Science.gov

Sample records for adjacent atlantic ocean

  1. The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins.

    PubMed

    Ahrens, Joseph B; Borda, Elizabeth; Barroso, Rômulo; Paiva, Paulo C; Campbell, Alexandra M; Wolf, Alexander; Nugues, Maggy M; Rouse, Greg W; Schulze, Anja

    2013-04-01

    Over the last few decades, advances in molecular techniques have led to the detection of strong geographic population structure and cryptic speciation in many benthic marine taxa, even those with long-lived pelagic larval stages. Polychaete annelids, in particular, generally show a high degree of population divergence, especially in mitochondrial genes. Rarely have molecular studies confirmed the presence of 'cosmopolitan' species. The amphinomid polychaete Hermodice carunculata was long considered the sole species within its genus, with a reported distribution throughout the Atlantic and adjacent basins. However, recent studies have indicated morphological differences, primarily in the number of branchial filaments, between the East and West Atlantic populations; these differences were invoked to re-instate Hermodice nigrolineata, formerly considered a junior synonym of H. carunculata. We utilized sequence data from two mitochondrial (cytochrome c oxidase subunit I, 16S rDNA) markers and one nuclear (internal transcribed spacer) marker to examine the genetic diversity of Hermodice throughout its distribution range in the Atlantic Ocean, including the Mediterranean Sea, the Caribbean Sea, the Gulf of Mexico and the Gulf of Guinea. Our analyses revealed generally low genetic divergences among collecting localities and between the East and West Atlantic, although phylogenetic trees based on mitochondrial data indicate the presence of a private lineage in the Mediterranean Sea. A re-evaluation of the number of branchial filaments confirmed differences between East and West Atlantic populations; however, the differences were not diagnostic and did not reflect the observed genetic population structure. Rather, we suspect that the number of branchial filaments is a function of oxygen saturation in the environment. Our results do not support the distinction between H. carunculata in the West Atlantic and H. nigrolineata in the East Atlantic. Instead, they re-affirm the

  2. New Perspectives from Satellite and Profile Observations on Tropospheric Ozone over Africa and the Adjacent Oceans: An Indian-Atlantic Ocean Link to tbe "Ozone Paradox"

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Diab, Roseanne D.; Thouret, Valerie; Sauvage, Bastien; Chatfield, B.; Guan, Hong

    2004-01-01

    In the past few years, tropospheric ozone observations of Africa and its adjacent ocenas have been greatly enhanced by high resolution (spatial and temporal) satellite measurements and profile data from aircraft (MOZAIC) and balloon-borne (SHADOZ) soundings. These views have demonstrated for the first time the complexity of chemical-dynamical interactions over the African continent and the Indian and Atlantic Oceans. The tropical Atlantic "ozone paradax" refers to the observation that during the season of maximum biomass burning in west Africa north of the Intertropical Convergence Zone (ITCZ), the highest tropospheric ozone total column occurs south of the ITCZ over the tropical Atlantic. The longitudinal view of tropospheric ozone in the southern tropics from SHADOZ (Southern Hemisphere Additional Ozonesondes) soundings shown the persistence of a "zonal-wave one" pattern that reinforces the "ozone paradox". These ozone features interact with dynamics over southern and northern Africa where anthropogenic sources include the industrial regions of the South African Highveld and Mideastern-Mediterranean influences, respectively. Our newest studies with satellites and soundings show that up to half the ozone pollution over the Atlantic in the January-March "paradox" period may originate from south Asian pollution. Individual patches of pollurion over the Indian Ocean are transported upward by convective mixing and are enriched by pyrogenic, biogenic sources and lightning as they cross Africa and descend over the Atlantic. In summary, local sources, intercontinental import and export and unique regional transport patterns put Africa at a crossroads of troposheric ozone influences.

  3. Causes of long-term landscape evolution of "passive" margins and adjacent continental segments at the South Atlantic Ocean.

    NASA Astrophysics Data System (ADS)

    Glasmacher, Ulrich Anton; Hackspacher, Peter C.

    2013-04-01

    During the last 10 years research efforts have been devoted to understand the coupling between tectonic and surface processes in the formation of recent topography. Quantification of the rate at which landforms adapt to a changing tectonic, heat flow, and climate environment in the long term has become an important research object and uses intensively data revealed by low-temperature thermochronology, terrigenous cosmogenic nuclides, and geomorphological analyses. The influence of endogenic forces such as mantle processes as one of the causes for "Dynamic Topography Evolution" have been explored in a few studies, recently. In addition, the increased understanding how change in surface topography, and change in the amount of downward moving cold surface water caused by climate change affects warping isotherms in the uppermost crust allows further interpretation of low-temperature thermochronological data. "Passive" continental margins and adjacent continental segments especially at the South Atlantic ocean are perfect locations to quantify exhumation and uplift rates, model the long-term landscape evolution, and provide information on the influence of mantle processes on a longer time scale. This climate-continental margin-mantle process-response system is caused by the interaction between endogenic and exogenic forces that are related to the mantle-process driven rift - drift - "passive" continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Furthermore, the influence of major transform faults (also called: transfer zones, Fracture Zones (FZ)) on the long-term evolution of "passive" continental margins is still very much in debate. The presentation will provide insight in possible causes for the differentiated long-term landscape evolution along the South Atlantic Ocean.

  4. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Zeppilli, Daniela; Bongiorni, Lucia; Cattaneo, Antonio; Danovaro, Roberto; Santos, Ricardo Serrão

    2013-12-01

    Seamounts are currently considered hotspots of biodiversity and biomass for macro- and megabenthic taxa, but knowledge of meiofauna is still limited. Studies have revealed the existence of highly diverse meiofauna assemblages; however most data are mainly qualitative or focused only on specific groups, thus preventing comparisons among seamounts and with other deep-sea areas. This study, conducted on Condor Seamount (Azores, North-East Atlantic Ocean), describes variation in abundance, biomass, community structure and biodiversity of benthic meiofauna from five sites located on the Condor Seamount: and one site away from the seamount. While the summit of the seamount hosted the highest alpha biodiversity, the flanks and the bases showed a rich meiofauna assemblage in terms of abundance and biomass. The observed marked differences in grain size composition of sediments reflected the oceanographic conditions impacting different sectors of the Condor seamount, and could play an important role in the spatial distribution of different meiofaunal taxa. Trophic conditions (biochemical composition of organic matter) explained 78% of the variability in the meiofauna biomass pattern while sediment grain influenced the vertical distribution of meiofauna and only partially explained meiofaunal taxa composition. This study provides a further advancement in the knowledge of meiofaunal communities of seamounts. Only a deeper understanding of the whole benthic communities (including meiofauna) will allow to elaborate effective management and conservation tools for seamount ecosystems.

  5. Changes in nematode communities in different physiographic sites of the condor seamount (north-East atlantic ocean) and adjacent sediments.

    PubMed

    Zeppilli, Daniela; Bongiorni, Lucia; Serrão Santos, Ricardo; Vanreusel, Ann

    2014-01-01

    Several seamounts are known as 'oases' of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in

  6. Changes in Nematode Communities in Different Physiographic Sites of the Condor Seamount (North-East Atlantic Ocean) and Adjacent Sediments

    PubMed Central

    Zeppilli, Daniela; Bongiorni, Lucia; Serrão Santos, Ricardo; Vanreusel, Ann

    2014-01-01

    Several seamounts are known as ‘oases’ of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in

  7. Pseudorhabdosynochus species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species.

    PubMed

    Kritsky, Delane C; Bakenhaster, Micah D; Adams, Douglas H

    2015-01-01

    Seventeen of twenty-three species of groupers collected from the western Atlantic Ocean and adjacent waters were infected with 19 identified species (13 new) of Pseudorhabdosynochus Yamaguti, 1958 (Dactylogyridea, Diplectanidae); specimens of the Spanish flag Gonioplectrus hispanus, coney Cephalopholis fulva, marbled grouper Dermatolepis inermis, mutton hamlet Alphestes afer, and misty grouper Hyporthodus mystacinus were not infected; the yellowmouth grouper Mycteroperca interstitialis and yellowfin grouper Mycteroperca venenosa were infected with unidentified species of Pseudorhabdosynochus; the Atlantic creolefish Paranthias furcifer was infected with an unidentified species of Diplectanidae that could not be accommodated in Pseudorhabdosynochus. The following species of Pseudorhabdosynochus are described or redescribed based entirely or in part on new collections: Pseudorhabdosynochus americanus (Price, 1937) Kritsky & Beverley-Burton, 1986 from Atlantic goliath grouper Epinephelus itajara; Pseudorhabdosynochus yucatanensis Vidal-Martínez, Aguirre-Macedo & Mendoza-Franco, 1997 and Pseudorhabdosynochus justinella n. sp. from red grouper Epinephelus morio; Pseudorhabdosynochus kritskyi Dyer, Williams & Bunkley-Williams, 1995 from gag Mycteroperca microlepis; Pseudorhabdosynochus capurroi Vidal-Martínez & Mendoza-Franco, 1998 from black grouper Mycteroperca bonaci; Pseudorhabdosynochus hyphessometochus n. sp. from Mycteroperca interstitialis; Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000 from snowy grouper Hyporthodus niveatus and Warsaw grouper Hyporthodus nigritus (new host record); Pseudorhabdosynochus firmicoleatus n. sp. from yellowedge grouper Hyporthodus flavolimbatus and snowy grouper H. niveatus; Pseudorhabdosynochus mcmichaeli n. sp., Pseudorhabdosynochus contubernalis n. sp., and Pseudorhabdosynochus vascellum n. sp. from scamp Mycteroperca phenax; Pseudorhabdosynochus meganmarieae n. sp. from graysby Cephalopholis cruentata

  8. Pseudorhabdosynochus species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species

    PubMed Central

    Kritsky, Delane C.; Bakenhaster, Micah D.; Adams, Douglas H.

    2015-01-01

    Seventeen of twenty-three species of groupers collected from the western Atlantic Ocean and adjacent waters were infected with 19 identified species (13 new) of Pseudorhabdosynochus Yamaguti, 1958 (Dactylogyridea, Diplectanidae); specimens of the Spanish flag Gonioplectrus hispanus, coney Cephalopholis fulva, marbled grouper Dermatolepis inermis, mutton hamlet Alphestes afer, and misty grouper Hyporthodus mystacinus were not infected; the yellowmouth grouper Mycteroperca interstitialis and yellowfin grouper Mycteroperca venenosa were infected with unidentified species of Pseudorhabdosynochus; the Atlantic creolefish Paranthias furcifer was infected with an unidentified species of Diplectanidae that could not be accommodated in Pseudorhabdosynochus. The following species of Pseudorhabdosynochus are described or redescribed based entirely or in part on new collections: Pseudorhabdosynochus americanus (Price, 1937) Kritsky & Beverley-Burton, 1986 from Atlantic goliath grouper Epinephelus itajara; Pseudorhabdosynochus yucatanensis Vidal-Martínez, Aguirre-Macedo & Mendoza-Franco, 1997 and Pseudorhabdosynochus justinella n. sp. from red grouper Epinephelus morio; Pseudorhabdosynochus kritskyi Dyer, Williams & Bunkley-Williams, 1995 from gag Mycteroperca microlepis; Pseudorhabdosynochus capurroi Vidal-Martínez & Mendoza-Franco, 1998 from black grouper Mycteroperca bonaci; Pseudorhabdosynochus hyphessometochus n. sp. from Mycteroperca interstitialis; Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000 from snowy grouper Hyporthodus niveatus and Warsaw grouper Hyporthodus nigritus (new host record); Pseudorhabdosynochus firmicoleatus n. sp. from yellowedge grouper Hyporthodus flavolimbatus and snowy grouper H. niveatus; Pseudorhabdosynochus mcmichaeli n. sp., Pseudorhabdosynochus contubernalis n. sp., and Pseudorhabdosynochus vascellum n. sp. from scamp Mycteroperca phenax; Pseudorhabdosynochus meganmarieae n. sp. from graysby Cephalopholis cruentata

  9. Large-scale distribution and activity of prokaryotes in deep-sea surface sediments of the Mediterranean Sea and the adjacent Atlantic Ocean.

    PubMed

    Giovannelli, Donato; Molari, Massimiliano; d'Errico, Giuseppe; Baldrighi, Elisa; Pala, Claudia; Manini, Elena

    2013-01-01

    The deep-sea represents a substantial portion of the biosphere and has a major influence on carbon cycling and global biogeochemistry. Benthic deep-sea prokaryotes have crucial roles in this ecosystem, with their recycling of organic matter from the photic zone. Despite this, little is known about the large-scale distribution of prokaryotes in the surface deep-sea sediments. To assess the influence of environmental and trophic variables on the large-scale distribution of prokaryotes, we investigated the prokaryotic assemblage composition (Bacteria to Archaea and Euryarchaeota to Crenarchaeota ratio) and activity in the surface deep-sea sediments of the Mediterranean Sea and the adjacent North Atlantic Ocean. Prokaryotic abundance and biomass did not vary significantly across the Mediterranean Sea; however, there were depth-related trends in all areas. The abundance of prokaryotes was positively correlated with the sedimentary concentration of protein, an indicator of the quality and bioavailability of organic matter. Moving eastwards, the Bacteria contribution to the total prokaryotes decreased, which appears to be linked to the more oligotrophic conditions of the Eastern Mediterranean basins. Despite the increased importance of Archaea, the contributions of Crenarchaeota Marine Group I to the total pool was relatively constant across the investigated stations, with the exception of Matapan-Vavilov Deep, in which Euryarchaeota Marine Group II dominated. Overall, our data suggest that deeper areas of the Mediterranean Sea share more similar communities with each other than with shallower sites. Freshness and quality of sedimentary organic matter were identified through Generalized Additive Model analysis as the major factors for describing the variation in the prokaryotic community structure and activity in the surface deep-sea sediments. Longitude was also important in explaining the observed variability, which suggests that the overlying water masses might have a

  10. 78 FR 34879 - Special Local Regulations for Marine Events, Atlantic City Offshore Race, Atlantic Ocean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... City Offshore Race, Atlantic Ocean; Atlantic City, NJ AGENCY: Coast Guard, DHS. ACTION: Temporary final... to only one recurring marine event, held on the Atlantic Ocean, offshore of Atlantic City, New Jersey... Atlantic Ocean near Atlantic City, New Jersey, during the event. DATES: This rule will be effective on...

  11. Hydrogen in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Walter, S.; Kock, A.; Steinhoff, T.; Röckmann, T.

    2009-04-01

    Although hydrogen (H2) is considered as one of the most important future energy carriers, little is known about the global biogeochemical cycle of this trace gas (Rhee et al. 2006). In order to assess the potential impact of expected increasing H2 concentrations to the atmosphere a fundamental understanding of the global H2 cycle is indispensable (Tromp et al. 2003, Warwick et al. 2004). Oceans are one source of atmospheric H2, produced by biological processes such as fermentation and N2-fixation and abiotic photochemical processes (Punshon and Moore 2008 and references herein). Further information can be obtained by studying the isotope composition of H2. However, the isotopic ratio of oceanic released H2 is unknown and has so far only been estimated from thermodynamic equilibrium. We investigated the atmospheric D/H isotopic ratio of H2 in the Atlantic Ocean. First results of atmospheric H2 isotope ratios from the West African coast of Mauritania and from a meridional transect over the Atlantic Ocean will be presented. Samples were taken onboard the German research vessel "Poseidon" in February 2007 associated to SOPRAN and during the cruise Ant XXIV-4 with the German research vessel "Polarstern" in April 2008 between Punta Arenas (Chile) and Bremerhaven (Germany). Literature Punshon, S. and R.M. Moore; Aerobic hydrogen production and dinitrogen fixation in the marine cyanobacterium Trichodesmium erythraeum IMS101; Limnol. Oceanogr., 53(6), 2749-2753, 2008. Rhee, T.S., C.A.M. Brenninkmeijer, and T. Röckmann; The overwhelming role of soils in the global atmospheric hydrogen cycle, Atmos. Chem. Phys., 6, 1611-1625, 2006. Tromp, T.K., Shi, R.-L., Allen, M., Eiler, J.M., and Y. L. Yung1; Potential Environmental Impact of a Hydrogen Economy on the Stratosphere, Science, 300, 1740-1742, 2003. Warwick, N.J., Bekki, S., Nisbet, E.G., and J.A. Pyle; Impact of a hydrogen economy on the stratosphere and troposphere studied in a 2-D model; Geo.Res.Lett., 31, L05107, doi:10

  12. 77 FR 22523 - Safety Zone; 2012 Ocean City Air Show; Atlantic Ocean, Ocean City, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 2012 Ocean City Air Show; Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY: The Coast Guard proposes establishing a safety zone on the navigable waters of the Atlantic Ocean in Ocean City, MD....

  13. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY: The Coast Guard proposes establishing a temporary safety zone on the Atlantic Ocean in the vicinity of Ocean City,...

  14. 76 FR 31235 - Safety Zone; Ocean City Air Show, Atlantic Ocean, Ocean City, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Ocean City Air Show, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS. ACTION: Temporary Final rule. SUMMARY: The Coast Guard will establish a temporary safety zone on the Atlantic Ocean in the vicinity of Ocean City, MD to support...

  15. Atmospheric blocking and Atlantic multidecadal ocean variability.

    PubMed

    Häkkinen, Sirpa; Rhines, Peter B; Worthen, Denise L

    2011-11-04

    Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by affecting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially 1996 to 2010). It also describes much longer time scale Atlantic multidecadal ocean variability (AMV), including the extreme pre-greenhouse-gas northern warming of the 1930s to 1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat exchange, both of which contribute to the warm phase of AMV.

  16. Atmospheric Blocking and Atlantic Multidecadal Ocean Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by affecting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially 1996 to 2010). It also describes much longer time scale Atlantic multidecadal ocean variability (AMV), including the extreme pre-greenhouse-gas northern warming of the 1930s to 1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat exchange, both of which contribute to the warm phase of AMV.

  17. Organic pollutants and ocean fronts across the Atlantic Ocean: A review

    NASA Astrophysics Data System (ADS)

    Lohmann, Rainer; Belkin, Igor M.

    2014-11-01

    Little is known about the effect of ocean fronts on pollutants dynamics, particularly organic pollutants. Since fronts are associated with convergent currents and productive fishing grounds, any possible convergence of pollutants at fronts would raise concerns. The focus here is on relatively persistent organic pollutants, POPs, as non-persistent organic pollutants are rarely found in the open ocean. Results from recent cruises in the Atlantic Ocean are examined for POP distributions across ocean fronts in (i) the Canary Current; (ii) the Gulf Stream; and (iii) the Amazon and Rio de la Plata Plumes. Few studies achieved a spatial resolution of 10-20 km, while most had 100-300 km between adjacent stations. The majority of the well-resolved studies measured perfluorinated compounds (PFCs), which seem particularly well suited for frontal resolution. In the NE Atlantic, concentrations of PFCs sharply decreased between SW Europe and NW Africa upon crossing the Canary Current Front at 24-27°N. In the Western Atlantic, the PFC concentrations sharply increased upon entering the Amazon River Plume and Rio de la Plata Plume. In the NW Atlantic, concentrations of several pollutants such as polycyclic aromatic hydrocarbons are very high in Rhode Island Sound, decreasing to below detection limit in the open ocean. The more persistent and already phased-out polychlorinated biphenyls (PCBs) displayed elevated concentrations in the Gulf Stream and Rhode Island Sound, thereby highlighting the importance of ocean fronts, along-front currents, and cross-frontal transport for the dispersal of PCBs.

  18. Atlantic and Indian Oceans Pollution in Africa

    NASA Astrophysics Data System (ADS)

    Abubakar, B.

    2007-05-01

    Africa is the second largest and most populated continent after Asia. Geographically it is located between the Atlantic and Indian Oceans. Most of the Africa's most populated and industrialized cities are located along the coast of the continent facing the Atlantic and Indian Oceans, example of such cities include Casablanca, Dakar, Accra, Lagos, Luanda and Cape town all facing the Atlantic Ocean and cities like East London, Durban, Maputo, Dar-es-salaam and Mogadishu are all facing the Indian Ocean. As a result of the geographical locations of African Coastal Cities plus increase in their population, industries, sea port operations, petroleum exploration activities, trafficking of toxic wastes and improper waste management culture lead to the incessant increase in the pollution of the two oceans. NATURE OF POLLUTION OF THE ATLANTIC OCEAN i. The petroleum exploration activities going on along the coast of "Gulf of Guinea" region and Angola continuously causes oil spillages in the process of drilling, bunkering and discharging of petroleum products in the Atlantic Ocean. ii. The incessant degreasing of the Sea Ports "Quay Aprons" along the Coastal cities of Lagos, Luanda, Cape Town etc are continuously polluting the Atlantic Ocean with chemicals. iii. Local wastes generated from the houses located in the coastal cities are always finding their ways into the Atlantic Ocean. NATURE OF POLLUTION OF THE INDIAN OCEAN i. Unlike the Atlantic ocean where petroleum is the major pollutant, the Indian Ocean is polluted by Toxic / Radioactive waste suspected to have been coming from the developed nations as reported by the United Nations Environmental Programme after the Tsunami disaster in December 2004 especially along the coast of Somalia. ii. The degreasing of the Quay Aprons at Port Elizabeth, Maputo, Dar-es-Salaam and Mongolism Sea Ports are also another major source polluting the Indian Ocean. PROBLEMS GENERATED AS A RESULT OF THE OCEANS POLLUTION i. Recent report

  19. 50 CFR 600.520 - Northwest Atlantic Ocean fishery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Northwest Atlantic Ocean fishery. 600.520... Northwest Atlantic Ocean fishery. (a) Purpose. Sections 600.520 and 600.525 regulate all foreign fishing conducted under a GIFA within the EEZ in the Atlantic Ocean north of 35°00′ N. lat. (b) Authorized...

  20. 50 CFR 600.520 - Northwest Atlantic Ocean fishery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Northwest Atlantic Ocean fishery. 600.520... Northwest Atlantic Ocean fishery. (a) Purpose. Sections 600.520 and 600.525 regulate all foreign fishing conducted under a GIFA within the EEZ in the Atlantic Ocean north of 35°00′ N. lat. (b) Authorized...

  1. Atlantic and indian oceans pollution in africa

    NASA Astrophysics Data System (ADS)

    Abubakar, Babagana

    Africa is the second largest and most populated continent after Asia. Geographically it is located between the Atlantic and Indian Oceans. Most of the Africa's most populated and industrialized cities are located along the coast of the continent facing the Atlantic and Indian Oceans, example of such cities include Casablanca, Dakar, Accra, Lagos, Luanda and Cape town all facing the Atlantic Ocean and cities like East London, Durban, Maputo, Dar-es-salaam and Mogadishu are all facing the Indian Ocean. As a result of the geographical locations of African Coastal Cities plus increase in their population, industries, sea port operations, petroleum exploration activities, trafficking of toxic wastes and improper waste management culture lead to the incessant increase in the pollution of the two oceans. NATURE OF POLLUTION OF THE ATLANTIC OCEAN i. The petroleum exploration activities going on along the coast of "Gulf of Guinea" region and Angola continuously causes oil spillages in the process of drilling, bunkering and discharging of petroleum products in the Atlantic Ocean. ii. The incessant degreasing of the Sea Ports "Quay Aprons" along the Coastal cities of Lagos, Luanda, Cape Town etc are continuously polluting the Atlantic Ocean with chemicals. iii. Local wastes generated from the houses located in the coastal cities are always finding their ways into the Atlantic Ocean. NATURE OF POLLUTION OF THE INDIAN OCEAN i. Unlike the Atlantic ocean where petroleum is the major pollutant, the Indian Ocean is polluted by Toxic / Radioactive waste suspected to have been coming from the developed nations as reported by the United Nations Environmental Programme after the Tsunami disaster in December 2004 especially along the coast of Somalia. ii. The degreasing of the Quay Aprons at Port Elizabeth, Maputo, Dar-es-Salaam and Mongolism Sea Ports are also another major source polluting the Indian Ocean. PROBLEMS GENERATED AS A RESULT OF THE OCEANS POLLUTION i. Recent report

  2. Silver in the far North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Rivera-Duarte, I.; Flegal, A. R.; Sañudo-Wilhelmy, S. A.; Véron, A. J.

    Total (unfiltered) silver concentrations in higher latitudes of the North Atlantic (52-68°N) are reported for the second Intergovernmental Oceanographic Commission (IOC) Global Investigation of Pollutants in the Marine Environment (GIPME) baseline survey of 1993. These silver concentrations (0.69-7.2 pM) are oceanographically consistent with those (0.24-9.6 pM) previously reported for lower latitudes in the eastern North and South Atlantic ( Flegal et al., 1995). However, surface (⩽200 m) water concentrations of silver (0.69-4.6 pM) in the northern North Atlantic waters are, on average, ten-fold larger than those (0.25 pM) considered natural background concentrations in surface waters of the central Atlantic. In contrast, variations in deep far North Atlantic silver concentrations are associated with discrete water masses. Consequently, the cycling of silver in the far North Atlantic appears to be predominantly controlled by external inputs and the advection of distinct water masses, in contrast to the nutrient-like biogeochemical cycling of silver observed in the central Atlantic and Pacific oceans.

  3. Anisotropic tomography of the Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Silveira, G.; Stutzmann, E.

    2003-04-01

    We present a regional tri-dimensional model of the Atlantic Ocean with anisotropy. The model, derived from Rayleigh and Love phase velocity measurements, is defined from the Moho down to 300 km depth with a lateral resolution of about 500 km and is presented in terms of average isotropic S-wave velocity, azimuthal anisotropy and transverse isotropy. The cratons beneath North America, Brazil and Africa are clearly associated with fast S-wave velocity anomalies. The Mid Atlantic Ridge is a shallow structure in the North Atlantic corresponding to a negative velocity anomaly down to about 150 km depth. In contrast, the ridge negative signature is visible in the South Atlantic down to the deepest depth inverted, that is 300~km depth. This difference is probably related to the presence of hot-spots along or close to the ridge axis in the South Atlantic and may indicate a different mechanism for the ridge between the North and South Atlantic. Negative velocity anomalies are clearly associated with hot-spots from the surface down to at least 300km depth, they are much broader that the supposed size of the hot-spots and seem to be connected along a North-South direction. Down to 100 km depth, a fast S-wave velocity anomaly is extenting from Africa into the Atlantic Ocean within the zone defined as the Africa superswell area. This result indicates that the hot material rising from below does not reach the surface in this area but may be pushing the lithosphere upward. In most parts of the Atlantic, the azimuthal anisotropy directions remain stable with increasing depth. Close to the ridge, the fast S-wave velocity direction is roughly parallel to the sea floor spreading direction. The hot-spot anisotropy signature is striking beneath Bermuda, Cape Verde and Fernando Noronha islands where the fast S-wave velocity direction seems to diverge radially from the hot-spots. The Atlantic average radial anisotropy is similar to that of the PREM model, that is positive down to about

  4. 78 FR 32556 - Safety Zone; 2013 Ocean City Air Show, Atlantic Ocean; Ocean City, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 2013 Ocean City Air Show, Atlantic Ocean; Ocean City, MD AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is... City, MD to support the Ocean City Air Show. This action is intended to restrict vessel...

  5. NOAA Research Vessel Explores Atlantic Ocean Seamounts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-10-01

    Mike Ford, a biological oceanographer with the National Oceanic and Atmospheric Administration (NOAA), sat rapt in front of a bank of high-definition monitors. They provided live video and data feeds from a tethered pair of instrument-laden remotely operated vehicles (ROVs) that were descending 4692 meters on their deepest dive ever. Their target: an unnamed and unexplored New England seamount discovered in the North Atlantic last year.

  6. Knowledge of marine fish trematodes of Atlantic and Eastern Pacific Oceans.

    PubMed

    Bray, Rodney A; Diaz, Pablo E; Cribb, Thomas H

    2016-03-01

    A brief summary of the early history of the study of Atlantic Ocean marine fish digeneans is followed by a discussion of the occurrence and distribution of these worms in the Atlantic Ocean and adjacent Eastern Pacific Ocean, using the Provinces of the 'Marine Ecoregions' delimited by Spalding et al. (Bioscience 57:573-583, 2007). The discussion is based on a database of 9,880 records of 1,274 species in 430 genera and 45 families. 8,633 of these records are from the Atlantic Ocean, including 1,125 species in 384 genera and 45 families. About 1,000 species are endemic to the Atlantic Ocean Basin. The most species-rich families in the Atlantic Ocean are the Opecoelidae Ozaki, 1925, Hemiuridae Looss, 1899 and Bucephalidae Poche, 1907, and the most wide-spread the Opecoelidae, Hemiuridae, Acanthocolpidae Lühe, 1906, Lepocreadiidae Odhner, 1905 and Lecithasteridae Odhner, 1905. A total of 109 species are shared by the Atlantic Ocean and the Eastern Pacific, made up of cosmopolitan, circum-boreal, trans-Panama Isthmus and Magellanic species. The lack of genetic evaluation of identifications is emphasised and the scope for much more work is stressed.

  7. Dissipation effects in North Atlantic Ocean modeling

    NASA Astrophysics Data System (ADS)

    Dietrich, D. E.; Mehra, A.; Haney, R. L.; Bowman, M. J.; Tseng, Y. H.

    2004-03-01

    Numerical experiments varying lateral viscosity and diffusivity between 20 and 150 m2/s in a North Atlantic Ocean (NAO) model having 4th-order accurate numerics, in which the dense deep current system (DCS) from the northern seas and Arctic Ocean is simulated directly show that Gulf Stream (GS) separation is strongly affected by the dissipation of the DCS. This is true even though the separation is highly inertial with large Reynolds number for GS separation flow scales. We show that realistic NAO modeling requires less than 150 m2/s viscosity and diffusivity in order to maintain the DCS material current with enough intensity to get realistic GS separation near Cape Hatteras (CH). This also demands accurate, low dissipation numerics, because of the long transit time (1-10 years) of DCS material from its northern seas and Arctic Ocean source regions to the Cape Hatteras region and the small lateral and vertical scales of DCS.

  8. 33 CFR 165.T05-0494 - Safety Zone, Atlantic Ocean; Ocean City, NJ.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone, Atlantic Ocean; Ocean City, NJ. 165.T05-0494 Section 165.T05-0494 Navigation and Navigable Waters COAST GUARD... § 165.T05-0494 Safety Zone, Atlantic Ocean; Ocean City, NJ. (a) Location. The following area is a...

  9. Oceanic origin of southeast tropical Atlantic biases

    NASA Astrophysics Data System (ADS)

    Xu, Zhao; Li, Mingkui; Patricola, Christina M.; Chang, Ping

    2014-12-01

    Most coupled general circulation models suffer from a prominent warm sea surface temperature bias in the southeast tropical Atlantic Ocean off the coast of Africa. The origin of the bias is not understood and remains highly controversial. Previous studies suggest that the origin of the bias stems from systematic errors of atmospheric models in simulating surface heat flux and coastal wind, or poorly simulated coastal upwelling. In this study, we show, using different reanalysis and observational data sets combined with a set of eddy-resolving regional ocean model simulations, that systematic errors in ocean models also make a significant contribution to the bias problem. In particular (1) the strong warm bias at the Angola-Benguela front that is maintained by the local wind and the convergence of Angola and Benguela Currents is caused by an overshooting of the Angola Current in ocean models and (2) the alongshore warm bias to the south of the front is caused by ocean model deficiencies in simulating the sharp thermocline along the Angola coast, which is linked to biases in the equatorial thermocline, and the complex circulation system within the Benguela upwelling zone.

  10. Absence of Cooling in New Zealand and the Adjacent Ocean During the Younger Dryas Chronozone

    NASA Astrophysics Data System (ADS)

    Barrows, Timothy T.; Lehman, Scott J.; Fifield, L. Keith; De Deckker, Patrick

    2007-10-01

    As the climate warmed at the end of the last glacial period, a rapid reversal in temperature, the Younger Dryas (YD) event, briefly returned much of the North Atlantic region to near full-glacial conditions. The event was associated with climate reversals in many other areas of the Northern Hemisphere and also with warming over and near Antarctica. However, the expression of the YD in the mid- to low latitudes of the Southern Hemisphere (and the southwest Pacific region in particular) is much more controversial. Here we show that the Waiho Loop advance of the Franz Josef Glacier in New Zealand was not a YD event, as previously thought, and that the adjacent ocean warmed throughout the YD.

  11. North Atlantic Finite Element Ocean Modeling

    NASA Astrophysics Data System (ADS)

    Veluthedathekuzhiyil, Praveen

    This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this

  12. Space Radar Image of North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image showing surface features on the open ocean in the northeast Atlantic Ocean. There is no land mass in this image. The purple line in the lower left of the image is the stern wake of a ship. The ship creating the wake is the bright white spot on the middle, left side of the image. The ship's wake is about 28 kilometers (17 miles) long in this image and investigators believe that is because the ship may be discharging oil. The oil makes the wake last longer and causes it to stand out in this radar image. A fairly sharp boundary or front extends from the lower left to the upper right corner of the image and separates two distinct water masses that have different temperatures. The different water temperature affects the wind patterns on the ocean. In this image, the light green area depicts rougher water with more wind, while the purple area is calmer water with less wind. The dark patches are smooth areas of low wind, probably related to clouds along the front, and the bright green patches are likely due to ice crystals in the clouds that scatter the radar waves. The overall 'fuzzy' look of this image is caused by long ocean waves, also called swells. Ocean radar imagery allows the fine detail of ocean features and interactions to be seen, such as the wake, swell, ocean front and cloud effects, which can then be used to enhance the understanding of ocean dynamics on smaller and smaller scales. The image is centered at 42.8 degrees north latitude, 26.2 degrees west longitude and shows an area approximately 35 kilometers by 65 kilometers (22 by 40 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is L-band vertically transmitted, vertically received. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR

  13. Plankton respiration in the Eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Robinson, Carol; Serret, Pablo; Tilstone, Gavin; Teira, Eva; Zubkov, Mikhail V.; Rees, Andrew P.; Woodward, E. Malcolm S.

    2002-05-01

    Concurrent measurements of dark community respiration (DCR), gross production (GP), size fractionated primary production ( 14C PP), nitrogen uptake, nutrients, chlorophyll a concentration, and heterotrophic and autotrophic bacterial abundance were collected from the upper 200 m of a latitudinal (32°S-48°N) transect in the Eastern Atlantic Ocean during May/June 1998. The mean mixed layer respiration rate was 2.5±2.1 mmol O 2 m -3 d -1 ( n=119) for the whole transect, 2.2±1.1 mmol O 2 m -3 d -1 ( n=32) in areas where chlorophyll a was <0.5 mg m -3 and 1.5±0.7 mmol O 2 m -3 d -1 ( n=10) where chlorophyll a was <0.2 mg m -3. These values lie within the range of published data collected in comparable waters, they co-vary with indicators of heterotrophic and autotrophic biomass (heterotrophic bacterial abundance, chlorophyll a concentration, beam attenuation and particulate organic carbon concentration) and they can be reconciled with accepted estimates of total respiratory activity. The mean and median respiratory quotient (RQ), calculated as the ratio of dissolved inorganic carbon production to dissolved oxygen consumption, was 0.8 ( n=11). At the time of the study, plankton community respiration exceeded GP in the picoautotroph dominated oligotrophic regions (Eastern Tropical Atlantic [15.5°S-14.2°N] and North Atlantic Subtropical Gyre [21.5-42.5°N]), which amounted to 50% of the stations sampled along the 12,100 km transect. These regions also exhibited high heterotrophic: autotrophic biomass ratios, higher turnover rates of phytoplankton than of bacteria and low f ratios. However, the carbon supply mechanisms required to sustain the rates of respiration higher than GP could not be fully quantified. Future research should aim to determine the temporal balance of respiration and GP together with substrate supply mechanisms in these ocean regions.

  14. Sublatitudinal Isotope Heterogeneity of The Atlantic and Adjacent Continents: A Relation To The Litospheric Plates and Superplums

    NASA Astrophysics Data System (ADS)

    Mironov, Yu. V.; Ryakhovsky, V. M.; Pustovoy, A. A.; Lapidus, I. V.

    Four Sr-Nd-Pb isotope sublatitudinal provinces are chosen in the Atlantic and on ad- jacent continents. They include mid-ocean ridges, oceanic rises and islands, as well as Late Mesozoic - Cenozoic continental rifts and traps. A modified Zindler-Hart "man- tle tetrahedron" (1986) have been used for rock systematics. Its major classification element alongside with known end-members (DM, HIMU, EM1, EM2) is any in- tratetrahedron component F ("focal") (Mironov et al., 2000; Rundquist et al., 2000; Ryakhovsky, 2000). It represents average characteristic of all known intratetrahedron components (FOZO, C, PREMA etc.), updated by methods of multidimensional statis- tics. Northern province includes Mid-Atlantic Ridge from a southern part of Reykjanes ridge up to 24S, numerous islands and rises, located at the same latitudes, Cameroon Line, African and European rifts, Aden and Red sea spreading centres, and also Co- mores in Indian ocean. The main composition dispersion of volcanics from withinplate oceanic and continental structures is determined by mixture of F and HIMU (rarely with admixture EM2). MORB within this area are characterized by stable admixture HIMU. Similar composition have the rocks in Bouvet-Antarctic province, within the limits of which the rises Spiss and Shona, the most southern part of Mid-Atlantic ridge, island Bouvet, an adjacent part of Southwest-Indian Ridge, and also traps and rifts on northern coast of Antarctic Continent are located. The Southern province lies in outlines of known Southern hemisphere DUPAL-anomaly (Hart, 1984). The with- inplate oceanic rocks (Gough, Tristan-da-Kunha, Walvis ridge, Rio Grande Plateau, Discovery) correspond to a mixture F + EM1 (sometimes F + EM1 + EM2) and are similar with traps of Southern America and Africa. Further to east this province is traced on islands and mid-ocean ridges in Indian ocean. MORB of Southern Atlantic and Indian ocean are enriched EM1. The Arctic province includes spreading ridges of

  15. NAO and extreme ocean states in the Northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Gleeson, Emily; Gallagher, Sarah; Clancy, Colm; Dias, Frédéric

    2017-02-01

    Large scale atmospheric oscillations are known to have an influence on waves in the North Atlantic. In quantifying how the wave and wind climate of this region may change towards the end of the century due to climate change, it is useful to investigate the influence of large scale oscillations using indices such as the North Atlantic Oscillation (NAO: fluctuations in the difference between the Icelandic low pressure system and the Azore high pressure system). In this study a statistical analysis of the station-based NAO index was carried out using an ensemble of EC-Earth global climate simulations, where EC-Earth is a European-developed atmosphere ocean sea-ice coupled climate model. The NAO index was compared to observations and to projected changes in the index by the end of the century under the RCP4.5 and RCP8.5 forcing scenarios. In addition, an ensemble of EC-Earth driven WAVEWATCH III wave model projections over the North Atlantic was analysed to determine the correlations between the NAO and significant wave height (Hs) and the NAO and extreme ocean states. For the most part, no statistically significant differences were found between the distributions of observed and modelled station-based NAO or in projected distributions of the NAO. Means and extremes of Hs are projected to decrease on average by the end of this century. The 95th percentile of Hs is strongly positively correlated to the NAO. Projections of Hs extremes are location dependent and in fact, under the influence of positive NAO the 20-year return levels of Hs were found to be amplified in some regions. However, it is important to note that the projected decreases in the 95th percentile of Hs off the west coast of Ireland are not statistically significant in one of the RCP4.5 and one of the RCP8.5 simulations (me41, me83) which indicates that there is still uncertainty in the projections of higher percentiles.

  16. North Atlantic forcing of tropical Indian Ocean climate.

    PubMed

    Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas

    2014-05-01

    The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.

  17. Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean.

    PubMed

    Brandt, Peter; Funk, Andreas; Hormann, Verena; Dengler, Marcus; Greatbatch, Richard J; Toole, John M

    2011-05-26

    Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean-atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents. Apart from influences from the Pacific El Niño/Southern Oscillation and the North Atlantic Oscillation, the tropical Atlantic variability is thought to be dominated by two distinct ocean-atmosphere coupled modes of variability that are characterized by meridional and zonal sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5 yr and amplitudes of more than 10 cm s(-1) are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6 cm s(-1) and 0.4 °C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific and Indian oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.

  18. AtlantOS - Optimizing and Enhancing the Integrated Atlantic Ocean Observing System

    NASA Astrophysics Data System (ADS)

    Reitz, Anja; Visbeck, Martin; AtlantOS Consortium, the

    2016-04-01

    Atlantic Ocean observation is currently undertaken through loosely-coordinated, in-situ observing networks, satellite observations and data management arrangements of heterogeneous international, national and regional design to support science and a wide range of information products. Thus there is tremendous opportunity to develop the systems towards a fully integrated Atlantic Ocean Observing System consistent with the recently developed 'Framework of Ocean Observing'. The vision of AtlantOS is to improve and innovate Atlantic observing by using the Framework of Ocean Observing to obtain an international, more sustainable, more efficient, more integrated, and fit-for-purpose system. Hence, the AtlantOS initiative will have a long-lasting and sustainable contribution to the societal, economic and scientific benefit arising from this integrated approach. This will be delivered by improving the value for money, extent, completeness, quality and ease of access to Atlantic Ocean data required by industries, product supplying agencies, scientist and citizens. The overarching target of the AtlantOS initiative is to deliver an advanced framework for the development of an integrated Atlantic Ocean Observing System that goes beyond the state-of -the-art, and leaves a legacy of sustainability after the life of the project. The legacy will derive from the following aims: i) to improve international collaboration in the design, implementation and benefit sharing of ocean observing, ii) to promote engagement and innovation in all aspects of ocean observing, iii) to facilitate free and open access to ocean data and information, iv) to enable and disseminate methods of achieving quality and authority of ocean information, v) to strengthen the Global Ocean Observing System (GOOS) and to sustain observing systems that are critical for the Copernicus Marine Environment Monitoring Service and its applications and vi) to contribute to the aims of the Galway Statement on Atlantic

  19. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean.

    PubMed

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-12-16

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.

  20. Changes in North Atlantic nitrogen fixation controlled by ocean circulation.

    PubMed

    Straub, Marietta; Sigman, Daniel M; Ren, Haojia; Martínez-García, Alfredo; Meckler, A Nele; Hain, Mathis P; Haug, Gerald H

    2013-09-12

    In the ocean, the chemical forms of nitrogen that are readily available for biological use (known collectively as 'fixed' nitrogen) fuel the global phytoplankton productivity that exports carbon to the deep ocean. Accordingly, variation in the oceanic fixed nitrogen reservoir has been proposed as a cause of glacial-interglacial changes in atmospheric carbon dioxide concentration. Marine nitrogen fixation, which produces most of the ocean's fixed nitrogen, is thought to be affected by multiple factors, including ocean temperature and the availability of iron and phosphorus. Here we reconstruct changes in North Atlantic nitrogen fixation over the past 160,000 years from the shell-bound nitrogen isotope ratio ((15)N/(14)N) of planktonic foraminifera in Caribbean Sea sediments. The observed changes cannot be explained by reconstructed changes in temperature, the supply of (iron-bearing) dust or water column denitrification. We identify a strong, roughly 23,000-year cycle in nitrogen fixation and suggest that it is a response to orbitally driven changes in equatorial Atlantic upwelling, which imports 'excess' phosphorus (phosphorus in stoichiometric excess of fixed nitrogen) into the tropical North Atlantic surface. In addition, we find that nitrogen fixation was reduced during glacial stages 6 and 4, when North Atlantic Deep Water had shoaled to become glacial North Atlantic intermediate water, which isolated the Atlantic thermocline from excess phosphorus-rich mid-depth waters that today enter from the Southern Ocean. Although modern studies have yielded diverse views of the controls on nitrogen fixation, our palaeobiogeochemical data suggest that excess phosphorus is the master variable in the North Atlantic Ocean and indicate that the variations in its supply over the most recent glacial cycle were dominated by the response of regional ocean circulation to the orbital cycles.

  1. /sup 14/C distribution in the Atlantic Ocean

    SciTech Connect

    Stuiver, M.

    1980-05-20

    The amount of /sup 14/C produced by nuclear bomb testing that entered the Atlantic Ocean by late 1972 was 1.71 x 10/sup -8/ ..mu..mol/cm/sup 2/ of ocean surface area for the west Atlantic (36/sup 0/S-45/sup 0/N) and 1.18 x 10/sup -8/ ..mu..mol/cm/sup 2/ for the east Atlantic (50/sup 0/S-28/sup 0/N) Geochemical Ocean Sections Study stations. There are strong latitudinal differences in the integrated amount of bomb /sup 14/C content in Atlantic waters. Bomb-produced /sup 14/C is mostly encountered near the center of the large mid-latitude gyres, whereas the equatorial region has a lower /sup 14/C inventory. The average ocean wide vertical distribution of bomb /sup 14/C in the Atlantic can be explained by a vertical eddy diffusion coefficient of 4.0 cm/sup 2//s in the surface mixed layer plus thermocline gyre reservoirs. The average /sup 14/C activity per unit area measured in the Atlantic yields an atmosphere-ocean CO/sub 2/ exchange rate of 23 mol/m/sup 2/ yr, which is equivalent with an atmospheric CO/sub 2/ residence time of 6.8 years.

  2. Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1

    NASA Astrophysics Data System (ADS)

    Chiessi, C. M.; Mulitza, S.; Mollenhauer, G.; Silva, J. B.; Groeneveld, J.; Prange, M.

    2014-12-01

    During Termination 1, millennial-scale weakening events of the Atlantic meridional overturning circulation (AMOC) supposedly produced major changes in sea surface temperatures (SST) of the western South Atlantic, and in mean air temperatures (MAT) over southeastern South America. It was suggested, for instance, that the Brazil Current (BC) would strengthen (weaken) and the North Brazil Current (NBC) would weaken (strengthen) during slowdown (speed-up) events of the AMOC. This anti-phase pattern was claimed to be a necessary response to the decreased North Atlantic heat piracy during periods of weak AMOC. However, the thermal evolution of the western South Atlantic and the adjacent continent is largely unknown and a compelling record of the BC-NBC anti-phase behavior remains elusive. Here we address this issue, presenting high temporal resolution SST and MAT records from the BC and southeastern South America, respectively. We identify a warming in the western South Atlantic during Heinrich Stadial 1 (HS1), which is followed first by a drop and then by increasing temperatures during the Bølling-Allerød, in-phase with an existing NBC record. Additionally, a similar SST evolution is shown by a southernmost eastern South Atlantic record, suggesting a South Atlantic-wide pattern in SST evolution during most of Termination 1. Over southeastern South America, our MAT record shows a two-step increase during Termination 1, synchronous with atmospheric CO2 rise (i.e., during the second half of HS1 and during the Younger Dryas), and lagging abrupt SST changes by several thousand years. This delay corroborates the notion that the long duration of HS1 was fundamental to drive the Earth out of the last glacial.

  3. Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1

    NASA Astrophysics Data System (ADS)

    Chiessi, C. M.; Mulitza, S.; Mollenhauer, G.; Silva, J. B.; Groeneveld, J.; Prange, M.

    2015-06-01

    During Termination 1, millennial-scale weakening events of the Atlantic meridional overturning circulation (AMOC) supposedly produced major changes in sea surface temperatures (SSTs) of the western South Atlantic, and in mean air temperatures (MATs) over southeastern South America. It has been suggested, for instance, that the Brazil Current (BC) would strengthen (weaken) and the North Brazil Current (NBC) would weaken (strengthen) during slowdown (speed-up) events of the AMOC. This anti-phase pattern was claimed to be a necessary response to the decreased North Atlantic heat piracy during periods of weak AMOC. However, the thermal evolution of the western South Atlantic and the adjacent continent is so far largely unknown. Here we address this issue, presenting high-temporal-resolution SST and MAT records from the BC and southeastern South America, respectively. We identify a warming in the western South Atlantic during Heinrich Stadial 1 (HS1), which is followed first by a drop and then by increasing temperatures during the Bølling-Allerød, in phase with an existing SST record from the NBC. Additionally, a similar SST evolution is shown by a southernmost eastern South Atlantic record, suggesting a South Atlantic-wide pattern in SST evolution during most of Termination 1. Over southeastern South America, our MAT record shows a two-step increase during Termination 1, synchronous with atmospheric CO2 rise (i.e., during the second half of HS1 and during the Younger Dryas), and lagging abrupt SST changes by several thousand years. This delay corroborates the notion that the long duration of HS1 was fundamental in driving the Earth out of the last glacial.

  4. 76 FR 23935 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ..., and billfish in the Atlantic Ocean, including the Caribbean Sea and Gulf of Mexico. This action... Caribbean Sea, to a North Atlantic swordfish taken from or possessed in the Atlantic Ocean, and to bluefin... for the conservation of tuna and tuna-like species in the Atlantic Ocean and adjacent seas....

  5. The Distribution of Dissolved Iron in the West Atlantic Ocean

    PubMed Central

    Rijkenberg, Micha J. A.; Middag, Rob; Laan, Patrick; Gerringa, Loes J. A.; van Aken, Hendrik M.; Schoemann, Véronique; de Jong, Jeroen T. M.; de Baar, Hein J. W.

    2014-01-01

    Iron (Fe) is an essential trace element for marine life. Extremely low Fe concentrations limit primary production and nitrogen fixation in large parts of the oceans and consequently influence ocean ecosystem functioning. The importance of Fe for ocean ecosystems makes Fe one of the core chemical trace elements in the international GEOTRACES program. Despite the recognized importance of Fe, our present knowledge of its supply and biogeochemical cycle has been limited by mostly fragmentary datasets. Here, we present highly accurate dissolved Fe (DFe) values measured at an unprecedented high intensity (1407 samples) along the longest full ocean depth transect (17500 kilometers) covering the entire western Atlantic Ocean. DFe measurements along this transect unveiled details about the supply and cycling of Fe. External sources of Fe identified included off-shelf and river supply, hydrothermal vents and aeolian dust. Nevertheless, vertical processes such as the recycling of Fe resulting from the remineralization of sinking organic matter and the removal of Fe by scavenging still dominated the distribution of DFe. In the northern West Atlantic Ocean, Fe recycling and lateral transport from the eastern tropical North Atlantic Oxygen Minimum Zone (OMZ) dominated the DFe-distribution. Finally, our measurements showed that the North Atlantic Deep Water (NADW), the major driver of the so-called ocean conveyor belt, contains excess DFe relative to phosphate after full biological utilization and is therefore an important source of Fe for biological production in the global ocean. PMID:24978190

  6. The distribution of dissolved iron in the West Atlantic Ocean.

    PubMed

    Rijkenberg, Micha J A; Middag, Rob; Laan, Patrick; Gerringa, Loes J A; van Aken, Hendrik M; Schoemann, Véronique; de Jong, Jeroen T M; de Baar, Hein J W

    2014-01-01

    Iron (Fe) is an essential trace element for marine life. Extremely low Fe concentrations limit primary production and nitrogen fixation in large parts of the oceans and consequently influence ocean ecosystem functioning. The importance of Fe for ocean ecosystems makes Fe one of the core chemical trace elements in the international GEOTRACES program. Despite the recognized importance of Fe, our present knowledge of its supply and biogeochemical cycle has been limited by mostly fragmentary datasets. Here, we present highly accurate dissolved Fe (DFe) values measured at an unprecedented high intensity (1407 samples) along the longest full ocean depth transect (17,500 kilometers) covering the entire western Atlantic Ocean. DFe measurements along this transect unveiled details about the supply and cycling of Fe. External sources of Fe identified included off-shelf and river supply, hydrothermal vents and aeolian dust. Nevertheless, vertical processes such as the recycling of Fe resulting from the remineralization of sinking organic matter and the removal of Fe by scavenging still dominated the distribution of DFe. In the northern West Atlantic Ocean, Fe recycling and lateral transport from the eastern tropical North Atlantic Oxygen Minimum Zone (OMZ) dominated the DFe-distribution. Finally, our measurements showed that the North Atlantic Deep Water (NADW), the major driver of the so-called ocean conveyor belt, contains excess DFe relative to phosphate after full biological utilization and is therefore an important source of Fe for biological production in the global ocean.

  7. Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa; Rhines, Peter B.; Worthlen, Denise L.

    2011-01-01

    Based on the 20th century atmospheric reanalysis, winters with more frequent blocking, in a band of blocked latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability. Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by impacting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially, 1996-2010). It also describes much longer-timescale Atlantic multidecadal ocean variability (AMV), including the extreme, pre-greenhouse-gas, northern warming of the 1930s-1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat-exchange, both of which contribute to the warm phase of AMV.

  8. 50 CFR 600.520 - Northwest Atlantic Ocean fishery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Northwest Atlantic Ocean fishery. 600.520 Section 600.520 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND...—(1) Allocations. Foreign vessels may engage in fishing only in accordance with applicable...

  9. 50 CFR 600.520 - Northwest Atlantic Ocean fishery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Northwest Atlantic Ocean fishery. 600.520 Section 600.520 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND...—(1) Allocations. Foreign vessels may engage in fishing only in accordance with applicable...

  10. Open ocean dead zones in the tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Fiedler, B.; Schütte, F.; Brandt, P.; Körtzinger, A.; Fischer, G.; Zantopp, R.; Hahn, J.; Visbeck, M.; Wallace, D.

    2015-04-01

    Here we present first observations, from instrumentation installed on moorings and a float, of unexpectedly low (<2 μmol kg-1) oxygen environments in the open waters of the tropical North Atlantic, a region where oxygen concentration does normally not fall much below 40 μmol kg-1. The low-oxygen zones are created at shallow depth, just below the mixed layer, in the euphotic zone of cyclonic eddies and anticyclonic-modewater eddies. Both types of eddies are prone to high surface productivity. Net respiration rates for the eddies are found to be 3 to 5 times higher when compared with surrounding waters. Oxygen is lowest in the centre of the eddies, in a depth range where the swirl velocity, defining the transition between eddy and surroundings, has its maximum. It is assumed that the strong velocity at the outer rim of the eddies hampers the transport of properties across the eddies boundary and as such isolates their cores. This is supported by a remarkably stable hydrographic structure of the eddies core over periods of several months. The eddies propagate westward, at about 4 to 5 km day-1, from their generation region off the West African coast into the open ocean. High productivity and accompanying respiration, paired with sluggish exchange across the eddy boundary, create the "dead zone" inside the eddies, so far only reported for coastal areas or lakes. We observe a direct impact of the open ocean dead zones on the marine ecosystem as such that the diurnal vertical migration of zooplankton is suppressed inside the eddies.

  11. Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Atmospheric blocking over the northern North Atlantic involves isolation of large regions of air from the westerly circulation for 5-14 days or more. From a recent 20th century atmospheric reanalysis (1,2) winters with more frequent blocking persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability (AMV). Ocean circulation is forced by wind-stress curl and related air/sea heat exchange, and we find that their space-time structure is associated with dominant blocking patterns: weaker ocean gyres and weaker heat exchange contribute to the warm phase of AMV. Increased blocking activity extending from Greenland to British Isles is evident when winter blocking days of the cold years (1900-1929) are subtracted from those of the warm years (1939-1968).

  12. Atlantic Ocean CARINA data: overview and salinity adjustments

    NASA Astrophysics Data System (ADS)

    Tanhua, T.; Steinfeldt, R.; Key, R. M.; Brown, P.; Gruber, N.; Wanninkhof, R.; Perez, F.; Körtzinger, A.; Velo, A.; Schuster, U.; van Heuven, S.; Bullister, J. L.; Stendardo, I.; Hoppema, M.; Olsen, A.; Kozyr, A.; Pierrot, D.; Schirnick, C.; Wallace, D. W. R.

    2010-02-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the three data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control - including crossover analysis between stations and inversion analysis of all crossover data - are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon

  13. Atlantic Ocean CARINA data: overview and salinity adjustments

    SciTech Connect

    Tanhua, T.; Steinfeldt, R.; Key, Robert; Brown, P.; Gruber, N.; Wanninkhof, R.; Perez, F.F.; Kortzinger, A.; Velo, A.; Schuster, U.; Van Heuven, S.; Bullister, J.L.; Stendardo, I.; Hoppema, M.; Olsen, Are; Kozyr, Alexander; Pierrot, D.; Schirnick, C.; Wallace, D.W.R.

    2010-01-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the three data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30 S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control including crossover analysis between stations and inversion analysis of all crossover data are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally was well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon inventories

  14. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  15. Toxic Trichodesmium bloom occurrence in the southwestern South Atlantic Ocean.

    PubMed

    Sacilotto Detoni, Amália Maria; Costa, Luiza Dy Fonseca; Pacheco, Lucas Abrão; Yunes, João Sarkis

    2016-02-01

    Harmful Trichodesmium blooms have been reported on the continental slope of the southwestern South Atlantic Ocean; we sampled six such blooms. The highest saxitoxin concentration was observed where the number of colonies was proportionally greater relative to the total density of trichomes. Trichodesmium blooms are harmful to shrimp larvae and may lead to plankton community mortality. This study is the first record of neurotoxic blooms in the open waters of the South Atlantic.

  16. Atlantic Ocean CARINA data: overview and salinity adjustments

    NASA Astrophysics Data System (ADS)

    Tanhua, T.; Steinfeldt, R.; Key, R. M.; Brown, P.; Gruber, N.; Wanninkhof, R.; Perez, F.; Körtzinger, A.; Velo, A.; Schuster, U.; van Heuven, S.; Bullister, J. L.; Stendardo, I.; Hoppema, M.; Olsen, A.; Kozyr, A.; Pierrot, D.; Schirnick, C.; Wallace, D. W. R.

    2009-08-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. Arctic, Atlantic and Southern Ocean. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report details of the secondary QC for salinity for this data set. Procedures of quality control - including crossover analysis between stations and inversion analysis of all crossover data - are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal accuracy of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004), and is now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  17. An updated anthropogenic CO2 inventory in the Atlantic Ocean

    SciTech Connect

    Lee, K.; Choi, S.-D.; Park, G.-H.; Peng, T.-H.; Key, Robert; Sabine, Chris; Feely, R. A.; Bullister, J.L.; Millero, F. J.; Kozyr, Alexander

    2003-01-01

    This paper presents a comprehensive analysis of the basin-wide inventory of anthropogenic CO2 in the Atlantic Ocean based on high-quality inorganic carbon, alkalinity, chlorofluorocarbon, and nutrient data collected during the World Ocean Circulation Experiment (WOCE) Hydrographic Program, the Joint Global Ocean Flux Study (JGOFS), and the Ocean-Atmosphere Carbon Exchange Study (OACES) surveys of the Atlantic Ocean between 1990 and 1998. Anthropogenic CO2 was separated from the large pool of dissolved inorganic carbon using an extended version of the DC* method originally developed by Gruber et al. [1996]. The extension of the method includes the use of an optimum multiparameter analysis to determine the relative contributions from various source water types to the sample on an isopycnal surface. Total inventories of anthropogenic CO2 in the Atlantic Ocean are highest in the subtropical regions at 20 40, whereas anthropogenic CO2 penetrates the deepest in high-latitude regions (>40N). The deeper penetration at high northern latitudes is largely due to the formation of deep water that feeds the Deep Western Boundary Current, which transports anthropogenic CO2 into the interior. In contrast, waters south of 50S in the Southern Ocean contain little anthropogenic CO2. Analysis of the data collected during the 1990 1998 period yielded a total anthropogenic CO2 inventory of 28.4 4.7 Pg C in the North Atlantic (equator-70N) and of 18.5 3.9 Pg C in the South Atlantic (equator-70S). These estimated basin-wide inventories of anthropogenic CO2 are in good agreement with previous estimates obtained by Gruber [1998], after accounting for the difference in observational periods. Our calculation of the anthropogenic CO2 inventory in the Atlantic Ocean, in conjunction with the inventories calculated previously for the Indian Ocean [Sabine et al., 1999] and for the Pacific Ocean [Sabine et al., 2002], yields a global anthropogenic CO2 inventory of 112 17 Pg C that has accumulated

  18. Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Reynolds, Ben C.; Rickli, Jörg; Frank, Martin; Saito, Mak A.; Gerringa, Loes J. A.; Bourdon, Bernard

    2012-06-01

    The fractionation of silicon (Si) stable isotopes by biological activity in the surface ocean makes the stable isotope composition of silicon (δ30Si) dissolved in seawater a sensitive tracer of the oceanic biogeochemical Si cycle. We present a high-precision dataset that characterizes the δ30Si distribution in the deep Atlantic Ocean from Denmark Strait to Drake Passage, documenting strong meridional and smaller, but resolvable, vertical δ30Si gradients. We show that these gradients are related to the two sources of deep and bottom waters in the Atlantic Ocean: waters of North Atlantic and Nordic origin carry a high δ30Si signature of ≥+1.7‰ into the deep Atlantic, while Antarctic Bottom Water transports Si with a low δ30Si value of around +1.2‰. The deep Atlantic δ30Si distribution is thus governed by the quasi-conservative mixing of Si from these two isotopically distinct sources. This disparity in Si isotope composition between the North Atlantic and Southern Ocean is in marked contrast to the homogeneity of the stable nitrogen isotope composition of deep ocean nitrate (δ15N-NO3). We infer that the meridional δ30Si gradient derives from the transport of the high δ30Si signature of Southern Ocean intermediate/mode waters into the North Atlantic by the upper return path of the meridional overturning circulation (MOC). The basin-scale deep Atlantic δ30Si gradient thus owes its existence to the interaction of the physical circulation with biological nutrient uptake at high southern latitudes, which fractionates Si isotopes between the abyssal and intermediate/mode waters formed in the Southern Ocean.

  19. Chloromethane and dichloromethane in the tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kolusu, Seshagiri Rao; Schlünzen, K. Heinke; Grawe, David; Seifert, Richard

    2017-02-01

    Chloromethane and dichloromethane were measured in the air of marine environment and in seawater during a cruise from the Port of Spain to Rio de Janeiro in the tropical Atlantic Ocean in April and May of 2009. Variation of chloromethane and dichloromethane concentrations was analysed as a function of latitude. There is no correlation observed between chloromethane and dichloromethane concentrations in the seawater suggest that they may not have a common oceanic source. In addition, a relation of concentrations, fluxes and sea surface temperature were studied to determine a dependency of concentrations and fluxes on sea surface temperature. Sea surface temperature does not show any significant effect on dichloromethane concentrations in surface seawater. Chloromethane and dichloromethane are supersaturated in the seawater during the cruise. This implies that the tropical Atlantic Ocean emits chloromethane and dichloromethane into the atmosphere. The tropical Atlantic Ocean mean fluxes of chloromethane and dichloromethane during the cruise were 150 nmol m-2 d-1 and 81 nmol m-2 d-1, respectively. The backward trajectory analysis revealed that the tropical Atlantic Ocean and African coast were primary and secondary source regions for chloromethane and dichloromethane respectively, during the Meteor cruise.

  20. The Atlantic Multidecadal Oscillation without a role for ocean circulation.

    PubMed

    Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn

    2015-10-16

    The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO.

  1. The Atlantic Multidecadal Oscillation without a role for ocean circulation

    NASA Astrophysics Data System (ADS)

    Clement, Amy; Bellomo, Katinka; Murphy, Lisa N.; Cane, Mark A.; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn

    2015-10-01

    The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO.

  2. 78 FR 57796 - Safety Zone; Pro Hydro-X Tour, Atlantic Ocean, Islamorada, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Pro Hydro-X Tour, Atlantic Ocean... establishing a temporary safety zone on the waters of the Atlantic Ocean, Islamorada, Florida during the Pro... jet ski races. The event will be held on the waters of the Atlantic Ocean, Islamorada,...

  3. 33 CFR 110.188 - Atlantic Ocean off Miami and Miami Beach, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Atlantic Ocean off Miami and... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.188 Atlantic Ocean off Miami and... in cases of great emergency, no vessel shall be anchored in the Atlantic Ocean in the vicinity of...

  4. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  5. 33 CFR 165.535 - Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone: Atlantic Ocean... Guard District § 165.535 Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware. (a) Location. The following area is a safety zone: All waters of the Atlantic Ocean within the area bounded...

  6. 33 CFR 165.535 - Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone: Atlantic Ocean... Guard District § 165.535 Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware. (a) Location. The following area is a safety zone: All waters of the Atlantic Ocean within the area bounded...

  7. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  8. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  9. 33 CFR 110.188 - Atlantic Ocean off Miami and Miami Beach, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Atlantic Ocean off Miami and... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.188 Atlantic Ocean off Miami and... in cases of great emergency, no vessel shall be anchored in the Atlantic Ocean in the vicinity of...

  10. 33 CFR 110.188 - Atlantic Ocean off Miami and Miami Beach, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Atlantic Ocean off Miami and... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.188 Atlantic Ocean off Miami and... in cases of great emergency, no vessel shall be anchored in the Atlantic Ocean in the vicinity of...

  11. 33 CFR 165.535 - Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone: Atlantic Ocean... Guard District § 165.535 Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware. (a) Location. The following area is a safety zone: All waters of the Atlantic Ocean within the area bounded...

  12. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  13. 33 CFR 110.188 - Atlantic Ocean off Miami and Miami Beach, Fla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Atlantic Ocean off Miami and... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.188 Atlantic Ocean off Miami and... in cases of great emergency, no vessel shall be anchored in the Atlantic Ocean in the vicinity of...

  14. 33 CFR 110.188 - Atlantic Ocean off Miami and Miami Beach, Fla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atlantic Ocean off Miami and... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.188 Atlantic Ocean off Miami and... in cases of great emergency, no vessel shall be anchored in the Atlantic Ocean in the vicinity of...

  15. 33 CFR 165.535 - Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone: Atlantic Ocean... Guard District § 165.535 Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware. (a) Location. The following area is a safety zone: All waters of the Atlantic Ocean within the area bounded...

  16. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  17. 33 CFR 165.535 - Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Atlantic Ocean... Guard District § 165.535 Safety Zone: Atlantic Ocean, Vicinity of Cape Henlopen State Park, Delaware. (a) Location. The following area is a safety zone: All waters of the Atlantic Ocean within the area bounded...

  18. 75 FR 34643 - Atlantic Ocean Off John F. Kennedy Space Center, FL; Restricted Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Department of the Army, Corps of Engineers 33 CFR Part 334 Atlantic Ocean Off John F. Kennedy Space Center... the Atlantic Ocean off the coast of the John F. Kennedy Space Center (KSC), Florida. The KSC is the...: Sec. 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; Restricted Area. (a) The area....

  19. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bates, N. R.; Best, M. H. P.; Neely, K.; Garley, R.; Dickson, A. G.; Johnson, R. J.

    2012-01-01

    Fossil fuel use, cement manufacture and land-use changes are the primary sources of anthropogenic carbon dioxide (CO2) to the atmosphere, with the ocean absorbing 30 %. Ocean uptake and chemical equilibration of anthropogenic CO2with seawater results in a gradual reduction in seawater pH and saturation states (Ω) for calcium carbonate (CaCO3) minerals in a process termed ocean acidification. Assessing the present and future impact of ocean acidification on marine ecosystems requires detection of the multi-decadal rate of change across ocean basins and at ocean time-series sites. Here, we show the longest continuous record of ocean CO2 changes and ocean acidification in the North Atlantic subtropical gyre near Bermuda from 1983-2011. Dissolved inorganic carbon (DIC) and partial pressure of CO2 (pCO2) increased in surface seawater by ~40 μmol kg-1 and ~50 μatm (~20 %), respectively. Increasing Revelle factor (β) values imply that the capacity of North Atlantic surface waters to absorb CO2 has also diminished. As indicators of ocean acidification, seawater pH decreased by ~0.05 (0.0017 yr-1) and Ω values by ~7-8 %. Such data provide critically needed multi-decadal information for assessing the North Atlantic Ocean CO2sink and the pH changes that determine marine ecosystem responses to ocean acidification.

  20. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bates, N. R.; Best, M. H. P.; Neely, K.; Garley, R.; Dickson, A. G.; Johnson, R. J.

    2012-07-01

    Fossil fuel use, cement manufacture and land-use changes are the primary sources of anthropogenic carbon dioxide (CO2) to the atmosphere, with the ocean absorbing approximately 30% (Sabine et al., 2004). Ocean uptake and chemical equilibration of anthropogenic CO2 with seawater results in a gradual reduction in seawater pH and saturation states (Ω) for calcium carbonate (CaCO3) minerals in a process termed ocean acidification. Assessing the present and future impact of ocean acidification on marine ecosystems requires detection of the multi-decadal rate of change across ocean basins and at ocean time-series sites. Here, we show the longest continuous record of ocean CO2 changes and ocean acidification in the North Atlantic subtropical gyre near Bermuda from 1983-2011. Dissolved inorganic carbon (DIC) and partial pressure of CO2 (pCO2) increased in surface seawater by ~40 μmol kg-1 and ~50 μatm (~20%), respectively. Increasing Revelle factor (β) values imply that the capacity of North Atlantic surface waters to absorb CO2 has also diminished. As indicators of ocean acidification, seawater pH decreased by ~0.05 (0.0017 yr-1) and ω values by ~7-8%. Such data provide critically needed multi-decadal information for assessing the North Atlantic Ocean CO2 sink and the pH changes that determine marine ecosystem responses to ocean acidification.

  1. Eight centuries of north atlantic ocean atmosphere variability

    PubMed

    Black; Peterson; Overpeck; Kaplan; Evans; Kashgarian

    1999-11-26

    Climate in the tropical North Atlantic is controlled largely by variations in the strength of the trade winds, the position of the Intertropical Convergence Zone, and sea surface temperatures. A high-resolution study of Caribbean sediments provides a subdecadally resolved record of tropical upwelling and trade wind variability spanning the past 825 years. These results confirm the importance of a decadal (12- to 13-year) mode of Atlantic variability believed to be driven by coupled tropical ocean-atmosphere dynamics. Although a well-defined interdecadal mode of variability does not appear to be characteristic of the tropical Atlantic, there is evidence that century-scale variability is substantial. The tropical Atlantic may also have been involved in a major shift in Northern Hemisphere climate variability that took place about 700 years ago.

  2. Convective Lofting Links Indian Ocean Air Pollution to Recurrent South Atlantic Ozone Maxima

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J.

    2003-12-01

    We extend on our analysis of equatorial tropospheric ozone to illustrate the contributions of South Asian pollution export in forming episodes of high O3 over the Atlantic Ocean. We amplify on an earlier description of a broad resolution of the "Atlantic Paradox," for the Jan-Feb-March period, which included initial indications of a very long-distance contribution from South Asia. The approach has been to describe typical periods of significant maximum and minimum tropospheric ozone for early 1999, exploiting TOMS tropospheric ozone estimates jointly with characteristic features of the SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone soundings. Further investigation of the Total Tropospheric Ozone (TTO) record for all of 1999 suggests that there are repeated periods of very long-distance Asian influence crossing Africa, with an apparent effect on those portions of the Atlantic Equatorial troposphere which are downwind. Trajectory analyses suggest that the pattern over the Indian Ocean is complex: a sequence invoving multiple or mixed combustion sources, low level transport, cumulonimbus venting, and high-level transport to the west seem to be indicated by the TTO record. Biomass burning, fossil and biofuel combustion, and lighting seem to all contribute. For the Atlantic, burning and lighting on adjacent continents as well as episodes of this cross-Africa long-distance transport are all linked in a coordinated seasonal march: all are related by movement of the sun. However, interseasonal tropical variability related to the Madden-Julian oscillation allows intermittent ozone buildups that depart from the seasonal norm.

  3. 50 CFR 600.520 - Northwest Atlantic Ocean fishery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the shore at 44°22′ N. lat., 67°52′ W. long. and intersecting the boundary of the EEZ at 44°11′12″ N..., Atlantic salmon, all marlin, all spearfish, sailfish, swordfish, black sea bass, bluefish, croaker, haddock, ocean pout, pollock, red hake, scup, sea turtles, sharks (except dogfish), silver hake, spot,...

  4. CARINA TCO2 data in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pierrot, D.; Brown, P.; van Heuven, S.; Tanhua, T.; Schuster, U.; Wanninkhof, R.; Key, R. M.

    2010-07-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 cruises in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged in a new data base: the CARINA (CARbon IN the Atlantic) Project. These data have gone through rigorous quality control (QC) procedures so as to improve the quality and consistency of the data as much as possible. Secondary quality control, which involved objective study of data in order to quantify systematic differences in the reported values, was performed for the pertinent parameters in the CARINA data base. Systematic biases in the data have been tentatively corrected in the data products. The products are three merged data files with measured, adjusted and interpolated data of all cruises for each of the three CARINA regions (Arctic Mediterranean Seas, Atlantic and Southern Ocean). Ninety-eight cruises were conducted in the "Atlantic" defined as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we report the details of the secondary QC which was done on the total dissolved inorganic carbon (TCO2) data and the adjustments that were applied to yield the final data product in the Atlantic. Procedures of quality control - including crossover analysis between stations and inversion analysis of all crossover data - are briefly described. Adjustments were applied to TCO2 measurements for 17 of the cruises in the Atlantic Ocean region. With these adjustments, the CARINA data base is consistent both internally as well as with GLODAP data, an oceanographic data set based on the WOCE Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, regional oceanic carbon inventories, uptake rates and model validation.

  5. CARINA TCO2 data in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pierrot, D.; Brown, P.; van Heuven, S.; Tanhua, T.; Schuster, U.; Wanninkhof, R.; Key, R. M.

    2010-01-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 cruises in the Arctic, Atlantic and Southern Ocean have been retrieved and merged in a new data base: the CARINA (CARbon IN the Atlantic) Project. These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. Secondary quality control, which involved objective study of data in order to quantify systematic differences in the reported values, was performed for the pertinent parameters in the CARINA data base. Systematic biases in the data have been corrected in the data products. The products are three merged data files with measured, adjusted and interpolated data of all cruises for each of the three CARINA regions (Arctic, Atlantic and Southern Ocean). Ninety-eight cruises were conducted in the "Atlantic" defined as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we report the details of the secondary QC which was done on the total dissolved inorganic carbon (TCO2) data and the adjustments that were applied to yield the final data product in the Atlantic. Procedures of quality control - including crossover analysis between stations and inversion analysis of all crossover data - are briefly described. Adjustments were applied to TCO2 measurements for 17 of the cruises in the Atlantic Ocean region. With these adjustments, the CARINA data base is consistent both internally as well as with GLODAP data, an oceanographic data set based on the WOCE Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, regional oceanic carbon inventories, uptake rates and model validation.

  6. Layered basic complex in oceanic crust, romanche fracture, equatorial atlantic ocean.

    PubMed

    Melson, W G; Thompson, G

    1970-05-15

    A layered, basic igneous intrusion, analogous in mineralogy and texture to certain large, continental layered complexes, is exposed in the Romanche Fracture, equatorial Atlantic Ocean. Crustal intrusion of large masses of basic magmas with their subsequent gravity differentiation is probably one of a number of major processes involved in the formation of new oceanic crust during sea-floor spreading.

  7. Development of passive volcanic margins of the Central Atlantic and initial opening of ocean

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2015-01-01

    Geological and geophysical data on the Central Atlantic are discussed in order to elucidate the tectonic setting of the initial magmatic activity, rifting, and breakup resulting in the origination of Mesozoic ocean. The structural, magmatic, and historical aspects of the problem are considered. It has been established that the initial dispersed rifting and low-capacity magmatism at proximal margins was followed by the migration of the process toward the central part of region with the formation of distal zones and the development of vigorous magmmatism, further breakup of the lithosphere and ocean opening. Magmatism, its sources, and the features of newly formed magmatic crust at both the rifting and breakup stages of margin development are discussed and compared with subsequent spreading magmatism. Sr, Nd, and Pb isotopic compositions show that the magmatic evolution of the Central Atlantic proximal margins bears the features of two enriched components, one of which is related to the EM-1 source, developing only at the North American margin. Another enriched component typical of the province as a whole is related to the EM-2 source. To a lesser extent, this component is expressed in igneous rocks of Guyana, which also bear the signature of the MORB-type depleted source typical of spreading tholeiites in the Atlantic Ocean. Similar conditions are assumed for subsequent magmatism at the distal margins and for the early spreading basalts in the adjacent Atlantic belt, which also contain a small admixture of enriched material. A comparison of the magmatism at the margins of Central and North Atlantic reveals their specificity distinctly expressed in isotopic compositions of igneous rocks. In contrast to the typical region of the North Atlantic, the immediate melting of the enriched lithospheric source without the participation of plume-related melts is reconstructed for the proximal margins of the Central Atlantic. At the same time, decompression and melting in the

  8. Interannual to Decadal Variability of Atlantic Water in the Nordic and Adjacent Seas

    NASA Technical Reports Server (NTRS)

    Carton, James A.; Chepurin, Gennady A.; Reagan, James; Haekkinen, Sirpa

    2011-01-01

    Warm salty Atlantic Water is the main source water for the Arctic Ocean and thus plays an important role in the mass and heat budget of the Arctic. This study explores interannual to decadal variability of Atlantic Water properties in the Nordic Seas area where Atlantic Water enters the Arctic, based on a reexamination of the historical hydrographic record for the years 1950-2009, obtained by combining multiple data sets. The analysis shows a succession of four multi-year warm events where temperature anomalies at 100m depth exceed 0.4oC, and three cold events. Three of the four warm events lasted 3-4 years, while the fourth began in 1999 and persists at least through 2009. This most recent warm event is anomalous in other ways as well, being the strongest, having the broadest geographic extent, being surface-intensified, and occurring under exceptional meteorological conditions. Three of the four warm events were accompanied by elevated salinities consistent with enhanced ocean transport into the Nordic Seas, with the exception of the event spanning July 1989-July 1993. Of the three cold events, two lasted for four years, while the third lasted for nearly 14 years. Two of the three cold events are associated with reduced salinities, but the cold event of the 1960s had elevated salinities. The relationship of these events to meteorological conditions is examined. The results show that local surface heat flux variations act in some cases to reinforce the anomalies, but are too weak to be the sole cause.

  9. Impact of the salt leakage through the Indian-Atlantic ocean gateway on the Atlantic MOC

    NASA Astrophysics Data System (ADS)

    Marino, G.; Zahn, R.; Ziveri, P.; Ziegler, M.; Hall, I. R.; Elderfield, H.

    2012-04-01

    Freshwater perturbation in the northern North Atlantic exerts a strong influence on the stability of the Atlantic meridional overturning circulation (AMOC) with potentially severe impacts on the regional and global climates. The occurrence of ice rafted detritus (IRD) in the glacial sediments of the North Atlantic testifies to past episodes of Laurentide ice sheet surging that also coincided with AMOC curtailments and prominent climate deterioration in the Northeast Atlantic and Western Europe. The equally abrupt warming shifts observed in Greenland ice core and North Atlantic sediment core records that characterize the end of each IRD event have been related to the rapid resumption of AMOC and its associated heat transport. The hysteresis response, under glacial boundary conditions, of the AMOC to freshwater forcing suggests that a reduction in this forcing may have been sufficient to trigger the rapid AMOC resumptions revealed by several palaeoceanographic records. But recent modelling studies allude to the potential importance of a salt surplus, originating in the Indian Ocean and transported to the South Atlantic via the Agulhas leakage, that may have acted as a positive feedback on the AMOC strengthening. This possibility, however, has yet to be adequately tested with palaeoproxy reconstructions. We present a suite of multi-centennial-scale palaeoceanographic records spanning a full glacial cycle from the Southwest African margin and Agulhas Plateau that have been generated as part of the EU Marie Curie GATEWAYS project. The sediment cores are positioned such that they monitor the leakage of Agulhas water into the Atlantic and the Agulhas Return Current that straddles the South Atlantic subtropical front on its way to the Indian Ocean. Paired Mg/Ca-δ18O analyses on the planktonic foraminifera Globigerinoides ruber and Globigerina bulloides reveal millennial-scale surface ocean temperature and salinity changes at the core sites that reflect recurrent

  10. CARINA (Carbon dioxide in the Atlantic Ocean) Data from CDIAC

    DOE Data Explorer

    The idea for CARINA developed at a workshop (CO2 in the northern North Atlantic) that was held at the HANSE-Wissenschaftskolleg (HANSE Institute for Advanced Study) in Delmenhorst, Germany from June 9 to 11, 1999. While the main scientific focus is the North Atlantic, some data from the South Atlantic have been included in the project, along with data from the Arctic Ocean. Data sets go back to 1972, and more than 100 are currently available. The data are also being used in conjunction with other projects and research groups, such as the Atlantic Ocean Carbon Synthesis Group. See the inventory of data at http://store.pangaea.de/Projects/CARBOOCEAN/carina/data_inventory.htm See a detailed table of information on the cruises at http://cdiac.ornl.gov/oceans/CARINA/Carina_table.html and also provides access to data files. The CARBOOCEAN data portal provides a specialized interface for CARINA data, a reference list for historic carbon data, and password protected access to the "Data Underway Warehouse.".

  11. Cenomanian-Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin

    SciTech Connect

    Kuhnt, W.; Herbin, J.P.; Thurow, J.; Wiedmann, J.

    1988-08-01

    Pre-Cenomanian sediments of the western Mediterranean and adjacent Atlantic margin are characterized by low total organic content (TOC) with an important terrestrial component. During the Cenomanian, TOC increased and the marine component became dominant, culminating around the Cenomanian-Turonian boundary with TOC up to 40%. After the Turonian, organic-rich sediments progressively disappeared and were replaced by more oxygenated sediments. Study methods include considering data from outcrops, DSDP/ODP sites, or petroleum wells. Detailed data from onshore locations allowed the development of high-resolution stratigraphy, analysis of depositional environment, and calculation of sedimentation rates. Analysis of these data indicates Cenoamnian-Turonian organic-rich sediments can be observed in a wide range of bathymetric settings. They are widespread in the western Mediterranean and Atlantic and have been especially studied in Italy (Apennines, southern Alps), Tunisia (Bahloul), Algeria, Morocco (Rif Mountains, Atlas Mountains, Tarfaya), Gibraltar arch, Spain (Betics, Bay of Biscay, Galicia margin), Senegal (Cape Verde basin, Casamance), and Nigeria (Benue, Calabar flank).

  12. Quantification of dissolved iron sources to the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Conway, Tim M.; John, Seth G.

    2014-07-01

    Dissolved iron is an essential micronutrient for marine phytoplankton, and its availability controls patterns of primary productivity and carbon cycling throughout the oceans. The relative importance of different sources of iron to the oceans is not well known, however, and flux estimates from atmospheric dust, hydrothermal vents and oceanic sediments vary by orders of magnitude. Here we present a high-resolution transect of dissolved stable iron isotope ratios (δ56Fe) and iron concentrations ([Fe]) along a section of the North Atlantic Ocean. The different iron sources can be identified by their unique δ56Fe signatures, which persist throughout the water column. This allows us to calculate the relative contribution from dust, hydrothermal venting and reductive and non-reductive sedimentary release to the dissolved phase. We find that Saharan dust aerosol is the dominant source of dissolved iron along the section, contributing 71-87 per cent of dissolved iron. Additional sources of iron are non-reductive release from oxygenated sediments on the North American margin (10-19 per cent), reductive sedimentary dissolution on the African margin (1-4 per cent) and hydrothermal venting at the Mid-Atlantic Ridge (2-6 per cent). Our data also indicate that hydrothermal vents in the North Atlantic are a source of isotopically light iron, which travels thousands of kilometres from vent sites, potentially influencing surface productivity. Changes in the relative importance of the different iron sources through time may affect interactions between the carbon cycle and climate.

  13. Modeling Mesoscale Eddies in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Chao, Yi

    1999-01-01

    Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.

  14. Decadal acidification in the water masses of the Atlantic Ocean.

    PubMed

    Ríos, Aida F; Resplandy, Laure; García-Ibáñez, Maribel I; Fajar, Noelia M; Velo, Anton; Padin, Xose A; Wanninkhof, Rik; Steinfeldt, Reiner; Rosón, Gabriel; Pérez, Fiz F

    2015-08-11

    Global ocean acidification is caused primarily by the ocean's uptake of CO2 as a consequence of increasing atmospheric CO2 levels. We present observations of the oceanic decrease in pH at the basin scale (50 °S-36 °N) for the Atlantic Ocean over two decades (1993-2013). Changes in pH associated with the uptake of anthropogenic CO2 (ΔpHCant) and with variations caused by biological activity and ocean circulation (ΔpHNat) are evaluated for different water masses. Output from an Institut Pierre Simon Laplace climate model is used to place the results into a longer-term perspective and to elucidate the mechanisms responsible for pH change. The largest decreases in pH (∆pH) were observed in central, mode, and intermediate waters, with a maximum ΔpH value in South Atlantic Central Waters of -0.042 ± 0.003. The ΔpH trended toward zero in deep and bottom waters. Observations and model results show that pH changes generally are dominated by the anthropogenic component, which accounts for rates between -0.0015 and -0.0020/y in the central waters. The anthropogenic and natural components are of the same order of magnitude and reinforce one another in mode and intermediate waters over the time period. Large negative ΔpHNat values observed in mode and intermediate waters are driven primarily by changes in CO2 content and are consistent with (i) a poleward shift of the formation region during the positive phase of the Southern Annular Mode in the South Atlantic and (ii) an increase in the rate of the water mass formation in the North Atlantic.

  15. Deglacial Atlantic Radiocarbon: A Southern Ocean Perspective

    NASA Astrophysics Data System (ADS)

    Robinson, L. F.; Burke, A.; Adkins, J. F.; Chen, T.; Spooner, P.

    2014-12-01

    It is widely accepted that the Southern Ocean is an important component of the climate system, acting as a key site for carbon and heat exchange between the atmosphere and oceans. The deglaciation with its associated millenial climate changes is a key time period for testing the mechanisms behind these exchanges. Ascertaining the precise timing of these events is a challenge given complications from variable and largely unconstrained reservoir ages, dissolution of carbonate hard parts and sediment redistribution by strong currents. Nevertheless improvements to our understanding of Southern Ocean dynamics in the past requires accurately-dated proxy records that can be embedded in GCM models. Radiocarbon measured in deep-sea corals offers just such an archive and proxy. Using the skeletons of deep-sea corals we are now able to reconstruct aspects of the history of three distinct water masses in the Drake Passage on a precise timescale, allowing direct comparison to U-series dated speleothem terrestrial records and polar ice cores. We present here a new deglacial radiocarbon record from the Drake Passage which more than doubles the resolution of published records. We focus on the deglacial, as well as providing insights from the contrasting period leading up to the LGM. Together with new data from far-field sites we interpret our results as evidence for a Southern Ocean control on atmospheric carbon dioxide and radiocarbon evolution during the deglaciation, and a northern hemisphere control during the run up to the LGM.

  16. 78 FR 18235 - Special Local Regulations; 2013 Lauderdale Air Show, Atlantic Ocean; Fort Lauderdale, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ..., Atlantic Ocean; Fort Lauderdale, FL AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a special local regulation on the Atlantic Ocean and the entrance of Port... effective from 10 a.m. on April 18, 2013, until 5:30 p.m. on Sunday, April 21, 2013. The Atlantic...

  17. 77 FR 11387 - Safety Zone; Lauderdale Air Show, Atlantic Ocean, Fort Lauderdale, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Lauderdale Air Show, Atlantic Ocean, Fort... establishing a temporary safety zone on the waters of the Atlantic Ocean in the vicinity of Fort Lauderdale... Lauderdale Air Show will include numerous aircraft engaging in aerobatic maneuvers over the Atlantic...

  18. Particulate polycyclic aromatic hydrocarbons in the Atlantic and Indian Ocean atmospheres during the Indian Ocean Experiment and Aerosols99: Continental sources to the marine atmosphere

    NASA Astrophysics Data System (ADS)

    Crimmins, Bernard S.; Dickerson, Russell R.; Doddridge, Bruce G.; Baker, Joel E.

    2004-03-01

    Polycyclic aromatic hydrocarbons (PAHs), mutagenic compounds predominantly derived from combustion, have been used as markers of combustion sources to the atmosphere. Marine aerosol collected aboard the NOAA R/V Ronald Brown during the Aerosols99 and the Indian Ocean Experiment (INDOEX) projects was analyzed for PAHs to assess the continental impact of combustion-derived particulate matter on the Atlantic and Indian Ocean atmospheres. PAH concentrations in the Atlantic and southern Indian Ocean atmospheres were consistent and low, ranging from <0.45 pg/m3 for coronene to 30 pg/m3 for 9, 10-dimethylanthracene. PAH concentrations increased ten fold as the ship crossed the Intertropical Convergence Zone (ITCZ) into the northern Indian Ocean, indicating an increased anthropogenic influence. PAH concentrations over the northern Indian Ocean atmosphere were approximately an order of magnitude greater than those in the northern Atlantic Ocean atmosphere. PAH composition profiles over the northern Indian Ocean were specific to wind regimes and influenced by a combination of biomass and fossil fuel combustion. This was supported by significant correlations between select PAHs and organic carbon (OC), elemental carbon (EC), SO4-2 and K+ for particular wind regimes. Indeno[1,2,3-cd]pyrene/EC ratios used as a combustion source marker suggest that fossil fuel combustion, rather than biomass burning, is the predominant source of PAHs to the Northern Hemisphere Indian Ocean atmosphere. Interestingly, fossil fuel consumption in the Indian sub-continent is a fraction of that in Europe and the United States but the soot and PAH levels in the adjacent Northern Indian Ocean atmosphere are significantly greater than those in the Northern Atlantic atmosphere.

  19. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean.

    PubMed

    Meckler, A N; Sigman, D M; Gibson, K A; François, R; Martínez-García, A; Jaccard, S L; Röhl, U; Peterson, L C; Tiedemann, R; Haug, G H

    2013-03-28

    Growing evidence suggests that the low atmospheric CO2 concentration of the ice ages resulted from enhanced storage of CO2 in the ocean interior, largely as a result of changes in the Southern Ocean. Early in the most recent deglaciation, a reduction in North Atlantic overturning circulation seems to have driven CO2 release from the Southern Ocean, but the mechanism connecting the North Atlantic and the Southern Ocean remains unclear. Biogenic opal export in the low-latitude ocean relies on silicate from the underlying thermocline, the concentration of which is affected by the circulation of the ocean interior. Here we report a record of biogenic opal export from a coastal upwelling system off the coast of northwest Africa that shows pronounced opal maxima during each glacial termination over the past 550,000 years. These opal peaks are consistent with a strong deglacial reduction in the formation of silicate-poor glacial North Atlantic intermediate water (GNAIW). The loss of GNAIW allowed mixing with underlying silicate-rich deep water to increase the silicate supply to the surface ocean. An increase in westerly-wind-driven upwelling in the Southern Ocean in response to the North Atlantic change has been proposed to drive the deglacial rise in atmospheric CO2 (refs 3, 4). However, such a circulation change would have accelerated the formation of Antarctic intermediate water and sub-Antarctic mode water, which today have as little silicate as North Atlantic Deep Water and would have thus maintained low silicate concentrations in the Atlantic thermocline. The deglacial opal maxima reported here suggest an alternative mechanism for the deglacial CO2 release. Just as the reduction in GNAIW led to upward silicate transport, it should also have allowed the downward mixing of warm, low-density surface water to reach into the deep ocean. The resulting decrease in the density of the deep Atlantic relative to the Southern Ocean surface promoted Antarctic overturning

  20. Deep ocean early warning signals of an Atlantic MOC collapse

    NASA Astrophysics Data System (ADS)

    Feng, Qing Yi; Viebahn, Jan P.; Dijkstra, Henk A.

    2014-08-01

    A future collapse of the Atlantic Meridional Overturning Circulation (MOC) has been identified as one of the most dangerous tipping points in the climate system. It is therefore crucial to develop early warning indicators for such a potential collapse based on relatively short time series. So far, attempts to use indicators based on critical slowdown have been marginally successful. Based on complex climate network reconstruction, we here present a promising new indicator for the MOC collapse that efficiently monitors spatial changes in deep ocean circulation. Through our analysis of the performance of this indicator, we formulate optimal locations of measurement of the MOC to provide early warning signals of a collapse. Our results imply that an increase in spatial resolution of the Atlantic MOC observations (i.e., at more sections) can improve early detection, because the spatial coherence in the deep ocean arising near the transition is better captured.

  1. Organic matter in eolian dusts over the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R. T.

    1977-01-01

    The elemental and mineralogical composition and the microfossil and detritus content of particulate fallout from the lower troposphere over the Atlantic Ocean have been extensively documented in earlier work, and it was possible to ascribe terrigenous source areas to such fallout. A brief review of the organic geochemistry of eolian dusts is also presented here. The lipids of eolian dusts sampled from the air mass over the eastern Atlantic from about 35 deg N to 30 deg S were analyzed here. These lipids consisted mainly of normal alkanes, carboxylic acids and alcohols. The n-alkanes were found to range from n-C23 to n-C35 with high CPI values and maximizing at n-C27 in the North Atlantic, at n-C29 in the equatorial Atlantic and at n-C31 in the South Atlantic. The n-fatty acids had mostly bimodal distributions, ranging from n-C12 to n-C30 (high CPI), with maxima at n-C16 and in the northern samples at n-C24 and in the southern samples at n-C26. The n-alcohols ranged from n-C12 to n-C32, with high CPI values and maxima mainly at n-C28. The compositions of these lipids indicated that their terrigenous sources were comprised mainly of higher plant vegetation and desiccated lacustrine mud flats on the African continent.

  2. Coherent Multidecadal Atmospheric and Oceanic Variability in the North Atlantic: Blocking Corresponds with Warm Subpolar Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa M.; Rhines, P. B.; Worthen, D. L.

    2012-01-01

    Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system.

  3. Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia

    NASA Astrophysics Data System (ADS)

    Ribeiro, A.; Cabral, J.; Baptista, R.; Matias, L.

    1996-06-01

    The Portuguese mainland territory is located close to the Azores-Gibraltar plate boundary, in a tectonic setting responsible for significant neotectonic and seismic activities. However, few data concerning the present regional lithospheric stress field were available, as testified by recently published maps of stress indicators for the Europe and Mediterranean regions. One of the authors already presented a synthesis on this subject [Cabral, 1993], where geological and geophysical stress indicators were considered. In this paper we introduce new information, mainly a considerable amount of borehole breakout data. The updated data set comprises 32 reliable stress indicators showing a mean azimuth of 145° (standard deviation 21°) for the maximum horizontal stress direction (SHmax). On the average, the geological data are rotated clockwise and the focal mechanism data deviated anticlockwise to that azimuth, while the borehole elongation results are consistent with the mean SHmax trend. These differences in stress trend suggest a regional progressive rotation of the SHmax direction from NNW-SSE to WNW-ESE since the upper Pliocene. To estimate stress trajectories, new and published stress indicators in the adjacent Atlantic area and northern Africa were also investigated, showing a very uniform NW-SE SHmax trend in west Iberia. A high level of horizontal compressive stress acting oblique to the western Portuguese continental margin is inferred and interpreted in view of a proposed regional geodynamical model, of activation of this passive margin, with the nucleation of a subduction zone in the Atlantic SW of Iberia, at the Gorringe submarine bank, which is propagating northward along the base of the continental slope, at the transition between thinned and normal continental crust.

  4. The Low-Frequency Variability of the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa; Mo, Kingtse C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Upper ocean temperature variability in the tropical Atlantic is examined from the Comprehensive Ocean Atmosphere Data Set (COADS) as well as from an ocean model simulation forced by COADS anomalies appended to a monthly climatology. Our findings are as follows: Only the sea surface temperatures (SST) in the northern tropics are driven by heat fluxes, while the southern tropical variability arises from wind driven ocean circulation changes. The subsurface temperatures in the northern and southern tropics are found to have a strong linkage to buoyancy forcing changes in the northern North Atlantic. Evidence for Kelvin-like boundary wave propagation from the high latitudes is presented from the model simulation. This extratropical influence is associated with wintertime North Atlantic Oscillation (NAO) forcing and manifests itself in the northern and southern tropical temperature anomalies of the same sign at depth of 100-200 meters as result of a Rossby wave propagation away from the eastern boundary in the wake of the boundary wave passage. The most apparent association of the southern tropical sea surface temperature anomalies (STA) arises with the anomalous cross-equatorial winds which can be related to both NAO and the remote influence from the Pacific equatorial region. These teleconnections are seasonal so that the NAO impact on the tropical SST is the largest it mid-winter but in spring and early summer the Pacific remote influence competes with NAO. However, NAO appears to have a more substantial role than the Pacific influence at low frequencies during the last 50 years. The dynamic origin of STA is indirectly confirmed from the SST-heat flux relationship using ocean model experiments which remove either anomalous wind stress forcing or atmospheric forcing anomalies contributing to heat exchange.

  5. In situ interactions between photosynthetic picoeukaryotes and bacterioplankton in the Atlantic Ocean: evidence for mixotrophy.

    PubMed

    Hartmann, Manuela; Zubkov, Mikhail V; Scanlan, Dave J; Lepère, Cécile

    2013-12-01

    Heterotrophic bacterioplankton, cyanobacteria and phototrophic picoeukaryotes (< 5 μm in size) numerically dominate planktonic oceanic communities. While feeding on bacterioplankton is often attributed to aplastidic protists, recent evidence suggests that phototrophic picoeukaryotes could be important bacterivores. Here, we present direct visual evidence from the surface mixed layer of the Atlantic Ocean that bacterioplankton are internalized by phototrophic picoeukaryotes. In situ interactions of phototrophic picoeukaryotes and bacterioplankton (specifically Prochlorococcus cyanobacteria and the SAR11 clade) were investigated using a combination of flow cytometric cell sorting and dual tyramide signal amplification fluorescence in situ hybridization. Using this method, we observed plastidic Prymnesiophyceae and Chrysophyceae cells containing Prochlorococcus, and to a lesser extent SAR11 cells. These microscopic observations of in situ microbial trophic interactions demonstrate the frequency and likely selectivity of phototrophic picoeukaryote bacterivory in the surface mixed layer of both the North and South Atlantic subtropical gyres and adjacent equatorial region, broadening our views on the ecological role of the smallest oceanic plastidic protists.

  6. The sources of deep ocean infragravity waves observed in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Crawford, Wayne; Ballu, Valerie; Bertin, Xavier; Karpytchev, Mikhail

    2015-07-01

    Infragravity waves are long-period (25-250 s) ocean surface gravity waves generated in coastal zones through wave-wave interactions or oscillation of the breaking point. Most of the infragravity wave energy is trapped or dissipated near coastlines, but a small percentage escapes into the open oceans. The source of deep ocean infragravity waves is debated, specifically whether they come mostly from regions with strong source waves or from sites with particular morphologies/orientations. We correlate measurements of infragravity waves in the deep North Atlantic Ocean with infragravity wave generation parameters throughout the Atlantic Ocean to find the dominant sources of deep ocean infragravity wave energy in the North Atlantic Ocean. The deep ocean infragravity wave data are from a 5 year deployment of absolute pressure gauges west of the Azores islands (37°N, 35°W) and shorter data sets from seafloor tsunami gauges (DART buoys). Two main sources are identified: one off of the west coast of southern Europe and northern Africa (25°N-40°N) in northern hemisphere winter and the other off the west coast of equatorial Africa (the Gulf of Guinea) in southern hemisphere winter. These regions have relatively weak source waves and weak infragravity wave propagation paths to the main measurement site, indicating that that the site morphology/orientation dominates the creation of deep ocean infragravity waves. Both regions have also been identified as potential sources of global seismological noise, suggesting that the same mechanisms may be behind the generation of deep ocean infragravity waves and global seismological noise in the frequency band from 0.001 to 0.04 Hz.

  7. Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean

    DTIC Science & Technology

    2010-06-01

    water is then subducted as the ocean restratifies during spring, and advected throughout the subtropical gyre by the large scale wind driven circulation...Luther, and W. C. Patzert, 1992: The heat budget in the north atlantic subtropical frontal zone . J. Geophys. Res., 97 (C11), 17 947–17 959. 131 Price, J

  8. Identification guide to skates (Family Rajidae) of the Canadian Atlantic and adjacent regions

    USGS Publications Warehouse

    Sulak, Kenneth J.; MacWhirter, P. D.; Luke, K.E.; Norem, A.D.; Miller, J.M.; Cooper, J.A.; Harris, L.E.

    2009-01-01

    Ecosystem-based management requires sound information on the distribution and abundance of species both common and rare. Therefore, the accurate identification for all marine species has assumed a much greater importance. The identification of many skate species is difficult as several are easily confused and has been found to be problematic in both survey data and fisheries data collection. Identification guides, in combination with training and periodic validation of taxonomic information, improve our accuracy in monitoring data required for ecosystem-based management and monitoring of populations. This guide offers a comparative synthesis of skate species known to occur in Atlantic Canada and adjacent regions. The taxonomic nomenclature and descriptions of key morphological features are based on the most up-to-date understanding of diversity among these species. Although this information will aid the user in accurate identification, some features vary geographically (such as colour) and others with life stage (most notably the proportion of tail length to body length; the presence of spines either sharper in juveniles or in some cases not yet present; and also increases in the number of tooth rows as species grow into maturity). Additional information on juvenile features are needed to facilitate problematic identifications (e.g. L. erinacea vs. L. ocellata). Information on size at maturity is still required for many of these species throughout their geographic distribution.

  9. Oceanic Situational Awareness over the North Atlantic Corridor

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfield, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the oceanic domain. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the North Atlantic Corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  10. Quantification of dissolved iron sources to the North Atlantic Ocean.

    PubMed

    Conway, Tim M; John, Seth G

    2014-07-10

    Dissolved iron is an essential micronutrient for marine phytoplankton, and its availability controls patterns of primary productivity and carbon cycling throughout the oceans. The relative importance of different sources of iron to the oceans is not well known, however, and flux estimates from atmospheric dust, hydrothermal vents and oceanic sediments vary by orders of magnitude. Here we present a high-resolution transect of dissolved stable iron isotope ratios (δ(56)Fe) and iron concentrations ([Fe]) along a section of the North Atlantic Ocean. The different iron sources can be identified by their unique δ(56)Fe signatures, which persist throughout the water column. This allows us to calculate the relative contribution from dust, hydrothermal venting and reductive and non-reductive sedimentary release to the dissolved phase. We find that Saharan dust aerosol is the dominant source of dissolved iron along the section, contributing 71-87 per cent of dissolved iron. Additional sources of iron are non-reductive release from oxygenated sediments on the North American margin (10-19 per cent), reductive sedimentary dissolution on the African margin (1-4 per cent) and hydrothermal venting at the Mid-Atlantic Ridge (2-6 per cent). Our data also indicate that hydrothermal vents in the North Atlantic are a source of isotopically light iron, which travels thousands of kilometres from vent sites, potentially influencing surface productivity. Changes in the relative importance of the different iron sources through time may affect interactions between the carbon cycle and climate.

  11. Fennerosquilla heptacantha (Crustacea: Stomatopoda: Squillidae) in South Atlantic Ocean.

    PubMed

    Lucatelli, Débora

    2015-10-07

    Fennerosquilla is a monotypic genus that belongs to the family Squillidae, which has the highest generic diversity within Stomatopoda. This genus has been recorded in the north Atlantic Ocean, the Gulf of Mexico and Caribbean Sea, between 105 and 458 m depth. The present specimen was collected during the project "Avaliação da Biota Bentônica e Planctônica na porção offshore das Bacias Potiguar e Ceará", in 2011, from the continental slope region of Brazil. In this expedition Fennerosquilla heptacantha was found at 178-193 m depth, and represents the first record of the species in the south Atlantic Ocean (Rio Grande do Norte State, northeastern Brazil), expanding the southern limit distribution. The specimen is the largest recorded, measuring 149 mm total length. The pigmentation zone on median region of telson and all diagnostic characters are still preserved and agree with the original description. Fennerosquilla heptacantha has a disjunct deep water distribution (more than 100 m) in the tropical western Atlantic, mostly along the continental slope.

  12. An alternative early opening scenario for the Central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Labails, Cinthia; Olivet, Jean-Louis; Aslanian, Daniel; Roest, Walter R.

    2010-09-01

    The opening of the Central Atlantic Ocean basin that separated North America from northwest Africa is well documented and assumed to have started during the Late Jurassic. However, the early evolution and the initial breakup history of Pangaea are still debated: most of the existing models are based on one or multiple ridge jumps at the Middle Jurassic leaving the oldest crust on the American side, between the East Coast Magnetic Anomaly (ECMA) and the Blake Spur Magnetic Anomaly (BSMA). According to these hypotheses, the BSMA represents the limit of the initial basin and the footprint subsequent to the ridge jump. Consequently, the evolution of the northwest African margin is widely different from the northeast American margin. However, this setting is in contradiction with the existing observations. In this paper, we propose an alternative scenario for the continental breakup and the Mesozoic spreading history of the Central Atlantic Ocean. The new model is based on an analysis of geophysical data (including new seismic lines, an interpretation of the newly compiled magnetic data, and satellite derived gravimetry) and recently published results which demonstrate that the opening of the Central Atlantic Ocean started already during the Late Sinemurian (190 Ma), based on a new identification of the African conjugate to the ECMA and on the extent of salt provinces off Morocco and Nova Scotia. The identification of an African conjugate magnetic anomaly to BSMA, the African Blake Spur Magnetic Anomaly (ABSMA), together with the significant change in basement topography, are in good agreement with that initial reconstruction. The early opening history for the Central Atlantic Ocean is described in four distinct phases. During the first 20 Myr after the initial breakup (190-170 Ma, from Late Sinemurian to early Bajocian), oceanic accretion was extremely slow (˜ 0.8 cm/y). At the time of Blake Spur (170 Ma, early Bajocian), a drastic change occurred both in the relative

  13. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean.

    PubMed

    Schattenhofer, Martha; Fuchs, Bernhard M; Amann, Rudolf; Zubkov, Mikhail V; Tarran, Glen A; Pernthaler, Jakob

    2009-08-01

    Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9 degrees S) to the UK (46.4 degrees N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 +/- 9%) and Prochlorococcus (12 +/- 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both approximately 15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (approximately 25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly

  14. The Cretaceous opening of the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Granot, Roi; Dyment, Jérôme

    2015-03-01

    The separation of South America from Africa during the Cretaceous is poorly understood due to the long period of stable polarity of the geomagnetic field, the Cretaceous Normal Superchron (CNS, lasted between ∼121 and 83.6 Myr ago). We present a new identification of magnetic anomalies located within the southern South Atlantic magnetic quiet zones that have arisen due to past variations in the strength of the dipolar geomagnetic field. Using these anomalies, together with fracture zone locations, we calculate the first set of magnetic anomalies-based finite rotation parameters for South America and Africa during that period. The kinematic solutions are generally consistent with fracture zone traces and magnetic anomalies outside the area used to construct them. The rotations indicate that seafloor spreading rates increased steadily throughout most of the Cretaceous and decreased sharply at around 80 Myr ago. A change in plate motion took place in the middle of the superchron, roughly 100 Myr ago, around the time of the final breakup (i.e., separation of continental-oceanic boundary in the Equatorial Atlantic). Prominent misfit between the calculated synthetic flowlines (older than Anomaly Q1) and the fracture zones straddling the African Plate in the central South Atlantic could only be explained by a combination of seafloor asymmetry and internal dextral motion (<100 km) within South America, west of the Rio Grande fracture zone. This process has lasted until ∼92 Myr ago after which both Africa and South America (south of the equator) behaved rigidly. The clearing of the continental-oceanic boundaries within the Equatorial Atlantic Gateway was probably completed by ∼95 Myr ago. The clearing was followed by a progressive widening and deepening of the passageway, leading to the emergence of north-south flow of intermediate and deep-water which might have triggered the global cooling of bottom water and the end for the Cretaceous greenhouse period.

  15. Liberty Bell 7 is retrieved from Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Media and photographers get a close-up view of the Liberty Bell 7 Project Mercury capsule after its recovery from the Atlantic Ocean floor where it lay for 38 years. Launched July 21, 1961, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil 'Gus' Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. Curt Newport, an underwater salvage expert, located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The expedition was sponsored by the Discovery Channel. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.

  16. Liberty Bell 7 is retrieved from Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Media and spectators get a close-up view of the Liberty Bell 7 Project Mercury capsule after its recovery from the Atlantic Ocean floor where it lay for 38 years. Launched July 21, 1961, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil 'Gus' Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. Curt Newport, an underwater salvage expert, located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The expedition was sponsored by the Discovery Channel. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.

  17. FERROMANGANESE CRUST RESOURCES IN THE PACIFIC AND ATLANTIC OCEANS.

    USGS Publications Warehouse

    Commeau, R.F.; Clark, A.; Johnson, Chad; Manheim, F. T.; Aruscavage, P. J.; Lane, C.M.

    1984-01-01

    Ferromanganese crusts on raised areas of the ocean floor have joined abyssal manganese nodules and hydrothermal sulfides as potential marine resources. Significant volumes of cobalt-rich (about 1% Co) crusts have been identified to date within the US Exclusive Economic Zone (EEZ) in the Central Pacific: in the NW Hawaiian Ridge and Seamount region and in the seamounts in the Johnston Island and Palmyra Island regions. Large volumes of lower grade crusts, slabs, and nodules are also present in shallow ( greater than 1000 m) waters on the Blake plateau, off Florida-South Carolina in the Atlantic Ocean. Data on ferromanganese crusts have been increased by recent German and USGS cruises, but are still sparse, and other regions having crust potential are under current investigation. The authors discuss economic potentials for cobalt-rich crusts in the Central Pacific and Western North Atlantic oceans, with special reference to US EEZ areas. Additional research is needed before more quantitative resource estimates can be made.

  18. Gulf of California analogue for origin of Late Paleozoic ocean basins adjacent to western North America

    SciTech Connect

    Murchey, B.L. )

    1993-04-01

    Ocean crust accreted to the western margin of North America following the Late Devonian to earliest Missippian Antler orogeny is not older than Devonian. Therefore, ocean crust all along the margin of western North America may have been very young following the Antler event. This situation can be compared to the present-day margin of North America which lies adjacent to young ocean crust as a result of the subduction of the Farallon plate and arrival of the East Pacific spreading ridge. Syn- and post-Antler rifting that occurred along the North American margin may well be analogous to the formation of the Gulf of California by the propagation of the East Pacific spreading ridge. Black-arc rifting associated with the subduction of very old ocean crust seems a less likely mechanism for the early stages of ocean basin formation along the late Paleozoic margin of western North America because of the apparent absence of old ocean crust to the west of the arc terranes. The eastern Pacific basins were as long-lived as any truly oceanic basins and may have constituted, by the earliest Permian, a single wedge-shaped basin separated from the western Pacific by rifted fragments of North American arc-terranes. In the Permian, the rifted arcs were once again sites of active magmatism and the eastern Pacific basins began to close, from south (Golconda terrane) to north. Final closure of the northernmost eastern Pacific basin (Angayucham in Alaska) did not occur until the Jurassic.

  19. Aerosol isotopic ammonium signatures over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lin, C. T.; Jickells, T. D.; Baker, A. R.; Marca, A.; Johnson, M. T.

    2016-05-01

    We report aerosol ammonium 15N signatures for samples collected from research cruises on the South Atlantic and Caribbean using a new high sensitivity method. We confirm a pattern of isotopic signals from generally light (δ15N -5 to -10‰), for aerosols with very low (<2 nmol m-3) ammonium concentrations from the remote high latitude ocean, to generally heavier values (δ15N +5 to +10‰), for aerosols collected in temperate and tropical latitudes and with higher ammonium concentrations (>2 nmol m-3). We discuss whether this reflects a mixing of aerosols from two end-members (polluted continental and remote marine emissions), or isotopic fractionation during aerosol transport.

  20. Atlantic Ocean forcing of North American and European summer climate.

    PubMed

    Sutton, Rowan T; Hodson, Daniel L R

    2005-07-01

    Recent extreme events such as the devastating 2003 European summer heat wave raise important questions about the possible causes of any underlying trends, or low-frequency variations, in regional climates. Here, we present new evidence that basin-scale changes in the Atlantic Ocean, probably related to the thermohaline circulation, have been an important driver of multidecadal variations in the summertime climate of both North America and western Europe. Our findings advance understanding of past climate changes and also have implications for decadal climate predictions.

  1. Sea Level Variation at the North Atlantic Ocean from Altimetry

    NASA Astrophysics Data System (ADS)

    Vigo, I.; Sanchez-Reales, J. M.; Belda, S.

    2012-12-01

    About twenty years of multi-satellite radar altimeter data are analyzed to investigate the sea-level variation (SLV) of the North Atlantic Ocean. In particular seasonal variations and inter-seasonal trends are studied. Sea surface temperature and ice mass lost variations at Greenland are investigated as potential contributors of SLV in the case. It was found a quadratic acceleration term to be significant at some areas mainly located at the sub-polar gyre region. Results are consistent with changes in temperature data.

  2. Atmospheric deposition of methanol over the Atlantic Ocean.

    PubMed

    Yang, Mingxi; Nightingale, Philip D; Beale, Rachael; Liss, Peter S; Blomquist, Byron; Fairall, Christopher

    2013-12-10

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.

  3. Oceanic Situational Awareness Over the Western Atlantic Track Routing System

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Western Atlantic Track Routing System (WATRS). The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the WATRS corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  4. Eddy length scales in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2007-06-01

    Eddy length scales are calculated from satellite altimeter products and in an eddy-resolving model of the North Atlantic Ocean. Four different measures for eddy length scales are derived from kinetic energy densities in wave number space and spatial decorrelation scales. Observational estimates and model simulation agree well in all these measures near the surface. As found in previous studies, all length scales are, in general, decreasing with latitude. They are isotropic and proportional to the local first baroclinic Rossby radius (Lr) north of about 30°N, while south of 30°N (or for Lr > 30 km), zonal length scales tend to be larger than meridional ones, and (scalar) length scales show no clear relation to Lr anymore. Instead, they appear to be related to the local Rhines scale. In agreement with a recent theoretical prediction by Theiss [2004], the observed and simulated pattern of eddy length scales appears to be indicative of two different dynamical regimes in the North Atlantic: anisotropic turbulence in the subtropics and isotropic turbulence in the subpolar North Atlantic. Both regions can be roughly characterized by the ration between Lr and the Rhines scales (LR), with LR > Lr in the isotropic region and LR < Lr in the anisotropic region. The critical latitude that separates both regions, i.e., where LR = Lr, is about 30°N.

  5. Pathways of Atlantic Waters into the Arctic Ocean: Eddy-permitting ocean and sea ice simulations

    NASA Astrophysics Data System (ADS)

    Wekerle, Claudia; von Appen, Wilken-Jon; Danilov, Sergey; Jung, Thomas; Kanzow, Torsten; Schauer, Ursula; Timmermann, Ralph; Wang, Qiang

    2015-04-01

    Fram Strait is the only deep gateway connecting the central Arctic with the North Atlantic. Boundary currents on each side are responsible for the exchange of water masses between the Arctic and North Atlantic. The East Greenland Current (EGC) carries fresh and cold Arctic waters and sea ice southward, whereas the West Spitsbergen Current (WSC) carries warm Atlantic Waters (AW) into the Arctic Ocean. The complex topography in Fram Strait leads to a branching of the northward flowing WSC, with one branch recirculating between 78°N and 81°N which then joins the EGC. To date, the dynamics as well as the precise location of this recirculation are unclear. The goal of this research project is to quantify the amount and variability of AW which recirculates immediately in Fram Strait, and to investigate the role of atmospheric forcing and oceanic meso-scale eddies for the recirculation. We use simulations carried out with a global configuration of the Finite Element Sea ice-Ocean Model (FESOM) at eddy-permitting scales. The advantage of this model is the finite element discretization of the governing equations, which allows us to locally refine the mesh in areas of interest and keep it coarse in other parts of the global oceans without the need for traditional nesting. Here we will show the first results of the model validation. The model has ~9 km resolution in the Nordic Seas and Fram Strait and 1 deg south of 50°N. We assess the model capabilities in simulating the ocean circulation in the Nordic Seas and Fram Strait by comparing with the available observational data, e.g. with data from the Fram Strait oceanographic mooring array. The ocean volume and heat transport from the Atlantic Ocean into the Nordic Seas and at the Fram Strait are analyzed. Our results show that the model can capture some of the observed key ocean properties in our region of interest, while some tuning is required to further improve the model. In the next phase of this project we will focus

  6. Possible Factors affecting the Thermal Contrast between Middle-Latitude Asian Continent and Adjacent Ocean

    NASA Astrophysics Data System (ADS)

    Cheng, Huaqiong; Wu, Tongwen; Dong, Wenjie

    2015-04-01

    A middle-latitude Land-Sea thermal contrast Index was used in this study which has close connection to the East Asian summer precipitation. The index has two parts which are land thermal index defined as JJA 500-hPa geopotential height anomalies at a land area (75°-90° E, 40° -55°N ) and ocean thermal index defined as that at an oceanic area (140° -150°E, 35° -42.5°N). The impact of the surface heat flux and atmospheric diabatic heating over the land and the ocean on the index was studied. The results show that the surface heat flux over Eurasian inner land has little influence to the land thermal index, while the variation of the surface latent heat flux and long-wave radiation over the Pacific adjacent to Japan has highly correlation with the ocean thermal index. The changes with height of the atmospheric diabatic heating rates over the Eurasian inner land and the Pacific adjacent to Japan have different features. The variations of the middle troposphere atmospheric long-wave and short-wave radiation heating have significantly influences on land thermal index, and that of the low troposphere atmospheric long-wave radiation, short-wave radiation and deep convective heating also have impact on the yearly variation of the land thermal index. For the ocean thermal index, the variations of the surface layer atmospheric vertical diffuse heating, large-scale latent heating and long-wave radiation heating are more important, low and middle troposphere atmospheric large-scale latent heating and shallow convective heating also have impact on the yearly variation of the ocean thermal index. And then the ocean thermal index has closely connection with the low troposphere atmospheric temperature, while the land thermal index has closely connection with the middle troposphere atmospheric temperature. The Effect of the preceding global SST anomalies on the index also was analyzed. The relations of land thermal index and ocean thermal index and the global SST anomalies

  7. 77 FR 50019 - Safety Zone; Cocoa Beach Air Show, Atlantic Ocean, Cocoa Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Cocoa Beach Air Show, Atlantic Ocean, Cocoa Beach, FL AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of the Atlantic Ocean located east of Cocoa Beach,...

  8. 77 FR 75853 - Safety Zone; Bone Island Triathlon, Atlantic Ocean; Key West, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Bone Island Triathlon, Atlantic Ocean; Key... establishing a temporary safety zone on the waters of the Atlantic Ocean in Key West, Florida, during the Bone..., Questor Multisport, LLC is hosting the Bone Island Triathlon. The event will be held on the waters of...

  9. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area....

  10. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  11. 33 CFR 334.130 - Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone. 334.130 Section 334.130 Navigation and Navigable Waters... REGULATIONS § 334.130 Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone. (a) The...

  12. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area....

  13. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area....

  14. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  15. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  16. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area....

  17. 33 CFR 334.130 - Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone. 334.130 Section 334.130 Navigation and Navigable Waters... REGULATIONS § 334.130 Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone. (a) The...

  18. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  19. 33 CFR 165.T01-0542 - Safety Zones: Neptune Deepwater Port, Atlantic Ocean, Boston, MA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zones: Neptune Deepwater Port, Atlantic Ocean, Boston, MA. 165.T01-0542 Section 165.T01-0542 Navigation and Navigable Waters... Guard District § 165.T01-0542 Safety Zones: Neptune Deepwater Port, Atlantic Ocean, Boston, MA....

  20. 33 CFR 334.130 - Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone. 334.130 Section 334.130 Navigation and Navigable Waters... REGULATIONS § 334.130 Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone. (a) The...

  1. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  2. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD... § 165.714 Regulated Navigation Area; Atlantic Ocean, Charleston, SC. (a) Location. The following area...

  3. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area....

  4. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD... § 165.714 Regulated Navigation Area; Atlantic Ocean, Charleston, SC. (a) Location. The following area...

  5. 75 FR 8570 - Atlantic Ocean off John F. Kennedy Space Center, FL; Restricted Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Department of the Army, Corps of Engineers 33 CFR Part 334 Atlantic Ocean off John F. Kennedy Space Center... the coast of the John F. Kennedy Space Center (KSC), Florida. The KSC is the main launch facility for...). 2. Add Sec. 334.525 to read as follows: Sec. 334.525 Atlantic Ocean off John F. Kennedy Space...

  6. Are Global In-Situ Ocean Observations Fit-for-purpose? Applying the Framework for Ocean Observing in the Atlantic.

    NASA Astrophysics Data System (ADS)

    Visbeck, M.; Fischer, A. S.; Le Traon, P. Y.; Mowlem, M. C.; Speich, S.; Larkin, K.

    2015-12-01

    There are an increasing number of global, regional and local processes that are in need of integrated ocean information. In the sciences ocean information is needed to support physical ocean and climate studies for example within the World Climate Research Programme and its CLIVAR project, biogeochemical issues as articulated by the GCP, IMBER and SOLAS projects of ICSU-SCOR and Future Earth. This knowledge gets assessed in the area of climate by the IPCC and biodiversity by the IPBES processes. The recently released first World Ocean Assessment focuses more on ecosystem services and there is an expectation that the Sustainable Development Goals and in particular Goal 14 on the Ocean and Seas will generate new demands for integrated ocean observing from Climate to Fish and from Ocean Resources to Safe Navigation and on a healthy, productive and enjoyable ocean in more general terms. In recognition of those increasing needs for integrated ocean information we have recently launched the Horizon 2020 AtlantOS project to promote the transition from a loosely-coordinated set of existing ocean observing activities to a more integrated, more efficient, more sustainable and fit-for-purpose Atlantic Ocean Observing System. AtlantOS takes advantage of the Framework for Ocean observing that provided strategic guidance for the design of the project and its outcome. AtlantOS will advance the requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic. AtlantOS will bring Atlantic nations together to strengthen their complementary contributions to and benefits from the internationally coordinated Global Ocean Observing System (GOOS) and the Blue Planet Initiative of the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill gaps of the in-situ observing system networks and will ensure that their data are readily accessible and useable. AtlantOS will demonstrate the utility of

  7. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary to..., which are tributary to or connected by other waterways with the Atlantic Ocean south of Chesapeake...

  8. 33 CFR 334.500 - St. Johns River, Atlantic Ocean, Sherman Creek; restricted areas and danger zone, Naval Station...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false St. Johns River, Atlantic Ocean... AND RESTRICTED AREA REGULATIONS § 334.500 St. Johns River, Atlantic Ocean, Sherman Creek; restricted... area and the Atlantic Ocean restricted area described in paragraphs (a)(2) and (a)(3) of this...

  9. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean off Cape Canaveral... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore...

  10. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off Cape Canaveral... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore...

  11. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Cape Canaveral... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore...

  12. 33 CFR 334.500 - St. Johns River, Atlantic Ocean, Sherman Creek; restricted areas and danger zone, Naval Station...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false St. Johns River, Atlantic Ocean... AND RESTRICTED AREA REGULATIONS § 334.500 St. Johns River, Atlantic Ocean, Sherman Creek; restricted... area and the Atlantic Ocean restricted area described in paragraphs (a)(2) and (a)(3) of this...

  13. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Cape Canaveral... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore...

  14. 33 CFR 334.500 - St. Johns River, Atlantic Ocean, Sherman Creek; restricted areas and danger zone, Naval Station...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false St. Johns River, Atlantic Ocean... AND RESTRICTED AREA REGULATIONS § 334.500 St. Johns River, Atlantic Ocean, Sherman Creek; restricted... area and the Atlantic Ocean restricted area described in paragraphs (a)(2) and (a)(3) of this...

  15. 33 CFR 334.500 - St. Johns River, Atlantic Ocean, Sherman Creek; restricted areas and danger zone, Naval Station...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false St. Johns River, Atlantic Ocean... AND RESTRICTED AREA REGULATIONS § 334.500 St. Johns River, Atlantic Ocean, Sherman Creek; restricted... area and the Atlantic Ocean restricted area described in paragraphs (a)(2) and (a)(3) of this...

  16. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Cape Canaveral... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore...

  17. 77 FR 43158 - Special Local Regulation; Battle on the Bay Powerboat Race Atlantic Ocean, Fire Island, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Race Atlantic Ocean, Fire Island, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY... Atlantic Ocean off Smith Point Park, Fire Island, NY during the Battle on the Bay Powerboat Race. This... on the Atlantic Ocean off Smith Point Park, Fire Island, NY and will feature six classes of...

  18. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    PubMed Central

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  19. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean.

    PubMed

    Glasser, Neil F; Jansson, Krister N; Duller, Geoffrey A T; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-02-12

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface "hosing" to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate.

  20. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-02-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate.

  1. The Transient Tracers in the Ocean (TTO) program: The North Atlantic Study, 1981; The Tropical Atlantic Study, 1983

    NASA Astrophysics Data System (ADS)

    Brewer, Peter G.; Sarmiento, Jorge L.; Smethie, William M.

    1985-01-01

    The scientific papers here collected result from the Transient Tracers in the Ocean (TTO) program. The two parts of this major geochemical and physical oceanographie expedition took place in the North Atlantic Ocean in 1981 and in the Tropical Atlantic in 1983 on the research vessel Knorr of the Woods Hole Oceanographie Institution. The expeditions, sponsored by the National Science Foundation and the U.S. Department of Energy (North Atlantic only), were designed to observe the passage of man-made geochemical tracers into the interior of the ocean. The foundations for such an experiment were laid in the 1972-1978 GEOSECS program. Here, for the first time, a systematic survey revealed the penetration into the thermocline and deep ocean of the products of man's military/industrial activities, principally tritium and carbon-14 resulting from atmospheric testing of nuclear weapons, which terminated with the nuclear test ban treaty in 1962.

  2. Ocean-Atmosphere coupling and CO2 exchanges in the Southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Souza, R.; Pezzi, L. P.; Carmargo, R.; Acevedo, O. C.

    2013-05-01

    The establishment of the INTERCONF Program (Air-Sea Interactions at the Brazil-Malvinas Confluence Zone) in 2004 and subsequent developing of projects such as the SIMTECO (Integrated System for Monitoring the Weather, the Climate and the Ocean in the South of Brazil) and ACEx (Atlantic Ocean Carbon Experiment) from 2010 in Brazil brought to light the importance of understanding the impact of the Southwestern Atlantic Ocean's mesoscale variability on the modulation of the atmospheric boundary layer (ABL) at the synoptic scale. Recent results of all these projects showed that the ABL modulation, as well as the ocean-atmosphere turbulent (heat, momentum and CO2) fluxes are dependent on the behavior of the ocean's surface thermal gradients, especially those found in the Brazil-Malvinas Confluence Zone and at the southern coast off Brazil during the winter. As expected, when atmospheric large scale systems are not present over the study area, stronger heat fluxes are found over regions of higher sea surface temperature (SST) including over warm core eddies shed towards the subantarctic (cold) environment. In the coastal region off southern Brazil, the wintertime propagation of the Brazilian Costal Current (La Plata Plume) acts rising the chlorophyll concentration over the continental shelf as well as diminishing considerably the SST - hence producing prominent across-shore SST gradients towards the offshore region dominated by the Brazil Current waters. Owing to that, heat fluxes are directed towards the ocean in coastal waters that are also responsible for the carbon sinking off Brazil in wintertime. All this description is dependent on the synoptic atmospheric cycle and strongly perturbed when transient systems (cold fronts, subtropical cyclones) are present in the area. However, remote sensing data used here suggest that the average condition of the atmosphere directly responding to the ocean's mesoscale variability appears to imprint a signal that extends from the

  3. Liberty Bell 7 is retrieved from Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Retrieved from the ocean floor three miles deep, the Liberty Bell 7 Project Mercury capsule is revealed to photographers and the media in Port Canaveral, Fla. The capsule was found and raised by Curt Newport (left), leading an expedition sponsored by the Discovery Channel. After its successful 16-minute suborbital flight on July 21, 1961, the Liberty Bell 7, with astronaut Virgil 'Gus' Grissom aboard, splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. An underwater salvage expert, Newport located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.

  4. Liberty Bell 7 is retrieved from Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A close-up of the recently recovered Liberty Bell 7 Project Mercury capsule from the ocean floor shows the lettering 'United States' still clearly visible on its side. Thirty-eight years ago, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil 'Gus' Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. In an expedition sponsored by the Discovery Channel, underwater salvage expert Curt Newport fulfilled a 14-year dream in finding and, after one abortive attempt, successfully raising the capsule and bringing it to Port Canaveral. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.

  5. GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.

  6. Sulfide in surface waters of the western Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Krahforst, Christian F.

    1988-11-01

    Using newly developed techniques, some preliminary data on hydrogen sulfide in surface waters of the western Atlantic have been obtained. Concentrations of total sulfide range from <0.1 to 1.1 nmol/L, and vary on a diel basis. At these concentrations, sulfide may affect the cycling of several trace metals via the formation of stable complexes. Production of sulfide in oxygenated seawater may occur through the hydrolysis of carbonyl sulfide or by sulfate reduction within macroscopic particles in the water column. Removal mechanisms can include oxidation, complexation with particulate trace metals, and metal sulfide precipitation. However, the temporal and spatial distributions suggest a complex set of processes governing the behavior of sulfide in the surface ocean.

  7. Macroecological patterns of archaeal ammonia oxidizers in the Atlantic Ocean.

    PubMed

    Sintes, Eva; De Corte, Daniele; Ouillon, Natascha; Herndl, Gerhard J

    2015-10-01

    Macroecological patterns are found in animals and plants, but also in micro-organisms. Macroecological and biogeographic distribution patterns in marine Archaea, however, have not been studied yet. Ammonia-oxidizing Archaea (AOA) show a bipolar distribution (i.e. similar communities in the northernmost and the southernmost locations, separated by distinct communities in the tropical and gyral regions) throughout the Atlantic, detectable from epipelagic to upper bathypelagic layers (<2000 m depth). This tentatively suggests an influence of the epipelagic conditions of organic matter production on bathypelagic AOA communities. The AOA communities below 2000 m depth showed a less pronounced biogeographic distribution pattern than the upper 2000 m water column. Overall, AOA in the surface and deep Atlantic waters exhibit distance-decay relationships and follow the Rapoport rule in a similar way as bacterial communities and macroorganisms. This indicates a major role of environmental conditions in shaping the community composition and assembly (species sorting) and no, or only weak limits for dispersal in the oceanic thaumarchaeal communities. However, there is indication of a different strength of these relationships between AOA and Bacteria, linked to the intrinsic differences between these two domains.

  8. Anthropogenic CO2 changes in the Equatorial Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Fajar, N. M.; Guallart, E. F.; Steinfeldt, R.; Ríos, A. F.; Pelegrí, J. L.; Pelejero, C.; Calvo, E.; Pérez, F. F.

    2015-05-01

    Methods based on CO2 and chlorofluorocarbon (CFC) data are used to describe and evaluate the anthropogenic CO2 (Cant) concentrations, Cant specific inventories, and Cant storage rates in the Equatorial Atlantic Ocean. The Cant variability in the water masses is evaluated from the comparison of two hydrographic sections along 7.5°N carried out in 1993 and 2010. During both cruises, high Cant concentrations are detected in the upper layers, with values decreasing progressively towards the deep layers. Overall, the Cant concentrations increase from 1993 to 2010, with a large increment in the upper North Atlantic Deep Water layer of about 0.18 ± 0.03 μmol kg-1 y-1. In 2010, the Cant inventory along the whole section amounts to 58.9 ± 2.2 and 45.1 ± 2.0 mol m-2 using CO2 and CFC based methods, respectively, with most Cant accumulating in the western basin. Considering the time elapsed between the two cruises, Cant storage rates of 1.01 ± 0.18 and 0.75 ± 0.17 mol m-2 y-1 (CO2 and CFC based methods, respectively) are obtained. Below ∼1000 m, these rates follow the pace expected from a progressive increase of Cant at steady state; above ∼1000 m, Cant increases faster, mainly due to the retreat of the Antarctic Intermediate Waters.

  9. Comparison of deep-water viromes from the atlantic ocean and the mediterranean sea.

    PubMed

    Winter, Christian; Garcia, Juan A L; Weinbauer, Markus G; DuBow, Michael S; Herndl, Gerhard J

    2014-01-01

    The aim of this study was to compare the composition of two deep-sea viral communities obtained from the Romanche Fracture Zone in the Atlantic Ocean (collected at 5200 m depth) and the southwest Mediterranean Sea (from 2400 m depth) using a pyro-sequencing approach. The results are based on 18.7% and 6.9% of the sequences obtained from the Atlantic Ocean and the Mediterranean Sea, respectively, with hits to genomes in the non-redundant viral RefSeq database. The identifiable richness and relative abundance in both viromes were dominated by archaeal and bacterial viruses accounting for 92.3% of the relative abundance in the Atlantic Ocean and for 83.6% in the Mediterranean Sea. Despite characteristic differences in hydrographic features between the sampling sites in the Atlantic Ocean and the Mediterranean Sea, 440 virus genomes were found in both viromes. An additional 431 virus genomes were identified in the Atlantic Ocean and 75 virus genomes were only found in the Mediterranean Sea. The results indicate that the rather contrasting deep-sea environments of the Atlantic Ocean and the Mediterranean Sea share a common core set of virus types constituting the majority of both virus communities in terms of relative abundance (Atlantic Ocean: 81.4%; Mediterranean Sea: 88.7%).

  10. Chondrichthyan egg cases from the south-west Atlantic Ocean.

    PubMed

    Mabragaña, E; Figueroa, D E; Scenna, L B; Díaz de Astarloa, J M; Colonello, J H; Delpiani, G

    2011-11-01

    Egg cases of 21 oviparous chondrichthyan species from the south-west Atlantic Ocean are described and compared. The catshark Schroederichthys bivius has a cigar-shaped egg case with curled tendrils only at the posterior end. Egg cases of the elephant fish Callorhinchus callorynchus are spindle-shaped with anterior and posterior tubular extensions and lateral flanges. The skate Amblyraja doellojuradoi presents medium-sized egg cases (71 mm in length) with a lateral keel extending to the first portion of the horns. The endemic skate species of the genus Atlantoraja have medium to large egg cases (69-104 mm in length) and present relatively large posterior horns. Egg cases of the genus Bathyraja have a medium size, 75-98 mm in length, and are characterized by a very similar morphology, a relatively smooth to rough surface case and posterior horns strongly curved inwards. Egg cases of the genera Dipturus and Zearaja are very large, 115-230 mm in length, and have a well-developed posterior apron. Despite the problematical identification of skates at species level, the egg capsules of the endemic genus Psammobatis are easily diagnosed; the capsules are small (25-53 mm in length), those of Psammobatis rutrum being the smallest known to date in the world. Egg cases of Rioraja agassizi have a medium size, 61-68 mm in length, relatively straight sides, a smooth surface and silky attachment fibres placed in the lateral keel next to each horn. Those of the genus Sympterygia are small to medium sized, 51-86 mm in length, and display the thickest lateral keel and the longest posterior horns among the skates of the world. Egg cases can be a useful tool for identifying species and egg-laying areas; therefore, a provisional key for the south-west Atlantic Ocean chondrichthyan capsules is presented.

  11. Abundant proteorhodopsin genes in the North Atlantic Ocean.

    PubMed

    Campbell, Barbara J; Waidner, Lisa A; Cottrell, Matthew T; Kirchman, David L

    2008-01-01

    Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria, including Pelagibacter ubique, a member of the ubiquitous SAR11 clade. The goals of this study were to explore the diversity of PR genes and to estimate their abundance in the North Atlantic Ocean using quantitative polymerase chain reaction (QPCR). We found that PR genes in the western portion of the Sargasso Sea could be grouped into 27 clusters, but five clades had the most sequences. Sets of specific QPCR primers were designed to examine the abundance of PR genes in the following four of the five clades: SAR11 (P. ubique and other SAR11 Alphaproteobacteria), BACRED17H8 (Alphaproteobacteria), HOT2C01 (Alphaproteobacteria) and an uncultured subgroup of the Flavobacteria. Two groups (SAR11 and HOT2C01) dominated PR gene abundance in oligotrophic waters, but were significantly less abundant in nutrient- and chlorophyll-rich waters. The other two groups (BACRED17H8 and Flavobacteria subgroup NASB) were less abundant in all waters. Together, these four PR gene types were found in 50% of all bacteria in the Sargasso Sea. We found a significant negative correlation between total PR gene abundance and nutrients and chlorophyll but no significant correlation with light intensity for three of the four PR types in the depth profiles north of the Sargasso Sea. Our data suggest that PR is common in the North Atlantic Ocean, especially in SAR11 bacteria and another marine alphaproteobacterial group (HOT2C01), and that these PR-bearing bacteria are most abundant in oligotrophic waters.

  12. Antimony and arsenic biogeochemistry in the western Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Cutter, Lynda S.; Featherstone, Alison M.; Lohrenz, Steven E.

    The subtropical to equatorial Atlantic Ocean provides a unique regime in which one can examine the biogeochemical cycles of antimony and arsenic. In particular, this region is strongly affected by inputs from the Amazon River and dust from North Africa at the surface, and horizontal transport at depth from high-latitude northern (e.g., North Atlantic Deep Water) and southern waters (e.g., Antarctic Bottom and Intermediate Waters). As a part of the 1996 Intergovernmental Oceanographic Commission's Contaminant Baseline Survey, data for dissolved As(III+V), As(III), mono- and dimethyl arsenic, Sb(III+V), Sb(III), and monomethyl antimony were obtained at six vertical profile stations and 44 sites along the 11,000 km transect from Montevideo, Uruguay, to Bridgetown, Barbados. The arsenic results were similar to those in other oceans, with moderate surface depletion, deep-water enrichment, a predominance of arsenate (>85% As(V)), and methylated arsenic species and As(III) in surface waters that are likely a result of phytoplankton conversions to mitigate arsenate "stress" (toxicity). Perhaps the most significant discovery in the arsenic results was the extremely low concentrations in the Amazon Plume (as low as 9.8 nmol/l) that appear to extend for considerable distances offshore in the equatorial region. The very low concentration of inorganic arsenic in the Amazon River (2.8 nmol/l; about half those in most rivers) is probably the result of intense iron oxyhydroxide scavenging. Dissolved antimony was also primarily in the pentavalent state (>95% antimonate), but Sb(III) and monomethyl antimony were only detected in surface waters and displayed no correlations with biotic tracers such as nutrients and chlorophyll a. Unlike As(III+V)'s nutrient-type vertical profiles, Sb(III+V) displayed surface maxima and decreased into the deep waters, exhibiting the behavior of a scavenged element with a strong atmospheric input. While surface water Sb had a slight correlation with

  13. Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Kajtar, Jules B.; Santoso, Agus; England, Matthew H.; Cai, Wenju

    2016-06-01

    Complex interactions manifest between modes of tropical climate variability across the Pacific, Indian, and Atlantic Oceans. For example, the El Niño-Southern Oscillation (ENSO) extends its influence on modes of variability in the tropical Indian and Atlantic Oceans, which in turn feed back onto ENSO. Interactions between pairs of modes can alter their strength, periodicity, seasonality, and ultimately their predictability, yet little is known about the role that a third mode plays. Here we examine the interactions and relative influences between pairs of climate modes using ensembles of 100-year partially coupled experiments in an otherwise fully coupled general circulation model. In these experiments, the air-sea interaction over each tropical ocean basin, as well as pairs of ocean basins, is suppressed in turn. We find that Indian Ocean variability has a net damping effect on ENSO and Atlantic Ocean variability, and conversely they each promote Indian Ocean variability. The connection between the Pacific and the Atlantic is most clearly revealed in the absence of Indian Ocean variability. Our model runs suggest a weak damping influence by Atlantic variability on ENSO, and an enhancing influence by ENSO on Atlantic variability.

  14. Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation".

    PubMed

    Zhang, Rong; Sutton, Rowan; Danabasoglu, Gokhan; Delworth, Thomas L; Kim, Who M; Robson, Jon; Yeager, Stephen G

    2016-06-24

    Clement et al (Reports, 16 October 2015, p. 320) claim that the Atlantic Multidecadal Oscillation (AMO) is a thermodynamic response of the ocean mixed layer to stochastic atmospheric forcing and that ocean circulation changes have no role in causing the AMO. These claims are not justified. We show that ocean dynamics play a central role in the AMO.

  15. Liberty Bell 7 is retrieved from Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Gunther Wendt takes a turn at the podium after viewing the recovered Liberty Bell 7 Project Mercury capsule, seen in the background. At right is Curt Newport who led the expedition to find and retrieve the capsule. The expedition was sponsored by the Discovery Channel. Wendt worked on the Liberty Bell 7 before its launch July 21, 1961. After its successful 16-minute suborbital flight, the Liberty Bell 7, with astronaut Virgil 'Gus' Grissom aboard, splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. An underwater salvage expert, Newport located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.

  16. Liberty Bell 7 is retrieved from Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows two mercury dimes that were found inside the recently recovered Liberty Bell 7 Project Mercury capsule. Thirty-eight years ago, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil 'Gus' Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. In an expedition sponsored by the Discovery Channel, underwater salvage expert Curt Newport fulfilled a 14- year dream in finding and, after one abortive attempt, successfully raising the capsule and bringing it to Port Canaveral. The dimes had apparently been placed in the capsule before its launch July 21, 1961. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.

  17. Acoustic habitat of an oceanic archipelago in the Southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Bittencourt, Lis; Barbosa, Mariana; Secchi, Eduardo; Lailson-Brito, José; Azevedo, Alexandre

    2016-09-01

    Underwater soundscapes can be highly variable, and in natural conditions are often dominated by biological signals and physical features of the environment. Few studies, however, focused on oceanic islands soundscapes. Islands in the middle of ocean basins can provide a good example of how untouched marine soundscapes are. Autonomous acoustic recordings were carried out in two different seasons in Trindade-Martin Vaz Archipelago, Southwestern Atlantic, providing nearly continuous data for both periods. Sound levels varied daily and between seasons. During summer, higher frequencies were noisier than lower frequencies, with snapping shrimp being the dominating sound source. During winter, lower frequencies were noisier than higher frequencies due to humpback whale constant singing. Biological signal detection had a marked temporal pattern, playing an important role in the soundscape. Over 1000 humpback whale sounds were detected hourly during winter. Fish vocalizations were detected mostly during night time during both summer and winter. The results show an acoustic habitat dominated by biological sound sources and highlight the importance of the island to humpback whales in winter.

  18. Changes in ocean circulation in the South-east Atlantic Ocean during the Pliocene

    NASA Astrophysics Data System (ADS)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.

    2013-12-01

    The Southeast Atlantic Ocean is an important ocean gateway because major oceanic systems interact with each other in a relatively small geographic area. These include the Benguela Current, Antarctic Circumpolar Current, and the input of warm and saline waters from the Indian Ocean via the Agulhas leakage. However, there remain questions about circulation change in this region during the Pliocene, including whether there was more or less Agulhas Leakage, which may have implications for the strength of the global thermohaline circulation. ODP Site 1087 (31°28'S, 15°19'E, 1374m water depth) is located outside the Benguela upwelling region and is affected by Agulhas leakage in the modern ocean. Sea-surface temperatures (SSTs) are thus sensitive to the influence of Agulhas Leakage at this site. Our approach is to apply several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP 1087, including the UK37' index (SSTs), pigments (primary productivity) and planktonic foraminifera (water mass changes). SSTs during the Pliocene range from 17 to 22.5 °C (mean SSTs at 21 °C), and show variability on orbital and suborbital time scales. Our results indicate that the Benguela upwelling system had intensified and/or shifted south during the Pliocene. We find no evidence of Agulhas leakage, meaning that either Agulhas Leakage was severely reduced or displaced during the mid-Pliocene. Potential causes of the observed signals include changes to the local wind field and/or changes in the temperature of intermediate waters which upwell in the Benguela system. Pronounced cooling is observed during cold stages in the Pliocene, aligned with the M2 and KM2 events. These results may indicate that changes to the extent of the Antarctic ice sheet had impact on circulation in the south east Atlantic during the Pliocene via displacement of the Antarctic Circumpolar Currents.

  19. Particle release transport in Danshuei River estuarine system and adjacent coastal ocean: a modeling assessment.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng; Kimura, Nobuaki; Hsu, Ming-Hsi

    2010-09-01

    A three-dimensional hydrodynamic model was created to study the Danshuei River estuarine system and adjacent coastal ocean in Taiwan. The model was verified using measurements of the time-series water surface elevation, tidal current, and salinity from 1999. We conclude that our model is consistent with these observations. Our particle-tracking model was also used to explore the transport of particles released from the Hsin-Hai Bridge, an area that is heavily polluted. The results suggest that it takes a much longer time for the estuary to be flushed out under low freshwater discharge conditions than with high freshwater discharge. We conclude that the northeast and southwest winds minimally impact particle dispersion in the estuary. The particles fail to settle to the bottom in the absence of density-induced circulation. Our model was also used to simulate the ocean outfall at the Bali. Our experimental results suggest that the tidal current dominates the particle trajectories and influences the transport properties in the absence of a wind stress condition. The particles tend to move northeast or southwest along the coast when northeast or southwest winds prevail. Our data suggest that wind-driven currents and tidal currents play important roles in water movement as linked with ocean outfall in the context of the Danshuei River.

  20. Seasonal dynamics of circulation in Hooghly Estuary and its adjacent coastal oceans

    NASA Astrophysics Data System (ADS)

    Mishra, Shashank Kr.; Nayak, Gourav; Nayak, R. K.; Dadhwal, V. K.

    2016-05-01

    Hooghly is one of the major estuaries in Ganges, the largest and longest river in the Indian subcontinent. The Hooghly estuary is a coastal plain estuary lying approximately between 21°-23° N and 87°-89° E. We used a terrain following ocean model to study tide driven residual circulations, seasonal mean flow patterns and its energetics in the Hooghly estuary and adjacent coastal oceans on the north eastern continental shelf of India. The model is driven by tidal levels at open ocean end and winds at the air-sea interface. The sources of forcing fields for tides were from FES2012, winds from ECMWF. Harmonic analysis is carried out to compute the tidal and non-tidal components of currents and sea level from the model solutions. The de-tidal components were averaged for the entire period of simulation to describe residual and mean-seasonal circulations in the regions. We used tide-gauge, SARAL-ALTIKA along track sea level measurements to evaluate model solutions. Satellite measure Chla were used along with simulated currents to describe important features of the circulations in the region.

  1. North Atlantic Ocean control on surface heat flux on multidecadal timescales.

    PubMed

    Gulev, Sergey K; Latif, Mojib; Keenlyside, Noel; Park, Wonsun; Koltermann, Klaus Peter

    2013-07-25

    Nearly 50 years ago Bjerknes suggested that the character of large-scale air-sea interaction over the mid-latitude North Atlantic Ocean differs with timescales: the atmosphere was thought to drive directly most short-term--interannual--sea surface temperature (SST) variability, and the ocean to contribute significantly to long-term--multidecadal--SST and potentially atmospheric variability. Although the conjecture for short timescales is well accepted, understanding Atlantic multidecadal variability (AMV) of SST remains a challenge as a result of limited ocean observations. AMV is nonetheless of major socio-economic importance because it is linked to important climate phenomena such as Atlantic hurricane activity and Sahel rainfall, and it hinders the detection of anthropogenic signals in the North Atlantic sector. Direct evidence of the oceanic influence of AMV can only be provided by surface heat fluxes, the language of ocean-atmosphere communication. Here we provide observational evidence that in the mid-latitude North Atlantic and on timescales longer than 10 years, surface turbulent heat fluxes are indeed driven by the ocean and may force the atmosphere, whereas on shorter timescales the converse is true, thereby confirming the Bjerknes conjecture. This result, although strongest in boreal winter, is found in all seasons. Our findings suggest that the predictability of mid-latitude North Atlantic air-sea interaction could extend beyond the ocean to the climate of surrounding continents.

  2. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  3. Atlantic Ocean Carbon Experiment (acex): Implementation of Eddy Covariance Implementation of Eddy Covariance CO2 Flux Measurements on the SW Atlantic Ocean and Results from the Second Cruise

    NASA Astrophysics Data System (ADS)

    Schultz, C.; Pezzi, L. P.; Miller, S. D.; Martins, L. G.; Araujo, R. G.; Acevedo, O. C.; Moller, O.; Souza, R.; Tavano, V. M.; Farias, P.; Casagrande, F.

    2013-05-01

    The project observational and numerical study of heat, momentum and CO2 fluxes at the ocean-atmosphere interface in the South Atlantic Ocean - Atlantic Ocean Carbon Experiment (ACEx) combines observational and modeling approaches to characterize heat, momentum and CO2 fluxes at the ocean-atmosphere interface in the South Atlantic Ocean. This project is part of an innovative initiative aimed at providing a better understanding of the chemical, physical and dynamic processes of ocean-atmosphere interaction in micro and meso-scales at the South Atlantic Ocean, as well as fluxes across this interface. The ACEx project has performed three cruises so far, collecting measurements with CTDs and XBTs, launching radiosondes, and deploying a micro-meteorological tower to make in situ measurements of heat, momentum and CO2 fluxes. Our successful deployment of this tower represents the first use of a CO2 flux measurement system using eddy covariance technique in the Southwestern Atlantic Ocean. In this work, we present results from the second ACEx cruise, in which the crew onboard the Hydro-oceanographic Vessel Cruzeiro do Sul took measurements at 31 stations between Paranaguá (PR) and Chuí (RS). In addition to physical data, this cruise collected phytoplankton and nutrient data, allowing carbonic gas fluxes to be analyzed and compared with both physical and biological forcings. The highest chlorophyll concentrations were found in water derived from the La Plata River, which showed low salinity waters close to the surface. The influence of these waters was observed mainly at the southernmost stations of the cruise, coincident with increases on the CO2 fluxes that had remained slightly negative until then. This suggests that the biological forcings might have a significant impact on the gas fluxes in this area, through both respiration and the consumption of organic matter. We are currently working to apply circulation and biogeochemical models to evaluate the importance of

  4. Recent Changes in Arctic Ocean Sea Ice Motion Associated with the North Atlantic Oscillation

    NASA Technical Reports Server (NTRS)

    Kwok, R.

    1999-01-01

    Examination of a new ice motion dataset of the Arctic Ocean over a recent eighteen year period (1978-1996) reveals patterns of variability that can be linked directly to the North Atlantic Oscillation.

  5. Early opening of initially closed Gulf of Mexico and central North Atlantic ocean

    SciTech Connect

    Van Siclen, D.C.

    1984-09-01

    This paper presents ideas on the early opening and evolution of the Gulf of Mexico and the central North Atlantic ocean. It discusses rifting activity, plate tectonics, magnetic anomalies, and the geologic time elements involved.

  6. 33 CFR 334.580 - Atlantic Ocean near Port Everglades, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean near Port Everglades, Fla. 334.580 Section 334.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.580 Atlantic...

  7. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic...

  8. 33 CFR 334.580 - Atlantic Ocean near Port Everglades, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean near Port Everglades, Fla. 334.580 Section 334.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.580 Atlantic...

  9. 33 CFR 334.580 - Atlantic Ocean near Port Everglades, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean near Port Everglades, Fla. 334.580 Section 334.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.580 Atlantic...

  10. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic...

  11. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic...

  12. 77 FR 50062 - Safety Zone; Embry-Riddle Wings and Waves, Atlantic Ocean; Daytona Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Embry-Riddle Wings and Waves, Atlantic... Daytona Beach, Florida during the Embry-Riddle Wings and Waves air show. The event is scheduled to take...: Sec. 165.T07-0653 Safety Zone; Embry Riddle Wings and Waves, Atlantic Ocean, Daytona Beach, FL....

  13. 33 CFR 334.580 - Atlantic Ocean near Port Everglades, Fla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean near Port Everglades, Fla. 334.580 Section 334.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.580 Atlantic...

  14. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic...

  15. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic...

  16. 33 CFR 334.580 - Atlantic Ocean near Port Everglades, Fla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean near Port Everglades, Fla. 334.580 Section 334.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.580 Atlantic...

  17. Depth Profiles of Persistent Organic Pollutants in the North and Tropical Atlantic Ocean.

    PubMed

    Sun, Caoxin; Soltwedel, Thomas; Bauerfeind, Eduard; Adelman, Dave A; Lohmann, Rainer

    2016-06-21

    Little is known of the distribution of persistent organic pollutants (POPs) in the deep ocean. Polyethylene passive samplers were used to detect the vertical distribution of truly dissolved POPs at two sites in the Atlantic Ocean. Samplers were deployed at five depths covering 26-2535 m in the northern Atlantic and Tropical Atlantic, in approximately one year deployments. Samplers of different thickness were used to determine the state of equilibrium POPs reached in the passive samplers. Concentrations of POPs detected in the North Atlantic near the surface (e.g., sum of 14 polychlorinated biphenyls, PCBs: 0.84 pg L(-1)) were similar to previous measurements. At both sites, PCB concentrations showed subsurface maxima (tropical Atlantic Ocean -800 m, North Atlantic -500 m). Currents seemed more important in moving POPs to deeper water masses than the biological pump. The ratio of PCB concentrations in near surface waters (excluding PCB-28) between the two sites was inversely correlated with congeners' subcooled liquid vapor pressure, in support of the latitudinal fractionation. The results presented here implied a significant amount of HCB is stored in the Atlantic Ocean (4.8-26% of the global HCB environmental burdens), contrasting traditional beliefs that POPs do not reach the deep ocean.

  18. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation.

    PubMed

    Knorr, Gregor; Lohmann, Gerrit

    2003-07-31

    During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records.

  19. Seismostratigraphy of the Siberian Sector of the Arctic Ocean and adjacent Laptev Sea Shelf

    NASA Astrophysics Data System (ADS)

    Weigelt, Estella; Jokat, Wilfried; Franke, Dieter

    2014-07-01

    A new seismostratigraphic model has been established within the Arctic Ocean adjacent to the East Siberian Shelf on the basis of multichannel seismic reflection data acquired along a transect at 81°N. Ages for the sedimentary units were estimated via links to seismic lines and drill site data of the US Chukchi Shelf, the Lomonosov Ridge, and the adjacent Laptev Shelf. Two distinct seismic units were mapped throughout the area and are the constraints for dating the remaining strata. The lower marker unit, a pronounced high-amplitude reflector sequence (HARS), is the most striking stratigraphic feature over large parts of the Arctic Ocean. It indicates a strong and widespread change in deposition conditions. Probably, it developed during Oligocene times when a reorientation of Arctic Plates took place, accompanied by the gradual opening of the Fram Strait, and a widespread regression of sea level. The top of the HARS likely marks the end of Oligocene/early Miocene (23 Ma). An age estimate for the base of the sequence is less clear but likely corresponds to base of Eocene (˜56 Ma). The second marked unit detected on the seismic lines parallels the seafloor with a thickness of about 200 ms two-way travel time (160 m). Its base is marked by a change from a partly transparent sequence with weak amplitude reflections below to a set of continuous high-amplitude reflectors above. This interface likely marks the transition to large-scale glaciation of the northern hemisphere and therefore is ascribed to the top Miocene (5.3 Ma).

  20. Persistent organic pollutants in the Atlantic and southern oceans and oceanic atmosphere.

    PubMed

    Luek, Jenna L; Dickhut, Rebecca M; Cochran, Michele A; Falconer, Renee L; Kylin, Henrik

    2017-04-01

    Persistent organic pollutants (POPs) continue to cycle through the atmosphere and hydrosphere despite banned or severely restricted usages. Global scale analyses of POPs are challenging, but knowledge of the current distribution of these compounds is needed to understand the movement and long-term consequences of their global use. In the current study, air and seawater samples were collected Oct. 2007-Jan. 2008 aboard the Icebreaker Oden en route from Göteborg, Sweden to McMurdo Station, Antarctica. Both air and surface seawater samples consistently contained α-hexachlorocyclohexane (α-HCH), γ-HCH, hexachlorobenzene (HCB), α-Endosulfan, and polychlorinated biphenyls (PCBs). Sample concentrations for most POPs in air were higher in the northern hemisphere with the exception of HCB, which had high gas phase concentrations in the northern and southern latitudes and low concentrations near the equator. South Atlantic and Southern Ocean seawater had a high ratio of α-HCH to γ-HCH, indicating persisting levels from technical grade sources. The Atlantic and Southern Ocean continue to be net sinks for atmospheric α-, γ-HCH, and Endosulfan despite declining usage.

  1. Seismic Imaging of Thermohaline Circulation in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Falder, M.; White, N. J.; Sheen, K. L.; Caulfield, C. P.

    2012-12-01

    We present seismic reflection images of the full water column acquired during a 2010 cruise in the North Atlantic Ocean on the RSS James Cook. A total of 2600 km of seismic data with a horizontal resolution of ~10 m were acquired, including two long transects > 1000 km long. These transects extend from Hatton Bank to the Greenland shelf and cross smooth, intermediate and rough bathymetry. Coeval, expendable conductivity-temperature-depth probes and ADCP measurements permit hydrographic calibration of the seismic images. Seismic processing included dense (~ 1.5 km) velocity picking and iterative pre-stack depth migration, which optimised the acoustic velocity model and increased our confidence in the depth conversion. On both transects, we observe thermohaline structures, such as eddies, fronts and internal waves, together with lateral changes in geometry and reflective character. In places, the amplitude and character of the internal waves may be affected by interaction with rough bathymetry. The largest mesoscale eddy is 60 km in diameter, occurring between 300 and 1100 m depth. Asymmetric reflections wrap around this feature. ADCP data demonstrate that this eddy rotates clockwise at 0.4 m/s in agreement with previous studies. Spectral analysis of internal waves show the classic transition from a Garrett-Munk to a Kolmogorov/Bachelor slope, allowing diapycnal diffusivity estimates to be made. In this way, we hope to test the paradigm that enhanced mixing rates occur over rougher bathymetry in oceanic basins. These long transects are rich in detail and we hope that a quantitative analysis will yield useful physical oceanographic insights.

  2. Carbon disulfide measurements in the atmosphere of the western North Atlantic and the northwestern South Atlantic Oceans

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Johnson, James E.

    1993-01-01

    Carbon disulfide (CS2) measurements were made over the western and equatorial North Atlantic Ocean and the northwestern and equatorial South Atlantic Ocean. Carbon disulfide was in the range 0.4-50 pptrv in the atmosphere of the western North Atlantic Ocean. Emissions from anthropogenic sources and wet lands were found to be important although anthropogenic sources were 4-6 times larger than biogenic sources. The flux of CS2 from eastern North America between 30 and 39 deg latitude was estimated to be 2 x 10(exp 8)g/yr or sulfur. The anthropogenic contribution was 1.8 x 10(exp 8)g/yr of sulfur whereas the contribution of marshes was 0.2 x 10(exp 8)g/yr of sulfur. Sources of CS2 at high latitudes in the northern hemisphere were comparatively weak. Carbon disulfide levels in the western South Atlantic Ocean between -5 and 1 deg latitude were in the range 0.2-6 pptrv. Most of the CS2 appeared to come from biomass burning in Africa. Carbon disulfide was much higher close to shore suggesting that the South American continent was a significant source although too few data were available to quantify it. On ferry lights from Wallops, Virginia to Natal, Brazil, CS2 levels at the ferry altitude of about 6 km averaged 1.2 pptrv. This background CS2 was adequate to account for all the carbonyl sulfide (OCS) in the atmosphere.

  3. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations

    NASA Astrophysics Data System (ADS)

    McCarthy, Gerard D.; Haigh, Ivan D.; Hirschi, Joël J.-M.; Grist, Jeremy P.; Smeed, David A.

    2015-05-01

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  4. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.

    PubMed

    McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A

    2015-05-28

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  5. Ocean color variability in the southern Atlantic and southeastern Pacific

    NASA Astrophysics Data System (ADS)

    Rudorff, Natalia M.; Frouin, Robert J.; Kampel, Milton

    2012-10-01

    The chlorophyll-a concentration (Chla) of surface waters is commonly retrieved from space using an empirical polynomial function of the maximum band ratio (MBR), i.e., the maximum ratio of remote sensing reflectance in selected spectral bands in the visible. Recent studies have revealed significant deviations in the relation between MBR and Chla across the oceans. The present work aims at accessing the main sources of MBR variability across the Southern Atlantic and South-east Pacific, using in situ data. The data was collected at 19 bio-optical CTD stations and 40 flowthrough stations during a cruise onboard the R/V Melville, from South Africa to Chile (February-March, 2011). The MBR was derived from modeled remote sensing reflectance using absorption and backscattering measurements. The second order MBR variations (MBR*) were obtained after subtraction of a global polynomial fit for CChla and Chla biases. Multivariate analyses were used to explain the variations with bio-optical properties and phytoplankton pigments. Chla overestimations were associated to high specific phytoplankton absorption (0.73), specific particle backscattering coefficient (0.42) and colored dissolved and particle organic matter (CDM) absorption normalized by non-water absorption (0.38), and vice-versa. The overestimations occurred at stations with dominance of small picoplankton, high concentration of bacteria, and high CDM, while underestimations were in microplankton dominated waters and low CDM. The results reveal important relations of the MBR* with the specific coefficient and associated phytoplankton community structure.

  6. Iberian Atlantic Margins Group investigates deep structure of ocean margins

    NASA Astrophysics Data System (ADS)

    The Iberian Atlantic Margins Group; Banda, Enric; Torne, Montserrat

    With recent seismic reflection data in hand, investigators for the Iberian Atlantic Margins project are preparing images of the deep continental and oceanic margins of Iberia. In 1993, the IAM group collected near vertical incidence seismic reflection data over a total distance of 3500 km along the North and Western Iberian Margins, Gorringe Bank Region and Gulf of Cadiz (Figure 1). When combined with data on the conjugate margin off Canada, details of the Iberian margin's deep structure should aid in distinguishing rift models and improve understanding of the processes governing the formation of margins.The North Iberian passive continental margin was formed during a Permian to Triassic phase of extension and matured during the early Cretaceous by rotation of the Iberian Peninsula with respect to Eurasia. From the late Cretaceous to the early Oligocene period, Iberia rotated in a counterclockwise direction around an axis located west of Lisbon. The plate boundary between Iberia and Eurasia, which lies along the Pyrenees, follows the north Spanish marginal trough, trends obliquely in the direction of the fossil Bay of Biscay triple junction, and continues along the Azores-Biscay Rise [Sibuet et al., 1994]. Following the NE-SW convergence of Iberia and Eurasia, the reactivation of the North Iberian continental margin resulted in the formation of a marginal trough and accretionary prism [Boillot et al., 1971].

  7. Multiphase halogen chemistry in the tropical Atlantic Ocean.

    PubMed

    Sommariva, Roberto; von Glasow, Roland

    2012-10-02

    We used a one-dimensional model to simulate the chemical evolution of air masses in the tropical Atlantic Ocean, with a focus on halogen chemistry. The model results were compared to the observations of inorganic halogen species made in this region. The model could largely reproduce the measurements of most chlorine species, especially under unpolluted conditions, but overestimated sea salt chloride, BrCl, and bromine species. Agreement with the measurements could be improved by taking into account the reactivity with aldehydes and the effects of dimethyl sulfide (DMS) and Saharan dust on aerosol pH; a hypothetical HOX → X(-) aqueous-phase reaction could also improve the agreement with measured Cl(2) and HOCl, especially under semipolluted conditions. The results also showed that halogens speciation and concentrations are very sensitive to cloud processing. The model was used to calculate the impact of the observed levels of halogens: Cl atoms accounted for 5.4-11.6% of total methane sinks and halogens (mostly bromine and iodine) accounted for 35-40% of total ozone destruction.

  8. Microbial growth and macromolecular synthesis in the northwestern Atlantic Ocean

    SciTech Connect

    Cuhel, R.L.; Jannasch, H.W.; Taylor, C.D.

    1983-01-01

    Simultaneous time-course measurements of /sup 35/SO/sub 4//sup 2 -/, /sup 32/PO/sup 43 -/, /sup 15/NH/sub 4//sup +/, and (/sup 14/C)acetate, glucose, and glutamate uptake were made at three stations in the northwestern Atlantic Ocean, using water samples taken from well below the euphotic zone. Marked deviations from linearity were observed in 14 of the 15 cases. At the two most inshore stations uptake of /sup 15/NH/sub 4//sup +/ or incorporation of /sup 35/SO/sub 4//sup 2 -/ into protein was undetectable for 16-30 h, followed by very rapid increases in the rates of activity. The sudden burst of SO/sub 4//sup 2 -/and NH/sub 4//sup +/ uptake was accompanied by a major increase in the incorporation of /sup 32/P into RNA and lipid fractions of the microbial population at a continental slope station. At a station in Sargasso Sea, all substrates were taken up without lag. Extended incubations led to a growth plateau which may be a measure of the total biologically labile organic nutrient supply. In all cases tested, chloramphenicol severely restricted uptake. One of the inshore stations was revisited a year later with similar results. The combined data demonstrate the utility of using inorganic nutrient uptake and subcellular incorporation patterns to measure microbial growth and metabolism and stress the necessity of time-course rather than end-point incubations.

  9. The dominant mechanisms of variability in Atlantic Ocean Heat Transport in a Coupled Ocean-Atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Dong, B.-W.; Sutton, R. T.

    The variability of the Atlantic meridional ocean heat transport (OHT) has been diagnosed from a simulation of a coupled ocean-atmosphere general circulation model (GCM), and the mechanisms responsible for this variability have been elucidated. Interannual variability is dominated by windstress-driven Ekman fluctuations, which account for 50.3% of the OHT variance. By contrast, decadal and multidecadal variability in Atlantic OHT is dominated by a mixed thermohaline/gyre mode driven by variations in buoyancy fluxes and windstress curl. It accounts for 55.6% of low pass filtered OHT variance. The North Atlantic Oscillation (NAO) has a significant role in both the interannual mode and the low frequency mode, but it is not the only important driver. A notable feature of both modes is significant changes in the tropical atmosphere and ocean. We highlight a number of potential mechanisms involved in the tropical-extratropical teleconnections.

  10. Distribution of tropospheric ozone over the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Oyola, M. I.; Joseph, E.; Nalli, N. R.; Morris, V. R.; Stearns, C. A.; Barnet, C.; Wolfe, D. E.

    2013-12-01

    troposphere. We present a comprehensive study of tropospheric ozone based upon an unprecedented dataset of electrochemical cell (ECC) ozone soundings over the tropical Atlantic Ocean acquired from intensive observation periods (IOP) conducted during seven separate NOAA Aerosols and Ocean Science Expedition (AEROSE) campaigns (2006-2011, 2013) and the 1999 AEROSOL99 campaign. A composite of well-resolved and accurate (5%) tropospheric profiles retrieved from daily ozonesondes, launched along latitudes between 33N to 34 S, are used to describe the Atlantic Ocean ozone geographical and vertical distribution during boreal Winter, Spring and Summer months. Laminae obtained applying the Pierce-Teitelbaum (PT) method are coupled to GW and RW, exploiting their relationship with vertical displacement and quasi-horizontal transport respectively. We apply optical depth measurements, ship-borne tracers, Lagrangian backtrajectory modeling and reanalysis data to characterize the different atmospheric conditions and processes that are believed to ignite the formation of these layers. Furthermore, we present an initial attempt to quantify the contribution of each to the total ozone tropospheric budget due to stratospheric-tropospheric interactions, boundary layer processes, advection of pollutants and regional convection and lightning.

  11. New data on Lepidion schmidti (Gadiformes: Moridae) from the north-east Atlantic Ocean.

    PubMed

    Arronte, J C; Bañón, R; Quigley, D T G; Pis-Millán, J A; Heredia, J

    2011-12-01

    A new record of Lepidion schmidti (Gadiformes: Moridae) is reported from the Bay of Biscay (north-east Atlantic Ocean). Lepidion schmidti is a rare and poorly known species, scarcely described in the ichthyological literature. Morphometric and meristic characteristics of the specimen are given. A compilation of the specimens caught in the north-east Atlantic Ocean was carried out and the current status of the species in Atlantic waters is discussed. Lepidion schmidti is characterized mainly by the presence of an inverted V-shaped patch of vomerine teeth and a V-shaped crest on the dorsal surface of the head with the apex anterior. The presence of supernumerary anal fin rays in this species is described for the first time. The results obtained confirm the presence of L. schmidti from the north-east Atlantic Ocean.

  12. An Analysis of the ENSO Signal in the Tropical Atlantic and Western Indian Oceans

    NASA Astrophysics Data System (ADS)

    Nicholson, Sharon E.

    1997-03-01

    This article examines the time-space evolution of the El Niño-Southern Oscillation (ENSO) signal in the tropical Atlantic and western Indian Oceans, using harmonic analysis. Composites of sea-surface temperatures (SSTs) and other variables are examined for a 24-month period beginning 6 months prior to the year of maximum warming in the Pacific (termed year 0). An ENSO signal is apparent in the Atlantic in six out of eight Pacific episodes and in the Indian Ocean in all eight episodes. Warming begins along the south-eastern Atlantic coast early in year 0, some months later elsewhere in the Atlantic and in the Indian Ocean. Maximum warming occurs in the Atlantic in October-December of year 0, but in the following January-March in the Indian Ocean.In these oceans a cold phase occurs synchronously with the first half of the Pacific episode (July of year -1 to June of year 0, in the Rasmusson-Carpenter terminology), a warm phase with the second half. Maximum cooling is 1 year prior to maximum warming in both oceans. In the Atlantic the cold phase occurs most consistently; in the Indian Ocean the warm phase occurs most consistently. There is a season-by-season reversal of SST anomalies and, to a lesser extent, pressure anomalies between the cold and warm phases. This is the basis for the biennial component of the ENSO signal.Our results indicate that the ENSO signal in African rainfall variability is a manifestation of ENSO's influence on SSTs in the Atlantic and Indian Oceans and, in turn, their influence on rainfall. The cold and warm phases correspond roughly to enhanced and reduced rainfall over the African continent, respectively. A similar reversal of rainfall anomalies is apparent season-by-season during these phases. The timing of the warming and cooling is relatively constant in the Indian Ocean. However, the onset of the warming and cooling in the south and equatorial Atlantic occurs progressively later from south to north, thus the signal propagates northward

  13. Heat content variability in the North Atlantic Ocean in ocean reanalyses.

    PubMed

    Häkkinen, Sirpa; Rhines, Peter B; Worthen, Denise L

    2015-04-28

    Warming of the North Atlantic Ocean from the 1950s to 2012 is analyzed on neutral density surfaces and vertical levels in the upper 2000 m. Three reanalyses and two observational data sets are compared. The net gain of 5 × 10(22) J in the upper 2000 m is roughly 30% of the global ocean warming over this period. Upper ocean heat content (OHC) is dominated in most regions by heat transport convergence without widespread changes in the potential temperature/salinity relation. The heat convergence is associated with sinking of midthermocline isopycnals, with maximum sinking occurring at potential densities σ0 = 26.4-27.3, which contain subtropical mode waters. Water masses lighter than σ0 = 27.3 accumulate heat by increasing their volume, while heavier waters lose heat by decreasing their volume. Spatially, the OHC trend is nonuniform: the low latitudes, 0-30°N are warming steadily while large multidecadal variability occurs at latitudes 30-65°N.

  14. 78 FR 31840 - Safety Zone; USO Patriotic Festival Air Show, Atlantic Ocean; Virginia Beach, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Ocean; Virginia Beach, VA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast... Beach, VA. This action is necessary to provide for the safety of life on navigable waters during the USO... Concerts Entertainment, Inc. will host an air show event over the Atlantic Ocean in Virginia Beach, VA....

  15. Did the North Atlantic Ocean sequester more CO2 during the last glacial?

    NASA Astrophysics Data System (ADS)

    Yu, J.; Thornalley, D. J.; Jin, Z.; Rohling, E. J.; Menviel, L.; McCave, I. N. N.

    2015-12-01

    To explain the ~90 ppm lower atmospheric CO2 content during the Last Glacial Maximum, much effort has been focused on the mechanisms that helped to limit the outgassing of CO2 from the deep ocean to the atmosphere via the Southern Ocean. Field measurements and modeling studies suggest that the North Atlantic Ocean has been an important sink of CO2 during preindustrial and modern times. However, the role of the North Atlantic in sequestering atmospheric CO2 in the past largely remains unconstrained. Here, we use a suite of geochemical proxies to reconstruct nutrient and carbonate ion concentrations of both surface and deep waters in the North Atlantic during the last ~25 kyr. When normalized to the same nutrient levels, we find that the gradient in carbonate ion content between surface and mid-depth waters increased during the last glacial. Although a combination of factors including changes in Redfield ratio and rain ratio and increased CO2 absorption at the air-sea boundary might have caused the observed change, the greater gradient most likely suggests an enhanced sequestration of CO2 in the North Atlantic Ocean during the Last Glacial Maximum. Therefore, we infer that, in addition to changes in the Southern Ocean, processes in the North Atlantic Ocean enhanced the uptake of CO2 and synergistically contributed to the low atmospheric CO2 during ice ages.

  16. Multi-decadal uptake of carbon dioxide into subtropical mode water of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bates, N. R.

    2012-07-01

    Natural climate variability impacts the multi-decadal uptake of anthropogenic carbon dioxide (Cant) into the North Atlantic Ocean subpolar and subtropical gyres. Previous studies have shown that there is significant uptake of CO2 into subtropical mode water (STMW) of the North Atlantic. STMW forms south of the Gulf Stream in winter and constitutes the dominant upper-ocean water mass in the subtropical gyre of the North Atlantic Ocean. Observations at the Bermuda Atlantic Time-series Study (BATS) site near Bermuda show an increase in dissolved inorganic carbon (DIC) of +1.51 ± 0.08 μmol kg-1 yr-1 between 1988 and 2011, but also an increase in ocean acidification indicators such as pH at rates (-0.0022 ± 0.0002 yr-1) higher than the surface ocean (Bates et al., 2012). It is estimated that the sink of CO2 into STMW was 0.985 ± 0.018 Pg C (Pg = 1015 g C) between 1988 and 2011 (70 ± 1.8% of which is due to uptake of Cant). The sink of CO2 into the STMW is 20% of the CO2 uptake in the North Atlantic Ocean between 14°-50° N (Takahashi et al., 2009). However, the STMW sink of CO2 was strongly coupled to the North Atlantic Oscillation (NAO), with large uptake of CO2 into STMW during the 1990s during a predominantly NAO positive phase. In contrast, uptake of CO2 into STMW was much reduced in the 2000s during the NAO neutral/negative phase. Thus, NAO induced variability of the STMW CO2 sink is important when evaluating multi-decadal changes in North Atlantic Ocean CO2 sinks.

  17. Interannual variability of temperature at a depth of 125 meters in the North Atlantic Ocean

    SciTech Connect

    Levitus, S.; Boyer, T.P.; Antonov, J.I.

    1994-10-07

    Analyses of historical ocean temperature data at a depth of 125 meters in the North Atlantic Ocean indicate that from 1950-1990 the subtropical and subartic gyres exhibited linear trends that were opposite in phase. In addition, multivariate analyses of yearly mean temperature anomaly fields between 20{degrees}N and 70{degrees}N in the North Atlantic show a characteristic space-time temperature oscillation from 1947 to 1990. A quasidecadal oscillation, first-identified at Ocean Weather Station C, is part of a basin-wide feature. Gyre and basin-scale variations such as these provide the observational basis for climate diagnostic and modeling studies.

  18. Interannual variability of temperature at a depth of 125 meters in the north atlantic ocean.

    PubMed

    Levitus, S; Antonov, J I; Boyer, T P

    1994-10-07

    Analyses of historical ocean temperature data at a depth of 125 meters in the North Atlantic Ocean indicate that from 1950 to 1990 the subtropical and subarctic gyres exhibited linear trends that were opposite in phase. In addition, multivariate analyses of yearly mean temperature anomaly fields between 20 degrees N and 70 degrees N in the North Atlantic show a characteristic space-time temperature oscillation from 1947 to 1990. A quasidecadal oscillation, first identified at Ocean Weather Station C, is part of a basin-wide feature. Gyre and basin-scale variations such as these provide the observational basis for climate diagnostic and modeling studies.

  19. Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Street-Perrott, F. Alayne; Perrott, R. Alan

    1990-02-01

    Several prolonged droughts in the Sahel and tropical Mexico during the past 14,000 years were coincident with large injections of fresh water into the northern North Atlantic Ocean. The link between these phenomena lies in the thermohaline circulation of the oceans: input of fresh water decreases salinity leading to reduced North Atlantic Deep Water formation and anomalies of sea surface temperature of the kind associated with decreased rainfall in the northern tropics. Ice-sheet disintegration, the most important source of fresh-water input to the oceans, should therefore be considered explicitly in models of past and future climate.

  20. Mites associated with sugarcane crop and with native trees from adjacent Atlantic forest fragment in Brazil.

    PubMed

    Duarte, Mércia E; Navia, Denise; dos Santos, Lucas R; Rideiqui, Pedro J S; Silva, Edmilson S

    2015-08-01

    In some Brazilian regions the Atlantic forest biome is currently restrict to fragments occurring amid monocultures, as sugarcane crops in the Northeast region. Important influence of forest remnants over mite fauna of permanent crops have been showed, however it has been poorly explored on annual crops. The first step for understanding ecological relationship in an agricultural systems is known its composition. The objective of this study was to investigate the plant-inhabiting mite fauna associated with sugarcane crop (Saccharum officinarum L.) (Poaceae) and caboatã (Cupania oblongifolia Mart.) (Sapindaceae) trees in the state of Alagoas, Brazil. Sugarcane stalks and sugarcane and caboatã apical, middle and basal leaves were sampled. A total of 2565 mites were collected from sugarcane and classified into seven families of Trombidiformes and Mesostigmata orders, with most individuals belonging to the Eriophyidae, Tetranychidae and Tarsonemidae families. Among predatory mites, the Phytoseiidae were the most common. A total of 1878 mites were found on C. oblongifolia and classified into 13 families of Trombidiformes and Mesostigmata orders. The most abundant phytophagous mite family on caboatã was also Eriophyidae. In contrast to sugarcane, Ascidae was the most common predatory mite family observed in caboatã. No phytophagous species were common to both sugarcane and C. oblongifolia. However two predatory mites were shared between host plants. Although mites associated with only one native species in the forest fragment were evaluated in this study, our preliminary results suggest Atlantic forest native vegetation can present an important role in the sugarcane agricultural system as a source of natural enemies.

  1. The signature of low-frequency oceanic forcing in the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    O'Reilly, Christopher H.; Huber, Markus; Woollings, Tim; Zanna, Laure

    2016-03-01

    The Atlantic Multidecadal Oscillation (AMO) significantly influences the climate of the surrounding continents and has previously been attributed to variations in the Atlantic Meridional Overturning Circulation. Recently, however, similar multidecadal variability was reported in climate models without ocean circulation variability. We analyze the relationship between turbulent heat fluxes and sea surface temperatures (SSTs) over the midlatitude North Atlantic in observations and coupled climate model simulations, both with and without ocean circulation variability. SST anomalies associated with the AMO are positively correlated with heat fluxes on decadal time scales in both observations and models with varying ocean circulation, whereas in models without ocean circulation variability the anomalies are negatively correlated when heat flux anomalies lead. These relationships are captured in a simple stochastic model and rely crucially on low-frequency forcing of SST. The fully coupled models that better capture this signature more effectively reproduce the observed impact of the AMO on European summertime temperatures.

  2. Benthic polychaete diversity patterns and community structure in the Whittard Canyon system and adjacent slope (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Gunton, Laetitia M.; Neal, Lenka; Gooday, Andrew J.; Bett, Brian J.; Glover, Adrian G.

    2015-12-01

    We examined deep-sea macrofaunal polychaete species assemblage composition, diversity and turnover in the Whittard Canyon system (NE Atlantic) using replicate megacore samples from three of the canyon branches and one site on the continental slope to the west of the canyon, all at ~3500 m water depth. A total of 110 polychaete species were recorded. Paramphinome jeffreysii was the most abundant species (2326 ind. m-2) followed by Aurospio sp. B (646 ind. m-2), Opheliidae sp. A (393 ind. m-2), Prionospio sp. I (380 ind. m-2), and Ophelina abranchiata (227 ind. m-2). Species composition varied significantly across all sites. From west to east, the dominance of Paramphinome jeffreysii increased from 12.9% on the slope to 39.6% in the Eastern branch. Ordination of species composition revealed that the Central and Eastern branches were most similar, whereas the Western branch and slope sites were more distinct. High abundances of P. jeffreysii and Opheliidae sp. A characterised the Eastern branch of the canyon and may indicate an opportunistic response to a possible recent input of organic matter inside the canyon. Species richness and diversity indices were higher on the slope compared with inside the canyon, and the slope site had higher species evenness. Within the canyon, species diversity between branches was broadly similar. Despite depressed diversity within the canyon compared with the adjacent slope, the fact that 46 of the 99 polychaete species found in the Whittard Canyon were not present on the adjacent slope suggests that this feature may enhance the regional species pool. However, our sampling effort on the adjacent slope was insufficient to confirm this conclusion.

  3. Response to Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation".

    PubMed

    Clement, Amy; Cane, Mark A; Murphy, Lisa N; Bellomo, Katinka; Mauritsen, Thorsten; Stevens, Bjorn

    2016-06-24

    Zhang et al interpret the mixed-layer energy budget in models as showing that "ocean dynamics play a central role in the AMO." Here, we show that their diagnostics cannot reveal the causes of the Atlantic Multidecadal Oscillation (AMO) and that their results can be explained with minimal ocean influence. Hence, we reaffirm our findings that the AMO in models can be understood primarily as the upper-ocean thermal response to stochastic atmospheric forcing.

  4. SPURS: Salinity Processes in the Upper-Ocean Regional Study: THE NORTH ATLANTIC EXPERIMENT

    NASA Technical Reports Server (NTRS)

    Lindstrom, Eric; Bryan, Frank; Schmitt, Ray

    2015-01-01

    In this special issue of Oceanography, we explore the results of SPURS-1, the first part of the ocean process study Salinity Processes in the Upper-ocean Regional Study (SPURS). The experiment was conducted between August 2012 and October 2013 in the subtropical North Atlantic and was the first of two experiments (SPURS come in pairs!). SPURS-2 is planned for 20162017 in the tropical eastern Pacific Ocean.

  5. Population Structure of Humpback Whales from Their Breeding Grounds in the South Atlantic and Indian Oceans

    PubMed Central

    Rosenbaum, Howard C.; Pomilla, Cristina; Mendez, Martin; Leslie, Matthew S.; Best, Peter B.; Findlay, Ken P.; Minton, Gianna; Ersts, Peter J.; Collins, Timothy; Engel, Marcia H.; Bonatto, Sandro L.; Kotze, Deon P. G. H.; Meÿer, Mike; Barendse, Jaco; Thornton, Meredith; Razafindrakoto, Yvette; Ngouessono, Solange; Vely, Michel; Kiszka, Jeremy

    2009-01-01

    Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region. PMID:19812698

  6. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans

    NASA Astrophysics Data System (ADS)

    Jiménez-Muñoz, Juan C.; Mattar, Cristian; Sobrino, José A.; Malhi, Yadvinder

    2015-05-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download.

  7. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans.

    PubMed

    Jiménez-Muñoz, Juan C; Mattar, Cristian; Sobrino, José A; Malhi, Yadvinder

    2015-01-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download.

  8. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans

    PubMed Central

    Jiménez-Muñoz, Juan C.; Mattar, Cristian; Sobrino, José A.; Malhi, Yadvinder

    2015-01-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download. PMID:26029379

  9. The North Atlantic Oscillation: A dominant factor in variations of oceanic circulation systems of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Dvoryaninov, G. S.; Kubryakov, A. A.; Sizov, A. A.; Stanichny, S. V.; Shapiro, N. B.

    2016-01-01

    On the basis of altimetry data, the dynamics of the interaction between the subtropical anticyclonic (SA) and subpolar cyclonic (SC) gyres of the North Atlantic is considered. It is shown that the westerlies in the lower troposphere represented by the North Atlantic Oscillation (NAO) index are the main factor responsible for the dynamics of the gyres, which controls the inflow of warm Atlantic water into the Polar basin.

  10. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic Ocean in vicinity of No Mans Land—(1) The area. The waters surrounding No Mans Land within an...

  11. The influence of Southern Ocean winds on the North Atlantic carbon sink

    NASA Astrophysics Data System (ADS)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2016-06-01

    Observed and predicted increases in Southern Ocean winds are thought to upwell deep ocean carbon and increase atmospheric CO2. However, Southern Ocean dynamics affect biogeochemistry and circulation pathways on a global scale. Using idealized Massachusetts Institute of Technology General Circulation Model (MITgcm) simulations, we demonstrate that an increase in Southern Ocean winds reduces the carbon sink in the North Atlantic subpolar gyre. The increase in atmospheric CO2 due to the reduction of the North Atlantic carbon sink is shown to be of the same magnitude as the increase in atmospheric CO2 due to Southern Ocean outgassing. The mechanism can be described as follows: The increase in Southern Ocean winds leads to an increase in upper ocean northward nutrient transport. Biological productivity is therefore enhanced in the tropics, which alters the chemistry of the subthermocline waters that are ultimately upwelled in the subpolar gyre. The results demonstrate the influence of Southern Ocean winds on the North Atlantic carbon sink and show that the effect of Southern Ocean winds on atmospheric CO2 is likely twice as large as previously thought in past, present, and future climates.

  12. Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean.

    PubMed

    Ahrens, Lutz; Barber, Jonathan L; Xie, Zhiyong; Ebinghaus, Ralf

    2009-05-01

    Perfluoroalkyl compounds (PFCs) were determined in 2 L surface water samples collected in the Atlantic Ocean onboard the research vessels Maria S. Merian along the longitudinal gradient from Las Palmas (Spain) to St. Johns (Canada) (15 degrees W to 52 degrees W) and Polarstern along the latitudinal gradient from the Bay of Biscay to the South Atlantic Ocean (46 degrees N to 26 degrees S) in spring and fall 2007, respectively. After filtration the dissolved and particulate phases were extracted separately, and PFC concentrationswere determined using high-performance liquid chromatography interfaced to tandem mass spectrometry. No PFCs were detected in the particulate phase. This study provides the first concentration data of perfluorooctanesulfonamide (FOSA), perfluorohexanoic acid, and perfluoroheptanoic acid from the Atlantic Ocean. Results indicate that trans-Atlantic Ocean currents caused the decreasing concentration gradient from the Bay of Biscay to the South Atlantic Ocean and the concentration drop-off close to the Labrador Sea. Maximum concentrations were found for FOSA, perfluorooctanesulfonate, and perfluorooctanoic acid at 302, 291, and 229 pg L(-1), respectively. However, the concentration of each single compound was usually in the tens of picograms per liter range. South of the equator only FOSA and below 4 degrees S no PFCs could be detected.

  13. Global linkages originating from decadal oceanic variability in the subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Chafik, L.; Häkkinen, S.; England, M. H.; Carton, J. A.; Nigam, S.; Ruiz-Barradas, A.; Hannachi, A.; Miller, L.

    2016-10-01

    The anomalous decadal warming of the subpolar North Atlantic Ocean (SPNA), and the northward spreading of this warm water, has been linked to rapid Arctic sea ice loss and more frequent cold European winters. Recently, variations in this heat transport have also been reported to covary with global warming slowdown/acceleration periods via a Pacific climate response. We here examine the role of SPNA temperature variability in this Atlantic-Pacific climate connectivity. We find that the evolution of ocean heat content anomalies from the subtropics to the subpolar region, likely due to ocean circulation changes, coincides with a basin-wide Atlantic warming/cooling. This induces an Atlantic-Pacific sea surface temperature seesaw, which in turn, strengthens/weakens the Walker circulation and amplifies the Pacific decadal variability that triggers pronounced global-scale atmospheric circulation anomalies. We conclude that the decadal oceanic variability in the SPNA is an essential component of the tropical interactions between the Atlantic and Pacific Oceans.

  14. Centennial- to millennial-scale ice-ocean interactions in the subpolar northeast Atlantic 18-41 kyr ago

    NASA Astrophysics Data System (ADS)

    Hall, I. R.; Colmenero-Hidalgo, E.; Zahn, R.; Peck, V. L.; Hemming, S. R.

    2011-06-01

    In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ˜41 and ˜18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ˜28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.

  15. Ocean stratification versus vertical mixing in the north Atlantic Ocean during the last glacial

    NASA Astrophysics Data System (ADS)

    Feldmeijer, Wouter; Ganssen, Gerald; Prins, Maarten

    2013-04-01

    The fluctuating cover of sea ice and melting glaciers in the North Atlantic region during the most recent three Marine Isotopic Stages (MIS) has been well documented. The consequences of this, either seasonal or perennial ice cover, on oceanographic conditions (i.e. mixing or stratification) has yet to be fully unravelled. Within the scope of the Darwin Center project Sensing Seasonality we shed light on the effects of melting sea-ice versus land-ice on the ocean conditions during short term (i.e. Heinrich Events) and long term (LGM) cold events. Core T88-3P is strategically located just north of the IRD belt (56°43.8N; 27°79.7W; 2819m water depth). The stable isotope data of different species of planktonic and benthic foraminifera reflect the degree of water mass stratification. As we apply single specimen foraminiferal isotope analysis we are able to extract the full seasonal range (i.e. annual mean, minima and maxima) of sea surface temperatures. Combining stable isotopes with faunal abundance, IRD provenance and other geochemical proxies (e.g. XRF data) the state of the sub-surface ocean system during Heinrich and Dansgaard/Oeschger Events within the last glacial can be reconstructed.

  16. Emission Corridors Preserving the Atlantic Ocean Thermohaline Circulation

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Bruckner, T.

    2001-12-01

    The Atlantic thermohaline circulation (THC) transports large amounts of heat northward, acting as a heating system for the northern North Atlantic and north-western Europe. A large number of model simulations have shown the THC to be self-sustaining within certain limits, with well-defined thresholds where the circulation shuts down. Manabe and Stouffer (1993), for example, have simulated a complete shutdown of the THC for a quadrupling of atmospheric CO2. Because of the possibly severe consequences that a collapse of the THC would have upon the North Atlantic and north-western Europe, such an event may be considered as "dangerous anthropogenic interference with the climate system" that Article 2 of the UN Framework Convention on Climate Change (UNFCCC) calls to avoid. Here we present bundles of emission paths (the so called "emission corridors") that preserve the Atlantic thermohaline circulation. These corridors are calculated on the methodological and conceptual basis of the Tolerable Windows Approach. For this purpose a multi-gas reduced-form climate model has been supplemented by a dynamic Stommel-type boxmodel of the Atlantic thermohaline circulation. Both models allow for the relevant uncertainties (i.e., emissions of non-CO2 greenhouse gases, climate sensitivity, Atlantic hydrological sensitivity) to be taken into account. The sensitivity of emissions corridors with respect to the uncertain parameters is explored and the implications for a climate policy committed to the preservation of the Atlantic thermohaline circulation in the sense of Article 2 are discussed.

  17. Hurricane Havens Handbook for the North Atlantic Ocean. Change 5. Naval Stations Mobile, Pascagoula, and Ingleside as Hurricane Havens.

    DTIC Science & Technology

    1993-08-01

    the Gulf of Mexico. A secondary axis extends eastward near 20ON just north of Cuba, Hispaniola and Puerto Rico . XXIV-16 CHAME 5 0)0 00." 0- C-4 I 00 0 o...Atlantic Coast: Gulf of Mexico. Puerto Rico . and 3Lirain Islands. National Oceanic and Atmospheric Administration, National Ocean Survey, Washington, DC...States Coast Pilot 5. Atlantic Coast: Gulf of Mexico, Puerto Rico . and Virgin Iandg. National Oceanic and Atmospheric Administration, National Ocean

  18. The ENSO Teleconnection to the Tropical Atlantic Ocean: Contributions of the Remote and Local SSTs to Rainfall Variability in the Tropical Americas(.

    NASA Astrophysics Data System (ADS)

    Giannini, Alessandra; Chiang, John C. H.; Cane, Mark A.; Kushnir, Yochanan; Seager, Richard

    2001-12-01

    Recent developments in Tropical Atlantic Variability (TAV) identify the El Niño-Southern Oscillation (ENSO) as one of the leading factors in the interannual climate variability of the basin. An ENSO event results in Tropic-wide anomalies in the atmospheric circulation that have a direct effect on precipitation variability, as well as an indirect effect, that is, one mediated by sea surface temperature (SST) anomalies generated in the remote ocean basins. In order to separate the relative contributions of the atmospheric and oceanic components of the ENSO teleconnection to the tropical Atlantic Ocean, results from two ensembles of atmospheric general circulation model (AGCM) experiments, differing in oceanic boundary conditions, are compared. AGCM integrations performed with the Community Climate Model version 3 (CCM3), forced by global, observed SST during 1950-94 reproduce the observed ENSO-related rainfall anomalies over the tropical Americas and adjacent Atlantic. A parallel ensemble of integrations, forced with observed SST in the tropical Atlantic only, and climatology elsewhere, is used to separate the effect of the direct atmospheric teleconnection from the atmosphere's response to the ENSO-forced SST anomalies in the Atlantic basin.It is found that ENSO-related atmospheric and oceanic anomalies force rainfall anomalies of the same sign in northeast Brazil, of opposite sign in the Caribbean basin. The direct atmospheric influence of a warm ENSO event reduces model rainfall as a whole over the tropical Atlantic basin. This observation is consistent with the hypothesis that an ENSO-related Tropic-wide warming of the free troposphere forces the vertical stabilization of the tropical atmosphere. ENSO-related atmospheric anomalies are also known to force a delayed (relative to the mature phase of ENSO) warming of tropical North Atlantic SST through the weakening of the northeasterly trade winds and consequent reduction of surface fluxes. It is found that this

  19. Sea-level fluctuations show Ocean Circulation controls Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    McCarthy, Gerard; Haigh, Ivan; Hirschi, Joel; Grist, Jeremy; Smeed, David

    2015-04-01

    We present observational evidence that ocean circulation controls the decadal evolution of heat content and consequently sea-surface temperatures (SST) in the North Atlantic. One of the most prominent modes of Atlantic variability is the Atlantic multidecadal oscillation (AMO) observed in SSTs. Positive (negative) phases of the AMO are associated with warmer (cooler) SSTs. Positive phases of the AMO have been linked with decadal climate fluctuations including increased summer precipitation in Europe; increased northern hemisphere land temperatures, fewer droughts in the Sahel region of Africa and increased Atlantic hurricane activity. It is widely believed that the Atlantic circulation controls the phases of the AMO by controlling the decadal changes in heat content in the North Atlantic. However, due to the lack of ocean circulation observations, this link has not been previously proven. We present a new interpretation of the sea-level gradient along to the east coast of the United States to derive a measure of ocean circulation spanning decadal timescales. We use this to estimate heat content changes that we validate against direct estimates of heat content. We use the longevity of the tide gauge record to show that circulation, as interpreted in sea-level gradient changes, drives the major transitions in the AMO since the 1920's. We show that the North Atlantic Oscillation is highly correlated with this sea-level gradient, indicating that the atmosphere drives the circulation changes. The circulation changes are essentially integrated by the ocean in the form of ocean heat content and returned to the atmosphere as the AMO. An additional consequence of our interpretation is that recently reported accelerations in sea-level rise along the US east coast are consistent with a declining AMO that has been predicted by a number of authors.

  20. Simulated spatiotemporal response of ocean heat transport to freshwater enhancement in North Atlantic and associated mechanisms

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Gao, Yongqi

    2011-06-01

    The Atlantic Meridional Overturning Circulation (AMOC) transports a large amount of heat to northern high latitudes, playing an important role in the global climate change. Investigation of the freshwater perturbation in North Atlantic (NA) has become one of the hot topics in the recent years. In this study, the mechanism and pathway of meridional ocean heat transport (OHT) under the enhanced freshwater input to the northern high latitudes in the Atlantic are investigated by an ocean-sea ice-atmosphere coupled model. The results show that the anomalous OHT in the freshwater experiment (FW) is dominated by the meridional circulation kinetic and ocean thermal processes. In the FW, OHT drops down during the period of weakened AMOC while the upper tropical ocean turns warmer due to the retained NA warm currents. Conversely, OHT recovers as the AMOC recovers, and the mechanism can be generalized as: 1) increased ocean heat content in the tropical Southern Ocean during the early integration provides the thermal condition for the recovery of OHT in NA; 2) the OHT from the Southern Ocean enters the NA through the equator along the deep Ekman layer; 3) in NA, the recovery of OHT appears mainly along the isopycnic layers of 24.70-25.77 below the mixing layer. It is then transported into the mixing layer from the "outcropping points" in northern high latitudes, and finally released to the atmosphere by the ocean-atmosphere heat exchange.

  1. Atmospheric transport of pollutants from North America to the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Browell, E. V.; Sebacher, D. I.; Gregory, G. L.; Hinton, R. R.; Beck, S. M.; Mcdougal, D. S.; Shipley, S. T.

    1984-01-01

    Ground-based measurements strongly support the hypothesis that pollutant materials of anthropogenic origin are being transported over long distances in the midtroposphere and are a significant source of acid rain, acid snow, trace metal deposition, ozone and visibility-reducing aerosols in remote oceanic and polar regions of the Norhern Hemisphere. Atmospheric sulphur budget calculations and studies of acid rain on Bermuda indicate that a large fraction of pollutant materials emitted into the atmosphere in eastern North America are advected eastwards over the North Atlantic Ocean. The first direct airborne measurements of the vertical distribution of tropospheric aerosols over the western North Atlantic is reported here. A newly developed airborne differential adsorption lidar system was used to obtain continuous, remotely sensed aerosol distributions along its flight path. The data document two episodes of long-distance transport of pollutant materials from North America over the North Atlantic Ocean.

  2. Microplastic pollution in the Northeast Atlantic Ocean: validated and opportunistic sampling.

    PubMed

    Lusher, Amy L; Burke, Ann; O'Connor, Ian; Officer, Rick

    2014-11-15

    Levels of marine debris, including microplastics, are largely un-documented in the Northeast Atlantic Ocean. Broad scale monitoring efforts are required to understand the distribution, abundance and ecological implications of microplastic pollution. A method of continuous sampling was developed to be conducted in conjunction with a wide range of vessel operations to maximise vessel time. Transects covering a total of 12,700 km were sampled through continuous monitoring of open ocean sub-surface water resulting in 470 samples. Items classified as potential plastics were identified in 94% of samples. A total of 2315 particles were identified, 89% were less than 5mm in length classifying them as microplastics. Average plastic abundance in the Northeast Atlantic was calculated as 2.46 particles m(-3). This is the first report to demonstrate the ubiquitous nature of microplastic pollution in the Northeast Atlantic Ocean and to present a potential method for standardised monitoring of microplastic pollution.

  3. Arctic contribution to upper-ocean variability in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Walsh, John E.; Chapman, William L.

    1990-01-01

    The potential climatic leverage of salinity and temperature anomalies in the high-latitude North Atlantic is large. Substantial variations of sea ice have accompanied North Atlantic salinity and temperature anomalies. Atmospheric pressure data are used here to show that the local forcing of high-latitude North Atlantic Ocean fluctuations is augmented by antecedent atmospheric circulation anomalies over the central Arctic. These circulation anomalies are consistent with enhanced wind-forcing of thicker older ice into the Transpolar Drift Stream and an enhanced export of sea ice (fresh water) from the Arctic into the Greenland Sea prior to major episodes of ice severity in the Greenland and Iceland seas.

  4. Meridional Distribution of Aerosol Optical Thickness over the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, P.; Silva, Arlindo M.; Starobinets, B.; Long, C. N.; Kalashnikova, O.; Alpert, P.

    2015-01-01

    Previous studies showed that, over the global ocean, there is hemispheric asymmetry in aerosols and no noticeable asymmetry in cloud fraction (CF). In the current study, we focus on the tropical Atlantic (30 Deg N 30 Deg S) which is characterized by significant amounts of Saharan dust dominating other aerosol species over the North Atlantic. We found that, by contrast to the global ocean, over a limited area such as the tropical Atlantic, strong meridional asymmetry in dust aerosols was accompanied by meridional CF asymmetry. During the 10-year study period (July 2002 June 2012), NASA Aerosol Reanalysis (aka MERRAero) showed that, when the meridional asymmetry in dust aerosol optical thickness (AOT) was the most pronounced (particularly in July), dust AOT averaged separately over the tropical North Atlantic was one order of magnitude higher than dust AOT averaged over the tropical South Atlantic. In the presence of such strong meridional asymmetry in dust AOT in July, CF averaged separately over the tropical North Atlantic exceeded CF averaged over the tropical South Atlantic by 20%. Our study showed significant cloud cover, up to 0.8 - 0.9, in July along the Saharan Air Layer which contributed to above-mentioned meridional CF asymmetry. Both Multi-Angle Imaging SpectroRadiometer (MISR) measurements and MERRAero data were in agreement on seasonal variations in meridional aerosol asymmetry. Meridional asymmetry in total AOT over the Atlantic was the most pronounced between March and July, when dust presence over the North Atlantic was maximal. In September and October, there was no noticeable meridional asymmetry in total AOT and meridional CF distribution over the tropical Atlantic was almost symmetrical.

  5. 33 CFR 334.1460 - Atlantic Ocean and Vieques Sound, in vicinity of Culebra Island; bombing and gunnery target area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean and Vieques Sound, in vicinity of Culebra Island; bombing and gunnery target area. 334.1460 Section 334.1460 Navigation... RESTRICTED AREA REGULATIONS § 334.1460 Atlantic Ocean and Vieques Sound, in vicinity of Culebra...

  6. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  7. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing,...

  8. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean,...

  9. 33 CFR 334.40 - Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target area. 334.40 Section 334.40... AND RESTRICTED AREA REGULATIONS § 334.40 Atlantic Ocean in vicinity of Duck Island, Maine, Isles...

  10. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  11. 33 CFR 334.40 - Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target area. 334.40 Section 334.40... AND RESTRICTED AREA REGULATIONS § 334.40 Atlantic Ocean in vicinity of Duck Island, Maine, Isles...

  12. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean,...

  13. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  14. 33 CFR 334.40 - Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target area. 334.40 Section 334.40... AND RESTRICTED AREA REGULATIONS § 334.40 Atlantic Ocean in vicinity of Duck Island, Maine, Isles...

  15. 33 CFR 334.100 - Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range. 334.100 Section 334.100 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean off Cape May, N.J.; Coast Guard Rifle Range. (a) The danger zone. The waters of the Atlantic...

  16. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing,...

  17. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing,...

  18. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  19. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  20. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean,...

  1. 33 CFR 334.100 - Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range. 334.100 Section 334.100 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean off Cape May, N.J.; Coast Guard Rifle Range. (a) The danger zone. The waters of the Atlantic...

  2. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  3. 33 CFR 334.100 - Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range. 334.100 Section 334.100 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean off Cape May, N.J.; Coast Guard Rifle Range. (a) The danger zone. The waters of the Atlantic...

  4. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing,...

  5. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing,...

  6. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  7. 33 CFR 334.40 - Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target area. 334.40 Section 334.40... AND RESTRICTED AREA REGULATIONS § 334.40 Atlantic Ocean in vicinity of Duck Island, Maine, Isles...

  8. 33 CFR 334.100 - Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range. 334.100 Section 334.100 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean off Cape May, N.J.; Coast Guard Rifle Range. (a) The danger zone. The waters of the Atlantic...

  9. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  10. 33 CFR 334.40 - Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean in vicinity of Duck Island, Maine, Isles of Shoals; naval aircraft bombing target area. 334.40 Section 334.40... AND RESTRICTED AREA REGULATIONS § 334.40 Atlantic Ocean in vicinity of Duck Island, Maine, Isles...

  11. 33 CFR 334.1460 - Atlantic Ocean and Vieques Sound, in vicinity of Culebra Island; bombing and gunnery target area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean and Vieques Sound, in vicinity of Culebra Island; bombing and gunnery target area. 334.1460 Section 334.1460 Navigation... RESTRICTED AREA REGULATIONS § 334.1460 Atlantic Ocean and Vieques Sound, in vicinity of Culebra...

  12. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean,...

  13. 33 CFR 334.1460 - Atlantic Ocean and Vieques Sound, in vicinity of Culebra Island; bombing and gunnery target area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean and Vieques Sound, in vicinity of Culebra Island; bombing and gunnery target area. 334.1460 Section 334.1460 Navigation... RESTRICTED AREA REGULATIONS § 334.1460 Atlantic Ocean and Vieques Sound, in vicinity of Culebra...

  14. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  15. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean,...

  16. 33 CFR 334.100 - Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Cape May, N.J.; Coast Guard Rifle Range. 334.100 Section 334.100 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean off Cape May, N.J.; Coast Guard Rifle Range. (a) The danger zone. The waters of the Atlantic...

  17. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  18. Advection of sulfur dioxide over the western Atlantic Ocean during CITE 3

    NASA Technical Reports Server (NTRS)

    Thornton, D. C.; Bandy, A. R.; Beltz, N.; Driedger, A. R., III; Ferek, R.

    1993-01-01

    During the NASA Chemical Instrumentation Test and Evaluation 3 sulfur intercomparison over the western Atlantic Ocean, five techniques for the determination of sulfur dioxide were evaluated. The response times of the techniques varied from 3 to 30 min. Based on the ensemble of measurements reported, it was clear that advection of SO2 from the North American continent occurred in the boundary layer (altitude less than 1 km) with only one exception. The vertical distribution of SO2 above the boundary layer for the northern and southern Atlantic Ocean was remarkably similar duing this experiment.

  19. Bipolar Atlantic deepwater circulation in the middle-late Eocene: Effects of Southern Ocean gateway openings

    NASA Astrophysics Data System (ADS)

    Borrelli, Chiara; Cramer, Benjamin S.; Katz, Miriam E.

    2014-04-01

    We present evidence for Antarctic Circumpolar Current (ACC)-like effects on Atlantic deepwater circulation beginning in the late-middle Eocene. Modern ocean circulation is characterized by a thermal differentiation between Southern Ocean and North Atlantic deepwater formation regions. In order to better constrain the timing and nature of the initial thermal differentiation between Northern Component Water (NCW) and Southern Component Water (SCW), we analyze benthic foraminiferal stable isotope (δ18Obf and δ13Cbf) records from Ocean Drilling Program Site 1053 (upper deep water, western North Atlantic). Our data, compared with published records and interpreted in the context of ocean circulation models, indicate that progressive opening of Southern Ocean gateways and initiation of a circum-Antarctic current caused a transition to a modern-like deep ocean circulation characterized by thermal differentiation between SCW and NCW beginning ~38.5 Ma, in the initial stages of Drake Passage opening. In addition, the relatively low δ18Obf values recorded at Site 1053 show that the cooling trend of the middle-late Eocene was not global, because it was not recorded in the North Atlantic. The timing of thermal differentiation shows that NCW contributed to ocean circulation by the late-middle Eocene, ~1-4 Myr earlier than previously thought. We propose that early NCW originated in the Labrador Sea, based on tectonic reconstructions and changes in foraminiferal assemblages in this basin. Finally, we link further development of meridional isotopic gradients in the Atlantic and Pacific in the late Eocene with the Tasman Gateway deepening (~34 Ma) and the consequent development of a circumpolar proto-ACC.

  20. Troposphere-stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model

    NASA Astrophysics Data System (ADS)

    Omrani, N.-E.; Bader, Jürgen; Keenlyside, N. S.; Manzini, Elisa

    2016-03-01

    The instrumental records indicate that the basin-wide wintertime North Atlantic warm conditions are accompanied by a pattern resembling negative North Atlantic oscillation (NAO), and cold conditions with pattern resembling the positive NAO. This relation is well reproduced in a control simulation by the stratosphere resolving atmosphere-ocean coupled Max-Planck-Institute Earth System Model (MPI-ESM). Further analyses of the MPI-ESM model simulation shows that the large-scale warm North Atlantic conditions are associated with a stratospheric precursory signal that propagates down into the troposphere, preceding the wintertime negative NAO. Additional experiments using only the atmospheric component of MPI-ESM (ECHAM6) indicate that these stratospheric and tropospheric changes are forced by the warm North Atlantic conditions. The basin-wide warming excites a wave-induced stratospheric vortex weakening, stratosphere/troposphere coupling and a high-latitude tropospheric warming. The induced high-latitude tropospheric warming is associated with reduction of the growth rate of low-level baroclinic waves over the North Atlantic region, contributing to the negative NAO pattern. For the cold North Atlantic conditions, the strengthening of the westerlies in the coupled model is confined to the troposphere and lower stratosphere. Comparing the coupled and uncoupled model shows that in the cold phase the tropospheric changes seen in the coupled model are not well reproduced by the standalone atmospheric configuration. Our experiments provide further evidence that North Atlantic Ocean variability (NAV) impacts the coupled stratosphere/troposphere system. As NAV has been shown to be predictable on seasonal-to-decadal timescales, these results have important implications for the predictability of the extra-tropical atmospheric circulation on these time-scales.

  1. A New Starting point for the History of South and Equatorial Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Moulin, M.; Aslanian, D.; Olivet, J.; Labails, C.; Rabineau, M.

    2005-05-01

    The nature and genesis of the large, thinned transitional zone of the continental passive margins is still a matter of debate. Any further progress in that subject must imply an intregrated structural study of homologous margins, replaced in a very precise pre-opening kinematic reconstruction to constraint horizontal movements. In South and Equatorial Atlantic oceans, the pre-opening misfits problem has been already addressed by several authors and requires an assessment of rigidity of african and/or south american continental plates which border those oceans. Nevertheless the lack of magnetic anomalies, the pre-opening fit of the Equatorial Atlantic ocean is well constrained due to the presence of well-defined oceanic fracture zones, homologous Demerara and Guinea Plateaus, paralellism of the coasts and Kandi and Sobral continental lineations. This contraint compels us to resort to intraplate deformation to close the South Atlantic Ocean. Intregrating all continental deformations of both plates described in the litterature, we propose here the closest pre-opening fit for the Central part of the South Atlantic. This pre-opening fit leaves a large pre-drift thinned basin of several hundred kilometers which cannot be explained by any process which implies more horizontal movement (stretching, simple shear.). South of the Walvis-Rio Grande ridges, the pre-opening fit implies intraplate deformation in Paraña, Solado and Colorado basins (South America) as already suggested by Unternehr et al (1988) and Nürnberg & Müller (1991).

  2. Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean.

    PubMed

    Grob, Carolina; Hartmann, Manuela; Zubkov, Mikhail V; Scanlan, Dave J

    2011-12-01

    Oceanic photosynthetic picoeukaryotes (< 3 µm) are responsible for > 40% of total primary production at low latitudes such as the North-Eastern tropical Atlantic. In the world ocean, warmed by climate changes, the expected gradual shift towards smaller primary producers could render the role of photosynthetic picoeukaryotes even more important than they are today. Little is still known, however, about how the taxonomic composition of this highly diverse group affects primary production at the basin scale. Here, we combined flow cytometric cell sorting, NaH¹⁴CO₃ radiotracer incubations and class-specific fluorescence in situ hybridization (FISH) probes to determine cell- and biomass-specific inorganic carbon fixation rates and taxonomic composition of two major photosynthetic picoeukaryote groups on a ∼7500-km-long latitudinal transect across the Atlantic Ocean (Atlantic Meridional Transect, AMT19). We show that even though larger cells have, on average, cell-specific CO₂ uptake rates ∼5 times higher than the smaller ones, the average biomass-specific uptake is statistically similar for both groups. On the other hand, even at a high taxonomic level, i.e. class, the contributions to both groups by Prymnesiophyceae, Chrysophyceae and Pelagophyceae are significantly different (P < 0.001 in all cases). We therefore conclude that these group's carbon fixation rates are independent of the taxonomic composition of photosynthetic picoeukaryotes across the Atlantic Ocean. Because the above applies across different oceanic regions the diversity changes seem to be a secondary factor determining primary production.

  3. Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean

    USGS Publications Warehouse

    Morrison, C.L.; Ross, S.W.; Nizinski, M.S.; Brooke, S.; Jarnegren, J.; Waller, R.G.; Johnson, R.L.; King, T.L.

    2011-01-01

    Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U. S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average FST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (FST = 0.085), and smallest between southeastern U. S. and Gulf of Mexico populations (FST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks. ?? 2011 US Government.

  4. Genetic discontinuity among regional populations of Lophelia perfusa in the North Atlantic Ocean

    USGS Publications Warehouse

    Morrison, Cheryl L.

    2011-01-01

    Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U.S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average FST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (FST = 0.085), and smallest between southeastern U.S. and Gulf of Mexico populations (FST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks

  5. Variability in North Atlantic heat content and heat transport in a coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Dong, B.; Sutton, R. T.

    2002-06-01

    A coupled ocean-atmosphere general circulation model has been used to study the variations of North Atlantic upper ocean heat content (OHC), sea surface temperature (SST) and ocean heat transport (OHT), and the relationships between these three quantities. We find that OHC anomalies, and salinity anomalies, propagate anti-cyclonically around the North Atlantic subtropical gyre. They propagate eastward in midlatitudes and westward in low latitudes. Both the advection of mean temperature by anomalous currents and the advection of temperature anomalies by mean currents are responsible for these zonal propagations. In addition to zonal propagations, upper ocean temperature anomalies propagate southward in the eastern North Atlantic, where subduction plays a dominant role. Variability in the northward OHT in the Atlantic is primarily governed by variability in the ocean circulation rather than variability in temperatures. Fluctuations in OHT are the major cause of anomalies in OHC and SST in the Gulf Stream extension region. This is true both for interannual variability and for decadal variability. On interannual time scales, however, surface fluxes also make a significant contribution. Analysis of the relationships of OHT with OHC and SST suggests that a knowledge of OHT fluctuations could be used to predict variations in OHC, and therefore sea surface temperatures, several years in advance.

  6. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Furue, Ryo; Schloesser, Fabian; Burkhardt, Theodore W.; Nonaka, Masami

    2016-04-01

    A steady-state, variable-density, 2-layer, ocean model (VLOM) is used to investigate basic dynamics of the Atlantic meridional overturning circulation and Southern Ocean. The domain consists of idealized (rectangular) representations of the Atlantic, Southern, and Pacific Oceans. The model equations represent the depth-averaged, layer-1 response (except for one solution in which they represent the depth-integrated flow over both layers). To allow for overturning, water can cross the bottom of layer 1 at the velocity we =wd +wm +wn , the three parts representing: interior diffusion wd that increases the layer-1 thickness h throughout the basin, mixed-layer entrainment wm that ensures h is never less than a minimum value hm , and diapycnal (cooling) processes external to the basin wn that adjust h to hn . For most solutions, horizontal mixing has the form of Rayleigh damping with coefficient ν , which we interpret to result from baroclinic instability through the closure, V∗ = - (ν /f2) ∇P , where ∇P = ∇(1/2 g‧h2) is the depth-integrated pressure gradient, g‧ is the reduced-gravity coefficient, and ν is a mixing coefficient; with this interpretation, the layer-1 flow corresponds to the sum of the Eulerian-mean and eddy-mean (V∗) transport/widths, that is, the "residual" circulation. Finally, layer-1 temperature cools polewards in response to a surface heat flux Q, and the cooling can be strong enough in the Southern Ocean for g‧ = 0 south of a latitude y0 , in which case layer 1 vanishes and the model reduces to a single layer 2. Solutions are obtained both numerically and analytically. The analytic approach splits fields into interior and boundary-layer parts, from which a coupled set of integral constraints can be derived. The set allows properties of the circulation (upwelling-driven transport out of the Southern Ocean M , downwelling transport in the North Atlantic, transport of the Antarctic Circumpolar Current) and stratification (Atlantic

  7. On Pleistocene Surface Temperatures of the North Atlantic and Arctic Oceans.

    PubMed

    Ewing, M; Donn, W L

    1960-01-08

    Two additional interpretations are given for the important data of D. B. Ericson on the correlation of coiling directions of Globigerina pachyderma in late Pleistocene North Atlantic sediments with ocean surface temperatures. One interpretation relates the distribution of this species to the distribution and circulation of ocean water masses. On the basis of our ice-age theory, our second interpretation uses the data and correlations of Ericson to establish temperature limits of a thermal node, a line on which glacial and interglacial temperatures were equal, for the North Atlantic Ocean. This line crosses the strait between Greenland and Scandinavia. Further, Ericson's interpretation of the 7.2 degrees C isotherm implies that the glacial-stage surface waters of the Arctic Ocean were between 0 degrees and 3.5 degrees C.

  8. The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Marsh, Robert; Good, Simon A.; Coward, Andrew. C.; de Cuevas, Beverly A.; Alderson, Steven G.; New, Adrian L.; Madec, Gurvan

    2010-08-01

    The temperature variability of the Atlantic Ocean is investigated using an eddy-permitting (1/4°) global ocean model (ORCA-025) forced with historical surface meteorological fields from 1958 to 2001. The simulation of volume-averaged temperature and the vertical structure of the zonally averaged temperature trends are compared with those from observations. In regions with a high number of observations, in particular above a depth of 500 m and between 22° N and 65° N, the model simulation and the dataset are in good agreement. The relative contribution of variability in ocean heat transport (OHT) convergence and net surface heat flux to changes in ocean heat content is investigated with a focus on three regions: the subpolar and subtropical gyres and the tropics. The surface heat flux plays a relatively minor role in year-to-year changes in the subpolar and subtropical regions, but in the tropical North Atlantic, its role is of similar significance to the ocean heat transport convergence. The strongest signal during the study period is a cooling of the subpolar gyre between 1970 and 1990, which subsequently reversed as the mid-latitude OHT convergence transitioned from an anomalously weak to an anomalously strong state. We also explore whether model OHT anomalies can be linked to surface flux anomalies through a Hovmöller analysis of the Atlantic sector. At low latitudes, increased ocean heat gain coincides with anomalously strong northward transport, whereas at mid-high latitudes, reduced ocean heat loss is associated with anomalously weak heat transport.

  9. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalie

    NASA Astrophysics Data System (ADS)

    Landerer, F. W.; Wiese, D. N.; Bentel, K.; Boening, C.; Watkins, M. M.

    2015-12-01

    The important role of the North-Atlantic Meridonal Overturning Circulation (AMOC) for regional as well as global climate is well recognized. Concerns about potential future AMOC changes imply the need for a continuous, large-scale observation capability to detect any such changes on interannual to decadal time scales. Here, we present the first measurements of lower North-Atlantic-Deep-Water (LNADW) monthly transport changes using only space-based time-variable gravity observations from Gravity Recovery and Climate Experiment (GRACE) satellites, continuously covering the time period from 2003 until now. Improved monthly gravity field retrievals allow the detection of North Atlantic interannual bottom pressure anomalies and yield LNADW transport estimates that are in good agreement with those from the ocean in-situ RAPID-MOCA array at 26.5N. Concurrent with the observed AMOC transport anomalies from late-2009 through early-2010, GRACE measured ocean bottom pressures changes in the 3000-5000 m deep western North Atlantic of -20 mm-H2O, implying a southward volume transport anomaly in that layer of approximately -5.5 Sv. Our results highlight the efficacy of space-gravimetry to observe and detect meridional ocean transport variations that can potentially be retrieved over all latitude ranges in the Atlantic.

  10. Rapid freshening of the deep North Atlantic Ocean over the past four decades.

    PubMed

    Dickson, Bob; Yashayaev, Igor; Meincke, Jens; Turrell, Bill; Dye, Stephen; Holfort, Juergen

    2002-04-25

    The overflow and descent of cold, dense water from the sills of the Denmark Strait and the Faroe Shetland channel into the North Atlantic Ocean is the principal means of ventilating the deep oceans, and is therefore a key element of the global thermohaline circulation. Most computer simulations of the ocean system in a climate with increasing atmospheric greenhouse-gas concentrations predict a weakening thermohaline circulation in the North Atlantic as the subpolar seas become fresher and warmer, and it is assumed that this signal will be transferred to the deep ocean by the two overflows. From observations it has not been possible to detect whether the ocean's overturning circulation is changing, but recent evidence suggests that the transport over the sills may be slackening. Here we show, through the analysis of long hydrographic records, that the system of overflow and entrainment that ventilates the deep Atlantic has steadily changed over the past four decades. We find that these changes have already led to sustained and widespread freshening of the deep ocean.

  11. Detection of Natural Oil Seeps in the Atlantic Ocean Using MODIS

    NASA Technical Reports Server (NTRS)

    Reahard, Ross; Jones, Jason B.; Mitchell, Mark

    2010-01-01

    Natural oil seepage is the release of crude oil into the ocean from fissures in the seabed. Oil seepage is a major contributor to the total amount of oil entering the world s oceans. According to a 2003 study by the National Academy of Sciences (NAS), 47 percent of oil entering the world s oceans is from natural seeps, and 53 percent is from human sources (extraction, transportation, and consumption). Oil seeps cause smooth oil slicks to form on the water s surface. Oil seeps can indicate the location of stores of fossil fuel beneath the ocean floor. Knowledge of the effect of oil seepage on marine life and marine ecosystems remains limited. In the past, remote sensing has been used to detect oil seeps in the Gulf of Mexico and off of the coast of southern California. This project utilized sun glint MODIS imagery to locate oil slicks off of the Atlantic coast, an area that had not previously been surveyed for natural oil seeps using remote sensing. Since 1982, the Atlantic Ocean has been closed to any oil and gas drilling. Recently, however, the U.S. Minerals Management Services (MMS) has proposed a lease for oil and gas drilling off the coasts of Virginia and North Carolina. Determining the location of seepage sites in the Atlantic Ocean will help MMS locate potential deposits of oil and natural gas, thereby reducing the risk of leasing areas for petroleum extraction that do not contain these natural resources.

  12. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States

    USGS Publications Warehouse

    McCabe, G.J.; Palecki, M.A.; Betancourt, J.L.

    2004-01-01

    More than half (52%) of the spatial and temporal variance in multidecadal drought frequency over the conterminous United States is attributable to the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). An additional 22% of the variance in drought frequency is related to a complex spatial pattern of positive and negative trends in drought occurrence possibly related to increasing Northern Hemisphere temperatures or some other unidirectional climate trend. Recent droughts with broad impacts over the conterminous U.S. (1996, 1999-2002) were associated with North Atlantic warming (positive AMO) and north-eastern and tropical Pacific cooling (negative PDO). Much of the long-term predictability of drought frequency may reside in the multidecadal behavior of the North Atlantic Ocean. Should the current positive AMO (warm North Atlantic) conditions persist into the upcoming decade, we suggest two possible drought scenarios that resemble the continental-scale patterns of the 1930s (positive PDO) and 1950s (negative PDO) drought.

  13. Strong-mixing induced deep ocean heat uptake events in the North Atlantic.

    NASA Astrophysics Data System (ADS)

    Somavilla Cabrillo, Raquel; Gonzalez-Pola, Cesar; Schauer, Ursula; Budeus, Gedeon

    2015-04-01

    The deceleration of the upper ocean heat storage during the last decade has resulted in an active search for the 'missing heat' in the deep ocean. Modeling work has provided new insights into the role of the central Pacific Ocean on the present hiatus in global warming and the efficient transfer of heat to the deep ocean, but recent studies have highlighted also the large contribution of the North Atlantic basin to these processes, mainly based on ocean observations. The deep ocean heat uptake (below 300 m) in the North Atlantic is not confined to the subpolar gyre region but extends to mid-latitudes of the Eastern North Atlantic (ENA), requiring an additional process for its explanation other than deep convection considered until now. Here, using oceanographic in-situ data, we describe a mechanism of heat and salt injection to the deep ocean after years of warming and saltening at the surface occurred both in regions of mode (43°-48°N) and deep water (74°-76°N) formation in the ENA. The mechanism, although punctual meditated by strong winter mixing events, is between 2 and 6 times higher than the 2000-2010 ocean heat uptake at depths of mode (300-700m) and deep water (>2000m) formation, contributing significantly to the observed deep ocean heat uptake in the North Atlantic. Nutrient, hydrographic and reanalysis data indicate that the strong mixing-induced deep ocean heat uptake events at areas of mode and deep water formation in the North Atlantic are connected through the northward propagation of salty ENA mode waters triggered by the contraction of the subpolar gyre reinforced by the occurrences of blocking anomalies in the ENA. Such connection is not unique of the last decade but observed also during the 1960s. Natural climate variability seems the ultimate driver of the strong mixing-induced deep ocean heat uptake events, although the anthropogenic global warming and its forcing on the Arctic sea-ice retreat and frequency of extreme weather events could

  14. The diversity of cyanomyovirus populations along a North-South Atlantic Ocean transect.

    PubMed

    Jameson, Eleanor; Mann, Nicholas H; Joint, Ian; Sambles, Christine; Mühling, Martin

    2011-11-01

    Viruses that infect the marine cyanobacterium Prochlorococcus have the potential to impact the growth, productivity, diversity and abundance of their hosts. In this study, changes in the microdiversity of cyanomyoviruses were investigated in 10 environmental samples taken along a North-South Atlantic Ocean transect using a myoviral-specific PCR-sequencing approach. Phylogenetic analyses of 630 viral g20 clones from this study, with 786 published g20 sequences, revealed that myoviral populations in the Atlantic Ocean had higher diversity than previously reported, with several novel putative g20 clades. Some of these clades were detected throughout the Atlantic Ocean. Multivariate statistical analyses did not reveal any significant correlations between myoviral diversity and environmental parameters, although myoviral diversity appeared to be lowest in samples collected from the north and south of the transect where Prochlorococcus diversity was also lowest. The results were correlated to the abundance and diversity of the co-occurring Prochlorococcus and Synechococcus populations, but revealed no significant correlations to either of the two potential host genera. This study provides evidence that cyanophages have extremely high and variable diversity and are distributed over large areas of the Atlantic Ocean.

  15. 77 FR 42651 - Disestablishment of Restricted Area, Rhode Island Sound, Atlantic Ocean, Approximately 4 Nautical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers 33 CFR Part 334 Disestablishment of Restricted Area, Rhode Island Sound, Atlantic Ocean, Approximately 4 Nautical Miles Due South of Lands End in Newport, RI AGENCY:...

  16. Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the pliocene

    USGS Publications Warehouse

    Dowsett, H.J.; Cronin, T. M.; Poore, R.Z.; Thompson, R.S.; Whatley, R.C.; Wood, A.M.

    1992-01-01

    The Middle Pliocene (???3 million years ago) has been identified as the last time the Earth was significantly warmer than it was during the Last Interglacial and Holocene. A quantitative micropaleontological paleotemperature transect from equator to high latitudes in the North Atlantic indicates that Middle Pliocene warmth involved increased meridional oceanic heat transport.

  17. Heat and Freshwater Convergence Anomalies in the Atlantic Ocean Inferred from Observations

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.; Drushka, K.; Thompson, L.

    2015-12-01

    Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean. An "unknown control" version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content. The model is run for 1993-2014. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding a spatially uniform, time-varying MHT derived from updated MHT estimates at 41N (Willis 2010). Estimated anomalies in MHT are comparable to those recently observed at the RAPID/MOCHA line at 26.5N. MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. MHT anomalies at 35S resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates in the Atlantic Ocean (67N to 35S) resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009). Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.

  18. 77 FR 13519 - Safety Zone; Virginia Beach Oceanfront Air Show, Atlantic Ocean, Virginia Beach, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Virginia Beach Oceanfront Air Show, Atlantic Ocean, Virginia Beach, VA AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY... Virginia Beach, VA. This action is necessary to provide for the safety of life on navigable waters...

  19. 77 FR 27120 - Safety Zone; Virginia Beach Oceanfront Air Show, Atlantic Ocean, Virginia Beach, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Virginia Beach Oceanfront Air Show, Atlantic Ocean, Virginia Beach, VA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The... Beach, VA to support the Virginia Beach Oceanfront Air Show. This action is necessary to provide for...

  20. 78 FR 22814 - Special Local Regulations; Miami Super Boat Grand Prix, Atlantic Ocean; Miami Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ..., Atlantic Ocean; Miami Beach, FL AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY... Miami Beach, Florida during the Miami Super Boat Grand Prix. The Miami Super Boat Grand Prix will... Beach, Florida. Approximately 25 high- speed power boats will be participating in the races, and it...

  1. 78 FR 60255 - Fisheries of the Northeastern United States; Atlantic Surfclam and Ocean Quahog Fisheries; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... Company. The intent of this notice is to comply with regulations for the Atlantic surfclam and ocean quahog fisheries and to promote efficient distribution of cage tags. ADDRESSES: Written inquiries may be... given that National Band and Tag Company of Newport, Kentucky, is the authorized vendor of cage...

  2. 78 FR 70901 - Safety Zone; Bone Island Triathlon, Atlantic Ocean; Key West, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Bone Island Triathlon, Atlantic Ocean; Key..., during the Bone Island Triathlon on Saturday, January 25, 2014. The safety zone is necessary to provide... Multisport, LLC. is hosting the Bone Island Triathlon. The event will be held on the waters of the...

  3. Atlantic-Arctic exchange in a series of ocean model simulations (CORE-II)

    NASA Astrophysics Data System (ADS)

    Roth, Christina; Behrens, Erik; Biastoch, Arne

    2014-05-01

    In this study we aim to improve the understanding of exchange processes between the North Atlantic and the Arctic Ocean. The Nordic Sea builds an important connector between these regions, by receiving and modifying warm and saline Atlantic waters, and by providing dense overflow as a backbone of the Atlantic Meridional Overturning Circulation (AMOC). Using a hierarchy of global ocean/sea-ice models, the specific role of the Nordic Seas, both providing a feedback with the AMOC, but also as a modulator of the Atlantic water flowing into the Arctic Ocean, is examined. The models have been performed under the CORE-II protocol, in which atmospheric forcing of the past 60 years was applied in a subsequent series of 5 iterations. During the course of this 300-year long integration, the AMOC shows substantial changes, which are correlated with water mass characteristics in the Denmark Strait overflow characteristics. Quantitative analyses using Lagrangian trajectories explore the impact of these trends on the Arctic Ocean through the Barents Sea and the Fram Strait.

  4. Definition, properties, and Atlantic Ocean distribution of the new tracer TrOCA

    NASA Astrophysics Data System (ADS)

    Touratier, Franck; Goyet, Catherine

    2004-05-01

    Natural and anthropogenic tracers in the ocean are widely used not only to better understand water masses circulation and mixing but also to understand and quantify the ocean uptake and storage capacity of greenhouse gases. However, since each tracer is different, it is best to use the complementarity of several tracers to unequivocally identify the various water masses. Here we illustrate the conservative properties and the spatial distribution of the new composite tracer TrOCA ( Tracer combining Oxygen, inorganic Carbon, and total Alkalinity) using oxygen (O 2), dissolved inorganic carbon (TCO 2), and total alkalinity (TA), from the Atlantic Ocean. The significant accuracy improvement of TCO 2 and TA measurements since the 1970s, combined to a large effort in measuring these parameters during large scale cruises throughout the Atlantic Ocean, makes this tracer TrOCA an additional tool in analyzing water mass distribution. This tracer is shown to be conservative in intermediate, deep, and bottom waters. For instance, we show that the independence of TrOCA from other tracers provides further information on the origin and mixing of the main Atlantic water masses. Furthermore, TrOCA combined with the composite tracer NO, in particular the ratio TrOCA/NO, can be used to unequivocally identify and separate the Antarctic Intermediate Water, the Antarctic Bottom Water, and the North Atlantic Deep Water.

  5. Hogfish Lachnolaimus maximus (Labridae) confirmed in the south-western Atlantic Ocean.

    PubMed

    Sampaio, C L S; Santander-Neto, J; Costa, T L A

    2016-09-01

    Based on material deposited in collections, photographic records and other reports from fishermen and divers, the occurrence of the hogfish Lachnolaimus maximus (Labridae) is confirmed in the south-western Atlantic Ocean, near the Brazilian coast as far south as southern Brazil. The recognized range of this species should therefore be extended c. 3000 km further south.

  6. 75 FR 34929 - Safety Zones: Neptune Deep Water Port, Atlantic Ocean, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones: Neptune Deep Water Port, Atlantic Ocean... turret loading (STL) buoys and accompanying systems that are part of GDF Suez Energy's Neptune Deepwater... of a final regulatory action, which will be proposed in a separate rulemaking docket titled:...

  7. 78 FR 41844 - Safety Zone; Fairfield Estates Fireworks Display, Atlantic Ocean, Sagaponack, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Fairfield Estates Fireworks Display... Sagaponack, NY for the Fairfield Estates fireworks display. This action is necessary to provide for the... Zone; Fairfield Estates Fireworks Display, Atlantic Ocean, Sagaponack, NY in the Federal Register...

  8. Streamflow from the United States into the Atlantic Ocean during 1931-1960

    USGS Publications Warehouse

    Bue, Conrad D.

    1970-01-01

    Streamflow from the United States into the Atlantic Ocean, between the international stream St. Croix River, inclusive, and Cape Sable, Fla., averaged about 355,000 cfs (cubic feet per second) during the 30-year period 1931-60, or roughly 20 percent of the water that, on the average flows out of the conterminous United States. The area drained by streams flowing into the Atlantic Ocean is about 288,000 square miles, including the Canadian part of the St. Croix and Connecticut River basins, or a little less than 10 percent of the area of the conterminous United States. Hence, the average streamflow into the Atlantic Ocean, in terms of cubic feet per second per square mile, is about twice the national average of the flow that leaves the conterminous United States. Flow from about three-fourths of the area draining into the Atlantic Ocean is gaged at streamflow measuring stations of the U.S. Geological Survey. The remaining one-fourth of the drainage area consists mostly of low-lying coastal areas from which the flow was estimated, largely on the basis of nearby gaging stations. Streamflow, in terms of cubic feet per second per square mile, decreases rather progressively from north to south. It averages nearly 2 cfs along the Maine coast, about 1 cfs along the North Carolina coast, and about 0.9 cfs along the Florida coast.

  9. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND...

  10. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND...

  11. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND...

  12. 78 FR 35596 - Special Local Regulation; Long Beach Regatta, Powerboat Race, Atlantic Ocean, Long Beach, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... year. The location and name has changed several time over the past five years. The following rulemaking... were received during the rulemaking. On July 6, 2011 the Coast Guard published a temporary final rule... powerboat racing regatta. The event will be held on the Atlantic Ocean off Long Beach, NY and will...

  13. Ecological Condition of Coastal Ocean Waters Along the U.S. Mid-Atlantic Bight: 2006

    EPA Science Inventory

    This report presents the results of an assessment of ecological condition in coastal-ocean waters of the U.S. mid-Atlantic Bight (MAB), along the U.S. continental shelf from Cape Cod, MA and Nantucket Shoals to the northeast to Cape Hatteras to the south, based on sampling conduc...

  14. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean

    NASA Astrophysics Data System (ADS)

    Holt, Jason; Icarus Allen, J.; Anderson, Thomas R.; Brewin, Robert; Butenschön, Momme; Harle, James; Huse, Geir; Lehodey, Patrick; Lindemann, Christian; Memery, Laurent; Salihoglu, Baris; Senina, Inna; Yool, Andrew

    2014-12-01

    It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.

  15. Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy

    2014-05-01

    The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins

  16. Future change in ocean productivity: Is the Arctic the new Atlantic?

    NASA Astrophysics Data System (ADS)

    Yool, A.; Popova, E. E.; Coward, A. C.

    2015-12-01

    One of the most characteristic features in ocean productivity is the North Atlantic spring bloom. Responding to seasonal increases in irradiance and stratification, surface phytopopulations rise significantly, a pattern that visibly tracks poleward into summer. While blooms also occur in the Arctic Ocean, they are constrained by the sea-ice and strong vertical stratification that characterize this region. However, Arctic sea-ice is currently declining, and forecasts suggest this may lead to completely ice-free summers by the mid-21st century. Such change may open the Arctic up to Atlantic-style spring blooms, and do so at the same time as Atlantic productivity is threatened by climate change-driven ocean stratification. Here we use low and high-resolution instances of a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate productivity. Drivers of present-day patterns are identified, and changes in these across a climate change scenario (IPCC RCP 8.5) are analyzed. We find a globally significant decline in North Atlantic productivity (> -20%) by 2100, and a correspondingly significant rise in the Arctic (> +50%). However, rather than the future Arctic coming to resemble the current Atlantic, both regions are instead transitioning to a common, low nutrient regime. The North Pacific provides a counterexample where nutrients remain high and productivity increases with elevated temperature. These responses to climate change in the Atlantic and Arctic are common between model resolutions, suggesting an independence from resolution for key impacts. However, some responses, such as those in the North Pacific, differ between the simulations, suggesting the reverse and supporting the drive to more fine-scale resolutions. This article was corrected on 5 JAN 2016. See the end of the full text for details.

  17. Trace oxyanions and their behaviour in the rivers Porong and Solo, the Java Sea and the adjacent Indian Ocean

    NASA Astrophysics Data System (ADS)

    Van der Sloot, H. A.; Hoede, D.; Wijkstra, J.

    During the Snellius-II Expedition (theme 5) dissolved and particulate concentrations of As(III), As(V), Sb(III), Sb(V), Se(IV), Mo, U, V, Au and W were measured in the Kali Porong and Bengawan Solo, Strait Madura, the Java Sea and the adjacent Indian Ocean. The estuarine mixing behaviour of Mo, U and V was found to be conservative. Arsenic behaved in a conservative manner during the wet period, while removal was observed in the high salinity region of the Solo and Porong during the dry season. The exceptionally high vanadium concentration in the rivers Porong and Solo, which is more than 10 times higher than that in the world rivers, is connected with leaching of volcanic rock; dissolved concentrations of Au, W and Mo are also higher. Apart from V and Au, the dissolved concentrations in the Java Sea and in the Indian Ocean compare well with average ocean values.

  18. Weekly cycle of lightning and associated patterns of rainfall, cloud, and aerosols over Korea and adjacent oceans during boreal summer

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kim, K.

    2011-12-01

    In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over land area. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in coastal area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.

  19. Weekly Cycle of Lightning and Associated Patterns of Rainfall, Cloud, and Aerosols over Korea and Adjacent Oceans during Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Ji-In; Kim, Kyu-Myong

    2011-01-01

    In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over Yellow Sea. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in land area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.

  20. Evolutionary diversification of banded tube-dwelling anemones (Cnidaria; Ceriantharia; Isarachnanthus) in the Atlantic Ocean.

    PubMed

    Stampar, Sergio N; Maronna, Maximiliano M; Vermeij, Mark J A; Silveira, Fabio L d; Morandini, André C

    2012-01-01

    The use of molecular data for species delimitation in Anthozoa is still a very delicate issue. This is probably due to the low genetic variation found among the molecular markers (primarily mitochondrial) commonly used for Anthozoa. Ceriantharia is an anthozoan group that has not been tested for genetic divergence at the species level. Recently, all three Atlantic species described for the genus Isarachnanthus of Atlantic Ocean, were deemed synonyms based on morphological simmilarities of only one species: Isarachnanthus maderensis. Here, we aimed to verify whether genetic relationships (using COI, 16S, ITS1 and ITS2 molecular markers) confirmed morphological affinities among members of Isarachnanthus from different regions across the Atlantic Ocean. Results from four DNA markers were completely congruent and revealed that two different species exist in the Atlantic Ocean. The low identification success and substantial overlap between intra and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding, which is not true for Ceriantharia. In addition, genetic divergence within and between Ceriantharia species is more similar to that found in Medusozoa (Hydrozoa and Scyphozoa) than Anthozoa and Porifera that have divergence rates similar to typical metazoans. The two genetic species could also be separated based on micromorphological characteristics of their cnidomes. Using a specimen of Isarachnanthus bandanensis from Pacific Ocean as an outgroup, it was possible to estimate the minimum date of divergence between the clades. The cladogenesis event that formed the species of the Atlantic Ocean is estimated to have occured around 8.5 million years ago (Miocene) and several possible speciation scenarios are discussed.

  1. Tropical Atlantic climate response to different freshwater input in high latitudes with an ocean-only general circulation model

    NASA Astrophysics Data System (ADS)

    Men, Guang; Wan, Xiuquan; Liu, Zedong

    2016-10-01

    Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.

  2. Geographical distribution of pelagic decapod shrimp in the Atlantic Ocean.

    PubMed

    Judkins, David C

    2014-12-16

    Ninety-one species of pelagic decapod shrimp were identified in 938 midwater-trawl collections taken between 1963 and 1974 from the North and South Atlantic. Distributional maps are provided for the most frequently occurring species. Nighttime abundance of most species was greatest within the upper 200 m. Degree of geographical overlap was estimated using the geometric mean of the proportion of joint occurrences with a value ≥ 0.5 deemed significant. Geographical distributions tended to be unique, and only 31 species had values ≥ 0.5 with one or more other species. Species within genera and within phylogenetic subgroups of Sergia were generally parapatric or partially overlapping in distribution. Five geographical groupings of co-occurring species across genera were identified: Subpolar-Temperate, Southern Hemisphere, Central, Tropical, Eastern Tropical and Western Tropical. The two species of the Southern Hemisphere group are circumpolar at temperate latitudes. The 12 species of the Central group occurred throughout the subtropical and tropical North and South Atlantic. The eight species of the Tropical group occurred broadly across the equatorial Atlantic and Caribbean with ranges usually extending into the Gulf of Mexico and northward in the Gulf Stream. The two species of the Western Tropical group occurred most often in the western tropics, but there were scattered occurrences at subtropical latitudes. The four species of the Eastern Tropical group were endemic to the Mauritanian Upwelling and the Angola-Benguela Frontal zones off western Africa. Two of the three species in the Subpolar-Temperate group had bipolar distributions, and all three occurred in the Mediterranean and in the Mauritanian Upwelling zone. Most Central, Tropical and Western Tropical species were present in the in the Gulf of Mexico. The 10 species from the Mediterranean were a mixture of Subpolar-Temperate, Central and benthopelagic species. Patterns of distribution in Atlantic pelagic

  3. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Condron, Alan; Renfrew, Ian A.

    2013-01-01

    Atmospheric processes regulate the formation of deep water in the subpolar North Atlantic Ocean and hence influence the large-scale ocean circulation. Every year thousands of mesoscale storms, termed polar lows, cross this climatically sensitive region of the ocean. These storms are often either too small or too short-lived to be captured in meteorological reanalyses or numerical models. Here we present simulations with a global, eddy-permitting ocean/sea-ice circulation model, run with and without a parameterization of polar lows. The parameterization reproduces the high wind speeds and heat fluxes observed in polar lows as well as their integrated effects, and leads to increases in the simulated depth, frequency and area of deep convection in the Nordic seas, which in turn leads to a larger northward transport of heat into the region, and southward transport of deep water through Denmark Strait. We conclude that polar lows are important for the large-scale ocean circulation and should be accounted for in short-term climate predictions. Recent studies predict a decrease in the number of polar lows over the northeast Atlantic in the twenty-first century that would imply a reduction in deep convection and a potential weakening of the Atlantic meridional overturning circulation.

  4. Variability of The Southwest Indian and Atlantic Oceans and Connexions To Atmospheric Anomalies

    NASA Astrophysics Data System (ADS)

    Fauchereau, N.; Trzaska, S.; Richard, Y.; Roucou, P.

    Sea-Surface-Temperature variability in the Southern Indian and Atlantic Oceans is in- vestigated using Empirical Orthogonal Functions analysis over the 1950-1999 period. It reveals a significant pattern of co-variability between the SouthWest Indian and SouthWest Atlantic Oceans (roughly located in the Southwestern branches of the sub- tropical gyres and their retroflection regions). The robustness of this mode is assessed through correlation between box-averaged indices and composite analysis. This mode is phase-locked on the Austral Summer (november to january) and is associated with significant anomalies in the SLP field. A discussion on the potential mechanisms in- volved in such Ocean Atmosphere anomalies is given and attention is devoted to their impact on the precipitation anomalies over Southern America and mainly Southern Africa. Relations to the SST - atmosphere patterns of variability recently described by Behera et Yamagata (2001. Geophysical Research Letters, 28, 2, 327-330) for the Indian Ocean and Venegas et al (1997. Journal of Climate, 19, 2904-2920) for the Atlantic Ocean is also discussed.

  5. Spinner dolphin whistle in the Southwest Atlantic Ocean: Is there a geographic variation?

    PubMed

    Moron, Juliana Rodrigues; Amorim, Thiago Orion Simões; Sucunza, Federico; de Castro, Franciele Rezende; Rossi-Santos, Marcos; Andriolo, Artur

    2015-10-01

    Acoustic parameters for the spinner dolphins' bioacoustic sounds have previously been described. However, the dolphins in the Southwest Atlantic Ocean were only recently studied near the Fernando de Noronha Archipelago. Therefore, to contribute to additional knowledge of this cosmopolitan species, this study compares previous results with a Brazilian recording. Despite statistically significant differences, the mean value comparison indicated that Hawaiian and Southwest Atlantic Ocean spinners emit similar whistles. The fact that geographical isolation does not lead the dissemblance nor the similarity of the acoustic variations in this species raises the possibility of other factors influencing those emissions. Here those differences and similarities are discussed, thereby contributing to an understanding of how distinct populations and/or species communicate through different ocean basins.

  6. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    PubMed

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change.

  7. RESEARCH NOTE: On the roughness of Mesozoic oceanic crust in the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Minshull, T. A.

    1999-01-01

    Seismic reflection profiles from Mesozoic oceanic crust around the Blake Spur Fracture Zone (BSFZ) in the western North Atlantic have been widely used in constraining tectonic models of slow-spreading mid-ocean ridges. These profiles have anomalously low basement relief compared to crust formed more recently at the Mid-Atlantic Ridge at the same spreading rate. Profiles from other regions of Mesozoic oceanic crust also have greater relief. The anomalous basement relief and slightly increased crustal thickness in the BSFZ survey area may be due to the presence of a mantle thermal anomaly close to the ridge axis at the time of crustal formation. If so, the intracrustal structures observed may be representative of an atypical tectonic regime.

  8. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean.

    PubMed

    Kanhai, La Daana K; Officer, Rick; Lyashevska, Olga; Thompson, Richard C; O'Connor, Ian

    2017-02-15

    Microplastics in the world's oceans are a global concern due to the potential threat they pose to marine organisms. This study investigated microplastic abundance, distribution and composition in the Atlantic Ocean on a transect from the Bay of Biscay to Cape Town, South Africa. Microplastics were sampled from sub-surface waters using the underway system of the RV Polarstern. Potential microplastics were isolated from samples and FT-IR spectroscopy was used to identify polymer types. Of the particles analysed, 63% were rayon and 37% were synthetic polymers. The majority of microplastics were identified as polyesters (49%) and blends of polyamide or acrylic/polyester (43%). Overall, fibres (94%) were predominant. Average microplastic abundance in the Atlantic Ocean was 1.15±1.45particlesm(-3). Of the 76 samples, 14 were from the Benguela upwelling and there was no statistically significant difference in microplastic abundance between upwelled and non-upwelled sites.

  9. Spatial and temporal evolution of lead isotope ratios in the North Atlantic Ocean between 1981 and 1989

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Boyle, Edward A.; Wu, Jingfeng; Chavagnac, ValéRie; Michel, Anna; Reuer, Matthew K.

    2003-10-01

    /tropical surface water exchanges. Triple-isotope plots (206Pb, 207Pb, and 208Pb) suggest that most of the lead can be accounted for by wet aerosol deposition derived from the adjacent landmasses of America to the west (transported via the North American Westerlies) and from Europe to the east (transported via the European Easterlies) and probably by some advected surface waters from the Sargasso Sea. The 1989 triple-isotope plot suggests, however, a third lead source in the subtropical western North Atlantic, possibly leaded gasoline from Mexico. Gasoline lead emission patterns as well as atmospheric lead isotope signatures confirm that gasoline was the main pollutant source in the early 1980s but suggest that contributions from high-temperature industrial processes (coal combustion, steel manufacture, waste incineration) have been increasing in the late 1980s. From isotopic mass balance estimates, lead inputs to the 1980s North Atlantic were dominated by North American sources (>53%). These elemental and isotopic results demonstrate the strongly variable isotopic and elemental signatures of North American and European lead throughout the North Atlantic Ocean, frequently dominated by high 206Pb/207Pb and [Pb] North American signatures throughout the subtropical North Atlantic gyre.

  10. Polyhalogenated Very Short Live Substances in the Atlantic Ocean, and their Linkages with Ocean Primary Production

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yvon-Lewis, S. A.; Hu, L.; Bianchi, T. S.; Campbell, L.; Smith, R. W.

    2011-12-01

    The Halocarbon Air-Sea Transect - Atlantic (HalocAST-A) cruise was conducted aboard FS Polarstern during the ANT-XXVII/1 expedition. The ship departed from Bremerhaven, Germany on October 25th and arrived in Cape Town, South Africa on November 24th in 2010. The HalocAST-A cruise was devoted to studying air-sea fluxes of a suite of halocarbon compounds. Atmospheric mixing ratios and seawater concentrations of the halocarbons were continuously measured with the gas chromatograph - mass spectrometer (GC-MS). This study focuses on the polyhalogenated very short lived substances (VSLSs) such as bromoform (CHBr3), dibromomethane (CH2Br2), chlorodibromomethane (CHClBr2), and bromodichloromethane (CHBrCl2). The goal of this study is to examine the distributions of these compounds and possible relationship between their emissions and oceanic primary production. Therefore, along with the halocarbon concentrations, parameters like dissolved organic carbon concentrations, nutrient concentrations, pigment concentrations, and picoplankton and heterotrophic bacteria counts were also determined. The observed saturation anomalies indicated these VSLSs were supersaturated for almost the entire duration of the cruise. The highest seawater concentrations for these compounds were observed near the Canary Islands. Air mixing ratios were also elevated in this region. The net fluxes for CHBr3, CH2Br2, CHClBr2, and CHBrCl2 were 13.8 nmol m-2 d-1, 4.5 nmol m-2 d-1, 4.5 nmol m-2 d-1 and 1.2 nmol m-2 d-1, respectively. During the HalocAST-A cruise, these compounds exhibit similar trends with total chlorophyll a. Contributions from selected phytoplankton group will be further assessed through the use of individual pigment biomarkers.

  11. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic ocean circulation

    NASA Astrophysics Data System (ADS)

    Gong, Xun; Zhang, Xiangdong; Lohmann, Gerrit; Wei, Wei; Zhang, Xu; Pfeiffer, Madlene

    2015-07-01

    During the last glacial-interglacial cycle, changes in the large-scale North Atlantic ocean circulation occurred, and at the same time topography of the Laurentide and Greenland ice sheets also varied. In this study, we focus on detecting the changes of the North Atlantic gyres, western boundary current, and the Atlantic meridional overturning circulation (AMOC) corresponding to different Laurentide and Greenland ice sheet topographies. Using an Earth System Model, we conducted simulations for five climate states with different ice sheet topographies: Pre-industrial, Mid Holocene, Last Glacial Maximum, 32 kilo years before present and Eemian interglacial. Our simulation results indicate that higher topographies of the Laurentide and Greenland ice sheets strengthen surface wind stress curl over the North Atlantic ocean, intensifying the subtropical and subpolar gyres and the western boundary currents. The corresponding decrease in sea surface height from subtropical to subpolar favors a stronger AMOC. An offshore shift of the Gulf Stream is also identified during the glacial periods relative to that during the Pre-industrial due to lower sea levels, explaining a weaker glacial Gulf Stream detected in proxy data. Meanwhile, the North Atlantic gyres and AMOC demonstrate a positively correlated relation under each of the climate conditions with higher ice sheets.

  12. Contrasting ocean changes between the subpolar and polar North Atlantic during the past 135 ka

    NASA Astrophysics Data System (ADS)

    Bauch, Henning A.; Kandiano, Evguenia S.; Helmke, Jan P.

    2012-06-01

    Variations in the poleward-directed Atlantic heat transfer was investigated over the past 135 ka with special emphasis on the last and present interglacial climate development (Eemian and Holocene). Both interglacials exhibited very similar climatic oscillations during each preceding glacial terminations (deglacial TI and TII). Like TI, also TII has pronounced cold-warm-cold changes akin to events such as H1, Bølling/Allerød, and the Younger Dryas. But unlike TI, the cold events in TII were associated with intermittent southerly invasions of an Atlantic faunal component which underscores quite a different water mass evolution in the Nordic Seas. Within the Eemian interglaciation proper, peak warming intervals were antiphased between the Nordic Seas and North Atlantic. Moreover, inferred temperatures for the Nordic Seas were generally colder in the Eemian than in the Holocene, and vice versa for the North Atlantic. A reduced intensity of Atlantic Ocean heat transfer to the Arctic therefore characterized the Eemian, requiring a reassessment of the actual role of the ocean-atmosphere system behind interglacial, but also, glacial climate changes.

  13. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.

    PubMed

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-02-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.

  14. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean

    PubMed Central

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-01-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2. PMID:26262815

  15. Reevaluation of plate motion models based on hotspot tracks in the Atlantic and Indian Oceans

    SciTech Connect

    Baksi, A.K.

    1999-01-01

    Plate motion models based on hotspot tracks in the Atlantic and Indian Oceans predict minimal movement (less than a few millimeters per year) between these hotspots and their counterparts in the Pacific Ocean for the past {approximately}100 m.yr., whereas plate circuit exercises indicate relative motions of {approximately}20 mm/yr. Hotspot-based models also suggest that the Rajmahal Traps, India, were located {approximately}1,000 km away from the Kerguelen hotspot at {approximately}115 Ma, and the Deccan Traps, India, were located a similar distance from the Reunion hotspot at {approximately}65 Ma; this is at odds with conclusions derived from paleomagnetism, plate circuits, and geochemical parameters that suggest a genetic link between flood basalt provinces in India and hotspots in the Indian Ocean. These divergent views may be explained by plume action {approximately}1,000 km from its center or errors in the hotspot motion models. The latter hypothesis is scrutinized in this article by examination of the radiometric ages for hotspot tracks in the Atlantic and Indian Oceans. The {sup 40}/{sup 39}Ar step-heating data for rocks defining the tracks of the Reunion and Kerguelen hotspots in the Indian Ocean and the Great Metero and Tristan da Cunha hotspots in the Atlantic Ocean are critically reexamined. Of {approximately}35 such ages utilized for deriving plate motion models for the past 130 m.yr., at best, only three ({approximately}32, {approximately}50, and {approximately}52 Ma) in the Indian Ocean and one ({approximately}65 Ma) for the Atlantic Ocean may be treated as crystallization ages. Conclusions based on hotspot track modeling for Late Cretaceous to Eocene time are suspect, and those for the Early to Late Cretaceous period are untenable. In the absence of precise age data for the tracks of hotspots in the Atlantic and Indian Oceans, and inconsistent age progressions noted within a single volcanic chain, plate circuit models serve as the superior technique

  16. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans

    NASA Astrophysics Data System (ADS)

    Karstensen, Johannes; Stramma, Lothar; Visbeck, Martin

    2008-06-01

    Within the eastern tropical oceans of the Atlantic and Pacific basin vast oxygen minimum zones (OMZ) exist in the depth range between 100 and 900 m. Minimum oxygen values are reached at 300-500 m depth which in the eastern Pacific become suboxic (dissolved oxygen content <4.5 μmol kg -1) with dissolved oxygen concentration of less than 1 μmol kg -1. The OMZ of the eastern Atlantic is not suboxic and has relatively high oxygen minimum values of about 17 μmol kg -1 in the South Atlantic and more than 40 μmol kg -1 in the North Atlantic. About 20 (40%) of the North Pacific volume is occupied by an OMZ when using 45 μmol kg -1 (or 90 μmol kg -1, respectively) as an upper bound for OMZ oxygen concentration for ocean densities lighter than σθ < 27.2 kg m -3. The relative volumes reduce to less than half for the South Pacific (7% and 13%, respectively). The abundance of OMZs are considerably smaller (1% and 7%) for the South Atlantic and only ∼0% and 5% for the North Atlantic. Thermal domes characterized by upward displacements of isotherms located in the northeastern Pacific and Atlantic and in the southeastern Atlantic are co-located with the centres of the OMZs. They seem not to be directly involved in the generation of the OMZs. OMZs are a consequence of a combination of weak ocean ventilation, which supplies oxygen, and respiration, which consumes oxygen. Oxygen consumption can be approximated by the apparent oxygen utilization (AOU). However, AOU scaled with an appropriate consumption rate (aOUR) gives a time, the oxygen age. Here we derive oxygen ages using climatological AOU data and an empirical estimate of aOUR. Averaging oxygen ages for main thermocline isopycnals of the Atlantic and Pacific Ocean exhibit an exponential increase with density without an obvious signature of the OMZs. Oxygen supply originates from a surface outcrop area and can also be approximated by the turn-over time, the ratio of ocean volume to ventilating flux. The turn-over time

  17. Environmental controls on the biogeography of diazotrophy and Trichodesmium in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Snow, J. T.; Schlosser, C.; Woodward, E. M. S.; Mills, M. M.; Achterberg, E. P.; Mahaffey, C.; Bibby, T. S.; Moore, C. M.

    2015-06-01

    The cyanobacterium Trichodesmium is responsible for a significant proportion of the annual "new" nitrogen introduced into the global ocean. Despite being arguably the best studied marine diazotroph, the factors controlling the distribution and growth of Trichodesmium remain a subject of debate, with sea surface temperature, the partial pressure of CO2, and nutrients including iron (Fe) and phosphorus (P), all suggested to be important. Synthesizing data from seven cruises collectively spanning large temporal and spatial scales across the Atlantic Ocean, including two previously unreported studies crossing the largely undersampled South Atlantic gyre, we assessed the relationship between proposed environmental drivers and both community N2 fixation rates and the distribution of Trichodesmium. Simple linear regression analysis would suggest no relationship between any of the sampled environmental variables and N2 fixation rates. However, considering the concentrations of iron and phosphorus together within a simplified resource-ratio framework, illustrated using an idealized numerical model, indicates the combined effects these nutrients have on Trichodesmium and broader diazotroph biogeography, alongside the reciprocal maintenance of different biogeographic provinces of the (sub)tropical Atlantic in states of Fe or P oligotrophy by diazotrophy. The qualitative principles of the resource-ratio framework are argued to be consistent with both the previously described North-South Atlantic contrast in Trichodesmium abundance and the presence and consequence of a substantial non-Trichodesmium diazotrophic community in the western South Atlantic subtropical gyre. A comprehensive, observation-based explanation of the interactions between Trichodesmium and the wider diazotrophic community with iron and phosphorus in the Atlantic Ocean is thus revealed.

  18. Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese

    NASA Astrophysics Data System (ADS)

    van Hulten, Marco; Middag, Rob; Dutay, Jean-Claude; de Baar, Hein; Roy-Barman, Matthieu; Gehlen, Marion; Tagliabue, Alessandro; Sterl, Andreas

    2017-03-01

    Dissolved manganese (Mn) is a biologically essential element. Moreover, its oxidised form is involved in removing itself and several other trace elements from ocean waters. Here we report the longest thus far (17 500 km length) full-depth ocean section of dissolved Mn in the west Atlantic Ocean, comprising 1320 data values of high accuracy. This is the GA02 transect that is part of the GEOTRACES programme, which aims to understand trace element distributions. The goal of this study is to combine these new observations with new, state-of-the-art, modelling to give a first assessment of the main sources and redistribution of Mn throughout the ocean. To this end, we simulate the distribution of dissolved Mn using a global-scale circulation model. This first model includes simple parameterisations to account for the sources, processes and sinks of Mn in the ocean. Oxidation and (photo)reduction, aggregation and settling, as well as biological uptake and remineralisation by plankton are included in the model. Our model provides, together with the observations, the following insights: - The high surface concentrations of manganese are caused by the combination of photoreduction and sources contributing to the upper ocean. The most important sources are sediments, dust, and, more locally, rivers. - Observations and model simulations suggest that surface Mn in the Atlantic Ocean moves downwards into the southward-flowing North Atlantic Deep Water (NADW), but because of strong removal rates there is no elevated concentration of Mn visible any more in the NADW south of 40° N. - The model predicts lower dissolved Mn in surface waters of the Pacific Ocean than the observed concentrations. The intense oxygen minimum zone (OMZ) in subsurface waters is deemed to be a major source of dissolved Mn also mixing upwards into surface waters, but the OMZ is not well represented by the model. Improved high-resolution simulation of the OMZ may solve this problem. - There is a mainly

  19. 78 FR 25574 - Special Local Regulations; Third Annual Space Coast Super Boat Grand Prix, Atlantic Ocean; Cocoa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... Super Boat Grand Prix, Atlantic Ocean; Cocoa Beach, FL AGENCY: Coast Guard, DHS. ACTION: Temporary final... Ocean east of Cocoa Beach, Florida during the Space Coast Super Boat Grand Prix, a series of high-speed... Ocean east of Cocoa Beach, Florida. Approximately 30 high-speed power boats are anticipated...

  20. Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.

    2015-12-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  1. Oceanic distribution and life cycle of Calanus species in the Norwegian Sea and adjacent waters

    NASA Astrophysics Data System (ADS)

    Broms, Cecilie; Melle, Webjørn; Kaartvedt, Stein

    2009-10-01

    The distribution and demography of Calanus finmarchicus, C. glacialis and C. hyperboreus were studied throughout their growth season on a basin scale in the Norwegian Sea using ordination techniques and generalized additive models. The distribution and demographic data were related to the seasonal development of the phytoplankton bloom and physical characteristics of water masses. The resulting quantified relationships were related to knowledge on life cycle and adaptations of Calanus species. C. finmarchicus was the numerically dominant Calanus species in Coastal, Atlantic and Arctic waters, showing strong association with both Atlantic and Arctic waters. C. hyperboreus and C. glacialis were associated with Arctic water; however, C. glacialis was occasionally observed in the Norwegian Sea and is probably an expatriate advected into the area from various origins. Demography indicated one generation per year of C. finmarchicus, a two-year life cycle of C. hyperboreus, and both one- and two-year life cycles for C. glacialis in the water masses where they were most abundant. For the examined Calanus species, young copepodites of the new generation seemed to be tuned to the phytoplankton bloom in their main water mass. The development of C. finmarchicus was delayed in Arctic water, and mis-match between feeding stages and the phytoplankton bloom may reduce survival and reproductive success of C. finmarchicus in Arctic water. Based on low abundances of C. hyperboreus CI-III in Atlantic water and main recruitment to CI prior to the phytoplankton bloom, we suggest that reproduction of C. hyperboreus in Atlantic water is not successful.

  2. Fluorescence of dissolved organic matter: A comparison of north Pacific and north Atlantic Oceans during April 1991

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Swift, Robert N.; Yungel, James K.; Vodacek, Anthony

    1993-01-01

    Profiles of airborne-laser-induced fluorescence emission from dissolved organic matter in the upper ocean have been produced and compared for the Southern California Bight (SCB) and the Mid-Atlantic Bight (MAB). Findings were as follows. (1) The fluorescent components of dissolved organic matter (FDOM) are present in easily measurable quantities from near shore to well over 300 km offshore in the SCB and are likewise easily measurable in the coastal, shelf, slope, and Gulf Stream waters of the MAB. (2) The reange of FDOM in the MAB is considerably greater than that in the SCB. (3) The lowest FDOM levels observed in the SCB were higher than those found in the Gulf Stream. (4) The onshore-to-offshore spatial gradient of the FDOM was found to be considerably lower in the SCB than in the MAB, with the highest levels of FDOM being found immediately adjacent to the coast in the MAB. This suggests that the water adjacent to the SCB shoreline is not as strongly influenced by terrestrial and estuarine sources of FDOM as the MAB is. (5) The spatial distribution of the FDOM within both the SCB and the MAB is frequently coherent with the spatial distribution of chlorophyll determined form the concurrent airborne- laser- induced phytoplankton pigment fluorescence measurements. However, distinct noncoherency is sometimes observed, especially at water mass boundaries.

  3. Nitrous oxide in the tropical Atlantic Ocean: first results from the german SOLAS cruise M55

    NASA Astrophysics Data System (ADS)

    Walter, S.; Bange, H.; Wallace, D.

    2003-04-01

    NITROUS OXIDE IN THE TROPICAL ATLANTIC: FIRST RESULTS FROM THE GERMAN SOLAS CRUISE M55 S. Walter, H.W. Bange, D.W.R. Wallace Marine Biogeochemistry Division, Institute for Marine Research, Düsternbrooker Weg 20, 24105 Kiel, Germany swalter@ifm.uni-kiel.de Nitrous oxide (N2O) is an atmospheric trace gas which received increased attention in recent years because of its relevance for the Earth's climate and stratospheric chemistry. N2O is formed during microbial processes such as nitrification and denitrification in considerable amounts in the subsurface layer of the ocean. Thus, oceanic emissions of N2O play a major role for its atmospheric budget. However, measurements of N2O in the tropical Atlantic are sparse. The spatial distribution of N2O in the tropical Atlantic Ocean was determined during the first German SOLAS (Surface Ocean - Lower Atmosphere Study) cruise Meteor 55 from Willemstad (Curacao, Netherlands Antilles) to Douala (Cameroon) from 12 October to 17 November 2002. At 21 selected stations about 1200 N2O concentrations measurements were performed with a GC/ECD headspace technique. The mean relative error of the measurements was about 2%. Four general features are visible from the N2O depth profiles: (i) N2O is supersaturated throughout the water column. (ii) There is a considerable accumulation of N2O below the euphotic zone with maximum values at 250-400m water depth associated with lower oxygen concentrations. (iii) An increasing trend in the maximum N2O concentrations from the western to the eastern Atlantic which is inversely correlated with dissolved oxygen values in the oxygen minimum zone. (iv) An increasing trend in the N2O concentrations from the western to the eastern Atlantic basin in depths below 2000m which seems to be correlated with the age of the water masses. The inverse correlation with oxygen suggests that N2O in the tropical Atlantic is formed mainly by nitrification. Our results will be discussed in view of global-change induced

  4. Tropical Atlantic Impacts on the Decadal Climate Variability of the Tropical Ocean and Atmosphere.

    NASA Astrophysics Data System (ADS)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2015-12-01

    Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean. In particular, several recent works indicate that the Atlantic sea surface temperature (SST) may contribute to the climate variability over the equatorial Pacific. Inspired by these studies, our work aims at investigating the impact of the tropical Atlantic on the entire tropical climate system, and uncovering the physical dynamics under these tropical teleconnections. We first performed a 'pacemaker' simulation by restoring the satellite era tropical Atlantic SST changes in a fully coupled model - the CESM1. Results reveal that the Atlantic warming heats the Indo-Western Pacific and cools the Eastern Pacific, enhances the Walker circulation and drives the subsurface Pacific to a La Niña mode, contributing to 60-70% of the above tropical changes in the past 30 years. The same pan-tropical teleconnections have been validated by the statistics of observations and 106 CMIP5 control simulations. We then used a hierarchy of atmospheric and oceanic models with different complexities, to single out the roles of atmospheric dynamics, atmosphere-ocean fluxes, and oceanic dynamics in these teleconnections. With these simulations we established a two-step mechanism as shown in the schematic figure: 1) Atlantic warming generates an atmospheric deep convection and induces easterly wind anomalies over the Indo-Western Pacific in the form of Kelvin waves, and westerly wind anomalies over the eastern equatorial Pacific as Rossby waves, in line with Gill's solution. This circulation changes warms the Indo-Western Pacific and cools the Eastern Pacific with the wind-evaporation-SST effect, forming a temperature gradient over the Indo-Pacific basins. 2) The temperature gradient further generates a secondary atmospheric deep convection, which reinforces the easterly wind anomalies over the equatorial Pacific and enhances the Walker circulation, triggering the Pacific to a La Ni

  5. Periodic variations of precipitation in the tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Rao, M. S. V.; Theon, J. S.

    1979-01-01

    Statistical analysis of the satellite-borne Electrically Scanning Microwave Radiometer data in the tropical Atlantic region reveals that the rainfall near local noon is higher both in frequency of occurrence and intensity than the rainfall in the same area near local midnight. Another striking feature that stands out from the analysis is an oscillation with a period of 3.3. days in rainfall occurrence and intensity. This periodicty is consistent with easterly waves traveling from the African continent to the region under study.

  6. Directly measured mid-depth circulation in the northeastern North Atlantic Ocean.

    PubMed

    Bower, A S; Le Cann, B; Rossby, T; Zenk, W; Gould, J; Speer, K; Richardson, P L; Prater, M D; Zhang, H-M

    2002-10-10

    The circulation of water masses in the northeastern North Atlantic Ocean has a strong influence on global climate owing to the northward transport of warm subtropical water to high latitudes. But the ocean circulation at depths below the reach of satellite observations is difficult to measure, and only recently have comprehensive, direct observations of whole ocean basins been possible. Here we present quantitative maps of the absolute velocities at two levels in the northeastern North Atlantic as obtained from acoustically tracked floats. We find that most of the mean flow transported northward by the Gulf Stream system at the thermocline level (about 600 m depth) remains within the subpolar region, and only relatively little enters the Rockall trough or the Nordic seas. Contrary to previous work, our data indicate that warm, saline water from the Mediterranean Sea reaches the high latitudes through a combination of narrow slope currents and mixing processes. At both depths under investigation, currents cross the Mid-Atlantic Ridge preferentially over deep gaps in the ridge, demonstrating that sea-floor topography can constrain even upper-ocean circulation patterns.

  7. High connectivity of the crocodile shark between the Atlantic and Southwest Indian Oceans: highlights for conservation.

    PubMed

    da Silva Ferrette, Bruno Lopes; Mendonça, Fernando Fernandes; Coelho, Rui; de Oliveira, Paulo Guilherme Vasconcelos; Hazin, Fábio Hissa Vieira; Romanov, Evgeny V; Oliveira, Claudio; Santos, Miguel Neves; Foresti, Fausto

    2015-01-01

    Among the various shark species that are captured as bycatch in commercial fishing operations, the group of pelagic sharks is still one of the least studied and known. Within those, the crocodile shark, Pseudocarcharias kamoharai, a small-sized lamnid shark, is occasionally caught by longline vessels in certain regions of the tropical oceans worldwide. However, the population dynamics of this species, as well as the impact of fishing mortality on its stocks, are still unknown, with the crocodile shark currently one of the least studied of all pelagic sharks. Given this, the present study aimed to assess the population structure of P. kamoharai in several regions of the Atlantic and Indian Oceans using genetic molecular markers. The nucleotide composition of the mitochondrial DNA control region of 255 individuals was analyzed, and 31 haplotypes were found, with an estimated diversity Hd = 0.627, and a nucleotide diversity π = 0.00167. An analysis of molecular variance (AMOVA) revealed a fixation index ΦST = -0.01118, representing an absence of population structure among the sampled regions of the Atlantic Ocean, and between the Atlantic and Indian Oceans. These results show a high degree of gene flow between the studied areas, with a single genetic stock and reduced population variability. In panmictic populations, conservation efforts can be concentrated in more restricted areas, being these representative of the total biodiversity of the species. When necessary, this strategy could be applied to the genetic maintenance of P. kamoharai.

  8. High Connectivity of the Crocodile Shark between the Atlantic and Southwest Indian Oceans: Highlights for Conservation

    PubMed Central

    da Silva Ferrette, Bruno Lopes; Mendonça, Fernando Fernandes; Coelho, Rui; de Oliveira, Paulo Guilherme Vasconcelos; Hazin, Fábio Hissa Vieira; Romanov, Evgeny V.; Oliveira, Claudio; Santos, Miguel Neves; Foresti, Fausto

    2015-01-01

    Among the various shark species that are captured as bycatch in commercial fishing operations, the group of pelagic sharks is still one of the least studied and known. Within those, the crocodile shark, Pseudocarcharias kamoharai, a small-sized lamnid shark, is occasionally caught by longline vessels in certain regions of the tropical oceans worldwide. However, the population dynamics of this species, as well as the impact of fishing mortality on its stocks, are still unknown, with the crocodile shark currently one of the least studied of all pelagic sharks. Given this, the present study aimed to assess the population structure of P. kamoharai in several regions of the Atlantic and Indian Oceans using genetic molecular markers. The nucleotide composition of the mitochondrial DNA control region of 255 individuals was analyzed, and 31 haplotypes were found, with an estimated diversity Hd = 0.627, and a nucleotide diversity π = 0.00167. An analysis of molecular variance (AMOVA) revealed a fixation index ΦST = -0.01118, representing an absence of population structure among the sampled regions of the Atlantic Ocean, and between the Atlantic and Indian Oceans. These results show a high degree of gene flow between the studied areas, with a single genetic stock and reduced population variability. In panmictic populations, conservation efforts can be concentrated in more restricted areas, being these representative of the total biodiversity of the species. When necessary, this strategy could be applied to the genetic maintenance of P. kamoharai. PMID:25689742

  9. Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Peings, Yannick; Magnusdottir, Gudrun

    2016-08-01

    The impact of the Atlantic multidecadal variability (AMV) on the wintertime atmosphere circulation is investigated using three different configurations of the Community Atmospheric Model version 5 (CAM5). Realistic SST and sea ice anomalies associated with the AMV in observations are prescribed in CAM5 (low-top model) and WACCM5 (high-top model) to assess the dependence of the results on the representation of the stratosphere. In a third experiment, the role of ocean-atmosphere feedback is investigated by coupling CAM5 to a slab-ocean model in which the AMV forcing is prescribed through oceanic heat flux anomalies. The three experiments give consistent results concerning the response of the NAO in winter, with a negative NAO signal in response to a warming of the North Atlantic ocean. This response is found in early winter when the high-top model is used, and in late winter with the low-top model. With the slab-ocean, the negative NAO response is more persistent in winter and shifted eastward over the continent due to the damping of the atmospheric response over the North Atlantic ocean. Additional experiments suggest that both tropical and extratropical SST anomalies are needed to obtain a significant modulation of the NAO, with small influence of sea ice anomalies. Warm tropical SST anomalies induce a northward shift of the ITCZ and a Rossby-wave response that is reinforced in the mid-latitudes by the extratropical SST anomalies through eddy-mean flow interactions. This modeling study supports that the positive phase of the AMV promotes the negative NAO in winter, while illustrating the impacts of the stratosphere and of the ocean-atmosphere feedbacks in the spatial pattern and timing of this response.

  10. Socially segregated, sympatric sperm whale clans in the Atlantic Ocean

    PubMed Central

    Bøttcher, Anne; Whitehead, Hal

    2016-01-01

    Sperm whales (Physeter macrocephalus) are unusual in that there is good evidence for sympatric populations with distinct culturally determined behaviour, including potential acoustic markers of the population division. In the Pacific, socially segregated, vocal clans with distinct dialects coexist; by contrast, geographical variation in vocal repertoire in the Atlantic has been attributed to drift. We examine networks of acoustic repertoire similarity and social interactions for 11 social units in the Eastern Caribbean. We find the presence of two socially segregated, sympatric vocal clans whose dialects differ significantly both in terms of categorical coda types produced by each clan (Mantel test between clans: matrix correlation = 0.256; p ≤ 0.001) and when using classification-free similarity which ignores defined types (Mantel test between clans: matrix correlation = 0.180; p ≤ 0.001). The more common of the two clans makes a characteristic 1 + 1 + 3 coda, while the other less often sighted clan makes predominantly regular codas. Units were only observed associating with other units within their vocal clan. This study demonstrates that sympatric vocal clans do exist in the Atlantic, that they define a higher order level of social organization as they do in the Pacific, and suggests that cultural identity at the clan level is probably important in this species worldwide. PMID:27429766

  11. Enhanced Oceanic Situational Awareness for the North Atlantic Corridor

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfield, Israel

    2004-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans, impose a limitation of traffic capacity for a given corridor. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. Traffic loading from a specific day are used as a benchmark against which to compare several approaches for coordinating data transmissions from aircraft to the satellites.

  12. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean.

    PubMed

    Mayol, Eva; Jiménez, María A; Herndl, Gerhard J; Duarte, Carlos M; Arrieta, Jesús M

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 10(4) and 1.6 × 10(7) microbes per m(2) of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m(2) every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes.

  13. Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source

    NASA Astrophysics Data System (ADS)

    Saito, Mak A.; Noble, Abigail E.; Tagliabue, Alessandro; Goepfert, Tyler J.; Lamborg, Carl H.; Jenkins, William J.

    2013-09-01

    Low levels of the micronutrient iron limit primary production and nitrogen fixation in large areas of the global ocean. The location and magnitude of oceanic iron sources remain uncertain, however, owing to a scarcity of data, particularly in the deep ocean. Although deep-sea hydrothermal vents along fast-spreading ridges have been identified as important contributors to the oceanic iron inventory, slow-spreading ridges, which contribute more than half of the submarine ridge-crest environment, are assumed to be less significant and remain relatively unexplored. Here, we present measurements of dissolved iron and manganese concentrations along a full-depth section in the South Atlantic Ocean, running from offshore of Brazil to Namibia. We detect a large dissolved iron- and manganese-rich plume over the slow-spreading southern Mid-Atlantic Ridge. Using previously collected measurements of helium-3 concentrations--a tracer of hydrothermal activity--we calculate the ratio of dissolved iron to hydrothermal helium in the plume waters and find that it is 80-fold higher than that reported for plume waters emanating from faster-spreading ridges in the southeastern Pacific. Only the application of a higher ratio in global ocean model simulations yields iron fluxes from these slow-spreading submarine ridges that are in line with our observations. We suggest that global iron contributions from hydrothermal vents are significantly higher than previously thought, owing to a greater contribution from slow-spreading regions.

  14. Helminth parasites of the oceanic horse mackerel Trachurus picturatus Bowdich 1825 (Pisces: Carangidae) from Madeira Island, Atlantic Ocean, Portugal.

    PubMed

    Costa, G; Melo-Moreira, E; Pinheiro de Carvalho, M A A

    2012-09-01

    The helminth parasite fauna of the oceanic horse mackerel Trachurus picturatus Bowdich 1825, caught off the Madeira Islands was composed of six different taxa. Prevalence and abundance of larval Anisakis sp. (Nematoda: Anisakidae) and Nybelinia lingualis (Trypanorhyncha: Tentaculariidae), the most common parasite taxa, were 24.3%, 0.9 and 37.9%, 0.7, respectively. Bolbosoma vasculosum (Acanthocephala: Polymorphidae) and the monogeneans Heteraxinoides atlanticus (Monogenea: Heteraxinidae) and Pseudaxine trachuri (Monogenea: Gastrocotylidae) were comparatively rare. The depauperate helminth fauna of the oceanic horse mackerel at Madeira compared to other geographical regions of the north-eastern Atlantic, namely the Azores banks and the West African coast, may be attributed to the paucity of nutrients off oceanic islands and to a low density of the fish population.

  15. Modelling the Oceanic Nd Isotopic Composition With a North Atlantic Eddy Permitting Model

    NASA Astrophysics Data System (ADS)

    Peronne, S.; Treguier, A.; Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.

    2006-12-01

    The oceanic water masses differ by their temperatures, salinity, but also a number of geochemical tracers characterized by their weak concentrations and their ability to quantify oceanic processes (mixing, scavenging rates etc). Among these tracers, the Nd isotopic composition (hereafter epsilon-Nd) is a (quasi) conservative tracer of water mass mixing in the ocean interior, far from any lithogenic inputs. It has been recently established that exchange of Nd at the oceanic margins could be the dominant process controlling both its concentration and isotopic composition distribution in the ocean. This was demonstrated using in situ measurements and budget calculations and has recently been confirmed by a low resolution (2°) modeling approach (Arsouze et al., 2006). However, the currents flowing on the ocean margins are not correctly represented in coarse ocean models. It is the case in the North Atlantic ocean, which is of particular interest since i) it is the area of deep water formation and ii) these deep waters are characterized by the most negative epsilon-Nd values of the world ocean, which are used as "imprint" of the present and past thermohaline circulation. It is therefore essential to understand how these water masses acquire their epsilon-Nd signature. We propose here the first results of the modeling of oceanic Nd isotopic composition at eddy-permitting resolution, with the North Atlantic 0.25° version of the NEMO model used for the DRAKKAR European project. A 150 years off-line experiment and a shorter on-line experiment are performed. Simulated Nd distributions are compared to the present-day data base, vertical profiles, and the results of the low resolution model (in the North Atlantic). The eddy permitting model generally provides improved results, provided a high enough exchange rate is imposed in the deep ocean. Deficiencies of the simulated distribution in the Nordic Seas and the subpolar gyre are explained by errors in the input function on

  16. Decadal variability of the Tropical Atlantic Ocean Surface Temperature in shipboard measurements and in a Global Ocean-Atmosphere model

    NASA Technical Reports Server (NTRS)

    Mehta, Vikram M.; Delworth, Thomas

    1995-01-01

    Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of

  17. Mid-Pliocene planktic foraminifer assemblage of the North Atlantic Ocean

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2007-01-01

    The US Geological Survey Pliocene Research, Interpretation and Synoptic Mapping (PRISM) North Atlantic faunal data set provides a unique, temporally constrained perspective to document and evaluate the quantitative geographic distribution of key mid-Pliocene taxa. Planktic foraminifer census data from within the PRISM time slab (3.29 to 2.97 Ma) at thirteen sites in the North Atlantic Ocean have been analyzed. We have compiled Scanning Electron Micrographs for an atlas of mid-Pliocene assemblages from the North Atlantic with descriptions of each taxon to document the taxonomic concepts that accompany the PRISM data. In mid-Pliocene assemblages, the geographic distributions of extant taxa are similar to their present day distributions, although some are extended to the north. We use the distribution of extinct taxa to assess previous assumptions regarding environmental preferences.

  18. Convective Lofting Links Indian Ocean Air Pollution to Paradoxical South Atlantic Ozone Maxima

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Guan, Hong; Thompson, Anne M.; Witte, Jacquelyn C.

    2003-01-01

    We describe a broad resolution of the "Atlantic Paradox" concerning the seasonal and geographic distribution of tropical tropospheric ozone. We describe periods of significant maximum tropospheric O3 for Jan.-April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO)O3 maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.- March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 30 or 60 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  19. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    NASA Technical Reports Server (NTRS)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2005-01-01

    We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  20. Meridional fluxes of dissolved organic matter in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Walsh, John J.; Carder, Kendall L.; Mueller-Karger, Frank E.

    1992-01-01

    Biooptical estimates of gelbstoff and a few platinum measurements of dissolved organic carbon (DOCpt) are used to construct a budget of the meridional flux of DOC and dissolved organic nitrogen (DON) across 36 deg 25 min N in the North Atlantic from previous inverse models of water and element transport. Distinct southward subsurface fluxes of dissolved organic matter within subducted shelf water, cabelled slope water, and overturned basin water are inferred. Within two cases of a positive gradient of DOCpt between terrestrial/shelf and offshore stocks, the net equatorward exports of O2 and DOCpt from the northern North Atlantic yield molar ratios of 2.1 to 9.1, compared to the expected Redfield O2/C ratio of 1.3. It is concluded that some shelf export of DOC, with a positive gradient between coastal and oceanic stocks, as well as falling particles, are required to balance carbon, nitrogen, and oxygen budgets of the North Atlantic.

  1. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2004-03-01

    We describe a broad resolution of the ``Atlantic Parado'' concerning the seasonal and geographic distribution of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.-April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  2. Does Saharan dust deposition influence the export of particle fluxes in the tropical North Atlantic Ocean?

    NASA Astrophysics Data System (ADS)

    Korte, Laura; van der Does, Michèlle; Munday, Chris; Brummer, Geert-Jan; Stuut, Jan-Berend

    2015-04-01

    Every year over 200 million tons of Saharan dust are blown over the Atlantic Ocean towards the Caribbean. On its journey most of the dust is removed from the atmosphere by either dry or wet deposition and is ending up in the ocean. Its input potentially stimulates phytoplankton growth and possibly also drags down organic matter through the water column to the sea floor. The role of dust as a means to export organic carbon from the surface ocean to the deep is still controversially discussed. However, aggregation plays a critical role in carbon export since sinking velocities depend amongst others on particle constituents, size and shape, porosity and way of formation. Higher sinking velocities lead to less degradation and remineralization, or, in other words: fresher material. Here we present particle fluxes from one year (October 2012 until November 2013) collected by three sediment traps at 1200 m depth along a profile across the tropical North Atlantic Ocean. Average total mass fluxes vary between 40 and 111 mg/m2/d depending on the location in the ocean. Peak fluxes of 230 and 270 mg/m2/d in the second half of April and by the end of October/start of November 2013 in the western tropical ocean are worth mentioning since they differ in nature; carbonaceous material dominate fluxes in spring and biogenic opal in autumn. The calculated rest fractions, which we interpret as wind-blown dust, vary between 41 mg/m2/d closest to the African coast, and 10 to 18 mg/m2/d to the western open ocean. Total organic carbon (TOC) and biogenic opal are related to the rest fraction for two traps; this relation improves with distance to the source. Unexpectedly, the rest fraction of the sediment trap closest to the African coast, do neither show a relation to organic matter nor to biogenic opal. Same findings hold true for the 15Ntot values of the material: they correlate negatively with the rest fraction, indicating fresher material. These correlations become stronger to the

  3. THE ECOLOGICAL CONDITION OF ESTUARIES: A FOCUS ON THE ATLANTIC OCEAN AND GULF OF MEXICO COASTS OF THE UNITED STATES

    EPA Science Inventory

    Monitoring the estuaries of the Atlantic Ocean and Gulf of Mexico coastlines was performed annually from 1990 to 1997 to assess ecological conditions on a regional basis for four biogeographic provinces. These province estimates - Virginian, Carolinian, West Indian, and Louisiani...

  4. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    EPA Science Inventory

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  5. The rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines

    NASA Astrophysics Data System (ADS)

    Greiner, Bernd; Neugebauer, Joachim

    2013-07-01

    We provide an up-to-date compilation of Euler rotations that model the evolution of the Central and Northern Atlantic Ocean (Table 1). The data basis forms seafloor spreading magnetic anomalies of the Atlantic. We checked the published rotations and selected those that form a consistent model. The increments of the Euler rotations going back in time from magnetic anomaly to magnetic anomaly can be illustrated by chains of points on "drift lines" that are paths of motions from continent to continent. Along these paths, the continents bordering the Atlantic Ocean can be moved back to their Mesozoic position within Pangea. Other figures exhibit the early rifting of the North Atlantic, the drift of Iberia, and the evolution of the Greenland-Ellesmere region. The points on the drift lines do not correspond directly to the lines of magnetic anomalies or their "picks" displayed today symmetrically in the Atlantic Ocean. To acquire correspondence, symmetric "flow lines" are constructed analogous to the spreading procedure. But points on the flow lines constructed by half of the increments partially also deviate from the expected symmetric position and in this way quantify displacements or jumps of the axis of rifting or spreading. Most of the selected rotations are from the excellent analyses of previous work. Essential deviations from published rotations are the M 0 rotations of Eurasia and of the Porcupine unit with respect to North America (EUR-NAM and POR-NAM). They lead to a better coincidence between the back-rotated M 0 magnetic anomalies in the Bay of Biscay on the one side and a change of the first transform motions between Greenland and Svalbard on the other side. Through this explanation, an overlap in Pangea SW of Svalbard is avoided and transform motions instead of strong extension are predicted. Some additional data are needed to complete the model: the earliest part of the path of Iberia to North America (IBA-NAM) up to M 4 is calculated assuming that Iberia

  6. Geomagnetic observations on tristan da cunha, south atlantic ocean

    USGS Publications Warehouse

    Matzka, J.; Olsen, N.; Maule, C.F.; Pedersen, L.W.; Berarducci, A.M.; Macmillan, S.

    2009-01-01

    Few geomagnetic ground observations exist of the Earth's strongest core field anomaly, the South Atlantic Anomaly (SAA). The geomagnetic repeat station on the island Tristan da Cunha, located half-way between South Africa and South America at 37?? 05' S, 12?? 18' W, is therefore of crucial importance. We have conducted several sets of repeat station measurements during magnetically quiet conditions (Kp 2o or less) in 2004. The procedures are described and the results are compared to those from earlier campaigns and to the predictions of various global field models. Features of the local crustal bias field and the solar quiet daily variation are discussed. We also evaluate the benefit of continuous magnetic field recordings from Tristan da Cunha, and argue that such a data set is a very valuable addition to geomagnetic satellite data. Recently, funds were set up to establish and operate a magnetometer station on Tristan da Cunha during the Swarm magnetic satellite mission (2011-2014).

  7. Centennial-scale links between Atlantic Ocean dynamics and hydroclimate over the last 4400 years: Insights from the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.

    2015-12-01

    Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean

  8. Diversity of culturable bacteria in deep-sea water from the South Atlantic Ocean.

    PubMed

    Kai, Wang; Peisheng, Yan; Rui, Ma; Wenwen, Jia; Zongze, Shao

    2017-01-31

    The variability of culturable bacterial diversity and distribution was studied by phylogenetic analysis of 16S rRNA sequences. Seventeen water samples were examined and were collected, from different depths in the range of 5 m to 2700 m at 3 sampling sites (CTD06, CTD10 and CTD11) in the South Atlantic Ocean. Phylogenetic analysis of 16S rRNA gene sequences revealed a significant diversity of culturable bacteria. A total of 247 strains clustered into 8 classes: γ-Proteobacteria, α-Proteobacteria, Actinobacteria, Actinomycetales, Bacilli, Flavobacteria, Opitutae and Sphingobacteria. The 17 water samples were dominated by populations of strains belonging to the genus Erythrobacter (16.60%). Of the 247 strains, 10 were potential new species and might form a minor population in the deep sea. To our knowledge, this is the first report to analyze the diversity of culturable bacteria in the South Atlantic Ocean from different depths across the water column.

  9. Synoptic situation in the Atlantic Ocean region during ANT V/5

    SciTech Connect

    Behr, H.D. ); Gravenhorst, G. )

    1990-11-20

    During a 4-week Atlantic Ocean cruise from March 21 to April 15, 1987, along 30{degree}W between 40{degree}S and 40{degree}N, several investigations on trace substances in the air and in the sea were made on board the German R/V Polarstern (ANT V/5). Some of them are discussed in this issue. To better understand these results and to put them into a framework of the general atmospheric situation, daily and long-term mean meteorological data were combined to characterize the atmospheric conditions during this cruise. First, continuous record of surface and rawinsonde data (sea and air temperature, humidity, wind direction and speed, and pressure) was evaluated. Then, as the cruise traversed several climatological zones of the Atlantic Ocean, meridional distributions of surface and upper air data could be worked out; they do not differ significantly from long-term means of this area.

  10. North Atlantic ocean circulation and abrupt climate change during the last glaciation

    NASA Astrophysics Data System (ADS)

    Henry, L. G.; McManus, J. F.; Curry, W. B.; Roberts, N. L.; Piotrowski, A. M.; Keigwin, L. D.

    2016-07-01

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ13C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean’s persistent, central role in abrupt glacial climate change.

  11. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Böning, Claus W.; Behrens, Erik; Biastoch, Arne; Getzlaff, Klaus; Bamber, Jonathan L.

    2016-07-01

    The Greenland ice sheet has experienced increasing mass loss since the 1990s. The enhanced freshwater flux due to both surface melt and outlet glacier discharge is assuming an increasingly important role in the changing freshwater budget of the subarctic Atlantic. The sustained and increasing freshwater fluxes from Greenland to the surface ocean could lead to a suppression of deep winter convection in the Labrador Sea, with potential ramifications for the strength of the Atlantic meridional overturning circulation. Here we assess the impact of the increases in the freshwater fluxes, reconstructed with full spatial resolution, using a global ocean circulation model with a grid spacing fine enough to capture the small-scale, eddying transport processes in the subpolar North Atlantic. Our simulations suggest that the invasion of meltwater from the West Greenland shelf has initiated a gradual freshening trend at the surface of the Labrador Sea. Although the freshening is still smaller than the variability associated with the episodic `great salinity anomalies', the accumulation of meltwater may become large enough to progressively dampen the deep winter convection in the coming years. We conclude that the freshwater anomaly has not yet had a significant impact on the Atlantic meridional overturning circulation.

  12. Sound Speed Structure of the Western South Atlantic Ocean.

    DTIC Science & Technology

    1982-07-01

    through and in the environs of the Vema Channel is discussed in detail by Johnson, McDowell, Sullivan, and Biscayne (1976). The presence of AABW would also...71), August, 185 p. Johnson, D. A., S. E, McDowell, L. G. Sullivan, and P. E. Biscayne (1976). Abyssal Hydrography, Nephelometry, Currents, and Benthic...TAEAS) (1) 540 Ocean Measurements (1) 550 Mapping, Charting & Geodesy Program (1) ONRDET Director, ONR Science & Technology Detachment, Bay St. Louis

  13. Cheirimedon foscae sp. nov. (Amphipoda: Lysianassidae: Tryphosinae) from the deep sea Campos Basin, Southwestern Atlantic Ocean.

    PubMed

    Siqueira, Silvana Gomes L; Serejo, Cristiana S

    2014-10-15

    A new species of lysianassid amphipod belonging to the genus Cheirimedon was collected on the continental slope of the Campos Basin, the largest oil reserve in Brazilian waters. This is the first record of the genus Cheirimedon from the Atlantic Ocean, which was previously restricted to the Antarctic and Tasmanian sea. The new species is fully illustrated and compared with related species. Additionally, a world key to the Cheirimedon species is provided. 

  14. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean.

    PubMed

    Ren, H; Sigman, D M; Meckler, A N; Plessen, B; Robinson, R S; Rosenthal, Y; Haug, G H

    2009-01-09

    Fixed nitrogen (N) is a limiting nutrient for algae in the low-latitude ocean, and its oceanic inventory may have been higher during ice ages, thus helping to lower atmospheric CO2 during those intervals. In organic matter within planktonic foraminifera shells in Caribbean Sea sediments, we found that the 15N/14N ratio from the last ice age is higher than that from the current interglacial, indicating a higher nitrate 15N/14N ratio in the Caribbean thermocline. This change and other species-specific differences are best explained by less N fixation in the Atlantic during the last ice age. The fixation decrease was most likely a response to a known ice age reduction in ocean N loss, and it would have worked to balance the ocean N budget and to curb ice age-interglacial change in the N inventory.

  15. Ocean science: Radiocarbon variability in the western North Atlantic during the last deglaciation

    USGS Publications Warehouse

    Robinson, L.F.; Adkins, J.F.; Keigwin, L.D.; Southon, J.; Fernandez, D.P.; Wang, S.-L.; Scheirer, D.S.

    2005-01-01

    We present a detailed history of glacial to Holocene radiocarbon in the deep western North Atlantic from deep-sea corals and paired benthic-planktonic foraminifera. The deglaciation is marked by switches between radiocarbon-enriched and -depleted waters, leading to large radiocarbon gradients in the water column. These changes played an important role in modulating atmospheric radiocarbon. The deep-ocean record supports the notion of a bipolar seesaw with increased Northern-source deep-water formation linked to Northern Hemisphere warming and the reverse. In contrast, the more frequent radiocarbon variations in the intermediate/deep ocean are associated with roughly synchronous changes at the poles.

  16. Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability?

    NASA Astrophysics Data System (ADS)

    Kopp, Robert E.

    2013-08-01

    To test a hypothesized faster-than-global sea level acceleration along the mid-Atlantic United States, I construct a Gaussian process model that decomposes tide gauge data into short-term variability and longer-term trends, and into globally coherent, regionally coherent, and local components. While tide gauge records indicate a faster-than-global increase in the rate of mid-Atlantic U.S. sea level rise beginning ˜1975, this acceleration could reflect either the start of a long-term trend or ocean dynamic variability. The acceleration will need to continue for ˜2 decades before the rate of increase of the sea level difference between the mid-Atlantic and southeastern U.S. can be judged as very likely unprecedented by 20th century standards. However, the difference is correlated with the Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Gulf Stream North Wall indices, all of which are currently within the range of past variability.

  17. The Lone Ranger Mission: Understanding Synthetic Polymer Microbe Interactions In the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Mielke, R.; Neal, A.; Stam, C. N.; Ferry, J. G.; Schlegel, R.; Tsapin, A. I.; Park, S.; Bhartia, R.; Salas, E.; Hug, W.; Behar, A. E.; Nadeau, J.

    2011-12-01

    Pollution is one of the most ubiquitous and insidious problems currently facing the oceans. As synthetic polymer debris degrades, it becomes increasingly accessible to organisms that forage or absorb food particles. However, research on this significant environmental pollution problem has not been able to keep up with the scope of the issue, since some of the first studies published in 1972 by Edward Carpenter. In January 2011, The Lone Ranger Atlantic Expedition, a collaboration between Blue Ocean Sciences (BOS) and the Schmidt Ocean Institute (SOI) transected the Atlantic Ocean covering 3,100 nautical miles sampling the first 15cm of the water column to investigate microbial interactions with synthetic polymer marine debris. Using established and novel techniques of Fourier transform infrared spectroscopy (FT-IR), scanning transmission electron microscopy (STEM), environmental scanning electron microscopy (ESEM), and gas chromatography-mass spectrometry (GC-MS), we were able to image and locate material degradation of pre-production, association of microbial biofilms, and accumulation of persistent organic pollutants (POP's) on environmental microplastics. We then used Spectroscopic Organic Analysis and ArcGIS mapping systems to observe the material degradation and the associated biofilm lattice on the environmental microplastics. This data sheds light on possible mechanisms of material weathering of synthetic polymers in deep ocean environments and new methods for identifying POP's association with them. These new techniques are highly transferable to many studies on material biofilm interactions in the environment.

  18. Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean

    PubMed Central

    He, Peng; Hou, Xiaolin; Aldahan, Ala; Possnert, Göran; Yi, Peng

    2013-01-01

    Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations of the isotope in the Atlantic Ocean are, however, still unknown. We here present first data on 129I and 127I, and their species (iodide and iodate) in surface water transect along the northeastern Atlantic between 30° and 50°N. The results show iodate as the predominant species in the analyzed marine waters for both 127I and 129I. Despite the rather constant ratios of 127I−/127IO3−, the 129I−/129IO3− values reveal variations that apparently response to sources, environmental conditions and residence time. These findings provide a new tracer approach that will strongly enhance the application of anthropogenic 129I in ocean environments and impact on climate at the ocean boundary layer. PMID:24284916

  19. The hydrography of the mid-latitude northeast Atlantic Ocean. I: The deep water masses

    NASA Astrophysics Data System (ADS)

    van Aken, Hendrik M.

    2000-05-01

    The circulation of the deep water masses in the mid-latitude northeast Atlantic Ocean was studied by analysis of the distributions of potential temperature, salinity, dissolved oxygen, phosphate, nitrate, and silicate. Pre-formed nutrients were used to allow a quantitative description of the deep water masses, especially the Northeast Atlantic Deep Water, in terms of four local source water types: Iceland-Scotland Overflow Water, Lower Deep Water, Labrador Sea Water, and Mediterranean Sea Water. Over the Porcupine Abyssal Plain between 2500 and 2900 dbar Northeast Atlantic Deep Water appears to be a mixture of mainly Iceland-Scotland Overflow Water and Labrador Sea Water (˜80%), with minor contributions of Lower Deep Water and Mediterranean Sea Water. When the Northeast Atlantic Deep Water re-circulates in the north-eastern Atlantic and flows southwards towards the Madeira Abyssal Plain, contributions of the former two water types of northern origin diminish to about 50% due to diapycnal mixing with the overlying and underlying water masses. The observed meridional and zonal trends of dissolved oxygen and nutrients in the Northeast Atlantic Deep Water appear to be caused both by diapycnal mixing with the underlying Lower Deep Water and by mineralization of organic matter. The eastward decrease of oxygen and increase of nutrients especially require considerable mineralization of organic matter near the European continental margin. At deeper levels (˜4100 dbar), where the nutrient rich Lower Deep Water is found near the bottom, the meridional gradients of oxygen and nutrients are opposite to those found between 2500 and 2900 dbar. Diapycnal mixing cannot explain this change in gradients, which is therefore considered to be a qualitative indication of ageing of the Lower Deep Water when it flows northwards. A considerable part of the Iceland-Scotland Overflow Water and the Lower Deep Water that enter the northeast Atlantic may be removed by deep upwelling in the Bay

  20. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  1. PAHs on a west-to-east transect across the tropical Atlantic Ocean.

    PubMed

    Lohmann, Rainer; Klanova, Jana; Pribylova, Petra; Liskova, Hana; Yonis, Shifra; Bollinger, Kevyn

    2013-03-19

    Surface water and atmospheric samples were collected across the tropical Atlantic Ocean on a transect of the R/V Endeavor in summer 2009 and analyzed for polycyclic aromatic hydrocarbons (PAHs). Across the entire tropical Atlantic Ocean, phenanthrene displayed on average highest dissolved concentrations (170 pg L(-1)), followed by pyrene (70 pg L(-1)) and fluoranthene (30 pg L(-1)). The Amazon plume was characterized by elevated dissolved concentrations of phenanthrene and benzo(g,h,i)fluoranthene. The warm eddy that we accidentally sampled at 66° W displayed highest concentrations of PAHs across the entire cruise, with phenanthrene, pyrene, and fluoranthrene all >1 ng L(-1). After having crossed the warm core, concentrations decreased back to previous levels. Samples taken in the Gulf Stream were below detection limit for all parent PAHs, implying very efficient removal processes. Dissolved dimethylphenanthrenes were frequently detected in the samples from the southern hemisphere, the Amazon plume, and in samples characteristic of the Gulf Stream and the U.S. East Coast. Atmospheric concentrations were dominated by gas-phase fluoranthene, pyrene, phenanthrene, and retene. Air-water gradients indicated that PAHs are mostly undergoing net deposition across the tropical Atlantic Ocean, with conditions closer to equilibrium off the U.S. East Coast and in Rhode Island Sound.

  2. Population structure of Squatina guggenheim (Squatiniformes, Squatinidae) from the south-western Atlantic Ocean.

    PubMed

    Garcia, G; Pereyra, S; Gutierrez, V; Oviedo, S; Miller, P; Domingo, A

    2015-01-01

    Population genetic analyses based on both mitochondrial cytochrome b and the internal transcribed spacer 2 of recombinant (r)DNA genes were implemented to examine hypotheses of population differentiation in the angular angel shark Squatina guggenheim, one of the four most-widespread endemic species inhabiting coastal ecosystems in the south-western Atlantic Ocean. A total of 82 individuals of S. guggenheim from 10 sampling sites throughout the Río de la Plata mouth, its maritime front, the outer shelf at the subtropical confluence and the coastal areas of the south-west Atlantic Ocean, were included. The analysis of molecular variance (AMOVA) based on the second internal transcribed spacer (its-2) region supports that the samples from the outer shelf represent an isolated group from other sites. Historical gene flow in a coalescent-based approach revealed significant immigration and emigration asymmetry between sampling sites. Based on the low level of genetic diversity, the existence of a long-term population decline or a past recent population expansion following a population bottleneck could be proposed in S. guggenheim. This demographic differentiation suggests a degree of vulnerability to overexploitation in this endemic and endangered south-west Atlantic Ocean shark, given its longevity and low reproductive potential.

  3. Role of oceanic circulation on contaminant lead distribution in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Alleman, L. Y.; Church, T. M.; Ganguli, P.; Véron, A. J.; Hamelin, B.; Flegal, A. R.

    Both the relatively high lead concentrations and their characteristic anthropogenic isotopic compositions attest to the widespread contamination of industrial lead in the western Equatorial and South Atlantic Ocean. Spatial gradients in those isotopic signatures evidence the conservative lateral transport of lead in oceanic water masses, while the discrete isotopic signatures in deep oceanic waters substantiate the complementary hypothesis that the release of lead from settling particles is relatively small on a decadal time-scale. Specifically, the relatively low radiogenic lead (e.g., 206Pb/ 207Pb=1.148±0.009) in the Lower-North Atlantic Deep Water (l-NADW) south of 10° North is primarily attributed to US industrial lead emitted in the Northern Hemisphere prior to 1965, and the more radiogenic lead (e.g., 206Pb/ 207Pb=1.180±0.006) in the Upper-North Atlantic Deep Water (u-NADW) is primarily attributed to subsequent industrial lead emissions in that hemisphere. In contrast, the relatively radiogenic lead (e.g., 206Pb/ 207Pb=1.186±0.007) in the Antarctic Bottom Water (AABW) seemingly reflects a mixture of natural and anthropogenic lead sources within the Southern Hemisphere; and its isotopic dissimilarity with that (e.g., 206Pb/ 207Pb=1.159±0.002) of Antarctic Intermediate Water (AAIW) and the AABW may be due to differences in either their aeolian or water-mass inputs.

  4. Atlantic and Pacific Ocean synergistic forcing of the Mesomerican monsoon over the last two millennia

    NASA Astrophysics Data System (ADS)

    Lachniet, M. S.; Asmerom, Y.; Polyak, V. J.; Bernal, J. P.

    2015-12-01

    We present a new replicated, high resolution (~2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years. Our new reconstruction is based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval, and are calibrated to instrumental rainfall variations in the Basin of Mexico. Such data complement existing dendroclimatic reconstructions of early wet season and winter drought severity. Comparisons to indices of ocean-atmosphere circulation show a combined forcing by the North Atlantic Oscillation and the El Niño/Southern Oscillation. Monsoon strengthening coincided with synergistic forcing of a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Although drought is commonly invoked as an stressor leading to societal change, the role of intensified monsoon onto cultural development is rarely explored. We observe that prominent transitions from drought to pluvial conditions are associated with population increases in three of the major highland Mexico civilizations of Teotihuacan, Tula Grande, and the Aztecs. These data suggest a role for ocean-atmosphere dynamics arising from the Atlantic and Pacific Oceans on Mesoamerican monsoon strength.

  5. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Conway, Tim M.; John, Seth G.

    2014-10-01

    Zinc (Zn) is a marine micronutrient, with an overall oceanic distribution mirroring the major macronutrients, especially silicate. Seawater Zn isotope ratios (δ66Zn) are a relatively new oceanographic parameter which may offer insights into the biogeochemical cycling of Zn. To date, the handful of published studies of seawater δ66Zn show the global deep ocean to be both remarkably homogeneous (approximately +0.5‰) and isotopically heavier than the marine sources of Zn (+0.1 to +0.3‰). Here we present the first high-resolution oceanic section of δ66Zn, from the U.S. GEOTRACES GA03 North Atlantic Transect, from Lisbon to Woods Hole. Throughout the surface ocean, biological uptake and release of isotopically light Zn, together with scavenging of heavier Zn, leads to large variability in δ66Zn. In the ocean below 1000 m, δ66Zn is generally homogeneous (+0.50 ± 0.14‰; 2 SD), though deviations from +0.5‰ allow us to identify specific sources of Zn. The Mediterranean Outflow is characterized by δ66Zn of +0.1 to +0.3‰, while margin sediments are a source of isotopically light Zn (-0.5 to -0.8‰), which we attribute to release of nonregenerated biogenic Zn. Mid-Atlantic Ridge hydrothermal vents are also a source of light Zn (close to -0.5‰), though Zn is not transported far from the vents. Understanding the biogeochemical cycling of Zn in the modern ocean begins to address the imbalance between the light δ66Zn signature of marine sources and the globally homogeneous deep oceans (δ66Zn of +0.5‰) on long timescales, with overall patterns pointing to sediments as an important sink for isotopically light Zn throughout the oceans.

  6. Intestinal helminth fauna of the shortfin mako Isurus oxyrinchus (Elasmobranchii: Lamnidae) in the northeast Atlantic Ocean.

    PubMed

    Penadés-Suay, Jaime; Tomás, Jesús; Merchán, Manuel; Aznar, Francisco Javier

    2017-02-08

    Large oceanic sharks represent a suitable model to investigate the influence of a host's oceanic conditions on the structure of its helminth communities. In this study, we describe the intestinal helminth fauna, and investigate determinants of infracommunity structure, in 39 specimens of shortfin mako Isurus oxyrinchus collected in the NE Atlantic. Six cestode species were found in the spiral valve of makos: 3 are typical from lamnid sharks, namely, gravid specimens of Clistobothrium montaukensis, Gymnorhynchus isuri and Ceratobothrium xanthocephalum, and 3 are immature specimens of cestode species common to several elasmobranchs, namely, Dinobothrium septaria, Nybelinia lingualis, and Phyllobothrium cf. lactuca. In addition, L3 larvae of Anisakis sp. type I were detected. Infracommunities were species poor and had low total helminth abundance. The result of Schluter's variance ratio test was compatible with the hypothesis of independent colonization of helminth taxa. These results conform to previous studies on oceanic predators that have hypothesized that these hosts should have depauperate and unpredictable helminth infracommunities because oceanic conditions hamper parasite transmission. However, mean species richness and mean total abundance of cestodes of shortfin mako and other oceanic sharks did not significantly differ from those of elasmobranchs from other habitats. This suggests that the large body size and prey consumption rates of oceanic sharks offset the negative 'dilution' effect of oceanic habitat on transmission rates. Additionally, or alternatively, parasites of oceanic sharks may have expanded the use of intermediate hosts through the trophic web to spread out the risk of failure to complete their life cycles.

  7. Marine debris ingestion by albatrosses in the southwest Atlantic Ocean.

    PubMed

    Jiménez, Sebastián; Domingo, Andrés; Brazeiro, Alejandro; Defeo, Omar; Phillips, Richard A

    2015-07-15

    Plastics and other marine debris affect wildlife through entanglement and by ingestion. We assessed the ingestion of marine debris by seven albatross species in the southwest Atlantic by analyzing stomach contents of birds killed in fisheries. Of the 128 specimens examined, including four Diomedea species (n=78) and three Thalassarche species (n=50), 21 (16.4%) contained 1-4 debris items, mainly in the ventriculus. The most common type was plastic fragments. Debris was most frequent in Diomedea species (25.6%) and, particularly, Diomedea sanfordi (38.9%) and very rare in Thalassarche species (2.0%), presumably reflecting differences in foraging behavior or distribution. Frequency of occurrence was significantly higher in male than female Diomedea albatrosses (39.3% vs. 18.0%). Although levels of accumulated debris were relatively low overall, and unlikely to result in gut blockage, associated toxins might nevertheless represent a health risk for Diomedea albatrosses, compounding the negative impact of other human activities on these threatened species.

  8. Metamorphism in oceanic layer 3, Gorringe Bank, eastern Atlantic

    NASA Astrophysics Data System (ADS)

    Mevel, Catherine

    1988-12-01

    Gorringe Bank is an anomalously high structure of the eastern part of the north Atlantic, which was known to be composed of mantle-derived peridotites (layer 4) and gabbros (layer 3). During the submersible cruise CYAGOR II in 1981, the contact between layer 4 and layer 3 was observed on Mount Gettysburg and interpreted as tectonic. The overlying series of gabbro was extensively sampled on both mounts composing the bank, Gettysburg and Ormonde. Coarse-grained to pegmatoid clinopyroxene gabbros predominate and are associated with differentiated rocks (ferrogabbros and diorites). Cumulate gabbros are missing. The gabbroic section sampled is therefore interpreted as the upper part of the plutonic section. Most samples were strongly recrystallized during two distinct events. Metamorphism occurred close to the ridge axis, from interaction of a seawater-derived fluid with still hot gabbros. High temperature shear zones favoured fluid circulation, but the water/rock ratio — estimated from the sodium input — was very small in undeformed rocks (<1). The low W/R ratio explains the strong evolution of the fluid phase and therefore some particular compositions of secondary minerals. Low temperature alteration occurred when the gabbros were tectonically emplaced close to the sea bottom.

  9. Climate change and oceanic barriers: genetic differentiation in Pomatomus saltatrix (Pisces: Pomatomidae) in the North Atlantic Ocean and the Mediterranean Sea.

    PubMed

    Pardiñas, A F; Campo, D; Pola, I G; Miralles, L; Juanes, F; Garcia-Vazquez, E

    2010-11-01

    Nucleotide variation of partial cytochrome b sequences was analysed in the bluefish Pomatomus saltatrix to investigate the population-structuring roles of climate change and oceanic barriers. Western and eastern North Atlantic Ocean populations appeared to be totally isolated, with the latter connected to the Mediterranean Sea within which further structuring occurred.

  10. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations

    PubMed Central

    Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted

    2014-01-01

    Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30′S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Key Points Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies PMID:26213672

  11. Deglacial Ocean Circulation Scheme at Intermediate Depths in the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, R. C.; Marcantonio, F.; Schmidt, M. W.

    2014-12-01

    In the modern Atlantic Ocean, intermediate water circulation is largely governed by the southward flowing upper North Atlantic Deep Water (NADW) and the northward return flow Antarctic Intermediate Water (AAIW). During the last deglaciation, it is commonly accepted that the southward flow Glacial North Atlantic Intermediate Water, the glacial analogue of NADW, contributed significantly to past variations in intermediate water circulation. However, to date, there is no common consensus of the role AAIW played during the last deglaciation, especially across abrupt climate events such as the Heinrich 1 and the Younger Dryas. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between AAIW and northern-sourced intermediate waters in the past. High-resolution Nd isotopic compositions (ɛNd thereafter) of fish debris and bulk sediment acid-reductive leachate from the Southern Caribbean (VM12-107; 1079 m) are inconsistent, again casting concerns, as already raised by recent studies, on the reliability of the leachate method in extracting seawater ɛNd signature. This urges the need to carefully verify the seawater ɛNd integrity in sediment acid-reductive leachate in various oceanic settings. Fish debris Nd isotope record in our study displays a two-step decreasing trend from the early deglaciation to early Holocene. We interpret this as recording a two-step deglacial recovery of the upper NADW, given the assumption on a more radiogenic glacial northern-sourced water is valid. Comparing with authigenic ɛNd records in the Florida Straits [1] and the Demarara Rise [2], our new fish debris ɛNd results suggest that, in the tropical western North Atlantic, glacial and deglacial AAIW never penetrated beyond the lower depth limit of modern AAIW. [1] Xie et al., GCA (140) 2014; [2] Huang et al., EPSL (389) 2014

  12. Variability of Atlantic inflow to the Arctic Ocean from summer hydrographic observations in the Nordic Seas and Fram Strait

    NASA Astrophysics Data System (ADS)

    Beszczynska-Möller, Agnieszka; Walczowski, Waldemar; Fahrbach, Eberhard

    2014-05-01

    Before reaching the Arctic Ocean, warm and salty water masses, originating from the North Atlantic, pass the eastern rims of the Norwegian and Greenland Seas and continue farther to the north through Fram Strait. During its northward advection the Atlantic water (AW) is continuously transformed and its temperature, salinity and heat content changes significantly. A part of the AW heat is released to the atmosphere while a major share is lost due to lateral exchanges and mixing with adjacent water masses. This study addresses summer-to-summer variability, transformation, and circulation patterns of the Atlantic water in the region between the northern Norway and northern Fram Strait. We will present results of the long-term summer measurements in the Norwegian-Atlantic and West Spitsbergen Currents, carried in 1996-2013 by Institute of Oceanology PAS, and compare them to continuous observations from the moored array maintained by Alfred Wegener Institute in the northern Fram Strait, to estimate the impact of seasonal variations on long-term changes in the AW properties. Significant variability over different time scales has been observed in the properties of the AW over the studied period with the warmest AW inflow in late 90s and 2005-2006 and a significant positive trend in AW salinity. Time series of temperature and salinity at the standard hydrographic section at 76°30'N reveal a presence of three 5-6 years long cycles. Spatial distributions of AW properties and geostrophic velocities in the studied region show alternating phases of intensified AW inflow into the Barents Sea and periods of increased northward volume and heat transport through Fram Strait. Using available reanalysis data and meteorological measurements from Svalbard area we will attempt to explain possible links between observed changes and atmospheric forcing. The hydrographic measurements, continued by IO PAS for nearly two decades in the Nordic Seas and Fram Strait, have been strongly

  13. Origin, transport and deposition of leaf-wax biomarkers in the Amazon Basin and the adjacent Atlantic

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno

    2016-11-01

    -chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.

  14. Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean.

    PubMed

    da Silva, Marcus Adonai Castro; Cavalett, Angélica; Spinner, Ananda; Rosa, Daniele Cristina; Jasper, Regina Beltrame; Quecine, Maria Carolina; Bonatelli, Maria Letícia; Pizzirani-Kleiner, Aline; Corção, Gertrudes; Lima, André Oliveira de Souza

    2013-12-01

    The deep-sea environments of the South Atlantic Ocean are less studied in comparison to the North Atlantic and Pacific Oceans. With the aim of identifying the deep-sea bacteria in this less known ocean, 70 strains were isolated from eight sediment samples (depth range between 1905 to 5560 m) collected in the eastern part of the South Atlantic, from the equatorial region to the Cape Abyssal Plain, using three different culture media. The strains were classified into three phylogenetic groups, Gammaproteobacteria, Firmicutes and Actinobacteria, by the analysis of 16s rRNA gene sequences. Gammaproteobacteria and Firmicutes were the most frequently identified groups, with Halomonas the most frequent genus among the strains. Microorganisms belonging to Firmicutes were the only ones observed in all samples. Sixteen of the 41 identified operational taxonomic units probably represent new species. The presence of potentially new species reinforces the need for new studies in the deep-sea environments of the South Atlantic.

  15. C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Singh, A.; Baer, S. E.; Riebesell, U.; Martiny, A. C.; Lomas, M. W.

    2015-11-01

    Nitrogen (N) and phosphorus (P) availability, in addition to other macro- and micronutrients, determine the strength of the ocean's carbon (C) uptake, and variation in the N : P ratio of inorganic nutrient pools is key to phytoplankton growth. A similarity between C : N : P ratios in the plankton biomass and deep-water nutrients was observed by Alfred C. Redfield around 80 years ago and suggested that biological processes in the surface ocean controlled deep-ocean chemistry. Recent studies have emphasized the role of inorganic N : P ratios in governing biogeochemical processes, particularly the C : N : P ratio in suspended particulate organic matter (POM), with somewhat less attention given to exported POM and dissolved organic matter (DOM). Herein, we extend the discussion on ecosystem C : N : P stoichiometry but also examine temporal variation in stoichiometric relationships. We have analyzed elemental stoichiometry in the suspended POM and total (POM + DOM) organic-matter (TOM) pools in the upper 100 m and in the exported POM and subeuphotic zone (100-500 m) inorganic nutrient pools from the monthly data collected at the Bermuda Atlantic Time-series Study (BATS) site located in the western part of the North Atlantic Ocean. C : N and N : P ratios in TOM were at least twice those in the POM, while C : P ratios were up to 5 times higher in TOM compared to those in the POM. Observed C : N ratios in suspended POM were approximately equal to the canonical Redfield ratio (C : N : P = 106 : 16 : 1), while N : P and C : P ratios in the same pool were more than twice the Redfield ratio. Average N : P ratios in the subsurface inorganic nutrient pool were ~ 26 : 1, squarely between the suspended POM ratio and the Redfield ratio. We have further linked variation in elemental stoichiometry to that of phytoplankton cell abundance observed at the BATS site. Findings from this study suggest that elemental ratios vary with depth in the euphotic zone, mainly due to different

  16. C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Singh, A.; Baer, S. E.; Riebesell, U.; Martiny, A. C.; Lomas, M. W.

    2015-06-01

    Nitrogen (N) and phosphorus (P) availability determine the strength of the ocean's carbon (C) uptake, and variation in the N : P ratio in inorganic nutrients is key to phytoplankton growth. A similarity between C : N : P ratios in the plankton biomass and deep-water nutrients was observed by Alfred C. Redfield around 80 years ago and suggested that biological processes in the surface ocean controlled deep ocean chemistry. Recent studies have emphasized the role of inorganic N : P ratios in governing biogeochemical processes, particularly the C : N : P ratio in suspended particulate organic matter (POM), with somewhat less attention given to exported POM and dissolved organic matter (DOM). Herein, we extend the discussion on ecosystem C : N : P stoichiometry but also examine temporal variation of stoichiometric relationships. We have analysed elemental stoichiometry in the suspended POM and total (POM + DOM) organic matter (TOM) pools in the upper 100 m, and in the exported POM and sub-euphotic zone (100-500 m) inorganic nutrient pools from the monthly data collected at the Bermuda Atlantic Time-series Study (BATS) site located in the western part of the North Atlantic Ocean. C : N : P ratios in the TOM pool were more than twice that in the POM pool. Observed C : N ratios in suspended POM were approximately equal to the canonical Redfield Ratio (C : N : P = 106 : 16 : 1), while N : P and C : P ratios in the same pool were more than twice the Redfield Ratio. Average N : P ratios in the subsurface inorganic nutrient pool were ~ 26 : 1, squarely between the suspended POM ratio and the Redfield ratio. We have further linked variation in elemental stoichiometry with that of phytoplankton cell abundance observed at the BATS site. Findings from this study suggest that the variation elemental ratios with depth in the euphotic zone was mainly due to different growth rates of cyanobacterial cells. These time-series data have also allowed us to examine the potential role of

  17. Large-scale diversity patterns of cephalopods in the Atlantic open ocean and deep sea.

    PubMed

    Rosa, Rui; Dierssen, Heidi M; Gonzalez, Liliana; Seibel, Brad A

    2008-12-01

    Although the oceans cover 70% of the Earth's surface and the open ocean is by far the largest ecosystem on the planet, our knowledge regarding diversity patterns of pelagic fauna is very scarce. Here, we examine large-scale latitudinal and depth-related patterns of pelagic cephalopod richness in the Atlantic Ocean in relation to ambient thermal and productive energy availability. Diversity, across 17 biogeochemical regions in the open ocean, does not decline monotonically with latitude, but is positively correlated to the availability of oceanic resources. Mean net primary productivity (NPP), determined from ocean color satellite imagery, explains 37% of the variance in species richness. Outside the poles, the range in NPP explains over 40% of the variability. This suggests that cephalopods are well adapted to the spatial patchiness and seasonality of open-ocean resources. Pelagic richness is also correlated to sea surface temperature, with maximum richness occurring around 15 degrees C and decreasing with both colder and warmer temperatures. Both pelagic and benthos-associated diversities decline sharply from sublittoral and epipelagic regions to the slope and bathypelagic habitats and then steadily to abyssal depths. Thus, higher energy availability at shallow depths seems to promote diversification rates. This strong depth-related trend in diversity also emphasizes the greater influence of the sharp vertical thermal gradient than the smoother and more seasonal horizontal (latitudinal) one on marine diversity.

  18. Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration and ocean entry

    USGS Publications Warehouse

    McCormick, Stephen D.; Sheehan, Timothy F.; Björnsson, Björn Thrandur; Lipsky, Christine; Kocik, John F.; Regish, Amy M.; O'Dea, Michael F.

    2013-01-01

    Billions of hatchery salmon smolts are released annually in an attempt to mitigate anthropogenic impacts on freshwater habitats, often with limited success. Mortality of wild and hatchery fish is high during downstream and early ocean migration. To understand changes that occur during migration, we examined physiological and endocrine changes in Atlantic salmon (Salmo salar) smolts during hatchery rearing, downstream migration, and early ocean entry in two successive years. Gill Na+/K+-ATPase activity increased in the hatchery during spring, increased further after river release, and was slightly lower after recapture in the ocean. Plasma growth hormone levels increased in the hatchery, were higher in the river, and increased further in the ocean. Plasma IGF-I remained relatively constant in the hatchery, increased in the river, then decreased in the ocean. Plasma thyroid hormones were variable in the hatchery, but increased in both river- and ocean-captured smolts. Naturally reared fish had lower condition factor, gill NKA activity, and plasma thyroxine than hatchery fish in the river but were similar in the ocean. This novel data set provides a vital first step in understanding the role and norms of endocrine function in smolts and the metrics of successful marine entry.

  19. Are South Texas Streamflow Variations Influenced by Sea Surface Temperature Changes in Pacific and Atlantic Oceans?

    NASA Astrophysics Data System (ADS)

    Murgulet, V.; Hay, R.; Ard, R.

    2013-12-01

    The impact of sea surface temperature (SST) anomalies of the Pacific and Atlantic Oceans on several major river basins in the continental U. S. has recently become well documented. Clear relationships have been identified between El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO) and continental U. S. streamflow. Because these relationships can be potentially used to predict streamflow variability, it would also be of great importance to evaluate whether these climate phenomena affect river basins at the sub-regional and/or local scale, objectives that are not usually addressed in previous studies. Therefore, this study is focused on the basin river system of South Texas, an area that encompasses approximately 30,000 km2 and is climatologically defined as subtropical subhumid. Streamflow data (1940-2011) from sixteen unimpaired U.S. Geological Survey gage stations were normalized into a South Texas streamflow data set and evaluated with respect to ENSO, PDO and AMO index time series. The comparison of South Texas annual streamflow with Pacific Decadal Oscillation and El Niño Southern Oscillation Indices shows that the warm phases of ENSO and PDO are generally associated with increased streamflow, whereas cold phases of ENSO and PDO result in lower streamflow volumes. In addition, cross-correlation analyses show a 7-8 month delayed streamflow response to sea surface temperature signals. Furthermore, annual streamflow variability in the South Texas river basins can be also due to sea surface temperature anomalies in the Atlantic Ocean. Higher streamflow values are shown during the cold phase of AMO, while relatively low streamflow values are illustrated during the warm phase of AMO. Thus, preliminary results show that SST anomalies in both Pacific and Atlantic Oceans influence the streamflow variability in the South Texas area. Current research is also focused on evaluating if these climate phenomena

  20. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; McDermott, Frank; Mudelsee, Manfred; Werner, Martin; Frank, Norbert; Mangini, Augusto

    2016-09-01

    Speleothem δ18O records provide valuable information about past continental environmental and climatic conditions, although their interpretation is often not straightforward. Here we evaluate a compilation of late Holocene speleothem δ18O records using a Monte Carlo based Principal Component Analysis (MC-PCA) method that accounts for uncertainties in individual speleothem age models and for the variable temporal resolution of each δ18O record. The MC-PCA approach permits not only the identification of temporally coherent changes in speleothem δ18O; it also facilitates their graphical depiction and evaluation of their spatial coherency. The MC-PCA method was applied to 11 Holocene speleothem δ18O records that span most of the European continent (apart from the circum-Mediterranean region). We observe a common (shared) mode of speleothem δ18O variability that suggests millennial-scale coherency and cyclicity during the last 4.5 ka. These changes are likely caused by variability in atmospheric circulation akin to that associated with the North Atlantic Oscillation, reflecting meridionally shifted westerlies. We argue that these common large-scale variations in European speleothem δ18O records are in phase with changes in the North Atlantic Ocean circulation indicated by the vigour of the Iceland Scotland Overflow Water (ISOW), the strength of the subpolar gyre (SPG) and an ocean stacked North Atlantic ice rafted debris (IRD) index. Based on a recent modelling study, we conclude that these changes in the North Atlantic circulation history may be caused by wind stress on the ocean surface driven by shifted westerlies. However, the mechanisms that ultimately force the westerlies remain unclear.

  1. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean - potential impacts

    NASA Astrophysics Data System (ADS)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-07-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  2. Chemically aged and mixed aerosols over the Central Atlantic Ocean - potential impacts

    NASA Astrophysics Data System (ADS)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-02-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, designating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols indicates that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud and entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  3. Six years of deep ocean infragravity wave measurements on the Mid-Atlantic Ridge, 37°N

    NASA Astrophysics Data System (ADS)

    Crawford, W. C.; Ballu, V.; Bertin, X.; Karpytchev, M.

    2013-12-01

    Ocean infragravity waves are an important part of the deep ocean climate, can be used to measure subsurface elastic properties, and may contribute to the earth's background seismic noise. They are surface gravity waves with periods from 10s of seconds to 10s of minutes and are generated by non-linear wave-wave interactions, with the strongest infragravity waves believed to be generated by storms near coastlines. The first deep ocean observations of infragravity waves suggested that they were much stronger and more constant in the Pacific Ocean than in the North Atlantic Ocean, presumably because the Pacific Ocean has direct wavepaths to more coastline and, in particular, high-latitude coastlines in both the Northern and Southern Oceans [Webb et al., 1991]. However, a recent study of deep ocean infragravity waves, using data from tsunami buoys at a large number of sites in the Pacific and Atlantic Oceans, suggests that infragravity wave energy is much more variable in the Pacific Ocean, and stronger in the Atlantic Ocean, than was assumed [Aucan & Ardhuin, 2013]. We measured seafloor pressure continuously for six years at a deep ocean site using both differential and absolute pressure gauges. We describe the levels and variability of infragravity wave energy and their correlation with coastal storms. We relate the energy observed at Atlantic and Pacific ocean tsunami gauges to the sensitivity of each site to waves from surrounding coastlines, calculated using a tsunami modeling code. We compare the sensitivity of tsunami buoys and differential pressure gauges to deep ocean infragravity waves.

  4. The North Atlantic Ocean as habitat for Calanus finmarchicus: Environmental factors and life history traits

    NASA Astrophysics Data System (ADS)

    Melle, Webjørn; Runge, Jeffrey; Head, Erica; Plourde, Stéphane; Castellani, Claudia; Licandro, Priscilla; Pierson, James; Jonasdottir, Sigrun; Johnson, Catherine; Broms, Cecilie; Debes, Høgni; Falkenhaug, Tone; Gaard, Eilif; Gislason, Astthor; Heath, Michael; Niehoff, Barbara; Nielsen, Torkel Gissel; Pepin, Pierre; Stenevik, Erling Kaare; Chust, Guillem

    2014-12-01

    Here we present a new, pan-Atlantic compilation and analysis of data on Calanus finmarchicus abundance, demography, dormancy, egg production and mortality in relation to basin-scale patterns of temperature, phytoplankton biomass, circulation and other environmental characteristics in the context of understanding factors determining the distribution and abundance of C. finmarchicus across its North Atlantic habitat. A number of themes emerge: (1) the south-to-north transport of plankton in the northeast Atlantic contrasts with north-to-south transport in the western North Atlantic, which has implications for understanding population responses of C. finmarchicus to climate forcing, (2) recruitment to the youngest copepodite stages occurs during or just after the phytoplankton bloom in the east whereas it occurs after the bloom at many western sites, with up to 3.5 months difference in recruitment timing, (3) the deep basin and gyre of the southern Norwegian Sea is the centre of production and overwintering of C. finmarchicus, upon which the surrounding waters depend, whereas, in the Labrador/Irminger Seas production mainly occurs along the margins, such that the deep basins serve as collection areas and refugia for the overwintering populations, rather than as centres of production, (4) the western North Atlantic marginal seas have an important role in sustaining high C. finmarchicus abundance on the nearby coastal shelves, (5) differences in mean temperature and chlorophyll concentration between the western and eastern North Atlantic are reflected in regional differences in female body size and egg production, (6) regional differences in functional responses of egg production rate may reflect genetic differences between western and eastern populations, (7) dormancy duration is generally shorter in the deep waters adjacent to the lower latitude western North Atlantic shelves than in the east, (8) there are differences in stage-specific daily mortality rates between

  5. New nutrients exert fundamental control on dissolved organic carbon accumulation in the surface Atlantic Ocean.

    PubMed

    Romera-Castillo, Cristina; Letscher, Robert T; Hansell, Dennis A

    2016-09-20

    The inventories of carbon residing in organic matter dissolved in the ocean [dissolved organic carbon (DOC)] and in the atmosphere as CO2 are of the same order of magnitude, such that small changes in the DOC pool could have important consequences in atmospheric carbon and thus climate. DOC in the global ocean is largely formed in the sunlit euphotic zone, but identifying predictable controls on that production is an important yet unrealized goal. Here, we use a testable and causative correlation between the net production of DOC and the consumption of new nutrients in the euphotic zone of the Atlantic Ocean. We demonstrate that new nutrients introduced to the euphotic zone by upwelling in divergence zones and by winter convective overturn of the water column, and the primary production associated with those nutrients, are the ultimate driver of DOC distributions across the Atlantic basins. As new nutrient input will change with a changing climate, the role of DOC in the ocean's biological pump should likewise be impacted.

  6. Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels.

    PubMed

    Munk, Peter; Hansen, Michael M; Maes, Gregory E; Nielsen, Torkel G; Castonguay, Martin; Riemann, Lasse; Sparholt, Henrik; Als, Thomas D; Aarestrup, Kim; Andersen, Nikolaj G; Bachler, Mirjam

    2010-12-07

    Anguillid freshwater eels show remarkable life histories. In the Atlantic, the European eel (Anguilla anguilla) and American eel (Anguilla rostrata) undertake extensive migrations to spawn in the oceanic Sargasso Sea, and subsequently the offspring drift to foraging areas in Europe and North America, first as leaf-like leptocephali larvae that later metamorphose into glass eels. Since recruitment of European and American glass eels has declined drastically during past decades, there is a strong demand for further understanding of the early, oceanic phase of their life cycle. Consequently, during a field expedition to the eel spawning sites in the Sargasso Sea, we carried out a wide range of dedicated bio-physical studies across areas of eel larval distribution. Our findings suggest a key role of oceanic frontal processes, retaining eel larvae within a zone of enhanced feeding conditions and steering their drift. The majority of the more westerly distributed American eel larvae are likely to follow a westerly/northerly drift route entrained in the Antilles/Florida Currents. European eel larvae are generally believed to initially follow the same route, but their more easterly distribution close to the eastward flowing Subtropical Counter Current indicates that these larvae could follow a shorter, eastward route towards the Azores and Europe. The findings emphasize the significance of oceanic physical-biological linkages in the life-cycle completion of Atlantic eels.

  7. Microbial community diversity and physical-chemical features of the Southwestern Atlantic Ocean.

    PubMed

    Alves Junior, Nelson; Meirelles, Pedro Milet; de Oliveira Santos, Eidy; Dutilh, Bas; Silva, Genivaldo G Z; Paranhos, Rodolfo; Cabral, Anderson S; Rezende, Carlos; Iida, Tetsuya; de Moura, Rodrigo L; Kruger, Ricardo Henrique; Pereira, Renato C; Valle, Rogério; Sawabe, Tomoo; Thompson, Cristiane; Thompson, Fabiano

    2015-03-01

    Microbial oceanography studies have demonstrated the central role of microbes in functioning and nutrient cycling of the global ocean. Most of these former studies including at Southwestern Atlantic Ocean (SAO) focused on surface seawater and benthic organisms (e.g., coral reefs and sponges). This is the first metagenomic study of the SAO. The SAO harbors a great microbial diversity and marine life (e.g., coral reefs and rhodolith beds). The aim of this study was to characterize the microbial community diversity of the SAO along the depth continuum and different water masses by means of metagenomic, physical-chemical and biological analyses. The microbial community abundance and diversity appear to be strongly influenced by the temperature, dissolved organic carbon, and depth, and three groups were defined [1. surface waters; 2. sub-superficial chlorophyll maximum (SCM) (48-82 m) and 3. deep waters (236-1,200 m)] according to the microbial composition. The microbial communities of deep water masses [South Atlantic Central water, Antarctic Intermediate water and Upper Circumpolar Deep water] are highly similar. Of the 421,418 predicted genes for SAO metagenomes, 36.7 % had no homologous hits against 17,451,486 sequences from the North Atlantic, South Atlantic, North Pacific, South Pacific and Indian Oceans. From these unique genes from the SAO, only 6.64 % had hits against the NCBI non-redundant protein database. SAO microbial communities share genes with the global ocean in at least 70 cellular functions; however, more than a third of predicted SAO genes represent a unique gene pool in global ocean. This study was the first attempt to characterize the taxonomic and functional community diversity of different water masses at SAO and compare it with the microbial community diversity of the global ocean, and SAO had a significant portion of endemic gene diversity. Microbial communities of deep water masses (236-1,200 m) are highly similar, suggesting that these water

  8. Air-sea interactions and oceanic processes in the development of different Atlantic Niño patterns

    NASA Astrophysics Data System (ADS)

    Martin-Rey, Marta; Polo, Irene; Rodríguez-Fonseca, Belén; Lazar, Alban

    2016-04-01

    Atlantic Niño is the leading mode of inter-annual variability of the tropical Atlantic basin at inter-annual time scales. A recent study has put forward that two different Atlantic Niño patterns co-exist in the tropical Atlantic basin during negative phases of the Atlantic Multidecadal Oscillation. The leading mode, Basin-Wide (BW) Atlantic Niño is characterized by an anomalous warming extended along the whole tropical basin. The second mode, the Dipolar (D) Atlantic Niño presents positive Sea Surface Temperature (SST) anomalies in the central-eastern equatorial band, surrounded by negative ones in the North and South tropical Atlantic. The BW Atlantic Niño is associated with a weakening of both Azores and Sta Helena High, which reduces the tropical trades during previous autumn-winter. On the other hand, the D-Atlantic Niño is related to a strengthening of the Azores and a weakening of Helena High given rise to a meridional Sea Level Pressure (SLP) gradient that originates an intensification of the subtropical trades and anomalous westerlies along the equatorial band. This different wind forcing suggests that different oceanic processes could act in the development of the BW and D Atlantic Niño patterns. For this reason, an inter-annual simulation with the ocean NEMO model has been performed and the heat budget analysis has been analysed for each Atlantic Niño mode. The results suggest that the two Atlantic Nino configurations have different timing. The heat budget analysis reveals that BW Atlantic Nino SST pattern is due to anomalous air-sea heat fluxes in the south tropical and western equatorial Atlantic during the autumn-winter, while vertical processes are responsible of the warming in the central and eastern part of the basin during late-winter and spring. For the D-Atlantic Nino, the subtropical cooling is attributed to turbulent heat fluxes, the equatorial SST signal is mainly forced by vertical entrainment. The role of the oceanic waves in the

  9. Ocean surface warming: The North Atlantic remains within the envelope of previous recorded conditions

    NASA Astrophysics Data System (ADS)

    Hobson, Victoria J.; McMahon, Clive R.; Richardson, Anthony; Hays, Graeme C.

    2008-02-01

    Anomalously warm air temperatures in various parts of the world have been widely noted in recent decades. In marine systems, biological indicators such as the range of plankton and fish have been used to indicate impacts of ocean warming, although for many regions recent ocean warming does not exceed short-term warming events over the last two centuries. Here we use International Comprehensive Ocean-Atmosphere Data Set (ICOADS) sea-surface temperature data to update analysis in the North Atlantic to show that present warm conditions are currently no more persistent than those encountered in the last 150 years. We show that the position of various isotherms, which play a central role in influencing the distribution of marine taxa ranging from plankton to fish and turtles, are more regularly found further north in recent years than at any time since the 1850s.

  10. A new species of pencil smelt Nansenia boreacrassicauda (Microstomatidae, Argentiniformes) from the North Atlantic Ocean.

    PubMed

    Poulsen, Jan Yde

    2015-09-23

    A new microstomatid oceanic species, Nansenia boreacrassicauda spec. nov., is described from the temperate and subarctic Atlantic Ocean. The new species is part of the "stubby caudal peduncle" group and includes the northernmost record of any Nansenia species close to the Arctic Circle. The new species is putatively most similar to the Mediterranean Nansenia iberica, distinguished by a smaller caudal peduncle length/depth ratio, a smaller predorsal distance, more gill rakers, a different lateral line scale type and distribution. Extended Nansenia species distributions and specimens that show extralimital characters in relation to previous works are presented, addressing the current problematic taxonomic issues prevalent in pencil smelts and closely related genera. The new species is described due to increased collecting and taxonomic efforts off Greenland and is not necessarily related to ocean temperature changes.

  11. Major Role of the Cyanobacterium Trichodesmium in Nutrient Cycling in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Carpenter, Edward J.; Romans, Kristen

    1991-11-01

    The diazotrophic cyanobacterium Trichodesmium is a large (about 0.5 by 3 millimeters) phytoplankter that is common in tropical open-ocean waters. Measurements of abundance, plus a review of earlier observations, indicate that it, rather than the picophytoplankton, is the most important primary producer (about 165 milligrams of carbon per square meter per day) in the tropical North Atlantic Ocean. Furthermore, nitrogen fixation by Trichodesmium introduces the largest fraction of new nitrogen to the euphotic zone, approximately 30 milligrams of nitrogen per square meter per day, a value exceeding the estimated flux of nitrate across the thermocline. Inclusion of this organism, plus the abundant diazotrophic endosymbiont Richelia intracellularis that is present in some large diatoms, in biogeochemical studies of carbon and nitrogen may help explain the disparity between various methods of measuring productivity in the oligotrophic ocean. Carbon and nitrogen fixation by these large phytoplankters also introduces a new paradigm in the biogeochemistry of these elements in the sea.

  12. Changes in the strength of Atlantic Ocean overturning circulation across repeated Eocene warming events

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, S.; Sexton, P. F.; Norris, R. D.; Wilson, P. A.; Charles, C. D.; Ridgwell, A.

    2015-12-01

    The Paleogene Period (~65 to 34 Ma) was a time of acute climatic warmth, with deep ocean temperatures exceeding 12°C at the height of the Early Eocene Climatic Optimum (~53 to 50 Ma). Multiple rapid warming events, associated with transient deep sea temperature increases of 2 to 4°C (termed 'hyperthermals'), potentially related to orbital forcing of the carbon cycle and climate, occurred from the late Paleocene through at least the early middle Eocene and onset of long-term Cenozoic cooling (~47 Ma). While deep ocean circulation patterns associated with the great glaciations of the Plio-Pleistocene have been studied extensively, the behavior of the ocean's overturning circulation on orbital-timescales in the extreme warmth of the early Cenozoic is largely unknown. Here we present new evidence for changing patterns of ocean overturning in the southern hemisphere associated with four orbitally paced hyperthermal events in the early-middle Eocene (~50 to 48 Ma) based on a combination of multi-site bulk carbonate and benthic foraminiferal stable isotope measurements and Earth system modeling. Our results suggest that southern-sourced overturning weakens and shoals in response to modest atmospheric carbon injections and consequent warming, and is replaced by invasion of nutrient-rich North Atlantic-sourced deep water, leading to predictable spatial patterns in deep-sea carbon isotope records. The changes in abyssal carbon isotope 'aging' gradients associated with these hyperthermals are, in fact, two to three times larger than the change in aging gradient associated with the switch in Atlantic overturning between the Last Glacial Maximum and today. Our results suggest that the Atlantic overturning circulation was sensitive to orbital-scale climate variability during Eocene extreme warmth, not just to interglacial-glacial climatic variability of the Plio-Pleistocene.

  13. Comparisons of anthropogenic CO2 storage between Models and Observations in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Rios, A. F.; Velo, A.; Steinfeldt, R.; Khatiwala, S.; Bopp, L.; Perez, F. F.

    2012-04-01

    Observational methods to estimate anthropogenic CO2 (Cant) are applied to a high quality dataset of the Atlantic Ocean from 65°N - 80°S. The database consists of CARINA and GLODAP datasets (76363 data) that was extended to 104043 using a local MLR and neural networks to recover carbon data available for Cant computations, assuming no temporal variability of alkalinity. A multiparametric method using conservative water mass properties of WOA'09 for interpolation was applied to the Cant estimated using the observational methods (Phi-Ct°, TrOCA, TTD) to obtain the Cant storage in the Atlantic Ocean. These Cant storages were compared with four model outputs (LSC, CSIRO, ETH, WHOI) and an inverse solution based on constraining the oceans transport Green function with observations. All Cant storages give similar spatial distributions however, the output of the models give systematically 75% lower Cant storage than the observational methods. We find even more marked difference when we consider the water column below 5°C that represent the 82% of the total volume, where the Cant storage given by models are two and a half times lower that the observational methods, where the highest differences appear south of 40°S. While in waters above 5 ° C, there is a good agreement with a difference of only 20% that is located in the subtropical North Atlantic area. To evaluate the areas where the highest discrepancies occur, a specific study through the vertical profiles is carried out. These results will help to assess biogeochemical ocean models and coupled climate-carbon models.

  14. Implication of eolian delivery and accumulation of highly reactive iron to the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lee, B. K.; Owens, J. D.; Lyons, T. W.

    2014-12-01

    Iron, although abundant in the Earth's crust, is present at low concentrations in sea water and is a limiting nutrient for phytoplankton. Eolian dust (loess) is a major source of this micronutrient, and its deposition has important implications for the global CO2 budget. In this study, we explore distributions of potentially bioreactive Fe, the soluble fraction required by phytoplankton for photosynthesis and nitrogen assimilation, in deep-sea sediments in the North and South Atlantic Oceans. We used a state-of-the-art Fe speciation technique to characterize Fe inputs from different source regions, specifically North Africa and Patagonia to address the patterns and implications across glacial-interglacial time scales. In many open-ocean regions the input of new iron to the surface waters is dominated by the atmospheric deposition of soluble iron in eolian dusts. Multiple records have shown dust accumulation is correlated with glacial-interglacial cycles - glacial periods are substantially dustier. Furthermore, the delivery of eolian dust to the North and South Atlantic Oceans are from two very different source regions and soil types. We analyzed IODP cores from these two regions and our preliminary data shows similar pattern of iron distribution from both the North and South Atlantic Oceans. To date we have found no simple global pattern of bioavailable iron distribution during glacial and interglacial periods. We have analyzed a range of size distributions to isolate the dust-dominated fraction and the data shows no size effects in bioavailable form of iron distribution. We will explore the role of deep-water dust dissolution and sedimentary redox implications and its role on the bioreactive Fe record in marine cores.

  15. Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the Western North Atlantic Ocean.

    PubMed

    Newton, Christine; Bracken, Matthew E S; McConville, Megan; Rodrigue, Katherine; Thornber, Carol S

    2013-01-01

    The recent invasion of the red alga Heterosiphonia japonica in the western North Atlantic Ocean has provided a unique opportunity to study invasion dynamics across a biogeographical barrier. Native to the western North Pacific Ocean, initial collections in 2007 and 2009 restricted the western North Atlantic range of this invader to Rhode Island, USA. However, through subtidal community surveys, we document the presence of Heterosiphonia in coastal waters from Maine to New York, USA, a distance of more than 700 km. This geographical distribution spans a well-known biogeographical barrier at Cape Cod, Massachusetts. Despite significant differences in subtidal community structure north and south of Cape Cod, Heterosiphonia was found at all but two sites surveyed in both biogeographic provinces, suggesting that this invader is capable of rapid expansion over broad geographic ranges. Across all sites surveyed, Heterosiphonia comprised 14% of the subtidal benthic community. However, average abundances of nearly 80% were found at some locations. As a drifting macrophyte, Heterosiphonia was found as intertidal wrack in abundances of up to 65% of the biomass washed up along beaches surveyed. Our surveys suggest that the high abundance of Heterosiphonia has already led to marked changes in subtidal community structure; we found significantly lower species richness in recipient communities with higher Heterosiphona abundances. Based on temperature and salinity tolerances of the European populations, we believe Heterosiphonia has the potential to invade and alter subtidal communities from Florida to Newfoundland in the western North Atlantic.

  16. Mercury Concentrations in Tuna (Thunnus albacares and Thunnus obesus) from the Brazilian Equatorial Atlantic Ocean.

    PubMed

    Lacerda, L D; Goyanna, F; Bezerra, M F; Silva, G B

    2017-02-01

    Average total Hg concentrations measured in muscle of two species of tuna (Thunnus obesus and T. albacares) captured in the Brazilian Equatorial Atlantic Ocean varied from 95 to 1748 ng.g(-1) wet weight in T. obesus and 48 to 500 ng.g(-1) wet weight in T. albacares. Higher concentrations in T. obesus are probably related to foraging on deep water carnivorous fish. Smaller individuals of both species showed the lowest concentrations, but a significant positive relationship between fish weight and length and Hg concentrations was found for T. obesus, but not for T. albacares. Largest individuals (>30 kg) of T. obesus showed Hg concentrations ≥1000 ng.g(-1), surpassing the legal limits for human consumption, although the average concentration for this species was much lower (545 ng.g(-1)). Concentrations in T. albacares from the Brazilian Equatorial were lower than those found in the African and in the North Atlantic. No comparison could be made for T. obesus due to few studies for this species in the Atlantic Ocean.

  17. Invasion of the Red Seaweed Heterosiphonia japonica Spans Biogeographic Provinces in the Western North Atlantic Ocean

    PubMed Central

    Newton, Christine; Bracken, Matthew E. S.; McConville, Megan; Rodrigue, Katherine; Thornber, Carol S.

    2013-01-01

    The recent invasion of the red alga Heterosiphonia japonica in the western North Atlantic Ocean has provided a unique opportunity to study invasion dynamics across a biogeographical barrier. Native to the western North Pacific Ocean, initial collections in 2007 and 2009 restricted the western North Atlantic range of this invader to Rhode Island, USA. However, through subtidal community surveys, we document the presence of Heterosiphonia in coastal waters from Maine to New York, USA, a distance of more than 700 km. This geographical distribution spans a well-known biogeographical barrier at Cape Cod, Massachusetts. Despite significant differences in subtidal community structure north and south of Cape Cod, Heterosiphonia was found at all but two sites surveyed in both biogeographic provinces, suggesting that this invader is capable of rapid expansion over broad geographic ranges. Across all sites surveyed, Heterosiphonia comprised 14% of the subtidal benthic community. However, average abundances of nearly 80% were found at some locations. As a drifting macrophyte, Heterosiphonia was found as intertidal wrack in abundances of up to 65% of the biomass washed up along beaches surveyed. Our surveys suggest that the high abundance of Heterosiphonia has already led to marked changes in subtidal community structure; we found significantly lower species richness in recipient communities with higher Heterosiphona abundances. Based on temperature and salinity tolerances of the European populations, we believe Heterosiphonia has the potential to invade and alter subtidal communities from Florida to Newfoundland in the western North Atlantic. PMID:23638018

  18. Aridity changes in the Sahel and their relation to Atlantic-Ocean circulation

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Mulitza, Stefan; Zabel, Matthias; Prange, Matthias

    2010-05-01

    Life in the semiarid Sahel belt of tropical North Africa strongly depends on the availability of water and has, at least since the Pliocene, been frequently affected by shifts to more arid climate. A recent example of abrupt droughts occurred in the early 70's and 80's of the last century. Here we present grain-size distribution data, analysed with an end-member modelling algorithm (Weltje 1997) as well as bulk chemical data of a sediment core collected from the continental slope offshore Senegal, covering the last 57 kyr. These data suggest that during this time interval there were several periods where a relatively humid climate changed abruptly to dry conditions. These dry conditions, which lasted up to several millennia, occurred synchronously with cold sea surface temperatures (SSTs) in the North Atlantic and reductions in the meridional overturning circulation in the Atlantic Ocean, suggesting that Atlantic Ocean circulation could be closely related to climate conditions in the Sahel. Climate modeling suggests that this drying is induced by a southward shift of the West African monsoon trough in conjunction with an intensification and southward expansion of the midtropospheric African Easterly Jet.

  19. Summer mean full depth circulation in North Atlantic Ocean along 59.5 N

    NASA Astrophysics Data System (ADS)

    Gladyshev, Vsevolod; Sokov, Alexey; Gladyshev, Sergey

    2016-04-01

    The large scale oceanic circulation in the North Atlantic is an important part of the climate system. Warm saline upper-ocean waters derived in subtropics release heat into the atmosphere while moving northward as North Atlantic Current and by mixing with colder fresher Arctic waters sink in the subpolar basins therefore originating reverse equatorward flow of cold fresh water. This mechanism, known as Atlantic Meridional Overturning Circulation (MOC) is of fundamental importance in the meridional heat transport. Using data from yearly direct hydrographic measurements at 59.5 N with satellite altimetry data in the period 2009-2015 a mean state of the full-depth summer circulation in the region is estimated. Zonal distribution of the 2009-2015 mean summer velocities across the 59.5 N is obtained using four different data sets from (1) pair of WS 300 kHz LADCPs measurements, (2) ship mounted TRDI OS 38 kHz ADCP measurements, (3) AVISO altimetry data (surface absolute geostrophic velocities), and (4) geostrophic velocities data calculated using CTD measurements. By combining those data mean absolute transport is estimated. Results are compared and analyzed confirming and elaborating previous research. Also assessment of the errors associated with full-depth ADCP profiles is settled. This evaluation allows arguing about certainty of collected data and can be used to improve accuracy of circulation rating.

  20. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  1. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.

    PubMed

    Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun

    2014-01-23

    In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change.

  2. Optimisation of A 1d-ecosystem Model To Observations In The North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Schartau, M.; Oschlies, A.

    An optimisation experiment is performed with a vertically resolved, nitrogen based ecosystem model, comprising four state variables (1D-NPZD model): dissolved inor- ganic nitrogen (N), phytoplankton (P), herbivorous zooplankton (Z) and detritus (D). Parameter values of the NPZD-model are optimised while regarding observational data from three locations in the North Atlantic simultaneously: Bermuda Atlantic Time-series Study (BATS), data of the North Atlantic Bloom Experiment (NABE) and observations from Ocean Weather Ship-India (OWS-INDIA). The simultaneous opti- misation yields a best parameter set which can be utilized for basin wide simulations in coupled physical-biological (general circulation) models of the North Atlantic. After optimisation of the 1D-NPZD model, systematic discrepancies between 14C-fixation rates and modelled primary production are emphasized. Using the optimal parame- ter estimates for coupled 3D-simulations, the biogeochemical fluxes show substantial differences in contrast to previous model results. For instance, rapid recycling of or- ganic matter enhances primary production rates. This becomes most evident within the oligotrophic regions of the subtropical gyre.

  3. Surface temperatures of the Mid-Pliocene North Atlantic Ocean: Implications for future climate

    USGS Publications Warehouse

    Dowsett, Harry J.; Chandler, Mark A.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.

  4. Invasive species in the Northeastern and Southwestern Atlantic Ocean: A review.

    PubMed

    Castro, Maria Cecilia T de; Fileman, Timothy W; Hall-Spencer, Jason M

    2017-03-15

    The spread of non-native species has been a subject of increasing concern since the 1980s when human-mediated transportation, mainly related to ships' ballast water, was recognized as a major vector for species transportation and spread, although records of non-native species go back as far as 16th Century. Ever increasing world trade and the resulting rise in shipping have highlighted the issue, demanding a response from the international community to the threat of non-native marine species. In the present study, we searched for available literature and databases on shipping and invasive species in the North-eastern (NE) and South-western (SW) Atlantic Ocean and assess the risk represented by the shipping trade between these two regions. There are reports of 44 species associated with high impacts for the NE Atlantic and 15 for the SW Atlantic, although this may be an underestimate. Vectors most cited are ballast water and biofouling for both regions while aquaculture has also been a very significant pathway of introduction and spread of invasive species in the NE Atlantic. Although the two regions have significant shipping traffic, no exchange of invasive species could be directly associated to the shipping between the two regions. However, it seems prudent to bring the exchange of ballast water between the two regions under control as soon as possible.

  5. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies

    NASA Astrophysics Data System (ADS)

    Landerer, Felix W.; Wiese, David N.; Bentel, Katrin; Boening, Carmen; Watkins, Michael M.

    2015-10-01

    Concerns about North Atlantic Meridional Overturning Circulation (NAMOC) changes imply the need for a continuous, large-scale observation capability to detect changes on interannual to decadal time scales. Here we present the first measurements of Lower North Atlantic Deep Water (LNADW) transport changes using only time-variable gravity observations from Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 until now. Improved monthly gravity field retrievals allow the detection of North Atlantic interannual bottom pressure anomalies and LNADW transport estimates that are in good agreement with those from the Rapid Climate Change-Meridional Overturning Circulation and Heatflux Array (RAPID/MOCHA). Concurrent with the observed AMOC transport anomalies from late 2009 through early 2010, GRACE measured ocean bottom pressures changes in the 3000-5000 m deep western North Atlantic on the order of 20 mm-H2O (200 Pa), implying a southward volume transport anomaly in that layer of approximately -5.5 sverdrup. Our results highlight the efficacy of space gravimetry for observing AMOC variations to evaluate latitudinal coherency and long-term variability.

  6. GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.

    NASA Astrophysics Data System (ADS)

    Asavin, A. M.

    2001-12-01

    There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.

  7. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

    NASA Astrophysics Data System (ADS)

    Sakov, P.; Counillon, F.; Bertino, L.; Lisæter, K. A.; Oke, P. R.; Korablev, A.

    2012-08-01

    We present a detailed description of TOPAZ4, the latest version of TOPAZ - a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003-2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation in the North Atlantic and the sea-ice variability in the Arctic. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates - a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in-situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

  8. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Dupont, F.; Higginson, S.; Bourdallé-Badie, R.; Lu, Y.; Roy, F.; Smith, G. C.; Lemieux, J.-F.; Garric, G.; Davidson, F.

    2015-01-01

    As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, The Government of Canada is developing a high resolution (1/12°) ice-ocean regional model covering the North Atlantic and the Arctic oceans. The objective is to provide Canada with short-term ice-ocean predictions and hazard warnings in ice infested regions. To evaluate the modelling component (as opposed to the analysis - or data-assimilation - component), a series of hindcasts for the period 2003-2009 is carried out, forced at the surface by the Canadian Global Re-Forecasts. These hindcasts test how the model represent upper ocean characteristics and ice cover. Each hindcast implements a new aspect of the modelling or the ice-ocean coupling. Notably, the coupling to the multi-category ice model CICE is tested. The hindcast solutions are then assessed using a validation package under development, including in-situ and satellite ice and ocean observations. The conclusions are: (1) the model reproduces reasonably well the time mean, variance and skewness of sea surface height. (2) The model biases in temperature and salinity show that while the mean properties follow expectations, the Pacific Water signature in the Beaufort Sea is weaker than observed. (3) However, the modelled freshwater content of the Arctic agrees well with observational estimates. (4) The distribution and volume of the sea ice is shown to be improved in the latest hindcast thanks to modifications to the drag coefficients and to some degree as well to the ice thickness distribution available in CICE. (5) On the other hand, the model overestimates the ice drift and ice thickness in the Beaufort Gyre.

  9. Response of the surface tropical Atlantic Ocean to wind forcing

    NASA Astrophysics Data System (ADS)

    Castellanos, Paola; Pelegrí, Josep L.; Campos, Edmo J. D.; Rosell-Fieschi, Miquel; Gasser, Marc

    2015-05-01

    We use 10 years of satellite data (sea level pressure, surface winds and absolute dynamic topography [ADT]) together with Argo-inferred monthly-mean values of near-surface velocity and water transport, to examine how the tropical system of near-surface zonal currents responds to wind forcing. The data is analyzed using complex Hilbert empirical orthogonal functions, confirming that most of the variance has annual periodicity, with maximum amplitudes in the region spanned by the seasonal displacement of the Inter-Tropical Convergence Zone (ITCZ). The ADT mirrors the shape of the upper isopycnals, hence becoming a good indicator of the amount of water stored in the upper ocean. Within about 3° from the Equator, where the Coriolis force is small, there is year-long meridional Ekman-transport divergence that would lead to the eastward transport of the Equatorial Undercurrent and its northern and southern branches. Beyond 3° of latitude, and at least as far as 20°, the convergence of the Ekman transport generally causes a poleward positive ADT gradient, which sustains the westward South Equatorial Current (SEC). The sole exception occurs in summer, between 8°N and 12°N, when an Ekman-transport divergence develops and depletes de amount of surface water, resulting in an ADT ridge-valley system which reverses the ADT gradient and drives the eastward North Equatorial Countercurrent (NECC) at latitudes 4-9°N; in late fall, divergence ceases and the NECC drains the ADT ridge, so the ADT gradient again becomes positive and the SEC reappears. The seasonal evolution of a tilted ITCZ controls the surface water fluxes: the wind-induced transports set the surface divergence-convergence, which then drive the ADT and, through the ADT gradients, create the geostrophic jets that close the water balance.

  10. Millenial Scale Variability of the Arctic Ocean and Northern North Atlantic during the Holocene

    NASA Astrophysics Data System (ADS)

    de Vernal, A.; Van Nieuwenhove, N.; Hillaire-Marcel, C.

    2014-12-01

    In the Arctic and northern North Atlantic, the relationships between ocean and climate are complex as sea-surface temperatures (SST) are intimately related to salinity, water mass stratification and sea-ice cover. From this viewpoint, the assemblages of dinoflagellate cysts (dinocysts), whose distribution is dependent upon all the above mention parameters, yield proxies of sea-surface conditions and reveal particularly useful for the reconstruction of past ocean conditions in such environments. Analysis of dinocyst assemblages and application of the modern analogue technique in more than 30 sediment cores were used to document the surface ocean changes in the northern North Atlantic and Arctic oceans during the Holocene. Among salient features, we note little variations in the Canadian Arctic Archipelago Channels. In contrast, relatively large amplitude variations in the Chukchi Sea and the Barents Sea are recorded and suggest millennial type oscillations with amplitude exceeding long-term trends (e.g., up to 4°C in summer SST). Data also indicate an almost opposite pacing between the western and eastern Arctic. Another important feature is the major SST-increase and sea-ice cover reduction in eastern Baffin Bay and along the south-east Greenland margins at about 7.5 ka ago, linked to the penetration of warmer and more saline North Atlantic water. This led to production of the Labrador Sea Water through winter cooling and convection and was followed by a reorganisation of water masses in the Nordic seas around 7.0 ka. The ~ 7.5-7.0 ka transition thus marks the actual onset of "interglacial" conditions in the subpolar North Atlantic. Whereas a more or less diachronic "thermal optimum" might be recorded at some sites during the early-mid Holocene, a strong regionalism in trends and millennial-scale instabilities persisted throughout the postglacial. Finally, one should mention that last decade variations of ocean conditions in these basins exceed those of the mid

  11. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean.

    PubMed

    Zhu, Hejun; Tromp, Jeroen

    2013-08-23

    We constructed a three-dimensional azimuthally anisotropic model of Europe and the North Atlantic Ocean based on adjoint seismic tomography. Several features are well correlated with historical tectonic events in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean, and counterclockwise rotation of the Anatolian Plate. Beneath northeastern Europe, the direction of the fast anisotropic axis follows trends of ancient rift systems older than 350 million years, suggesting "frozen-in" anisotropy related to the formation of the craton. Local anisotropic strength profiles identify the brittle-ductile transitions in lithospheric strength. In continental regions, these profiles also identify the lower crust, characterized by ductile flow. The observed anisotropic fabric is generally consistent with the current surface strain rate measured by geodetic surveys.

  12. Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)

    PubMed Central

    Smith, Brad L.; Lu, Ching-Ping; García-Cortés, Blanca; Viñas, Jordi; Yeh, Shean-Ya; Alvarado Bremer, Jaime R.

    2015-01-01

    Previous genetic studies of Atlantic swordfish (Xiphias gladius L.) revealed significant differentiation among Mediterranean, North Atlantic and South Atlantic populations using both mitochondrial and nuclear DNA data. However, limitations in geographic sampling coverage, and the use of single loci, precluded an accurate placement of boundaries and of estimates of admixture. In this study, we present multilocus analyses of 26 single nucleotide polymorphisms (SNPs) within 10 nuclear genes to estimate population differentiation and admixture based on the characterization of 774 individuals representing North Atlantic, South Atlantic, and Mediterranean swordfish populations. Pairwise FST values, AMOVA, PCoA, and Bayesian individual assignments support the differentiation of swordfish inhabiting these three basins, but not the current placement of the boundaries that separate them. Specifically, the range of the South Atlantic population extends beyond 5°N management boundary to 20°N-25°N from 45°W. Likewise the Mediterranean population extends beyond the current management boundary at the Strait of Gibraltar to approximately 10°W. Further, admixture zones, characterized by asymmetric contributions of adjacent populations within samples, are confined to the Northeast Atlantic. While South Atlantic and Mediterranean migrants were identified within these Northeast Atlantic admixture zones no North Atlantic migrants were identified respectively in these two neighboring basins. Owing to both, the characterization of larger number of loci and a more ample spatial sampling coverage, it was possible to provide a finer resolution of the boundaries separating Atlantic swordfish populations than previous studies. Finally, the patterns of population structure and admixture are discussed in the light of the reproductive biology, the known patterns of dispersal, and oceanographic features that may act as barriers to gene flow to Atlantic swordfish. PMID:26057382

  13. Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.).

    PubMed

    Smith, Brad L; Lu, Ching-Ping; García-Cortés, Blanca; Viñas, Jordi; Yeh, Shean-Ya; Alvarado Bremer, Jaime R

    2015-01-01

    Previous genetic studies of Atlantic swordfish (Xiphias gladius L.) revealed significant differentiation among Mediterranean, North Atlantic and South Atlantic populations using both mitochondrial and nuclear DNA data. However, limitations in geographic sampling coverage, and the use of single loci, precluded an accurate placement of boundaries and of estimates of admixture. In this study, we present multilocus analyses of 26 single nucleotide polymorphisms (SNPs) within 10 nuclear genes to estimate population differentiation and admixture based on the characterization of 774 individuals representing North Atlantic, South Atlantic, and Mediterranean swordfish populations. Pairwise FST values, AMOVA, PCoA, and Bayesian individual assignments support the differentiation of swordfish inhabiting these three basins, but not the current placement of the boundaries that separate them. Specifically, the range of the South Atlantic population extends beyond 5°N management boundary to 20°N-25°N from 45°W. Likewise the Mediterranean population extends beyond the current management boundary at the Strait of Gibraltar to approximately 10°W. Further, admixture zones, characterized by asymmetric contributions of adjacent populations within samples, are confined to the Northeast Atlantic. While South Atlantic and Mediterranean migrants were identified within these Northeast Atlantic admixture zones no North Atlantic migrants were identified respectively in these two neighboring basins. Owing to both, the characterization of larger number of loci and a more ample spatial sampling coverage, it was possible to provide a finer resolution of the boundaries separating Atlantic swordfish populations than previous studies. Finally, the patterns of population structure and admixture are discussed in the light of the reproductive biology, the known patterns of dispersal, and oceanographic features that may act as barriers to gene flow to Atlantic swordfish.

  14. Ecotonal marine regions - ecotonal parasite communities: helminth assemblages in the convergence of masses of water in the southwestern Atlantic Ocean.

    PubMed

    Lanfranchi, Ana L; Braicovich, Paola E; Cantatore, Delfina M P; Alarcos, Ana J; Luque, José L; Timi, Juan T

    2016-11-01

    With the aim of evaluating the utility of marine parasites as indicators of ecotonal regions in the marine environment, we analysed data on assemblages of long-lived larval parasites of Zenopsis conchifer inhabiting the region of convergence of three masses of water in the southwestern Atlantic Oceans. These masses of water with different origins are expected to affect the structure of parasite communities by acting as sources of infective stages of helminth species typical of adjacent zoogeographical regions. Multivariate analyses at both infracommunity and component community levels, including data of four other species recognised as harbouring parasite assemblages representatives of these zoogeographical regions, were carried out to corroborate the existence of repeatable distribution patterns and to provide further evidence of the utility of parasites as zoogeographic indicators in the region. Results showed a tight correspondence with the existing zoogeographical classification in the study region, namely two zoogeographical provinces, one of which is subdivided into two districts demonstrating the ecotonal nature of parasite assemblages from the convergence region, which were characterised by a species rich component community but depauperate and heterogeneous infracommunities. The borders of biological communities have been suggested as priority areas for conservation where a fully functioning ecosystem can be protected and parasite communities can be considered as reliable indicators to define such transitional regions.

  15. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Delworth, T. L.; Zeng, F. J.

    2015-12-01

    The impact of multidecadal variations of the Atlantic meridional overturning circulation (AMOC) on the Southern Ocean (SO) is investigated using a coupled ocean-atmosphere model. We find that the AMOC can influence the SO via fast atmosphere teleconnections and subsequent ocean adjustments. A stronger than normal AMOC induces an anomalous warm SST over the North Atlantic, which favors an increased equator-to-pole temperature gradient in the Southern Hemisphere (SH) upper troposphere and lower stratosphere due to an amplified tropical upper tropospheric warming as a result of increased latent heat release. This eventually strengthens and pushes the Southern Hemisphere westerly jet poleward. The wind change over the SO then cools the SST by anomalous northward Ekman transports. The wind change also weakens the Antarctic bottom water (AABW) cell through changes in surface heat flux heating forcing. The poleward shifted westerly wind decreases the long term mean easterly winds over the Weddell Sea, thereby reducing the turbulent heat flux loss, decreasing surface density and therefore leading to a weakening of the AABW cell. The weakened AABW cell produces a temperature dipole in the SO, with a warm anomaly in the subsurface and a cold anomaly in the surface that corresponds to an increase of Antarctic sea ice. Opposite conditions occur for a weaker than normal AMOC. Our study here suggests that efforts to attribute the recent observed SO variability to various factors should take into consideration not only local process but also remote AMOC forcing.

  16. Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sumida, Paulo Y. G.; Alfaro-Lucas, Joan M.; Shimabukuro, Mauricio; Kitazato, Hiroshi; Perez, Jose A. A.; Soares-Gomes, Abilio; Toyofuku, Takashi; Lima, Andre O. S.; Ara, Koichi; Fujiwara, Yoshihiro

    2016-02-01

    Whale carcasses create remarkable habitats in the deep-sea by producing concentrated sources of organic matter for a food-deprived biota as well as places of evolutionary novelty and biodiversity. Although many of the faunal patterns on whale falls have already been described, the biogeography of these communities is still poorly known especially from basins other than the NE Pacific Ocean. The present work describes the community composition of the deepest natural whale carcass described to date found at 4204 m depth on Southwest Atlantic Ocean with manned submersible Shinkai 6500. This is the first record of a natural whale fall in the deep Atlantic Ocean. The skeleton belonged to an Antarctic Minke whale composed of only nine caudal vertebrae, whose degradation state suggests it was on the bottom for 5–10 years. The fauna consisted mainly of galatheid crabs, a new species of the snail Rubyspira and polychaete worms, including a new Osedax species. Most of the 41 species found in the carcass are new to science, with several genera shared with NE Pacific whale falls and vent and seep ecosystems. This similarity suggests the whale-fall fauna is widespread and has dispersed in a stepping stone fashion, deeply influencing its evolutionary history.

  17. Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean.

    PubMed

    Sumida, Paulo Y G; Alfaro-Lucas, Joan M; Shimabukuro, Mauricio; Kitazato, Hiroshi; Perez, Jose A A; Soares-Gomes, Abilio; Toyofuku, Takashi; Lima, Andre O S; Ara, Koichi; Fujiwara, Yoshihiro

    2016-02-24

    Whale carcasses create remarkable habitats in the deep-sea by producing concentrated sources of organic matter for a food-deprived biota as well as places of evolutionary novelty and biodiversity. Although many of the faunal patterns on whale falls have already been described, the biogeography of these communities is still poorly known especially from basins other than the NE Pacific Ocean. The present work describes the community composition of the deepest natural whale carcass described to date found at 4204 m depth on Southwest Atlantic Ocean with manned submersible Shinkai 6500. This is the first record of a natural whale fall in the deep Atlantic Ocean. The skeleton belonged to an Antarctic Minke whale composed of only nine caudal vertebrae, whose degradation state suggests it was on the bottom for 5-10 years. The fauna consisted mainly of galatheid crabs, a new species of the snail Rubyspira and polychaete worms, including a new Osedax species. Most of the 41 species found in the carcass are new to science, with several genera shared with NE Pacific whale falls and vent and seep ecosystems. This similarity suggests the whale-fall fauna is widespread and has dispersed in a stepping stone fashion, deeply influencing its evolutionary history.

  18. New nutrients exert fundamental control on dissolved organic carbon accumulation in the surface Atlantic Ocean

    PubMed Central

    Romera-Castillo, Cristina; Letscher, Robert T.; Hansell, Dennis A.

    2016-01-01

    The inventories of carbon residing in organic matter dissolved in the ocean [dissolved organic carbon (DOC)] and in the atmosphere as CO2 are of the same order of magnitude, such that small changes in the DOC pool could have important consequences in atmospheric carbon and thus climate. DOC in the global ocean is largely formed in the sunlit euphotic zone, but identifying predictable controls on that production is an important yet unrealized goal. Here, we use a testable and causative correlation between the net production of DOC and the consumption of new nutrients in the euphotic zone of the Atlantic Ocean. We demonstrate that new nutrients introduced to the euphotic zone by upwelling in divergence zones and by winter convective overturn of the water column, and the primary production associated with those nutrients, are the ultimate driver of DOC distributions across the Atlantic basins. As new nutrient input will change with a changing climate, the role of DOC in the ocean’s biological pump should likewise be impacted. PMID:27582464

  19. Net community production in the North Atlantic Ocean derived from Volunteer Observing Ship data

    NASA Astrophysics Data System (ADS)

    Ostle, Clare; Johnson, Martin; Landschützer, Peter; Schuster, Ute; Hartman, Susan; Hull, Tom; Robinson, Carol

    2015-01-01

    The magnitude of marine plankton net community production (NCP) is indicative of both the biologically driven exchange of carbon dioxide between the atmosphere and the surface ocean and the export of organic carbon from the surface ocean to the ocean interior. In this study the seasonal variability in the NCP of five biogeochemical regions in the North Atlantic was determined from measurements of surface water dissolved oxygen and dissolved inorganic carbon (DIC) sampled from a Volunteer Observing Ship (VOS). The magnitude of NCP derived from dissolved oxygen measurements (NCPO2) was consistent with previous geochemical estimates of NCP in the North Atlantic, with an average annual NCPO2 of 9.5 ± 6.5 mmol O2 m-2 d-1. Annual NCPO2 did not vary significantly over 35° of latitude and was not significantly different from NCP derived from DIC measurements (NCPDIC). The relatively simple method described here is applicable to any VOS route on which surface water dissolved oxygen concentrations can be accurately measured, thus providing estimates of NCP at higher spatial and temporal resolution than currently achieved.

  20. Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean

    PubMed Central

    Sumida, Paulo Y. G.; Alfaro-Lucas, Joan M.; Shimabukuro, Mauricio; Kitazato, Hiroshi; Perez, Jose A. A.; Soares-Gomes, Abilio; Toyofuku, Takashi; Lima, Andre O. S.; Ara, Koichi; Fujiwara, Yoshihiro

    2016-01-01

    Whale carcasses create remarkable habitats in the deep-sea by producing concentrated sources of organic matter for a food-deprived biota as well as places of evolutionary novelty and biodiversity. Although many of the faunal patterns on whale falls have already been described, the biogeography of these communities is still poorly known especially from basins other than the NE Pacific Ocean. The present work describes the community composition of the deepest natural whale carcass described to date found at 4204 m depth on Southwest Atlantic Ocean with manned submersible Shinkai 6500. This is the first record of a natural whale fall in the deep Atlantic Ocean. The skeleton belonged to an Antarctic Minke whale composed of only nine caudal vertebrae, whose degradation state suggests it was on the bottom for 5–10 years. The fauna consisted mainly of galatheid crabs, a new species of the snail Rubyspira and polychaete worms, including a new Osedax species. Most of the 41 species found in the carcass are new to science, with several genera shared with NE Pacific whale falls and vent and seep ecosystems. This similarity suggests the whale-fall fauna is widespread and has dispersed in a stepping stone fashion, deeply influencing its evolutionary history. PMID:26907101

  1. Mechanisms of Interannual Variations of the Meridional Overturning Circulation of the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Cabanes, Cecile; Lee, Tong; Fu, Lee-Lueng

    2008-01-01

    The authors investigate the nature of the interannual variability of the meridional overturning circulation (MOC) of the North Atlantic Ocean using an Estimating the Circulation and Climate of the Ocean (ECCO) assimilation product for the period of 1993-2003. The time series of the first empirical orthogonal function of the MOC is found to be correlated with the North Atlantic Oscillation (NAO) index, while the associated circulation anomalies correspond to cells extending over the full ocean depth. Model sensitivity experiments suggest that the wind is responsible for most of this interannual variability, at least south of 40(deg)N. A dynamical decomposition of the meridional streamfunction allows a further look into the mechanisms. In particular, the contributions associated with 1) the Ekman flow and its depth-independent compensation, 2) the vertical shear flow, and 3) the barotropic gyre flowing over zonally varying topography are examined. Ekman processes are found to dominate the shorter time scales (1.5-3 yr), while for longer time scales (3-10 yr) the MOC variations associated with vertical shear flow are of greater importance. The latter is primarily caused by heaving of the pycnocline in the western subtropics associated with the stronger wind forcing. Finally, how these changes in the MOC affect the meridional heat transport (MHT) is examined. It is found that overall, Ekman processes explain a larger part of interannual variability (3-10 yr) for MHT (57%) than for the MOC (33%).

  2. New nutrients exert fundamental control on dissolved organic carbon accumulation in the surface Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Romera-Castillo, Cristina; Letscher, Robert T.; Hansell, Dennis A.

    2016-09-01

    The inventories of carbon residing in organic matter dissolved in the ocean [dissolved organic carbon (DOC)] and in the atmosphere as CO2 are of the same order of magnitude, such that small changes in the DOC pool could have important consequences in atmospheric carbon and thus climate. DOC in the global ocean is largely formed in the sunlit euphotic zone, but identifying predictable controls on that production is an important yet unrealized goal. Here, we use a testable and causative correlation between the net production of DOC and the consumption of new nutrients in the euphotic zone of the Atlantic Ocean. We demonstrate that new nutrients introduced to the euphotic zone by upwelling in divergence zones and by winter convective overturn of the water column, and the primary production associated with those nutrients, are the ultimate driver of DOC distributions across the Atlantic basins. As new nutrient input will change with a changing climate, the role of DOC in the ocean’s biological pump should likewise be impacted.

  3. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    PubMed

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  4. U.S. Navy Hindcast Spectral Ocean Wave Model Climatic Atlas: North Atlantic Ocean

    DTIC Science & Technology

    1983-10-01

    for their technical w, Ms. Pamela J. Young, Ms. Elaine H. Mason, The development of a Spectral Ocean Wave Ms. Laura K. Metcalf for their data proces...Research and Development Center; Mr. She] which this atlas is based. Lazanoff previously of Fleet Numel Oceanography Center; Dr. Ledolph Baer of...Ship Ocean on Research and Development Center; Mr. Sheldon Lazanoff previously of Fleet Numerical Oceanography Center; Dr. Ledolph Baer of the National

  5. A new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Dowsett, H. J.; Scher, H. D.; Robinson, M. M.

    2011-12-01

    The mid-Pliocene (3.264 - 3.025 Ma) is the most recent interval in Earth's history with sustained global temperatures in the range of warming predicted for the 21st century, providing an appealing analog with which to examine the Earth system changes we might encounter in the coming century. Ongoing sea surface and deep ocean temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm anomaly coupled with increased evaporation in the mid-Pliocene, possibly driving enhanced meridional overturning circulation and North Atlantic Deep Water production. However deep ocean temperature is not a conclusive proxy for water mass, and most coupled model simulations predict transient decreases in North Atlantic Deep Water production in 21st century, presenting a contrasting picture of future warmer worlds. Here, we present early results from a new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic imprint on fossil fish teeth as a proxy for water mass source region along a three-site depth transect from the Walvis Ridge (subtropical South Atlantic). The deep ocean circulation reconstructions resulting from this project will add a new dimension to the PRISM effort and will be useful for both initialization and evaluation of future model simulations.

  6. Evidence for ocean-continent crust boundary beneath the abyssal plain of the East Central Atlantic

    NASA Astrophysics Data System (ADS)

    Storetvedt, K. M.

    1987-09-01

    A survey of geophysical results and basalt characteristics of the East Central Atlantic suggests that such data are at present unable to define the seaward limit of the thinned continental crust. The combined evidence from margin sedimentation, deep-sea diapirism, salinity concentration in DSDP-IPOD cores, and the distribution of deep-sea barite and palygorskite-sepiolite assemblages indicate that the Central Atlantic developed from a wide rift basin within a normal continental setting. The notion of an extensive pre-drift basin gains additional support from the occurrences of Lower Cretaceous black shales which are interpreted as resulting from a tectonomagmatic forerunner phase to the actual continental separation process. Seafloor spreading which appears to have commenced at around 90 Ma B.P. (Cenomanian-Turonian), following major phases of subsidence and crustal attenuation in Jurassic and Lower Cretaceous, is identified by an apparently sharp change-over from reducing to oxygenated deep-sea environment as well as by the 'onset' of a major sedimentary hiatus. The new development model of the East Central Atlantic is regarded as a representative example of a global pattern; commencement of seafloor spreading in the Upper Cretaceous probably explains the world wide 'Cenomanian' transgression as well as the formation of extensive Upper Cretaceous sedimentary basins in the interior of the major continental blocks. A consequence of this model is that vertical crustal dynamics seem to be as important as seafloor spreading in the development of the oceanic lithosphere. Thus, in the Central Atlantic spreading is probably confined only to the region of the elevated Mid-Atlantic Ridge.

  7. Moho topography and crustal heterogeneity in Europe, the Arctic shelf, and the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Artemieva, I. M.; Thybo, H.

    2013-05-01

    We present an analysis of the Moho topography and the crustal structure in an area which encompasses most of Europe, Greenland, Iceland, Svalbard, European Arctic shelf, and the North Atlantic Ocean. The analysis is based on a new compilation of regional seismic reflection and refraction profiles and RF studies, which allows its application to potential field modelling. For each of the crustal parameters included in the compilation, we discuss uncertainties associated with theoretical limitations, regional data quality, and arising from interpolation. Regional trends in crustal structure are linked to tectonic evolution of the region. The analysis indicates the following patterns in the crustal structure: (1) significant variations in depth to Moho and in crustal structure exists for each tectonic setting; (2) they are effectively controlled by age of the last major tectono-thermal processes; (3) relative thickness of the upper-middle crystalline crust (Vp<6.8 km/s) and the lower (Vp>6.8 km/s) crust indicate crustal origin, such as oceanic, transitional, platform, or extended crust; (4) continental rifting generally thins the upper-middle crust by 10-15 km, while thinning of the lower crust is less significant; (5) continental rifting generally occurs without change in upper and lower crustal average Vp, suggesting a complex interplay of magmatic underplating, gabbro-eclogite phase transition and delamination; (6) the shelf evolution of the Barents Sea shelf was affected by processes other than rifting, given that its crustal structure differs from rifted continental crust in thicknesses of the upper-middle and lower parts of the crystalline crust and in average Vp velocities in the crustal layers; (7) most of the North Atlantic Ocean north of 55N has anomalously thick crystalline crust (20-30 km), apparently of oceanic origin; a belt of exceptionally thick crust (ca. 30 km) of probable oceanic origin exists off-shore on both sides of southern Greenland.

  8. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations.

    PubMed

    Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted

    2014-11-01

    Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30'S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean.

  9. The impact of polar mesoscale storms on northeast Atlantic ocean circulation (Invited)

    NASA Astrophysics Data System (ADS)

    Condron, A.; Renfrew, I.

    2013-12-01

    Every year thousands of mesoscale (<1000 km) storms cross the climatically sensitive sub-polar regions of the world's oceans. These storms are frequently too small, or short-lived, to be captured in meteorological reanalyses or numerical climate prediction models. As a result, the magnitude of the near-surface wind speeds and heat fluxes are considerably under-represented over the world's oceans where the atmosphere influences mixing, deep convection, upwelling, and deep water mass formation. Numerical models must, however, realistically simulate these processes in order to accurately predict future changes in the strength of the Atlantic Meridional Overturning Circulation (MOC) and the climate system. Implementing a parameterization to simulate mesoscale cyclones in the atmospheric fields driving an ocean model produced air-sea fluxes in remarkable agreement with observations. Over the Nordic Seas we found that mesoscale cyclones increased the depth, frequency and area of open ocean deep convection. At Denmark Strait we found a significant increase in the southward transport of Denmark Strait Overflow Water (DSOW); the deep water mass that plays a major role in driving the Atlantic MOC. Further south there was an increase in the cyclonic rotation of the sub-polar gyres and an increase in the northward transport of heat into the region. We conclude that polar mesoscale cyclones play an important role in driving the large-scale ocean circulation and so must be simulated globally in order to make accurate short-term climate predictions. An illustration of the effectiveness of our polar mesoscale parameterization. Panels show a 6-hourly snapshot of 10-m wind speed for (left) ECMWF ERA-40, (middle) ERA-40 with a polar mesoscale cyclone parameterized (right) satellite derived wind speed. The satellite data reveal a polar mesoscale cyclone over the Norwegian Sea with a diameter of ~400 km. The standard ERA-40 reanalysis (~1 deg.) does not capture this vortex

  10. Sea-air carbon dioxide fluxes along 35°S in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lencina-Avila, J. M.; Ito, R. G.; Garcia, C. A. E.; Tavano, V. M.

    2016-09-01

    The oceans play an important role in absorbing a significant fraction of the atmospheric CO2 surplus, but there are still uncertainties concerning several open ocean regions, such as the under-sampled South Atlantic Ocean. This study assessed the net sea-air CO2 fluxes and distribution of sea-surface CO2 fugacity (f C O2sw) along the 35°S latitude in the South Atlantic, during 2011 spring and early summer periods. Underway CO2 molar fraction, temperature, salinity and dissolved oxygen measurements were taken continuously from South American to South African continental shelves. Values of both satellite and discrete in situ chlorophyll-a concentration along the ship's track were used as ancillary data. Both f C O2sw and difference in sea-air fugacity (ΔfCO2) showed high variability along the cruise track, with higher values found on the continental shelf and slope regions. All ΔfCO2 values were negative, implying that a sinking process was occurring during the cruise period, with an average net CO2 flux of -3.1±2.2 mmol CO2 m-2 day-1 (using Wanninkhof, 1992). Physical variables were the main drivers of f C O2sw variability in South American continental shelf and open ocean regions, while the biological factor dominated the South African continental shelf. Algorithms for estimating fCO2 and temperature-normalized fCO2 were developed and applied separately to the three defined sub-regions: the South American shelf, the open ocean and the South African continental shelf, with the regional temperature-normalized fCO2 models showing better results.

  11. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, Oliver J.; Kattner, Gerhard; Flerus, Ruth; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Koch, Boris P.

    2014-02-01

    More than 90% of the global ocean dissolved organic carbon (DOC) is refractory, has an average age of 4000-6000 years and a lifespan from months to millennia. The fraction of dissolved organic matter (DOM) that is resistant to degradation is a long-term buffer in the global carbon cycle but its chemical composition, structure, and biochemical formation and degradation mechanisms are still unresolved. We have compiled the most comprehensive molecular dataset of 197 Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses from solid-phase extracted marine DOM covering two major oceans, the Atlantic sector of the Southern Ocean and the East Atlantic Ocean (ranging from 50° N to 70° S). Molecular trends and radiocarbon dating of 34 DOM samples (comprising Δ14C values from -229‰ to -495‰) were combined to model an integrated degradation rate for bulk DOC resulting in a predicted age of >24 ka for the most persistent DOM fraction. First order kinetic degradation rates for 1557 mass peaks indicate that numerous DOM molecules cycle on timescales much longer than the turnover of the bulk DOC pool (estimated residence times of up to ~100 ka) and the range of validity of radiocarbon dating. Changes in elemental composition were determined by assigning molecular formulae to the detected mass peaks. The combination of residence times with molecular information enabled modelling of the average elemental composition of the slowest degrading fraction of the DOM pool. In our dataset, a group of 361 molecular formulae represented the most stable composition in the oceanic environment (“island of stability”). These most persistent compounds encompass only a narrow range of the molecular elemental ratios H/C (average of 1.17 ± 0.13), and O/C (average of 0.52 ± 0.10) and molecular masses (360 ± 28 and 497 ± 51 Da). In the Weddell Sea DOC concentrations in the surface waters were low (46.3 ± 3.3 μM) while the organic radiocarbon was significantly

  12. Late Jurassic-Early Cretaceous evolution of the eastern Indian Ocean adjacent to northwest Australia

    NASA Astrophysics Data System (ADS)

    Fullerton, Lawrence G.; Sager, William W.; Handschumacher, David W.

    1989-03-01

    Over 9700 km of new aeromagnetic data were acquired off the northwest coast of Australia and combined with existing magnetic data to map magnetic isochrons in the eastern Indian Ocean. The isochrons were used to constrain a tectonic model of the evolution of the seafloor in the Argo, Cuvier, and Gascoyne abyssal plains. A complete set of anomalies, from M26 through M16, was found in the Argo Abyssal Plain, trending generally N70°E. Spreading commenced in the center of the basin at or prior to M26 and propagated outward until at least M24 time. Anomalies M10-MO, recording the separation of Australia and India, were found in the Cuvier and Gascoyne abyssal plains, with a trend of about N30°E. A significant crustal age discontinuity occurs in the vicinity of the Joey Rise where the two lineation sets converge. Because there appears to be no overlap of isochron ages in the two groups, it is not necessary to postulate that a triple junction existed off northwest Australia as has been previously suggested. At M4-M5 time a 10° clockwise change in spreading direction occurred on the Cuvier-Gascoyne spreading system. This event triggered ridge jumps that transferred two pieces of the Indian plate to the Australian plate. Overlapping spreading on the forming and dying ridges, curved fracture zones and lineations, as well as fanned lineation trends, suggest that the ridge jumps occurred by ridge propagation and that the transferred lithospheric blocks behaved as microplates for a brief interval of approximately 1-2 m.y.

  13. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Delworth, Thomas L.; Zeng, Fanrong

    2017-03-01

    The impact of multidecadal variations of the Atlantic meridional overturning circulation (AMOC) on the Southern Ocean (SO) is investigated in the current paper using a coupled ocean-atmosphere model. We find that the AMOC can influence the SO via fast atmosphere teleconnections and subsequent ocean adjustments. A stronger than normal AMOC induces an anomalous warm SST over the North Atlantic, which leads to a warming of the Northern Hemisphere troposphere extending into the tropics. This induces an increased equator-to-pole temperature gradient in the Southern Hemisphere (SH) upper troposphere and lower stratosphere due to an amplified tropical upper tropospheric warming as a result of increased latent heat release. This altered gradients leads to a poleward displacement of the SH westerly jet. The wind change over the SO then cools the SST at high latitudes by anomalous northward Ekman transports. The wind change also weakens the Antarctic bottom water (AABW) cell through changes in surface heat flux forcing. The poleward shifted westerly wind decreases the long term mean easterly winds over the Weddell Sea, thereby reducing the turbulent heat flux loss, decreasing surface density and therefore leading to a weakening of the AABW cell. The weakened AABW cell produces a temperature dipole in the SO, with a warm anomaly in the subsurface and a cold anomaly in the surface that corresponds to an increase of Antarctic sea ice. Opposite conditions occur for a weaker than normal AMOC. Our study here suggests that efforts to attribute the recent observed SO variability to various factors should take into consideration not only local process but also remote forcing from the North Atlantic.

  14. Genetic structure of capelin (Mallotus villosus) in the northwest Atlantic Ocean.

    PubMed

    Kenchington, Ellen L; Nakashima, Brian S; Taggart, Christopher T; Hamilton, Lorraine C

    2015-01-01

    Capelin (Mallotus villosus) is a commercially exploited, key forage-fish species found in the boreal waters of the North Pacific and North Atlantic Oceans. We examined the population structure of capelin throughout their range in the Canadian northwest Atlantic Ocean using genetic-based methods. Capelin collected at ten beach and five demersal spawning locations over the period 2002 through 2008 (N = 3,433 fish) were genotyped using six polymorphic microsatellite loci. Temporally distinct samples were identified at three beach spawning locations: Chance Cove, Little Lawn and Straitsview, Newfoundland. Four capelin stocks are assumed for fisheries management in the northwest Atlantic Ocean based on meristics, morphometrics, tag returns, and seasonal distribution patterns. Our results suggested groupings that were somewhat different than the assumed structure, and indicate at least seven genetically defined populations arising from two ancestral populations. The spatial mosaic of capelin from each of the two basal cluster groups explains much of the observed geographic variability amongst neighbouring samples. The genetic-defined populations were resolved at Jost's Dest ≥ 0.01 and were composed of fish collected 1) in the Gulf of St. Lawrence, 2) along the south and east coasts of Newfoundland, 3) along coastal northern Newfoundland and southern Labrador, 4) along coastal northern Labrador, 5) near the Saguenay River, and at two nearshore demersal spawning sites, 6) one at Grebes Nest off Bellevue Beach on the east coast of Newfoundland, and 7) one off the coast of Labrador at Domino Run. Moreover, the offshore demersal spawners on the Scotian Shelf and Southeast Shoal appeared to be related to the inshore demersal spawners at Grebes Nest and in Domino Run and to beach spawners from the Gulf of St. Lawrence.

  15. Mercury in the North Atlantic Ocean: The U.S. GEOTRACES zonal and meridional sections

    NASA Astrophysics Data System (ADS)

    Bowman, Katlin L.; Hammerschmidt, Chad R.; Lamborg, Carl H.; Swarr, Gretchen

    2015-06-01

    Mercury (Hg) in the ocean undergoes many chemical transformations, including in situ production of monomethylmercury (MMHg), the form that biomagnifies in marine food webs. Because the ocean is a primary and dynamic reservoir of Hg cycling at earth's surface and the principal source of human MMHg exposures through seafood, it is important to understand the distribution of Hg and its chemical species in marine environments. We examined total Hg, elemental Hg (Hg0), MMHg, and dimethylmercury (DMHg) with fully resolved high-resolution profiles during the U.S. GEOTRACES zonal and meridional sections of the North Atlantic Ocean (GEOTRACES GA03). Total Hg in filtered water had both scavenged- and nutrient-type vertical distributions, whereas concentrations of DMHg, Hg0, and filtered MMHg were increased in the oxygen deficient zone of the permanent thermocline across the basin, relative to water above and often below. Total Hg and MMHg on suspended particles accounted for less than 10% of total concentrations. The TAG hydrothermal vent on the Mid-Atlantic Ridge (MAR) was a source of total Hg and MMHg to nearby waters with apparent scavenging and Hg transformation occurring in the buoyant plume. Uniquely, we observed significant horizontal segregation of filtered total Hg and MMHg, DMHg, and Hg0 in North Atlantic Deep Water (NADW) between younger water on the western and older water on the eastern side of the MAR. Relative to eastern NADW, Hg concentrations in western NADW were greater, on average, by 1.14× for filtered total Hg, 1.6× for Hg0, 2.5× for filtered MMHg, and 2.6× for DMHg. Total Hg enrichment in deep water of the western basin may have resulted from downwelling of anthropogenic Hg during NADW formation. Enrichment of MMHg, DMHg, and Hg0 in western basin NADW may be explained by either greater Hg substrate availability or greater methylation and reduction potentials in younger deep waters.

  16. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean.

    PubMed

    Herndl, Gerhard J; Reinthaler, Thomas; Teira, Eva; van Aken, Hendrik; Veth, Cornelius; Pernthaler, Annelie; Pernthaler, Jakob

    2005-05-01

    Fluorescence in situ hybridization (FISH) in combination with polynucleotide probes revealed that the two major groups of planktonic Archaea (Crenarchaeota and Euryarchaeota) exhibit a different distribution pattern in the water column of the Pacific subtropical gyre and in the Antarctic Circumpolar Current system. While Euryarchaeota were found to be more dominant in nearsurface waters, Crenarchaeota were relatively more abundant in the mesopelagic and bathypelagic waters. We determined the abundance of archaea in the mesopelagic and bathypelagic North Atlantic along a south-north transect of more than 4,000 km. Using an improved catalyzed reporter deposition-FISH (CARD-FISH) method and specific oligonucleotide probes, we found that archaea were consistently more abundant than bacteria below a 100-m depth. Combining microautoradiography with CARD-FISH revealed a high fraction of metabolically active cells in the deep ocean. Even at a 3,000-m depth, about 16% of the bacteria were taking up leucine. The percentage of Euryarchaeota and Crenarchaeaota taking up leucine did not follow a specific trend, with depths ranging from 6 to 35% and 3 to 18%, respectively. The fraction of Crenarchaeota taking up inorganic carbon increased with depth, while Euryarchaeota taking up inorganic carbon decreased from 200 m to 3,000 m in depth. The ability of archaea to take up inorganic carbon was used as a proxy to estimate archaeal cell production and to compare this archaeal production with total prokaryotic production measured via leucine incorporation. We estimate that archaeal production in the mesopelagic and bathypelagic North Atlantic contributes between 13 to 27% to the total prokaryotic production in the oxygen minimum layer and 41 to 84% in the Labrador Sea Water, declining to 10 to 20% in the North Atlantic Deep Water. Thus, planktonic archaea are actively growing in the dark ocean although at lower growth rates than bacteria and might play a significant role in the

  17. Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean

    PubMed Central

    Herndl, Gerhard J.; Reinthaler, Thomas; Teira, Eva; van Aken, Hendrik; Veth, Cornelius; Pernthaler, Annelie; Pernthaler, Jakob

    2005-01-01

    Fluorescence in situ hybridization (FISH) in combination with polynucleotide probes revealed that the two major groups of planktonic Archaea (Crenarchaeota and Euryarchaeota) exhibit a different distribution pattern in the water column of the Pacific subtropical gyre and in the Antarctic Circumpolar Current system. While Euryarchaeota were found to be more dominant in nearsurface waters, Crenarchaeota were relatively more abundant in the mesopelagic and bathypelagic waters. We determined the abundance of archaea in the mesopelagic and bathypelagic North Atlantic along a south-north transect of more than 4,000 km. Using an improved catalyzed reporter deposition-FISH (CARD-FISH) method and specific oligonucleotide probes, we found that archaea were consistently more abundant than bacteria below a 100-m depth. Combining microautoradiography with CARD-FISH revealed a high fraction of metabolically active cells in the deep ocean. Even at a 3,000-m depth, about 16% of the bacteria were taking up leucine. The percentage of Euryarchaeota and Crenarchaeaota taking up leucine did not follow a specific trend, with depths ranging from 6 to 35% and 3 to 18%, respectively. The fraction of Crenarchaeota taking up inorganic carbon increased with depth, while Euryarchaeota taking up inorganic carbon decreased from 200 m to 3,000 m in depth. The ability of archaea to take up inorganic carbon was used as a proxy to estimate archaeal cell production and to compare this archaeal production with total prokaryotic production measured via leucine incorporation. We estimate that archaeal production in the mesopelagic and bathypelagic North Atlantic contributes between 13 to 27% to the total prokaryotic production in the oxygen minimum layer and 41 to 84% in the Labrador Sea Water, declining to 10 to 20% in the North Atlantic Deep Water. Thus, planktonic archaea are actively growing in the dark ocean although at lower growth rates than bacteria and might play a significant role in the

  18. Seismic Reflection Imaging of the Lithosphere-asthenosphere Boundary Across the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Marjanovic, M.; Audhkhasi, P.; Mehouachi, F.

    2015-12-01

    Until now, the nature of the lithosphere-asthenosphere boundary (LAB) has been constrained by teleseismic data, which has resolution of tens of kilometres and sample the LAB sparsely. Seismic reflection imaging technique, in contrast, can provide both lateral and vertical resolution of a few hundred meters, but has not been used for imaging deep structures, thus so far. In March-April 2015, we acquired over 2,750 km of ultra-deep seismic reflection data in the Atlantic Ocean. To image LAB variations as a function of age one of our profiles extends continuously starting from 75 Ma old oceanic lithosphere off the margin of Africa, crosses the Mid-Atlantic Ridge at zero age, to up to 25 Ma old South America lithosphere. To image large differences in the LAB depth we also cross three major fracture zones in the equatorial Atlantic. For imaging deep structures, we used a very large energy source, 10,170 cubic inches, rich in low frequencies and a 12 km long multi-component streamer allowing to record low frequency energy reflected from deep earth and remove reverberation in the water column. Initial results show reflected seismic energy from 50-60 km depth. The seismic reflection experiment will be complemented by seismic refraction study to determine the crustal and upper mantle P-wave velocity, magnetotelluric study to determine resistivity, and broadband ocean bottom seismometer experiment for teleseismic study, collocated with our seismic reflection profiles. In this paper, we will present the design of the seismic reflection experiment and preliminary results from the onboard processed data.

  19. Genetic Structure of Capelin (Mallotus villosus) in the Northwest Atlantic Ocean

    PubMed Central

    Kenchington, Ellen L.; Nakashima, Brian S.; Taggart, Christopher T.; Hamilton, Lorraine C.

    2015-01-01

    Capelin (Mallotus villosus) is a commercially exploited, key forage-fish species found in the boreal waters of the North Pacific and North Atlantic Oceans. We examined the population structure of capelin throughout their range in the Canadian northwest Atlantic Ocean using genetic-based methods. Capelin collected at ten beach and five demersal spawning locations over the period 2002 through 2008 (N = 3,433 fish) were genotyped using six polymorphic microsatellite loci. Temporally distinct samples were identified at three beach spawning locations: Chance Cove, Little Lawn and Straitsview, Newfoundland. Four capelin stocks are assumed for fisheries management in the northwest Atlantic Ocean based on meristics, morphometrics, tag returns, and seasonal distribution patterns. Our results suggested groupings that were somewhat different than the assumed structure, and indicate at least seven genetically defined populations arising from two ancestral populations. The spatial mosaic of capelin from each of the two basal cluster groups explains much of the observed geographic variability amongst neighbouring samples. The genetic-defined populations were resolved at Jost’s Dest ≥ 0.01 and were composed of fish collected 1) in the Gulf of St. Lawrence, 2) along the south and east coasts of Newfoundland, 3) along coastal northern Newfoundland and southern Labrador, 4) along coastal northern Labrador, 5) near the Saguenay River, and at two nearshore demersal spawning sites, 6) one at Grebes Nest off Bellevue Beach on the east coast of Newfoundland, and 7) one off the coast of Labrador at Domino Run. Moreover, the offshore demersal spawners on the Scotian Shelf and Southeast Shoal appeared to be related to the inshore demersal spawners at Grebes Nest and in Domino Run and to beach spawners from the Gulf of St. Lawrence. PMID:25822621

  20. Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Westberry, Toby K.; Schultz, Patrick; Behrenfeld, Michael J.; Dunne, John P.; Hiscock, Michael R.; Maritorena, Stephane; Sarmiento, Jorge L.; Siegel, David A.

    2016-02-01

    High-latitude phytoplankton blooms support productive fisheries and play an important role in oceanic uptake of atmospheric carbon dioxide. In the subarctic North Atlantic Ocean, blooms are a recurrent feature each year, while in the eastern subarctic Pacific only small changes in chlorophyll (Chl) are seen over the annual cycle. Here we show that when evaluated using phytoplankton carbon biomass (Cphyto) rather than Chl, an annual bloom in the North Pacific is evident and can even rival blooms observed in the North Atlantic. The annual increase in subarctic Pacific phytoplankton biomass is not readily observed in the Chl record because it is paralleled by light- and nutrient-driven decreases in cellular pigment levels (Cphyto:Chl). Specifically, photoacclimation and iron stress effects on Cphyto:Chl oppose the biomass increase, leading to only modest changes in bulk Chl. The magnitude of the photoacclimation effect is quantified using descriptors of the near-surface light environment and a photophysiological model. Iron stress effects are diagnosed from satellite chlorophyll fluorescence data. Lastly, we show that biomass accumulation in the Pacific is slower than that in the Atlantic but is closely tied to similar levels of seasonal nutrient uptake in both basins. Annual cycles of satellite-derived Chl and Cphyto are reproduced by in situ autonomous profiling floats. These results contradict the long-standing paradigm that environmental conditions prevent phytoplankton accumulation in the subarctic Northeast Pacific and suggest a greater seasonal decoupling between phytoplankton growth and losses than traditionally implied. Further, our results highlight the role of physiological processes in shaping bulk properties, such as Chl, and their interpretation in studies of ocean ecosystem dynamics and climate change.

  1. Changes in erosion and ocean circulation recorded in the Hf isotopic compositions of North Atlantic and Indian Ocean ferromanganese crusts

    USGS Publications Warehouse

    Piotrowski, Alexander M.; Lee, Der-Chuen; Christensen, John N.; Burton, Kevin W.; Halliday, Alex N.; Hein, James R.; Günther, Detlef

    2000-01-01

    High-resolution Hf isotopic records are presented for hydrogenetic Fe–Mn crusts from the North Atlantic and Indian Oceans. BM1969 from the western North Atlantic has previously been shown to record systematically decreasing Nd isotopic compositions from about 60 to ∼4 Ma, at which time both show a rapid decrease to unradiogenic Nd composition, thought to be related to the increasing influence of NADW or glaciation in the northern hemisphere. During the Oligocene, North Atlantic Hf became progressively less radiogenic until in the mid-Miocene (∼15 Ma) it reached +1. It then shifted gradually back to an ϵHf value of +3 at 4 Ma, since when it has decreased rapidly to about −1 at the present day. The observed shifts in the Hf isotopic composition were probably caused by variation in intensity of erosion as glaciation progressed in the northern hemisphere. Ferromanganese crusts SS663 and 109D are from about 5500 m depth in the Indian Ocean and are now separated by ∼2300 km across the Mid-Indian Ridge. They display similar trends in Hf isotopic composition from 20 to 5 Ma, with the more northern crust having a composition that is consistently more radiogenic (by ∼2 ϵHf units). Paradoxically, during the last 20 Ma the Hf isotopic compositions of the two crusts have converged despite increased separation and subsidence relative to the ridge. A correlatable negative excursion at ∼5 Ma in the two records may reflect a short-term increase in erosion caused by the activation of the Himalayan main central thrust. Changes to unradiogenic Hf in the central Indian Ocean after 5 Ma may alternatively have been caused by the expanding influence of NADW into the Mid-Indian Basin via circum-Antarctic deep water or a reduction of Pacific flow through the Indonesian gateway. In either case, these results illustrate the utility of the Hf isotope system as a tracer of paleoceanographic changes, capable of responding to subtle changes in erosional regime not readily resolved

  2. Freshwater Variability in the Arctic Ocean and Subpolar North Atlantic: a Comparison from the 1990s to Present

    NASA Astrophysics Data System (ADS)

    Horn, Myriel; Rabe, Benjamin; Schauer, Ursula

    2016-04-01

    A significant increase in liquid freshwater content has been observed in the Arctic Ocean over the last 20 years, whereas the Arctic sea ice volume shrank significantly. In contrast, the North Atlantic became more saline in recent years. Both regions are of great importance for the global ocean circulation and climate, and salinity changes may have a profound impact on the global climate. We found that for the period between 1992 and 2013, the liquid freshwater content of the subpolar North Atlantic, calculated from objectively mapped in-situ salinity measurements, and the total freshwater content of the Arctic Ocean, i.e. the liquid freshwater content and freshwater stored in sea ice, are significantly negative correlated (r=-0.77). Moreover, the amount of the anomalies are of the same size. Furthermore, the time series hint at multi-decadal oscillations. The highest negative correlation with the total freshwater content of the Arctic Ocean can be found in the Irminger and Labrador Seas, while we observed a positive correlation east of the Mid-Atlantic Ridge at the path of the North Atlantic Current, which is the source of Atlantic Water entering the Arctic Ocean through the Nordic Seas. We suggest a redistribution of freshwater as a response to frequent changes in atmospheric pressure patterns. Under certain conditions the freshwater is re-routed and kept in the Arctic Ocean, while it is released under other conditions. We conclude that decadal scale changes of the freshwater content in the North Atlantic, particularly those in the deep water formation sites like the Labrador Sea, are originating in the Arctic Ocean.

  3. Killer whale (Orcinus orca) whistles from the western South Atlantic Ocean include high frequency signals.

    PubMed

    Andriolo, Artur; Reis, Sarah S; Amorim, Thiago O S; Sucunza, Federico; de Castro, Franciele R; Maia, Ygor Geyer; Zerbini, Alexandre N; Bortolotto, Guilherme A; Dalla Rosa, Luciano

    2015-09-01

    Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.

  4. Conservation hotspots for the turtles on the high seas of the Atlantic Ocean.

    PubMed

    Huang, Hsiang-Wen

    2015-01-01

    Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful.

  5. Biogeochemistry of dissolved arsenic in the temperate to tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Shelley, Rachel U.; Landing, William M.; Cutter, Gregory A.

    2015-06-01

    The biogeochemical cycle of arsenic was examined in the water column across the North Atlantic from 39° to 17°N as part of the US GEOTRACES North Atlantic study (GEOTRACES Section GA03). Results show limited nutrient-like distribution of As5+, and upper ocean maxima in As3+ and methylated As as found in many other studies In the oligotrophic water masses, microbial communities, i.e. phytoplankton, appear to favor the reduction to As3+ instead of methylation as detoxification of As5+ taken up during phosphorus (P) limitation due to their chemical similarities. The depth-integrated average concentrations in the mixed layer depth of As3+ in the western and eastern Atlantic Ocean were 1.30±1.14 nmol L-1 (n=4) and 0.65 (n=2), respectively, and rose to 3.30 nmol L-1 (n=2) in the Central Atlantic Ocean. No pattern was observed for As5+ (15.7±2.8 nmol L-1, n=8) and methylated species were detected occasionally below 0.41 nmol L-1 in the mixed layer. Based on significant correlations between phosphate, alkaline phosphate activity (APA), a conventional proxy for P limitation, and As3+, we conclude that As3+ is a good proxy for P limitation within the upper water column similar to our earlier evaluation of surface data. Mass balances for the mixed layer show that atmospheric inputs of As5+ can compensate for the losses via export fluxes and microbial reduction to As3+. The cycling of As3+ is more complex, with sources from As5+ reduction and losses due to photochemical and microbial-induced oxidation. The resulting residence time of As3+ with respect to these processes can be as short as 0.7-3 days. Unlike As5+, atmospheric inputs of As3+ cannot balance the oxidative losses and the short residence time further limits horizontal and vertical advective/diffusive inputs. It appears that reduction of As5+ coupled with detoxification and general microbial reduction are the sources of As3+ in the oceanic mixed layer. While As3+ production during As5+ detoxification has been

  6. Conservation Hotspots for the Turtles on the High Seas of the Atlantic Ocean

    PubMed Central

    Huang, Hsiang-Wen

    2015-01-01

    Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful. PMID:26267796

  7. Deconflicting Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace

    NASA Technical Reports Server (NTRS)

    Rodionova, Olga; Delahaye, Daniel; Sridhar, Banavar; Ng, Hok K.

    2016-01-01

    North Atlantic oceanic airspace accommodates more than 1000 flights daily, and is subjected to very strong winds. Flying wind-optimal trajectories yields time and fuel savings for each individual flight. However, when taken together, these trajectories induce a large amount of potential en-route conflicts. This paper analyses the detected conflicts, figuring out conflict distribution in time and space. It further describes an optimization algorithm aimed at reducing the number of conflicts for a daily set of flights on strategic level. Several trajectory modification strategies are discussed, followed with simulation results. Finally, an algorithm improvement is presented aiming at better preserving the trajectory optimality.

  8. Seasonal and Interannual Variability of Biophysical Submesoscale Fronts in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bouali, M.; Sato, O. T.; Polito, P. S.

    2014-12-01

    Ocean structures like filaments, eddies and spirals visible at spatial scales of the order of ~1 km are now known to play a significant role in ocean-atmosphere interactions. Therefore, observation and modelling of ocean submesoscale processes as well as their long term changes have become a major research area in oceanography.In this study, a 12 years (2002-2014) satellite dataset of level 2 Sea Surface Temperature (SST) and Chlorophyll-a concentration (CHL) derived from NASA's MODIS instrument onboard Terra and Aqua platforms was processed for stripe noise reduction and improved cloud masking to produce a climatology of submesoscale fronts in the South Atlantic Ocean. Instantaneous images of SST and CHL gradient magnitude were binned into seasonal and annual composite maps to 1) identify regions with intense biophysical frontal activity 2) quantify long term trends of SST and CHL submesoscale fronts from 2002-2014 and 3) investigate the spatio-temporal correlation between thermal and biological ocean processes.

  9. Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans.

    PubMed

    Hopwood, Mark J; Rapp, Insa; Schlosser, Christian; Achterberg, Eric P

    2017-03-07

    Hydrogen peroxide (H2O2) is present ubiquitously in marine surface waters where it is a reactive intermediate in the cycling of many trace elements. Photochemical processes are considered the dominant natural H2O2 source, yet cannot explain nanomolar H2O2 concentrations below the photic zone. Here, we determined the concentration of H2O2 in full depth profiles across three ocean basins (Mediterranean Sea, South Atlantic and South Pacific Oceans). To determine the accuracy of H2O2 measurements in the deep ocean we also re-assessed the contribution of interfering species to 'apparent H2O2', as analysed by the luminol based chemiluminescence technique. Within the vicinity of coastal oxygen minimum zones, accurate measurement of H2O2 was not possible due to interference from Fe(II). Offshore, in deep (>1000 m) waters H2O2 concentrations ranged from 0.25 ± 0.27 nM (Mediterranean, Balearics-Algeria) to 2.9 ± 2.2 nM (Mediterranean, Corsica-France). Our results indicate that a dark, pelagic H2O2 production mechanism must occur throughout the deep ocean. A bacterial source of H2O2 is the most likely origin and we show that this source is likely sufficient to account for all of the observed H2O2 in the deep ocean.

  10. Observation of deep water microseisms in the North Atlantic Ocean using tide modulations

    NASA Astrophysics Data System (ADS)

    Beucler, Éric; Mocquet, Antoine; Schimmel, Martin; Chevrot, Sébastien; Quillard, Olivier; Vergne, Jérôme; Sylvander, Matthieu

    2015-01-01

    Ocean activity produces continuous and ubiquitous seismic energy mostly in the 2-20 s period band, known as microseismic noise. Between 2 and 10 s period, secondary microseisms (SM) are generated by swell reflections close to the shores and/or by opposing swells in the deep ocean. However, unique conditions are required in order for surface waves generated by deep-ocean microseisms to be observed on land. By comparing short-duration power spectral densities at both Atlantic shoreline and inland seismic stations, we show that ocean tides strongly modulate the seismic energy in a wide period band except between 2.5 and 5 s. This tidal proxy reveals the existence of an ex situ short-period contribution of the SM peak. Comparison with swell spectra at surrounding buoys suggests that the largest part of this extra energy comes from deep ocean-generated microseisms. The energy modulation might be also used in numerical models of microseismic generation to constrain coastal reflection coefficients.

  11. Secondary microseism generation mechanisms and microseism derived ocean wave parameters, NE Atlantic, West of Ireland.

    NASA Astrophysics Data System (ADS)

    Donne, S. E.; Bean, C. J.; Lokmer, I.; Nicolau, M.; O'Neill, M.

    2014-12-01

    Ocean waves, driven by atmospheric processes, generate faint continuous Earth vibrations known as microseisms (Bromirski, 1999). Under certain conditions, ocean waves travelling in opposite directions may interact with one another producing a partial or full standing wave. This wave-wave interaction produces a pressure profile, unattenuated with depth, which exerts a pressure change at the seafloor, resulting in secondary microseisms in the 0.1-0.33 Hz band. There are clear correlations between microseism amplitude and storm and ocean wave intensity. We aim to determine ocean wave heights in the Northeast Atlantic offshore Ireland at individual buoy locations, using terrestrially recorded microseism signals. Two evolutionary approaches are used: Artificial Neural Networks (ANN) and Grammatical Evolution (GE). These systems learn to interpret particular input patterns and corresponding outputs and expose the often complex underlying relationship between them. They learn by example and are therefore entirely data driven so data selection is extremely important for the success of the methods. An analysis and comparison of the performance of these methods for a five month period in 2013 will be presented showing that ocean wave characteristics may be reconstructed using microseism amplitudes, adopting a purely data driven approach. There are periods during the year when the estimations made from both the GE and ANN are delayed in time by 10 to 20 hours when compared to the target buoy measurements. These delays hold important information about the totality of the conditions needed for microseism generation, an analysis of which will be presented.

  12. Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans

    PubMed Central

    Hopwood, Mark J.; Rapp, Insa; Schlosser, Christian; Achterberg, Eric P.

    2017-01-01

    Hydrogen peroxide (H2O2) is present ubiquitously in marine surface waters where it is a reactive intermediate in the cycling of many trace elements. Photochemical processes are considered the dominant natural H2O2 source, yet cannot explain nanomolar H2O2 concentrations below the photic zone. Here, we determined the concentration of H2O2 in full depth profiles across three ocean basins (Mediterranean Sea, South Atlantic and South Pacific Oceans). To determine the accuracy of H2O2 measurements in the deep ocean we also re-assessed the contribution of interfering species to ‘apparent H2O2’, as analysed by the luminol based chemiluminescence technique. Within the vicinity of coastal oxygen minimum zones, accurate measurement of H2O2 was not possible due to interference from Fe(II). Offshore, in deep (>1000 m) waters H2O2 concentrations ranged from 0.25 ± 0.27 nM (Mediterranean, Balearics-Algeria) to 2.9 ± 2.2 nM (Mediterranean, Corsica-France). Our results indicate that a dark, pelagic H2O2 production mechanism must occur throughout the deep ocean. A bacterial source of H2O2 is the most likely origin and we show that this source is likely sufficient to account for all of the observed H2O2 in the deep ocean. PMID:28266529

  13. Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Hopwood, Mark J.; Rapp, Insa; Schlosser, Christian; Achterberg, Eric P.

    2017-03-01

    Hydrogen peroxide (H2O2) is present ubiquitously in marine surface waters where it is a reactive intermediate in the cycling of many trace elements. Photochemical processes are considered the dominant natural H2O2 source, yet cannot explain nanomolar H2O2 concentrations below the photic zone. Here, we determined the concentration of H2O2 in full depth profiles across three ocean basins (Mediterranean Sea, South Atlantic and South Pacific Oceans). To determine the accuracy of H2O2 measurements in the deep ocean we also re-assessed the contribution of interfering species to ‘apparent H2O2’, as analysed by the luminol based chemiluminescence technique. Within the vicinity of coastal oxygen minimum zones, accurate measurement of H2O2 was not possible due to interference from Fe(II). Offshore, in deep (>1000 m) waters H2O2 concentrations ranged from 0.25 ± 0.27 nM (Mediterranean, Balearics-Algeria) to 2.9 ± 2.2 nM (Mediterranean, Corsica-France). Our results indicate that a dark, pelagic H2O2 production mechanism must occur throughout the deep ocean. A bacterial source of H2O2 is the most likely origin and we show that this source is likely sufficient to account for all of the observed H2O2 in the deep ocean.

  14. Denitrification in restored and constructed wetlands adjacent to crop fields on the Mid-Atlantic coastal plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilizer applications on crop fields are a significant source of nitrate (NO3), and groundwater concentrations are frequently 500-1000 µM. We show that groundwater transport of agricultural NO3 results in significant denitrification in adjacent wetlands in the Choptank Basin on the Delmarva Penins...

  15. Hidden biosphere in an oxygen-deficient Atlantic open ocean eddy: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Loescher, Carolin; Fischer, Martin; Neulinger, Sven; Fiedler, Björn; Philippi, Miriam; Schütte, Florian; Singh, Arvind; Hauss, Helena; Karstensen, Johannes; Körtzinger, Arne; Schmitz, Ruth

    2016-04-01

    The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale eddies with close to anoxic O2 concentrations (<1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the eddy fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed layer base. The O2-depleted core waters eddy promoted transcription of the key gene for denitrification, nirS. This process is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.

  16. Hidden biosphere in an oxygen-deficient Atlantic open ocean eddy: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Löscher, C. R.; Fischer, M. A.; Neulinger, S. C.; Fiedler, B.; Philippi, M.; Schütte, F.; Singh, A.; Hauss, H.; Karstensen, J.; Körtzinger, A.; Künzel, S.; Schmitz, R. A.

    2015-08-01

    The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of around 40 μmol kg-1. Only recently, the discovery of re-occurring mesoscale eddies with sometimes close to anoxic O2 concentrations (<1 μmol kg-1) and located just below the mixed layer challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first metagenomic dataset from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed a significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and increased carbon uptake rates up to three times as high as in surrounding waters. Carbon uptake below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our combined data indicate that high primary production in the eddy fuels export production and the presence of a specific microbial community responsible for enhanced respiration at shallow depths, below the mixed layer base. Progressively decreasing O2 concentrations in the eddy were found to promote transcription of the key gene for denitrification, nirS, in the O2-depleted core waters. This process is usually absent from the open ETNA waters. In the light of future ocean deoxygenation our results show exemplarily that even distinct events of anoxia have the potential to alter microbial community structures and with that critically impact primary productivity and biogeochemical processes of oceanic water bodies.

  17. Factors influencing anthropogenic carbon dioxide uptake in the North Atlantic in models of the ocean carbon cycle

    SciTech Connect

    Smith, R.S.; Marotzke, J.

    2008-09-30

    The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO{sub 2} uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO{sub 2} uptake as the ocean absorbs increasing amounts of CO{sub 2}. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO{sub 2} in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO{sub 2} forcing scenario. Neglecting physical climate change effects, North Atlantic CO{sub 2} uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO{sub 2} in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO{sub 2} compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO{sub 2} uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO{sub 2} uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation

  18. Pliocene (3.2-2.4 Ma) ostracode faunal cycles and deep ocean circulation, North Atlantic Ocean

    USGS Publications Warehouse

    Cronin, T. M.; Raymo, M.E.; Kyle, K.P.

    1996-01-01

    Ostracode assemblages from Deep Sea Drilling Project Sites 607 (western Mid-Atlantic Ridge) and 610 (southeast Rockall Plateau) show rapid, systematic shifts during late Pliocene glacial-interglacial cycles that reflect deep-sea environmental change. Progressive decreases in North Atlantic deep-water taxa and increases in Southern Ocean taxa occur from 3.4 to 2.4 Ma, and high-amplitude faunal cycles begin near 2.8 Ma. Four ostracode assemblages, each with a characteristic phase relative to 41 k.y. obliquity glacial-interglacial ??18O cycles, characterize the benthic faunal record at Site 607. Cross-spectral analysis shows that the Site 607 glacial assemblage has a 41 k.y. periodicity significant at the 95% level; other assemblages show a less significant, but still obvious, concentration of variance at 41 k.y. Faunal patterns suggest climatically controlled reorganization of deep-sea benthic communities during glacial-interglacial cycles due to oscillating deep-sea environments.

  19. New data on the trace metal composition of the planktonic foraminifera microfossils of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Demina, L. L.; Oskina, N. S.

    2016-11-01

    This paper reports new data on the trace metal composition of planktonic foraminifer shells from surface sediments and cores (fraction >0.1 mm) in the central part of the Atlantic Ocean. This investigation has made it possible to identify a considerable accumulation of trace elements from water due to calcite entering into the crystal lattice under biomineralization and adsorption on the shell surface and pores, despite the fact that the shells are depleted in trace elements relative to pelagic clays. The trace element content in planktonic foraminifer microfossils is characterized by temporal variability, which is the most pronounced in long cores (Holocene-Upper Pleistocene) and reflects the sedimentation paleoenvironment in the ocean.

  20. OCEAN CIRCULATION. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises.

    PubMed

    Srokosz, M A; Bryden, H L

    2015-06-19

    The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models.

  1. Secular Changes in the Solar Semidiurnal Tide of the Western North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2009-01-01

    An analysis of twentieth century tide gauge records reveals that the solar semidiurnal tide S, has been decreasing in amplitude along the eastern coast of North America and at the mid-ocean site Bermuda. In relative terms the observed rates are unusually large, of order 10% per century. Periods of greatest change, however, are inconsistent among the stations, and roughly half the stations show increasing amplitude since the late 1990s. Excepting the Gulf of Maine, lunar tides are either static or slightly increasing in amplitude; a few stations show decreases. Large changes in solar, but not lunar, tides suggest causes related to variable radiational forcing, but the hypothesis is at present unproven. Citation: Ray, R. D. (2009), Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean

  2. A modern analog for carbonate source-to-sink sedimentary systems: the Glorieuses archipelago and adjacent basin (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Jorry, S.; Jouet, G.; Prat, S.; Courgeon, S.; Le Roy, P.; Camoin, G.; Caline, B.

    2014-12-01

    This study presents the geomorphological and sedimentological analysis of a modern carbonate source-to-sink system located north of Madagascar (SW Indian Ocean). The sedimentary system is composed of an isolated carbonate platform sited on top of a seamount rising steeply from the seabed located at 3000 m water depth. The slope of the seamount is incised by canyons, and meandering channels occur above lobbed sedimentary bodies at the foot of the slope. The dataset consists of dredges, sediment piston cores, swath bathymetry and seismic (sparker and 2D high-resolution) lines collected from inner platform (less than 5 m deep) to the adjacent deep sedimentary basin. Particle size analysis and composition of carbonate grains are used to characterize the distribution and heterogeneity of sands accumulated on the archipelago. Main results show that composition of carbonate sediments is dominated by segments of Halimeda, large benthic foraminifera, coral debris, molluscs, echinoderms, bryozoans and sponges. According to the shape and the position of sandwaves and intertidal sandbars developed in the back-barrier reef, the present organization of these well-sorted fine-sand accumulations appears to be strongly influenced by flood tidal currents. Seismic lines acquired from semi-enclosed to open lagoon demonstrate that most of the sediment is exported and accumulated along the leeward margin of the platform, which is connected to a canyon network incising the outer slope. Following the concept of highstand shedding of carbonate platforms (Schlager et al., 1994), excess sediment is exported by plumes and gravity flows to the adjacent deep sea where it feeds a carbonate deep-sea fan. Combined observations from platform to basin allow to explain how the Glorieuses carbonate source to sink system has evolved under the influence of climate and of relative sea-level changes since the last interglacial.

  3. Characterization and impact of "dead-zone" eddies in the tropical Northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Schuette, Florian; Karstensen, Johannes; Krahmann, Gerd; Hauss, Helena; Fiedler, Björn; Brandt, Peter; Visbeck, Martin; Körtzinger, Arne

    2016-04-01

    Localized open-ocean low-oxygen dead-zones in the tropical Northeast Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic modewater eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats shows that eddies with low oxygen concentrations at 50-150 m depths can be found in surprisingly high numbers and in a large area (from about 5°N to 20°N, from the shelf at the eastern boundary to 30°W). Minimum oxygen concentrations of about 9 μmol/kg in CEs and close to anoxic concentrations (< 1 μmol/kg) in ACMEs were observed. In total, 495 profiles with oxygen concentrations below the minimum background concentration of 40 μmol/kg could be associated with 27 independent "dead-zone" eddies (10 CEs; 17 ACMEs). The low oxygen concentration right beneath the mixed layer has been attributed to the combination of high productivity in the surface waters of the eddies and the isolation of the eddies' cores. Indeed eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The oxygen minimum is located in the eddy core beneath the mixed layer at around 80 m depth. The mean oxygen anomaly between 50 to 150 m depth for CEs (ACMEs) is -49 (-81) μmol/kg. Eddies south of 12°N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. North of 12°N, eddies of both types carry anomalously low salinity water of South Atlantic Central Water origin from the eastern boundary upwelling region into the open ocean. This points to an eddy generation near the eastern boundary. A conservative estimate yields that around 5 dead-zone eddies (4 CEs; 1 ACME) per year entering the area north of 12°N between the Cap Verde Islands and 19°W. The associated contribution to the oxygen budget of the shallow oxygen minimum

  4. Emissions of Trace Gases and Particles from Two Ships in the Southern Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Christian, Ted J.; Kirchstetter, Thomas W.; Bruintjes, Roelof

    2003-01-01

    Measurements were made of the emissions of particles and gases from two diesel-powered ships in the southern Atlantic Ocean off the coast of Namibia. The measurements are used to derive emission factors from ships of three species not reported previously, namely, black carbon, accumulation-mode particles, and cloud condensation nuclei (CCN), as well as for carbon dioxide, carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, sulfur dioxide (SO2), nitrogen oxides (NOx), and condensation nuclei. The effects of fuel grade and engine power on ship emissions are discussed. The emission factors are combined with fuel usage data to obtain estimates of global annual emissions of various particles and gases from ocean-going ships. Global emissions of black carbon, accumulation- mode particles, and CCN from ocean-going ships are estimated to be 19-26 Gg yr(sup -1), (4.4-6.1) x 10(exp 26) particles yr(sup -1), and (1.0-1.5) x l0(exp 26) particles yr(sup -1), respectively. Black carbon emissions from ocean-going ships are approximately 0.2% of total anthropogenic emissions. Emissions of NOx and SO2 from ocean-going ships are approximately 10-14% and approximately 3-4%, respectively, of the total emissions of these species from the burning of fossil fuels, and approximately 40% and approximately 70%, respectively, of the total emissions of these species from the burning of biomass. Global annual emissions of CO and CH4 from ocean-going ships are approximately 2% and approximately 2-5%, respectively, of natural oceanic emissions of these species.

  5. Lateral and Seasonal Trends of Saharan Dust Deposition along a Transect over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    van der Does, M.; Korte, L.; Munday, C. I.; Brummer, G. J. A.; Stuut, J. B. W.

    2015-12-01

    Every year, an estimated 140 million tons of Saharan dust are deposited in the Atlantic Ocean, which can have several direct and indirect effects on global and regional climate. For example, dust can scatter and absorb incoming and reflected solar radiation, transport nutrients and pathogens, and act as mineral ballast particles in the ocean. In order to constrain the relations between atmospheric dust and climate, submarine sediment traps at five stations along a transect across the Atlantic Ocean at 12°N were deployed, at 1200m and 3500m water depth. Samples of seven of these sediment traps, that sampled from October 2012 to November 2013, have been analyzed on particle size and dust flux. The size of the dust particles is important because it can have an effect on the positive or negative radiation balance in the atmosphere. Small particles in the high atmosphere can reflect incoming radiation and therefore potentially have a cooling effect on climate. Large particles in the lower atmosphere have the opposite effect by absorbing reflected radiation from the Earth's surface. Mineral dust also affects carbon export to the deep ocean by providing mineral ballast for organic particles, and the size of the dust particles directly relates to the downward transport velocity. Here I will present the measured grain-size distributions of first-year samples from seven sediment traps recovered from the 12°N-latitude transect as well as dust flux data. The data show seasonal variations, with finer grained dust particles during winter and spring, and coarser grained particles during summer and fall. Also a fining trend of the grain sizes of the dust particles from source (Africa) to sink (Caribbean) is observed, which is expected due to intuitive relationships between size and transport distance. The observed size of the dust particles at large distances from their source is much larger than previously assumed and applied in climate models. See: www.nioz.nl/dust

  6. Argo data assimilation into HYCOM with an EnOI method in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Mignac, D.; Tanajura, C. A. S.; Santana, A. N.; Lima, L. N.; Xie, J.

    2015-02-01

    An ocean data assimilation system to assimilate Argo temperature (T) and salinity (S) profiles into the HYbrid Coordinate Ocean Model (HYCOM) was constructed, implemented and evaluated for the first time in the Atlantic Ocean (78° S to 50° N and 98° W to 20° E). The system is based on the ensemble optimal interpolation (EnOI) algorithm proposed by Xie and Zhu (2010), especially made to deal with the hybrid nature of the HYCOM vertical coordinate system with multiple steps. The Argo T-S profiles were projected to the model vertical space to create pseudo-observed layer thicknesses (Δ pobs), which correspond to the model target densities. The first step was to assimilate Δ pobs considering the sub-state vector composed by the model layer thickness (Δ p) and the baroclinic velocity components. After that, T and S were assimilated separately. Finally, T was diagnosed below the mixed layer to preserve the density of the model isopycnal layers. Five experiments were performed from 1 January 2010 to 31 December 2012: a control run without assimilation, and four assimilation runs considering the different vertical localizations of T, S and Δ p. The assimilation experiments were able to significantly improve the thermohaline structure produced by the control run. They reduced the root mean square deviation (RMSD) of T and S calculated with respect to Argo independent data in 34 and 44%, respectively, in comparison to the control run. In some regions, such as the western North Atlantic, substantial corrections in the 20 °C isotherm depth and the upper ocean heat content towards climatological states were achieved. The runs with a vertical localization of Δ p showed positive impacts in the correction of the thermohaline structure and reduced the RMSD of T (S) from 0.993 °C (0.149 psu) to 0.905 °C (0.138 psu) for the whole domain with respect to the other assimilation runs.

  7. The impact of multidecadal NAO variations on Atlantic ocean heat transport and rapid changes in Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Delworth, Thomas; Zeng, Fanrong

    2016-04-01

    The Arctic and North Atlantic have experienced pronounced changes over the 20th and early 21st centuries, including a rapid loss of Arctic sea ice over the last several decades, prominent multidecadal variability in both ocean temperatures and sea ice, and decadal-scale change in tropical storm activity. We use suites of coupled climate model simulations to probe some of the factors responsible for the observed multidecadal variability in the Atlantic/Arctic system. In our models we show that multidecadal fluctuations of the North Atlantic Oscillation (NAO) induce multidecadal fluctuations of the Atlantic Meridional Overturning Circulation (AMOC). A positive phase of the NAO is associated with strengthened westerly winds over the North Atlantic. These winds extract more heat than normal from the subpolar ocean, thereby increasing upper ocean density, deepwater formation, and the strength of the AMOC and associated poleward ocean heat transport. In model simulations the observed negative phase of the NAO in the 1960s and 1970s led to a weaker than normal AMOC, reduced poleward ocean heat transport, a cold North Atlantic, and an increase in Arctic sea ice extent in both winter and summer. The NAO strengthened from the 1970s to the mid 1990s, leading to an increase of the AMOC and a warming of the North Atlantic. The increased heat transport extended throughout the North Atlantic, into the Barents Sea, and finally into the Arctic, contributing to a rapid reduction of sea ice in the 1990s through the 2000s. Feedbacks involving shortwave radiation are an important component of the overall changes. The NAO-induced AMOC increase also led to hemispheric-scale atmospheric circulation changes and increased Atlantic hurricane activity, as well as atmospheric teleconnections to the Southern Ocean. Since the mid 1990s the strong positive phase of the NAO has weakened to a more neutral phase. Climate projections for the next decade that take into account recent behavior of the

  8. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11

    PubMed Central

    Kandiano, Evgenia S.; van der Meer, Marcel T. J.; Schouten, Stefan; Fahl, Kirsten; Sinninghe Damsté, Jaap S.; Bauch, Henning A.

    2017-01-01

    Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate. PMID:28393849

  9. Northern North Atlantic Sea Surface Height and Ocean Heat Content Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter; Worthen, Denise L.

    2013-01-01

    The evolution of nearly 20 years of altimetric sea surface height (SSH) is investigated to understand its association with decadal to multidecadal variability of the North Atlantic heat content. Altimetric SSH is dominated by an increase of about 14 cm in the Labrador and Irminger seas from 1993 to 2011, while the opposite has occurred over the Gulf Stream region over the same time period. During the altimeter period the observed 0-700 m ocean heat content (OHC) in the subpolar gyre mirrors the increased SSH by its dominantly positive trend. Over a longer period, 1955-2011, fluctuations in the subpolar OHC reflect Atlantic multidecadal variability (AMV) and can be attributed to advection driven by the wind stress ''gyre mode'' bringing more subtropical waters into the subpolar gyre. The extended subpolar warming evident in SSH and OHC during the altimeter period represents transition of the AMV from cold to warm phase. In addition to the dominant trend, the first empirical orthogonal function SSH time series shows an abrupt change 2009-2010 reaching a new minimum in 2010. The change coincides with the change in the meridional overturning circulation at 26.5N as observed by the RAPID (Rapid Climate Change) project, and with extreme behavior of the wind stress gyre mode and of atmospheric blocking. While the general relationship between northern warming and Atlantic meridional overturning circulation (AMOC) volume transport remains undetermined, the meridional heat and salt transport carried by AMOC's arteries are rich with decade-to-century timescale variability.

  10. Cloud-to-ground lightning over Mexico and adjacent oceanic regions: a preliminary climatology using the WWLLN dataset

    NASA Astrophysics Data System (ADS)

    Kucieńska, B.; Raga, G. B.; Rodríguez, O.

    2010-11-01

    This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005-2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed. The data are retrieved from the World Wide Lightning Location Network (WWLLN) dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation ("spherics") associated with lightning. The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico. The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity. The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT. The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Sub-tropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal distribution, since during winter lightning associated with mid

  11. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing...

  12. 33 CFR 334.1480 - Vieques Passage and Atlantic Ocean, off east coast of Puerto Rico and coast of Vieques Island...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334