ALSC) was formed as a cooperative effort of the New York State Department of Environmental Conservation and the Empire State Electric Energy Research Corporation to better characterize the chemical and biological status of Adirondack lakes. Between 1984 and 1987, the ALSC surveyed 1469 lakes within the Adirondack ecological zone. As a follow-up to the survey, the ALSC sponsored a series of interpretive analyses of the ALSC data base. The primary objectives of these analyses were as follows: Evaluate the influence of mineral acids (from acidic deposition) and nonmineral acids (natural organic acids) on lake pH levels; classify Adirondack lakes according to lake and watershed features expected to influence their responsiveness to changes in acidic deposition; evaluate the sensitivity of Adirondack lakes to changes in environmental conditions, such as changes in mineral acids or dissolved organic carbon concentrations; identify lake characteristics important in explaining the observed present-day status of fish communities in Adirondack lakes, in particular the relative importance of lake acidity; evaluate changes that have occurred over time in Adirondack fish communities and probable causes for these trends by using the available historical data on fish communities in the Adirondacks and the ALSC data base; and determine the degree to which the existing fish resource might be at risk from continued acidic deposition, or might recover if acidity levels were reduced. The basic approach examined relationships observed in the ALSC data base among watershed characteristics, lake chemistry, and fish status. Individual reports are processed separately for the data bases.

  10. Late Quaternary history of the southwestern St. Lawrence Lowlands and adjacent Adirondack Highlands

    SciTech Connect

    Pair, D.L. . Dept. of Geology)

    1993-03-01

    The reconstruction of Late Wisconsinan ice retreat, proglacial lakes, and Champlain Sea history from the northwest Adirondack slope and adjacent St. Lawrence Lowlands is critical to the synthesis of a regional picture of deglacial events in the eastern Great Lakes region. Unfortunately, these same areas are well known for their limited exposures, landforms covered by thick forest, large tracts of land inaccessible to detailed field mapping, and the overall paucity of glacial materials preserved on upland surfaces. Despite these limitations, a model which utilizes multiple and field-truthed evidence has been used to designate areas where ice border deposits indicate a substantial recessional position. It employs the following criteria in this analysis: sedimentology and morphostratigraphy of morainal landform segments and related sediments; orientation and continuity of ice border drainage channels; and the relationship of ice borders and drainage systems to well documented local and regional water bodies which accompanied ice retreat. The results of this approach have provided a unique regional picture of deglaciation. Despite the inherent limitations of working in upland areas to reconstruct glacial events, detailed morphostratigraphic correlations based on multiple lines of evidence can yield important information. The positions of five former ice borders have been reconstructed from the available data. These ice margins correspond closely with those documented previously by others adjoining areas. This type of study, utilizing multiple and field-truthed lines of evidence, constitutes a tangible step towards understanding the nature and history of ice retreat along this portion of the Laurentide Ice Sheet.

  11. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  12. Geology of the Blue Mountains region of Oregon, Idaho, and Washington; stratigraphy, physiography, and mineral resources of the Blue Mountains region

    USGS Publications Warehouse

    Vallier, T. L.; Brooks, H.C.

    1994-01-01

    PART 1: Stratigraphic and sedimentological analysis of sedimentary sequences from the Wallowa terrane of northeastern Oregon has provided a unique insight into the paleogeography and depositional history of the terrane, as well as establishing important constraints on its tectonic evolution and accretionary history. Its Late Triassic history is considered here by examining the two most important sedimentary units in the Wallowa terrane-the Martin Bridge Limestone and the Hurwal Formation. Conformably overlying epiclastic volcanic rocks of the Seven Devils Group, the Martin Bridge Limestone comprises shallow-water platform carbonate rocks and deeper water, off-platform slope and basin facies. Regional stratigraphic and tectonic relations suggest that the Martin Bridge was deposited in a narrow, carbonate-dominated (forearc?) basin during a lull in volcanic activity. The northern Wallowa platform was a narrow, rimmed shelf delineated by carbonate sand shoals. Interior parts of the shelf were characterized by supratidal to shallow subtidal carbonates and evaporites, which were deposited in a restricted basin. In the southern Wallowa Mountains, lithofacies of the Martin Bridge are primarily carbonate turbidites and debris flow deposits, which accumulated on a carbonate slope apron adjacent to the northern Wallowa rimmed shelf from which they were derived. Drowning of the platform in the latest Triassic, coupled with a renewed influx of volcanically derived sediments, resulted in the progradation of fine-grained turbidites of the Hurwal Formation over the carbonate platform. Within the Hurwal, Norian conglomerates of the Excelsior Gulch unit contain exotic clasts of radiolarian chert, which were probably derived from the Bakei terrane. Such a provenance provides evidence of a tectonic link between the Baker and Wallowa terranes as early as the Late Triassic, and offers support for the theory that both terranes were part of a more extensive and complex Blue Mountains

  13. Non-primary layering in some Adirondack orthogneisses

    SciTech Connect

    Levy, R.; McLelland, J.; Ritter, A. . Geology Dept.)

    1993-03-01

    Metamorphic, as opposed to primary, layering has been shown to be important in many tectonites. Within orthogneisses additional types of non-primary layering are common and have important genetic implications. Here the authors cite three Adirondack examples. (1) Hyde School Gneiss of the Adirondack Lowlands contains semi-continuous layers of foliated amphibolite arranged parallel to contacts and early foliation and disrupted by pegmatitic, alaskitic, and tonalitic host rock. Layering appears to be the result of penetration of amphibolite by granitoid magma first along extensional fractures and then parallel to foliation. Intrusion is envisaged to take place in active shear zones initially occupied by foliated amphibolite that is subsequently penetrated parallel to foliation by granitoids. (2) South of Elizabethtown foliated, isoclinally folded gabbroic anorthosite is well layered with garnetiferous amphibolite, quartz-feldspar gneiss, and calcsilicate. Because of rock composition, the layering cannot be due to metavolcanic sequences nor can disruption be attributed to partial melting. A satisfactory interpretation is that gabbroic anorthosite intruded mafic and carbonate-rich rocks in lit-par-lit fashion. (3) North of Speculator a garnetiferous amphibolite/gabbro has been intruded by granite now containing xenoliths, some with ophitic opx. Much of the layering in the granite consists of clots of plagioclase, garnet, pyroxene (chloritized) arranged in parallel. These are interpreted as small xenoliths of garnetiferous amphibolite/gabbro entrained into the granitic magma and strung out in the direction of flow. These examples provide further evidence that layering can develop during magmatic emplacement and need not represent primary stratification. Assignment of a primary origin to such layering necessarily results in misinterpretation of geologic history.

  14. Deb Thomas, Acting Regional Administrator for EPA's Mountains & Plains (Region 8)

    EPA Pesticide Factsheets

    The Region 8 administrator oversees the implementation and enforcement of the federal environmental rules and regulations in the states of Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.

  15. Assessing spatial distribution of soil erosion in a karst region in southwestern China: A case study in Jinfo Mountains

    NASA Astrophysics Data System (ADS)

    Zhou, H. Y.; Pan, X. Y.; Zhou, W. Z.

    2017-01-01

    Soil erosion is serious with rocky desertification areas appearing in mountainous Karst regions in southwest China due to a conspicuous contradiction between man and the land resource. Land use and land cover play significant roles in regional soil erosion by water. This paper aimed to quantify regional soil erosion and to explore relationships between soil erosion and land use/land cover in order to locate high risk areas requiring soil conservation. Based on GIS, the Revised Universal Soil Loss Equation (RUSLE) was employed for erosion assessment for a typical Karst region, Jinfo Mountain region in southwest China, using local parameters. Spatial distribution of topsoil erosion was analyzed and relationships between soil erosion and land use/land cover changes (LULC) were statistically explored and discussed for regional erosion control. The overall values were under 25 t.ha.a, with the medium erosion areas accounting for 12.7% and the intense and very intense erosion areas totalled about 6%. The relations between soil erosion and LULC are complicated in this Karst mountainous region. Generally, the amount of ground cover, soil conservation measures, and cultivation disturbance have played critical roles in topsoil loss in the Jinfo mountain region. The reduced ground cover levels accompanying greater cultivation disturbance lead to higher erosion intensity in each landscape, and vice versa.

  16. Regional calibration of MODIS snow classification algorithms in the southern Coast Mountains of British Columbia

    NASA Astrophysics Data System (ADS)

    Trubilowicz, J. W.; Shea, J. M.; Jost, G.; Moore, R. D.

    2013-12-01

    The twice-daily temporal resolution and 500-m spatial resolution of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-covered area (SCA) products offer great promise in the field of hydrologic forecasting. MODIS snow classification algorithms are accurate in most situations, but the situations in which accuracy suffers the most are also the situations where spatial observations of SCA would be most useful to operational hydrologists, particularly in the dynamic mountain watersheds of the Coast Mountains of British Columbia (BC). Transient snow coverage and snow melt due to rain-on-snow events can cause the SCA in these watersheds to change rapidly, both in the shoulder seasons and mid-winter. These rapid changes are often poorly represented by MODIS SCA products due to both cloud obscuration and the nature of the classification algorithms used. Snow classification algorithms used in the MODIS SCA products have been calibrated globally, but operational use of MODIS snow cover maps has indicated that accuracy could be improved through regional calibration of fractional SCA products. One challenge to regional calibration is the availability of calibration data. To generate a suitable data set, we used ground-based oblique imagery of the Cheakamus River catchment, an operational hydroelectric catchment in the southern Coast Mountains of BC with a catchment area of 721 km2. Images were collected over two seasons at locations determined to have the highest visibility of the entire Cheakamus catchment based on a viewshed analysis. Unsupervised image classification was used to delineate snow cover. The oblique photographs were then geo-located and subsequently re-projected onto a digital elevation model to enable direct comparison to MODIS SCA products. Regional calibration of MODIS SCA classification algorithms using MODIS reflectance bands resulted in improved accuracy of fractional SCA products. While regional calibration may not be practical for short term

  17. Investigating Downscaling Methods and Evaluating Climate Models for Use in Estimating Regional Water Resources in Mountainous Regions under Changing Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Nolin, Anne W.; Serreze, Mark C.; Armstrong, Richard L.; McGinnis, David L.; Robinson, David A.

    2004-01-01

    The purpose of this three-year study is to develop and evaluate techniques to estimate the range of potential hydrological impacts of climate change in mountainous areas. Three main objectives are set out in the proposal. (1) To develop and evaluate transfer functions to link tropospheric circulation to regional snowfall. (2) To evaluate a suite of General Circulation Models (GCMs) for use in estimating synoptic scale circulation and the resultant regional snowfall. And (3) to estimate the range of potential hydrological impacts of changing climate in the two case study areas: the Upper Colorado River basin, and the Catskill Mountains of southeastern New York State. Both regions provide water to large populations.

  18. Differential insect and mammalian response to Late Quaternary climate change in the Rocky Mountain region of North America

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.

    2015-07-01

    Of the 200 beetle species identified from Rocky Mountain Late Pleistocene insect faunal assemblages, 23% are no longer resident in this region. None of the 200 species is extinct. In contrast to this, only 8% of 73 identified mammal species from Rocky Mountain Late Pleistocene assemblages are no longer resident in the Rockies, and 12 species are now extinct. Since both groups of organisms are highly mobile, it would appear that their responses to the large-scale fluctuations of climate associated with the last 125,000 years have been considerably different. Most strikingly contrasting with the insects, there are no mammals in the Rocky Mountain Late Pleistocene fossil record that are found exclusively today in the Pacific Northwest (PNW) region. The PNW does have a distinctive modern mammalian fauna, but only one of these, Keen's Myotis, has a fossil record outside the PNW region, in the eastern and central United States. No modern PNW vertebrate species have been found in any Rocky Mountain fossil assemblages. Based on these data, it appears that there has been little or no mammalian faunal exchange between the PNW region and the Rocky Mountains during the Late Pleistocene or Holocene. This is in stark contrast to the fossil beetle record, where PNW species are a substantial component in many faunas, right through to the Late Holocene.

  19. Habitat assessment for giant pandas in the Qinling Mountain region of China

    USGS Publications Warehouse

    Feng, Tian-Tian; Van Manen, Frank T.; Zhao, Na-Xun; Li, Ming; Wei, Fu-Wen

    2009-01-01

    Because habitat loss and fragmentation threaten giant pandas (Ailuropoda melanoleuca), habitat protection and restoration are important conservation measures for this endangered species. However, distribution and value of potential habitat to giant pandas on a regional scale are not fully known. Therefore, we identified and ranked giant panda habitat in Foping Nature Reserve, Guanyinshan Nature Reserve, and adjacent areas in the Qinling Mountains of China. We used Mahalanobis distance and 11 digital habitat layers to develop a multivariate habitat signature associated with 247 surveyed giant panda locations, which we then applied to the study region. We identified approximately 128 km2 of giant panda habitat in Foping Nature Reserve (43.6% of the reserve) and 49 km2 in Guanyinshan Nature Reserve (33.6% of the reserve). We defined core habitat areas by incorporating a minimum patch-size criterion (5.5 km2) based on home-range size. Percentage of core habitat area was higher in Foping Nature Reserve (41.8% of the reserve) than Guanyinshan Nature Reserve (26.3% of the reserve). Within the larger analysis region, Foping Nature Reserve contained 32.7% of all core habitat areas we identified, indicating regional importance of the reserve. We observed a negative relationship between distribution of core areas and presence of roads and small villages. Protection of giant panda habitat at lower elevations and improvement of habitat linkages among core habitat areas are important in a regional approach to giant panda conservation.

  20. Data-collection methods and quality-assurance/quality-control procedures used in the study of episodic stream acidification and its effect on fish and aquatic invertebrates in four Catskill Mountain streams, New York, 1988-90

    USGS Publications Warehouse

    Ranalli, Anthony J.; Baldigo, Barry P.; Horan-Ross, Debra; Allen, Ronald V.

    1997-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a 20-month study during 1988-90 to evaluate the effects of episodic acidification on fish and aquatic invertebrates in pristine headwater streams in the Catskill Mountains of New York. The study was part of the Episodic Response Project, a regional survey of episodic acidification by the U.S. Environmental Protection Agency, and was carried out simultaneously with other studies in the Adirondack Mountains of New York by the Adirondack Lake Survey Corporation and in central Pennsylvania by Pennsylvania State University. This report summarizes the methods used, describes the sampling sites, and presents the data collected from October 1, 1988 through May 30, 1990 at four headwater watersheds (Biscuit Brook, East Branch Neversink River, Black Brook, and High Falls Brook). The study entailed (1) monitoring the quantity and chemical quality of atmospheric deposition and the quality of discharge of streams, and (2) experiments to determine the effect of stream-water-quality changes on fish and invertebrate populations.

  1. Estimating Turbulence in Mountainous Regions from Airborne In Situ and Remotely-Sensed Data

    NASA Astrophysics Data System (ADS)

    Strauss, Lukas; Serafin, Stefano; Grubišić, Vanda

    2013-04-01

    that turbulence originated from bluff-body separation of the boundary layer at the mountain peak. Preliminary results from the T-REX field campaign provide a similar picture. Regions of strong turbulence from wave-induced boundary-layer separation and rotor formation exist in the lee of the Sierra Nevada. Besides, highly turbulent flow patches can be found right behind smaller but steep crests of the main ridge of the Sierra Nevada. The type of analysis employed in this study is expected to be valuable in general for detection of strong turbulence in mountainous terrain and for quantification of its intensity.

  2. Developing scenarios to assess future landslide risks: a model-based approach applied to mountainous regions

    NASA Astrophysics Data System (ADS)

    Vacquie, Laure; Houet, Thomas

    2016-04-01

    In the last century, European mountain landscapes have experienced significant transformations. Natural and anthropogenic changes, climate changes, touristic and industrial development, socio-economic interactions, and their implications in terms of LUCC (land use and land cover changes) have directly influenced the spatial organization and vulnerability of mountain landscapes. This study is conducted as part of the SAMCO project founded by the French National Science Agency (ANR). It aims at developing a methodological approach, combining various tools, modelling platforms and methods, to identify vulnerable regions to landslide hazards accounting for futures LUCC. It presents an integrated approach combining participative scenarios and a LULC changes simulation models to assess the combined effects of LUCC and climate change on landslide risks in the Cauterets valley (French Pyrenees Mountains) up to 2100. Through vulnerability and risk mapping, the objective is to gather information to support landscape planning and implement land use strategies with local stakeholders for risk management. Four contrasting scenarios are developed and exhibit contrasting trajectories of socio-economic development. Prospective scenarios are based on national and international socio-economic contexts relying on existing assessment reports. The methodological approach integrates knowledge from local stakeholders to refine each scenario during their construction and to reinforce their plausibility and relevance by accounting for local specificities, e.g. logging and pastoral activities, touristic development, urban planning, etc. A process-based model, the Forecasting Scenarios for Mountains (ForeSceM) model, developed on the Dinamica Ego modelling platform is used to spatially allocate futures LUCC for each prospective scenario. Concurrently, a spatial decision support tool, i.e. the SYLVACCESS model, is used to identify accessible areas for forestry in scenario projecting logging

  3. Carbon storage versus albedo change: Radiative Forcing of forest expansion in temperate mountainous regions of Switzerland

    NASA Astrophysics Data System (ADS)

    Schwaab, J.; Bavay, M.; Davin, E.; Hagedorn, F.; Hüsler, F.; Lehning, M.; Schneebeli, M.; Thürig, E.; Bebi, P.

    2014-06-01

    Forestation is seen as a possible option to counter climate change by sequestering carbon in forests and thus reducing the atmospheric concentration of carbon dioxide. However, previous studies suggest that the Radiative Forcing (RF) caused by forestation-induced albedo change in snow-rich boreal regions may offset the carbon sequestration effect. The Swiss mountains are characterized by snow-rich areas with strongly varying environmental conditions and forest expansion is currently the dominant land-use change process. Thus, quantifying both carbon sequestration and albedo change on appropriately high resolution in this region will improve our understanding of the forests potential for climate mitigation. We calculated the albedo RF based on remotely sensed datasets of albedo, global radiation and snow cover. Carbon sequestration was estimated from changes in carbon stocks based on National Inventories. Our results show that the net RF of forest expansion ranges from -24 W m-2 at low elevations of the Northern Prealps to 2 W m-2 at high elevations of the Central Alps. The albedo RF increases with increasing altitude, which offsets the CO2 RF at high elevations with long snow-covered periods, high global radiation and low carbon sequestration. Results indicate that the albedo RF is particularly relevant during transitions from open land to open forest and not in later stages of forest development. The albedo RF offsets the CO2 RF by an average of 40% between 1985 and 1997 when overall forest expansion in Switzerland was approximately 4%. We conclude that the albedo RF should be considered at an appropriately high resolution when estimating the climatic effect of forestation in temperate mountainous regions.

  4. Effect of land use and land cover change on soil erosion and the spatio-temporal variation in Liupan Mountain Region, southern Ningxia, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Liupan Mountains are located in the southern Ningxia Hui Autonomous Region of China, which forms an important dividing line between landforms and bio-geographic regions. The populated part of the Liupan Mountains region has suffered tremendous ecological damages over time due to population press...

  5. An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed

    USGS Publications Warehouse

    Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen

    2014-01-01

    Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.

  6. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    PubMed

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  7. Abbreviated bibliography on energy development—A focus on the Rocky Mountain Region

    USGS Publications Warehouse

    Montag, Jessica M.; Willis, Carolyn J.; Glavin, Levi W.

    2011-01-01

    Energy development of all types continues to grow in the Rocky Mountain Region of the western United States. Federal resource managers increasingly need to balance energy demands, effects on the natural landscape and public perceptions towards these issues. To assist in efficient access to valuable information, this abbreviated bibliography provides citations to relevant information for myriad of issues for which resource managers must contend. The bibliography is organized by seven large topics with various sup-topics: broad energy topics (energy crisis, conservation, supply and demand, etc.); energy sources (fossil fuel, nuclear, renewable, etc.); natural landscape effects (climate change, ecosystem, mitigation, restoration, and reclamation, wildlife, water, etc.); human landscape effects (attitudes and perceptions, economics, community effects, health, Native Americans, etc.); research and technology; international research; and, methods and modeling. A large emphasis is placed on the natural and human landscape effects.

  8. Geologic map of the Great Smoky Mountains National Park region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Aleinikoff, John N.; Merschat, Arthur J.

    2012-01-01

    The geology of the Great Smoky Mountains National Park region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation by the U.S. Geological Survey with the National Park Service (NPS). This work resulted in a 1:100,000-scale geologic map derived from mapping that was conducted at scales of 1:24,000 and 1:62,500. The geologic data are intended to support cooperative investigations with the NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory. In response to a request by the NPS, we mapped previously unstudied areas, revised the geology where problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.

  9. Analysis and Modelling of Extreme Wind Speed Distributions in Complex Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Kanevski, Mikhail

    2016-04-01

    Modelling of wind speed distributions in complex mountainous regions is an important and challenging problem which interests many scientists from several fields. In the present research, high frequency (10 min) Swiss wind speed monitoring data (IDAWEB service, Meteosuisse) are analysed and modelled with different parametric distributions (Weibull, GEV, Gamma, etc.) using maximum likelihood method. In total, 111 stations placed in different geomorphological units and at different altitude (from 203 to 3580 meters) are studied. Then, this information is used for training machine learning algorithms (Extreme Learning Machines, Support vector machine) to predict the distribution at new places, potentially useful for aeolian energy generation. An important part of the research deals with the construction and application of a high dimensional input feature space, generated from digital elevation model. A comprehensive study was carried out using feature selection approach to get the best model for the prediction. The main results are presented as spatial patterns of distributions' parameters.

  10. Field Hyperspectral Remote Sensing of Target Region in Xiemisitai Mountain, Xinjiang Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Wei, Y. M.; Chen, Y.; Ma, X. L.; Zhou, H. Y.

    2017-02-01

    A fine mineral identification model using the field Hyperspectral remote sensing was proposed to solve the problem of low mineral identification accuracy. Results show that the accuracy was improved by spectral noises removal, endmember optimization and mineral absorptions enhancement. A regional endmember library was established to improve the reliability by systematically considering of the mineral assemblage relationships. A fine mineral identification system (FMIS) was developed to help geologists to quickly identify minerals and it was applied in the Xiemisitai Mountain, Xinjiang province, China in 2014 to newly find copper mineralized points. The improved model and the FMIS system are therefore not only of great significance to improve efficiency and save cost in remote sensing mineral exploration, but also of great economic value of the local economy development in the future.

  11. Fog water collection and reforestation at mountain locations in a western Mediterranean basin region

    NASA Astrophysics Data System (ADS)

    Valiente, Ja; Estrela, Mj; Corell, D.; Fuentes, D.; Valdecantos, A.

    2010-07-01

    Previous studies carried out by the authors have shown the potential of fog water collection at several mountain locations in the Valencia region (western Mediterranean basin). This coastal region features typical conditions for a dry Mediterranean climate characterized by a pluviometric regime ranging from 400 to 600 mm with a strong annual dependence. Dry conditions together with land degradation that frequently results after recurrent fires occurred in the past make a difficult self-recovery for native forest vegetation so that some kind of human intervention is always recommended. In plots reforested with Mediterranean woody species, periods of more than 120 days without significant precipitation (>5 mm) result in mortality rates above 80% during the first summer in the field. The good potential of fog-water collection at certain mountain locations is considered in this study as an easily available water resource for the reforestation of remote areas where native vegetation cannot be reestablished by itself. A large flat panel made of UV-resistant HD-polyethylene monofilament mesh was deployed at a mountain location for bulk fog water harvesting. Water was stored in high-capacity tanks for the whole length of the experimental campaign and small timely water pulses localized deep in the planting holes were conducted during the summer dry periods. Survival rates and seedling performance of two forest tree species, Pinus pinaster and Quercus ilex, were quantified and correlated to irrigation pulses in a reforestation plot that took an area of about 2500 m2 and contained 620 1-year-old plants. Before and concurrently to the flat panel deployment, a passive omnidirectional fog-water collector of cylindrical shape was set in the area in combination to other environmental instruments such as a rain gauge, a wind direction and velocity sensor and a temperature and humidity probe. Proper orientation of the large flat panel was possible once the direction of local winds

  12. Contributions of long-range and regional atmospheric transport on pesticide concentrations along a transect crossing a mountain divide.

    PubMed

    Lavin, Karen S; Hageman, Kimberly J

    2013-02-05

    Twenty-one halogenated legacy and current-use pesticides and pesticide degradation products were measured in pine needles along a coast-to-coast transect that crossed the Southern Alps of New Zealand. Concentration profiles of nine pesticides were used to determine the influence of geographic sources on the atmospheric pesticide burden at the mountain sites. Pesticide concentration profiles were calculated for each source and mountain site by normalizing concentrations (adjusted for temperature at the site and air-needle partitioning) to the sum of all pesticide concentrations at the site. Each mountain site profile was compared to varying mixtures of the potential source profiles to determine the percent contribution of each source. The highest elevation mountain sites were primarily influenced by long-range, synoptic-scale northwesterly winds. Westerly upslope winds had little influence on any of the mountain sites. Easterly upslope winds from the Canterbury Plains, an agricultural region, strongly influenced the mountain sites within close proximity and had progressively less influence with distance.

  13. [Measurement and estimation of grassland evapotranspiration in a mountainous region at the upper reach of Heihe River basin, China].

    PubMed

    Yang, Yong; Chen, Ren-sheng; Song, Yao-xuan; Liu, Jun-feng; Han, Chun-tan; Liu, Zhang-wen

    2013-04-01

    Evapotranspiration (ET) is an important component of water cycle, but its measurement in high altitude mountainous region is quite difficult, inducing the insufficient understanding on the actual ET in high altitude mountainous region and the effects of ET on this region' s water cycle. In this paper, two small type weighing mini-lysimeters were applied to measure the daily ET in a piece of grassland in a high altitude mountainous region of the Heihe River basin from July 1st, 2009 to June 30th, 2010. Based on the measured data, the methods of FAO-56 Penman-Monteith (F-P-M), Priestley-Taylor (P-T), and Hargreaves-Samani (H-S) were employed to estimate the ET to analyze the applicability of the three methods for the mountainous region, and the pan coefficient at the measurement spots was discussed. During the measurement period, the total annual ET at the measurement spots was 439.9 mm, accounting for 96.5% of the precipitation in the same period, and the ET showed an obvious seasonal distribution, being 389. 3 mm in May-October, accounting for 88. 5% of the annual value. All the three methods could be well applied to estimate the summer ET but not the winter ET, and their applicability followed the sequence of P-T > F-P-M > H-S. At the measurement spots, the daily pan coefficient in summer was 0.7-0. 8, while that in winter was quite variable.

  14. Spatial analysis of relative humidity during ungauged periods in a mountainous region

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Kim, Yeonjoo

    2016-06-01

    Although atmospheric humidity influences environmental and agricultural conditions, thereby influencing plant growth, human health, and air pollution, efforts to develop spatial maps of atmospheric humidity using statistical approaches have thus far been limited. This study therefore aims to develop statistical approaches for inferring the spatial distribution of relative humidity (RH) for a mountainous island, for which data are not uniformly available across the region. A multiple regression analysis based on various mathematical models was used to identify the optimal model for estimating monthly RH by incorporating not only temperature but also location and elevation. Based on the regression analysis, we extended the monthly RH data from weather stations to cover the ungauged periods when no RH observations were available. Then, two different types of station-based data, the observational data and the data extended via the regression model, were used to form grid-based data with a resolution of 100 m. The grid-based data that used the extended station-based data captured the increasing RH trend along an elevation gradient. Furthermore, annual RH values averaged over the regions were examined. Decreasing temporal trends were found in most cases, with magnitudes varying based on the season and region.

  15. High concentrations of regional dust from deserts to plains across the central Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Munson, S. M.; Fernandez, D. P.; Neff, J. C.

    2015-12-01

    Regional mineral dust in the American Southwest affects snow-melt rates, biogeochemical cycling, visibility, and public health. We measured total suspended particulates (TSP) across a 500-km-long sampling network of five remote sites in Utah and Colorado, USA, forming a gradient in distance from major dust emitting areas. The two westernmost sites on the Colorado Plateau desert had similar TSP concentrations (2008-2012, daily average=126 μg m-3; max. daily average over a two-week period=700 μg m-3 at Canyonlands National Park, Utah), while the easternmost High Plains site, close to cropped and grazed areas in northeastern Colorado, had an average concentration of 143 μg m-3 in 2011-2012 (max. daily average=656 μg m-3). Such concentrations rank comparably with those of TSP in several African and Asian cities in the paths of frequent dust storms. Dust loadings at the two intervening montane sites decreased from the western slope of the Rocky Mountains (Telluride, daily average=68 μg m-3) to an eastern site (Niwot Ridge, daily average=58 μg m-3). Back-trajectory analyses and satellite retrievals indicated that the three westernmost sites received most dust from large desert-source regions as far as 300 km to their southwest. These sources also sometimes sent dust to the two easternmost sites, which additionally captured dust from sources north and northwest of the central Rocky Mountains as well as locally at the Plains site. The PM10 fraction accounted for <15% of TSP, but most TSP is only slightly larger (typical median size, 15-20 μm) after about 100-800 km transport distances. Correlations between TSP and PM10 values indicate increases in both fractions during regional wind storms, especially related to Pacific frontal systems during late winter to late spring. These measurements and observations indicate that most dust deposition and associated air-quality problems in the interior American West are connected to regional dust sources and not to those in

  16. Seismotectonics and Seismic Hazard of the Sierran Nevada Great Basin Boundary Zone and Yucca Mountain Region

    NASA Astrophysics Data System (ADS)

    Smith, K.; von Seggern, D.; Biasi, G. P.; Depolo, D.

    2003-12-01

    Geodetic data indicate that the Sierra Nevada block is moving at about 14 mm/yr N40-450W relative to stable North America. This motion accounts for about 20-25% of the current western North American plate motion budget and is oblique to active faults along the Sierra Nevada-Great Basin boundary zone and Walker Lane belt in a transtensional deformation field. Faulting over the past few million years has been concentrated along faults of the Eastern California shear zone, and the Walker Lane belt. Linear strike-slip faults of the Eastern California shear zone terminate near the Long Valley Caldera region marking an abrupt transition in the deformational style between the southern and northern western Great Basin. These tectonic transitions are reflected in the distribution and character of the historical and instrumental seismicity. North of Long Valley, through going strike-slip faulting is concentrated outboard from the Sierran Range front in the Central Walker Lane belt, whereas normal faulting in a series of left-stepping range bounding faults exhibiting E-W extension characterizes the Sierra Great Basin Boundary region from Long Valley to about the latitude of Reno-Lake Tahoe. Seismicity in the Lake Tahoe region is primarily concentrated in the transition between left-stepping normal faults in zones of high-angle conjugate strike-slip faulting. These observations suggest potential shortening as a mechanism of slip transfer between normal fault systems along the range front. Also, these slip transition zones show different recurrence behavior, activity rates and maximum magnitudes than the adjacent primary normal fault systems. One important kinematic problem is how to reconcile extension directions observed from instrumental seismicity and Sierran motion in the central western Great Basin. An upgrade to a digital seismic network in southern Nevada under the DOE Yucca Mountain Project has increased the detection threshold by about 1 magnitude unit (the catalog is

  17. Nonmethane hydrocarbons at Pico Mountain, Azores: 1. Oxidation chemistry in the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Tanner, D. M.; Honrath, R. E.; Owen, R. C.; Parrish, D. D.

    2008-10-01

    Measurements of nonmethane hydrocarbons (NMHC) at the Pico Mountain observatory at 2225 m asl on Pico Island, Azores, Portugal, from August 2004 to August 2005 (in part overlapping with the field campaign of the International Consortium on Atmospheric Research on Transport and Transformation study) were used to investigate NMHC sources and seasonal oxidation chemistry in the central North Atlantic region. Levels of anthropogenic NMHC were characteristic of the marine free troposphere. Their concentrations were low compared to continental sites at higher northern latitudes, but higher than data reported from a similarly located Pacific mountain site at Mauna Loa Observatory, Hawaii. These higher NMHC levels are indicative of a greater influence of the adjacent continents on air composition at Pico. Substantially enhanced NMHC concentrations during the summers of 2004 and 2005 were attributed to long-range transport of biomass burning plumes originating from fires in northern Canada, Alaska, and Siberia. This finding exemplifies the continuing impact of biomass burning plumes on atmospheric composition and chemistry many days downwind of these emission sources. Seasonal cycles with lower NMHC concentrations and lower ratios of more reactive to less reactive NMHC during summer reflect the higher degree of photochemical processing occurring during transport. The NMHC concentrations indicate no significant role of chlorine atom oxidation on NMHC. Ozone above 35 ppbv was measured at Pico Mountain throughout all seasons. Enhanced ozone levels were observed in air that had relatively "fresh" photochemical signatures (e.g., ln [propane]/[ethane] > -2.5). During spring-summer air that was more processed ("older" air with ln [propane]/[ethane] < -2.5) on average had lower ozone levels (down to <20 ppbv). This relationship indicates that conditions in the lower free troposphere over the mid-North Atlantic during the spring and summer lead to net photochemical ozone destruction

  18. Application of statistical and dynamics models for snow avalanche hazard assessment in mountain regions of Russia

    NASA Astrophysics Data System (ADS)

    Turchaninova, A.

    2012-04-01

    The estimation of extreme avalanche runout distances, flow velocities, impact pressures and volumes is an essential part of snow engineering in mountain regions of Russia. It implies the avalanche hazard assessment and mapping. Russian guidelines accept the application of different avalanche models as well as approaches for the estimation of model input parameters. Consequently different teams of engineers in Russia apply various dynamics and statistical models for engineering practice. However it gives more freedom to avalanche practitioners and experts but causes lots of uncertainties in case of serious limitations of avalanche models. We discuss these problems by presenting the application results of different well known and widely used statistical (developed in Russia) and avalanche dynamics models for several avalanche test sites in the Khibini Mountains (The Kola Peninsula) and the Caucasus. The most accurate and well-documented data from different powder and wet, big rare and small frequent snow avalanche events is collected from 1960th till today in the Khibini Mountains by the Avalanche Safety Center of "Apatit". This data was digitized and is available for use and analysis. Then the detailed digital avalanche database (GIS) was created for the first time. It contains contours of observed avalanches (ESRI shapes, more than 50 years of observations), DEMs, remote sensing data, description of snow pits, photos etc. Thus, the Russian avalanche data is a unique source of information for understanding of an avalanche flow rheology and the future development and calibration of the avalanche dynamics models. GIS database was used to analyze model input parameters and to calibrate and verify avalanche models. Regarding extreme dynamic parameters the outputs using different models can differ significantly. This is unacceptable for the engineering purposes in case of the absence of the well-defined guidelines in Russia. The frequency curves for the runout distance

  19. Statistical downscaling of regional climate models in Bulgarian mountains and some projections

    NASA Astrophysics Data System (ADS)

    Nojarov, Peter

    2015-01-01

    Air temperature and precipitation data from three high mountainous Bulgarian stations were used as well as outputs from nine regional climate models (RCMs) for air temperatures and eight RCMs for precipitation. Data from 40-year experiments driven by the ERA-40 reanalysis (temporal coverage from 1961 to 2000) of the ECMWF were employed for calibration of statistical downscaling models. Statistical methods were used in this research—Spearman and Pearson correlation, Mann-Whitney test, multiple linear regression, generalized linear models, etc. Projections, based on SRES A1B scenario and RCMs driven by four different GCMs, were made for the following future 30-years periods: 2005-2034, 2035-2064, and 2065-2094. RCMs ETHZ-CLM, DMI-ARPEGE-HIRHAM, HadRM3Q0, and HadRM3Q16 show the best correlation with observed air temperatures in mountain stations. RCMs ETHZ-CLM, HadRM3Q16, and RACMO have the best relationship with precipitation. Constructed monthly multiple linear regression models describe well enough air temperatures throughout the entire year. Monthly GLMs describe better precipitation in January, March, August, and September, as well as peak Musala and Cherni vrah precipitation. Projections for future 30-year periods indicate that air temperatures are expected to rise by 2065-2094 at all of the three investigated stations with 2.8 to 3.2 °C. This increase is mainly due to the summer months. Annual precipitation amounts are expected to decrease by the period 2065-2094 at all the three stations with about 7 to 17 %. Some increase of annual precipitation amounts in the beginning of twenty-first century against the general negative trend could happen at Musala station, which is probably due to the increase in frequency of liquid precipitation.

  20. Long-term pCO2 trends in Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Seekell, David A.; Gudasz, Cristian

    2016-05-01

    Lakes are globally significant sources of CO2 to the atmosphere. However, there are few temporally resolved records of lake CO2 concentrations and long-term patterns are poorly characterized. We evaluated annual trends in the partial pressure of CO2 (pCO2) based on chemical measurements from 31 Adirondack Lakes taken monthly over an 18 year period. All lakes were supersaturated with CO2 and were sources of CO2 to the atmosphere. There were significant pCO2 trends in 29% of lakes. The median magnitude of significant positive trends was 32.1 µatm yr-1. Overall, 52% of lakes had pCO2 trends greater than those reported for the atmosphere and ocean. Significant trends in lake pCO2 were attributable to regional recovery from acid deposition and changing patterns of ice cover. These results illustrate that lake pCO2 can respond rapidly to environmental change, but the lack of significant trend in 71% of lakes indicates substantial lake-to-lake variation in magnitude of response.

  1. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    USGS Publications Warehouse

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  2. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification

    USGS Publications Warehouse

    Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.

    2013-01-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  3. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    article title:  Appalachian Mountains     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . The true-color image at left is a ... location:  United States region:  Eastern United States Order:  3 ...

  4. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    article title:  Aerosols over the Appalachian Mountains     View ... Imaging SpectroRadiometer (MISR) acquired these views of the Appalachian Mountains on March 6, 2000. The image at left is a downward-looking ... location:  United States region:  Eastern United States Order:  2 ...

  5. Equilibrium of vegetation and climate at the European rear edge. A reference for climate change planning in mountainous Mediterranean regions.

    PubMed

    Ruiz-Labourdette, Diego; Martínez, Felipe; Martín-López, Berta; Montes, Carlos; Pineda, Francisco D

    2011-05-01

    Mediterranean mountains harbour some of Europe's highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.

  6. Preliminary geophysical interpretations of regional subsurface geology near the Questa Mine Tailing Facility and Guadalupe Mountain, Taos County, New Mexico

    USGS Publications Warehouse

    Grauch, V.J.S.; Drenth, Benjamin J.; Thompson, Ren A.; Bauer, Paul W.

    2015-08-01

    This report presents geophysical interpretations of regional subsurface geology in the vicinity of the Tailing Facility of the Questa Mine near Guadalupe Mountain, Taos County, New Mexico, in cooperation with the New Mexico Environment Department. The interpretations were developed from aeromagnetic data, regional gravity data, data from four ground magnetic traverses, geologic mapping, a digital elevation model, and information from a few shallow wells. The resolution of the geophysical data is only appropriate for a broad assessment of the regional setting. Aeromagnetic data provided the most comprehensive information for interpretation. Qualitative and semiquantitative interpretations indicate the nature and extent of volcanic rocks, their relative depths, and inferred contacts between them, as well as conjectured locations of faults. In particular, the aeromagnetic data indicate places where volcanic rocks extend at shallow depths under sedimentary cover. Trachydacites of Guadalupe Mountain are magnetic, but their associated aeromagnetic anomalies are opposite in sign over the northern versus the southern parts of the mountain. The difference indicates that lavas erupted during different magnetic-polarity events in the north (reverse polarity) versus the south (normal polarity) and therefore have different ages. We postulate a buried volcano with reverse-polarity magnetization lies under the northeast side of Guadalupe Mountain, which likely predated the exposed trachydacites. Faults interpreted for the study area generally align with known fault zones. We interpret a northern extension to one of these faults that crosses northwesterly underneath the Tailing Facility. Gravity data indicate that Guadalupe Mountain straddles the western margin of a subbasin of the Rio Grande rift and that significant (>400 meters) thicknesses of both volcanic and sedimentary rocks underlie the mountain.

  7. Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, USA

    USGS Publications Warehouse

    Brace, S.; Peterson, D.L.

    1998-01-01

    Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 a??2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.

  8. Surficial Geologic Map of the Great Smoky Mountains National Park Region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Denenny, Danielle; Triplett, James

    2004-01-01

    The Surficial Geology of the Great Smoky Mountains National Park Region, Tennessee and North Carolina was mapped from 1993 to 2003 under a cooperative agreement between the U.S. Geological Survey (USGS) and the National Park Service (NPS). This 1:100,000-scale digital geologic map was compiled from 2002 to 2003 from unpublished field investigations maps at 1:24,000-scale. The preliminary surficial geologic data and map support cooperative investigations with NPS, the U.S. Natural Resource Conservation Service, and the All Taxa Biodiversity Inventory (http://www.dlia.org/) (Southworth, 2001). Although the focus of our work was within the Park, the geology of the surrounding area is provided for regional context. Surficial deposits document the most recent part of the geologic history of this part of the western Blue Ridge and eastern Tennessee Valley of the Valley and Ridge of the Southern Appalachians. Additionally, there is great variety of surficial materials, which directly affect the different types of soil and associated flora and fauna. The surficial deposits accumulated over tens of millions of years under varied climatic conditions during the Cenozoic era and resulted from a composite of geologic processes.

  9. Identifying Common Patterns in Diverse Systems: Effects of Exurban Development on Birds of the Adirondack Park and the Greater Yellowstone Ecosystem, USA

    NASA Astrophysics Data System (ADS)

    Glennon, Michale J.; Kretser, Heidi E.; Hilty, Jodi A.

    2015-02-01

    We examined the impacts of exurban development on bird communities in Essex County, New York and Madison County, Montana by comparing differences in abundance of songbirds between subdivisions and control sites in both regions. We hypothesized that impacts to bird communities would be greater in the relatively homogeneous, closed canopy Adirondack forest of northern New York State than they would be in the more naturally heterogeneous grasslands interspersed with trees and shrubs of the Greater Yellowstone Ecosystem. We examined birds in five functional groups expected to be responsive to exurban development, and determined relative abundance within subdivisions and control sites across these two distinct regions. We found little support for our hypothesis. For birds in the area-sensitive, low nesting, and Neotropical migrant functional groups, relative abundance was lower in subdivisions in the Adirondacks and in Madison County, while relative abundance of edge specialists was greater in subdivisions in both regions. The direction and magnitude of change in the avian communities between subdivisions and controls was similar in both regions for all guilds except microhabitat specialists. These similarities across diverse ecosystems suggest that the ecological context of the encompassing region may be less important than other elements in shaping avian communities in exurban systems. This finding suggests that humans and their specific behaviors and activities in exurban areas may be underappreciated but potentially important drivers of change in these regions.

  10. Identifying common patterns in diverse systems: effects of exurban development on birds of the Adirondack Park and the Greater Yellowstone Ecosystem, USA.

    PubMed

    Glennon, Michale J; Kretser, Heidi E; Hilty, Jodi A

    2015-02-01

    We examined the impacts of exurban development on bird communities in Essex County, New York and Madison County, Montana by comparing differences in abundance of songbirds between subdivisions and control sites in both regions. We hypothesized that impacts to bird communities would be greater in the relatively homogeneous, closed canopy Adirondack forest of northern New York State than they would be in the more naturally heterogeneous grasslands interspersed with trees and shrubs of the Greater Yellowstone Ecosystem. We examined birds in five functional groups expected to be responsive to exurban development, and determined relative abundance within subdivisions and control sites across these two distinct regions. We found little support for our hypothesis. For birds in the area-sensitive, low nesting, and Neotropical migrant functional groups, relative abundance was lower in subdivisions in the Adirondacks and in Madison County, while relative abundance of edge specialists was greater in subdivisions in both regions. The direction and magnitude of change in the avian communities between subdivisions and controls was similar in both regions for all guilds except microhabitat specialists. These similarities across diverse ecosystems suggest that the ecological context of the encompassing region may be less important than other elements in shaping avian communities in exurban systems. This finding suggests that humans and their specific behaviors and activities in exurban areas may be underappreciated but potentially important drivers of change in these regions.

  11. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    SciTech Connect

    La Camera, R.J.; Westenburg, C.L.

    1994-08-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992.

  12. Snow covers detection using terrestrial photography. Application to a mountain catchment in Alps region (France).

    NASA Astrophysics Data System (ADS)

    Barth, Thierry; Saulnier, Georges-Marie; Malet, Emmanuel

    2010-05-01

    In August 2005, a significant mudflow leaded to major impacts damages at the Sainte-Agnes village located downstream the Vorz torrent (35 km2, elevations ranging from 1248m and 2977m, Alps region, France). To meet the demand of populations and civil authorities a research program was launched to both monitor and model these regions to help to quantify water resources and vulnerability to such hazardous events, including their probable evolutions do to climatic changes. This communication focuses on one of the several forcing variables of the water cycle in mountainous regions: the snow covering. Indeed, its controls a significant part of the future available water resources and may strongly interact with liquid precipitations during snow melting season. Usual sensors such as remote sensing cannot easily quantify accurately the snow covering for small mountainous catchment at hydrological models spatial and temporal resolutions (typically Dx < 50m, Dx= 30'-1h). Consequently, we decided to develop a specific monitoring system based on terrestrial photos. Two cameras were installed within the catchment at two different elevations (1950m and 2250m). Each camera acquires pictures every 2-3 hours from 8.00am to 8.00pm. Thus, a lot of data on snow covering are acquired at a minimal costs. The first step of this technique is to place the cameras at "optimal location", i.e. able to see a large surface of the catchment with various elevations and aspects. This position must also be reached by direct solar radiation to recharge the embedded solar panel. A 2 or 3 hours sampling time-step was chosen for pictures shots (depending to available energy and memory capacity of camera). Indeed it allows observing all the day and offers an accurate sampling of the melting period. First major difficulty of this technique is the retro mapping of the 2D pictures from the camera on the 3D Digital Terrain Model to distribute the snow covering by elevation and aspects. The second difficulty

  13. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    SciTech Connect

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

  14. Specific ultra-violet absorbance as an indicator measurement of merucry sources in an Adirondack River basin

    USGS Publications Warehouse

    Burns, Douglas A.; Aiken, George R.; Bradley, Paul M.; Journey, Celeste; Schelker, Jakob

    2013-01-01

    The Adirondack region of New York has been identified as a hot spot where high methylmercury concentrations are found in surface waters and biota, yet mercury (Hg) concentrations vary widely in this region. We collected stream and groundwater samples for Hg and organic carbon analyses across the upper Hudson River, a 493 km2 basin in the central Adirondacks to evaluate and model the sources of variation in filtered total Hg (FTHg) concentrations. Variability in FTHg concentrations during the growing seasons (May-Oct) of 2007-2009 in Fishing Brook, a 66-km2 sub-basin, was better explained by specific ultra-violet absorbance at 254 nm (SUVA254), a measure of organic carbon aromaticity, than by dissolved organic carbon (DOC) concentrations, a commonly used Hg indicator. SUVA254 was a stronger predictor of FTHg concentrations during the growing season than during the dormant season. Multiple linear regression models that included SUVA254 values and DOC concentrations could explain 75 % of the variation in FTHg concentrations on an annual basis and 84 % during the growing season. A multiple linear regression landscape modeling approach applied to 27 synoptic sites across the upper Hudson basin found that higher SUVA254 values are associated with gentler slopes, and greater riparian area, and lower SUVA254 values are associated with an increasing influence of open water. We hypothesize that the strong Hg?SUVA254 relation in this basin reflects distinct patterns of FTHg and SUVA254 that are characteristic of source areas that control the mobilization of Hg to surface waters, and that the seasonal influence of these source areas varies in this heterogeneous basin landscape.

  15. Russian aeromagnetic surveys of the Prince Charles Mountains and adjacent regions into the 21st century

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Golynsky, Dmitry; Kiselev, Alexander; Masolov, Valery

    2014-05-01

    Russian aeromagnetic investigations in the Prince Charles Mountains (PCM) and surrounding areas, seek to contribute data on the tectonics of Precambrian igneous belts and cratonic fragments, the crustal structure of the Lambert Rift system and other major aspects of Antarctic geology, critical to understanding continental growth processes (Golynsky et al., 2006). Over the past decade, the Polar Marine Geoscience Expedition projects acquired approximately 77,400 line-km of aeromagnetic data over the largely ice-covered regions of MacRobertson Land and Princess Elizabeth Land. The airborne surveys were performed with a standard profile spacing of 5 km and tie-line interval of 15-25 km. The total amount of the Russian aeromagnetic data collected in this region exceeded more than 165,000 line-km. Together with the PCMEGA and AGAP surveys (Damaske and McLean, 2005; Ferraccioli et al., 2011) the PMGE dataset forms the longest transect ever mapped in East Antarctica exceeding 1950 km in length. Several distinct crustal subdivisions are clearly differentiated in the magnetic data. The high-amplitude positive anomalies that extend around the Vestfold Hills and Rauer Islands are likely be attributed to the southern boundary of high-grade metamorphic Late Archean craton. The northern PCM that are composed by ~1 Ga orthogneiss and charnockite display a predominantly northeasterly trending magnetic fabric that continues to the eastern shoulder of the Lambert Rift. The aeromagnetic data from the Southern PCM reveal the spatial boundary of the Archaean Ruker Terrane that is characterized by a short-wavelength anomalies and the prominent Ruker Anomaly that is associated with a banded iron formation. The prominent alternating system of linear NE-SW positive and negative anomalies over the eastern shoulder of the Lambert Rift may reflect the western boundary of the Princess Elizabeth Land cratonic(?) block, although its relationships and tectonic origin remained largely ambiguous

  16. Bryophyte dispersal inferred from colonization of an introduced substratum on Whiteface Mountain, New York.

    PubMed

    Miller, Norton G; McDaniel, Stuart F

    2004-08-01

    A long-standing debate in bryophyte biogeography concerns the frequency of long-distance spore dispersal. The diversity of bryophytes on mortared rock walls along the Veterans Memorial Highway on Whiteface Mountain, New York, USA, was studied to document the recruitment of species over the 65 years since the highway was constructed. The highway is situated in the Adirondack Mountains, a relatively unpopulated region with a largely acidic flora. The introduction of mortar has increased the bryophyte diversity by 50% above that of native lithic substrata on the mountain. The composition of the native and mortar floras differed greatly, suggesting that the walls were not colonized by locally abundant ruderal species. Many of the species sampled on the walls are typically found only in lower elevation forested sites, distant (∼5 km or more) from the highway, and not on anthropogenic calcium carbonate. These results suggest that a bryophyte community consisting of common and uncommon species assembled from distant sites at the rate of at least one species per year in the last 65 years. These data provide the ecological context for experimental and phylogeographic studies and suggest that some bryophytes may be capable of routine dispersal over distances of at least 5 km.

  17. False alarms and mine seismicity: An example from the Gentry Mountain mining region, Utah. Los Alamos Source Region Project

    SciTech Connect

    Taylor, S.R.

    1992-09-23

    Mining regions are a cause of concern for monitoring of nuclear test ban treaties because they present the opportunity for clandestine nuclear tests (i.e. decoupled explosions). Mining operations are often characterized by high seismicity rates and can provide the cover for excavating voids for decoupling. Chemical explosions (seemingly as part of normal mining activities) can be used to complicate the signals from a simultaneous decoupled nuclear explosion. Thus, most concern about mines has dealt with the issue of missed violations to a test ban treaty. In this study, we raise the diplomatic concern of false alarms associated with mining activities. Numerous reports and papers have been published about anomalous seismicity associated with mining activities. As part of a large discrimination study in the western US (Taylor et al., 1989), we had one earthquake that was consistently classified as an explosion. The magnitude 3.5 disturbance occurred on May 14, 1981 and was conspicuous in its lack of Love waves, relative lack of high- frequency energy, low Lg/Pg ratio, and high m{sub b} {minus} M{sub s}. A moment-tensor solution by Patton and Zandt (1991) indicated the event had a large implosional component. The event occurred in the Gentry Mountain coal mining region in the eastern Wasatch Plateau, Utah. Using a simple source representation, we modeled the event as a tabular excavation collapse that occurred as a result of normal mining activities. This study raises the importance of having a good catalogue of seismic data and information about mining activities from potential proliferant nations.

  18. Gastrointestinal nematodes in rotationally grazing ewes in the mountainous region of central Mexico.

    PubMed

    Acevedo-Ramírez, P M C; Quiroz-Romero, H; Cruz-Mendoza, I; Ulloa-Arvizu, R; Ibarra-Velarde, F

    2013-03-01

    The aims of this study were to determine the frequency of egg shedding (percentage of egg-positive faecal samples) and faecal egg counts (FEC) over 13 months in two different breeds of ewes, both pregnant and non-pregnant, in a mountainous region of central Mexico. Additionally, the effect of ivermectin and albendazole treatments on FEC reduction was recorded. The study also aimed to relate temperature and rainfall to FEC. The gastrointestinal nematode (GIN) third-stage larvae genera recovered from both faeces and grassland pastures in a temperate region were also assessed. Faecal samples were collected from ewes at monthly intervals for 13 months to investigate the FEC population of GIN larvae, their concentration and genera in grass samples collected from grazed and rested pastures. Egg-shedding frequency ranged from 0 to 92% and FEC from 0 to 12,000 eggs per g faeces (epg), with counts in Suffolk higher than in Dorset ewes. The identified genera were Haemonchus, Trichostrongylus, Teladorsagia, Cooperia, Oesophagostomum, Bunostomum, Nematodirus and Strongyloides. Haemonchus and Trichostrongylus were the most common genera. The number of L3 was higher in grazing lands than in those at rest. The highest FEC were recorded in the dry season due to peripartum, but the highest L3 counts were recorded in the rainy season. The coexistence of species of different geographical distributions at this site may be because there is a confluence of Nearctic and Neotropical geographic regions; thus, despite the temperate climate, tropical species can be found. Additionally, this study suggests that increasing temperatures could favour the presence of different tropical GIN species together with typical temperate-zone GIN species.

  19. Linking models of land use, resources, and economy to simulate the development of mountain regions (ALPSCAPE).

    PubMed

    Lundström, Corinne; Kytzia, Susanne; Walz, Ariane; Gret-Regamey, Adrienne; Bebi, Peter

    2007-09-01

    We present a framework of a scenario-based model that simulates the development of the municipality of Davos (Swiss Alps). We illustrate our method with the calculation of the scenario for 2050 "Decrease in subsidies for mountain agriculture and liberalization of markets." The main objective was to link submodels of land-use allocation (regression-based approach), material and energy flows submodels (Material and Energy Flux Analysis), and economic submodels (Input-Output Analysis). Letting qualitative and quantitative information flow from one submodel to the next, following the storyline describing a scenario, has proven to be suitable for linking submodels. The succession of the submodels is then strongly dependent on the scenario. Qualitative information flows are simulated with microsimulations of actor choices. Links between the submodels show different degrees of robustness: although the links involving microsimulations are the weakest, the uncertainty introduced by the land-use allocation model is actually advantageous because it allows one possible change in the landscape in the future to be simulated. The modeling results for the scenario here presented show that the disappearance of agriculture only marginally affects the region's factor income, but that the consequences for the self-sufficiency rate, for various landscape-related indicators and ecosystem services, and for the economy in the long term may be considerable. These benefits compensate for agriculture's modest direct economic value. The framework presented can potentially be applied to any region and scenario. This framework provides a basis for a learning package that allows potential detrimental consequences of regional development to be anticipated at an early stage.

  20. Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico

    SciTech Connect

    Shevenell, L.; Goff, F.; Vuataz, F.; Trujillo, P.E. Jr.; Counce, D.; Janik, C.J.; Evans, W.

    1987-03-01

    This report presents field, chemical, gas, and isotopic data for thermal and nonthermal waters of the southern Jemez Mountains, New Mexico. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, north of San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near-surface meteoric waters; (2) acid-sulfate waters at Sulphur Springs (Valles Caldera); (3) thermal meteoric waters in the ring fracture zone (Valles Caldera); (4) deep geothermal waters of the Baca geothermal field and derivative waters in the Soda Dam and Jemez Springs area (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. Data in this report will help in interpreting the geothermal potential of the Jemez Mountains region and will provide background for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

  1. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  2. Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico

    SciTech Connect

    Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.; Grigsby, C.O.

    1982-05-01

    Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

  3. Cadmium and other elements in tissues from four ungulate species from the Mackenzie Mountain region of the Northwest Territories, Canada.

    PubMed

    Larter, N C; Macdonald, C R; Elkin, B T; Wang, X; Harms, N J; Gamberg, M; Muir, D C G

    2016-10-01

    Tissue samples from four ungulate species from the south Mackenzie Mountain region of the Northwest Territories (NT), Canada, were analysed for stable and radioactive elements and (15)N and (13)C stable isotopes. Elevated Cd concentrations in moose (Alces americanus) kidney have been observed in the region and are a health care concern for consumers of traditional foods. This study examined the factors associated with, and potential renal effects from, the accumulation of cadmium, and interactions with other elements in four sympatric ungulate species. Mean renal Cd concentration was highest in moose (48.3mg/kg ww), followed by mountain caribou (Rangifer tarandus caribou) (13.9mg/kg ww) and mountain goat (Oreamnos americanus) (5.78mg/kg ww). No local sources of Cd were evident and the elevated levels in moose are considered to be natural in origin. Conversely, total Hg concentration was significantly higher in mountain caribou kidney (0.21mg/kg ww) than in moose (0.011mg/kg ww). (134)Cs (t½=2.1 y) in mountain goat and Dall's sheep (Ovis dalli) muscle is evidence of deposition from the Fukushima reactor accident in 2011. (137)Cs (t½=30.2 y) in all four ungulates is primarily a remnant of the nuclear weapons tests of the 1960s. The levels of both nuclides are low and the risk to the animals and people consuming them is negligible. Stable isotope δ(15)N and δ(13)C signatures in muscle showed a separation between the mountain caribou, with a lichen-dominated diet, and moose, which browse shrubs and forbs. Isotope signatures for mountain goat and Dall's sheep showed generalist feeding patterns. Differences in elemental and radionuclide levels between species were attributed to relative levels of metal accumulation in the different food items in the diets of the respective species. Kidneys from each species showed minor histological changes in the proximal tubule and glomerulus, although glomerular changes were rare and all changes were rare in mountain goat kidney

  4. Remote sensing and deforestation in humid tropical region: case of Bambouto mountain in West Cameroon

    NASA Astrophysics Data System (ADS)

    Noël Leumbe Leumbe, Olivier; Bitom, Dieudonné; Joly Assako Assako, René

    2015-04-01

    A diachronic study of landscapes base on remote sensing data, has been realized on mount Bambouto in the humid tropical mountain region, through soil occupation analyses. It is a volcanic massif situated in the western part of Cameroon. It has an altitude of 2740 m. The objective is to evaluate the anthropic preasure on deforestation within this zone in order to predie the consequences on the area within a short period. The successive ways in which people occupy the soil within a period of about 30 years have thus been evaluated qualitatively and quantitatively on the bases of MSS images of 1978, Tm images of 1988, ETM+ of 2001 and 2007 of Landsat. In these images, the successive application of the index of vegetation and of a supervised classification couple with field observations, digital terrain model and with population data which display serious soils degradation of the volcanic massif from the 1980s, due to continous growing anthropic preasures. In all, between 1978 and 2007, the density of population became 17 times more important more than 43 000 ha of the massif soils has been deforested, this correspond to 1 483 ha/year. IF this velocity of deforestation is maintain, most of the natural vegetation in the Bambouto massif will disappear in 2029

  5. Environmental impact assessment of mountain tourism in developing regions: A study in Ladakh, Indian Himalaya

    SciTech Connect

    Geneletti, Davide; Dawa, Dorje

    2009-07-15

    Mountain tourism in developing countries is becoming a growing environmental concern due to extreme seasonality, lack of suitable infrastructures and planning, and interference with fragile ecosystems and protected areas. This paper presents a study devoted to assess the adverse environmental impacts of tourism, and in particular of trekking-related activities, in Ladakh, Indian Himalaya. The proposed approach is based on the use of Geographical Information System (GIS) modeling and remote sensing imageries to cope with the lack of data that affect the region. First, stressors associated with trekking, and environmental receptors potentially affected were identified. Subsequently, a baseline study on stressors (trail use, waste dumping, camping, pack animal grazing and off-road driving) and receptors (soil, water, wildlife, vegetation) was conducted through field work, data collection, and data processing supported by GIS. Finally, impacts were modeled by considering the intensity of the stressors, and the vulnerability and the value of the receptors. The results were spatially aggregated into watershed units, and combined to generate composite impact maps. The study concluded that the most affected watersheds are located in the central and southeastern part of Ladakh, along some of the most visited trails and within the Hemis and the Tsokar Tsomoriri National parks. The main objective of the study was to understand patterns of tourism-induced environmental degradation, so as to support mitigation interventions, as well as the development of suitable tourism policies.

  6. [Soil carbon cycle of Pinus tabulaeformis forest in Huoditang forest region of Qinling Mountains].

    PubMed

    Kang, Bowen; Liu, Jianjun; Dang, Kunliang; Chen, Haibin

    2006-05-01

    With soil carbon cycle compartment model,this paper studied the carbon storage and flux of each carbon compartment of soil under Pinus tabulaeformis, a main forest type in the Huoditang forest region of Qinling Mountain. The results showed that the storage of soil organic carbon was 146.071 t x hm(-2), with 130.366 t x hm(-2) in mineral soil layer and 12.626 t x hm(-2) in litter layer. The storage was lower than the average value of forest soils in China and of oak Sharptooth forest soil in Huoditang, but higher than that of the soils under temperate coniferous forest and tropical forest. The annual carbon input into litter layer was 5.939 t x hm(-2), with 56.9% from above-ground litter and 43.1% from underground dead roots, while that into mineral soil layer via humic acid was 2. 034 t x hm(-2). The annual amount of carbon released from the respiration of P. zabulaeformis forest-soil system was 14. 012 t x hm(-2), with litter layer, mineral soil layer, dead root system, and live root system occupied 15.7%, 14.5%, 11.7% and 58.1%, respectively.

  7. Climate-Floods relationship in the mountainous volcanic region of Morelia, Michoacan, Mexico.

    NASA Astrophysics Data System (ADS)

    Vinson, D.; Gratiot, N.; Saenz-Romero, C.; Prat, C.; Esteves, M.

    2009-04-01

    The present study provides an analysis of the water flows in the mountainous volcanic watershed of Cointzio, Michoacan (Mexico). Daily precipitations and river flows data, gathered over the period 1940-2007, were analysed to estimate the dynamic of superficial waters and its change over years. Precipitation data pointed out the intensity of rains in this tropical region with 5% of the yearly precipitation occurring during a single day. It also reveals an unexpected feature with some extreme events occurring during the dry season. This obviously as some major consequences for the floods and sediment transport within the watershed. For the studied period, the precipitation (mean annual and extreme values) did not reveal any major change while the water flows increased significantly. This specific behaviour is examined in terms of land use change through the evolution of an aridity index over years and literature data. Predictions from a global climate change model for the decades centred in the years 2030, 2060 and 2090 indicate (in comparison to a normalized period of years 1961 to 1990) an increment in mean annual temperature of 1.6, 2.5 and 4.4 °C and a decrease in precipitation of 15.4, 19.1 and 27.7 %, respectively. The consequent increment of aridity leads to expect a reduction of the vegetation coverage and an increment of the runoff with erosive effects.

  8. [Ecological classification system of forest landscape in eastern mountainous region of Liaoning Province].

    PubMed

    Tang, Li-na; Wang, Qing-li; Dai, Li-min; Shao, Guo-fan

    2008-01-01

    Based on Digital Elevation Models (DEM) and satellite SPOT-5 data, and by using the spatial analysis function in Geographic Information System, a hierachical Ecological Classification System of forest landscape was developed for the eastern mountainous region of Liaoning Province, and the two lowest layers in the hierachical framework, Ecological Land Types (ELTs) and Ecological Land Type Phases (ELTPs), were mapped. The results indicated that there were 5 ELTs and 34 ELTPs. The boundaries of ELTs, which presented the potential vegetation distribution and potential forestry ecosystem productivity, were determined by environmental conditions quantified by DEM. ELTPs were classified by overlaying ELTs with forest vegetation data layers which were obtained from remotely sensed data, forest inventory data, and ground data. The ELTPs represented the divisions of land in terms of both natural and human-induced forest conditions, and therefore, were reliable units for forest inventories and management. ELTPs could function as conventional forest inventory sub-compartments. By this means, forestry departments could adjust forest management planning and forest management measures from the viewpoint of forest landscape scale to realize forest ecosystem management.

  9. [Natural regeneration of young Excentrodendron hsienmu in karst mountainous region in Southwest Guangxi, China].

    PubMed

    Ou, Zhi-Yang; Su, Zhi-Yao; Peng, Yu-Hua; Hu, Qin-Fei; Huang, Xiao-Rong

    2013-09-01

    A field survey was conducted in the karst mountainous region in Pingguo County of Southwest Guangxi, China to explore the structural characteristics, spatial distribution pattern, and growth dynamics of young Excentrodendron hsienmu as well as the main environmental factors affecting the natural regeneration of the E. hsienmu population. In the study area, the population structure of the young E. hsienmu was stable, and exhibited a clumped spatial pattern for the seedlings and seedling sprouts. The ground diameter growth and height growth of the young E. hsienmu presented the same variation trend, i. e., the ground diameter increased with increasing height. The ground diameter growth and height growth of the E. hsienmu seedlings were limited by population density, i. e., decreased with increasing population density. The correlation analysis showed that the trees more than 2.5 m in height and the shrubs were the major stand factors affecting the natural regeneration of young E. hsienmu, while the herbs had no significant correlation with the regeneration. The percentage of covered rock also had no significant effects on the regeneration. Kruskal-Wallis ANOVA showed that there existed significant differences in the height and ground diameter of young E. hsienmu at different slope degrees and slope positions. The population density, height, and ground diameter had significant differences across slope aspects. The natural regeneration of young E. hsienmu was comprehensively affected by the species biological characteristics, intraspecific competition, interspecific competition, heterogeneous habitat, and anthropogenic disturbances.

  10. Social vulnerability of rural households to flood hazards in western mountainous regions of Henan province, China

    NASA Astrophysics Data System (ADS)

    Liu, D. L.; Li, Y.

    2015-11-01

    Evaluating social vulnerability is a crucial issue in risk and disaster management. In this study, a household social vulnerability index (HSVI) to flood hazards was developed and used to assess the social vulnerability of rural households in western mountainous regions of Henan province, China. Eight key indicators were indentified through interactive discussions with multidisciplinary specialists and local farmers, and their weights were determined using principle component analysis (PCA). The results showed that (1) the ratio of perennial working in other places, hazard-related training and illiteracy ratio (15+) were the most dominant factors to social vulnerability. (2) The numbers of high, moderate and low vulnerable households were 14, 64 and 16, respectively, which accounted for 14.9, 68.1, and 17.0 % of the total interviewed rural households, respectively. (3) The correlation coefficient between household social vulnerability scores and casualties in a storm flood in July 2010 was significant at 0.05 significance level (r = 0.248), which indicated that the selected indicators and their weights were valid. (4) Some mitigation strategies to reduce the household social vulnerability to flood hazards were proposed based on the assessment results. The results provide useful information for rural households and local governments to prepare, mitigate and response to flood hazards.

  11. Utilizing ERTS-A imagery for tectonic analysis through study of Big Horn Mountains region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. MSS scene 1085-17294 of the Big Horn region has been subjected to detailed structural analysis. Band 7 is particularly good for revealing structural and drainage patterns because of enhance topographic detail and the subdued vegetational contrasts. Considerable stereo coverage through sidelap with adjoining scenes adds to the effectiveness of the study and has been used on both positive transparencies and enlarged prints. Negative prints of Band 7 positive transparencies have proven to be much more useful than positive prints because the higher resolution of the positive transparencies can be maintained. The Bighorn Mountains are crisscrossed by a number of prominent topographic linears, most of which can be correlated with known fault and shear zones in the Precambrian crystalline core. Many of these do not appear to continue into the flanking sedimentary rocks and a few that do (Tensleep, Tongue River lineaments) are very difficult to trace farther out into the basins. The Tongue River lineament, long a source of speculation and uncertainty as to its existence, appears as a very prominent discontinuity in the imagery.

  12. Composite geochemical database for coalbed methane produced water quality in the Rocky Mountain region.

    PubMed

    Dahm, Katharine G; Guerra, Katie L; Xu, Pei; Drewes, Jörg E

    2011-09-15

    Coalbed methane (CBM) or coalbed natural gas (CBNG) is an unconventional natural gas resource with large reserves in the United States (US) and worldwide. Production is limited by challenges in the management of large volumes of produced water. Due to salinity of CBM produced water, it is commonly reinjected into the subsurface for disposal. Utilization of this nontraditional water source is hindered by limited knowledge of water quality. A composite geochemical database was created with 3255 CBM wellhead entries, covering four basins in the Rocky Mountain region, and resulting in information on 64 parameters and constituents. Database water composition is dominated by sodium bicarbonate and sodium chloride type waters with total dissolved solids concentrations of 150 to 39,260 mg/L. Constituents commonly exceeding standards for drinking, livestock, and irrigation water applications were total dissolved solids (TDS), sodium adsorption ratio (SAR), temperature, iron, and fluoride. Chemical trends in the basins are linked to the type of coal deposits, the rank of the coal deposits, and the proximity of the well to fresh water recharge. These water composition trends based on basin geology, hydrogeology, and methane generation pathway are relevant to predicting water quality compositions for beneficial use applications in CBM-producing basins worldwide.

  13. Raman microscopy of hand stencils rock art from the Yabrai Mountain, Inner Mongolia Autonomous Region, China

    NASA Astrophysics Data System (ADS)

    Hernanz, Antonio; Chang, Jinlong; Iriarte, Mercedes; Gavira-Vallejo, Jose M.; de Balbín-Behrmann, Rodrigo; Bueno-Ramírez, Primitiva; Maroto-Valiente, Angel

    2016-07-01

    A series of rock art pictographs in the form of hand stencils discovered in two sites of the Yabrai Mountain, Inner Mongolia Autonomous Region (China) has been studied by micro-Raman spectroscopy, X-ray photoelectron spectroscopy and scanning electronic microscopy combined with energy dispersive X-ray spectroscopy for the first time. These studies have made possible to characterise the materials present. The minerals α-quartz, phlogopite, albite and microcline have been identified in the granitic rocks supporting the paintings. Calcite and dolomite micro-particles detected on the rock surface have been attributed to desert dust. Accretions of gypsum, anhydrite and whewellite have also been identified on the rock surface. Haematite is the pigment used in the red pictographs, whereas well-crystallised graphite has been used in the black ones. The use of crystalline graphite instead of amorphous carbon (charcoal, soot or bone black) as a black pigment in rock art is an interesting novelty. Overlapped hands are proposed as a new type of hand stencils to make an unusual pictorial symbol in rock art that has been found in these sites.

  14. Mapping plant functional types over broad mountainous regions: A phenological hierarchical time-space classification

    NASA Astrophysics Data System (ADS)

    Cai, Danlu; Guan, Yanning; Guo, Shan; Zhang, Chunyan; Fraedrich, Klaus

    2013-04-01

    Research on global climate change requires plant functional type (PFT) products. Although several PFT mapping procedures for remote sensing imagery are being used (MODIS PFT), none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyse the response of natural ecosystems. The limitations of existing methods to generate PFT (uncertainty of accuracy and limited expandability to broad geographic areas) suggest the development of a new method to determine PFT distributions, which is based on a hierarchical strategy by integrating time varying biomass and phenological information with topography: (i) Temporal variability: Fourier transformation of MODIS Normalized Difference Vegetation Index (NDVI) time series (2006 to 2010) to the frequency domain (five year of five half month scenes). (ii) Spatial partitioning: The harmonics are used to partition the study area into four mapping zones using phenological information based on the harmonics and digital elevation data. (iii) Classification: A similarity measure (Euclidean distance) is employed to obtain the phenological hierarchical time-space plant type classification. Applicability and effectiveness is tested for the eastern Tibetan Plateau. Comparing with the MODIS PFT product and evaluation with the Vegetation Map of the People's Republic of China (1:1000000) reveal a gain on overall accuracy (13081 random samples) by about 7% from 64.5% compared to 57.7% by the MODIS PFT product.

  15. Better utilization of ground water in the Piedmont and mountain region of the southeast

    USGS Publications Warehouse

    Heath, Ralph C.

    1979-01-01

    The development of water supplies for domestic consumption, and for those commercial and industrial uses requiring relatively pure water, has followed a pattern in the Piedmont and mountain areas of the southeast similar to that in most other humid areas. The first settlers utilized seepage springs on hillsides. Such springs occur along steep slopes where the water table intersects the land surface. As the population of the region grew, it became increasingly necessary to resort to shallow dug wells for domestic water supplies. Such wells also served as sources of water for the villages that developed, in time, around crossroad taverns. Seepage springs and dug wells are a satisfactory source of water in a virgin environment but are quickly polluted by careless waste-disposal practices. Thus disposal of domestic wastes in shallow pits resulted in epidemics of water-borne diseases as the villages grew into towns. This resulted in the third phase of water-supply development, which consisted of installing water lines and supplying water to homes from town-owned wells. In time, some of these wells became polluted and others failed to supply adequate water for the increasing needs of the larger urban areas. In the fourth phase these areas met their needs by drawing water from nearby streams. By the early years of this century it was possible to make this water palatable and relatively safe as a result of improvement in filtration methods. Streams, of course, have highly variable rates of flow and, as towns grew into small cities, the minimum flow of many streams was not adequate to meet the water-supply needs. This problem was solved in the fifth phase by building dams on the streams. We are still in this phase as we build larger and larger reservoirs to meet our growing water needs. Thus, through five phases of growth in the Piedmont and mountains we have advanced from the point where ground water was the sole source of supply to the point where it is the forgotten

  16. Mafic rocks of the Adirondack Highlands: One suite or many

    SciTech Connect

    Whitney, P.R. . New York State Museum)

    1993-03-01

    Mafic rocks in the granulite facies terrane of the Adirondack Highlands form at least 3 and possibly as many as 6 groups, based on field, petrographic, and geochemical criteria. Most abundant is the olivine metagabbro-amphibolite group (OMA), equivalent to the mafic suite'' of Olson (J. Petrol. 33:471, 1992). OMA occurs in irregular to tabular bodies, locally with intrusive relations, in all major rock types in the E and central Highlands. OMA is strongly olivine normative and forms a continuous differentiation series (Olson, 1992). Plagioclase-two pyroxene-garnet granulites (PGG) form dikes up to several m wide, in anorthositic host rocks. PGG are ferrogabbroic or ferrodioritic and approximately silica saturated. Two subgroups differ sharply in Mg, P, and trace elements. Ferrodiorite and monzodiorite gneisses (FMG), quartz normative and commonly migmatitic, occur in several large bodies in the NE Highlands and as extensive thin sheets in the W and SE Highlands, in association with anorthositic rocks. Three subgroups are distinguishable using Mg/Fe ratios and trace elements. Major element least-squares modeling suggests that both PGG and FMG could be derived by fractionation of gabbroic anorthosite liquids. A differentiation series is not evident, however, and both trace element (Ba, Rb, Sr, Zr and REE) data and normative plagioclase (An [>=] plag. in anorthosite) indicate a more complex origin. One subgroup of FMG may be early cumulates of the mangerite-charnockite suite. The chemistry of OMA, PGG, and FMG reflects their evolved nature and cannot be readily interpreted in terms of magma sources.

  17. Response of surface water chemistry to reduced levels of acid precipitation: Comparison of trends in two regions of New York, USA

    USGS Publications Warehouse

    Burns, Douglas A.; McHale, M.R.; Driscoll, C.T.; Roy, K.M.

    2006-01-01

    In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984-2001 and 1992-2001) and surface water chemistry (1992-2001) were determined in two of the most acid-sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42-), nitrate (NO3-), and base cation (CB) concentrations and increasing pH during 1984-2001, but few significant trends during 1992-2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42- concentrations at all sites, and decreasing trends in NO3-, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid-neutralizing capacity (ANC increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42- trends, but it caused several significant non-flow-corrected trends in NO3- and ANC to become non-significant, suggesting that trend results for flow-sensitive constituents are affected by flow-related climate variation. SO42- concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation-surface water comparisons, reflecting a strong link between S emissions, precipitation SO42- concentrations, and the processes that affect S cycling within these regions. NO3- and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation-surface water comparisons, indicating that variation in local-scale processes driven by factors such as climate are affecting trends in acid-base chemistry in these two regions. Copyright ?? 2005 John Wiley & Sons, Ltd.

  18. Impacts of Acidification and Potential Recovery on the Expected Value of Recreational Fisheries in Adirondack Lakes (USA).

    PubMed

    Caputo, Jesse; Beier, Colin M; Fakhraei, Habibollah; Driscoll, Charles T

    2017-01-03

    We estimated the potential economic value of recreational fisheries in lakes altered by acid pollution in the Adirondack Mountains (USA). We found that the expected value of recreational fisheries has been diminished because of acid deposition but may improve as lakes recover from acidification under low emissions scenarios combined with fish stocking. Fishery value increased with lake pH, from a low of $4.41 angler day(-1) in lakes with pH < 4.5, to a high of $38.40 angler day(-1) in lakes with pH > 6.5 that were stocked with trout species. Stocking increased the expected fishery value by an average of $11.50 angler day(-1) across the entire pH range of the lakes studied. Simulating the future long-term trajectory of a subset of lakes, we found that pH and expected fishery value increased over time in all future emissions scenarios. Differences in estimated value among pollution reduction scenarios were small (<$1 angler day(-1)) compared to fish stocking scenarios (>$4 angler day(-1)). Our work provides a basis for assessing the costs and benefits of emissions reductions and management efforts that can hasten recovery of the economic and cultural benefits of ecosystems degraded by chronic pollution.

  19. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    PubMed

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  20. Gastric cancer incidence and mortality is associated with altitude in the mountainous regions of Pacific Latin America

    PubMed Central

    Torres, Javier; Correa, Pelayo; Ferreccio, Catterina; Hernandez-Suarez, Gustavo; Herrero, Rolando; Cavazza-Porro, Maria; Dominguez, Ricardo; Morgan, Douglas

    2013-01-01

    In Latin America, gastric cancer is a leading cancer, and countries in the region have some of the highest mortality rates worldwide, including Chile, Costa Rica, and Colombia. Geographic variation in mortality rates is observed both between neighboring countries and within nations. We discuss epidemiological observations suggesting an association between altitude and gastric cancer risk in Latin America. In the Americas, the burden of gastric cancer mortality is concentrated in the mountainous areas along the Pacific rim, following the geography of the Andes sierra, from Venezuela to Chile, and the Sierra Madre and Cordillera de Centroamérica, from southern Mexico to Costa Rica. Altitude is probably a surrogate for host genetic, bacterial, dietary, and environmental factors that may cluster in the mountainous regions. For example, H. pylori strains from patients of the Andean Nariño region of Colombia display European ancestral haplotypes, whereas strains from the Pacific coast are predominantly of African origin. The observation of higher gastric cancer rates in the mountainous areas is not universal: the association is absent in Chile, where risk is more strongly associated with the age of H. pylori acquisition and socio-economic determinants. The dramatic global and regional variations in gastric cancer incidence and mortality rates offer the opportunity for scientific discovery and focused prevention programs. PMID:23224271

  1. Gastric cancer incidence and mortality is associated with altitude in the mountainous regions of Pacific Latin America.

    PubMed

    Torres, Javier; Correa, Pelayo; Ferreccio, Catterina; Hernandez-Suarez, Gustavo; Herrero, Rolando; Cavazza-Porro, Maria; Dominguez, Ricardo; Morgan, Douglas

    2013-02-01

    In Latin America, gastric cancer is a leading cancer, and countries in the region have some of the highest mortality rates worldwide, including Chile, Costa Rica, and Colombia. Geographic variation in mortality rates is observed both between neighboring countries and within nations. We discuss epidemiological observations suggesting an association between altitude and gastric cancer risk in Latin America. In the Americas, the burden of gastric cancer mortality is concentrated in the mountainous areas along the Pacific rim, following the geography of the Andes sierra, from Venezuela to Chile, and the Sierra Madre and Cordillera de Centroamérica, from southern Mexico to Costa Rica. Altitude is probably a surrogate for host genetic, bacterial, dietary, and environmental factors that may cluster in the mountainous regions. For example, H. pylori strains from patients of the Andean Nariño region of Colombia display European ancestral haplotypes, whereas strains from the Pacific coast are predominantly of African origin. The observation of higher gastric cancer rates in the mountainous areas is not universal: the association is absent in Chile, where risk is more strongly associated with the age of H. pylori acquisition and socio-economic determinants. The dramatic global and regional variations in gastric cancer incidence and mortality rates offer the opportunity for scientific discovery and focused prevention programs.

  2. [Variants of the clinical course of cerebrovascular diseases in various biogeochemical regions of the Ukrainian Carpathian Mountains].

    PubMed

    Buletsa, B A; Fatula, M I; Fabri, Z I

    1990-01-01

    A total of 417 patients with cerebral circulatory disorders were examined in two biogeochemical regions of the UkrainianCarpathian Mountains. The first one is a region with iodine insufficiency; the second one is a region where the people use table salt in excess. It has been established that iodine insufficiency and excessive iodine concentration in the body of man are risk factors of the development of cerebrovascular disease. Besides, in persons with abnormal iodine metabolism, cerebrovascular diseases run a graver course than in those with normal content in the body of these trace elements.

  3. Natural gas production and consumption and new pipeline developments in the central and northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J. )

    1991-06-01

    An extensive natural gas transmission pipeline system now exists on the North American continent and in the central and northern Rocky Mountain region embracing Wyoming, Montana, the Dakotas, Idaho, Utah, and Colorado. The regional interstate pipeline capacity is dominated by two major systems: Northwest Pipeline Corporation and Colorado Interstate Gas Company. In addition, there are over a dozen important area and intrastate systems. Not counting the lease, plant, and pipline fuel gas, the marketed produciton in the region totals nearly 1 tcf annually of 6% of the national total. Making some allowance for local import and export imbalances across state lines, approximately 45%, or 450 bcf, is consumed locally. Over 500 bcf (almost 1.5 bcf/day) are transported out of the region. Production and consumption in New Mexico, Arizone, and Nevada are not included in these figures. Regional natural gas enters the interstate and continental pipeline system at seven interconnecting points around the periphery of the mountain states. The regional gas must compete for capacity on the major pipelines. Several new projects are expanding pipeline capacity for transportation both within the region and to points outside the region.

  4. Potential contaminant transport in the regional Carbonate Aquifer beneath Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John; King, Michael

    2010-05-01

    Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.

  5. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990-2009 using a regional climate model

    NASA Astrophysics Data System (ADS)

    Ji, Zhenming; Kang, Shichang; Zhang, Qianggong; Cong, Zhiyuan; Chen, Pengfei; Sillanpää, Mika

    2016-09-01

    Mineral aerosols scatter and absorb incident solar radiation in the atmosphere, and play an important role in the regional climate of High Mountain Asia (the domain includes the Himalayas, Tibetan Plateau, Pamir, Hindu-kush, Karakorum and Tienshan Mountains). Dust deposition on snow/ice can also change the surface albedo, resulting in perturbations in the surface radiation balance. However, most studies that have made quantitative assessments of the climatic effect of mineral aerosols over the High Mountain Asia region did not consider the impact of dust on snow/ice at the surface. In this study, a regional climate model coupled with an aerosol-snow/ice feedback module was used to investigate the emission, distribution, and deposition of dust and the climatic effects of aerosols over High Mountain Asia. Two sets of simulations driven by a reanalysis boundary condition were performed, i.e., with and without dust-climate feedback. Results indicated that the model captured the spatial and temporal features of the climatology and aerosol optical depth (AOD). High dust emission fluxes were simulated in the interior of the Tibetan Plateau (TP) and the Yarlung Tsangpo Valley in March-April-May (MAM), with a decreasing trend during 1990-2009. Dry deposition was controlled by the topography, and its spatial and seasonal features agreed well with the dust emission fluxes. The maximum wet deposition occurred in the western (southern and central) TP in MAM (JJA). A positive surface radiative forcing was induced by dust, including aerosol-snow/ice feedback, resulting in 2-m temperature increases of 0.1-0.5 °C over the western TP and Kunlun Mountains in MAM. Mineral dust also caused a decrease of 5-25 mm in the snow water equivalent (SWE) over the western TP, Himalayas, and Pamir Mountains in DJF and MAM. The long-term regional mean radiative forcing via dust deposition on snow showed an rising trend during 1990-2009, which suggested the contribution of aerosols surface

  6. Trends in synoptic circulation and precipitation in the Snowy Mountains region, Australia, in the period 1958-2012

    NASA Astrophysics Data System (ADS)

    Theobald, Alison; McGowan, Hamish; Speirs, Johanna

    2016-03-01

    The hydroclimate of the Snowy Mountains, south-east Australia (SEA), is influenced by tropical and extra-tropical synoptic scale weather systems. Accordingly, it is sensitive to any changes in the mid-latitude westerly wind belt, the dominant driver of precipitation in winter, and the entrainment of moisture from tropical latitudes, particularly during the warmer months of the austral summer. The region has historically observed a cool-season (April-October) dominated precipitation regime. However, evidence is presented of a decline in precipitation during the autumn and spring transition months. Autumn precipitation is particularly important for crop sowing and agricultural production in the Murray-Darling Basin downstream of the Snowy Mountains, whilst spring precipitation influences snowmelt and water storage replenishment in the Snowy Mountains. Instead, we show a change in the annual precipitation distribution is evident, with an increase in precipitation during warmer months. Trend analyses for the period 1958-2012 show a decrease in annual frequency of precipitation days capable of generating inflows to the catchments of the Snowy Mountains of - 1.4 days per decade on average, whilst the precipitation they generate has increased by + 5.7 mm per decade. These results align with climate change projections that precipitation events are becoming less frequent but more intense.

  7. Impact of sublimation losses in the mass balance of glaciers in semi-arid mountain regions

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; Burlando, Paolo; MacDonell, Shelley; McPhee, James

    2016-04-01

    Glaciers in semiarid mountain regions may lose an important part of their winter snow accumulation through sublimation processes that are enhanced by the high-elevation, intense radiation and dry atmosphere of these environments. As glaciers in these regions secure freshwater resources to lower valleys during summer and drought periods, it is important to advance in a detailed quantification of their sublimation losses. However, logistical concerns and complex meteorological features make the measuring and modelling of glacier mass balances a difficult task. In this study, we estimated the spring-summer mass balances of Tapado and Juncal Norte glaciers in the semiarid Andes of north-central Chile by running a distributed energy balance model that accounts for melt, refreezing and sublimation from the surface and blowing snow. Meteorological input data were available from on-glacier Automatic Weather Stations (AWS) that were installed during the ablation season of years 2005-06, 2008-09, 2013-14 and 2014-15. Snow pits, ablation stakes and a time-lapse camera that provided surface albedo were also available. Distributed air temperature and wind speed were dynamically downscaled from NASA MERRA reanalysis using the software WINDSIM and validated against the data from the AWSs. The rest of the meteorological variables were distributed using statistical relations with air temperature derived from the AWSs data. Initial snow conditions were estimated using satellite images and distributed manual snow depth measurements. Preliminary results show that total ablation diminishes with elevation and that, during the early ablation season (October-November), melt is the main ablation component below 4500 m with sublimation dominating the ablation above this elevation. Above 4500 m an important fraction of meltwater refreezes during night. As the ablation season advances (December-February), melt extends to higher elevations, refreezing plays a smaller role and sublimation is

  8. REGIONAL CEREBRAL BLOOD FLOW DURING ACUTE HYPOXIA IN INDIVIDUALS SUSCEPTIBLE TO ACUTE MOUNTAIN SICKNESS

    PubMed Central

    Dyer, Edward AW; Hopkins, Susan R; Perthen, Joanna E; Buxton, Richard B; Dubowitz, David J

    2008-01-01

    Individuals susceptible to high altitude pulmonary edema show altered pulmonary vascular responses within minutes of exposure to hypoxia. We hypothesized that a similar acute-phase vulnerability to hypoxia may exist in the brain of individuals susceptible to acute mountain sickness (AMS). In established AMS and high-altitude cerebral edema, there is a propensity for vasogenic white matter edema. We therefore hypothesized that increased cerebral blood flow (CBF) during acute hypoxia would also be disproportionately greater in white matter (WM) than grey matter (GM) in AMS-susceptible subjects. We quantified regional CBF using arterial spin labeling MRI during 30-minutes hypoxia (FIO2=0.125) in 2 groups: AMS-susceptible (AMS-S, n=6) who invariably experienced AMS at altitude, and AMS-resistant (AMS-R, n=6) who never experienced AMS despite multiple rapid ascents. SaO2 during hypoxia did not differ between groups (AMS-S=87±4%, AMSR=89±3%, p=0.3). Steady-state whole-brain CBF increased in hypoxia (p<0.005), but did not differ between groups (Normoxia: AMS-S=42.7±14.0ml/100g/min, AMS-R=41.7±10.1ml/100g/min, Hypoxia: AMS-S=47.8±19.5ml/100g/min, AMS-R=48.2±10.1ml/100g/min, p=0.65), and cerebral oxygen delivery remained constant. The percent change in CBF did not differ between brain regions or between groups (although absolute CBF change was greater in GM): (GM: AMS-S=6.1±7.7ml/100g/min (10±11%), AMS-R=8.3±5.7ml/100g/min (17±11%) p=0.57; WM: AMS-S=4.3±5.1ml/100g/min (12±15%), AMS-R=4.8±2.9ml/100g/min (16±9%), p= 0.82). Conclusion: CBF increases in acute hypoxia, but is not different between WM and GM, irrespective of AMS susceptibility. Acute phase differences in regional CBF during acute hypoxia are not a primary feature of susceptibility to AMS. PMID:18088570

  9. [Seasonal water quality changes in the Huoditang forest region of the Qinling Mountain range].

    PubMed

    Zhang, Sheng-li

    2008-02-01

    This study was conducted in the Huoditang forest region of Shaanxi Province. The region is located in the Qinling Mountain range. We collected stream water samples at the outlets of two small watersheds and two tributaries each month across an eight year period. The samples were analyzed for pH and water chemistry. Changes in pH and water chemistry with season were studied by using contributing factor analyses. The results of the study showed that stream water was slightly alkaline, with the pH ranging from 7.1 to 8.4 throughout the year. Stream water pH was higher in winter and spring and lower in summer and autumn. The NO3- concentrations in stream water were highest in spring and early summer, while NH4+ concentrations were highest in winter and early spring, and PO4(3-) concentrations were highest in winter and summer. K+ concentrations were highest in spring. Na+ concentrations were highest in September and lowest in August. Ca2+ concentrations in stream water were highest in June and September and ranged from 19.4 mg x L(-1) to 44.3 mg x L(-1) during the year. Mg2+ concentrations were highest in March and ranged from 2.18 mg x L(-1) to 5.25 mg x L(-1) during the year. Cd concentrations were highest from January to April, while Pb concentrations were highest in November and January. The concentration of both Cd and Pb was lowest in autumn. The concentration of Cd ranged from 0.019 microg x L(-1) to 0.3265 microg x L(-1) and the concentration of Pb ranged from 0.217 microg x L(-1) to 3.886 microg x L(-1). Mn concentrations were highest in May and December, while Fe concentrations were highest in spring and Zn concentrations were highest in March and August. According to environmental quality standards for surface water, stream water quality in the Huoditang forest region met the requirements for water quality standard I. Water quality was best in autumn and poorest in winter and spring.

  10. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats.

    PubMed

    Keeton, William S; Kraft, Clifford E; Warren, Dana R

    2007-04-01

    Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in

  11. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Bucha, Blažej; Janák, Juraj; Papčo, Juraj; Bezděk, Aleš

    2016-11-01

    We develop a high-resolution regional gravity field model by a combination of spherical harmonics, band-limited spherical radial basis functions (SRBFs) and the residual terrain model (RTM) technique. As the main input data set, we employ a dense terrestrial gravity database (3-6 stations km-2), which enables gravity field modelling up to very short spatial scales. The approach is based on the remove-compute-restore methodology in which all the parts of the signal that can be modelled are removed prior to the least-squares adjustment in order to smooth the input gravity data. To this end, we utilize degree-2159 spherical harmonic models and the RTM technique using topographic models at 2 arcsec resolution. The residual short-scale gravity signal is modelled via the band-limited Shannon SRBF expanded up to degree 21 600, which corresponds to a spatial resolution of 30 arcsec. The combined model is validated against GNSS/levelling-based height anomalies, independent surface gravity data, deflections of the vertical and terrestrial vertical gravity gradients achieving an accuracy of 2.7 cm, 0.53 mGal, 0.39 arcsec and 279 E in terms of the RMS error, respectively. A key aspect of the combined approach, especially in mountainous areas, is the quality of the RTM. We therefore compare the performance of two RTM techniques within the innermost zone, the tesseroids and the polyhedron. It is shown that the polyhedron-based approach should be preferred in rugged terrain if a high-quality RTM is required. In addition, we deal with the RTM computations at points located below the reference surface of the residual terrain which is known to be a rather delicate issue.

  12. Digital modelling of landscape and soil in a mountainous region: A neuro-fuzzy approach

    NASA Astrophysics Data System (ADS)

    Viloria, Jesús A.; Viloria-Botello, Alvaro; Pineda, María Corina; Valera, Angel

    2016-01-01

    Research on genetic relationships between soil and landforms has largely improved soil mapping. Recent technological advances have created innovative methods for modelling the spatial soil variation from digital elevation models (DEMs) and remote sensors. This generates new opportunities for the application of geomorphology to soil mapping. This study applied a method based on artificial neural networks and fuzzy clustering to recognize digital classes of land surfaces in a mountainous area in north-central Venezuela. The spatial variation of the fuzzy memberships exposed the areas where each class predominates, while the class centres helped to recognize the topographic attributes and vegetation cover of each class. The obtained classes of terrain revealed the structure of the land surface, which showed regional differences in climate, vegetation, and topography and landscape stability. The land-surface classes were subdivided on the basis of the geological substratum to produce landscape classes that additionally considered the influence of soil parent material. These classes were used as a framework for soil sampling. A redundancy analysis confirmed that changes of landscape classes explained the variation in soil properties (p = 0.01), and a Kruskal-Wallis test showed significant differences (p = 0.01) in clay, hydraulic conductivity, soil organic carbon, base saturation, and exchangeable Ca and Mg between classes. Thus, the produced landscape classes correspond to three-dimensional bodies that differ in soil conditions. Some changes of land-surface classes coincide with abrupt boundaries in the landscape, such as ridges and thalwegs. However, as the model is continuous, it disclosed the remaining variation between those boundaries.

  13. Sphingomonas qilianensis sp. nov., Isolated from Surface Soil in the Permafrost Region of Qilian Mountains, China.

    PubMed

    Piao, Ai-Lian; Feng, Xiao-Min; Nogi, Yuichi; Han, Lu; Li, Yonghong; Lv, Jie

    2016-04-01

    A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, designated X1(T), was isolated from the permafrost region of Qilian Mountains in northwest of China. Phylogenetic analyses of 16S rRNA gene sequence revealed that strain X1(T) was a member of the genus Sphingomonas and shared the highest 16S rRNA gene sequence similarity with Sphingomonas oligophenolica JCM 12082(T) (96.9%), followed by Sphingomonas glacialis CGMCC 1.8957(T) (96.7%) and Sphingomonas alpina DSM 22537(T) (96.4%). Strain X1(T) was able to grow at 15-30 °C, pH 6.0-10.0 and with 0-0.3% NaCl (w/v). The DNA G+C content of the isolate was 64.8 mol%. Strain X1(T)-contained Q-10 as the dominant ubiquinone and C(18:1)ω7c, C(16:1)ω7c, C(16:0) and C(14:0) 2-OH as the dominant fatty acids. The polar lipid profile of strain XI(T)-contained sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, one unidentified glycolipid and two unidentified phospholipid. Due to the phenotypic and genetic distinctiveness and other characteristic studied in this article, we consider X1(T) as a novel species of the genus Sphingomonas and propose to name it Sphingomonas qilianensis sp. nov. The type strain is X1(T) (=CGMCC 1.15349(T) = KCTC 42862(T)).

  14. Social vulnerability of rural households to flood hazards in western mountainous regions of Henan province, China

    NASA Astrophysics Data System (ADS)

    Liu, Delin; Li, Yue

    2016-05-01

    Evaluating social vulnerability is a crucial issue in risk and disaster management. In this study, a household social vulnerability index (HSVI) to flood hazards was developed and used to assess the social vulnerability of rural households in western mountainous regions of Henan province, China. Eight key indicators were identified using existing literature and discussions with experts from multiple disciplines and local farmers, and their weights were determined using principle component analysis (PCA) and an expert scoring method. The results showed that (1) the ratio of perennial work in other places, hazard-related training and illiteracy ratio (15+) were the most dominant factors of social vulnerability. (2) The numbers of high, moderate and low vulnerability households were 14, 64 and 16, respectively, which accounted for 14.9, 68.1 and 17.0 % of the total interviewed rural households, respectively. (3) The correlation coefficient between household social vulnerability scores and casualties in a storm flood in July 2010 was significant at 0.05 significance level (r = 0.748), which indicated that the selected indicators and their weights were valid. (4) Some mitigation strategies to reduce household social vulnerability to flood hazards were proposed, which included (1) improving the local residents' income and their disaster-related knowledge and evacuation skills, (2) developing emergency plans and carrying out emergency drills and training, (3) enhancing the accuracy of disaster monitoring and warning systems and (4) establishing a specific emergency management department and comprehensive rescue systems. These results can provide useful information for rural households and local governments to prepare, mitigate and respond to flood hazards, and the corresponding strategies can help local households to reduce their social vulnerability and improve their ability to resist flood hazard.

  15. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  16. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins

    NASA Astrophysics Data System (ADS)

    Krajčí, Pavel; Holko, Ladislav; Perdigão, Rui A. P.; Parajka, Juraj

    2014-11-01

    We present a method for estimation of regional snowline elevation (RSLE) from satellite data for seasonally snow covered mountain basins. The methodology is based on finding an elevation for which the sum of snow covered pixels below and land pixels above the RSLE is minimized for each day. The methodology is tested with MODIS daily snow cover product in the period 2000-2013 in the upper Váh basin (Slovakia). The accuracy is evaluated by daily snow depth measurements at seven climate stations and additional snow course measurements at 16 profiles in the period 2000-2013. The results show that RSLE allows accurate estimation of snowline elevation. For the RSLE estimation, two thresholds need to be considered. The thresholds of maximum cloud coverage and minimum number of snow pixels considerably affect the number of days (images) available for estimation. The sensitivity evaluation indicates that the cloud threshold has less effect on the accuracy than the minimum snow threshold. Setting cloud and minimum snow thresholds to 70% and 5% respectively, results in an average RSLE estimation accuracy of 86% at climate stations. The accuracy in the forest is 92% in the winter months and drops to 70% in April. The main factors that control the accuracy and scatter around the snowline are vegetation cover and shading of terrain. The results show that spatial patterns of misclassification correspond well with forest cover and potential insolation duration in winter. The developed RSLE method is more accurate than the previously used methods of snowline elevation estimation, it decreases the scatter around the snowline and can be potentially applied in an improved cloud reduction in MODIS products as well.

  17. Floodplain Modulation of Solute Fluxes from Mountainous Regions: the Amazonian Madre de Dios River Case Study

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; West, A. J.; Baronas, J. J.; Ponton, C.; Clark, K. E.; Feakins, S. J.; Galy, V.

    2015-12-01

    In many large river systems, solutes released by chemical weathering in mountainous regions are transported through floodplains before being discharged into the ocean. Chemical reactions within floodplains can both add and remove solutes, significantly modulating fluxes. Despite their importance in the relationship between tectonic uplift and solute fluxes to the ocean, many aspects of floodplain processes are poorly constrained since the chemistry of large rivers is also significantly affected by the mixing between multiple tributaries, which makes the separation and quantification of floodplain processes challenging. Here we explore how floodplain processes affect a suite of major and trace elements in the Madre de Dios River system in Peru. To separate floodplain processes from conservative mixing, we developed a tributary mixing model that uses water isotopic ratios and chloride concentrations measured in each tributary and upstream and downstream of each tributary confluence for all major tributaries along a floodplain reach. The results of the tributary mixing model allow for the chemical composition of the mainstem of the Madre de Dios River to be modeled assuming completely conservative mixing. Differences between the modeled and measured chemical composition of the mainstem are then used to identify and quantify the effects of floodplain processes on different solutes. Our results show that during both the wet and dry seasons, Li is removed and Ca, Mg, and Sr are added to the dissolved load during floodplain transit. Other solutes, like Na and SO4, appear to behave conservatively during floodplain transit. Likely, the removal of Li from the dissolved load reflects the precipitation of secondary silicate minerals in the floodplain. The release of Ca, Mg, and Sr likely reflects the dissolution of detrital carbonate minerals. Our analyses also show that tributaries with Andean headwaters contribute disproportionately to solute budgets while the water budget

  18. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Murphy, Sheila F.

    2014-01-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water

  19. InSAR and GPS time series analysis: Crustal deformation in the Yucca Mountain, Nevada region

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hammond, W. C.; Blewitt, G.; Kreemer, C. W.; Plag, H.

    2010-12-01

    Several previous studies have successfully demonstrated that long time series (e.g. >5 years) of GPS measurements can be employed to detect tectonic signals with a vertical rate greater than 0.3 mm/yr (e.g. Hill and Blewitt, 2006; Bennett et al. 2009). However, GPS stations are often sparse, with spacing from a few kilometres to a few hundred kilometres. Interferometric SAR (InSAR) can complement GPS by providing high horizontal spatial resolution (e.g. meters to tens-of metres) over large regions (e.g. 100 km × 100 km). A major source of error for repeat-pass InSAR is the phase delay in radio signal propagation through the atmosphere. The portion of this attributable to tropospheric water vapour causes errors as large as 10-20 cm in deformation retrievals. InSAR Time Series analysis with Atmospheric Estimation Models (InSAR TS + AEM), developed at the University of Glasgow, is a robust time series analysis approach, which mainly uses interferograms with small geometric baselines to minimise the effects of decorrelation and inaccuracies in topographic data. In addition, InSAR TS + AEM can be used to separate deformation signals from atmospheric water vapour effects in order to map surface deformation as it evolves in time. The principal purposes of this study are to assess: (1) how consistent InSAR-derived deformation time series are with GPS; and (2) how precise InSAR-derived atmospheric path delays can be. The Yucca Mountain, Nevada region is chosen as the study site because of its excellent GPS network and extensive radar archives (>10 years of dense and high-quality GPS stations, and >17 years of ERS and ENVISAT radar acquisitions), and because of its arid environment. The latter results in coherence that is generally high, even for long periods that span the existing C-band radar archives of ERS and ENVISAT. Preliminary results show that our InSAR LOS deformation map agrees with GPS measurements to within 0.35 mm/yr RMS misfit at the stations which is the

  20. Rainfall infiltration process in mountain headwater region using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Ono, M.; Yamamiya, K.; Shimada, J.

    2008-12-01

    Many researchers have studied about the hydrological process, especially rainfall-runoff process, in the headwater region using multi hydrometric methods. Since the possibility has been recognized that bedrock groundwater has important role to play in the rainfall-runoff process, it is important to comprehend the rainfall infiltration process within fluctuations of bedrock groundwater. However, we would need many hydrological instruments to understand this process precisely. So we have applied electrical resistivity tomography (ERT) method to understand rainfall infiltration process in the area that is estimated the contribution of bedrock groundwater for rainfall-runoff processes. Resistivity changes with the saturation rate of the pore fluid in the subsurface material. So it is possible to estimate spatial and temporal distribution of subsurface water by using ERT. In this study, we will estimate rainfall infiltration process in mountain headwater region using resistivity method. The study area is the Mamushi-dani watershed in Shiranui, Kumamoto, Japan. We described the bedrock groundwater storage systems using resistivity method in this watershed previously. Resistivity has been observed at 2 measurement lines in slope areas of this watershed. Both measurement lines have 47m in length, 1m electrode spacing and 48 electrodes. We used the multi-electrode system, NEXT-400(Kowa Co. Ltd., Japan) for measuring apparent resistivity and the application software, E-tomo (Diaconsultant Co. Ltd., Japan) for inversion of apparent resistivity data. The observed resistivity data were compared with water head observed at borehole and specific discharge observed at foot of the watershed. Inverted resistivity profiles and observed hydrological data showed the interface between saturated and unsaturated zone. During rainfall occurs, resistivity in surface area gets lower than that before the rainfall and resistivity in some part of unsaturated area shows increasing tendency. Both

  1. Short-term responses of wetland vegetation after liming of an Adirondack watershed

    SciTech Connect

    Mackun, I.R.; Leopold, D.J.; Raynal, D.J. )

    1994-08-01

    Watershed liming has been suggested as a long-term mitigation strategy for lake acidity, particularly in areas subject to high levels of acidic deposition. However, virtually no information has been available on the impacts of liming on wetland vegetation. In 1989, 1100 Mg of limestone (83.5% CaCO[sub 3]) were aerially applied to 48% (100 ha) of the Woods Lake watershed in the west-central Adirondack region of New York as part of the first comprehensive watershed liming study in North America. We inventoried wetland vegetation in 1.0-m[sup 2] plots before liming and during the subsequent 2 yr. Within this period liming influenced the cover, frequency, or importance values of only 6 of 64 wetland taxa. The cover of Sphagnum spp. and of the cespitose sedge Carex interior decreased in control relative to limed plots, and cover of the rhizomatous sedge Cladium mariscoides increased nearly threefold in limed areas. These two sedges, which are relatively tall, are characteristic of more calcareous habitats. Cover of the grass Muhlenbergia uniflora, cover and importance were adversely affected or inhibited by lime. It is unclear whether liming directly inhibited the growth of these three small-statured species, or whether the adverse effects of lime were mediated through shifts in competitive interactions with other species. The limited responses that we observed to liming, along with changes that occurred in control plots over the study period, may indicate that in the short term watershed liming was no more of a perturbation than the environmental factors responsible for natural annual variation in wetland communities.

  2. Implication of Groundwater Resources Utilization in Mountainous Region for Slopeland Disaster Prevention

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Chao; Hsu, Shih-Meng; Lo, Hung-Chieh

    2016-04-01

    In recent years, groundwater resources from mountainous regions have been considered as an alternative water resource in Taiwan. According to previous research outcomes (Hsu, 2011), such a groundwater resource is capable of providing stable and high quality water resources. Additionally, another advantage of using the water resources is attributed to the contribution of slopeland disaster prevention. While pumping groundwater as water resources in hilly areas (e.g., at landslide-prone sites), pore-water pressures can be dropped, which can result in stabilizing landslide-prone slopes. However, the benefit to slope stability by using groundwater resources needs to be quantified. The purpose of this study is to investigate groundwater potential of a deep-seated landslide site first, and then to evaluate variations of slope stability by changing well pumping rate conditions. In this paper, the Baolong landslide site located at the Jiasian district of Kaohsiung city in Southern Taiwan has been selected as a case study. Hydrogeological investigation for the landslide site was conducted to clarify the complexity of field characteristics and to establish a precise conceptual model for simulation. The investigation content includes surficial geology investigation, borehole drilling (6 drilling boreholes and 350 meters drilling length in total), 45 m pumping well construction, borehole hydrogeological tests (borehole televiewer, caliper, borehole electrical logging, sonic logging, flowmeter measurement, pumping test, and double packer test), and laboratory tests from rock core samples (physical properties test of soil and rocks, triaxial permeability test of soil, porosity determination test using helium, and gas permeability test). Based on the aforementioned investigation results, a hydrogeological conceptual model for the Baolong landslide site was constructed, and a 2D slope stability model coupled with transient seepage flow model was used for numerical simulation to

  3. An overview of the Yucca Mountain global/regional climate modeling program

    SciTech Connect

    Sandoval, R.P.; Behl, Y.K.; Thompson, S.L.

    1992-11-01

    The U.S. Department of Energy (DOE) has developed a site characterization plan (SCP) to collect detailed information on geology, geohydrology, geochemistry, geoengineering, hydrology, climate, and meteorology (collectively referred to as geologic information) of the Yucca Mountain site. Forecasts of future climate conditions for the Yucca Mountain area will be based on both empirical and numerical techniques. The empirical modeling is based on the assumption that future climate change wil follow past patterns. The numerical approach, which is the primary focus of this paper involves the numerical solution of basic equations associated with atmospheric motions. This paper describes these equations and the strategy for solving them to predict future climate conditions around Yucca Mountain.

  4. A New Twist on the Seasonality of Nitrate Retention and Release in Adirondack Watersheds

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Ross, D. S.; Sutherland, J. W.; Nierzwicki-Bauer, S.; Boylen, C.

    2004-12-01

    Release of nitrate to surface waters in the Northeast has a distinct seasonality that is generally explained by high retention from plant uptake during the growing season, and low retention during the non-growing season, when biological demand is low and soil- water flux is elevated in the absence of transpiration. In the Adirondack region of New York, the highest rates of release, which consistently occur during spring snowmelt, are considered to be the result of nitrate accumulation in the soil and snowpack over the winter. This explanation implies that plants out compete nitrifying bacteria for available ammonium during the growing season. Biweekly and automated high-flow sampling over five years in two tributaries of Buck Creek, in the western Adirondacks, however, has revealed inconsistencies with the conventional view of nitrate retention and release. Although low concentrations of nitrate were measured in stream water during the growing season, concentrations were lowest each year in mid October (near the completion of leaf drop) in the North tributary, and were either the lowest or second lowest each year in mid October in the South tributary. Furthermore, concentrations of nitrate in both watersheds remained elevated throughout the snowmelt periods despite sustained high flows. For example, the concentration in the South tributary on April 9th, 2001, (the initial stage of snowmelt) was 76 micromoles per liter, and on April 24th (following two of the three largest flow events over the 5 years of sampling), was 82 micromoles per liter. Flushing of nitrate stored in the soil over the winter would result in a peak concentration in the stream that would be followed by a rapid decrease. To explain these results we hypothesize a three-way competition that includes heterotrophic non-nitrifying bacteria, as well as plants and autotrophic nitrifying bacteria. Leaf drop in the fall provides a large input of labile carbon with a high C to N ratio (>20) that favors

  5. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Turner, Monica G

    2016-09-01

    Increasing rates of natural disturbances under a warming climate raise important questions about how multiple disturbances interact. Escalating wildfire activity in recent decades has resulted in some forests re-burning in short succession, but how the severity of one wildfire affects that of a subsequent wildfire is not fully understood. We used a field-validated, satellite-derived, burn-severity atlas to assess interactions between successive wildfires across the US Northern Rocky Mountains a 300,000-km(2) region dominated by fire-prone forests. In areas that experienced two wildfires between 1984 and 2010, we asked: (1) How do overall frequency distributions of burn-severity classes compare between first and second fires? (2) In a given location, how does burn severity of the second fire relate to that of the first? (3) Do interactions between successive fires vary by forest zone or the interval between fires? (4) What factors increase the probability of burning twice as stand-replacing fire? Within the study area, 138,061 ha burned twice between 1984 and 2010. Overall, frequency distributions of burn severity classes (low, moderate, high; quantified using relativized remote sensing indices) were similar between the first and second fires; however burn severity was 5-13% lower in second fires on average. Negative interactions between fires were most pronounced in lower-elevation forests and woodlands, when fire intervals were <10 yr, and when burn severity was low in the first fire. When the first fire burned as high severity and fire intervals exceeded 10-12 yr, burn-severity interactions switched from negative to positive, with high-severity fire begetting subsequent high-severity fire. Locations most likely to experience successive stand-replacing fires were high-elevation forests, which are adapted to high-severity fire, and areas conducive to abundant post-fire tree regeneration. Broadly similar severities among short-interval "re-burns" and other

  6. A regional analysis of elements at risk exposed to mountain hazards in the Eastern European Alps

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Zischg, Andreas

    2014-05-01

    We present a method to quantify the number and value of buildings exposed to torrents and snow avalanches in the Austrian Alps, as well as the number of exposed people. Based on a unique population and building register dataset, a relational SQL database was developed that allows in combination with GIS data a rule-based nation-wide automated analysis. Furthermore, possibilities and challenges are discussed with respect to the use of such data in vulnerability assessment and with respect to resilience measures. We comprehensively address the challenge of data accuracy, scale and uncertainties. From the total of approximately 2.4 million buildings with a clearly attributable geographical location, around 120,000 are exposed to torrent processes (5 %) and snow avalanches (0.4 %); exposition was defined here as located within the digitally available hazard maps of the Austrian Torrent and Avalanche Control Service. Around 5 % of the population (360,000 out of 8.5 million inhabitants), based on those people being compulsory listed in the population register, are located in these areas. The analysis according to the building category resulted in 2.05 million residential buildings in Austria (85 %), 93,000 of which (4.5 %) are exposed to these hazards. In contrast, 37,300 buildings (1.6 %) throughout the country belong to the category of accommodation facilities, 5,600 of which are exposed (15 %). Out of the 140,500 commercial buildings, 8,000 (5 %) are exposed. A considerable spatial variation was detectable within the communities and Federal States. In general, an above-average exposition of buildings to torrent process and snow avalanches was detectable in communities located in the Federal State of Salzburg, Styria and Vorarlberg (torrents), and Tyrol and Vorarlberg (snow avalanches). In the alpine part of Austria, the share of exposed accommodation buildings was two times (Salzburg) and three times (Vorarlberg) higher than the regional average of exposed buildings

  7. Quantitative paleoclimatic reconstructions from late Pleistocene plant macrofossils of the Yucca Mountain region

    USGS Publications Warehouse

    Thompson, R.S.; Anderson, K.H.; Bartlein, P.J.

    1999-01-01

    Plant macrofossil assemblages recovered from packrat (Neotoma) middens of late Pleistocene age from the present-day Mojave Desert of southern Nevada contain plant species that today live at higher elevations and/or farther north than the midden collection sites. Previous reconstructions of late Pleistocene climates from packrat midden assemblages in this region (Spaulding, 1985) assessed the minimum climatic differences from today by estimating the present-day climatic differences between the fossil midden sites and the nearest current occurrences of key plant species recovered from the Pleistocene middens. From this approach Spaulding (1985) concluded that although late Pleistocene temperatures were considerably below those of today, only modest increases in precipitation (relative to today) were necessary for these plant species to survive in the current Mojave Desert during the late Pleistocene.Spaulding's approach provided "state-of-the-art" results from an intensive careful examination of the best data available at the time. However, data and techniques developed since the mid-1980s suggest that there are two possible short-comings to this approach: 1) the use of lowest elevational and (frequently) most southerly occurrences of key plant species results in minimal estimates of the differences between Pleistocene and present-day climates, and 2) the instrumental climate data set available to Spaulding was limited in duration, non-standard in its method of collection, and indicated a modern climate wetter than the long-term historic mean, which resulted in relatively small apparent differences between late Pleistocene and present-day mean annual precipitation levels. In this report we use a more standard (close to the long-term mean) modern calibration period and a modern plant distribution data set that permits us to identify modern analogues for the Pleistocene vegetation. This reexamination permits a more robust reconstruction of the past climate, and results

  8. Adolescent Drug Use in Three Small Rural Communities in the Rocky Mountain Region.

    ERIC Educational Resources Information Center

    Swaim, Randall; And Others

    1986-01-01

    Differences were found among three small Rocky Mountain towns in both lifetime prevalence and frequency of occurrence of different types of drug users, indicating that small, rural communities are likely to develop idiosyncratic patterns of drug use. These differences were more evident among eighth-grade than among twelfth-grade students.…

  9. An overview of the Yucca Mountain Global/Regional Climate Modeling Program

    SciTech Connect

    Sandoval, R.P.; Behl, Y.K.; Thompson, S.L.

    1992-01-10

    The US Department of Energy (DOE) has developed a site characterization plan (SCP) to collect detailed information on geology, geohydrology, geochemistry, geoengineering, hydrology, climate, and meteorology (collectively referred to as ``geologic information``) of the Yucca Mountain site. This information will be used to determine if a mined geologic disposal system (MGDS) capable of isolating high-level radioactive waste without adverse effects to public health and safety over 10,000 years, as required by regulations 40 CFR Part 191 and 10 CFR Part 60, could be constructed at the Yucca Mountain site. Forecasts of future climates conditions for the Yucca Mountain area will be based on both empirical and numerical techniques. The empirical modeling is based on the assumption that future climate change will follow past patterns. In this approach, paleclimate records will be analyzed to estimate the nature, timing, and probability of occurrence of certain climate states such as glacials and interglacials over the next 10,000 years. For a given state, key climate parameters such as precipitation and temperature will be assumed to be the same as determined from the paleoclimate data. The numerical approach, which is the primary focus of this paper, involves the numerical solution of basic equations associated with atmospheric motions. This paper describes these equations and the strategy for solving them to predict future climate conditions around Yucca Mountain.

  10. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids including whitetail (Odocoileus virginianus) and mule deer (Odocoileus hemionus), Rocky Mountain elk (Cervus elaphus nelsoni), and moose (Alces alces). A leucine variant at position 132 (132L) in...

  11. Does WEPP meet the specificity of soil erosion in steep mountain regions?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We chose the USDA-ARS-WEPP model (Water Erosion Prediction Project) to describe the soil erosion in the Urseren valley (Central Switzerland) as it seems to be one of the most promising models for steep mountain environments. Crucial model parameters were determined in the field (slope, plant species...

  12. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    NASA Astrophysics Data System (ADS)

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-05-01

    used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November-March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February-March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  13. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    USGS Publications Warehouse

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-01-01

    We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  14. Quaternary glacial geomorphosites from the Cantabrian Mountains (northern Iberian Peninsula): the Redes Natural Reservation and Picos de Europa Regional Park

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María

    2013-04-01

    The Cantabrian Mountains is a mountain range 480 km-long and up to 2,648 m altitude (Torre Cerredo Peak) trending parallel to the Cantabrian Coastline between Pyrenees and the northwest corner of the Iberian Peninsula (~43oN 5oW). This mountain range is an outstanding area to research the climatic patterns across South Europe during the Quaternary glaciations since well-preserved glacial features evidence the occurrence of past mountain glaciations in a climatic environment marked by the transition from a maritime climate (Atlantic) to Mediterranean one across the mountain range. The available studies in the Cantabrian Mountains stand that the regional glacial maximum recorded here is prior to ca 38, and that glaciers were in some locations remarkably retreated by the time of the global Last Glacial Maximum (Jiménez-Sánchez et al., in press; Serrano et al., in press). This study is focused on an area about 800 km2 that includes 36 peaks over 2,000 m (Pico Mampodre; 2,192 m) and partially covers the Redes Natural Reservation and Picos de Europa Regional Park. A geomorphologic database in ArcGIS was produced for this area as a previous step to reconstruct in detail the extent, flow pattern and chronology of the former glaciers (PhD under progress). Here we present a selection of 18 glacial geomorphosites classified according to genetic criteria in sites that show: (i) a nicely preserved moraine sequence recording the transition from glacial to periglacial conditions; (ii) glacial erosion features; (iii) glacial and ice related deposits (like moraines, ice-dammed deposits, erratic boulders or fluvio-glacial deposits); (iv) slope instability related to glacial debuttressing (complex landslides and rock avalanches); and (v) the interaction between the landscape and human activity. The interest of the geomorphosites is supported by its good quality of preservation, allowing its use as a basis to reconstruct the glacial and paraglacial processes in this region during

  15. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994

    USGS Publications Warehouse

    Westenburg, C.L.; La Camera, R. J.

    1996-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.

  16. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    USGS Publications Warehouse

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  17. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994

    SciTech Connect

    Westenburg, C.L.; La Camera, R.J.

    1996-07-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and groundwater withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.

  18. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1998

    USGS Publications Warehouse

    Locke, Glenn L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1998. Data collected prior to 1998 are graphically presented and data collected by other agencies (or as part of other Geolgical Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-98. At two water-supply wells and a nearby observation well, median water levels for calendar year 1998 were slightly lower (0.2 to 0.3 foot) than for their respective baseline periods. At the remaining four wells in Jackass Flats, median water levels for 1998 were unchanged at two wells and slightly higher (0.4 and 1.4 foot) at two wells than those for their respective baseline periods.

  19. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1999

    USGS Publications Warehouse

    Locke, G.L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1999. Data collected prior to 1999 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-99. At two water-supply wells median water levels for calendar year 1999 were unchanged from their respective baseline periods. At a nearby observation well, the 1999 median water level was slightly lower (0.1 foot) than its baseline period. At the remaining four wells in Jackass Flats, median water levels for 1999 were slightly higher (0.2 foot to 1.6 feet) than for their respective baseline periods.

  20. Selected Ground-Water Data of Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    USGS Publications Warehouse

    Locke, Glenn L.; La Camera, Richard J.

    2003-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992-2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985-93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3-2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  1. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    SciTech Connect

    Locke, Glenn L.; La Camera, Richard J.

    2003-12-31

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992–2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985–93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3–2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  2. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1996

    SciTech Connect

    LaCamera, R.J.; Locke, G.L.

    1997-12-31

    The US Geological Survey, in support of the US Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1996. Data collected prior to 1996 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals in support of US Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992--96. At two water-supply wells and a nearby observation well, median water levels for calendar year 1996 were slightly lower (0.3 to 0.4 foot) than for the respective baseline periods. At four other wells in Jackass Flats, median water levels for 1996 were unchanged, slightly lower (0.2 foot), and slightly higher (0.2 and 0.7 foot) than for the respective baseline periods.

  3. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1995

    SciTech Connect

    La Camera, R.J.; Westenburg, C.L.; Locke, G.L.

    1996-12-31

    The US Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and groundwater withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1995. Data collected prior to 1995 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals in support of US Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-95. Compared with baseline periods for the seven wells, median water levels for calendar year 1995 were slightly lower (0.1 to 0.2 foot) at two principal water-supply wells and one observation well nearest to those supply wells, slightly higher (0.2 to 0.5 foot) at three other wells in Jackass Flats, and unchanged at the seventh well.

  4. SELECTED GROUND-WATER DATA FRO YUCCA MOUNTAIN REGION, SOUTHERN NEVADA AND EASTERN CALIFORNIA, THROUGH DECEMBER 1998

    SciTech Connect

    C.G. Groat

    2000-11-29

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1998. Data collected prior to 1998 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-98. At two water-supply wells and a nearby observation well, median water levels for calendar year 1998 were slightly lower (0.2 to 0.3 foot) than for their respective baseline periods. At the remaining four wells in Jackass Flats, median water levels for 1998 were unchanged at two wells and slightly higher (0.4 and 1.4 foot) at two wells than those for their respective baseline periods.

  5. Spatiotemporal Variability of Mountain Block Recharge in Three Semiarid Watersheds along the U.S.-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E. R.; Mascaro, G.; Dominguez, F.; Rivera-fernandez, E. R.

    2015-12-01

    Groundwater recharge in semiarid mountains of the western U.S. remains a critical component of the regional water balance and has significant repercussions on water resources management, in particular during periods of drought. The bimodal distribution of annual precipitation in the southwest United States and northwest Mexico present a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on the predictions of Mountain Block Recharge (MBR) using precipitation forcing from a reanalysis product, regional climate model-based precipitation products and available ground observations. MBR estimates in the Santa Cruz, San Pedro and Sonora River basins (>40,000 km2) are compared along a north to south gradient crossing the U.S.-Mexico border. As a result of the influence of the North American monsoon, the impact of seasonality in each of these systems is evaluated. Simulated precipitation fields under historical (1991-2000) conditions and climate change (2031-2040 and 2070-2080) scenarios are compared at resolutions of 10-km and 35-km as generated from the Weather Research and Forecast (WRF) model using boundary conditions from two general circulation models (MPI-ECHAM and HadCM3). Mountain subbasins to apply a seasonal MBR method were delineated using a threshold in terrain slope that matched official boundaries of known aquifers in these transboundary watersheds. We evaluated the MBR outcomes from the various precipitation products to quantify biases involved in the historical estimates and to inform groundwater management on the uncertainties inherent in future projections. We also inspect the variability of MBR across pluvial and drought periods lasting several years. Seasonal comparisons across a north to south spatial gradient yield a valuable assessment on the impacts of climate change on MBR for important basins in the U.S.-Mexico border region.

  6. Genetic variation between Schistosoma japonicum lineages from lake and mountainous regions in China revealed by resequencing whole genomes.

    PubMed

    Yin, Mingbo; Liu, Xiao; Xu, Bin; Huang, Jian; Zheng, Qi; Yang, Zhong; Feng, Zheng; Han, Ze-Guang; Hu, Wei

    2016-09-01

    Schistosoma infection is a major cause of morbidity and mortality worldwide. Schistosomiasis japonica is endemic in mainland China along the Yangtze River, typically distributed in two geographical categories of lake and mountainous regions. Study on schistosome genetic diversity is of interest in respect of understanding parasite biology and transmission, and formulating control strategy. Certain genetic variations may be associated with adaptations to different ecological habitats. The aim of this study is to gain insight into Schistosoma japonicum genetic variation, evolutionary origin and associated causes of different geographic lineages through examining homozygous Single Nucleotide Polymorphisms (SNPs) based on resequenced genome data. We collected S. japonicum samples from four sites, three in the lake regions (LR) of mid-east (Guichi and Tonglin in Anhui province, Laogang in Hunan province) and one in mountainous region (MR) (Xichang in Sichuan province) of south-west of China, resequenced their genomes using Next Generation Sequencing (NGS) technology, and made use of the available database of S. japonicum draft genomic sequence as a reference in genome mapping. A total of 14,575 SNPs from 2059 genes were identified in the four lineages. Phylogenetic analysis confirmed significant genetic variation exhibited between the different geographical lineages, and further revealed that the MR Xichang lineage is phylogenetically closer to LR Guich lineage than to other two LR lineages, and the MR lineage might be evolved from LR lineages. More than two thirds of detected SNPs were nonsynonymous; functional annotation of the SNP-containing genes showed that they are involved mainly in biological processes such as signaling and response to stimuli. Notably, unique nonsynonymous SNP variations were detected in 66 genes of MR lineage, inferring possible genetic adaption to mountainous ecological condition.

  7. THE DRAINAGE EFFICIENCY INDEX (DEI) AS AN MORPHOLOGIAL INDICATOR OF LANDSLIDE SPATIAL OCCURRENCE IN MOUNTAINOUS CATCHMENTS. A case of study applied in the mountainous region of Brazilian Southeastern.

    NASA Astrophysics Data System (ADS)

    Henrique Muniz Lima, Pedro; Luiza Coelho Netto, Ana; do Couto Fernandes, Manoel

    2016-04-01

    Morphometric parameters, acquired notoriety mainly after the Drainage Density proposition (Horton 1932, 1945) and after they were applied by geomorphologists on the perspective to understand landscape functionalities, quantifying their characteristics through parameters and indexes. After the drainage density, many other parameters which describe the basin characteristics, behavior and dynamics have been proposed. Among them, for example, the DEI was proposed by Coelho Netto and contributors during the 80's, while they were seek to understand the hydrological and erosive dynamics on Bananal river basin (Brazilian Southeastern). Through this investigations the DEI was created, revealing the importance of parameters as hollow and drainage density, conjugated to the topographic gradient (Meis et al. 1982) who prosecute controls on the water flow efficiency along the hollows in order to activate the regressive erosion of the main channel. Later on this index was applied on the basin scale in several works developed in mountainous regions, showing a remarkable correlation with the occurrence of landslides such as showed by Coelho Netto et al. (2007); that posteriorly use this index as one of the components of the landslide susceptibility map for the Tijuca Massif, located in Rio de Janeiro Municipality. This work aims to establish patterns of the DEI index values (applied to mountainous low order basins) and the relationship on the occurrence of Debriflows or shallow translational slides. For this, the DEI index was applied on 4 different study areas located on the Southeastern mountainous region of Brazil to address deeply the connection between the index and the occurrence of landslides of different types applied for first and second order basins. The major study area is the Córrego Dantas Basin, situated in Nova Friburgo municipality (RJ), which is a 53 km² basin was affected by 327 landslides caused by a heavy rainfall on January 2011; Coelho Netto et al. (in

  8. Multiple resource evaluation of region 2 US forest service lands utilizing LANDSAT MSS data. [San Juan Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Krebs, P. V.; Hoffer, R. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. LANDSAT MSS imagery provided an excellent overview which put a geomorphic study into a regional perspective, using scale 1:250,000 or smaller. It was used for deriving a data base for land use planning for southern San Juan Mountains. Stereo pairing of adjacent images was the best method for all geomorphic mapping. Combining this with snow enhancement, seasonal enhancement, and reversal aided in interpretation of geomorphic features. Drainage patterns were mapped in much greater detail from LANDSAT than from a two deg quadrangle base.

  9. GIS for Predicting the Avalanche Zones in the Mountain Regions of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Omirzhanova, Zh. T.; Urazaliev, A. S.; Aimenov, A. T.

    2015-10-01

    Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope) of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.

  10. Relict colluvial boulder deposits as paleoclimatic indicators in the Yucca Mountain region, southern Nevada

    SciTech Connect

    Whitney, J.W.; Harrington, C.D.

    1993-08-01

    Six colluvial boulder deposits from Yucca Mountain, Nye County, Nevada, were dated by cation-ratio dating of rock varnish accreted on boulder surfaces. Estimated minimum ages of these boulder deposits range from 760 to 170 ka. Five additional older deposits on nearby Skull and Little Skull Mountains and Buckboard Mesa yielded cation-ratio minimum-age estimates of 1.38 Ma to 800 ka. An independent cosmogenic chlorine-36 surface exposure date was obtained on one deposit, which confirms an estimated early to middle Quaternary age. These deposits have provided the oldest age estimates for unconsolidated hillslope deposits in the southwestern United States. We suggest that the colluvial boulder deposits were produced during early and middle Pleistocene glacial/pluvial episodes and were stabilized during the transition to drier interglacial climates. By comparison to modern periglacial environments, winter minimum monthly temperatures of -3 to -5 {degree}C were necessary to initiate freeze-thaw conditions of such vigor to physically weather relatively large volumes of large boulders from the upper hillslopes of the Yucca Mountain area. These conditions imply that early and middle Pleistocene glacial winter temperature were at least 1 to 3{degree}C colder than existed during the last Pleistocene glacial episode and 7 to 9{degree}C colder than present. 53 refs., 9 figs., 3 tabs.

  11. Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region

    DTIC Science & Technology

    2008-04-01

    The highest, Mount Rainier , rises more than 14,000 ft (4,300 m) (Bailey 1995). Common tree species throughout the subregion include Douglas-fir... Mount Whitney at 14,494 ft (4,419 m) is the highest in the con- tiguous United States. Most areas in the mountains receive 40 to 80 in. ERDC/EL...but as high as 14,162 ft (4,318 m) on Mount Shasta (Figure 1). Average annual precipitation is typically 15 to 80 in. (380 to 2,030 mm) and average

  12. Climate Change Impacts on the Cryosphere of Mountain Regions: Validation of a Novel Model Using the Alaska Range

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2015-12-01

    Mountain regions are natural water towers, storing water seasonally as snowpack and for much longer as glaciers. Understanding the response of these systems to climate change is necessary in order to make informed decisions about prevention or mitigation measures. Yet, mountain regions are often data sparse, leading many researchers to implement simple or enhanced temperature index (ETI) models to simulate cryosphere processes. These model structures do not account for the thermal inertia of snowpack and glaciers and do not robustly capture differences in system response to climate regimes that differ from those the model was calibrated for. For instance, a temperature index calibration parameter will differ substantially in cold-dry conditions versus warm-wet ones. To overcome these issues, we have developed a cryosphere hydrology model, called the Significantly Enhanced Temperature Index (SETI), which uses an energy balance structure but parameterizes energy balance components in terms of minimum, maximum and mean temperature, precipitation, and geometric inputs using established relationships. Additionally, the SETI model includes a glacier sliding model and can therefore be used to estimate long-term glacier response to climate change. Sensitivity of the SETI model to changing climate is compared with an ETI and a simple temperature index model for several partially-glaciated watersheds within Alaska, including Wolverine glacier where multi-decadal glacier stake measurements are available, to highlight the additional fidelity attributed to the increased complexity of the SETI structure. The SETI model is then applied to the entire Alaska Range region for an ensemble of global climate models (GCMs), using representative concentration pathways 4.5 and 8.5. Comparing model runs based on ensembles of GCM projections to historic conditions, total annual snowfall within the Alaska region is not expected to change appreciably, but the spatial distribution of snow

  13. Similarity and Complementarity of Airborne and Terrestrial LiDAR Data in High Mountain Regions

    NASA Astrophysics Data System (ADS)

    Kamp, Nicole; Glira, Philipp; Pfeifer, Norbert

    2013-04-01

    Glacier melt and a consequential increased sediment transport (erosion, transportation and accumulation) in high mountain regions are causing a frequent occurrence of geomorphic processes such as landslides and other natural hazards. These effects are investigated at the Gepatschferner (Kaunertal, Oetztal Alps, Tyrol), the second largest glacier in Austria, in the PROSA project (Catholic University Eichstätt - Ingolstadt, Vienna University of Technology, Friedrich Alexander University Erlangen-Nürnberg, Martin-Luther-University Halle-Wittenberg, University of Innsbruck, Munich University of Technology). To monitor these geomorphic processes, data with a very high spatial and very high temporally accuracy and resolution are needed. For this purpose multi-temporal terrestrial and aerial laser scanning data are acquired, processed and analysed. Airborne LiDAR data are collected with a density of 10 points/m² over the whole study area of the glacier and its foreland. Terrestrial LiDAR data are gathered to complement and improve the airborne LiDAR data. The different viewing geometry results in differences between airborne and terrestrial data. Very steep slopes and rock faces (around 90°, depending on the viewing direction) are not visible from the airborne view point. On the other hand, terrestrial viewpoints exhibit shadows for areas above the scanner position and in viewing direction behind vertical or steep faces. In addition, the density of terrestrial data is varying strongly, but has for most of the covered area a much higher level of detail than the airborne dataset. A small temporal baseline is also inevitable and may cause differences between acquisition of airborne and terrestrial data. The goal of this research work is to develop a method for merging airborne and terrestrial LiDAR data. One prerequisite for merging is the identification of areas which are measurements of the same physical surface in either data set. This allows a transformation of the

  14. Silicic Volcanics in the South Mountain Region: A Volcanic Center with the Breakup of Rodinia

    NASA Astrophysics Data System (ADS)

    Briggs, C. W.; Rooney, T. O.; Sinha, A.

    2008-12-01

    Commonly, large igneous provinces are associated with the break-up of continents. The waning stages of large igneous provinces prior to continental rifting and breakup are characterized by volumetrically less significant felsic volcanics. The origin of these felsic volcanics remains a source of significant debate - do they represent additions of new crust derived from the mantle, or the melting and recycling of continental crust? We examine the South Mountain felsic volcanicism in Pennsylvania, part of a sequence of metabasalts and metarhyolites of the Catoctin Formation. These Late Neoproterozoic magmas are associated with the breakup of Rodinia and the formation of the Iapetus Ocean. The South Mountain felsic volcanics are predominantly rhyolitic and can be subdivided into high Al2O3 (>11.8 wt.%) and low Al2O3 (<11.8 wt.%) groups. Each group forms distinctive trends against differentiation indices. Cl Chondrite normalized spider diagrams show that both groups are parallel to each other, the low-Al group having higher REE concentrations. The low-Al group forms REE trends that decrease at a greater magnitude than the high-Al group with increasing SiO2, excluding Eu. A Eu anomaly is present in both groups but is more pronounced in the low-Al group. Models of REE variations in felsic liquids [Brophy, 2008] indicate that amphibolite melting yields magmas with decreasing La and Yb with increasing SiO2. In both groups, La and Yb indicate amphibolite partial melting trends. Decreasing Dy/Yb with increasing SiO2 is an indicator of a hornblende rich source for the South Mountain rhyolites. To explain these geochemical trends, we propose that the South Mountain rhyolites were produced by the partial melting of a plagioclase-bearing amphibolite source. The difference in magnitude of the Eu anomaly between the two groups may be produced by variable concentrations of plagioclase in the source amphibolite. Comparison of the South Mountain rhyolites with other large igneous

  15. Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska

    NASA Astrophysics Data System (ADS)

    Davi, Nicole K.; Jacoby, Gordon C.; Wiles, Gregory C.

    2003-11-01

    Variations in both width and density of annual rings from a network of tree chronologies were used to develop high-resolution proxies to extend the climate record in the Wrangell Mountain region of Alaska. We developed a warm-season (July-September) temperature reconstruction that spans A.D. 1593-1992 based on the first eigenvector from principal component analysis of six maximum latewood density (MXD) chronologies. The climate/tree-growth model accounts for 51% of the temperature variance from 1958 to 1992 and shows cold in the late 1600s-early 1700s followed by a warmer period, cooling in the late 1700s-early 1800s, and warming in the 20th century. The 20th century is the warmest of the past four centuries. Several severely cold warm-seasons coincide with major volcanic eruptions. The first eigenvector from a ring-width (RW) network, based on nine chronologies from the Wrangell Mountain region (A.D. 1550-1970), is correlated positively with both reconstructed and recorded Northern Hemisphere temperatures. RW shows a temporal history similar to that of MXD by increased growth (warmer) and decreased growth (cooler) intervals and trends. After around 1970 the RW series show a decrease in growth, while station data show continued warming, which may be related to increasing moisture stress or other factors. Both the temperature history based on MXD and the growth trends from the RW series are consistent with well-dated glacier fluctuations in the Wrangell Mountains and some of the temperature variations also correspond to variations in solar activity.

  16. Thrust-induced collapse of mountains-an example from the "Big Bend" region of the San Andreas Fault, western transverse ranges, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2005-01-01

    Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in

  17. Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges

    PubMed Central

    Lenoir, Jonathan; Gégout, Jean-Claude; Guisan, Antoine; Vittoz, Pascal; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Dullinger, Stefan; Pauli, Harald; Willner, Wolfgang; Grytnes, John-Arvid; Virtanen, Risto; Svenning, Jens-Christian

    2010-01-01

    Background The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? Methodology/Principal Findings We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total γ-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot β-diversity) and (iv) number of species present per plot (plot α-diversity). We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. Conclusions/Significance We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity components. For

  18. The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model

    SciTech Connect

    Matuska, N.A.; Hess, J.W.

    1989-08-01

    Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow.

  19. Phylogeographic structure of Brachymystax lenok tsinlingensis (Salmonidae) populations in the Qinling Mountains, Shaanxi, based on mtDNA control region.

    PubMed

    Liu, Haixia; Li, Yang; Liu, Xiaolin; Xiong, Dongmei; Wang, Lixin; Zou, Guiwei; Wei, Qiwei

    2015-08-01

    Brachymystax lenok tsinlingensis is an endangered freshwater fish and distributed in mountains steams of Qinling Mountains, China. In this study, a comparative study of the mtDNA control region (D-loop) was performed to analyze its natural population structure and the genetic diversity of 53 individuals from four locations (TB, YX, LX and ZZ populations). Sequence analysis revealed three different domains and two feature sequences of the control region. The estimated haplotype and nucleotide diversity were 9 and 0.0023, respectively. Genetic structure analysis showed a high-level genetic diversity of B. lenok tisnlingensis (h = 0.6060 ± 0.1499). The AMOVA analysis indicated that 26.02% of total variation came from individual populations, and 73.98% from variation within the four geographic populations, which showed low genetic differentiation between the four geographic groups. Test of neutral evolution and mismatch distribution indicated that no historical expansion occurred in these populations. The high genetic diversity and low genetic differentiation would provide new information for conservation and exploitation of this species.

  20. Quality of streams in the Bull Mountains region, south-central Montana

    USGS Publications Warehouse

    Knapton, J.R.

    1982-01-01

    In October 1977, water-quality monitoring stations were established on five small streams that drain the Bull Mountains and also on the Musselshell River to document present water-quality conditions in a coal area of south-central Montana. Relatively static water-quality conditions exist throughout the annual flow cycle on the small streams but water quality varies with time on the Musselshell River. The near absence of surface runoff in the Bull Mountains during the study and the dominance by the base-flow component account for stability of water quality in the small streams. High-mountain runoff coupled with storms and prairie runoff impact the base flow of the Musselshell River. Bicarbonate and sulfate were the principal anions and are present in nearly equal proportions in all small streams. Except for West Parrot Creek, magnesium was the most dominant cation. West Parrot Creek, which consistently contained the smallest levels of dissolved solids, had sodium rather than magnesium as the principal cation. Fattig Creek was highest in dissolved solids with an approximate concentration range of 900 to 2,100 milligrams per liter. Suspended-sediment discharge in the streams was relatively small; no stream exceeded 0.32 ton per day. The Musselshell River had dissolved solids concentrations that ranged from about 450 milligrams per liter during spring runoff to 1,800 milligrams per liter during periods of base flow. The sodium sulfate-type water, which is common during base flow, is diluted during runoff with water having principal ions of calcium, magnesium, and bicarbonate. Suspended-sediment loads ranged from 0.56 to 37,300 tons per day and correlated directly to stream discharge. (USGS)

  1. Boundary layer processes in a mountainous region south of Vienna, Austria

    NASA Astrophysics Data System (ADS)

    Schicker, Irene

    2014-05-01

    The Rosalia Lehrforst, southeast of Vienna and one of the boundaries of the Vienna basin, is a semi-complex forested mountain range used for teaching and studies of the atmosphere, land-surface interactions, hydrological studies such as heavy precipitation events, and many more. Different kinds of observation data sets, including three meteorological observations sites within the Lehrforst and several observations sites outside, are available. Within this study the WRF model is used to evaluate the effects of different kinds of land-use and soil types, including different soil moisture conditions on the boundary layer and boundary layer processes within the Lehrforst and the southern Vienna basin.

  2. Rapid Evolving Environment and Exposure and Their Implication of New Risks in Mountainous Regions after Major Earthquake

    NASA Astrophysics Data System (ADS)

    Yang, Wentao; Wang, Ming; Shi, Peijun

    2014-05-01

    The Ms 8.0 Wenchuan Earthquake occurred in mountainous Sichuan Province triggered widespread coseismic landslides and heavy human casualties in the year 2008. Much attention has been focused on instantaneous hazards of seismicity and coseismic landslides, while few attentions are paid on the effects of the changed mountain environments caused by great earthquakes of this magnitude. Five years following the devastating Ms 8.0 Wenchuan Earthquake, new landslides, debris flow and flash floods are frequently reported and observed in the severely earthquake stricken regions. This indicates that the geological hazards after the major earthquake in a mountainous environment can be a long-term evolving threat. In this work, we combine image interpretation and extensive field reconnaissances to uncover the mechanism of the constant post-quake disasters that repeatedly destroyed rebuilt houses in Wenchuan Region. Based on high resolution image interpretations and field reconnaissance, coseismic landslides in 2008, post-quake landslide in 2011 and rural house footprints in 2002 and 2011 are interpreted manually in Shikan River Watershed of the heavily affected Pingwu County. Spatial analysis reveals that the spatial distributions of coseismic landslides mainly concentrated in steeper and high altitude slopes, while the post quake landslides evolves to gentle and lower slopes. Compared with pre-quake houses, more relocated houses are also concentrated on limited flat regions near riversides. The evolution of landslide debris and changing distribution of rebuilt houses after the Wenchuan Earthquake has shown quite similar moving trends to lower elevations and gentle slopes, and more post-disaster houses were relocated closer to expanded riverbed after the earthquake. Field reconnaissance also confirmed the downward movement of post-quake mass wasting, which fills up riverbed with debris, expanding river width and results in a catastrophic flash flood event in August 2013. Here

  3. Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China

    PubMed Central

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-01-01

    Background Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Results Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. Conclusion The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may

  4. Chronology of Miocene Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; Fluette, Amy; McDougall, Kristin; Housen, Bernard A.; Janecke, Susanne U.; Axen, Gary J.; Shirvell, Catherine R.

    2007-01-01

    Late Miocene to early Pliocene deposits at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ± 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River.

  5. 1999 resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    ,

    1999-01-01

    The USGS has assessed resources of selected coal of the Fort Union Formation and equivalent units in the Northern Rocky Mountains and Great Plains region. The assessment focused on coal in the Powder River, Williston, Hanna-Carbon, and Greater Green River basins most likely to be utilized in the next few decades. In other basins in the region Tertiary coal resources are summarized but not assessed. Disc 1, in PDF files, includes results of the assessment and chapters on coal geology, quantity and quality, and land use and ownership. Disc 2 provides GIS files for land use and ownership maps and geologic maps, and basic GIS data for the assessed basins. ArcView shapefiles, PDF files for cross sections and TIFF files are included along with ArcView Datapublisher software for Windows-based computer systems.

  6. Relict colluvial boulder deposits as paleoclimatic indicators in the Yucca Mountain region, southern Nevada

    USGS Publications Warehouse

    Whitney, J.W.; Harrington, C.D.

    1993-01-01

    Early to middle Pleistocene boulder deposits are common features on southern Nevada hillslopes. These darkly varnished, ancient colluvial deposits stand out in stark contrast to the underlying light-colored bedrock of volcanic tuffs, and they serve as minor divides between drainage channels on modern hillslopes. To demonstrate the antiquity of these stable hillslope features, six colluvial boulder deposits from Yucca Mountain, Nye County, Nevada, were dated by cation-ratio dating of rock varnish accreted on boulder surfaces. Estimated minimum ages of these boulder deposits range from 760 to 170 ka. Five additional older deposits on nearby Skull and Little Skull Mountains and Buckboard Mesa yielded cation-ratio minimum-age estimates of 1.38 Ma to 800 ka. An independent cosmogenic chlorine-36 surface exposure date was obtained on one deposit, which confirms an estimated early to middle Quaternary age. These deposits have provided the oldest age estimates for unconsolidated hillslope deposits in the southwestern United States. We suggest that the colluvial boulder deposits were produced during early and middle Pleistocene glacial/pluvial episodes and were stabilized during the transition to drier interglacial climates. The preservation of old, thin hillslope deposits and the less-than-2-m incision by hillslope runoff adjacent to these deposits, indicate that extremely low denudation rates have occurred on resistant volcanic hillslopes in the southern Great Basin during Quaternary time. -from Authors

  7. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks. Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed. Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in ??18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences. The range of Adirondack carbonate ??18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their

  8. Modelling spatial, altitudinal and temporal variability of annual precipitation in mountainous regions: The case of the Middle Zagros, Iran

    NASA Astrophysics Data System (ADS)

    Saeidabadi, Rashid; Najafi, Mohammed S.; Roshan, GholamReza; Fitchett, Jennifer M.; Abkharabat, Shoaieb

    2016-11-01

    Relationships between precipitation and elevation are difficult to model for mountainous regions, due to complexities in topography and moisture sources. Attempts to model these relationships need to be tested against long-term location specific meteorological data, and hence require a case-study approach. This study uses artificial neural networks to model these relationships for the Middle of Zagros region, in semi-arid western Iran. Precipitation data for the region were collected for 1995-2007. Annual precipitation was designated as the target variable for the network, which additionally included variables significantly related to precipitation for the region, including longitude, latitude, elevation, slope, distance from the ridge, and relative distance from moisture. Long-term changes in annual precipitation for the region are investigated for 1961-2010. The artificial neural network (ANN) model explains 76% of the spatial variability of precipitation in the Middle Zagros. Precipitation predominantly increases with elevation on the windward slope, to a maximum height of 2500 m.asl, and thereafter either remains constant or decreases slowly to the ridge. Precipitation in the region has decreased significantly over the study period, with fluctuations driven by AO, NAO, ENSO and variability in the strength of pressure centers. Spectral analysis reveals significant oscillations of 2-4 and 5 yr periods, which correspond temporally with cycles in macro-scale circulation, ENSO and the Mediterranean Low pressure.

  9. Developing a climatological / hydrological baseline for climate change impact assessment in a remote mountain region - an example from Peru

    NASA Astrophysics Data System (ADS)

    Salzmann, N.; Huggel, C.; Calanca, P.; Diaz, A.; Jonas, T.; Konzelmann, T.; Lagos, P.; Rohrer, M.; Silverio, W.; Zappa, M.

    2009-04-01

    Changes in the availability of fresh water caused by climatic changes will become a major issue in the coming years and decades. In this context, regions presently depending on water from retreating mountain glaciers are particularly vulnerable. In many parts of the Andes for example, people already suffer from the impacts of reduced glacier run off. Therefore, the development and implementation of adequate adaptation measures is an urgent need. To better understand the impact of climate change on water resources in the Andean region, a new research program (PACC - Programa de Adaptación al Cambio Climático en el Perú) between Peru and Switzerland has recently been launched by SDC (Swiss Agency for Development and Cooperation). As a first step, a scientific baseline relative to climatology, hydrology, agriculture and natural disasters will be developed on a regional scale for the Departments of Cusco and Apurimac in close cooperation with partners from Universities and governmental institutions as well as NGOs in Peru. A reliable data baseline is a must for the development of adaptation measures that can effectively cope with the risks induced by climate change. The realization of this task in remote mountain regions, where observational data are generally sparse, however, is challenging. Temporal and spatial gaps must be filled using indirect methods such as re-analyses, remote sensing and interpolation techniques. For future scenarios, the use of climate model output along with statistical and dynamical downscaling is indicated. This contribution will present and discuss approaches and possible concepts to tackle the challenges in a Peruvian context. In addition, first experiences will be reported particularly on cross-disciplinary issues that naturally emerge from the integrative perspective needed in climate change impact assessments and the development of adaptation strategies.

  10. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S.; Stephens, B.; Watt, A.; Schimel, D.; Aulenbach, S.

    2006-12-01

    We have established a Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. We have developed a new autonomous, inexpensive, and robust CO2 analysis system (AIRCOA) and have deployed these systems at 4 sites: Niwot Ridge (NWR), near Ward, Colorado (August, 2005); Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado (September, 2005); Fraser Experimental Forest (FEF), near Fraser Colorado (August, 2005); and Hidden Peak (HDP), near Snowbird, Utah (April, 2006). We will deploy a fifth site in Northeastern Arizona in September 2006. Measurements of surveillance gas cylinders, and an ongoing intercomparison with flask measurements made by NOAA GMD at Niwot Ridge, show measurement biases of 0.2 ppm or better. Preliminary analysis of CO2 variability at our sites provides valuable information on the usefulness of mountaintop observations in data-assimilation and inverse modeling. Comparisons between our sites and to background sites can give direct regional-scale flux estimates, and analysis of the nocturnal CO2 build-ups at FEF provides unique insights into valley-scale respiration rates. We will present results of these preliminary analyses and plans for future integration with the NACP effort.

  11. College-Bound Seniors, 1979. [College Board ATP Summary Reports for: National, New England, Middle States, Southern, Midwestern, Southwestern, Rocky Mountain, and Western Regions.

    ERIC Educational Resources Information Center

    College Entrance Examination Board, Princeton, NJ.

    The Admissions Testing Program (ATP) is a service of the College Board. The 1979 ATP summary reports on college-bound seniors were produced for each region of the United States, including New England, the Middle, Southern, Midwestern, Southwestern, Rocky Mountain, and Western States. The national and each regional report are in separate booklets.…

  12. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    USGS Publications Warehouse

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  13. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, Through December 1992

    USGS Publications Warehouse

    La Camera, Richard J.; Westenburg, Craig L.

    1994-01-01

    Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.

  14. Seismic mapping of shallow fault zones in the San Gabriel Mountains from the Los Angeles Region Seismic Experiment, southern California

    USGS Publications Warehouse

    Fuis, G.S.; Ryberg, T.; Lutter, W.J.; Ehlig, P.L.

    2001-01-01

    During the Los Angeles Region Seismic Experiment (LARSE), a reflection/refraction survey was conducted along a profile (line 1) extending from Seal Beach, California, northeastward to the Mojave Desert and crossing the Los Angeles and San Gabriel Valley basins and San Gabriel Mountains. In most shot gathers from the southern and central San Gabriel Mountains, clear secondary arrivals are seen that merge, or appear to merge, with first arrivals at three locations, including the location of the Vincent thrust fault, an exposed late Mesozoic/early Cenozoic megathrust. These secondary arrivals are interpretable as reflections in the shallow crust (<5 km depth) from a concave-upward interface that projects to the surface in the north near the Vincent thrust fault, is offset in its central part at the San Gabriel fault (an old branch of the San Andreas fault), and terminates in the south at 1 to 2 km depth at the southern mountain front. The velocity structure above and below this interface strongly suggests it is the Vincent thrust fault: intermediate velocities (6.2 km/s), consistent with mylonites overlying the Vincent thrust fault, are observed above it; lower velocities (5.8 km/s), consistent with the Pelona Schist underlying the Vincent thrust fault, are observed below it. Problems arise, however, in attempting to match this reflector to the exposed Vincent thrust fault, which is seen in outcrops east of line 1. The Vincent thrust fault is shallower than the reflector in most places. An unmapped structure (steep fault, monocline, or thrust fault) is required between line 1 and the outcrops that either drops the Vincent thrust fault down to the depths of the reflector or repeats the Vincent thrust fault beneath line 1 in the footwall of another thrust fault. An alternative interpretation of the reflector is a deep greenstone horizon within the Pelona Schist, although this alternative is not favored by the velocity structure. Copyright 2001 by the American

  15. Ecological Model to Predict Potential Habitats of Oncomelania hupensis, the Intermediate Host of Schistosoma japonicum in the Mountainous Regions, China

    PubMed Central

    Zhu, Hong-Ru; Liu, Lu; Zhou, Xiao-Nong; Yang, Guo-Jing

    2015-01-01

    Background Schistosomiasis japonica is a parasitic disease that remains endemic in seven provinces in the People’s Republic of China (P.R. China). One of the most important measures in the process of schistosomiasis elimination in P.R. China is control of Oncomelania hupensis, the unique intermediate host snail of Schistosoma japonicum. Compared with plains/swamp and lake regions, the hilly/mountainous regions of schistosomiasis endemic areas are more complicated, which makes the snail survey difficult to conduct precisely and efficiently. There is a pressing call to identify the snail habitats of mountainous regions in an efficient and cost-effective manner. Methods Twelve out of 56 administrative villages distributed with O. hupensis in Eryuan, Yunnan Province, were randomly selected to set up the ecological model. Thirty out of the rest of 78 villages (villages selected for building model were excluded from the villages for validation) in Eryuan and 30 out of 89 villages in Midu, Yunnan Province were selected via a chessboard method for model validation, respectively. Nine-year-average Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as well as Digital Elevation Model (DEM) covering Eryuan and Midu were extracted from MODIS and ASTER satellite images, respectively. Slope, elevation and the distance from every village to its nearest stream were derived from DEM. Suitable survival environment conditions for snails were defined by comparing historical snail presence data and remote sensing derived images. According to the suitable conditions for snails, environment factors, i.e. NDVI, LST, elevation, slope and the distance from every village to its nearest stream, were integrated into an ecological niche model to predict O. hupensis potential habitats in Eryuan and Midu. The evaluation of the model was assessed by comparing the model prediction and field investigation. Then, the consistency rate of model validation was calculated

  16. Geomorphology and forest ecology of a mountain region in the central Appalachians

    USGS Publications Warehouse

    Hack, John Tilton; Goodlett, John C.

    1960-01-01

    The area studied, mostly in the headwaters of the Shenandoah River, Augusta and Rockingham Counties, Va., includes about 55 square miles of densely forested mountain land and has an average relief of about 1,500 feet. It is part of an area that in June 1949 was subjected to a violent cloudburst which damaged large tracts on slopes and bottom lands. Most of the area is underlain by flaggy arkosic sandstone and interbedded reddish shale of the Hampshire formation of Devonian age. The highest ridges are capped by massive sandstone of the Pocono formation of Mississippian age. In most of the area the rocks dip gently to the southeast but in the northwestern and southeastern parts they are folded into synclines that localize northeastward-trending ridges.

  17. Comparison of Observed Temperature and Wind in Mountainous and Coastal Regions in Korea

    NASA Astrophysics Data System (ADS)

    Park, Y. S.

    2015-12-01

    For more than one year, temperature and wind are observed at several levels in three different environments in Korea. First site is located in a ski jump stadium in a mountain area and observations are performed at 5 heights. Second site is located in an agricultural land 1.4km inland from the seaside and the observing tower is 300m tall. Third site is located in the middle of sea 30km away from the seaside and the tower is 100m tall. The vertical gradients of air temperature are compared on the daily and seasonal bases. Not only the strengths of atmospheric stability are analyzed but also the times when the turnover of the signs of vertical gradients of temperature are occurred. The comparison is also applied to vertical gradients of wind speed and turning of wind direction due to surface slope and sea/land breeze. This study may suggest characteristics of local climate over different environments quantitatively.

  18. Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region.

    PubMed

    Pineda, M C; Viloria, J; Martínez-Casasnovas, J A

    2016-04-01

    Susceptibility to landslides in mountain areas results from the interaction of various factors related to relief formation and soil development. The assessment of landslide susceptibility has generally taken into account individual events, or it has been aimed at establishing relationships between landslide-inventory maps and maps of environmental factors, without considering that such relationships can change in space and time. In this work, temporal and space changes in landslides were analysed in six different combinations of date and geomorphological conditions, including two different geological units, in a mountainous area in the north-centre of Venezuela, in northern South America. Landslide inventories from different years were compared with a number of environmental factors by means of logistic regression analysis. The resulting equations predicted landslide susceptibility from a range of geomorphometric parameters and a vegetation index, with diverse accuracy, in the study area. The variation of the obtained models and their prediction accuracy between geological units and dates suggests that the complexity of the landslide processes and their explanatory factors changed over space and time in the studied area. This calls into question the use of a single model to evaluate landslide susceptibility over large regions.

  19. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  20. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S. L.; Stephens, B.; Watt, A.

    2007-12-01

    We will present preliminary carbon flux estimates from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON). In order to improve our understanding of regional carbon fluxes in the Rocky Mountain West, we have developed and deployed autonomous, inexpensive, and robust CO2 analyzers (AIRCOA) at five sites throughout Colorado and Utah, and plan additional deployments on the Navajo Reservation, Arizona in September 2007 and atop Mount Kenya, Africa in November 2007. We have used a one- dimensional CO2 budget equation, following Bakwin et al. (2004), to estimate regional monthly-mean fluxes from our continuous CO2 concentrations. These comparisons between our measurements and estimates of free- tropospheric background concentrations reveal regional-scale CO2 flux signals that are generally consistent with one another across the Rocky RACCOON sites. We will compare the timing and magnitude of these estimates with expectations from local-scale eddy-correlation flux measurements and bottom-up ecosystem models. We will also interpret the differences in monthly-mean flux signals between our sites in terms of their varying upwind areas of influence and inferred regional variations in CO2 fluxes. Our measurements will be included in future CarbonTracker assimilation runs and other planned model-data fusion efforts. However, questions still exist concerning the ability of these models to accurately represent the various influences on CO2 concentrations in continental boundary layers, and at mountaintop sites in particular. We will present an analysis of the diurnal cycles in CO2 concentration and CO2 variability at our sites, and compare these to various model estimates. Several of our sites near major population centers reflect the influence of industrial CO2 sources in afternoon upslope flows, with CO2 concentration increasing and variable in the mid to late afternoon. Other more remote sites show more consistent and decreasing CO2

  1. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    USGS Publications Warehouse

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  2. [Characteristics of heat resource in mountainous region of northern Guangdong, South China based on three-dimensional climate observation].

    PubMed

    Liu, Wei; Wang, Chun-Lin; Chen, Xin-Guang; Chen, Hui-Hua

    2013-09-01

    Based on the 2009-2011 daily air temperature observation data from 11 automatic weather stations in the mountainous region of northern Guangdong, this paper calculated the heat factors in the region, including the beginning date of 10 degrees C, the ending date of 15 degrees C, the duration days of 10-15 degrees C, the accumulated temperature above 10 degrees C, the days of minimum temperature below 5 degrees C, and the mean monthly temperature, with the linear regression model of the heat factors and latitude established. In 2009-2011, the heat factors in the region had significant correlations with latitude, and the heat resource at the same latitudes differed apparently between south and north slopes. With the increase of latitude, the beginning date of 10 degrees C delayed, the ending date of 10 degrees C advanced, and the duration days of 10-15 degrees C, the accumulated temperature above 10 degrees C, the days of temperature above 10 degrees C, and the mean annual air temperature decreased. The vertical variation rates of the heat factors were larger on south slope than on north slope. The results of this study could be used for fitting the vertical distribution of heat resource in the areas with no weather station, and provide basis for the fine regionalization of agricultural climate.

  3. Seroprevalence of brucellosis in animals and human populations in the western mountains region in Libya, December 2006-January 2008.

    PubMed

    Ahmed, M O; Elmeshri, S E; Abuzweda, A R; Blauo, M; Abouzeed, Y M; Ibrahim, A; Salem, H; Alzwam, F; Abid, S; Elfahem, A; Elrais, A

    2010-07-29

    Brucellosis is a global zoonotic disease, endemic in North African countries and around the Mediterranean.A prospective study of Brucella seroprevalence was conducted in north-western Libya (western mountains region). Blood samples collected over 13 months in the period December 2006 to January 2008 from 561 animals (goats, sheep, cattle and camels) and 546 human volunteers were tested for Brucella using the Rose Bengal test, tube agglutination test and ELISA assays. Amongst livestock, 31% of goats and 42% of cattle were seropositive. Human samples showed a high seropositivity of 40%, with 95 (43%) of the 221 positive samples positive for IgM, indicating active or recent infection. Control measures are needed to reduce this high prevalence of brucellosis in Libya.

  4. Potential applications of three-dimensional geoscientific mapping and modeling systems to regional hydrogeological assessments at Yucca mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Turner, A. Keith; Kolm, Kenneth E.

    Three-dimensional Geoscientific Information Systems (GSIS) are being evaluated for supporting 3-D ground-water modeling activities required to evaluate the paleo-, present, and future hydrology at Yucca Mountain, Nevada, the proposed site of the nation’s repository for high-level nuclear waste. The complexity of the regional ground-water system requires the use of a 3-dimensional ground-water modeling approach integrated with a true 3-dimensional geologic model. Integrated GSIS offers important capabilities for: 1) necessary data management and data audit trails; 2) the integration of diverse data sources; 3) rapid development, visualization, and testing of alternative model conceptualizations; and 4) integration with the numerical modeling steps.

  5. Crustal structure of Ouachita Mountains, Arkansas: A model based on integration of COCORP reflection profiles and regional geophysical data

    SciTech Connect

    Lillie, R.J.; de Voogd, B.; Brewer, J.A.; Brown, L.D.; Kaufman, S.; Nelson, K.D.; Oliver, J.E.; Viele, G.W.

    1983-06-01

    COCORP deep seismic reflection profiles across the Ouachita Mountains in western Arkansas suggest that a large fraction of the crust in this region is composed of tectonically thickened Paleozoic sediments (and metasediments). Reflections representing a southward-thickening wedge of layered rock on the northern portions of the survey are associated with approximately 12 km (39,000 ft) of Carboniferous flysch overlying thin, lower to middle Paleozoic shelf strata in the Frontal thrust zone. Toward the interior of the mountain belt, the Benton uplift is a broad antiform, apparently cored by crystalline basement at depths below 7 km (23,000 ft). Beneath the southern Ouachitas and the adjacent Gulf coastal plain, a zone of south-dipping reflections probably represents at least 14 km (46,000 ft) of tectonically thickened, lower to middle Paleozoic off-shelf strata and Carboniferous flysch. Regional Bouguer gravity data show a minimum coincident with the thickest accumulation of flysch in the Frontal thrust zone. To the south, the Benton uplift lies on a steep gravity gradient which is continuous along most of the Ouachita trend and which may be analogous to a gradient observed along the Appalachian chain. The Ouachita gravity signature can be modeled as a southward shallowing of the Moho (from 40 km (131,000 ft) in northern Arkansas to about 30 km (98,000 ft) just south of the Ouachitas), coincident with the tectonic thickening of the Paleozoic strata interpreted from the COCORP data. The resulting crustal section can be interpreted as the remnants of an early Paleozoic passive margin which was subducted beneath a thick accretionary wedge in Carboniferous time. The Benton uplift is viewed as a late-stage involvement of crystalline basement in foreland thrusting as the margin entered the south-dipping subduction zone.

  6. Fish Communities and Habitat of Geomorphically Stable Reference Reaches in Streams of the Catskill Mountain Region, New York

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Baldigo, Barry P.; Ernst, Anne G.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the New York City Department of Environmental Protection, began a 5-year study to develop a database that documents the physical and biological characteristics of nine stable reference reaches from seven streams in the New York City West of Hudson Water Supply Watershed in the Catskill Mountain region of New York State. Primary objectives of this study were to (1) develop a reference-reach database of morphology, aquatic biology, and fluvial processes, and (2) summarize the relations between fish communities, aquatic habitat, and stable stream morphology in streams in the Catskill Mountain region. Secondary objectives included documenting year-to-year variability in fish populations and stream habitat in geomorphically stable streams and demonstrating how reliably Habitat Suitability Index models can be used to characterize habitat conditions and predict the presence and abundance of populations of trout species. Fish and habitat databases were developed, and several important relations were identified. Fish-community indices differed considerably among sites where trout were present and where they were either absent or present in very low numbers; these differences were reflected in higher Habitat Suitability Index scores at trout-dominated sites. Several fish- community and habitat variables were found to be strongly associated with indices of stability and, therefore, determined to be useful tools for evaluating stream condition. Lastly, preliminary results suggest Rosgen stream type data can help refine fish and habitat relations and assist in our ability to predict habitat potential and fish-community composition.

  7. Evaluating regional patterns in nitrate sources to watersheds in National Parks of the Rocky Mountains using nitrate isotopes.

    PubMed

    Nanus, Leora; Williams, Mark W; Campbell, Donald H; Elliott, Emily M; Kendall, Carol

    2008-09-01

    In the Rocky Mountains, there is uncertainty about the source areas and emission types that contribute to nitrate (NO3) deposition, which can adversely affect sensitive aquatic habitats of high-elevation watersheds. Regional patterns in NO3 deposition sources were evaluated using NO3 isotopes in five National Parks, including 37 lakes and 7 precipitation sites. Results indicate that lake NO3 ranged from detection limit to 38 microeq/L, delta18O (NO3) ranged from -5.7 to +21.3% per thousand, and delta15N (NO3) ranged from -6.6 to +4.6 per thousand. delta18O (NO3) in precipitation ranged from +71 to +78% per thousand. delta15N (NO3) in precipitation and lakes overlap; however, delta15N (NO3) in precipitation is more depleted than delta15N (NO3) in lakes, ranging from -5.5 to -2.0 per thousand. delta15N (NO3) values are significantly related (p < 0.05) to wet deposition of inorganic N, sulfate, and acidity, suggesting that spatial variability of delta15N (NO3) over the Rocky Mountains may be related to source areas of these solutes. Regional patterns show that NO3 and delta15N (NO3) are more enriched in lakes and precipitation from the southern Rockies and at higher elevations compared to the northern Rockies. The correspondence of high NO3 and enriched delta15N (NO3) in precipitation with high NO3 and enriched delta15N (NO3) in lakes, suggests that deposition of inorganic N in wetfall may affect the amount of NO3 in lakes through a combination of direct and indirect processes such as enhanced nitrification.

  8. Evaluating regional patterns in nitrate sources to watersheds in national parks of the Rocky Mountains using nitrate isotopes

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Elliott, E.M.; Kendall, C.

    2008-01-01

    In the Rocky Mountains, there is uncertainty about the source areas and emission types that contribute to nitrate (NO3) deposition, which can adversely affect sensitive aquatic habitats of high-elevation watersheds. Regional patterns in NO3 deposition sources were evaluated using NO3 isotopes in five National Parks, including 37 lakes and 7 precipitation sites. Results indicate that lake NO3 ranged from detection limit to 38 μeq/L, δ18O (NO3) ranged from −5.7 to +21.3‰, and δ15N (NO3) ranged from −6.6 to +4.6‰. δ18O (NO3) in precipitation ranged from +71 to +78‰. δ15N (NO3) in precipitation and lakes overlap; however, δ15N (NO3) in precipitation is more depleted than δ15N (NO3) in lakes, ranging from −5.5 to −2.0‰. δ15N (NO3) values are significantly related (p < 0.05) to wet deposition of inorganic N, sulfate, and acidity, suggesting that spatial variability of δ15N (NO3) over the Rocky Mountains may be related to source areas of these solutes. Regional patterns show that NO3 and δ15N (NO3) are more enriched in lakes and precipitation from the southern Rockies and at higher elevations compared to the northern Rockies. The correspondence of high NO3 and enriched δ15N (NO3) in precipitation with high NO3and enriched δ15N (NO3) in lakes, suggests that deposition of inorganic N in wetfall may affect the amount of NO3 in lakes through a combination of direct and indirect processes such as enhanced nitrification.

  9. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    PubMed

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate.

  10. Hydrologic and geologic characteristics of the Yucca Mountain site relevant to the performance of a potential repository: Day 1, Las Vegas, Nevada to Pahrump, Nevada: Stop 6A. Keane Wonder Spring and regional groundwater flow in the Death Valley region

    USGS Publications Warehouse

    Steinkampf, W.C.

    2000-01-01

    Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program, The first day focuses on the regional seeing with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be in southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The filed trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, and element of the hydrologic system that historically has received little attention. Discussions during the second day will comprise selected topics of Yucca Mountain geology, mic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.

  11. Retrieval of snow Specific Surface Area (SSA) from MODIS data in mountainous regions

    NASA Astrophysics Data System (ADS)

    Mary, A.; Dumont, M.; Dedieu, J.-P.; Durand, Y.; Sirguey, P.; Milhem, H.; Mestre, O.; Negi, H. S.; Kokhanovsky, A. A.

    2012-05-01

    This study describes a method to retrieve snow specific surface area (SSA) from satellite radiance reasurements in mountainous terrain. It aims at comparing different retrieval methods and at addressing topographic corrections of reflectance, namely slope and aspect of terrain and multiple reflections on neighbouring slopes. We use an iterative algorithm to compute reflectance from radiance of the MODerate resolution Imaging Spectrometer (MODIS) with a comprehensive correction of local illumination with regards to topography. The retrieved SSA is compared to the results of the snowpack model Crocus, fed by driving data from the SAFRAN meteorological analysis, over a large domain in the French Alps. We compared SSA retrievals with and without topographic or anisotropy correction, and with a spherical or non-spherical snow reflectance model. The topographic correction enables SSA to be retrieved in better agreement with those from SAFRAN-Crocus. The root mean square deviation is 10.0 m2 kg-1 and the bias is -0.6 m2 kg-1, over 3829 pixels representing seven different dates and snow conditions. The standard deviation of MODIS retrieved data, larger than the one of SAFRAN-Crocus estimates, is responsible for half this RMSD. It is due to the topographic classes used by SAFRAN-Crocus. In addition, MODIS retrieved data show SSA gradients with elevation and solar exposition, physically consistent and in good agreement with SAFRAN-Crocus.

  12. Probable Maximum Precipitation (PMP) over mountainous region of Cameron Highlands- Batang Padang Catchment of Malaysia

    NASA Astrophysics Data System (ADS)

    Sidek, L. M.; Mohd Nor, M. D.; Rakhecha, P. R.; Basri, H.; Jayothisa, W.; Muda, R. S.; Ahmad, M. N.; Razad, A. Z. Abdul

    2013-06-01

    The Cameron Highland Batang Padang (CHBP) catchment situated on the main mountain range of Peninsular Malaysia is of large economical importance where currently a series of three dams (Sultan Abu Bakar, Jor and Mahang) exist in the development of water resources and hydropower. The prediction of the design storm rainfall values for different return periods including PMP values can be useful to review the adequacy of the current spillway capacities of these dams. In this paper estimates of the design storm rainfalls for various return periods and also the PMP values for rainfall stations in the CHBP catchment have been computed for the three different durations of 1, 3 & 5 days. The maximum values for 1 day, 3 days and 5 days PMP values are found to be 730.08mm, 966.17mm and 969.0mm respectively at Station number 4513033 Gunung Brinchang. The PMP values obtained were compared with previous study results undertaken by NAHRIM. However, the highest ratio of 1 day, 3 day and 5 day PMP to highest observed rainfall are found to be 2.30, 1.94 and 1.82 respectively. This shows that the ratio tend to decrease as the duration increase. Finally, the temporal pattern for 1 day, 3day and 5 days have been developed based on observed extreme rainfall at station 4513033 Gunung Brinchang for the generation of Probable Maximum Flood (PMF) in dam break analysis.

  13. Stable isotope evidence for hydrologic conditions during regional metamorphism in the Panamint Mountains, California

    SciTech Connect

    Bergfeld, D.; Nabelek, P.I. . Dept. of Geological Sciences); Labotka, T.C. . Dept. of Geological Sciences)

    1992-01-01

    The Kingston Peak Formation forms part of the Panamint Mountains, California, metamorphic core-complex. Peak tremolite-grade metamorphism as exhibited in Wildrose Canyon occurred in the Jurassic; a retrograde thermal event may have occurred in the Cretaceous. The formation consists dominantly of interbedded siliceous limestones and graphitic calcareous schists. Stable isotopic analysis shows two distinct groups of data. delta O-18 values of calcite from the limestones range between 15.3 and 17.3[per thousand], probably reflecting their original Proterozoic depositional values. Likewise the delta C-13 values are also unshifted, ranging from +1% to +3.8%o. In contrast, delta O-18 values of calcite from the schists are for the most part > 20[per thousand]. These high values could reflect the original depostional conditions; however, they may be due to equilibration with silicate minerals which range from 14.9 to 17.9[per thousand]. Overall, the combined oxygen and carbon isotopic data indicate that most isotopic changes can be explained by closed-system equilibration. Only a limited amount of interaction with externally-derived fluids during metamorphism is evident in the isotopic data. The interaction may have been confined to vicinities of faults and fractures which are common in Wildrose Canyon.

  14. An effective modified water extraction method for Landsat-8 OLI imagery of mountainous plateau regions

    NASA Astrophysics Data System (ADS)

    Gao, H.; Wang, L.; Jing, L.; Xu, J.

    2016-04-01

    Water body extraction from remote sensing imagery is an efficient way to investigate and monitor water resources. In the study area of this research, a mountainous plateau near Kashgar, China, sparse vegetation and seasonal rivers affect water body extraction. In order to extract water bodies, a modified water body extraction method is proposed in this paper and tested using Landsat-8 OLI imagery. Following this method, binary images are first generated using a classification, a Tasseled Cap transform, and a normalized difference water index, respectively, and then combined to yield a mask. Next, water bodies are delineated by masking the Landsat-8 OLI imagery and then refined by eliminating false areas using a supervised classification. It is demonstrated from the resulting water body maps that terrain related shadows in imagery were effectively eliminated and river tributaries and artificial ditches were precisely delineated, with accuracy up to 94%. Compared with several current water body extraction methods, the modified method yielded water body maps with better visualization and slightly improved accuracy.

  15. Analysis of magnetotelluric profile data from the Ruby Mountains metamorphic core complex and southern Carlin Trend region, Nevada

    USGS Publications Warehouse

    Wannamaker, Philip E.; Doerner, William M.; Stodt, John A.; Sodergen, Timothy L.; Rodriguez, Brian D.

    2002-01-01

    We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings are in three east-west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass and Secret Pass latitudes). Two shorter lines cross a prominent east-west structure to the north of the northern profile. MT impedance tensor and vertical magnetic field rotations imply a N-NNE average regional geoelectric strike, similar to surface geologic trends. Model resistivity cross sections were derived using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure, emphasizing the transverse magnetic (TM) mode and vertical magnetic field data. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity-thickness product) from east to west. These increases in conductance are attributed to graphitization caused by Elko-Sevier era compressional shear deformation and

  16. Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps

    PubMed Central

    Frassy, Federico; Candiani, Gabriele; Rusmini, Marco; Maianti, Pieralberto; Marchesi, Andrea; Nodari, Francesco Rota; Via, Giorgio Dalla; Albonico, Carlo; Gianinetto, Marco

    2014-01-01

    The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d'Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification's accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified. PMID:25166502

  17. Mapping asbestos-cement roofing with hyperspectral remote sensing over a large mountain region of the Italian Western Alps.

    PubMed

    Frassy, Federico; Candiani, Gabriele; Rusmini, Marco; Maianti, Pieralberto; Marchesi, Andrea; Rota Nodari, Francesco; Dalla Via, Giorgio; Albonico, Carlo; Gianinetto, Marco

    2014-08-27

    The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d'Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification's accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified.

  18. Atmospheric Flow over a Mountainous Region by a One-Way Coupled Approach Based on Reynolds-Averaged Turbulence Modelling

    NASA Astrophysics Data System (ADS)

    Rodrigues, C. Veiga; Palma, J. M. L. M.; Rodrigues, Á. H.

    2016-05-01

    The atmospheric flow over a mountainous region has been simulated using a model-chain approach, whereby the flow in a larger region was simulated using a mesoscale model with three nesting levels, down to a 3-km horizontal resolution, within which a fourth nesting level was set with a microscale flow solver and a domain with varying horizontal resolution, around 300 m at the site of interest. Two periods in the summer (July) and autumn (November-December) 2005, each with a duration of two weeks, were selected to test the present approach. Two sites were chosen, comprising a total of seven meteorological masts with wind vanes and anemometers at two heights. The microscale solver improved the wind-speed prediction of the mesoscale model in 10 of the 14 anemometers and replicated the high wind speeds, which were under-predicted in the mesoscale model. The wind conditions in summer varied with the daily cycle, related to regional-scale sea breezes and their interaction with local circulations induced by the topography. Regarding the turbulence intensity, the predicted decay with wind-speed increase was in agreement with the measurements. This study shows the need of both models: the microscale model captures the details of the boundary-layer physics, which would not be possible without the boundary conditions provided by the mesoscale model.

  19. Low-BTU gas in the Rocky Mountain region - Colorado, Wyoming, New Mexico, and Utah

    SciTech Connect

    Tremain, C.M. ); Broadhead, R.E. ); Chidsey, T.C. Jr. ); Doelger, M. ); Morgan, C.D. )

    1993-08-01

    There are over 100 reservoirs in Colorado, Wyoming, New Mexico, and Utah that produce or could produce low-BTU (heating value less than 900 BTU/ft[sup 3]) gas. Reservoirs range in age from Devonian to Cretaceous; reservoir lithologies include both carbonates and sandstones. Frequently, the low-BTU gas (CO[sub 2], N[sub 2], and He) is a byproduct of normal hydrocarbon production. CO[sub 2]-rich gas occurs in southwest to east-central Utah, in the southeastern Paradox basin (Utah and Colorado), in the North Park basin (Colorado), in southeast Colorado and northeast New Mexico, and in the Green River and Wind River basins (Wyoming). Five fields produce nearly pure (98%) CO[sub 2]. The 1990 annual CO[sub 2] production from these fields was North and South McCallum (Colorado), 1.7 bcf; McElmo (Colorado), 205 bcf; Sheep Mountain (Colorado), 70.7 bcf; and Bravo Dome (New Mexico), 119.7 bcf. Big Piney-LaBarge (Wyoming) produced 120 bcf of CO[sub 2] (at a concentration of 65%) in 1990. Most of the CO[sub 2] is used in enhanced oil recovery. Nitrogen-rich gas is found in the southern Green River basin (Utah and Wyoming), east flank of the San Rafael uplift (Utah), northern Paradox basin (Utah), Uncompahgre uplift (Utah and Colorado), Douglas Creek arch (Colorado), Hugoton embayment (Colorado), Las Animas arch (Colorado), Permian basin (New Mexico), and Four Corners platform (New Mexico). Helium is sometimes associated with the nitrogen and in concentrations of up to 8% in New Mexico and Colorado, 2.8% in Utah, and 1% in Wyoming.

  20. Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA

    USGS Publications Warehouse

    Burns, Douglas A.; Klaus, Julian; McHale, Michael R.

    2007-01-01

    Climate scientists have concluded that the earth’s surface air temperature warmed by 0.6 °C during the 20th century, and that warming induced by increasing concentrations of greenhouse gases is likely to continue in the 21st century, accompanied by changes in the hydrologic cycle. Climate change has important implications in the Catskill region of southeastern New York State, because the region is a source of water supply for New York City. We used the non-parametric Mann–Kendall test to evaluate annual, monthly, and multi-month trends in air temperature, precipitation amount, stream runoff, and potential evapotranspiration (PET) in the region during 1952–2005 based on data from 9 temperature sites, 12 precipitation sites, and 8 stream gages. A general pattern of warming temperatures and increased precipitation, runoff, and PET is evident in the region. Regional annual mean air temperature increased significantly by 0.6 °C per 50 years during the period; the greatest increases and largest number of significant upward trends were in daily minimum air temperature. Daily maximum air temperature showed the greatest increase during February through April, whereas minimum air temperature showed the greatest increase during May through September. Regional mean precipitation increased significantly by 136 mm per 50 years, nearly double that of the regional mean increase in runoff, which was not significant. Regional mean PET increased significantly by 19 mm per 50 years, about one-seventh that of the increase in precipitation amount, and broadly consistent with increased runoff during 1952–2005, despite the lack of significance in the mean regional runoff trend. Peak snowmelt as approximated by the winter–spring center of volume of stream runoff generally shifted from early April at the beginning of the record to late March at the end of the record, consistent with a decreasing trend in April runoff and an increasing trend in maximum March air

  1. Severe deep convection events in the Andes region (Mendoza, Argentina) and their relation with large amplitude mountain waves

    NASA Astrophysics Data System (ADS)

    de la Torre, Alejandro; Hierro, Lic. R.; Llamedo, Lic. P.; Rolla, Lic. A.; Alexander, Peter

    In addition to an environmental lapse rate conditionally unstable and sufficient available mois-ture, some process by which a parcel is lifted to its LFC is required for the occurrence of deep convection. Since rising motions associated with synoptic scale processes are too weak to lift a moist parcel to its LFC, some strong sub-synoptic mechanism such us upward motion over a frontal zone, anabatic/katabatic winds or mountain waves are required to supply the necessary energy to trigger deep convection. We analyze here, two selected recent severe storms developed in the absence of fronts and registered at the south of Mendoza, Argentina, a semiarid region situated at midlatitudes (roughly between 32S and 36S) at the east of the highest Andes tops. The storms were initiated at the same local time. In both cases, large amplitude stationary mountain waves with similar wavelengths were generated through the forcing of the NW wind by the Andes Range, just before the first cell was detected in the S-band radar. Mesoscale model simulatons (WRF3V, three domains, inner at 4 km) were conducted. The wave pat-tern was analyzed at several constant pressure levels with a Morlet wavelet. This wavelet has proven to be a useful technique for this purpose, as propagating mountain waves are well local-ized within a horizontal domain of some hundred kilometers. The simulated evolution in space and time of vertical wind oscillations (even better than reflectivity) reveal their influence in the genesis zone of both storms. The synoptic conditions observed (low-pressure system over the NW of Argentina, slow displacement of anticyclones in Pacific and Atlantic oceans, a low level jet carrying warm and moist air from the N and geopotential distribution at 1000, 500 and 300 hPa) are consistent with earlier works. We describe and discuss, in both cases, i) the vertical and horizontal wavelengths, ii) the direction of propagation of the main wave modes, iii) their lineal polarization and phase

  2. How the Presence of Tenure Relates to Institutional Performance Factors at Publicly-Funded Two-Year Colleges in the Mountain States' Region

    ERIC Educational Resources Information Center

    Hardy, Russell F.

    2013-01-01

    This study examined how the presence of formal tenure systems at publicly-funded two-year colleges in the Mountain States' region of the United States relates to differences in the common institutional performance factors of graduation rate, retention rate, and unrestricted instructional cost per FTE student as reported to the Integrated…

  3. Predicting the Spatial Distribution of Wolf (Canis lupus) Breeding Areas in a Mountainous Region of Central Italy.

    PubMed

    Bassi, Elena; Willis, Stephen G; Passilongo, Daniela; Mattioli, Luca; Apollonio, Marco

    2015-01-01

    Wolves (Canis lupus) in Italy represent a relict west European population. They are classified as vulnerable by IUCN, though have increased in number and expanded their range in recent decades. Here we use 17 years of monitoring data (from 1993 to 2010) collected in a mountainous region of central Italy (Arezzo, Tuscany) in an ecological niche-based model (MaxEnt) to characterize breeding sites (i.e. the areas where pups were raised) within home ranges, as detected from play-back responses. From a suite of variables related to topography, habitat and human disturbance we found that elevation and distance to protected areas were most important in explaining the locality of wolf responses. Rendezvous sites (family play-back response sites) typically occurred between 800 and 1200 m a.s.l., inside protected areas, and were usually located along mountain chains distant from human settlements and roads. In these areas human disturbance is low and the densities of ungulates are typically high. Over recent years, rendezvous sites have occurred closer to urban areas as the wolf population has continued to expand, despite the consequent human disturbance. This suggests that undisturbed landscapes may be reaching their carrying capacity for wolves. This, in turn, may lead to the potential for increased human-wolf interactions in future. Applying our model, both within and beyond the species' current range, we identify sites both within the current range and also further afield, that the species could occupy in future. Our work underlines the importance of the present protected areas network in facilitating the recolonisation by wolves. Our projections of suitability of sites for future establishment as the population continues to expand could inform planning to minimize future wolf-human conflicts.

  4. Silurian, Devonian, and Mississippian Formations of the Funeral Mountains in the Ryan Quadrangle, Death Valley Region, California

    USGS Publications Warehouse

    McAllister, James Franklin

    1974-01-01

    A composite section of the Silurian, Devonian, and Mississippian formations in the Funeral Mountains between Death Valley and Amargosa Valley is about 4,700 feet thick. The formations are in the top of a concordant, complexly faulted sequence that is about 25,000 feet thick from the highest part of the Precambrian to the Upper Mississippian. The Silurian and younger formations consist of marine dolomite and limestone that contain some regionally characteristic cherty and siliceous clastic beds as well as widely spaced fossiliferous zones. The Hidden Valley Dolomite, overlying the Ordovician Ely Springs Dolomite, is 1,440 feet thick except in the southeast end of the area where it is 870 feet thick. Cherty dark dolomite in the lower part of the Hidden Valley contains Silurian (possibly Llandovery, clearly Wenlock, and probably Ludlow) fossils; dolomite in a somewhat argillaceous and silty uppermost part contains Lower Devonian (upper Emsian) fossils. The Lost Burro Formation, 2,640 feet thick, has Middle Devonian (Givetian) fossils stratigraphically high in the lower part of the formation, which consists of dolomite above the basal Lippincott Member. It has Upper Devonian (Frasnian) fossils midway in the upper part, which consists predominantly of limestone. The Tin Mountain Limestone, 315 feet thick, contains abundant Lower Mississippian (Kinderhookian and Osagean) fossils. The Perdido Formation, which is incomplete and no more than 500 feet thick under unconformable Cenozoic continental rocks, consists mostly of limestone, chert, and siltstone. Fossils, which are scarce, include Upper Mississippian (Meramecian) microfossils 205 feet above the base of the Perdido.

  5. Predicting the Spatial Distribution of Wolf (Canis lupus) Breeding Areas in a Mountainous Region of Central Italy

    PubMed Central

    Bassi, Elena; Willis, Stephen G.; Passilongo, Daniela; Mattioli, Luca; Apollonio, Marco

    2015-01-01

    Wolves (Canis lupus) in Italy represent a relict west European population. They are classified as vulnerable by IUCN, though have increased in number and expanded their range in recent decades. Here we use 17 years of monitoring data (from 1993 to 2010) collected in a mountainous region of central Italy (Arezzo, Tuscany) in an ecological niche-based model (MaxEnt) to characterize breeding sites (i.e. the areas where pups were raised) within home ranges, as detected from play-back responses. From a suite of variables related to topography, habitat and human disturbance we found that elevation and distance to protected areas were most important in explaining the locality of wolf responses. Rendezvous sites (family play-back response sites) typically occurred between 800 and 1200 m a.s.l., inside protected areas, and were usually located along mountain chains distant from human settlements and roads. In these areas human disturbance is low and the densities of ungulates are typically high. Over recent years, rendezvous sites have occurred closer to urban areas as the wolf population has continued to expand, despite the consequent human disturbance. This suggests that undisturbed landscapes may be reaching their carrying capacity for wolves. This, in turn, may lead to the potential for increased human-wolf interactions in future. Applying our model, both within and beyond the species’ current range, we identify sites both within the current range and also further afield, that the species could occupy in future. Our work underlines the importance of the present protected areas network in facilitating the recolonisation by wolves. Our projections of suitability of sites for future establishment as the population continues to expand could inform planning to minimize future wolf-human conflicts. PMID:26035174

  6. Late Paleogene topography of the Central Rocky Mountains and western Great Plains region using hydrogen isotope ratios in volcanic glass

    NASA Astrophysics Data System (ADS)

    Rossetto, G.; Fricke, H. C.; Cassel, E. J.; Evanoff, E.

    2015-12-01

    The Central Rocky Mountains (CRM), located in southern Wyoming, Colorado, and northern New Mexico, are characterized by the highest elevation basins (up to 2500 m) and mountains (over 4000 m) in the North American Cordillera. The timing and drivers for surface uplift of the CRM have not been conclusively determined. The goal of this study is to constrain the timing of surface uplift of the CRM by comparing hydrogen isotope ratios of hydration waters (δDglass) in late Paleogene volcanic glasses preserved in felsic tuffs deposited in CRM basins to δDglass values from glasses of similar age (34.9 to 32.2 Ma) preserved in tuffs from the surrounding Great Plains. The tuffs deposited in the Great Plains, to the north and east of the CRM, are currently at elevations of 1100-1600 m. Volcanic glass hydrates shortly after deposition, preserving the δD of ancient meteoric water on geologic timescales, and can thus be used as a proxy for ancient precipitation δD values. Volcanic glasses from the CRM have δDglass values that are an average of ~31‰ higher than δDglass values from the Great Plains, while modern day precipitation δD values in the CRM are ~25‰ lower than δD values in the Great Plains. These results suggest that the uplift of the CRM relative to the surrounding Great Plains occurred after ~32 Ma. This requires a mechanism such as mantle upwelling or differential crustal hydration, not solely Laramide tectonism, to uplift the CRM to current elevations. Elevation, however, may not have been the only control on the spatial distribution of precipitation δD values across the western US. Similar to the modern, mixing of Pacific and Gulf coast air masses likely occurred during the latest Paleogene, driving regional variability in δD values of precipitation.

  7. Utilizing ERTS-A imagery for tectonic analysis through study of the Bighorn Mountains Region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Preliminary vegetation analysis has been undertaken on MSS scene 1085-17294, Oct. 16, 1973 in the Bighorn region. Forest Service maps showing detailed distribution of dominant forest types have been compared with MSS bands 5 and 7 positive transparencies, enlarged positive prints, and color imagery produced on an Addcol viewer. Patterns on the ERTS imagery match those on the Forest Service maps quite well. A tectonic map ovearlay of MSS band 7 of the Bighorn region reveals a strong concentration of linears in the uplift as compared to basins. Folds in the Bighorn Basin are visible where not covered by post-Paleocene deposits. In regions where far less is known of the geology than in this area, it might be possible to predict the subsurface occurrence of folds and lineaments on the basis of imagery analysis and more confidently explore covered areas for concealed oil structures and mineral deposits.

  8. Regional trends in aquatic recovery from acidification in North America and Europe

    USGS Publications Warehouse

    Stoddard, J.L.; Jeffries, D.S.; Lukewille, A.; Clair, T.A.; Dillon, P.J.; Driscoll, C.T.; Forsius, M.; Johannessen, M.; Kahl, J.S.; Kellogg, J.H.; Kemp, A.; Mannlo, J.; Monteith, D.T.; Murdoch, Peter S.; Patrick, S.; Rebsdorl, A.; Skjelkvale, B.L.; Stainton, M.P.; Traaen, T.; Van Dam, H.; Webster, K.E.; Wleting, J.; Wllander, A.

    1999-01-01

    Rates of acidic deposition from the atmosphere ('acid rain') have decreased throughout the 1980s and 1990s across large portions of North America and Europe. Many recent studies have attributed observed reversals in surface-water acidification at national and regional scales to the declining deposition. To test whether emissions regulations have led to widespread recovery in surface-water chemistry, we analysed regional trends between 1980 and 1995 in indicators of acidification (sulphate, nitrate and base-cation concentrations, and measured (Gran) alkalinity) for 205 lakes and streams in eight regions of North America and Europe. Dramatic differences in trend direction and strength for the two decades are apparent. In concordance with general temporal trends in acidic deposition, lake and stream sulphate concentrations decreased in all regions with the exception of Great Britain all but one of these regions exhibited stronger downward trends in the 1990s than in the 1980s. In contrast, regional declines in lake and stream nitrate concentrations were rare and, when detected, were very small. Recovery in alkalinity, expected wherever strong regional declines in sulphate concentrations have occurred, was observed in all regions of Europe, especially in the 1990s, but in only one region (of five) in North America. We attribute the lack of recovery in three regions (south/central Ontario, the Adirondack/Catskill mountains and midwestern North America) to strong regional declines in base-cation concentrations that exceed the decreases in sulphate concentrations.

  9. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  10. Isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica.

    PubMed

    Sánchez-Murillo, Ricardo; Esquivel-Hernández, Germain; Sáenz-Rosales, Oscar; Piedra-Marín, Gilberto; Fonseca-Sánchez, Alicia; Madrigal-Solís, Helga; Ulloa-Chaverri, Franz; Rojas-Jiménez, Luis D; Vargas-Víquez, José A

    2017-03-01

    The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of (18)O/(16)O and (2)H/H ratios. A parsimonious four-variable regression model (r(2 )= 0.52) was able to predict daily δ(18)O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.

  11. Crustal structure of the Bighorn Mountains region: Precambrian influence on Laramide shortening and uplift in north-central Wyoming

    NASA Astrophysics Data System (ADS)

    Worthington, Lindsay L.; Miller, Kate C.; Erslev, Eric A.; Anderson, Megan L.; Chamberlain, Kevin R.; Sheehan, Anne F.; Yeck, William L.; Harder, Steven H.; Siddoway, Christine S.

    2016-01-01

    The crustal structure of north-central Wyoming records a history of complex lithospheric evolution from Precambrian accretion to Cretaceous-Paleogene Laramide shortening. We present two active source P wave velocity model profiles collected as part of the Bighorn Arch Seismic Experiment in 2010. Analyses of these velocity models and single-fold reflection data, together with potential field modeling of regional gravity and magnetic signals, constrain crustal structure and thickness of the Bighorn region. We image a west dipping reflection boundary and model a sharp magnetic contact east of the Bighorn Arch that together may delineate a previously undetected Precambrian suture zone. Localized patches of a high-velocity, high-density lower crustal layer (the "7.× layer") occur across the study area but are largely absent beneath the Bighorn Arch culmination. Moho topography is relatively smooth with no large-scale offsets, with depths ranging from ~50 to 37 km, and is largely decoupled from Laramide basement topography. These observations suggest that (1) the edge of the Archean Wyoming craton lies just east of the Bighorn Mountains, approximately 300 km west of previous interpretations, and (2) Laramide deformation localized in an area with thin or absent 7.× layer, due to its relatively weak lower crust, leading to detachment faulting. Our findings show that Precambrian tectonics in northern Wyoming may be more complicated than previously determined and subsequent Laramide deformation may have been critically dependent on laterally heterogeneous crustal structure that can be linked to Precambrian origins.

  12. Spatio-temporal variability of the snow cover in different Mediterranean mountain regions from in situ and remote sensing data

    NASA Astrophysics Data System (ADS)

    Gascoin, Simon; López-Moreno, Juan Ignacio; Herrero, Javier; Sproles, Eric; Hanich, Lahoucine; Boudhar, Abdelghani; Pons, Marc; Alonso-González, Esteban; Musselman, Keith

    2016-04-01

    The snow cover is an essential water resource in many regions with a Mediterranean climate. In the mountainous areas of these regions, in situ snow measurements are often too sparse to cover the range of spatial variability due to the topography. In contrast, satellite snow products are not sufficient to understand the processes governing the snowpack evolution. The combination of both data sources is useful to understand the effects of climate variability on the snow cover. Here we gathered the data of several high-elevation, snow-observing stations in the Pyrenees (Spain, Andorra), High-Atlas (Morocco), Sierra Nevada (Spain), Sierra Nevada (USA) and the Andes of Norte Chico (Chile) to run a point-scale snowpack energy-balance model. We extracted and gapfilled the MODIS snow product over 2000-2015 around each station to determine the mean snow cover duration as a function of elevation. The results of the energy-balance model highlight the importance of the snow sublimation, which amounts from 10% to 30% of the mean annual solid precipitation in these sites. The MODIS data indicate that the relationship between the snow cover duration and the elevation is almost entirely explained by the distance from of each site to the equator, which further indicates that radiation and humidity are important drivers of the snowpack dynamics. These factors should not be overlooked in the projections of the melt water contribution to runoff under future climate conditions.

  13. THE EXTENT OF MINE DRAINAGE INTO STREAMS OF THE CENTRAL APPALACHIAN AND ROCKY MOUNTAIN REGIONS

    EPA Science Inventory

    Runoff and drainage from active and inactive mines are contaminating streams throughout the United States with acidic and metal contaminated waters and sediments. The extent of mining impacts on streams of the coal bearing region of the Central Appalachians and the metal bearing...

  14. The direct impact of landslides on household income in tropical regions: A case study from the Rwenzori Mountains in Uganda.

    PubMed

    Mertens, K; Jacobs, L; Maes, J; Kabaseke, C; Maertens, M; Poesen, J; Kervyn, M; Vranken, L

    2016-04-15

    Landslides affect millions of people worldwide, but theoretical and empirical studies on the impact of landslides remain scarce, especially in Sub-Saharan Africa. This study proposes and applies a method to estimate the direct impact of landslides on household income and to investigate the presence of specific risk sharing and mitigation strategies towards landslides in a tropical and rural environment. An original cross-sectional household survey is used in combination with geographical data to acquire detailed information on livelihoods and on hazards in the Rwenzori mountains, Uganda. Ordinary least square regressions and probit estimations with village fixed effects are used to estimate the impact of landslides and the presence of mitigation strategies. Geographical information at household level allows to disentangle the direct impact from the indirect effects of landslides. We show that the income of affected households is substantially reduced during the first years after a landslide has occurred. We find that members of recently affected households participate more in wage-employment or in self-employed activities, presumably to address income losses following a landslide. Yet, we see that these jobs do not provide sufficient revenue to compensate for the loss of income from agriculture. Given that landslides cause localized shocks, finding a significant direct impact in our study indicates that no adequate risk sharing mechanisms are in place in the Rwenzori sub-region. These insights are used to derive policy recommendations for alleviating the impact of landslides in the region. By quantifying the direct impact of landslides on household income in an agricultural context in Africa this study draws the attention towards a problem that has been broadly underestimated so far and provides a sound scientific base for disaster risk reduction in the region. Both the methodology and the findings of this research are applicable to other tropical regions with high

  15. How a geomorphosite inventory can contribute to regional sustainable development? The case of the Simen Mountains National Park, Ethiopia

    NASA Astrophysics Data System (ADS)

    Mauerhofer, Lukas; Reynard, Emmanuel; Asrat, Asfawossen; Hurni, Hans; Wildlife Conservation Authority, Ethiopian

    2016-04-01

    This research aimed at investigating how an inventory of geomorphosites can foster or improve the knowledge and management of geomorphological heritages in the context of developing countries. Accordingly, a geomorphosite inventory in the Simen Mountains National Park (SMNP), Ethiopia was conducted following the method of Reynard et al. (2015). The national context of geoheritage and geoconservation in Ethiopia was appraised and a road map for the management of the inventoried sites in the SMNP was elaborated. Ethiopia hosts numerous geoheritage sites, some of which of highest international significance. Therefore, geotourism has recently been promoted throughout the country (Asrat et al., 2008). Despite numerous trials of the scientific community, there is not yet a national policy for geoconservation in the country. Many parts of Ethiopia are underdeveloped in terms of economic subsistence and infrastructure, making these immediate priorities over conservation efforts. Nevertheless, this study showed that the Simen Mountains have the potential to become a UNESCO Global Geopark and that geosites could be used to develop geotourism within SMNP, and that development and conservation are not contradictory. Twenty-one geomorphosites were identified and assessed. Diverse geomorphological contexts including fluvial, structural, glacial, periglacial, anthropic and organic characterize the SMNP. The temporal stages, which allow the reconstitution of the morphogenesis of the Simen Mountains, are the Cenozoic volcanism, Last Glacial Maximum, Holocene as well as historic/modern landscape modification. Four synthesis maps were elaborated to present the results of the assessment. The average scientific value of the inventoried geomorphosites is very high compared to other inventories realized using the same method. This is particularly due to the extremely high integrity of the sites. Almost all geomorphosites are in a good state of conservation and only few sites are

  16. Review: Natural tracers in fractured hard-rock aquifers in the Austrian part of the Eastern Alps—previous approaches and future perspectives for hydrogeology in mountain regions

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke

    2016-08-01

    Extensive in-depth research is required for the implementation of natural tracer approaches to hydrogeological investigation to be feasible in mountainous regions. This review considers the application of hydrochemical and biotic parameters in mountain regions over the past few decades with particular reference to the Austrian Alps, as an example for alpine-type mountain belts. A brief introduction to Austria's hydrogeological arrangement is given to show the significance of fractured hard-rock aquifers for hydrogeological science as well as for water supply purposes. A literature search showed that research concerning fractured hard-rock aquifers in Austria is clearly underrepresented to date, especially when taking the abundance of this aquifer type and the significance of this topic into consideration. The application of abiotic natural tracers (hydrochemical and isotope parameters) is discussed generally and by means of examples from the Austrian Alps. The potential of biotic tracers (microbiota and meiofauna) is elucidated. It is shown that the meiofauna approach to investigating fractured aquifers has not yet been applied in the reviewed region, nor worldwide. Two examples of new approaches in mountainous fractured aquifers are introduced: (1) use of CO2 partial pressure and calcite saturation of spring water to reconstruct catchments and flow dynamics (abiotic approach), and, (2) consideration of hard-rock aquifers as habitats to reconstruct aquifer conditions (biotic approach).

  17. The origin of garnet in the anorthosite-charnockite suite of the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1977-01-01

    Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: {Mathematical expression}, where ?? is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ?? orthopyroxene ?? quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies. ?? 1977 Springer-Verlag.

  18. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    SciTech Connect

    Revetta, F.A.; O'Brian, B. . Geology Dept.)

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate with the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.

  19. Using Satellite Imagery to Assess Large-Scale Habitat Characteristics of Adirondack Park, New York, USA

    NASA Astrophysics Data System (ADS)

    McClain, Bobbi J.; Porter, William F.

    2000-11-01

    Satellite imagery is a useful tool for large-scale habitat analysis; however, its limitations need to be tested. We tested these limitations by varying the methods of a habitat evaluation for white-tailed deer ( Odocoileus virginianus) in the Adirondack Park, New York, USA, utilizing harvest data to create and validate the assessment models. We used two classified images, one with a large minimum mapping unit but high accuracy and one with no minimum mapping unit but slightly lower accuracy, to test the sensitivity of the evaluation to these differences. We tested the utility of two methods of assessment, habitat suitability index modeling, and pattern recognition modeling. We varied the scale at which the models were applied by using five separate sizes of analysis windows. Results showed that the presence of a large minimum mapping unit eliminates important details of the habitat. Window size is relatively unimportant if the data are averaged to a large resolution (i.e., township), but if the data are used at the smaller resolution, then the window size is an important consideration. In the Adirondacks, the proportion of hardwood and softwood in an area is most important to the spatial dynamics of deer populations. The low occurrence of open area in all parts of the park either limits the effect of this cover type on the population or limits our ability to detect the effect. The arrangement and interspersion of cover types were not significant to deer populations.

  20. The effects of liming an Adirondack lake watershed on downstream water chemistry: Effects of liming on stream chemistry

    USGS Publications Warehouse

    Burns, Douglas A.

    1996-01-01

    Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO3- and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO42- and NO3- concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO42--reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO42- reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 ??eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+, as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+, H+, AlIM, and DOC revealed net downstream losses of

  1. Effect of whole catchment liming on the episodic acidification of two adirondack streams

    USGS Publications Warehouse

    Newton, R.M.; Burns, Douglas A.; Blette, V.L.; Driscoll, C.T.

    1996-01-01

    During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 ??eq/L in one of the streams and more than 1000 ??eq/L in the other, from pre-liming values which ranged from -25 to +40 ??eq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams. After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO3- concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO3- concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO3- concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment. In stream WO2 (40ha), Ca2+ concentrations were much

  2. Historical Trends of Trace Metals in Lake Sediments From Adirondack Park, New York

    NASA Astrophysics Data System (ADS)

    Swami, K.; Judd, C. D.; Khan, A. J.; Bari, A.; Ahmed, T.; Husain, L.

    2009-05-01

    Burning of fossil fuel and many industrial operations emit large quantities of trace metals bearing aerosols along with other pollutants into the atmosphere. The pollutants can be transported thousands of kilometers downwind from their source. They are ultimately removed from the atmosphere by wet and dry deposition. Lake sediments can be used to provide a record of the environmental changes that have occurred in the past. In this study we determined the concentrations of trace metals from two lake sediment cores collected from Clear Pond and West Pine Pond, located in the Adirondack Park region in upstate New York. These lakes were chosen as they are remote and have minimum local sources of pollution. The cores were sliced into thin sections, dried and weighed. The sediment cores were dated using the 210Pb technique. The top sixteen sections of the West Pine Pond and Clear Pond sediment represented deposits from about 1821 to 2005, and around 1880 to 2007, respectively. A microwave digestion procedure was used to separate trace metals from organic matter and silicates. The trace element concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). These samples were analyzed for As, Se, Mo, Cd, Sn, Sb, Co, Ni, Cu, Ag, Ti, V, Cr, Mn, Fe, Zn, K, Na, Ca, Mg, Ba, Sr, Be, Hg, Tl, and Pb. The lithophilic elements Ba, Sr, Al, Ti, K, Na, Ca, Mg and Sr showed little increase over the entire period studied in both lakes. Vanadium and Cr showed little increase in the West Pine Pond core (1.2 and 1.4 times the preindustrial level, resp.), but increased more (1.7 and 2.0, resp.) in the Clear Pond core. The elements As, Se, Mo, Cd, Sn, Sb, Co, Ni, Cu, Mn, Fe, Zn, Hg, Tl, V and Pb showed significant increases due to anthropogenic inputs. Lead showed the greatest increase over the preindustrial baseline concentration, a 12-fold increase in Clear Pond and 24-fold in West Pine Pond. Large increases were also seen in Se and Hg ranging from (2.4 to 10

  3. Timing of Proterozoic regional deformation in the southern Manzano Mountains, central New Mexico

    SciTech Connect

    Bauer, P.W. ); Bowring, S.A. . Dept. of Earth, Atmospheric, and Planetary Sciences); Karlstrom, K.E. . Dept. of Geology)

    1992-01-01

    Early Proterozoic supracrustal and plutonic rocks of the Manzano Mtns have sustained a remarkably complex history of ductile deformation, metamorphism, and plutonism. A comparison of field relations and deformational features between the two southernmost plutons suggests that they differ greatly in timing of intrusion with respect to regional deformation. The Monte Largo pluton consists of medium-grained granodiorite and quartz monzonite that is bounded on three sides by strongly deformed quartzite and phyllite. An S1 foliation is folded by upright, N-trending folds (F2). S2, axial planar to F2, is mylonitic along the E pluton margin. The degree of deformation in the pluton is comparable to that in the country rock. The Monte Largo pluton has a U-Pb zircon age of ca. 1.66 Ga. The Priest pluton is a 10-km-long, N-S elongate, megacrystic quartz monzonite that is intrusive into quartzite sand schists. Large microcline crystals define a magmatic foliation. The body contains a weakly to moderately well-developed NE-striking tectonic foliation defined by flattened quartz grains, best developed along the W margin. On the N end of the pluton, map-scale folds in quartzite and schist have been cross-cut, and a contact metamorphic aureole cross-cuts country rock structures. The degree of deformation in the pluton is significantly less than that of country rock quartzites, some of which are mylonitic. The Priest Pluton has a U-Pb zircon age of ca. 1.45 Ga. These data suggest that the ca. 1.66 Ga Monte Largo pluton is syntectonic with respect to regional deformation, whereas the ca. 1.45 Ga priest pluton is post-tectonic with respect to the regional deformation.

  4. Accelerated construction of a regional DNA-barcode reference library: Caddisflies (Trichoptera) in the Great Smoky Mountains National Park

    USGS Publications Warehouse

    Zhou, X.; Robinson, J.L.; Geraci, C.J.; Parker, C.R.; Flint, O.S.; Etnier, D.A.; Ruiter, D.; DeWalt, R.E.; Jacobus, L.M.; Hebert, P.D.N.

    2011-01-01

    Deoxyribonucleic acid (DNA) barcoding is an effective tool for species identification and lifestage association in a wide range of animal taxa. We developed a strategy for rapid construction of a regional DNA-barcode reference library and used the caddisflies (Trichoptera) of the Great Smoky Mountains National Park (GSMNP) as a model. Nearly 1000 cytochrome c oxidase subunit I (COI) sequences, representing 209 caddisfly species previously recorded from GSMNP, were obtained from the global Trichoptera Barcode of Life campaign. Most of these sequences were collected from outside the GSMNP area. Another 645 COI sequences, representing 80 species, were obtained from specimens collected in a 3-d bioblitz (short-term, intense sampling program) in GSMNP. The joint collections provided barcode coverage for 212 species, 91% of the GSMNP fauna. Inclusion of samples from other localities greatly expedited construction of the regional DNA-barcode reference library. This strategy increased intraspecific divergence and decreased average distances to nearest neighboring species, but the DNA-barcode library was able to differentiate 93% of the GSMNP Trichoptera species examined. Global barcoding projects will aid construction of regional DNA-barcode libraries, but local surveys make crucial contributions to progress by contributing rare or endemic species and full-length barcodes generated from high-quality DNA. DNA taxonomy is not a goal of our present work, but the investigation of COI divergence patterns in caddisflies is providing new insights into broader biodiversity patterns in this group and has directed attention to various issues, ranging from the need to re-evaluate species taxonomy with integrated morphological and molecular evidence to the necessity of an appropriate interpretation of barcode analyses and its implications in understanding species diversity (in contrast to a simple claim for barcoding failure).

  5. Experiment to evaluate feasibility of utilizing Skylab-EREP remote sensing data for tectonic analysis of the Bighorn Mountains region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. S-190A color transparencies from SL-2 of the Big Horn basin region provide the best format to date for geologic study of that region; red beds are quite mappable and resistant key beds sharply outlined. An S-190B color frame from SL-3 of the Pryor-Bighorn mountains provides no indication that the Nye-Bowler lineament extends east of East Pryor Mountain. This has important implications regarding the role of this and other lineaments (which also appear to be of restricted length) in the tectonics of the region. Extensions of these lineaments for great distances does not seem warranted on the basis of surface evidence.

  6. Geographical differentiation of the Euchiloglanis fish complex (Teleostei: Siluriformes) in the Hengduan Mountain Region, China: Phylogeographic evidence of altered drainage patterns.

    PubMed

    Li, Yanping; Ludwig, Arne; Peng, Zuogang

    2017-02-01

    The uplift of the Tibetan Plateau caused significant ecogeographical changes that had a major impact on the exchange and isolation of regional fauna and flora. Furthermore, Pleistocene glacial oscillations were linked to temporal large-scale landmass and drainage system reconfigurations near the Hengduan Mountain Region and might have facilitated speciation and promoted biodiversity in southwestern China. However, strong biotic evidence supporting this role is lacking. Here, we use the Euchiloglanis fish species complex as a model to demonstrate the compound effects of the Tibetan Plateau uplift and Pleistocene glacial oscillations on species formation in this region. The genetic structure and geographical differentiation of the Euchiloglanis complex in four river systems within the Hengduan Mountain Region were deduced using the cytochrome b (cyt b) gene and 10 microsatellite loci from 360 to 192 individuals, respectively. The results indicated that the populations were divided into four independently evolving lineages, in which the populations from the Qingyi River and Jinsha River formed two sub-lineages. Phylogenetic relationships were structured by geographical isolation, especially near drainage systems. Divergence time estimation analyses showed that the Euchiloglanis complex diverged from its sister clade Pareuchiloglanis sinensis at around 1.3 Million years ago (Ma). Within the Euchiloglanis complex, the divergence time between the Dadu-Yalong and Jinsha-Qingyi River populations occurred at 1.0 Ma. This divergence time was in concordance with recent geological events, including the Kun-Huang Movement (1.2-0.6 Ma) and the lag time (<2.0 Ma) of river incision in the Hengduan Mountain Region. Population expansion signals were detected from mismatched distribution analyses, and the expansion times were concurrent with Pleistocene glacier fluctuations. Therefore, current phylogeographic patterns of the Euchiloglanis fish complex in the Hengduan Mountain

  7. Ensemble data assimilation using passive and active microwave observations of precipitation in mountainous regions

    NASA Astrophysics Data System (ADS)

    zhang, S. Q.; Lin, X.; Hou, A. Y.; Barros, A. P.

    2013-12-01

    The Goddard WRF ensemble data assimilation system has been developed to assimilate precipitation information into WRF model to improve QPF and QPE at high resolution. The flow-dependent forecast error covariance estimated in the assimilation procedure aims to capture the large temporal and spatial variability of precipitation and clouds. The microphysics at cloud-resolving scales and all-sky radiative transfer simulator serve as non-linear observation operators to link observables with model states. We present results of assimilating precipitation-affected microwave radiance and precipitation radar reflectivity from a pre-GPM constellation overland in the southeast US region. Observational bias correction for all-sky radiance is developed based on innovation statistics and a situation-dependent bias estimation model. The data impact is assessed with independent ground-based precipitation observations and evaluated in applications to dynamical downscaling and hydrological prediction.

  8. Measurements of environmental terrestrial gamma radiation dose rate in three mountainous locations in the western region of Saudi Arabia

    SciTech Connect

    Al-Ghorabie, Fayez H.H. . E-mail: alghorabie_f@hotmail.com

    2005-06-01

    This paper describes measurements of external gamma radiation dose rate from terrestrial gamma-rays 1 m above the ground in three different mountainous locations in the western region of the Kingdom of Saudi Arabia. These locations are At-Taif city, Al-Hada village, and Ash-Shafa village. CaSO{sub 4}:Dy (TLD-900) thermoluminescent dosimeters were used for the detection of terrestrial gamma radiation at 40 different places in the three locations. The values of terrestrial gamma radiation dose rate measured ranged between 14 and 279 nGy h{sup -1} for the time interval from June 2001 to June 2002. The measured dose rate varied with the season of the year. The average gamma radiation dose rates were 468, 541, and 781 {mu}Gy y{sup -1} for At-Taif city, Al-Hada village, and Ash-Shafa village, respectively. The corresponding average absorbed doses to the population of the three locations were 328, 379, and 547 {mu}Sv y{sup -1}, respectively. The quality factor of 0.7 Sv Gy{sup -1} was applied in the calculations of the absorbed dose to humans.

  9. Multi-level landscape degradation due to tourist-oriented land use changes in Serbian mountainous regions

    NASA Astrophysics Data System (ADS)

    Radić, B.; Ristić, R.; Vasiljević, N.; Nikić, Z.; Beloica, J.; Malušević, I.

    2012-04-01

    Mountain regions are characterized by pronounced heterogeneity resulting from a wide range of altitude gradients, topography and specific microclimate. In these areas natural hazards are emphasized and additional anthropogenic activities have a catalytic effect on the degradation processes. Land use change for touristic and recreational purposes, results in the creation of artificial landscape elements that disturb the landscape structure. Skiing as a type of tourist and recreational activity strongly influences the land cover, changing the dynamics of natural ecosystems. Initially, ski resorts provoke intensive erosion processes, affecting the surrounding environment and even endangering the functionality of the built objects. The dominant disturbing activities (clear cuttings, trunk transport, machine grading of slopes, huge excavations, and access road construction) are followed by the activities during skiing and non skiing periods (skiing, usage of snow groomers, moving of vehicles and tourists, forestry activities and overgrazing). On a landscape scale, the impact of the ski resorts broadens to larger areas, which is accompanied by the degradation of the landscape visual quality. Due to the technical characteristics of the ski slopes, their volume and linear distribution evoke strong contrast in the scenery (geometrical versus bimorph edges). Such areas are losing their scenic quality and visual identity, and as such can be considered anthropogenic. The applied restoration and erosion control measures have stopped the degradation processes and helped to rehabilitate the appearance and functions of the landscape. The results of this investigation can contribute to the improvement of planning processes and the implementation of development projects in ski areas.

  10. Ethnoveterinary treatments by dromedary camel herders in the Suleiman Mountainous Region in Pakistan: an observation and questionnaire study

    PubMed Central

    2010-01-01

    Background The Suleiman mountainous region is an important cradle of animal domestication and the habitat of many indigenous livestock breeds. The dromedary camel is a highly appreciated and valued animal and represents an important genetic resource. Camel herders, living in remote areas, have developed their own ways to treat diseases in camels, based on a long time of experience. Methods Information about the diseases and the ethnoveterinary practices performed was collected from a total of 90 herders and healers by interviews and participant observations. Results The respondents classified the diseased in major and minor fractions. Clinical signs were given in detail. Mange followed by trypanosomosis and orf were considered the most prevalent diseases, and also caused the greatest economic losses. Orf was regarded the most complex disease. The season was considered to have great influence on the occurrence of the diseases. A variety of different treatments were described, such as medicinal plants, cauterization, odorant/fly repellents, pesticides, larvicides, cold drink, yogurt and supportive therapy (hot food, hot drink). Conclusions There is paramount need to document and validate the indigenous knowledge about animal agriculture in general and ethnoveterinary practices in particular. This knowledge is rapidly disappearing and represents a cultural heritage as well as a valuable resource for attaining food security and sovereignty. PMID:20565919

  11. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    PubMed

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  12. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions

    PubMed Central

    Feng, Li; Zheng, Qi-Jian; Qian, Zeng-Qiang; Yang, Jia; Zhang, Yan-Ping; Li, Zhong-Hu; Zhao, Gui-Fang

    2016-01-01

    The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides, and Quercus rehderiana) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species. PMID:27891142

  13. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions.

    PubMed

    Feng, Li; Zheng, Qi-Jian; Qian, Zeng-Qiang; Yang, Jia; Zhang, Yan-Ping; Li, Zhong-Hu; Zhao, Gui-Fang

    2016-01-01

    The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides, and Quercus rehderiana) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  14. [Group differences in responses of Pseudois naynaur to human disturbance in Helan Mountain, Ningxia Hui Autonomous Region].

    PubMed

    Jiang, Tian-Yi; Ding, You-Zhong; Wang, Zheng-Huan; He, Gui-Fang; Zhao, Jin-Ping; Ma, Feng-Qin; Wang, Xiao-Ming

    2011-04-01

    Wild animals respond differently to nonconsumptive human activity and such variation depends on multiple factors. We explored the behaviors of Pseudois naynaur and recorded the distance of their responses in Suyu Kou National Forest Park, Helan Mountain, Ningxia Hui Autonomous Region. We categorized their behavioural responses as no response, vigilance and flight and recorded the response initiation distance. We compared distances according to disturbance source, group size, group type and sex. Our results showed that Pseudois naynaur showed stronger responses to humans than vehicles. The distance at which the subject of the group was vigilant in small group (group size less than three) was significantly more than that of larger groups (group size more than three). The flight initiation distance in small groups (less than five) was significantly more than bigger groups. The distance of no response behavior did not vary between all male, female or mixed groups. The distance of vigilance behavior when the subject of the group first encountered the disturbance in male groups was significantly greater for female and mix groups, flight initiation distance in female groups was greater than that of mixed groups. In the mixed group, no significant variation on sex was found among all three types of behaviors.

  15. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region.

    PubMed

    Greenwood, Sarah; Chen, Jan-Chang; Chen, Chaur-Tzuhn; Jump, Alistair S

    2014-12-01

    Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60 years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate.

  16. Landslide hazard assessment along a mountain highway in the Indian Himalayan Region (IHR) using remote sensing and computational models

    NASA Astrophysics Data System (ADS)

    Krishna, Akhouri P.; Kumar, Santosh

    2013-10-01

    Landslide hazard assessments using computational models, such as artificial neural network (ANN) and frequency ratio (FR), were carried out covering one of the important mountain highways in the Central Himalaya of Indian Himalayan Region (IHR). Landslide influencing factors were either calculated or extracted from spatial databases including recent remote sensing data of LANDSAT TM, CARTOSAT digital elevation model (DEM) and Tropical Rainfall Measuring Mission (TRMM) satellite for rainfall data. ANN was implemented using the multi-layered feed forward architecture with different input, output and hidden layers. This model based on back propagation algorithm derived weights for all possible parameters of landslides and causative factors considered. The training sites for landslide prone and non-prone areas were identified and verified through details gathered from remote sensing and other sources. Frequency Ratio (FR) models are based on observed relationships between the distribution of landslides and each landslide related factor. FR model implementation proved useful for assessing the spatial relationships between landslide locations and factors contributing to its occurrence. Above computational models generated respective susceptibility maps of landslide hazard for the study area. This further allowed the simulation of landslide hazard maps on a medium scale using GIS platform and remote sensing data. Upon validation and accuracy checks, it was observed that both models produced good results with FR having some edge over ANN based mapping. Such statistical and functional models led to better understanding of relationships between the landslides and preparatory factors as well as ensuring lesser levels of subjectivity compared to qualitative approaches.

  17. Prospects for flash flood forecasting in mountainous regions - An investigation of Tropical Storm Fay in the Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Tao, Jing; Barros, Ana P.

    2013-12-01

    negative NS scores. An experiment consisting of merging satellite-like observations into operational QPE/QPF showed significant improvement in QFF performance (e.g. 5-50% relative NS increases), especially when the timing of satellite overpass is such that it captures transient episodes of heavy rainfall during the event. Future advances in QFF remain principally constrained by progress in QPE and QPF at the spatial resolution necessary to resolve rainfall-interflow dynamics in mountainous regions.

  18. [Dynamics of litter decomposition and phosphorus and potassium release in Jinggang Mountain region of Jiangxi Province, China].

    PubMed

    Li, Hait-tao; Yu, Gui-rui; Li, Jia-yong; Liang, Tao; Chen, Yong-rui

    2007-02-01

    By using litter bag method, a 2-year experiment was made to study the dynamics of litter decomposition and phosphorous and potassium release of Castanopsis eyrei-dominated evergreen broad-leaved forest (EBF), Pinus taiwanensis, Cyclobalanopsis nubium and Castanopsisfabri coniferous and broad-leaved mixed forest (CBF) , and Rhododendron simiarum-dominated mountainous dwarf forest (MDF) in Jinggang Mountain region of Jiangxi Province, China. In each forest, litter bags were placed on soil surface (aboveground treatment, AG) and at the depth of 10 cm (below-ground treatment, BG). An inverse exponential relationship was found between litter decay rate and time for each of the three forests. The average value of the litter mass loss of AG and BG was 50.6% for EBF, 41. 7% for CBF, and 40. 13% for MDF by the end of first year, and 60.95% for EBF, 57. 06% for CBF, and 56. 60% for MDF by the end of second year, indicating that the litter decomposition of the forests was faster in first year than in second year. The annual litter loss decreased in the order of EBF > CBF > MDF, and that of AG was significantly higher than that of BG in first year but no significant difference was found in second year. According to the model simulation by Olson' s exponential function, it might take 6. 8-9. 9 years to reach 95% of decay (t095) for the forests investigated, compared with 8-17 years for warm temperate forests and 2 -8 years for south subtropical forests. The t0.95 value of the three test forests increased in the order of EBF < CBF < MDF. A net phospbhorus (P) immobilization was observed in the process of litter decomposition, with the intensity decreased in the order of MDF > CBF > EBF, which was related to the initial P content and C/P ratio of the litter. As for potassium ( K) , it was net release in most cases. By the end of the experiment, the release rate of P had little difference between AG and BG, while that of K was significantly higher in AG than in BG.

  19. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  20. Analysis of dissolved gas and fluid chemistry in mountainous region of Goaping river watershed in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tang, Kai-Wen; Chen, Cheng-Hong; Liu, Tsung-Kwei

    2016-04-01

    Annual rainfall in Taiwan is up to 2500 mm, about 2.5 times the average value of the world. However due to high topographic relief of the Central Mountain Range in Taiwan, groundwater storage is critical for water supply. Mountain region of the Goaping river watershed in southern Taiwan is one of the potential areas to develop groundwater recharge model. Therefore the target of this study is to understand sources of groundwater and surface water using dissolved gas and fluid chemistry. Four groundwater and 6 surface water samples were collected from watershed, 5 groundwater and 13 surface water samples were collected from downstream. All samples were analyzed for stable isotopes (hydrogen and oxygen), dissolved gases (including nitrogen, oxygen, argon, methane and carbon dioxide), noble gases (helium and radon) and major ions. Hydrogen and oxygen isotopic ratios of surface water and groundwater samples aligned along meteoric water line. For surface water, dissolved gases are abundant in N2 (>80%) and O2 (>10%); helium isotopic ratio is approximately equal to 1 RA (RA is 3He/4He ratio of air); radon-222 concentration is below the detection limit (<200 Bq/m3); and concentrations of major anions and cations are low (Na+ <20 ppm, Ca2+ < 60 ppm, Cl- <2 ppm). All these features indicate that surface waters are predominately recharged by precipitation. For groundwater, helium isotopic ratios (0.9˜0.23 RA) are lower and radon-222 concentrations (300˜6000 Bq/m3) are much higher than the surface water. Some samples have high amounts of dissolved gases, such as CH4 (>20%) or CO2 (>10%), most likely contributed by biogenic or geogenic sources. On the other hand, few samples that have temperature 5° higher than the average of other samples, show significantly high Na+ (>1000 ppm), Ca2+ (>150 ppm) and Cl- (>80 ppm) concentrations. An interaction between such groundwater and local hot springs is inferred. Watershed and downstream samples differ in dissolved gas species and

  1. Regional Assessment of the Relationship Between Landscape Attributes and Water Quality in Five National Parks of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Williams, M. W.; Campbell, D. H.

    2005-12-01

    Atmospheric deposition of pollutants threatens pristine environments around the world. However, scientifically-based decisions regarding management of these environments has been confounded by spatial variability of atmospheric deposition, particularly across regional scales at which resource management is typically considered. A statistically based methodology coupled within GIS is presented that builds on small alpine lake and sub-alpine catchments scale to identify deposition-sensitive lakes across larger watershed and regional scales. The sensitivity of 874 alpine and subalpine lakes to acidification from atmospheric deposition of nitrogen and sulfur was estimated using statistical models relating water quality and landscape attributes in Glacier National Park, Yellowstone National Park, Grand Teton National Park, Rocky Mountain National Park and Great Sand Dunes National Park and Preserve. Water-quality data measured during synoptic lake surveys were used to calibrate statistical models of lake sensitivity. In the case of nitrogen deposition, water quality data were supplemented with dual isotopic measurements of d15N and d18O of nitrate. Landscape attributes for the lake basins were derived from GIS including the following explanatory variables; topography (basin slope, basin aspect, basin elevation), bedrock type, vegetation type, and soil type. Using multivariate logistic regression analysis, probability estimates were developed for acid-neutralizing capacity, nitrate, sulfate and DOC concentrations, and lakes with a high probability of being sensitive to atmospheric deposition were identified. Water-quality data collected at 60 lakes during fall 2004 were used to validate statistical models. Relationships between landscape attributes and water quality vary by constituent, due to spatial variability in landscape attributes and spatial variation in the atmospheric deposition of pollutants within and among the five National Parks. Predictive ability, model

  2. Slope deformations in high-mountain regions as observed by InSAR: Examples from the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Frey, Holger; Strozzi, Tazio; Caduff, Rafael; Huggel, Christian; Klimeš, Jan; Vilímek, Vít; Wiesmann, Andreas; Kääb, Andreas; Cochachin, Alejo; Plummer, Stephen

    2016-04-01

    Steep topography, the world's highest concentration of tropical glaciers, numerous glacial lakes and strong seismic activity combined with a densely populated valley bottom in the Rio Santa basin characterize the Cordillera Blanca in Peru. Besides glacier-related processes, a variety of landslide types and processes is present outside the glaciated areas, favoured by the steep terrain, geological conditions, sparse vegetation, intense precipitation, and strong seismicity. This combination of high hazard potentials and vulnerabilities results in a long list of natural disasters. Information on surface displacements is very valuable for early detection of emerging hazard potentials and their assessment. Interferometric processing of SAR data (InSAR) provides the possibility to remotely detect different types of surface displacement processes, also in remote locations where no other monitoring data are available. This contribution, developed under the ESA-funded S:GLA:MO project (sglamo.gamma-rs.ch), shows the potential of InSAR products for hazard assessments and glaciological investigations in high-mountain regions. We present a selection of different surface displacements as observed in the Cordillera Blanca based on InSAR data: a landslide zone near the Rampac Grande village, where in 2009 a landslide caused casualties and property loss; a landslide at the entry of the Santa Cruz Valley, northern Cordillera Blanca, where the displacement history could be reconstructed over five years; surface displacements at the interior moraine slopes surrounding Laguna Palcacocha, a major glacier lake above the city of Huaraz, which are compared to and complemented by geophysical investigations in the field; surface displacements at the moraine damming Laguna Safuna Alta, a glacier lake in the northern part of the Cordillera Blanca; glacier velocities across the entire Cordillera Blanca, revealing ice flow velocities of more than 200 m yr-1 at certain locations at the end of

  3. An Analysis of Climate Variability and Snowmelt Mechanisms inMountainous Regions

    SciTech Connect

    jimingjin@lbl.gov

    2003-09-26

    The impacts of snowpack on climate variability and themechanisms of snowmelt over the Sierra Nevada, California-Nevadamountainous region was studied using the Penn State-National Center forAtmospheric Research fifth-generation Mesoscale Model (MM5) driven by6-hour reanalysis data from the National Centers for EnvironmentalPrediction. The analyses of a one-way nested 48 km to 12 km model runduring the 1998 snowmelt season (April - June) shows that snowpack isunderestimated when there is stronger precipitation and highertemperature. Model resolution and simulated snowpack are found to affectthe temperature and precipitation. Coarser resolution underestimates thetopographic elevation in the Sierra Nevada, increasing the surface airtemperature and precipitation in light of the lapse rate and the rainshadow effect. An observed daily snowpack dataset, assimilated to MM5,reduces the warm bias, because the energy used to increase temperature ina model run without assimilated snow is consumed by snowmelt. The cooledsurface leads to a more stable simulated atmosphere, leading to areduction in the exaggerated precipitation. An underestimated surfacealbedo weakly contributes to the stronger snowmelt. A more realisticphysically-based land-surface model with sophisticated snow andvegetation physics driven by the MM5 output is shown to significantlyimprove the snowpack simulation.

  4. Regional compilation and analysis of aeromagnetic anomalies for the Transantarctic Mountains Ross Sea sector of the Antarctic

    NASA Astrophysics Data System (ADS)

    Chiappini, M.; Ferraccioli, F.; Bozzo, E.; Damaske, D.

    2002-03-01

    Magnetic observations over the area of the Transantarctic Mountains (TAM) and the Ross Sea have been compiled into a digital database that furnishes a new regional scale view of the magnetic anomaly crustal field in this key sector of the Antarctic continent. This compilation is a component of the ongoing IAGA/SCAR Antarctic Digital Magnetic Anomaly Project (ADMAP). The aeromagnetic surveys total 115 000 line km, and are distributed across the Victoria Land sector of the TAM, the Ross Sea, and Marie Byrd Land. The magnetic campaigns were performed within the framework of the national and international Italian-German-US Antarctic research programs and conducted with differing specifications during nine field seasons from 1971 until 1997. Generally flight line spacing was less than 5 km while survey altitude varied from about 610 to 4000 m above sea level for barometric surveys and was equal to 305 m above topography for the single draped survey. Reprocessing included digitizing the old contour data, improved levelling by means of microlevelling in the frequency domain, and re-reduction to a common reference field based on the DGRF90 model. A multi-frequency grid procedure was then applied to obtain a coherent and merged total intensity magnetic anomaly map. The shaded relief map covers an area of approximately 380 000 km 2. This new compilation provides a regional image of the location and spatial extent of the Cenozoic alkaline magmatism related to the TAM-Ross Sea rift, Jurassic tholeiites, and crustal segments of the Early Palaeozoic magmatic arc. A linear, approximately 100-km wide and 600-km long Jurassic rift-like structure is newly identified. Magnetic fabric in the Ross Sea rift often matches seismically imaged Cenozoic fault arrays. Major buried onshore pre-rift fault zones, likely inherited from the Ross Orogen, are also delineated. These faults may have been reactivated as strike-slip belts that segmented the TAM into various crustal blocks.

  5. The influence of regional urbanization and abnormal weather conditions on the processes of human climatic adaptation on mountain resorts

    NASA Astrophysics Data System (ADS)

    Artamonova, M.; Golitsyn, G.; Senik, I.; Safronov, A.; Babyakin, A.; Efimenko, N.; Povolotskaya, N.; Topuriya, D.; Chalaya, E.

    2012-04-01

    in patients with coronary heart disease, hypertension stage I-II syndrome disadaptative using the transcranial mezo diencephalic modulation / L.I.Zherlitsina, N.V. Efimenko, N.P. Povolotskaya, I.I. Velikanov. the Patent for the invention No.2422128, RU (11) 2 422 128 (13) C1 from 6/27/2011; Bull.13). We have observed that such anthropogenic characteristics as accumulation of aerosol with the size of particles 500-5000 nanometers in the lower atmosphere in the quantity more than 60 particles/sm3 (getting to alveoli); decrease in quantity of negative ions (N-) lower than 200 ions/sm3, high coefficient of ions unipolarity (N+/N-) - more than 4-6; mass concentration of aerosol more than 150 mkg/m3 and other modules of the environment can act as limited markers for the forecast of dangerous NAR, SAD and taking of urgent radical preventive measures. These techniques of medical weather forecast and meteo prevention can be used in other mountain regions of the world. The studies were performed by support of the Program "Basic Sciences for Medicine" and RFBR project No.10-05-01014_a.

  6. Impact of land surface conditions on the predictability of hydrologic processes and mountain-valley circulations in the North American Monsoon region

    NASA Astrophysics Data System (ADS)

    Xiang, T.; Vivoni, E. R.; Gochis, D. J.; Mascaro, G.

    2015-12-01

    Heterogeneous land surface conditions are essential components of land-atmosphere interactions in regions of complex terrain and have the potential to affect convective precipitation formation. Yet, due to their high complexity, hydrologic processes over mountainous regions are not well understood, and are usually parameterized in simple ways within coupled land-atmosphere modeling frameworks. With the improving model physics and spatial resolution of numerical weather prediction models, there is an urgent need to understand how land surface processes affect local and regional meteorological processes. In the North American Monsoon (NAM) region, the summer rainy season is accompanied by a dramatic greening of mountain ecosystems that adds spatiotemporal variability in vegetation which is anticipated to impact the conditions leading to convection, mountain-valley circulations and mesoscale organization. In this study, we present results from a detailed analysis of a high-resolution (1 km) land surface model, Noah-MP, in a large, mountainous watershed of the NAM region - the Rio Sonora (21,264 km2) in Mexico. In addition to capturing the spatial variations in terrain and soil distributions, recently-developed features in Noah-MP allow the model to read time-varying vegetation parameters derived from remotely-sensed vegetation indices; however, this new implementation has not been fully evaluated. Therefore, we assess the simulated spatiotemporal fields of soil moisture, surface temperature and surface energy fluxes through comparisons to remote sensing products and results from coarser land surface models obtained from the North American Land Data Assimilation System. We focus attention on the impact of vegetation changes along different elevation bands on the diurnal cycle of surface energy fluxes to provide a baseline for future analyses of mountain-valley circulations using a coupled land-atmosphere modeling system. Our study also compares limited streamflow

  7. Origin of coronas in metagabbros of the Adirondack mts., N. Y

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1973-01-01

    Metagabbros from two widely separated areas in the Adirondacks show development of coronas. In the Southern Adirondacks, these are cored by olivine which is enclosed in a shell of orthopyroxene that is partially, or completely, rimmed by symplectites consisting of clinopyroxene and spinel. Compositions of the corona phases have been determined by electron probe and are consistent with a mechanism involving three partial reactions, thus: (a) Olivine=Orthopyroxene+(Mg, Fe)++. (b) Plagioclase+(Mg, Fe)+++Ca++=Clinopyroxene+Spinel+Na+. (c) Plagioclase+(Mg, Fe)+++Na+=Spinel+more sodic plagioclase+Ca++. Reaction (a) occurs in the inner shell of the corona adjacent to olivine; reaction (b) in the outer shell; and (c) in the surrounding plagioclase, giving rise to the spinel clouding which is characteristic of the plagioclase in these rocks. Alumina and silica remain relatively immobile. These reactions, when balanced, can be generalized to account for the aluminous nature of the pyroxenes and for changing plagioclase composition. Summed together, the partial reactions are equivalent to: (d) Olivine + Anorthite = Aluminous orthopyroxene + Aluminous Clinopyroxene + Spinel (Kushiro and Yoder, 1966). In the Adirondack Highlands, coronas between olivine and plagioclase commonly have an outer shell of garnet replacing the clinopyroxene/spinel shell. The origin of the garnet can also be explained in terms of three partial reactions: (e) Orthopyroxene+Ca++=Clinopyroxene+(Mg, Fe)++. (f) Clinopyroxene+Spinel+Plagioclase+(Mg, Fe)++=Garnet+Ca+++Na+. (g) Plagioclase+(Mg, Fe)+++Na+=Spinel + more sodic plagioclase+Ca++. These occur in the inner and outer corona shell and the surrounding plagioclase, respectively, and involve the products of reactions (a)-(d). Alumina and silica are again relatively immobile. Balanced, and generalized to account for aluminous pyroxenes and variable An content of plagioclase, they are equivalent to: (h) Orthopyroxene+Anorthite+Spinel=Garnet (Green and

  8. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Y.; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

  9. Crustal architecture of the Transantarctic Mountains between the Scott and Reedy Glacier region and South Pole from aerogeophysical data

    NASA Astrophysics Data System (ADS)

    Studinger, Michael; Bell, Robin E.; Fitzgerald, Paul G.; Buck, W. Roger

    2006-10-01

    Aerogeophysical data collected in transects between the South Pole and West Antarctica, crossing the Transantarctic Mountains at the 150°W meridian, are used to constrain the sub-ice topography, the sub-ice geology and the inland structure of the Transantarctic Mountains. Forward modeling of gravity data suggests slight crustal thickening of 5 km beneath the mountain front indicating partial isostatic compensation by thickened crust. New magnetic data help characterize the sub-ice geology inland of the Transantarctic Mountains with the observed magnetic anomaly field dominated by Granite Harbour Intrusives, similar to the magnetic field in Victoria Land. However, the typical pattern of anomalies caused by Jurassic tholeiitic magmatism elsewhere along the Transantarctic Mountains is not observed, nor is the mesa topography that is often associated with the Ferrar Dolerite. Together, these observations rule out the widespread presence of Ferrar Dolerite sills within the survey area. A pronounced magnetic lineament, herein named the South Pole Lineament, parallel to the 0°/180° longitudinal meridian, beneath the South Pole defines a previously unknown tectonic trend of the East Antarctic craton. The lineament suggests the presence of a lithospheric-scale structure beneath South Pole, projecting into a fault mapped from ice-penetrating radar data and extending to Shackleton Glacier, the site of a major geological boundary across the Transantarctic Mountains. Potentially, the lineament is the expression of the edge of the undeformed craton, an inherited structure created during assembly or breakup of Rodinia and Gondwana supercontinents; or an intracontinental transform.

  10. Active tectonics of the Devils Mountain Fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.

    2001-01-01

    Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.

  11. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain basin and range. Final technical report, January 1980-March 1981

    SciTech Connect

    Not Available

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  12. Relationship between landslide processes and land use-land cover changes in mountain regions: footprint identification approach.

    NASA Astrophysics Data System (ADS)

    Petitta, Marcello; Pregnolato, Marco; Pedoth, Lydia; Schneiderbauer, Stefan

    2015-04-01

    The present investigation aims to better understand the relationship between landslide events and land use-land cover (LULC) changes. Starting from the approach presented last year at national level ("In search of a footprint: an investigation about the potentiality of large datasets and territorial analysis in disaster and resilience research", Geophysical Research Abstracts Vol. 16, EGU2014-11253, 2014) we focused our study at regional scale considering South Tyrol, a mountain region in Italy near the Austrian border. Based on the concept exploited in the previous work, in which a disaster footprint was shown using land features and changes maps, in this study we start from the hypothesis that LULC can have a role in activation of landslides events. In this study, we used LULC data from CORINE and from a regional map called REAKART and we used the Italian national database IFFI (Inventario Fenomeni Franosi in Italia, Italian inventory of landslides) from which it is possible to select the landslides present in the national inventory together with other vector layers (the urban areas - Corine Land Cover 2000, the roads and railways, the administrative boundaries, the drainage system) and raster layers (the digital terrain model, digital orthophoto TerraItaly it2000, Landsat satellite images and IGM topographic map). Moreover it's possible to obtain information on the most important parameters of landslides, view documents, photos and videos. For South Tyrol, the IFFI database is updated in real time. In our investigation we analyzed: 1) LULC from CORINE and from REAKART, 2) landslides occurred nearby a border of two different LULC classes, 3) landslides occurred in a location in which a change in LULC classification in observed in time, 4) landslides occurred nearby road and railroad. Using classification methods and statistical approaches we investigated relationship between the LULC and the landslides events. The results confirm that specific LULC classes are

  13. Impact of cattle grazing on soil and vegetation - a case study in a mountainous region of Austria

    NASA Astrophysics Data System (ADS)

    Bohner, Andreas; Foldal, Cecilie; Jandl, Robert

    2015-04-01

    In mountainous regions of Austria and of many other European countries, climate change may cause a further intensification of grassland management. Therefore, the effects of intensive cattle grazing on selected soil chemical and physical properties, above- and below-ground phytomass, forage quality, plant species composition and plant species richness at the scale of a representative paddock in a mountainous region of Austria were investigated. At the study site (Styrian Enns valley; 675 m a.s.l.), climate is relatively cool and humid, with a mean annual air temperature of 6.7°C and a mean annual precipitation of 970 mm, of which 66% falls during the vegetation period (April-October). The soil is a deep, base-rich Cambisol with a loamy sand texture. The paddock investigated has a total area of about 2 ha and had been grazed by dairy cows (Brown Swiss) five times per grazing season. The stocking density was 4 cows ha-1 during 180 days from early May to the end of October with a grazing time of about 8 hours per day. The strip grazed permanent pasture was manured annually for a long time, mostly with cattle slurry. Vegetation surveys were carried out using the method of Braun-Blanquet. Above- and below-ground phytomass, forage quality and mineral element concentration in the harvestable above-ground plant biomass were determined by using standard methods. During the grazing season surface soil samples (0-10 cm depth) for chemical analyses were collected before each grazing period (5 analyses of composite samples per site). At the beginning and the end of the grazing season also soil samples for physical analyses were taken from the topsoil (0-15 cm depth). Heavy cattle treading led to a substantial soil compaction especially in the 5-10 cm layer and to a deterioration of topsoil structure. The porous crumb structure was replaced by a compact platy structure. The topsoil was enriched with nutrients (mainly nitrogen, potassium, phosphorus and boron). The degree of

  14. Prevalence and Characteristics of Fetal Alcohol Syndrome and Partial Fetal Alcohol Syndrome in a Rocky Mountain Region City

    PubMed Central

    Keaster, Carol; Bozeman, Rosemary; Goodover, Joelene; Blankenship, Jason; Kalberg, Wendy O.; Buckley, David; Brooks, Marita; Hasken, Julie; Gossage, J. Phillip; Robinson, Luther K.; Manning, Melanie; Hoyme, H. Eugene

    2015-01-01

    Background The prevalence and characteristics of fetal alcohol syndrome (FAS) and partial FAS (PFAS) in the United States (US) are not well known. Methods This active case ascertainment study in a Rocky Mountain Region City assessed the prevalence and traits of children with FAS and PFAS and linked them to maternal risk factors. Diagnoses made by expert clinical dysmorphologists in multidisciplinary case conferences utilized all components of the study: dysmorphology and physical growth; neurobehavior; and maternal risk interviews. Results Direct parental (active) consent was obtained for 1,278 children. Averages for key physical diagnostic traits and several other minor anomalies were significantly different among FAS, PFAS, and randomly-selected, normal controls. Cognitive tests and behavioral checklists discriminated the diagnostic groups from controls on 12 of 14 instruments. Mothers of children with FAS and PFAS were significantly lower in educational attainment, shorter, later in pregnancy recognition, and suffered more depression, and used marijuana and methamphetamine during their pregnancy. Most pre-pregnancy and pregnancy drinking measures were worse for mothers of FAS and PFAS. Excluding a significant difference in simply admitting drinking during the index pregnancy (FAS and PFAS = 75% vs. 39.4% for controls), most quantitative intergroup differences merely approached significance. This community’s prevalence of FAS is 2.9 to 7.5 per 1,000, PFAS is 7.9 to 17.7 per 1,000, and combined prevalence is 10.9 to 25.2 per 1,000 or 1.1% to 2.5%. Conclusions Comprehensive, active case ascertainment methods produced rates of FAS and PFAS higher than predicted by long-standing, popular estimates. PMID:26321671

  15. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador.

    PubMed

    Tischer, Alexander; Potthast, Karin; Hamer, Ute

    2014-05-01

    Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.

  16. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  17. Longshore-drift dispersed, storm-generated cross-stratified sandstone from some Cretaceous shallow marine strata, Rocky Mountain region

    SciTech Connect

    Gustason, E.R. )

    1990-05-01

    Most Cretaceous shallow marine strata of the Rocky Mountain region are characterized by asymmetrical upward-coarsening and upward-thickening sequences. The strata typically contain similar lithofacies (i.e., normally graded planar parallel laminated claystone, siltstone, and sandstone; hummocky cross-stratified sandstone; symmetrical and asymmetrical ripple cross-lamination; and trough and planar tublar cross-stratified sandstone) and display an upward increase in the thickness and frequency of sharp-based sandstone beds that grade into amalgamated cross-stratified sandstone. Most workers agree that sharp-based sandstone beds and hummocky cross-stratified sandstone are storm generated. However, the origin of trough and planar tabular cross-stratified sandstone is controversial. Most workers interpret these sedimentary structures as deposited from either storm-generated traction currents or combined flow currents on the shelf, tide-generated traction currents, or tidally dispersed, storm-generated suspension clouds. Detailed analysis of three-dimensional outcrops has revealed several significant features of these sedimentary structures that indicate they may have been deposited by longshore drift dispersed, storm-generated suspension clouds. Sets of trough and planar cross-stratified sandstone form medium-scale discontinuous, irregularly shaped sand bodies, bound by erosional surfaces and composed of unidirectional dip-oriented cross strata. Individual cross stratum commonly have a sigmoidal shape, are bound by either reactivation surfaces or mudstone drapes, and contain normally graded concordant laminae. Top-set laminae, are truncated by the upper set boundary, whereas bottom-set laminae, become asymptotic to the lower set boundary and commonly are reworked and overlain by wave generated, ripple cross-lamination or mudstone drapes.

  18. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  19. Snow Cover Variability in the Black Forest Region as an Example of a German Low Mountain Range under the Influence of Climate Change

    NASA Astrophysics Data System (ADS)

    Schoenbein, J.; Schneider, C.

    2003-04-01

    During the last decades high snow cover variability was observed in the German low mountain ranges. In addition, average snow cover periods have decreased at most localities. This process involves a strong economic impact on skiing resorts of low mountain ranges. Based on data sets from weather stations of the German meteorological service (Deutscher Wetterdienst (DWD)) which cover up to the last 60 years, the temporal development of the mean seasonal snow cover period in the low mountain ranges of Black Forest (south-west), Harz (north), and Bavarian Forest (south-east) of Germany was examined. Mean wintertime air temperature in the low mountain ranges is increasing more rapidly compared to the annual mean air temperature. Additionally the south west is the warmest region in Germany. Therefore, the snow cover of the Black Forest is much more susceptible to an increase in air temperature than in the other low mountain ranges in Germany. In the Black Forest region air temperatures near the melting point are observed even in January. Snow cover in the Bavarian Forest region with its much more continental climate is less affected by temperature variations but subject to variations in wintertime precipitation. Seasonal snow cover in the Harz region starts about two weeks earlier compared to Bavarian Forest and the Black Forest. The future snow cover development of Black Forest was examined using Intergovernmental Panel on Climate Change (IPCC) prognosis of future air temperature development and trend analysis within observed time series at low mountain range weather stations. The IPCC scenarios were adopted specifically with respect to region, season and altitude and afterwards compared to the observed trend. A transfer function describes the relation between seasonal air temperature change and snow cover duration. A mean reduction of snow cover duration until 2025 for each mountain range is approximated. For instance, the period of a snow cover with a minimum height

  20. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    NASA Astrophysics Data System (ADS)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  1. Response of soil microbial activity and community structure to land use changes in a mountain rainforest region of Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Potthast, Karin; Hamer, Ute; Makeschin, Franz

    2010-05-01

    Over the past several decades the mountain rainforest region of Southern Ecuador, a hotspot of biodiversity, is undergoing a rapid conversion to pastureland through slash and burn practice. Frequently this pastureland is invaded by the tropical bracken fern. When the bracken becomes dominant on the pasture sites the productivity decreases and the sites are abandoned. To assess the effect of these land use changes on nutrient turnover and on ecosystem functioning, a study was conducted in the area of the German research station Estación Científica San Francisco (ECSF) in Southern Ecuador. At 2000 m above sea level three adjacent sites were selected: a mountain rainforest site, an active pasture site dominated by the grass species Setaria sphacelata and an abandoned pasture site overgrown by bracken. Mineral soil samples of all three sites (0-5, 5-10 and 10-20 cm) as well as samples from the organic layer (Oi and Oa) of the natural forest site were taken to analyze biogeochemical properties. Besides pH-value, total organic C and N contents, the amounts of microbial biomass (CFE-method), microbial activity (basal respiration, net N mineralization (KCl-extraction); gross N mineralization (15N dilution technique) rates) and microbial community structure (PLFA-analysis) were determined. 17 years after pasture establishment, twofold higher stocks of soil microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as significant lower C:N ratios were determined compared to the natural forest including the 11 cm thick organic layer. 10 years after bracken invasion and pasture abandonment the microbial biomass (Cmic) decreased and the C:N ratio increased again to forest levels. Generally, land use change from forest to pasture and from pasture to abandoned pasture induced shifts in the soil microbial community structure. The relative abundance of the fast growing copiotrophic Gram(-) bacteria was positively correlated with the amounts of readily available organic carbon

  2. An Assessment of Fire Regime Changes in the Northern Rocky Mountain Region Using Simulated Historical Fire Maps and Remotely Sensed Current Fires

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Zhu, Z.; Huang, C.

    2011-12-01

    Wildland fire is a primary ecosystem process that shapes the landscape of Western United States. Changes in fire regime can therefore have profound impact on ecosystem functions and services, including carbon cycling, habitat conditions, and biodiversity. This poster presents a study on current fire regime and changes in the Northern Rocky Mountain region assessed using contemporary and historical fire regimes. Contemporary fire records from 1984 to 2008 were obtained from the Monitoring Trends in Burn Severity (MTBS) project. Historical (pre-EuroAmerican settlement) fire regimes and fire regime condition class (FRCC), produced by the LANDFIRE project, were simulated using a Landscape Succession Model (LANDSUM). We extracted historical fire frequency (Mean Fire Interval) and fire severity (percentage of severe fire) data from LANDFIRE, and calculated current fire frequency and severity using MTBS data by following the FRCC definition, to evaluate changes in fire regimes in Northern Rocky Mountain area. Preliminary results reveal that the current fire regime in Northern Rocky Mountains may exhibit a general pattern of longer return intervals and more severe fires. Biophysical Setting (BpS) map units from LANDFIRE are used as study units to describe environmental gradients and will be used to further examine whether the observed fire regime changes are controlled by land cover or biophysical settings. The findings of this study will help reveal contemporary fire dynamics in this region and serve for future fire studies and other forest management applications.

  3. Phylogenetic analysis of the endangered takin in the confluent zone of the Qinling and Minshan Mountains using mtDNA control region.

    PubMed

    Yao, Gang; Li, Yanhong; Li, Dayong; Williams, Peter; Hu, Jie

    2016-07-01

    The takin (Budorcas taxicolor) is an Endangered ungulate. We analyzed the variation within mtDNA control region sequences of takin populations in the Qinling Mountains, the Minshan Mountains and the confluence of these two mountain ranges. We did not find any shared haplotypes among the populations. We observed apparent variation in the control region length among the three populations, and independent population expansions in the late of Pleistocene, which suggests these populations may have independent evolutionary histories. We found only one haplotype, and the lowest measures of genetic diversity (h = 0; π = 0) in the population from the confluent zone, which suggests populations in the confluent zone may have grown from small founder populations and gene flow with other populations has ceased. Based on their phylogenetic relationships, we concluded that the takin population in the confluent zone was in the same clade as the Tangjiahe population, which suggests that these takin populations are Sichuan takin (Budorcas taxicolor tibetana).

  4. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region

    SciTech Connect

    Sheffield, J.

    2001-08-30

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NO{sub x} emissions from transportation may increase.

  5. An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback

    NASA Astrophysics Data System (ADS)

    Minder, Justin R.; Letcher, Theodore W.; Skiles, S. McKenzie

    2016-08-01

    The snow-albedo feedback (SAF) strongly influences climate over midlatitude mountainous regions. However, over these regions the skill of regional climate models (RCMs) at simulating properties such as snow cover and surface albedo is poorly characterized. These properties are evaluated in a pair of 7 year long high-resolution RCM simulations with the Weather Research and Forecasting model over the central Rocky Mountains. Key differences between the simulations include the computational domain (regional versus continental) and land surface model used (Noah versus Noah-MP). Simulations are evaluated against high-resolution satellite estimates of snow cover and albedo from the Moderate Resolution Imaging Spectroradiometer. Both simulations generally reproduce the observed seasonal and spatial variability of snow cover and also exhibit important biases. One simulation substantially overpredicts subpixel fractional snow cover over snowy pixels (by up to 0.4) causing large positive biases in surface albedo, likely due in part to inadequate representation of canopy effects. The other simulation exhibits a negative bias in areal snow extent (as much as 19% of the analysis domain). Surface measurements reveal large positive biases in snow albedo (exceeding 0.2) during late spring caused by neglecting radiative effects of impurities deposited onto snow. Semi-idealized climate change experiments show substantially different magnitudes of SAF-enhanced warming in the two simulations that can be tied to the differences in snow cover in their control climates. More confident projections of regional climate change over mountains will require further work to evaluate and improve representation of snow cover and albedo in RCMs.

  6. Testing Melt Induced Weakening of Lithosphere Modeling Rift Induced Delamination Proposed for the Dynamics of Rwenzori Mountains Region

    NASA Astrophysics Data System (ADS)

    Wallner, Herbert; Schmeling, Harro

    2010-05-01

    Rift induced delamination (RID) has been proposed as a geodynamic process explaining the extreme elevation of the Rwenzori Mountains. The special situation of two approaching rift tips with a finite offset for RID is given by the southward propagating Albert Rift and northward spreading Edward Rift encirceling almost completely the old metamorphic horst. If upwelling asthenosphere below the rifts, surrounding the stiff lithosphere, has sufficiently reduced the viscosity and strength especially in the lower crust, the delamination of cold and dense mantle lithosphere root may be triggered. This unloading induces uplift of the less dense crustal block along steep inclining faults. Seismological observations, particularly seismicity distribution, low velocity layers seen in receiver functions as well as in tomography and the location of an anomalously deep earthquake cluster strengthen RID hypothesis. Verification of RID is done by a thermo-mechanical model. Physics comprises two dimensional viscous flow approximated by Finite Difference Method in an Eulerian formulation. The equations of conservation of mass, momentum and energy are solved for a multi component and two phase system. Temperature, pressure and stress dependent rheology, based on laboratory data of appropriate samples are assumed for upper and lower crust and mantle. Studies on parameter variations of the initial temperature perturbation reveal a restricted range for functioning RID models. The coincidence with the settings of the Rwenzori situation establishes the RID concept furthermore. Successful numerical models applied a strong initial temperature anomaly within the lithosphere, driving the process. To replace this ad hoc starting condition, we test a melt induced weakening process. Additional heating (supplied by a plume branch, seen in tomography) generates incipient melts in the upper asthenosphere. This partial melt percolates and accumulates, forming regions with high melt fractions. Above a

  7. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    EPA Science Inventory

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  8. Impacts of conflict on land use and land cover in the Imatong Mountain region of South Sudan and northern Uganda

    NASA Astrophysics Data System (ADS)

    Gorsevski, Virginia B.

    The Imatong Mountain region of South Sudan makes up the northern most part of the Afromontane conservation 'biodiversity hotspot' due to the numerous species of plants and animals found here, some of which are endemic. At the same time, this area (including the nearby Dongotana Hills and the Agoro-Agu region of northern Uganda) has witnessed decades of armed conflict resulting from the Sudan Civil War and the presence of the Ugandan Lord's Resistance Army (LRA). The objective of my research was to investigate the impact of war on land use and land cover using a combination of satellite remote sensing data and semi-structured interviews with local informants. Specifically, I sought to (1) assess and compare changes in forest cover and location during both war and peace; (2) compare trends in fire activity with human population patterns; and (3) investigate the underlying causes influencing land use patterns related to war. I did this by using a Disturbance Index (DI), which isolates un-vegetated spectral signatures associated with deforestation, on Landsat TM and ETM+ data in order to compare changes in forest cover during conflict and post-conflict years, mapping the location and frequency of fires in subsets of the greater study area using MODIS active fire data, and by analyzing and summarizing information derived from interviews with key informants. I found that the rate of forest recovery was significantly higher than the rate of disturbance both during and after wartime in and around the Imatong Central Forest Reserve (ICFR) and that change in net forest cover remained largely unchanged for the two time periods. In contrast, the nearby Dongotana Hills experienced relatively high rates of disturbance during both periods; however, post war period losses were largely offset by gains in forest cover, potentially indicating opposing patterns in human population movements and land use activities within these two areas. For the Agoro-Agu Forest Reserve (AFR) region

  9. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  10. Host associations and incidence of Diuraphis spp. in the Rocky Mountain region of the United States, and pictorial key for their identification.

    PubMed

    Puterka, Gary J; Hammon, Robert W; Burd, John D; Peairs, Frank B; Randolph, Terri; Cooper, W Rodney

    2010-10-01

    The Russian wheat aphid, Diuraphis noxia Kurdjumov, is an introduced species first identified in 1986 into the United States. It has since become a major pest of wheat, Triticum aestivum L., and other small grains in the western United States. Three other Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were already endemic to the United States before the introduction of D. noxia. The objective of this study was to determine the occurrence and host associations of these four Diuraphis spp. in the Rocky Mountain region that borders the western Great Plains to better understand their distribution and ecological interactions. In addition, a key to these species with photographs of live or fresh preparations of specimens is presented to aid in their identification. D. noxia was the most widely distributed species in the study area spanning the Rocky Mountain areas of Wyoming, New Mexico, Utah, and Colorado. This species was most common in the cereal-producing areas of the Colorado Plateau ecoregion. D. frequens was found to be the predominant species in the Alpine/Aspen Mountain areas of the South Central Rockies and Colorado Rockies ecoregions. The other Diuraphis species were rarely encountered even though their plant hosts occurred in the ecoregions sampled. D. noxia shared common hosts and was found co-infesting grasses with other Diuraphis species. Therefore, the potential exists for D. noxia to impact the other native Diuraphis species.

  11. [Dynamics of nitrogen and sulfur wet deposition in typical forest stand at different spatial levels in Simian Mountain, mid-subtropical region].

    PubMed

    Sun, Tao; Ma, Ming; Wang, Ding-yong; Huang, Li-xin

    2014-12-01

    In order to investigate the dynamics of nitrogen and sulfur wet deposition in subtropical forest ecosystem, one typical forest stand, evergreen broad-leaved forest, at Simian Mountain located in Chongqing was selected in this research. Based on field monitoring, effects of precipitation, throughfall, litterfall, and groundwater runoff of the typical forest stand on the quality of water of Simian Mountain were investigated from September 2012 to August 2013. Results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.89 and maximum pH of 5.14. The soil, canopies and trunks could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy had the function of adsorption and purification of NO3-, NO2- and SO4(2-), and the average entrapment rate was 56.68%, 45.84% and 35.51%, respectively. Moreover, the degradation of litter was probably the main reason for the increase of ion concentrations in the surface litter water. Forest soils could absorb and neutralize NO3-, SO2- and NH4+, and release NO2-. The evergreen broad-leaf forest of mid-subtropical region had the function of interception on NO3-, NO2-, NH4+ and SO4(2-), and the total entrapment rate was 92.86%, 57.86%, 87.24% and 87.25%, respectively, and it had a certain buffering function for the acid rain.

  12. Evolution of fold-thrust belts and Cenozoic uplifting of the South Tianshan Mountain range in the Kuqa region, Northwest China

    NASA Astrophysics Data System (ADS)

    Wen, Lei; Li, Yue-Jun; Zhang, Guang-Ya; Tian, Zuo-Ji; Peng, Geng-Xin; Qiu, Bin; Huang, Zhi-Bin; Luo, Jun-Cheng; Zhang, Qiang

    2017-03-01

    The evolution of the Kuqa fold-thrust belt is accompanied with the Cenozoic uplifting of South Tianshan Mountain range. The critical Coubomb wedge theory can be well applied to the structural evolution of the Kuqa fold-thrust belt where the décollement structures are well developed. Following the initial hypotheses of this theory, with the base of the taper wedge (not the sea level) as the reference level, we propose a geometric relationship between the evolution of fold-thrust belt and tectonic uplifting of orogen, and deduce a calculation formula between orogen tectonic uplifting amount (very different from the topographic uplifting) (∂H), fold-thrust belt extending distance (∂S) and crustal shortening amount (∂L): ∂H = (∂S - ∂L) ∗ tan(α + ∂α) + [tan(α + ∂α)/tanα - 1] ∗ H0. In this paper we select two representative seismic profiles across the Kuqa fold-thrust belt to reconstruct the structural evolution, and use the calculation formula to get the uplifting amount of the South Tianshan Mountain range in Kuqa region during two geological periods. The results showed: during the end of Miocene to the end of Pliocene, the uplifting amount of the South Tianshan Mountain range in the middle segment of Kuqa (∂HM1) is 4.1 km; during the end of Pliocene to the present, the uplifting amount of the South Tianshan Mountain range in the middle segment of Kuqa (∂HM2) is 4.7 km, and in the east segment of Kuqa (∂HE) is 5.0 km.

  13. Streamflow and Selected Precipitation Data for Yucca Mountain Region, Southern Nevada and Eastern California, Water Years 1986-90

    USGS Publications Warehouse

    Kane, Thomas G.; Bauer, David J.; Martinez, Clair M.

    1994-01-01

    Streamflow and precipitation data collected at and near Yucca Mountain, Nevada, during water years 1986-90 are presented in this report. The data were collected and compiled as part of the studies by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, to characterize surface-water hydrology in the Yucca Mountain area. Streamflow data include daily-mean discharges and peak discharges at 5 continuous-record gaging stations, and peak discharges at 10 crest-stage, partial-record stations and 2 miscellaneous sites. Precipitation data include cumulative totals at 20 stations maintained by the U.S. Geological Survey and daily totals at 15 stations maintained by the Weather Service Nuclear Support Office, National Oceanic and Atmospheric Administration.

  14. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    SciTech Connect

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  15. Chloride cycling in two forested lake watersheds in the west-central Adirondack Mountains, New York, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.

    1991-01-01

    The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till (> 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.

  16. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    SciTech Connect

    Wong, I.G.; Green, R.K.; Sun, J.I.; Pezzopane, S.K.; Abrahamson, N.A.; Quittmeyer, R.C.

    1996-12-31

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M{sub w}) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M{sub w} 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M{sub w} 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper.

  17. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    SciTech Connect

    Tidwell, Vincent C.; Wolfsberg, Andrew; Macknick, Jordan; Middleton, Richard

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  18. Comparative Measurements of Condensation and Evaporation In The Alpine Regions of Thegiant Mountains, Poland and The Dischma, E. Switzerland

    NASA Astrophysics Data System (ADS)

    de Jong, C.; Mundelius, M.; Migala, K.

    During the summers of 1998, 1999 and 2001, two basins were instrumented for detailed comparative measurements of evaporation, transpiration and condensation. The catchments of the Reifträger, situated in the Giant Mountains of Poland and the Dischma, situated in the Kanton Graubünden in Eastern Switzerland range in altitude between 850 - 1410 m and 1600 - 3100 m respectively. All hydrological and meteorological measurements were carried out above the treeline. Both regions consist mainly of dwarf shrubs with dwarf pines, ferns, and moors dominating in the Reifträger and alpine pasture and dwarf shrubs in the Dischma. Automatic we ighing lysimeters and evaporation pans recorded evaporation, transpiration, condensation and rainfall data at 10 minute intervals over different slope profiles. On the Reifträger, condensation occurs between 05:00-07:00 and is followed by the onset of evaporation. Evaporation stagnates nearly entirely between 11:00-12:00 but it is subsequently reinitiated due to rapidly increasing wind speeds, reaching a maximum at 14:00. Evaporation continues until 18:00, followed by some nighttime evaporation in the early morning hours. Unlike the Reifträger, the Dischma has two daily maxima for evaporation and transpiration, again preceded in the morning hours by intensive condensation. In the Dischma, evaporation and transpiration is variable according to valley side but the first maximum usually occurs at 15:00 followed by a second maximum between 18:00-19:00 after sunset. The differences in the timing and pattern of evaporation and transpiration of the two catchments can be explained by influence of fog on the Reifträger compared to the regular exchange of moist and dry air from the glacier in the Dischma. In both cases, evaporation is delayed relative to radiation so that there is an evaporation lag of approximately 30 - 50 minutes on the Reifträger and up to 2 hours in the Dischma. Evaporation should therefore be modelled through a function

  19. 50-kyr vegetation history in the western Verkhoyansk Mountains region (NE Asia) reconstructed from fossil pollen data

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-05-01

    A detailed radiocarbon-dated pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle is presented. A set of 53 surface pollen samples representing tundra, cold-deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain an objective reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP suggests broader distribution of drier communities in response to the colder and drier than present climate of the Younger Dryas. The onset of the Holocene is marked by the highest values of shrub taxa, mainly Betula sect. Nanae/Fruticosae. Pollen percentages of arboreal taxa increase gradually and reach maximum values after 7 kyr BP. The latter maximum mainly reflects the spread of Pinus sylvestris in central Yakutia as a response to the mid-Holocene climatic optimum. The quasi-continuous presence of larch, shrubby birch and alder pollen throughout the whole record is the most striking feature of the pollen

  20. The Effect of Local Lacustrine Conditions on the Expression of Regional Holocene Climate in the Ruby Mountains, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Kusler, J. E.; Addison, J. A.; Wahl, D.

    2013-12-01

    Climate of the north-central Great Basin currently exhibits a bimodal precipitation pattern, dominated by winter (NDJF) precipitation from the eastern Pacific Ocean, augmented by late spring (MJ) convectional precipitation. Reconstruction of past moisture variability has proven difficult due to limited paleoclimate records in this region and the effect of lake-specific and local watershed characteristics. In order to better understand the Holocene climate record a series of cores were collected in Favre Lake (2902 masl, 8 ha, 12 m deep) using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7700 cal yr B.P. The pollen record is dominated by Pinus and Artemisia, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. Small fragilarioid diatoms (Pseudostaurosira, Staurosira, and Staurosirella) comprise as much as 80% of the assemblage. The remainder of the assemblage is dominated by benthic taxa. Planktonic species account for about 10% of the assemblage. Biogenic silica values vary between 20 and 30 wt %. These proxies suggest that the lake was small between 7,700 and 5,500 cal yr BP; for most of the remainder of the record, the lake covered a shallow (~1 m deep) shelf, resulting in the dominance of small fragilarioid diatoms. Planktonic species increase in abundance in the last 200 years, indicating the establishment of modern conditions. In order to evaluate the role of local conditions on the climate record, surface sediments were collected from tarns in the northern Ruby Mountains (Lamoille Lake, 2976 masl, 6 ha; Upper Dollar Lake, 2942 masl, ~1 ha, 2 m deep; Lower Dollar Lake, 2937 masl, ~1 ha, 2 m deep; Liberty Lake, 3064 masl, 9 ha, 33 m deep; Castle Lake, 2980 masl, 6 ha, 4.6 m deep; Favre Lake), and East Humboldt Range (Angel Lake, 2553 masl, 5 ha, 9 m deep). Slope aspects above the lakes are north (Lamoille

  1. Geochemistry of Springs in a Region Impacted by Natural Leakage of CO2 , Around Mammoth Mountain, Mammoth Lakes, Ca

    NASA Astrophysics Data System (ADS)

    Raskin, S.; Ellis, A. S.; Khachikian, C.; Luna, J.

    2012-12-01

    Carbon sequestration—the practice of injecting CO2 into geologic reservoirs—is a potentially effective but inadequately understood greenhouse gas mitigation method. Little is known about the impacts of CO2 on surrounding environments should reservoir leakage occur. Magma chambers beneath Mammoth Mountain, Ca, release large volumes of CO2 into the mountain's soil and water, simulating a leaking CO2 reservoir. This study examines the chemistry of springs at Mammoth Mountain in order to provide insights into the impact of elevated CO2 on water chemistry. Evans (2002) confirmed the presence of dissolved CO2 in Mammoth springs at concentrations ranging from 13.8 to 27.8 mmol/L. We hypothesize that waters will be moderately acidified by the CO2+H2O > H2CO3 reaction. Acidified waters may weather the native geology more efficiently than non-acidified waters. We analyzed and collected in-situ data and water samples from Mammoth Mountain springs on four trips during the summers of 2011 and 2012. These high elevations springs feature water temperatures ranging from 3.6 to 15.0 oC, pH values ranging from 5.36-8.26, and conductivities from 9.5-441 (μS/cm). Water emitted at low conductivity, dilute springs is likely sourced from recent snowmelt and has a smaller groundwater component. Low pH value springs are clustered on Mammoth Mountain's southwest flank. Water isotopes and major ions were analyzed to gain further insight into processes influencing these springs. Hydrogen and oxygen isotopes in spring waters conform to the global meteoric water line with δ18O ranging from -14.7 to -16.0‰ and δD ranging from -119.5 to -107.2‰. Isotopic signatures of springs farther east are progressively lighter, suggesting that springs are fed by local precipitation. Major ion analysis shows that spring's water chemistries generally fit along mixing lines between the major rhyolite, andesite, and basalt species that compose Mammoth. Springs on Mammoth's western flank, near the

  2. Juvenile Middle Proterozoic crust in the Adirondack Highlands, Grenville province, northeastern North America

    SciTech Connect

    Daly, J.S. ); McLelland, J.M. )

    1991-02-01

    Nd isotope data indicate that minimal amounts of significantly older crust have contributed to the genesis of the oldest (ca. 1.3-13.5 Ga) plutons in the Adirondack Highlands. These are magmatic arc tonalites with positive initial {epsilon}{sub Nd} values and Sm-Nd depleted mantle model ages (t{sub DM}) that are within 70 m.y. of the time of their crystallization. Granitoids of the anorthosite-mangerite-charnockite-granite suite, dated at 1,156-1,134 Ma, as well as the 1,100-1,050 Ma plutons, associated with the Ottawan phase of the Grenvillian orogenic cycle, also have positive initial {epsilon}{sub Nd} values and t{sub DM} ages similar to the tonalites. Derivation of both groups of granitoids by crustal melting of the magmatic arc is consistent with the available isotopic and geochemical data. Juvenile late Middle Proterozoic crust that formed during or just prior to the Grenville cycle appears to dominate the southwestern Grenville province as well as the Grenville inliers to the south. In contrast, most of the contiguous Grenville province in Canada comprises largely reworked older crust.

  3. U-Pb zircon geochronology and evolution of some Adirondack meta-igneous rocks

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    An update was presented of the recent U-Pb isotope geochronology and models for evolution of some of the meta-igneous rocks of the Adirondacks, New York. Uranium-lead zircon data from charnockites and mangerites and on baddeleyite from anorthosite suggest that the emplacement of these rocks into a stable crust took place in the range 1160 to 1130 Ma. Granulite facies metamorphism was approximately 1050 Ma as indicated by metamorphic zircon and sphene ages of the anorthosite and by development of magmatitic alaskitic gneiss. The concentric isotherms that are observed in this area are due to later doming. However, an older contact metamorphic aureole associated with anorthosite intrusion is observed where wollastonite develops in metacarbonates. Zenoliths found in the anorthosite indicate a metamorphic event prior to anorthosite emplacement. The most probable mechanism for anorthosite genesis is thought to be ponding of gabbroic magmas at the Moho. The emplacement of the anorogenic anorthosite-mangerite-charnockite suite was apparently bracketed by compressional orogenies.

  4. Development of LANDSAT Derived Forest Cover Information for Integration into Adirondack Park GIS

    NASA Technical Reports Server (NTRS)

    Curran, R. P.; Banta, J. S.

    1982-01-01

    Based upon observed changes in timber harvest practices partially attributable to forest biomass removable for energy supply purposes, the Adirondack Park Agency began in 1979 a multi-year project to implement a digital geographic information system (GIS). An initial developmental task was an inventory of forest cover information and analysis of forest resource change and availability. While developing the GIS, a pilot project was undertaken to evaluate the usefulness of LANDSAT derived land cover information for this purpose, and to explore the integration of LANDSAT data into the GIS. The prototype LANDSAT analysis project involved: (1) the use of both recent and historic data to derive land cover information for two dates; and (2) comparison of land cover over time to determine quantitative and geographic changes. The "recent data," 1978 full foliage data over portions of four LANDSAT scenes, was classified, using ground truth derived training samples in various forested and non-forested categories. Forested categories include the following: northern hardwoods, pine, spruce-fir, and pine plantation, while nonforested categories include wet-conifer, pasture, grassland, urban, exposed soil, agriculture, and water.

  5. Hydraulic and biochemical gradients limit wetland mercury supply to an Adirondack stream

    USGS Publications Warehouse

    Bradley, Paul M.; Burns, Douglas A.; Harvey, Judson; Journey, Celeste; Brigham, Mark E.; Murray, Karen

    2016-01-01

    Net fluxes (change between upstream and downstream margins) for water, methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and chloride (Cl) were assessed twice in an Adirondack stream reach (Sixmile Brook, USA), to test the hypothesized importance of wetland-stream hydraulic and chemical gradients as fundamental controls on fluvial mercury (Hg) supply. The 500 m study reach represented less than 4% of total upstream basin area. During a snowmelt high-flow event in May 2009 surface water, DOC, and chloride fluxes increased by 7.1±1.3%, 8.0±1.3%, and 9.0±1.3%, respectively, within the reach, demonstrating that the adjacent wetlands are important sources of water and solutes to the stream. However, shallow groundwater Hg concentrations lower than in the surface water limited groundwater-surface water Hg exchange and no significant changes in Hg (filtered MeHg and THg) fluxes were observed within the reach despite the favorable hydraulic gradient. In August 2009, the lack of significant wetland-stream hydraulic gradient resulted in no net flux of water or solutes (MeHg, THg, DOC, or Cl) within the reach. The results are consistent with the wetland-Hg-source hypothesis and indicate that hydraulic and chemical gradient (direction and magnitude) interactions are fundamental controls on the supply of wetland Hg to the stream.

  6. Chemical variations within a metagabbro, N. W. Adirondack lowlands, N. Y

    SciTech Connect

    Von Derau, G.D. Jr.; Van Brocklin, M.F. . Geology Dept.)

    1993-03-01

    A metagabbro located in the N.W. Adirondack lowlands has been examined in order to study the chemical changes that occur from the edge of the body into the core. Samples were collected from within a mine adit starting near the contact of the country rock and going into the metagabbro for a distance of 65 feet. The country rock contains an assemblage of alkali feldspar, plagioclase, quartz, biotite, apatite and magnetite. The metagabbro contains an assemblage of plagioclase, hornblende, clinopyroxene, biotite, quartz, sphene, apatite and opaques. Chemical data show a decrease of SiO[sub 2] and K[sub 2]O from the edge of the metagabbro towards the center, and an increase in CaO, Fe[sub 2]O[sub 3], MgO, TiO[sub 2], P[sub 2]O[sub 5], Ni, V, and Cr[sub 2]O[sub 3]. The Al[sub 2]O[sub 3], and Na[sub 2]O content remain nearly constant. Hand samples stained with sodium cobaltinitrite also reflect decreasing K[sub 2]O towards the core of the body. These chemical gradations may be due to metasomatism, assimilation of country rock or true compositional zoning during crystallization of an alkali-rich gabbro.

  7. Evaluation of the recovery of Adirondack acid lakes by chemical manipulation

    SciTech Connect

    Depinto, J.V.; Edzwald, J.K.

    1982-06-01

    This study specifically addressed an evaluation of materials (calcium hydroxide and carbonate, agricultural limestone, fly ash, water treatment plant softening sludge, cement plant by-pass dust) for their neutralizing effectiveness and for establishing a neutral pH buffer system, and an evaluation of the effect of various lake recovery materials on algal growth. Laboratory continuous-flow microcosims were used as models to assess acid lake recovery. These models were filled with actual acid lake water over a layer of lake sediments, subjected to a given chemical treatment, and continuously fed water of selected quality (e.g., acid rain). A simulation of sediment-water-air kinetic interactions on a treated acid lake was obtained by careful monitoring of the microcosm chemical response. Agricultural limestone was determined to be the most appropriate material for acid lake recovery treatment based on its neutralizing properties, assessment of its potential impact on biota, its availability, and its relative cost: the results of this laboratory study suggest that full-scale recovery of an Adirondack acid lake is technically feasible. It is, however, recommended that an acid lake recovery field demonstration project be undertaken. 58 references, 36 figures, 29 tables.

  8. Appendix C: A comparative study of small scale remotely sensed data for monitoring clearcutting in hardwood forests. M.S. Thesis; [Allegheny National Forest, Pennsylvania and the Adirondacks, New York

    NASA Technical Reports Server (NTRS)

    Hafker, W. R.

    1980-01-01

    Manual photointerpretation techniques were used to analyze images acquired by high altitude aircraft, the Skylab multispectral and Earth terrain camera (ETC), the LANDSAT multispectral scanner, and the LANDSAT-3 return beam vidicon camera. A color-additive viewer, and digital image analysis were also used on the LANDSAT MSS imagery. The value of each type of remotely sensed data was judged by the ease and accuracy of clearcut identification, and by the amount of detail discernible, especially regarding revegetation. Results of a site study in the Allegheny National Forest, Pennsylvania indicate that high altitude aerial photography, especially color infrared photography acquired during the growing season, is well suited for identifying clearcuts and assessing revegetation. Although photographs acquired with Skylab's ETC also yielded good results, only incomplete inventories of clearcuts could be made using LANDSAT imagery. Results for the Adirondack region of New York State were similar for the aircraft and satellite photography, but even less satisfactory for the LANDSAT imagery.

  9. Multi-stage uplift of the Rocky Mountains: new age constraints on the Telluride Conglomerate and regional compilation of apatite fission track ages

    NASA Astrophysics Data System (ADS)

    Donahue, M. S.; Karlstrom, K. E.; Gonzales, D. A.; Pecha, M.; McKeon, R. E.

    2011-12-01

    The Telluride Conglomerate, exposed on the western flanks of Oligocene caldera complexes of the San Juan Mountains of Colorado, has historically been considered an Eocene alluvial deposit overlying the "Rocky Mountain erosion surface" and pre-dating Oligocene volcanism. Measured sections show that the Telluride preserves an unroofing sequence with basal units dominated by Paleozoic sedimentary clasts transitioning into upper units dominated by locally derived Proterozoic basement mixed with previously unrecognized andesitic Oligocene volcanics. Paleoflow directions and thicknesses of the preserved unit indicate the Telluride Conglomerate was deposited by a large, high-energy WNW- flowing braided river system. Detrital zircon analysis indicates minimum ages for individual grains within the Telluride Conglomerate of 28.0 to 31.5 Ma. This, plus the entrained volcanic clasts, redefines the unit as being of Oligocene age and indicates that conglomeratic deposition overlapped with regional San Juan volcanism and just predated major caldera eruptions at 28.4 Ma (San Juan and Uncompahgre) and 27.6 Ma (Silverton). We interpret the deposition of the Telluride Conglomerate to be the depositional response to regional uplift and erosion related to early stages of San Juan magmatism. These units have undergone significant post-depositional tectonism: the Telluride Conglomerate is found at ~9,000ft elevation near Telluride, CO, but is at ~13,000' at its westernmost exposure at Mt. Wilson. We attribute this differential uplift to be associated with faulting, pluton emplacement, and additional mantle driven uplift associated with the emplacement and cooling of the Wilson Stock in the last 20-22 Ma as documented by Miocene cooling seen in apatite helium (AHe) ages. This cooling fits into our regional compilation of published apatite fission track (AFT) and AHe data showing temporally and spatially partitioned Cenozoic cooling indicative of multistage uplift of the Rocky Mountain

  10. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountaino