Sample records for adjacent benzene rings

  1. Single-molecule conductance through multiple π-π-stacked benzene rings determined with direct electrode-to-benzene ring connections.

    PubMed

    Schneebeli, Severin T; Kamenetska, Maria; Cheng, Zhanling; Skouta, Rachid; Friesner, Richard A; Venkataraman, Latha; Breslow, Ronald

    2011-02-23

    Understanding electron transport across π-π-stacked systems will help to answer fundamental questions about biochemical redox processes and benefit the design of new materials and molecular devices. Herein we employed the STM break-junction technique to measure the single-molecule conductance of multiple π-π-stacked aromatic rings. We studied electron transport through up to four stacked benzene rings held together in an eclipsed fashion via a paracyclophane scaffold. We found that the strained hydrocarbons studied herein couple directly to gold electrodes during the measurements; hence, we did not require any heteroatom binding groups as electrical contacts. Density functional theory-based calculations suggest that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost cyclophane benzene rings in η(2) fashion. Our measurements show an exponential decay of the conductance with an increasing number of stacked benzene rings, indicating a nonresonant tunneling mechanism. Furthermore, STM tip-substrate displacement data provide additional evidence that the electrodes bind to the outermost benzene rings of the π-π-stacked molecular wires.

  2. Enumeration method for tree-like chemical compounds with benzene rings and naphthalene rings by breadth-first search order.

    PubMed

    Jindalertudomdee, Jira; Hayashida, Morihiro; Zhao, Yang; Akutsu, Tatsuya

    2016-03-01

    Drug discovery and design are important research fields in bioinformatics. Enumeration of chemical compounds is essential not only for the purpose, but also for analysis of chemical space and structure elucidation. In our previous study, we developed enumeration methods BfsSimEnum and BfsMulEnum for tree-like chemical compounds using a tree-structure to represent a chemical compound, which is limited to acyclic chemical compounds only. In this paper, we extend the methods, and develop BfsBenNaphEnum that can enumerate tree-like chemical compounds containing benzene rings and naphthalene rings, which include benzene isomers and naphthalene isomers such as ortho, meta, and para, by treating a benzene ring as an atom with valence six, instead of a ring of six carbon atoms, and treating a naphthalene ring as two benzene rings having a special bond. We compare our method with MOLGEN 5.0, which is a well-known general purpose structure generator, to enumerate chemical structures from a set of chemical formulas in terms of the number of enumerated structures and the computational time. The result suggests that our proposed method can reduce the computational time efficiently. We propose the enumeration method BfsBenNaphEnum for tree-like chemical compounds containing benzene rings and naphthalene rings as cyclic structures. BfsBenNaphEnum was from 50 times to 5,000,000 times faster than MOLGEN 5.0 for instances with 8 to 14 carbon atoms in our experiments.

  3. A dendrimer chiroptical switch based on the reversible intramolecular photoreaction of anthracene and benzene rings.

    PubMed

    Liu, Wenjie; Cao, Derong; Peng, Jinan; Zhang, Hong; Meier, Herbert

    2010-08-02

    A series of Fréchet-type dendrimers with 9-benzyloxymethylanthracene cores were synthesized and characterized. The chiral source for the dendrimers was an (S)-2-methyl-1-butoxy group in the 3-position of the benzene ring. Irradiation at 366 nm of a dilute benzene solution led to the formation of two diastereomers (1:1) through a quantitative intramolecular [4pi+4pi] cycloaddition between the central anthracene ring and the neighboring benzene ring. The process can be reversed with 254 nm UV light or heat. The benzene rings in the dendrons work as a light-harvesting system. The optical rotation values measured for the reversible process showed fatigue resistance. Thus, a promising new type of chiroptical switch has been created that has optical rotation values as output signals.

  4. Δg: The new aromaticity index based on g-factor calculation applied for polycyclic benzene rings

    NASA Astrophysics Data System (ADS)

    Ucun, Fatih; Tokatlı, Ahmet

    2015-02-01

    In this work, the aromaticity of polycyclic benzene rings was evaluated by the calculation of g-factor for a hydrogen placed perpendicularly at geometrical center of related ring plane at a distance of 1.2 Å. The results have compared with the other commonly used aromatic indices, such as HOMA, NICSs, PDI, FLU, MCI, CTED and, generally been found to be in agreement with them. So, it was proposed that the calculation of the average g-factor as Δg could be applied to study the aromaticity of polycyclic benzene rings without any restriction in the number of benzene rings as a new magnetic-based aromaticity index.

  5. Heterocyclic replacements for benzene: Maximising ADME benefits by considering individual ring isomers.

    PubMed

    Ritchie, Timothy J; Macdonald, Simon J F

    2016-11-29

    The impact of replacing a mono-substituted benzene (phenyl) ring with thirty three aromatic and nine aliphatic heterocycles on nine ADME-related screens (solubility, lipophilicity, permeability, protein binding CYP450 inhibition and metabolic clearance) was assessed using matched molecular pair analysis. The results indicate that the influence on the ADME profile can differ significantly depending on the ring identity and importantly on the individual regioisomers that are possible for some rings. This information enables the medicinal chemist to make an informed choice about which rings and regioisomers to employ as mono-substituted benzene replacements, based upon the knowledge of how such replacements are likely to influence ADME-related parameters, for example to target higher solubility whilst avoiding CYP450 liabilities. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. The effect of perfluorination on the aromaticity of benzene and heterocyclic six-membered rings.

    PubMed

    Wu, Judy I; Pühlhofer, Frank G; Schleyer, Paul von Ragué; Puchta, Ralph; Kiran, Boggavarapu; Mauksch, Michael; Hommes, Nico J R van Eikema; Alkorta, Ibon; Elguero, José

    2009-06-18

    Despite having six highly electronegative F's, perfluorobenzene C(6)F(6) is as aromatic as benzene. Ab initio block-localized wave function (BLW) computations reveal that both C(6)F(6) and benzene have essentially the same extra cyclic resonance energies (ECREs). Localized molecular orbital (LMO)-nucleus-independent chemical shifts (NICS) grids demonstrates that the F's induce only local paratropic contributions that are not related to aromaticity. Thus, all of the fluorinated benzenes (C(6)F(n)H((6-n)), n = 1-6) have similar ring-LMO-NICS(pi zz) values. However, 1,3-difluorobenzene 2b and 1,3,5-trifluorobenzene 3c are slightly less aromatic than their isomers due to a greater degree of ring charge alternation. Isoelectronic C(5)H(5)Y heterocycles (Y = BH(-), N, NH(+)) are as aromatic as benzene, based on their ring-LMO-NICS(pi zz) and ECRE values, unless extremely electronegative heteroatoms (e.g., Y = O(+)) are involved.

  7. 1-(3,3-Dichloro-all-yloxy)-4-methyl-2-nitro-benzene.

    PubMed

    Ren, Dong-Mei

    2012-06-01

    In the title compound, C(10)H(9)Cl(2)NO(3), the dihedral angle between the benzene ring and the plane of the nitro group is 39.1 (1)°, while that between the benzene ring and the plane through the three C and two Cl atoms of the dichloro-all-yloxy unit is 40.1 (1)°. In the crystal, C-H⋯O hydrogen bonds to the nitro groups form chains along the b axis. These chains are linked by inversion-related pairs of Cl⋯O inter-actions at a distance of 3.060 (3) Å, forming sheets approximately parallel to [-201] and generating R(2) (2)(18) rings. π-π contacts between benzene rings in adjacent sheets, with centroid-centroid distances of 3.671 (2) Å, stack mol-ecules along c.

  8. The leap-frog effect of ring currents in benzene.

    PubMed

    Ligabue, Andrea; Soncini, Alessandro; Lazzeretti, Paolo

    2002-03-06

    Symmetry arguments show that the ring-current model proposed by Pauling, Lonsdale, and London to explain the enhanced diamagnetism of benzene is flawed by an intrinsic drawback. The minimal basis set of six atomic 2p orbitals taken into account to develop such a model is inherently insufficient to predict a paramagnetic contribution to the perpendicular component of magnetic susceptibility in planar ring systems such as benzene. Analogous considerations can be made for the hypothetical H(6) cyclic molecule. A model allowing for extended basis sets is necessary to rationalize the magnetism of aromatics. According to high-quality coupled Hartree-Fock calculations, the trajectories of the current density vector field induced by a magnetic field perpendicular to the skeletal plane of benzene in the pi electrons are noticeably different from those typical of a Larmor diamagnetic circulation, in that (i) significant deformation of the orbits from circular to hexagonal symmetry occurs, which is responsible for a paramagnetic contribution of pi electrons to the out-of-plane component of susceptibility, and (ii) a sizable component of the pi current density vector parallel to the inducing field is predicted. This causes a waving motion of pi electrons; streamlines are characterized by a "leap-frog effect".

  9. Delocalization of positive charge in π-stacked multi-benzene rings in multilayered cyclophanes.

    PubMed

    Fujitsuka, Mamoru; Tojo, Sachiko; Shibahara, Masahiko; Watanabe, Motonori; Shinmyozu, Teruo; Majima, Tetsuro

    2011-02-10

    In the present study, delocalization of a positive charge in π-stacked multi-benzene rings in multilayered para- and meta-cyclophanes, in which benzene rings are connected by propyl chains to form a chromophore array with the face-to-face structure, was investigated by means of transient absorption spectroscopy during the pulse radiolysis using dichloroethane as a solvent. The local excitation and charge resonance (CR) bands were successfully observed. It was revealed that the CR band shifted to the longer wavelength side with the number of the benzene rings. The stabilization energy estimated from the peak position of the CR band showed the efficient charge delocalization over the cyclophanes. Furthermore, the CR bands showed the slight spectral change attributable to the change in distribution of the conformers. The substantially long lifetime of the CR band can be explained on the basis of the smaller charge distribution on the outer layers of the multilayered cyclophanes.

  10. Possibility designing XNOR and NAND molecular logic gates by using single benzene ring

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2017-09-01

    This study focused on examining electronic transport through single benzene ring and suggested how such ring can be employed to design XNOR and NAND molecular logic gates. The single benzene ring was threaded by a magnetic flux. The magnetic flux and applied gate voltages were considered as the key tuning parameter in the XNOR and NAND gates operation. All the calculations are achieved by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The transmission probability and the electric current are calculated as functions of electron energy and bias voltage, respectively. The application of the anticipated results can be a base for the progress of molecular electronics.

  11. Conversion of Weinreb amides into benzene rings incorporating the amide carbonyl carbon.

    PubMed

    Clive, Derrick L J; Pham, Mai P

    2009-02-20

    Esters, acids and acid chlorides can be converted via the intermediacy of their corresponding Weinreb amides into benzene derivatives that incorporate the original carbonyl carbon as part of the benzene ring. The process involves treatment of the derived Weinreb amides with 3-butenylmagnesium bromide and an allylic Grignard reagent, followed by ring-closing metathesis, dehydration and dehydrogenation. The dehydration-dehydrogenation can be done under acidic conditions with a mixture of TsOH x H(2)O and DDQ or in two steps with SOCl(2)/pyridine, followed by treatment with DDQ. Application of the method to carbohydrates provides a convenient route to C-5 aryl pyranosides.

  12. Natural bond orbital approach to the transmission of substituent effect through the fulvene and benzene ring systems.

    PubMed

    Oziminski, Wojciech P; Krygowski, Tadeusz M

    2011-03-01

    Electronic structure of 22 monosubstituted derivatives of benzene and exocyclically substituted fulvene with substituents: B(OH)(2), BH(2), CCH, CF(3), CH(3), CHCH(2), CHO, Cl, CMe(3), CN, COCH(3), CONH(2), COOH, F, NH(2), NMe(2), NO, NO(2), OCH(3), OH, SiH(3), SiMe(3) were studied theoretically by means of Natural Bond Orbital analysis. It is shown, that sum of π-electron population of carbon atoms of the fulvene and benzene rings, pEDA(F) and pEDA(B), respectively correlate well with Hammett substituent constants [Formula in text] and aromaticity index NICS. The substituent effect acting on pi-electron occupation at carbon atoms of the fulvene ring is significantly stronger than in the case of benzene. Electron occupations of ring carbon atoms (except C1) in fulvene plotted against each other give linear regressions with high correlation coefficients. The same is true for ortho- and para-carbon atoms in benzene. Positive slopes of the regressions indicate similar for fulvene and benzene kind of substituent effect - mostly resonance in nature. Only the regressions of occupation at the carbon atom in meta- position of benzene against ortho- and para-positions gives negative slopes and low correlation coefficients.

  13. Stacking interactions between nitrogen-containing six-membered heterocyclic aromatic rings and substituted benzene: studies in solution and in the solid state.

    PubMed

    Gung, Benjamin W; Wekesa, Francis; Barnes, Charles L

    2008-03-07

    The stacking interactions between an aromatic ring and a pyridine or a pyrimidine ring are studied by using a series of triptycene-derived scaffolds. The indicative ratios of the syn and anti conformers were determined by variable-temperature NMR spectroscopy. The syn conformer aligns the attached aromatic ring and the heterocycle in a parallel-displaced orientation while the anti conformer sets the two rings apart from each other. Comparing to the corresponding control compounds where a benzene ring is in the position of the heterocycle, higher attractive interactions are observed as indicated by the higher syn/anti ratios. In general, the attractive interactions are much less sensitive to the substituent effects than the corresponding nonheterocycles. The greatest attractive interactions were observed between a pyrimidine ring and a N,N-dimethylaminobenzene, consistent with a predominant donor-acceptor interaction. The interactions between a pyridine ring and a substituted benzene ring show that the pyridine is comparable to that of a NO2- or a CN-substituted benzene ring except for the unpredictable substituent effects.

  14. Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: an additional pathway for toxic metabolites.

    PubMed Central

    Latriano, L; Goldstein, B D; Witz, G

    1986-01-01

    It has been proposed that a ring-opened form may be responsible for the toxicity of benzene. The present studies demonstrate that incubation of [14C]benzene with liver microsomes (obtained from male CD-1 mice treated with benzene) in the presence of NADPH results in the formation of a ring-opened product. Evidence for the identity of this product was obtained by derivatizing with 2-thiobarbituric acid (TBA), which resulted in the formation of an adduct with a 490-nm absorbance maximum. This maximum is identical to that observed after authentic trans,trans-muconaldehyde has reacted with TBA. Separation of muconaldehyde, both with and without trapping with TBA, from other benzene metabolites in the incubation mixture was accomplished by HPLC. The radioactivity profile of fractions collected during HPLC analysis contained peaks that eluted with muconaldehyde and the muconaldehyde-TBA adduct. The structure of the ring-opened product was confirmed by mass spectrometry, studies in which the HPLC peak from the microsomal incubation mixture that eluted at the retention time of authentic muconaldehyde was collected and derivatized with 2,4-dinitrophenylhydrazine. The high-resolution mass spectrum of this sample contained an ion with an m/z of 291.0729, corresponding to muconaldehyde mono-dinitrophenylhydrazone. These results indicate that benzene is metabolized in vitro to a ring-opened product identified as muconaldehyde. PMID:3464956

  15. Structural, energetic, spectroscopic and QTAIM analyses of cation-π interactions involving mono- and bi-cyclic ring fused benzene systems.

    PubMed

    Hassan, Ayorinde; Dinadayalane, Tandabany C; Grabowski, Sławomir J; Leszczynski, Jerzy

    2013-12-28

    The effect of increasing the number of monocyclic six-membered rings or bicyclic rings of bicyclo[2.1.1]hexenyl fused to benzene on cation-π interactions involving alkali metal ions (Li(+), Na(+), and K(+)) has been investigated. The binding energy data at the B3LYP/6-311+G(2d,2p) level clearly indicate that the binding affinity of the metal ion with benzene is enhanced by increasing the number of rings fused irrespective of a monocyclic or a bicyclic ring. Calculated binding energies are in good agreement with the available experimental results. The binding strength of cations with ligands decreases in the order Li(+) > Na(+) > K(+). Our study establishes that trisannelation of bicyclo[2.1.1]hexene to benzene facilitates a very strong interaction between benzene and cations. Infrared (IR) frequencies and nuclear magnetic resonance (NMR) chemical shifts are shown to be valuable in characterizing cation-π interactions. The C-C bonds of the central six-membered rings are weakened due to metal ion binding. Based on the Quantum Theory of Atoms in Molecules (QTAIM), we have observed the presence of stabilizing H∙∙∙H interactions in two of the considered systems as opposed to the frequent description of these interactions as non-bonded repulsive interactions. Alkali metal ion binding with those two ligands slightly reduces the strength of such H∙∙∙H interactions.

  16. Aromaticity of strongly bent benzene rings: persistence of a diatropic ring current and its shielding cone in [5]paracyclophane.

    PubMed

    Jenneskens, Leonardus W; Havenith, Remco W A; Soncini, Alessandro; Fowler, Patrick W

    2011-10-06

    Direct evaluation of the induced π current density in [5]paracyclophane (1) shows that, despite the significant non-planarity (α = 23.2°) enforced by the pentamethylene bridge, there is only a modest (ca. 17%) reduction in the π ring current, justifying the use of shielding-cone arguments for the assignment of (1)H NMR chemical shifts of 1 and the claim that the non-planar benzene ring in 1 retains its aromaticity (on the magnetic criterion).

  17. Binding of Alkali Metal Ions with 1,3,5-Tri(phenyl)benzene and 1,3,5-Tri(naphthyl)benzene: The Effect of Phenyl and Naphthyl Ring Substitution on Cation-π Interactions Revealed by DFT Study.

    PubMed

    Mirchi, Ali; Sizochenko, Natalia; Dinadayalane, Tandabany; Leszczynski, Jerzy

    2017-11-22

    The effect of substitution of phenyl and naphthyl rings to benzene was examined to elucidate the cation-π interactions involving alkali metal ions with 1,3,5-tri(phenyl)benzene (TPB) and 1,3,5-tri(naphthyl)benzene (TNB). Benzene, TPB, and four TNB isomers (with ααα, ααβ, αββ, and βββ types of fusion) and their complexes with Li + , Na + , K + , Rb + , and Cs + were optimized using DFT approach with B3LYP and M06-2X functionals in conjunction with the def2-QZVP basis set. Higher relative stability of β,β,β-TNB over α,α,α-TNB can be attributed to peri repulsion, which is defined as the nonbonding repulsive interaction between substituents in the 1- and the 8-positions on the naphthalene core. Binding energies, distances between ring centroid and the metal ions, and the distance to metal ions from the center of other six-membered rings were compared for all complexes. Our computational study reveals that the binding affinity of alkali metal cations increases significantly with the 1,3,5-trisubstitution of phenyl and naphthyl rings to benzene. The detailed computational analyses of geometries, partial charges, binding energies, and ligand organization energies reveal the possibility of favorable C-H···M + interactions when a α-naphthyl group exists in complexes of TNB structures. Like benzene-alkali metal ion complexes, the binding affinity of metal ions follows the order: Li + > Na + > K + > Rb + > Cs + for any considered 1,3,5-trisubstituted benzene systems. In case of TNB, we found that the strength of interactions increases as the fusion point changes from α to β position of naphthalene.

  18. Construction of substituted benzene rings by palladium-catalyzed direct cross-coupling of olefins: a rapid synthetic route to 1,4-naphthoquinone and its derivatives.

    PubMed

    Hu, Peng; Huang, Shijun; Xu, Jing; Shi, Zhang-Jie; Su, Weiping

    2011-10-10

    Ring the changes: the direct cross-coupling of electron-deficient 1,4-benzoquinone or its derivatives with electron-rich alkyl vinyl ethers proceeds in a tandem manner to produce substituted benzene rings with good selectivity and in good to excellent yields. The reaction has the potential for the rapid synthesis of diverse substituted benzene rings as it is not limited by substituent effects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanistic Insights into Ring Cleavage and Contraction of Benzene over a Titanium Hydride Cluster.

    PubMed

    Kang, Xiaohui; Luo, Gen; Luo, Lun; Hu, Shaowei; Luo, Yi; Hou, Zhaomin

    2016-09-14

    Carbon-carbon bond cleavage of benzene by transition metals is of great fundamental interest and practical importance, as this transformation is involved in the production of fuels and other important chemicals in the industrial hydrocracking of naphtha on solid catalysts. Although this transformation is thought to rely on cooperation of multiple metal sites, molecular-level information on the reaction mechanism has remained scarce to date. Here, we report the DFT studies of the ring cleavage and contraction of benzene by a molecular trinuclear titanium hydride cluster. Our studies suggest that the reaction is initiated by benzene coordination, followed by H2 release, C6H6 hydrometalation, repeated C-C and C-H bond cleavage and formation to give a MeC5H4 unit, and insertion of a Ti atom into the MeC5H4 unit with release of H2 to give a metallacycle product. The C-C bond cleavage and ring contraction of toluene can also occur in a similar fashion, though some details are different due to the presence of the methyl substituent. Obviously, the facile release of H2 from the metal hydride cluster to provide electrons and to alter the charge population at the metal centers, in combination with the flexible metal-hydride connections and dynamic redox behavior of the trimetallic framework, has enabled this unusual transformation to occur. This work has not only provided unprecedented insights into the activation and transformation of benzene over a multimetallic framework but it may also offer help in the design of new molecular catalysts for the activation and transformation of inactive aromatics.

  20. Clusters of imidazolium-based ionic liquid in benzene solutions.

    PubMed

    Shimomura, Takuya; Takamuku, Toshiyuki; Yamaguchi, Toshio

    2011-07-07

    Cluster formation of 1-dodecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (C(12)mim(+)TFSA(-)) in benzene solutions was investigated using small-angle neutron scattering (SANS), NMR, attenuated total reflectance infrared (ATR-IR), and large-angle X-ray scattering (LAXS) techniques. The SANS measurements revealed that C(12)mim(+)TFSA(-) is heterogeneously mixed with benzene in the narrow range of benzene mole fraction 0.9 ≤ x(C6D6) ≤ 0.995 with a maximum heterogeneity at x(C6D6) ≈ 0.99. The NMR results suggested that the imidazolium ring is sandwiched between benzene molecules through the cation-π interaction. Moreover, TFSA(-) probably interacts with the imidazolium ring even in the range of x(C6H6) ≥ 0.9. Thus, the imidazolium rings, benzene molecules, and TFSA(-) would form clusters in the C(12)mim(+)TFSA(-)-benzene solutions. The LAXS measurements showed that the distance between the imidazolium ring and benzene is ∼3.8 Å with that between the benzene molecules of ∼7.5 Å. On the basis of these results, we discussed a plausible reason for the liquid-liquid equilibrium of the C(12)mim(+)TFSA(-)-benzene system.

  1. Oxidative degradation of benzene rings using iron sulfide activated by hydrogen peroxide/ozone.

    PubMed

    Hara, Junko

    2017-12-01

    Mineral pyrites-metal sulfides abundant in the earth's crust-exhibit oxidative ability when exposed to water. This oxidizing ability makes mineral pyrites suitable for the natural and enhanced remediation of environmentally hazardous materials. Herein, we evaluate the benzene ring degradation ability of iron bisulfide activated by H 2 O 2 and O 3 and elucidate the corresponding reaction pathways. A set of control experiments was conducted to optimize the reaction conditions, i.e., the FeS 2 /H 2 O ratio under aerobic conditions and the H 2 O 2 and/or O 3 dosages. Benzene ring was successfully decomposed to CO 2 via organic acids even by the simplest FeS 2 /H 2 O combination. This process was accelerated by the addition of both O 3 and H 2 O 2 . The extent of degradation to CO 2 increased in the presence of O 3 , while oxalic acid generation increased in the presence of H 2 O 2 . The reaction proceeded via the radicals generated on FeS 2 /H 2 O, which is enhanced by O 3 , and a Fenton-like reaction using the iron obtained from FeS 2 dissolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs.

    PubMed

    Li, Jinghui; Nagamochi, Hiroshi; Akutsu, Tatsuya

    2018-01-01

    Enumeration of chemical structures is useful for drug design, which is one of the main targets of computational biology and bioinformatics. A chemical graph with no other cycles than benzene rings is called tree-like, and becomes a tree possibly with multiple edges if we contract each benzene ring into a single virtual atom of valence 6. All tree-like chemical graphs with a given tree representation are called the substituted benzene isomers of . When we replace each virtual atom in with a benzene ring to obtain a substituted benzene isomer, distinct isomers of are caused by the difference in arrangements of atom groups around a benzene ring. In this paper, we propose an efficient algorithm that enumerates all substituted benzene isomers of a given tree representation . Our algorithm first counts the number of all the isomers of the tree representation by a dynamic programming method. To enumerate all the isomers, for each , our algorithm then generates the th isomer by backtracking the counting phase of the dynamic programming. We also implemented our algorithm for computational experiments.

  3. Substituent Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents with the Unsubstituted Benzene

    PubMed Central

    Wheeler, Steven E.; Houk, K. N.

    2009-01-01

    The prevailing views of substituent effects in the sandwich configuration of the benzene dimer are flawed. For example, in the polar/π model of Cozzi and co-workers (J. Am. Chem. Soc. 1992, 114, 5729), electron-withdrawing substituents enhance binding in the benzene dimer by withdrawing electron density from the π-cloud of the substituted ring, reducing the repulsive electrostatic interaction with the non-substituted benzene. Conversely, electron-donating substituents donate excess electrons into the π-system and diminish the π-stacking interaction. We present computed interaction energies for the sandwich configuration of the benzene dimer and 24 substituted dimers, as well as sandwich complexes of substituted benzenes with perfluorobenzene. While the computed interaction energies correlate well with σm values for the substituents, interaction energies for related model systems demonstrate that this trend is independent of the substituted ring. Instead, the observed trends are consistent with direct electrostatic and dispersive interactions of the substituents with the unsubstituted ring. PMID:18652453

  4. Construction of Benzene Rings by Copper-Catalyzed Cycloaddition Reactions of Oximes and Maleimides: An Access to Fused Phthalimides.

    PubMed

    Yang, Jie; Zhao, Bo; Xi, Yue; Sun, Si; Yang, Zhen; Ye, Ying; Jiang, Kun; Wei, Ye

    2018-02-16

    A useful Cu-catalyzed cycloaddition protocol for the construction of benzene rings has been achieved. The reactions, utilizing readily available oximes and maleimides as starting materials, proceed under mild reaction conditions to generate a series of structurally interesting fused-phthalimides that are difficult to be prepared by conventional methods.

  5. Centrohexaindane: six benzene rings mutually fixed in three dimensions - solid-state structure and six-fold nitration.

    PubMed

    Kuck, Dietmar; Linke, Jens; Teichmann, Lisa Christin; Barth, Dieter; Tellenbröker, Jörg; Gestmann, Detlef; Neumann, Beate; Stammler, Hans-Georg; Bögge, Hartmut

    2016-04-28

    The solid-state molecular structure of centrohexaindane (), a unique hydrocarbon comprising six benzene rings clamped to each other in three dimensions around a neopentane core, and the molecular packing in crystals of ·CHCl3 are reported. The molecular Td-symmetry and the Cartesian orientation of the six indane wings of in the solid state have been confirmed. The course and limitation of electrophilic aromatic substitution of are demonstrated for the case of nitration. Based on nitration experiments of a lower congener of , tribenzotriquinacene , the six-fold nitrofunctionalisation of has been achieved in excellent yield, giving four constitutional isomers, two nonsymmetrical ( and ) and two C3-symmetrical ones ( and ), all of which contain one single nitro group in each of the six benzene rings. The relative yields of the four isomers (∼3 : 1 : 1 : 3) point to a random electrophilic attack of the electrophiles at the twelve formally equivalent outer positions of the aromatic periphery of , suggesting electronic independence of its six aromatic π-electron systems. In turn, the pronounced conformational rigidity of the centrohexacyclic framework of enables the unequivocal structural identification of the isomeric hexanitrocentrohexaindanes by (1)H NMR spectroscopy.

  6. Transformation of toluene and benzene by mixed methanogenic cultures.

    PubMed Central

    Grbić-Galić, D; Vogel, T M

    1987-01-01

    The aromatic hydrocarbons toluene and benzene were anaerobically transformed by mixed methanogenic cultures derived from ferulic acid-degrading sewage sludge enrichments. In most experiments, toluene or benzene was the only semicontinuously supplied carbon and energy source in the defined mineral medium. No exogenous electron acceptors other than CO2 were present. The cultures were fed 1.5 to 30 mM unlabeled or 14C-labeled aromatic substrates (ring-labeled toluene and benzene or methyl-labeled toluene). Gas production from unlabeled substrates and 14C activity distribution in products from the labeled substrates were monitored over a period of 60 days. At least 50% of the substrates were converted to CO2 and methane (greater than 60%). A high percentage of 14CO2 was recovered from the methyl group-labeled toluene, suggesting nearly complete conversion of the methyl group to CO2 and not to methane. However, a low percentage of 14CO2 was produced from ring-labeled toluene or from benzene, indicating incomplete conversion of the ring carbon to CO2. Anaerobic transformation pathways for unlabeled toluene and benzene were studied with the help of gas chromatography-mass spectrometry. The intermediates detected are consistent with both toluene and benzene degradation via initial oxidation by ring hydroxylation or methyl oxidation (toluene), which would result in the production of phenol, cresols, or aromatic alcohol. Additional reactions, such as demethylation and ring reduction, are also possible. Tentative transformation sequences based upon the intermediates detected are discussed. PMID:3105454

  7. Formal radical cyclization onto benzene rings: a general method and its use in the synthesis of ent-nocardione A.

    PubMed

    Clive, Derrick L J; Fletcher, Stephen P; Liu, Dazhan

    2004-05-14

    An indirect method is described for effecting radical cyclization onto a benzene ring. Cross-conjugated dienones 6, which are readily prepared from phenols, undergo radical cyclization (6 --> 7 --> 8), and the products (8) are easily aromatized. The method has been applied to the synthesis of ent-nocardione A (21).

  8. 1-(3,3-Dichloro-all-yloxy)-2-nitro-benzene.

    PubMed

    Ren, Dong-Mei; Wang, Yong-Yi

    2012-04-01

    In the title compound, C(9)H(7)Cl(2)NO(3), the dihedral angle between the benzene ring and the plane of the nitro group is 50.2 (1)°, and that between the benzene ring and the best plane through the dichloro-allyl fragment is 40.1 (1)°.

  9. Crystal structures of 4-meth-oxy-N-(4-methyl-phenyl)benzene-sulfonamide and N-(4-fluoro-phenyl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Rodrigues, Vinola Z; Preema, C P; Naveen, S; Lokanath, N K; Suchetan, P A

    2015-11-01

    Crystal structures of two N-(ar-yl)aryl-sulfonamides, namely, 4-meth-oxy-N-(4-methyl-phen-yl)benzene-sulfonamide, C14H15NO3S, (I), and N-(4-fluoro-phen-yl)-4-meth-oxy-benzene-sulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzene-sulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N-H⋯O hydrogen bonds form infinite C(4) chains extended in [010], and inter-molecular C-H⋯πar-yl inter-actions link these chains into layers parallel to the ab plane. The crystal structure of (II) features N-H⋯O hydrogen bonds forming infinite one dimensional C(4) chains along [001]. Further, a pair of C-H⋯O inter-molecular inter-actions consolidate the crystal packing of (II) into a three-dimensional supra-molecular architecture.

  10. Insertion of benzene rings into the amide bond: one-step synthesis of acridines and acridones from aryl amides.

    PubMed

    Pintori, Didier G; Greaney, Michael F

    2010-01-01

    Insertion of benzene rings into the amide bond using the reactive intermediate benzyne is described. Aromatic amides undergo smooth insertion when treated with O-triflatophenyl silane benzyne precursors, producing versatile aminobenzophenone products in good to excellent yield. The process is entirely metal-free and has been exemplified on the synthesis of biologically active acridones and acridines.

  11. Species differences in the metabolism of benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, R.F.

    1996-12-01

    The pathways of metabolism of benzene appear to be qualitatively similar in all species studied thus far. However, there are quantitative differences in the fraction of benzene metabolized by the different pathways. These species differences become important for risk assessments based on animal data. Mice have a greater overall capacity to metabolize benzene than rats or primates, based on mass balance studies conducted in vivo using radiolabled benzene. Mice and monkeys metabolize more of the benzene to hydroquinone metabolites than do rats or chimpanzees, especially at low doses. Nonhuman primates metabolize less of the benzene to muconic acid than domore » rodents or humans. In all species studied, a greater proportion of benzene is converted to hydroquinone and ring-breakage metabolites at low doses than at high doses. This finding should be considered in attempting to extrapolate the toxicity of benzene observed at high doses to predicted toxicity at low doses. Because ring-breakage metabolites and hydroquinone have both been implicated in the toxicity of benzene, the higher formation of those metabolites in the mouse may partially explain why mice are more sensitive to benzene than are rats. Metabolism of benzene in humans, the species of interest, does not exactly mimic that of any animal species studied. More information on the urinary and blood metabolites of occupationally exposed people is required to determine the fractional conversion of benzene to putative toxic metabolites and the degree of variability present in human subjects. 12 refs., 4 tabs.« less

  12. Metatranscriptome of an Anaerobic Benzene-Degrading, Nitrate-Reducing Enrichment Culture Reveals Involvement of Carboxylation in Benzene Ring Activation

    PubMed Central

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E.; Gong, Yunchen; Hug, Laura A.; Raskin, Lutgarde

    2014-01-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

  13. Theoretical study of hydrogen storage in a truncated triangular pyramid molecule consisting of pyridine and benzene rings bridged by vinylene groups

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shigeru; Nemoto, Tetsushi; Yamabe, Tokio

    2018-06-01

    Hydrogen storage in a truncated triangular pyramid molecule C33H21N3, which consists of three pyridine rings and one benzene ring bridged by six vinylene groups, is studied by quantum chemical methods. The molecule is derived by substituting three benzene rings in a truncated tetrahedron hydrocarbon C36H24 with pyridine rings. The optimized molecular structure under C 3v symmetry shows no imaginary vibrational modes at the B3LYP/cc-pVTZ level of theory. The hydrogen storage process is investigated based on the MP2/cc-pVTZ method. Like the structure before substitution, the C33H21N3 molecule has a cavity that stores a hydrogen molecule with a binding energy of - 140 meV. The Langmuir isotherm shows that this cavity can store hydrogen at higher temperatures and lower pressures than usual physisorption materials. The C33H21N3 molecule has a kinetic advantage over the C36H24 molecule because the former molecule has a lower barrier (+ 560 meV) for the hydrogen molecule entering the cavity compared with the latter molecule (+ 730 meV) owing to the lack of hydrogen atoms narrowing the opening.

  14. Infrared spectroscopy of protonated trimethylamine-(benzene)(n) (n = 1-4) as model clusters of the quaternary ammonium-aromatic ring interaction.

    PubMed

    Shishido, Ryunosuke; Kawai, Yuki; Fujii, Asuka

    2014-09-04

    The essence of the molecular recognition of the neurotransmitter acetylcholine has been attributed to the attractive interaction between a quaternary ammonium and aromatic rings. We employed protonated trimethylamine-(benzene)n clusters (n = 1-4) in the gas phase as a model to study the recognition mechanism of acetylcholine at the microscopic level. We applied size-selective infrared spectroscopy to the clusters and observed the NH and CH stretching vibrational regions. We also performed density functional theory calculations of stable structures, charge distributions, and infrared spectra of the clusters. It was shown that the methyl groups of protonated trimethylamine are solvated by benzene one at a time in the n > 1 clusters, and the validity of these clusters as a model system of the acetylcholine recognition was demonstrated. The nature of the interactions between a quaternary ammonium and aromatic rings is discussed on the basis of the observed infrared spectra and the theoretical calculations.

  15. Distorted allotropes of bi-benzene: vibronic interactions and electronic excitations

    NASA Astrophysics Data System (ADS)

    Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.

    2017-05-01

    Bi-benzene - chemically bound two benzene molecules in stuck position is studied both analytically and numerically. There are several allotropes of bi-benzene having different geometry. The reason of the existence of sundry distorted structures is the pseudo-Jahn-Teller effect. The parameters of vibronic couplings causing distortions are found. For the calculation of these parameters both, the vibronic coupling of carbon atoms in different C6 rings and the vibronic coupling in the rings are considered. The contribution of the distortion of C6-planes to the latter coupling is also found. The energies of all the electronic states of π-electrons in all bi-benzene allotropes are determined by using the calculated vibronic interaction parameters.

  16. Anaerobic benzene degradation by bacteria

    PubMed Central

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans‐Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  17. Optimization Technology of the LHS-1 Strain for Degrading Gallnut Water Extract and Appraisal of Benzene Ring Derivatives from Fermented Gallnut Water Extract Pyrolysis by Py-GC/MS.

    PubMed

    Wang, Chengzhang; Li, Wenjun

    2017-12-20

    Gallnut water extract (GWE) enriches 80~90% of gallnut tannic acid (TA). In order to study the biodegradation of GWE into gallic acid (GA), the LHS-1 strain, a variant of Aspergillus niger , was chosen to determine the optimal degradation parameters for maximum production of GA by the response surface method. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was first applied to appraise benzene ring derivatives of fermented GWE (FGWE) pyrolysis by comparison with the pyrolytic products of a tannic acid standard sample (TAS) and GWE. The results showed that optimum conditions were at 31 °C and pH of 5, with a 50-h incubation period and 0.1 g·L -1 of TA as substrate. The maximum yields of GA and tannase were 63~65 mg·mL -1 and 1.17 U·mL -1 , respectively. Over 20 kinds of compounds were identified as linear hydrocarbons and benzene ring derivatives based on GA and glucose. The key benzene ring derivatives were 3,4,5-trimethoxybenzoic acid methyl ester, 3-methoxy-1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzoic acid hydrazide.

  18. Compounds for neutron radiation detectors and systems thereof

    DOEpatents

    Payne, Stephen A; Stoeffl, Wolfgang; Zaitseva, Natalia P; Cherepy, Nerine J; Carman, M. Leslie

    2014-05-27

    A material according to one embodiment exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene, the material comprising a molecule selected from a group consisting of: two or more benzene rings, one or more benzene rings with a carboxylic acid group, one or more benzene rings with at least one double bound adjacent to said benzene ring, and one or more benzene rings for which at least one atom in the benzene ring is not carbon.

  19. Contraction of π-Conjugated Rings upon Oxidation from Cyclooctatetraene to Benzene via the Tropylium Cation.

    PubMed

    Tamoto, Akira; Aratani, Naoki; Yamada, Hiroko

    2017-11-16

    We have serendipitously discovered a unique transformation of a cyclooctatetraene derivative 1 into a cycloheptatriene spirolactone 3 upon oxidation, which is the first such transformation reported in 60 years. Product 3 could be reversibly interconverted into the aromatic tropylium cation 3H + by acid/base treatment, which was accompanied by drastic spectroscopic changes. The resultant cycloheptatriene could be further converted into benzene upon oxidation. We characterized all the key structures by X-ray studies. Eventually, the π-conjugated ring size shrinks from 8 to 7, then finally to 6 upon oxidation, in the direction of the stronger aromatization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Metal-Organic Framework with Aromatic Rings Tentacles: High Sulfur Storage in Li-S Batteries and Efficient Benzene Homologues Distinction.

    PubMed

    Li, Meng-Ting; Sun, Yu; Zhao, Kai-Sen; Wang, Zhao; Wang, Xin-Long; Su, Zhong-Min; Xie, Hai-Ming

    2016-12-07

    We designed and fabricated a fluorophore-containing tetradentate carboxylate ligand-based metal-organic framework (MOF) material with open and semiopen channels, which acted as the host for sulfur trapped in Li-S batteries and sensor of benzene homologues. These channels efficiently provide a π-π* conjugated matrix for the charge transfer and guest molecule trapping. The open channel ensured a much higher loading quantitative of sulfur (S content-active material, 72 wt %; electrode, 50.4 wt %) than most of the MOF/sulfur composites, while the semiopen channel possessing aromatic rings tentacles guaranteed an outstanding specific discharge capacity (1092 mA h g -1 at 0.1 C) accompanied by good cycling stability. To our surprise, benefiting from special π-π* conjugated conditions, compound 1 could be a chemical sensor for benzene homologues, especially for 1,2,4-trimethylbenzene (1,2,4-TMB). This is the first example of MOFs materials serving as a sensor of 1,2,4-TMB among benzene homologues. Our works may be worthy of use for references in other porous materials systems to manufacture more long-acting Li-S batteries and sensitive chemical sensors.

  1. Deoxyguanosine Forms a Bis-adduct with E,E-Muconaldehyde, an Oxidative Metabolite of Benzene. Implications for the Carcinogenicity of Benzene

    PubMed Central

    Harris, Constance M.; Stec, Donald F.; Christov, Plamen P.; Kozekov, Ivan D.; Rizzo, Carmelo J.; Harris, Thomas M.

    2011-01-01

    Benzene is employed in large quantities in the chemical industry and is a ubiquitous contaminant in the environment. There is strong epidemiological evidence that benzene exposure induces hematopoietic malignancies, especially acute myeloid leukemia, in humans but the chemical mechanisms remain obscure. E,E-Muconaldehyde is one of the products of metabolic oxidation of benzene. This paper explores the proposition that E,E-muconaldehyde is capable of forming Gua-Gua cross-links. If formed in DNA, the replication and repair of such cross-links might introduce structural defects that could be the origin of the carcinogenicity. We have investigated the reaction of E,E-muconaldehyde with dGuo and found the reaction yields two pairs of interconverting diastereomers of a novel heptacyclic bis-adduct having a spiro ring system linking the two Gua residues. The structures of the four diastereomers have been established by NMR spectroscopy and their absolute configurations by comparison of CD spectra with those of model compounds having known configurations. The final two steps in formation of the bis-nucleoside (5-ring → 6-ring → 7-ring) have significant reversibility, which is the basis for the observed epimerization. The 6-ring precursor was trapped from the equilibrating mixture by reduction with NaBH4. The anti relationship of the two Gua residues in the heptacyclic bis-adduct precludes it from being formed in B DNA but the 6-ring precursor could readily be accommodated as an interchain or intrachain cross-link. It should be possible to form similar cross-links of dCyt, dAdo, the ε-amino group of lysine, and N-termini of peptides with the dGuo-muconaldehyde monoadduct. PMID:21972945

  2. Crystal structures of N-(3-fluoro-benzo-yl)benzene-sulfonamide and N-(3-fluoro-benzo-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Suchetan, P A; Naveen, S; Lokanath, N K; Lakshmikantha, H N; Srivishnu, K S; Supriya, G M

    2016-04-01

    The crystal structures of two N-(aryl-sulfon-yl)aryl-amides, namely N-(3-fluoro-benzo-yl)benzene-sulfonamide, C13H10FNO3S, (I), and N-(3-fluoro-benzo-yl)-4-methyl-benzene-sulfonamide, C14H12FNO3S, (II), are described and compared with related structures. The dihedral angle between the benzene rings is 82.73 (10)° in (I) compared to 72.60 (12)° in (II). In the crystal of (I), the mol-ecules are linked by C-H⋯O and C-H⋯π inter-actions, resulting in a three-dimensional grid-like architecture, while C-H⋯O inter-actions lead to one-dimensional ribbons in (II). The crystals of both (I) and (II) feature strong but non-structure-directing N-H⋯O hydrogen bonds with R 2 (2)(8) ring motifs. The structure of (I) also features π-π stacking inter-actions.

  3. N-(1H-Indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2013-10-26

    In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene-sulfonamide moiety. In the crystal, mol-ecules are connected through N-H⋯O hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network which is parallel to (010).

  4. Microsolvation of the potassium ion with aromatic rings: comparison between hexafluorobenzene and benzene.

    PubMed

    Marques, J M C; Llanio-Trujillo, J L; Albertí, M; Aguilar, A; Pirani, F

    2013-08-22

    We employ a recently developed methodology to study structural and energetic properties of the first solvation shells of the potassium ion in nonpolar environments due to aromatic rings, which is important to understand the selectivity of several biochemical phenomena. Our evolutionary algorithm is used in the global optimization study of clusters formed of K(+) solvated with hexafluorobenzene (HFBz) molecules. The global intermolecular interaction for these clusters has been decomposed in HFBz-HFBz and in K(+)-HFBz contributions, using a potential model based on different decompositions of the molecular polarizability of hexafluorobenzene. Putative global minimum structures of microsolvation clusters up to 21 hexafluorobenzene molecules were obtained and compared with the analogous K(+)-benzene clusters reported in our previous work (J. Phys. Chem. A 2012, 116, 4947-4956). We have found that both K(+)-(Bz)n and K(+)-(HFBz)n clusters show a strong magic number around the closure of the first solvation shell. Nonetheless, all K(+)-benzene clusters have essentially the same first solvation shell geometry with four solvent molecules around the ion, whereas the corresponding one for K(+)-(HFBz)n is completed with nine HFBz species, and its structural motif varies as n increases. This is attributed to the ion-solvent interaction that has a larger magnitude for K(+)-Bz than in the case of K(+)-HFBz. In addition, the ability of having more HFBz than Bz molecules around K(+) in the first solvation shell is intimately related to the inversion in the sign of the quadrupole moment of the two solvent species, which leads to a distinct ion-solvent geometry of approach.

  5. Double [4 + 2] cycloaddition reaction to approach a large acene with even-number linearly fused benzene rings: 6,9,16,19-tetraphenyl-1.20,4.5,10.11,14.15-tetrabenzooctatwistacene.

    PubMed

    Li, Junbo; Zhao, Yongbiao; Lu, Jing; Li, Gang; Zhang, Jingping; Zhao, Yang; Sun, Xiaowei; Zhang, Qichun

    2015-01-02

    It is more challenging to synthesize acenes with even-number fused benzene rings (AWEB) than acenes with odd-number fused benzene rings (AWOB) because AWEB are either synthetically asymmetric or the precursors to prepare AWEB are very difficult to obtain or to prepare from commercially available sources. In this work, we employed 2,6-naphthodiyne precursor (2) as an effective synthon to prepare a large AWEB, 6,9,16,19-tetraphenyl-1.20,4.5,10.11,14.15-tetrabenzooctatwistacene (1), through a simple, one-step, double [4 + 2] cycloaddition reaction. The physical properties of as-prepared octatwistacene (1) have been carefully studied, and the OLED performance of compound 1 was also investigated.

  6. Benzene construction via organocatalytic formal [3+3] cycloaddition reaction.

    PubMed

    Zhu, Tingshun; Zheng, Pengcheng; Mou, Chengli; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2014-09-25

    The benzene unit, in its substituted forms, is a most common scaffold in natural products, bioactive molecules and polymer materials. Nearly 80% of the 200 best selling small molecule drugs contain at least one benzene moiety. Not surprisingly, the synthesis of substituted benzenes receives constant attentions. At present, the dominant methods use pre-existing benzene framework to install substituents by using conventional functional group manipulations or transition metal-catalyzed carbon-hydrogen bond activations. These otherwise impressive approaches require multiple synthetic steps and are ineffective from both economic and environmental perspectives. Here we report an efficient method for the synthesis of substituted benzene molecules. Instead of relying on pre-existing aromatic rings, here we construct the benzene core through a carbene-catalyzed formal [3+3] reaction. Given the simplicity and high efficiency, we expect this strategy to be of wide use especially for large scale preparation of biomedicals and functional materials.

  7. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl-benzene-sulfonamide moiety. In the crystal, mol-ecules are -connected through N-H⋯N hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network parallel to (001).

  8. Collision-induced dissociation processes of protonated benzoic acid and related compounds: competitive generation of protonated carbon dioxide or protonated benzene.

    PubMed

    Xu, Sihang; Pavlov, Julius; Attygalle, Athula B

    2017-04-01

    Upon activation in the gas phase, protonated benzoic acid (m/z 123) undergoes fragmentation by several mechanisms. In addition to the predictable water loss followed by a CO loss, the m/z 123 ion more intriguingly eliminates a molecule of benzene to generate protonated carbon dioxide (H - O +  ═ C ≡ O, m/z 45), or a molecule of carbon dioxide to yield protonated benzene (m/z 79). Experimental evidence shows that the incipient proton ambulates during the fragmentation processes. For the CO 2 or benzene loss, protonated benzoic acid transfers the charge-imparting proton initially to the ortho position and then to the ipso position to generate a transient species which dissociates to form an ion-neutral complex between benzene and protonated CO 2 . The formation of the m/z 45 ion is not a phenomenon unique to benzoic acid: spectra from protonated isophthalic acid, terephthalic acid, trans-cinnamic acid and some aliphatic acids also displayed a peak for m/z 45. However, the m/z 45 peak is structurally diagnostic only for certain benzene polycarboxylic acids because the spectra of compounds with two carboxyl groups on adjacent ring carbons do not produce a peak at m/z 45. For the m/z 79 ion to be formed, an intramolecular reaction should take place in which protonated CO 2 within the ion-neutral complex acts as the attacking electrophile to transfer a proton to benzene. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Crystal structure of N'-[(E)-(4-chloro-phen-yl)(phen-yl)methyl-idene]-4-methyl-benzene-sulfono-hydrazide.

    PubMed

    Balaji, J; Prabu, S; Xavier, J J F; Srinivasan, P

    2015-01-01

    The title compound, C20H17ClN2O2S, was obtained by a condensation reaction between 4-chloro-benzo-phenone and tosyl hydrazide. The plane of the methyl-substituted benzene ring forms dihedral angles of 20.12 (12) and 78.43 (13)° with those of the chlorine-substituted benzene ring and the benzene ring, respectively, with the last two rings forming a dihedral angle of 67.81 (13)°. The chlorine substituent was also found to be 0.868 (2):0.132 (2) disordered over these two rings. In the crystal, mol-ecules are linked through pairs of N-H⋯O hydrogen bonds, giving centrosymmetric cyclic dimers [graph set R 2 (2)(8)], which are linked by weak C-H⋯O and C-H⋯Cl inter-actions into a chain structure which extends along the a-axis direction.

  10. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  11. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  12. Expected and unexpected products of reactions of 2-hydrazinylbenzo-thia-zole with 3-nitro-benzene-sulfonyl chloride in different solvents.

    PubMed

    Morscher, Alexandra; de Souza, Marcus V N; Wardell, James L; Harrison, William T A

    2018-05-01

    The syntheses and crystal structures of 2-[2-(propan-2-yl-idene)hydrazin-yl]-1,3-benzo-thia-zol-3-ium 3-nitro-benzene-sulfonate (C 10 H 12 N 2 S + ·C 6 H 4 NO 5 S - ), (I), 2-[2-(3-nitro-benzene-sulfon-yl)hydrazin-yl]-1,3-benzo-thia-zole (C 13 H 10 N 4 O 4 S 2 ), (II) and 2-[2-(3-nitro-benzene-sulfon-yl)hydrazin-yl]-1,3-benzo-thia-zol-3-ium 3-nitro-benzene-sulfonate (C 13 H 11 N 4 O 4 S 2 + ·C 6 H 4 NO 5 S - ), (III) are reported. Salt (I) arose from an unexpected reaction of 2-hydrazinylbenzo-thia-zole with the acetone solvent in the presence of 3-nitro-benzene-sulfonyl chloride, whereas (II) and (III) were recovered from the equivalent reaction carried out in methanol. The crystal of (I) features ion pairs linked by pairs of N-H⋯O s (s = sulfonate) hydrogen bonds; adjacent cations inter-act by way of short π-π stacking inter-actions between the thia-zole rings [centroid-centroid separation = 3.4274 (18) Å]. In (II), which crystallizes with two neutral mol-ecules in the asymmetric unit, the mol-ecules are linked by N-H⋯N and N-H⋯O n (n = nitro) hydrogen bonds to generate [[Formula: see text]1[Formula: see text

  13. Concentric ring flywheel without expansion separators

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

  14. A conjugated mess: measurements of benzene (C6H6), CH4, CO2, and H2O using a cavity ring-down spectrometer

    NASA Astrophysics Data System (ADS)

    Fleck, Derek; Hoffnagle, John; He, Yonggang

    2017-04-01

    Benzene is widely used carcinogenic chemical that ranks among the top 15 chemicals produced in the world by volume. It is part of many industrial processes from solvents to rubber and drug production and is also produced in petroleum refinement and use. OSHA and European regulators have set a strict long-term exposure limit and short-term exposure limit of 1ppm and 15ppm, respectively, to minimize hazards to a person's health. With the recent passing by the EPA of mandatory fence line monitoring of benzene at petroleum factories, it is evident that a robust, continuous measurement of benzene is necessary. Conventional measurements of benzene suffer from a high granularity (nearly 1 ppm), cumbersome sample preparation/processing, or cross-sensitivities from other gas species. The aim of this study is to show development of an analyzer using cavity ring-down spectrometry (CRDS) to measure benzene, as well as all the main constituents of air that can influence a measurement: H2O, CO2, and CH4. A measurement of benzene to an uncertainty of 100 ppb in <5 minutes is currently attainable, with a future goal of making this measurement in only ten seconds to 1 minute. Initial results show precisions of CH4 at 0.5ppb, CO2 at 0.5ppm and H2O of 10ppm. Because of the relatively IR-inactive C6H6 molecule, only broad features lying underneath the relatively sharp signals of CH4, CO2, and H2O can be used to quantify benzene concentrations. The stability of the CRDS analyzer allows us to look at structured changes in the baseline due to benzene to get out a precise measurement, while rarely having to do a zero-reference calibration. The analysis of these four species yields an instrument that is not only viable for fence line monitoring of petroleum refineries, but one that could also be used for local atmospheric monitoring of cities or even gas-stations.

  15. Aromatic C=C bonds as dipolarophiles: facile reactions of uncomplexed electron-deficient benzene derivatives and other aromatic rings with a non-stabilized azomethine ylide.

    PubMed

    Lee, Sunyoung; Diab, Sonia; Queval, Pierre; Sebban, Muriel; Chataigner, Isabelle; Piettre, Serge R

    2013-05-27

    Non-stabilized azomethine ylide 4a reacts smoothly at room temperature with a variety of uncomplexed aromatic heterocycles and carbocycles on the condition that the ring contains at least one or two electron-withdrawing substituents, respectively. Aromatic substrates, including pyridine and benzene derivatives, participate as 2π components in [3+2] cycloaddition reactions and interact with one, two, or three equivalent(s) of the ylide, depending on their structure and substitution pattern. Thus, this process affords highly functionalized polycyclic structures that contain between one and three pyrrolidinyl ring(s) in useful yields. These results indicate that the site selectivity of the cycloaddition reactions strongly depends on both the nature and the positions of the substituents. In most cases, the second 1,3-dipolar reaction occurs on the opposite face to the one that contains the first pyrrolidinyl ring. DFT calculations on model compounds indicate that a concerted mechanism features a low activation barrier. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electromers of the benzene dimer radical cation.

    PubMed

    Błoch-Mechkour, Anna; Bally, Thomas

    2015-04-28

    The well-studied benzene dimer radical cation, which is prototypical for this class of species, has been reinvestigated computationally. Thereby it turned out that both the σ-hemibonded and the half-shifted sandwich structures of the benzene dimer cation, which had been independently proposed, represent stationary points on the B2PLYP-D potential energy surfaces. However, these structures belong to distinct electronic states, both of which are associated with potential surfaces that are very flat with regard to rotation of the two benzene rings in an opposite sense relative to each other. The surfaces of these two "electromers" of the benzene dimer cation are separated by only 3-4 kcal mol(-1) and do not intersect along the rotation coordinate, which represents a rather unique electronic structure situation. When moving on either of the two surfaces the title complex is an extremely fluxional species, in spite of its being bound by over 20 kcal mol(-1).

  17. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093

  18. Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2017-12-01

    We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

  19. N-(1H-Indazol-5-yl)-4-meth­oxy­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene­sulfonamide moiety. In the crystal, mol­ecules are connected through N—H⋯O hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network which is parallel to (010). PMID:24454128

  20. Alkali-ion microsolvation with benzene molecules.

    PubMed

    Marques, J M C; Llanio-Trujillo, J L; Albertí, M; Aguilar, A; Pirani, F

    2012-05-24

    The target of this investigation is to characterize by a recently developed methodology, the main features of the first solvation shells of alkaline ions in nonpolar environments due to aromatic rings, which is of crucial relevance to understand the selectivity of several biochemical phenomena. We employ an evolutionary algorithm to obtain putative global minima of clusters formed with alkali-ions (M(+)) solvated with n benzene (Bz) molecules, i.e., M(+)-(Bz)(n). The global intermolecular interaction has been decomposed in Bz-Bz and in M(+)-Bz contributions, using a potential model based on different decompositions of the molecular polarizability of benzene. Specifically, we have studied the microsolvation of Na(+), K(+), and Cs(+) with benzene molecules. Microsolvation clusters up to n = 21 benzene molecules are involved in this work and the achieved global minimum structures are reported and discussed in detail. We observe that the number of benzene molecules allocated in the first solvation shell increases with the size of the cation, showing three molecules for Na(+) and four for both K(+) and Cs(+). The structure of this solvation shell keeps approximately unchanged as more benzene molecules are added to the cluster, which is independent of the ion. Particularly stable structures, so-called "magic numbers", arise for various nuclearities of the three alkali-ions. Strong "magic numbers" appear at n = 2, 3, and 4 for Na(+), K(+), and Cs(+), respectively. In addition, another set of weaker "magic numbers" (three per alkali-ion) are reported for larger nuclearities.

  1. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    NASA Astrophysics Data System (ADS)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  2. Biomarkers of environmental benzene exposure.

    PubMed Central

    Weisel, C; Yu, R; Roy, A; Georgopoulos, P

    1996-01-01

    Environmental exposures to benzene result in increases in body burden that are reflected in various biomarkers of exposure, including benzene in exhaled breath, benzene in blood and urinary trans-trans-muconic acid and S-phenylmercapturic acid. A review of the literature indicates that these biomarkers can be used to distinguish populations with different levels of exposure (such as smokers from nonsmokers and occupationally exposed from environmentally exposed populations) and to determine differences in metabolism. Biomarkers in humans have shown that the percentage of benzene metabolized by the ring-opening pathway is greater at environmental exposures than that at higher occupational exposures, a trend similar to that found in animal studies. This suggests that the dose-response curve is nonlinear; that potential different metabolic mechanisms exist at high and low doses; and that the validity of a linear extrapolation of adverse effects measured at high doses to a population exposed to lower, environmental levels of benzene is uncertain. Time-series measurements of the biomarker, exhaled breath, were used to evaluate a physiologically based pharmacokinetic (PBPK) model. Biases were identified between the PBPK model predictions and experimental data that were adequately described using an empirical compartmental model. It is suggested that a mapping of the PBPK model to a compartmental model can be done to optimize the parameters in the PBPK model to provide a future framework for developing a population physiologically based pharmacokinetic model. PMID:9118884

  3. Crystal structures of isomeric 3,5-di-chloro-N-(2,3-di-methyl-phen-yl)benzene-sulfonamide, 3,5-di-chloro-N-(2,6-di-methyl-phen-yl)benzene-sulfonamide and 3,5-di-chloro-N-(3,5-di-methyl-phen-yl)benzene-sulfonamide.

    PubMed

    Shakuntala, K; Naveen, S; Lokanath, N K; Suchetan, P A

    2017-05-01

    The crystal structures of three isomeric compounds of formula C 14 H 13 Cl 2 NO 2 S, namely 3,5-di-chloro- N -(2,3-di-methyl-phen-yl)-benzene-sulfonamide (I), 3,5-di-chloro- N -(2,6-di-methyl-phen-yl)benzene-sulfonamide (II) and 3,5-di-chloro- N -(3,5-di-methyl-phen-yl)benzene-sulfonamide (III) are described. The mol-ecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The mol-ecular conformation of (II) is stabilized by intra-molecular C-H⋯O hydrogen bonds and C-H⋯π inter-actions. The crystal structure of (I) features N-H⋯O hydrogen-bonded R 2 2 (8) loops inter-connected via C (7) chains of C-H⋯O inter-actions, forming a three-dimensional architecture. The structure also features π-π inter-actions [ Cg ⋯ Cg = 3.6970 (14) Å]. In (II), N-H⋯O hydrogen-bonded R 2 2 (8) loops are inter-connected via π-π inter-actions [inter-centroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the a axis. In (III), adjacent C (4) chains of N-H⋯O hydrogen-bonded mol-ecules running parallel to [010] are connected via C-H⋯π inter-actions, forming sheets parallel to the ab plane. Neighbouring sheets are linked via offset π-π inter-actions [inter-centroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.

  4. Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database.

    PubMed

    Majerz, Irena; Dziembowska, Teresa

    2018-04-01

    The harmonic oscillator model of aromaticity (HOMA) index, one of the most popular aromaticity indices for solid-state benzene rings in the Cambridge Structural Database (CSD), has been analyzed. The histograms of HOMA for benzene, for benzene derivatives with one formyl, nitro, amino or hydroxy group as well as the histograms for the derivatives with two formyl, nitro, amino or hydroxy groups in ortho, meta and para positions were investigated. The majority of the substituted benzene derivatives in the CSD are characterized by a high value of HOMA, indicating fully aromatic character; however, the distribution of the HOMA value from 1 to about 0 indicates decreasing aromaticity down to non-aromatic character. Among the benzene derivatives investigated, a significant decrease in aromaticity can be related to compounds with diamino and dinitro groups in the meta position.

  5. Benzene-1,4-diol–5-(1H-imidazol-1-yl)pyrimidine (1/1)

    PubMed Central

    Jiang, Yan-Ke; Hou, Gui-Ge

    2011-01-01

    The asymmetric unit of title compound, C7H6N4·C6H6O2, contains one 5-(1H-imidazol-1-yl)pyrimidine mol­ecule and two half benzene-1,4-diol mol­ecules; the benzene-1,4-diol mol­ecules are located on individual inversion centers. In the pyrimidine mol­ecule, the imidazole ring is twisted with respect to the pyrimidine ring at a dihedral angle of 25.73 (7)°. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules to form supra­molecular chains. π–π stacking is also observed in the crystal, the centroid–centroid distance between parallel imdazole rings being 3.5543 (16) Å. PMID:22220081

  6. Ring-diameter Ratios for Multi-ring Basins Average 2.0(0.5)D

    NASA Technical Reports Server (NTRS)

    Pike, R. J.; Spudis, P. D.

    1985-01-01

    The spacing of the concentric rings of planetary impact basins was studied. It is shown that a radial increment of x (sup 0.5) D, where x is about 2.0 and D = ring diameter, separates both (1) adjacent least-squares groups of rings and arcs of multi-ring basins on Mars, Mercury, and the Moon; and (2) adjacent rings of individual basins on the three planets. Statistics for ratios of ring diameters are presented, the first and most-applied parameter of ring spacing. It is found that ratios excluding rings flanking the main ring also have a mean spacing increment of about 2.0. Ratios including such rings, as for the least-squares groups, and (1) above, have a larger increment, averaging 2.1. The F-test indicates, that these spacings of basin ring locations, and mode of ring formation are controlled by the mechanics of the impact event itself, rather than by crustal properties.

  7. A density-functional-theory study of biradicals from benzene to hexacene

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jung; Wang, Xingyong; Ma, Jing; Cho, Jun-Hyung

    2011-11-01

    The singlet-triplet energy gap of biradicals created in benzene and polyacenes is investigated by density-functional-theory calculations. For the biradicals in benzene, naphthalene, anthracene, tetracene, pentacene, and hexacene, we find that the singlet state is energetically favored over the triplet state by 189, 191, 184, 199, 218, and 244 meV, respectively. The monotonous increase of the singlet-triplet energy gap from anthracene to hexacene is attributed to the enhanced stability of the singlet state for longer polyacenes. Our analysis shows that the spin density of the singlet state is delocalized over all benzene rings, but such a spin delocalization is not present for the triplet state.

  8. Formation of Benzene in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)

    2010-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.

  9. Dynamic Kerr effect study on six-membered-ring molecular liquids: benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, cyclohexene, and cyclohexane.

    PubMed

    Kakinuma, Shohei; Shirota, Hideaki

    2015-04-02

    The intermolecular dynamics of five six-membered-ring molecular liquids having different aromaticities-benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, cyclohexene, and cyclohexane-measured by femtosecond Raman-induced Kerr effect spectroscopy have been compared in this study. The line shapes of the Fourier transform low-frequency spectra, which arise from the intermolecular vibrational dynamics, are trapezoidal for benzene and 1,3-cyclohexadiene, triangular for 1,4-cyclohexadiene and cyclohexene, and monomodal for cyclohexane. The trapezoidal shapes of the low-frequency spectra of benzene and 1,3-cyclohexadiene are due to the librational motions of their aromatic planar structures, which cause damped nuclear response features. The time integrals of the nuclear responses of the five liquids correlate to the squares of the polarizability anisotropies of the molecules calculated on the basis of density functional theory. The first moments of the low-frequency spectra roughly linearly correlate to the bulk parameters of the square roots of the surface tensions divided by the densities and the square roots of the surface tensions divided by the molecular weights, but the plots for cyclohexene deviate slightly from the correlations. The picosecond overdamped transients of the liquids are well fitted by a biexponential function. The fast time constants of all of the liquids are approximately 1.1-1.4 ps, and they do not obey the Stokes-Einstein-Debye hydrodynamic model. On the other hand, the slow time constants are roughly linearly proportional to the products of the shear viscosities and the molar volumes. The observed intramolecular vibrational modes at less than 700 cm(-1) for all of the liquids are also assigned on the basis of quantum chemistry calculations.

  10. Benzene

    Cancer.gov

    Learn about benzene, a component of crude oil and other substances. Exposure to benzene may increase the risk of leukemia and other blood disorders. Among smokers, 90 percent of benzene exposure comes from smoking. Benzene may also be found in glues, adhesives, and paint or cleaning products.

  11. Variational RRKM theory calculation of thermal rate constant for carbon—hydrogen bond fission reaction of nitro benzene

    NASA Astrophysics Data System (ADS)

    Manesh, Afshin Taghva; Heidarnezhad, Zabi alah; Masnabadi, Nasrin

    2013-07-01

    The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k( T) = 2.1 × 1017exp(-56575.98/ T), k( T) = 2.1 × 1017exp(-57587.45/ T), and k( T) = 3.3 × 1016exp(-57594.79/ T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k( T) = 2 × 1018exp(-59343.48.18/ T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.

  12. Optical Absorption and Raman Spectroscopy of Multiple Shocked Liquid Benzene to 10 GPa

    NASA Astrophysics Data System (ADS)

    Root, S.

    2005-07-01

    Liquid benzene samples were multiply shocked to peak pressures ranging from 3 GPa to 10 GPa to examine physical and chemical changes in benzene. A xenon flashlamp was used to probe the visible spectrum of benzene for loses in transmitted light intensity caused by changes in the electronic structure (absorption) or a possible liquid to solid phase transition (scattering). Raman spectroscopy was used to corroborate transmission measurements by examining changes in the benzene vibrational modes. The C-C symmetric ring breathing mode (992 cm-1), C-H symmetric stretch (3061 cm-1), along with several weaker modes at 607 cm-1, 1178 cm-1, 1586 cm-1, and 1606 cm-1 were monitored during shock loading. An EOS was developed to calculate the temperature of the shock compressed benzene. The present work has demonstrated that liquid benzene remains unchanged during multiple shock loading up to 10 GPa. Work supported by ONR and DOE.

  13. N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    In the title compound, C23H25BrN4O3S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 69.7 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 70.4 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 4-methyl benzene rings [centroid–centroid distance = 3.633 (2) Å]. The piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds. PMID:23125637

  14. Formation of benzene in the interstellar medium

    PubMed Central

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.

    2011-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block—the aromatic benzene molecule—has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C2H + H2CCHCHCH2 → C6H6 + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium. PMID:21187430

  15. Estimating the densities of benzene-derived explosives using atomic volumes.

    PubMed

    Ghule, Vikas D; Nirwan, Ayushi; Devi, Alka

    2018-02-09

    The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula C a H b N c O d is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0-3% for 54 compounds, 3-5% for 12 compounds, and 5-8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0-3% for 25 compounds, 3-5% for 13 compounds, and 5-7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm 3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three -NH 2 or -OH groups. Overall, the present approach for estimating the densities of benzene-derived explosives with different functional groups was found to be reliable. Graphical abstract Application and reliability of average atom volume in the crystal density prediction of energetic compounds containing benzene ring.

  16. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  17. Theoretical studies on the effect of benzene and thiophene groups on the charge transport properties of Isoindigo and its derivatives

    NASA Astrophysics Data System (ADS)

    Jia, Xu-Bo; Wei, Hui-Ling; Shi, Ya-Ting; Shi, Ya-Rui; Liu, Yu-Fang

    2017-12-01

    In this work, the charge transport properties of Isoindigo (II) and its derivatives which have the same hexyl chain were theoretically investigated by the Marcus-Hush theory combined with density functional theory (DFT). Here we demonstrate that the changes of benzene and thiophene groups in molecular structure have an important influence on the charge transport properties of organic semiconductor. The benzene rings of II are replaced by thiophenes to form the thienoisoindigo (TII), and the addition of benzene rings to the TII form the benzothienoisoindigo (BTII). The results show that benzene rings and thiophenes change the chemical structure of crystal molecules, which lead to different molecule stacking, thus, the length of hydrogen bond was changed. A shorter intermolecular hydrogen bond lead to tighter molecular stacking, which reduces the center-to-center distance and enhances the ability of charge transfer. At the same time, we theoretically demonstrated that II and BTII are the ambipolar organic semiconductor. BTII has better carrier mobility. The hole mobility far greater than electron mobility in TII, which is p-type organic semiconductor. Among all hopping path, we find that the distance of face-to-face stacking in II is the shortest and the electron-transport electronic coupling Ve is the largest, but II has not a largest anisotropic mobility, because the reorganization energy has a greater influence on the mobility than the electronic coupling. This work is helpful for designing ambipolar organic semiconductor materials with higher charge transport properties by introducing benzene ring and thiophene.

  18. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities.

    PubMed

    Kim, Hyejin; Gim, Suji; Jeon, Tae Hwa; Kim, Hyungjun; Choi, Wonyong

    2017-11-22

    Carbon nitride (CN) is being intensively investigated as a low-cost visible light active photocatalyst, but its practical applications are limited because of the fast charge pair recombination and low visible light absorption. Here, we introduce a new strategy for enhancing its visible light photocatalytic activity by designing the CN structure in which the nitrogen of tertiary amine is substituted with a benzene molecule connected by three heptazine rings. The intramolecular benzene doping induced the structural changes from planar symmetric structure to distorted geometry, which could be predicted by density functional theory calculation. This structural distortion facilitated the spatial separation of photogenerated charge pairs and retarded charge recombination via exciton dissociation. Such unique properties of the benzene-incorporated CN were confirmed by the photoluminescence (PL) and photoelectrochemical analyses. The optimal loading of benzene doping reduced the PL of the conjugated ring system (π → π* transition) but enhanced the PL of the forbidden n → π* transition at the nitrogen atoms with lone pair electrons due to the distortion from the planar geometry. The photoelectrode of benzene-doped CN exhibited higher photocurrent and lower charge transfer resistance than bare CN electrode, indicating that the photogenerated charge pairs are more efficiently separated. As a result, the benzene-doped CN markedly increased the photocatalytic activity for the degradation of various organic pollutants and that for H 2 O 2 production (via O 2 reduction). This study proposes a simple strategy for chemical structural modification of carbon nitride to boost the visible light photocatalytic activity.

  19. 4-Meth-oxy-N-(1-methyl-1H-indazol-5-yl)benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Geffken, Detlef; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The indazole ring system [maximum deviation = 0.013 (2) Å] of the title compound, C15H15N3O3S, makes a dihedral angle of 50.11 (7)° with the benzene ring. In the crystal, cohesion is provided by C-H⋯O and N-H⋯N hydrogen bonds, which link the molecules into chains propagating along the b-axis direction.

  20. Molecular and electronic structure, magnetotropicity and absorption spectra of benzene-trinuclear copper(I) and silver(I) trihalide columnar binary stacks.

    PubMed

    Tsipis, A C; Stalikas, A V

    2012-02-20

    The molecular and electronic structures, stabilities, bonding features, magnetotropicity and absorption spectra of benzene-trinuclear Cu(I) and Ag(I) trihalide columnar binary stacks with the general formula [c-M(3)(μ(2)-X)(3)](n)(C(6)H(6))(m) (M = Cu, Ag; X = halide; n, m ≤ 2) have been investigated by means of electronic structure calculation methods. The interaction of c-M(3)(μ(2)-X)(3) clusters with one and two benzene molecules yields 1:1 and 1:2 binary stacks, while benzene sandwiched 2:1 stacks are formed upon interaction of two c-M(3)(μ(2)-X)(3) clusters with one benzene molecule. In all binary stacks the plane of the alternating c-M(3)(μ(2)-X)(3) and benzene components adopts an almost parallel orientation. The separation distance between the centroids of the benzene and the proximal c-M(3)(μ(2)-X)(3) metallic cluster found in the range 2.97-3.33 Å at the B97D/Def2-TZVP level is indicative of a π···π stacking interaction mode, for the centroid separation distance is very close to the sum of the van der Waals radii of Cu···C (3.10 Å) and Ag···C (3.44 Å). Energy decomposition analysis (EDA) at the SSB-D/TZP level revealed that the dominant term in the c-M(3)(μ(2)-X)(3)···C(6)H(6) interaction arises from dispersion and electrostatic forces while the covalent interactions are predicted to be negligible. On the other hand, charge decomposition analysis (CDA) illustrated very small charge transfer from C(6)H(6) toward the c-M(3)(μ(2)-X)(3) clusters, thus reflecting weak π-base/π-acid interactions which are further corroborated by the respective electrostatic potentials and the fact that the total dipole moment vector points to the center of the metallic ring of the c-M(3)(μ(2)-X)(3) cluster. The absorption spectra of all aromatic columnar binary stacks simulated by means of TD-DFT calculations showed strong absorptions in the UV region. The main features of the simulated absorption spectra are thoroughly analyzed, and assignments of

  1. Complex magnetic orders in small cobalt-benzene molecules.

    PubMed

    González, J W; Alonso-Lanza, T; Delgado, F; Aguilera-Granja, F; Ayuela, A

    2017-06-07

    Organometallic clusters based on transition metal atoms are interesting because of their possible applications in spintronics and quantum information processing. In addition to the enhanced magnetism at the nanoscale, the organic ligands may provide a natural shield against unwanted magnetic interactions with the matrices required for applications. Here we show that the organic ligands may lead to non-collinear magnetic order as well as the expected quenching of the magnetic moments. We use different density functional theory (DFT) methods to study the experimentally relevant three cobalt atoms surrounded by benzene rings (Co 3 Bz 3 ). We found that the benzene rings induce a ground state with non-collinear magnetization, with the magnetic moments localized on the cobalt centers and lying on the plane formed by the three cobalt atoms. We further analyze the magnetism of such a cluster using an anisotropic Heisenberg model where the involved parameters are obtained by a comparison with the DFT results. These results may also explain the recent observation of the null magnetic moment of Co 3 Bz 3 + . Moreover, we propose an additional experimental verification based on electron paramagnetic resonance.

  2. Properties of complexes formed by Na(+), Mg(2+), and Fe(2+) binding with benzene molecules.

    PubMed

    Kolakkandy, Sujitha; Pratihar, Subha; Aquino, Adelia J A; Wang, Hai; Hase, William L

    2014-10-09

    A theoretical investigation was performed to study cation-π interactions in complexes of benzene (Bz) with cations, that is, M(z+)(Bz)n for M(z+) = Na(+), Mg(2+), Fe(2+) and n = 1-3, using MP2 theory with the 6-31+G* and 6-311++G** basis sets and the DFT/(B3LYP and B3LYP-D)/6-311++G** methods. Binding energies and structures of the complexes are reported. The splitting between the quintet and single states of the Fe(2+) complexes was found to depend on the number of benzene molecules in the complex and the complex's structure. All of the M(z+)(Bz) complexes prefer a half-sandwich geometry. A geometry with the cation sandwiched between the two benzene rings was found for the M(z+)(Bz)2 complexes, with the benzene rings either in an eclipsed or staggered conformation. An approximate cyclic structure, with the cation at its center, was found for three benzene molecules interacting with the cation. The cation-benzene binding energy is substantial and equal to 22, 108, and 151 kcal/mol for the Na(+)(Bz), Mg(2+)(Bz), and Fe(2+)(Bz) complexes, respectively. The strength of the interaction of the cation with an individual benzene molecule decreases as the number of benzene molecules bound to the cation increases; for example, it is 108 kcal/mol for Mg(2+)(Bz), but only 71 kcal/mol for Mg(2+)(Bz)3. There is a range of values for the M(z+)(Bz)n intermolecular vibrational frequencies; for example, they are ∼230-360 and ∼10-330 cm(-1) for the Mg(2+)(Bz) and Mg(2+)(Bz)3 complexes, respectively. Binding of the cation to benzene both red and blue shifts the benzene vibrational frequencies. This shifting is larger for the Mg(2+) and Fe(2+) complexes, as compared to those for Na(+), as a result of the former's stronger cation-benzene binding. The present study is an initial step to understand the possible importance of cation-π interactions for polycyclic aromatic hydrocarbon aggregation processes during soot formation.

  3. The 1:1 inclusion compounds zolmitriptan-benzene and zolmitriptan-phenol.

    PubMed

    Swamy, G Y S K; Sridhar, B; Ravikumar, K; Krishnan, Harihara

    2007-07-01

    In the benzene and phenol solvates of (S)-4-{3-[2-(dimethylamino)ethyl]-1H-indol-5-ylmethyl}oxazolidin-2-one, viz. C(16)H(21)N(3)O(2) x C(6)H(6), (I), and C(16)H(21)N(3)O(2) x C(6)H(5)OH, (II), the host molecule has three linked residues, namely a planar indole ring system, an ethylamine side chain and an oxazolidinone system. It has comparable features to that of sumatriptan, although the side-chain orientations of (I) and (II) differ from those of sumatriptan. Both (I) and (II) have host-guest-type structures. The host molecule in (I) and (II) has an L-shaped form, with the oxazolidinone ring occupying the base and the remainder of the molecule forming the upright section. In (I), each benzene guest molecule is surrounded by four host molecules, and these molecules are linked by a combination of N-H...N, N-H...O and C-H...O hydrogen bonds into chains of edge-fused R(4)(4)(33) rings. In (II), two independent molecules are present in the asymmetric unit, with similar conformations. The heterocyclic components are connected through N-H...N, N-H...O and C-H...O interactions to form chains of edge-fused R(6)(4)(38) rings, from which the phenol guest molecules are pendent, linked by O-H...O hydrogen bonds. The structures are further stabilized by extensive C-H...pi interactions.

  4. Mesoporous benzene-silica hybrid materials with a different degree of order in the wall structure: an IR comparative study.

    PubMed

    Onida, Barbara; Camarota, Beatrice; Ugliengo, Piero; Goto, Yasutomo; Inagaki, Shinji; Garrone, Edoardo

    2005-11-24

    Recent joint IR and computational work (Onida et al. J. Phys. Chem B 2005) has allowed a detailed characterization of the isolated silanols at the surface of highly ordered benzene-silica hybrid material. In the present paper, a similar characterization is provided for a less ordered sample. The comparison permits the assignment of IR features to the interaction of silanols either with one another or with benzene rings of the structure. The extent of structural imperfections appears to be limited, for example, no more than pairs of interacting silanols are found, readily healed by thermal treatment. Evidence is also provided that probe molecules with simultaneous H-acceptor and H-donor properties (benzene, methylacetylene) may interact with both the acidic proton in silanols and the electronic cloud in the framework aromatic rings.

  5. Influence of Benzene on the Optical Properties of Titan Haze Laboratory Analogs in the Mid-Visible

    NASA Technical Reports Server (NTRS)

    Yoon, Y. Heidi; Trainer, Melissa G.; Tolbert, Margaret A.

    2012-01-01

    The Cassini Ion and Neutral Mass Spectrometer (Waite, Jr., et al., 2007) and the Composite Infrared Spectrometer (Coustenis, A., et al., 2007) have detected benzene in the upper atmosphere and stratosphere of Titan. Photochemical reactions involving benzene in Titan's atmosphere may influence polycyclic aromatic hydrocarbon formation, aerosol formation, and the radiative balance of Titan's atmosphere. We measure the effect of benzene on the optical properties of Titan analog particles in the laboratory. Using cavity ring-down aerosol extinction spectroscopy, we determine the real and imaginary refractive index at 532 nm of particles formed by benzene photolysis and Titan analog particles formed with ppm-levels of benzene. These studies are compared to the previous study by Hasenkopf, et a1. (2010) of Titan analog particles formed by methane photolysis.

  6. Total cross sections for positron scattering from benzene, cyclohexane, and aniline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zecca, Antonio; Moser, Norberto; Perazzolli, Chiara

    2007-08-15

    We use a linear transmission technique to measure total cross sections for positron scattering from benzene, cyclohexane, and aniline. In the case of cyclohexane, the energy range of the present study is 0.1-20 eV, while for benzene and aniline it is 0.2-20 eV. With respect to benzene and cyclohexane, comparison is made to the only other existing results we know of [Makochekanwa and co-workers, Phys. Rev. A 68, 032707 (2003); 72, 042705 (2005)]. Agreement with those data is only marginal, being particularly poor at the overlap lower energies. Unlike Kimura et al. [J. Phys. B 37, 1461 (2004)], we findmore » the low-energy dependence of the positron-benzene total cross sections to be qualitatively similar to those found in the electron channel [Gulley et al., J. Phys. B 31, 2735 (1998)]. We believe that the present positron-aniline total cross sections represent the first time such data have been measured. These cross sections are almost identical to those we found for benzene, suggesting that substitution of hydrogen by the amine group on the aromatic ring is largely irrelevant to the scattering process in the energy regimes considered.« less

  7. Lipidic Carbo-benzenes: Molecular Probes of Magnetic Anisotropy and Stacking Properties of α-Graphyne.

    PubMed

    Zhu, Chongwei; Rives, Arnaud; Duhayon, Carine; Maraval, Valérie; Chauvin, Remi

    2017-01-20

    Solubilization of the C 18 fundamental circuit of α-graphyne has been envisaged by decoration with aliphatic chains R = n-C n H 2n+1 . The synthesis and characterization of p-dialkyl-tetraphenyl-carbo-benzenes (n = 2, 8, 14, 20) are thus presented and compared to the monoalkyl series produced concomitantly. In both series, a dramatic enhancement of solubility in organic solvents (CH 2 Cl 2 , CHCl 3 ) is observed for n ≥ 8, and in the dialkyl series, the melting-decomposition temperature of the solid products is shown to decrease linearly from 208 °C for n = 2 to 149 °C for n = 20. Fluoroalkyl analogues with R = n-C 8 H 4 F 13 are also described. The products display classical UV-vis electronic spectra of carbo-benzenes in solution (λ max = 445.5 ± 1 nm, ε ≈ 200 000 L·mol -1 ·cm -1 ). They are also characterized by UV-vis absorption in the solid state, which is found to be correlated with the color and crystal packing. The methylene groups of R provide an experimental probe of the magnetic anisotropy and aromaticity of the C 18 ring through the progressive NMR shielding of the 1 H nuclei from ca. 4.70 to 1.25 ppm going away from the border of the ring (as far as 8 Å away). All alkyl-carbo-benzenes were also found to be highly crystalline. Seven of them have been characterized by X-ray diffraction analysis and the C 18 columnar packing compared in a systematic manner. Crystals of the diethyl and bistetradecyl derivatives, containing no solvent molecule, provided the first examples of direct π-stacking of carbo-benzene rings, with inter-ring distances very close to calculated interlayer distances in AB and ABC α-graphityne (3.255 and 3.206 Å vs 3.266 and 3.201 Å, respectively).

  8. 1,4-Bis(4H-1,2,4-triazol-4-yl)benzene dihydrate

    PubMed Central

    Wang, Xiu-Guang; Li, Jian-Hui; Ding, Bin; Du, Gui-Xiang

    2012-01-01

    The asymmetric unit of the title compound, C10H8N6·2H2O, comprises half the organic species, the mol­ecule being completed by inversion symmetry, and one water mol­ecule. The dihedral angle between the 1,2,4-triazole ring and the central benzene ring is 32.2 (2)°. The water mol­ecules form O—H⋯N hydrogen bonds with N-atom acceptors of the triazole rings. C—H⋯N hydrogen bonds are also observed, giving a three-dimensional framework. PMID:22904851

  9. Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions.

    PubMed

    Vu, Tuan Hoang; Cable, Morgan L; Choukroun, Mathieu; Hodyss, Robert; Beauchamp, Patricia

    2014-06-12

    We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

  10. Beyond the benzene dimer: an investigation of the additivity of pi-pi interactions.

    PubMed

    Tauer, Tony P; Sherrill, C David

    2005-11-24

    The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.

  11. Consistent assignment of the vibrations of symmetric and asymmetric meta-disubstituted benzenes

    NASA Astrophysics Data System (ADS)

    Kemp, David J.; Tuttle, William D.; Jones, Florence M. S.; Gardner, Adrian M.; Andrejeva, Anna; Wakefield, Jonathan C. A.; Wright, Timothy G.

    2018-04-01

    The assignment of vibrational structure in spectra gives valuable insights into geometric and electronic structure changes upon electronic excitation or ionization; particularly when such information is available for families of molecules. We give a description of the phenyl-ring-localized vibrational modes of the ground (S0) electronic states of sets of meta-disubstituted benzene molecules including both symmetrically- and asymmetrically-substituted cases. As in our earlier work on monosubstituted benzenes (Gardner and Wright, 2011), para-disubstituted benzenes (Andrejeva et al., 2016), and ortho-disubstituted benzenes (Tuttle et al., 2018), we conclude that the use of the commonly-used Wilson or Varsányi mode labels, which are based on the vibrational motions of benzene itself, is misleading and ambiguous. Instead, we label the phenyl-ring-localized modes consistently based upon the Mulliken (Herzberg) method for the modes of meta-difluorobenzene (mDFB) under Cs symmetry, since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules. By studying the vibrational wavenumbers obtained from the same force-field while varying the mass of the substituent, we are able to follow the evolving modes across a wide range of molecules and hence provide consistent assignments. We assign the vibrations of the following sets of molecules: the symmetric meta-dihalobenzenes, meta-xylene and resorcinol (meta-dihydroxybenzene); and the asymmetric meta-dihalobenzenes, meta-halotoluenes, meta-halophenols and meta-cresol. In the symmetrically-substituted species, we find two pairs of in-phase and out-of-phase carbon-substituent stretches, and this motion persists in asymmetrically-substituted molecules for heavier substituents; however, when at least one of the substituents is light, then we find that these evolve into localized carbon-substituent stretches.

  12. Hydrogenated Benzene in Circumstellar Environments: Insights into the Photostability of Super-hydrogenated PAHs

    NASA Astrophysics Data System (ADS)

    Quitián-Lara, Heidy M.; Fantuzzi, Felipe; Nascimento, Marco A. C.; Wolff, Wania; Boechat-Roberty, Heloisa M.

    2018-02-01

    Polycyclic aromatic hydrocarbons (PAHs), comprised of fused benzene (C6H6) rings, emit infrared radiation (3–12 μm) due to the vibrational transitions of the C–H bonds of the aromatic rings. The 3.3 μm aromatic band is generally accompanied by the band at 3.4 μm assigned to the vibration of aliphatic C–H bonds of compounds such as PAHs with an excess of peripheral H atoms (H n –PAHs). Herein we study the stability of fully hydrogenated benzene (or cyclohexane, C6H12) under the impact of stellar radiation in the photodissociation region (PDR) of NGC 7027. Using synchrotron radiation and time-of-flight mass spectrometry, we investigated the ionization and dissociation processes at energy ranges of UV (10–200 eV) and soft X-rays (280–310 eV). Density Functional Theory (DFT) calculations were used to determine the most stable structures and the relevant low-lying isomers of singly charged C6H12 ions. Partial Ion Yield (PIY) analysis gives evidence of the higher tendency toward dissociation of cyclohexane in comparison to benzene. However, because of the high photoabsorption cross-section of benzene at the C1s resonance edge, its photodissociation and photoionization cross-sections are enhanced, leading to a higher efficiency of dissociation of benzene in the PDR of NGC 7027. We suggest that a similar effect is experienced by PAHs in X-ray photon-rich environments, which ultimately acts as an auxiliary protection mechanism of super-hydrogenated polycyclic hydrocarbons. Finally, we propose that the single photoionization of cyclohexane could enhance the abundance of branched molecules in interstellar and circumstellar media.

  13. Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Kühne, T. D.

    2018-05-01

    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.

  14. 4,4'-([4,4'-Bipyridine]-1,1'-diium-1,1'-diyl)dibenzoate dihydrate

    DOE PAGES

    Rodriguez, Mark A.; Sava Gallis, Dorina F.; Chavez, James S.; ...

    2016-06-01

    We report here the synthesis of a neutral viologen derivative, C 24H 16N 2O 4·2H 2O. The non-solvent portion of the structure (Z-Lig) is a zwitterion, consisting of two positively charged pyridinium cations and two negatively charged carboxylate anions. The carboxylate group is almost coplanar [dihedral angle = 2.04 (11)°] with the benzene ring, whereas the dihedral angle between pyridine and benzene rings is 46.28 (5)°. TheZ-Lig molecule is positioned on a center of inversion (Fig. 1). The presence of the twofold axis perpendicular to thec-glide plane in space groupC2/c generates a screw-axis parallel to thebaxis that is shifted from themore » origin by 1/4 in theaandcdirections. This screw-axis replicates the molecule (and solvent water molecules) through space. TheZ-Lig molecule links to adjacent moleculesviaO—H...O hydrogen bonds involving solvent water molecules as well as intermolecular C—H...O interactions. There are also π–π interactions between benzene rings on adjacent molecules.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Mark A.; Sava Gallis, Dorina F.; Chavez, James S.

    We report here the synthesis of a neutral viologen derivative, C 24H 16N 2O 4·2H 2O. The non-solvent portion of the structure (Z-Lig) is a zwitterion, consisting of two positively charged pyridinium cations and two negatively charged carboxylate anions. The carboxylate group is almost coplanar [dihedral angle = 2.04 (11)°] with the benzene ring, whereas the dihedral angle between pyridine and benzene rings is 46.28 (5)°. TheZ-Lig molecule is positioned on a center of inversion (Fig. 1). The presence of the twofold axis perpendicular to thec-glide plane in space groupC2/c generates a screw-axis parallel to thebaxis that is shifted from themore » origin by 1/4 in theaandcdirections. This screw-axis replicates the molecule (and solvent water molecules) through space. TheZ-Lig molecule links to adjacent moleculesviaO—H...O hydrogen bonds involving solvent water molecules as well as intermolecular C—H...O interactions. There are also π–π interactions between benzene rings on adjacent molecules.« less

  16. Stabilization of flat aromatic Si6 rings analogous to benzene: ab initio theoretical prediction.

    PubMed

    Zdetsis, Aristides D

    2007-12-07

    It is shown by ab initio calculations, based on density functional (DFT/B3LYP), and high level coupled-cluster [CCSD(T)] and quadratic CI [QCISD(T)] methods, that flat aromatic silicon structures analogous to benzene (C6H6) can be stabilized in the presence of lithium. The resulting planar Si6Li6 structure is both stable and aromatic, sharing many key characteristics with benzene. To facilitate possible synthesis and characterization of these species, routes of formation with high exothermicity are suggested and several spectral properties (including optical absorption, infrared, and Raman) are calculated.

  17. Structures, vibrational frequencies, and infrared spectra of the hexa-hydrated benzene clusters

    NASA Astrophysics Data System (ADS)

    Lee, Jin Yong; Kim, Jongseob; Lee, Han Myoung; Tarakeshwar, P.; Kim, Kwang S.

    2000-10-01

    The water hexamer is known to have a number of isoenergetic structures. The first experimental identification of the O-H stretching vibrational spectra of the water hexamer was done in the presence of benzene. It was followed by the identification of the pure water hexamer structure by vibration-rotational tunneling (VRT) spectroscopy. Although both experiments seem to have located only the Cage structure, the structure of the benzene-water hexamer complex is not clearly known, and the effect of benzene in the water hexamer is unclear. In particular, it is not obvious how the energy difference between nearly isoenergetic water hexamer conformers changes in the presence of benzene. Thus, we have compared the benzene complexes with four low-lying isoenergetic water hexamers, Ring, Book, Cage, and Prism structures, using ab initio calculations. We also investigated the effects of the presence of benzene on the structures, harmonic vibrational frequencies, and infrared (IR) intensities for the four low-lying energy conformers. There is little change in the structure of the water hexamer upon its interaction with the benzene molecule. Hence the deformation energies are very small. The dominant contribution to the benzene-water cluster interaction mainly comes from the π-H interactions between benzene and a single water molecule. As a result of this π-H interaction, O-Hπ bond length increases and the corresponding stretching vibrational frequencies are redshifted. The IR spectral features of both (H2O)6 and benzene-(H2O)6 are quite similar. From both the energetics and the comparison of calculated and experimental spectra of the benzene-(H2O)6, the water structure in these complexes is found to have the Cage form. In particular, among the four different Cage structures, only one conformer matches the experimental O-H vibrational frequencies.

  18. Characteristics of high-purity Teflon vial for 14C measurement in old tree rings

    NASA Astrophysics Data System (ADS)

    Sakurai, H.; Saswaki, Y.; Matsumoto, T.; Aoki, T.; Kato, W.; Gandou, T.; Gunji, S.; Tokanai, F.

    2003-06-01

    14C concentration in single-year tree rings of an old cedar of ca. 2500 years ago is measured to investigate the 11-yr periodicity of solar activity. Our highly accurate 14C measuring system is composed of a benzene synthesizer capable of producing a large quantity (10 g) of benzene and a Quantulus 1220™ liquid scintillation counting system. The accuracy is less than 0.2% for measurements of 14C concentration. The benzene sample is contained in a high-purity Teflon/copper-counting vial (20 ml) manufactured by Wallac Oy Company. We found a vial with an irregular copper cap for the measurements of 11 tree rings. The behavior of the vial with the irregular cap was investigated. The Teflon sheet inside the cap plays an important role in achieving stable measurement. The rate of volatilization of the benzene was less than 0.35 mg/day for vials with ordinary caps. This results in the volatilization rate of 0.003% for 10.5 g of benzene and hence guarantees measurement at an accuracy of 0.2% for 70 days.

  19. N-(2-{[5-Bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)-4-chloro­benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    In the title compound, C21H20BrClN4O4S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by a dihedral angle of 70.2 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 69.5 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 4-chloro­benzene rings [centroid–centroid distance = 3.978 (2) Å]. The morpholine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of C—H⋯N hydrogen bonds and these dimers are further connected by N—H⋯O hydrogen bonds, forming a tape along the a axis. PMID:22969673

  20. Crystal structure of N-{[3-bromo-1-(phenyl-sulfon-yl)-1H-indol-2-yl]meth-yl}benzene-sulfonamide.

    PubMed

    Umadevi, M; Raju, P; Yamuna, R; Mohanakrishnan, A K; Chakkaravarthi, G

    2015-10-01

    In the title compound, C21H17BrN2O4S2, the indole ring system subtends dihedral angles of 85.96 (13) and 9.62 (16)° with the planes of the N- and C-bonded benzene rings, respectively. The dihedral angles between the benzene rings is 88.05 (17)°. The mol-ecular conformation is stabilized by intra-molecular N-H⋯O and C-H⋯O hydrogen bonds and an aromatic π-π stacking [centroid-to-centroid distance = 3.503 (2) Å] inter-action. In the crystal, short Br⋯O [2.9888 (18) Å] contacts link the mol-ecules into [010] chains. The chains are cross-linked by weak C-H⋯π inter-actions, forming a three-dimensional network.

  1. N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)-2,4,6-trimethyl­benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    In the title compound, C25H29BrN4O3S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 63.9 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 64.9 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 2,4,6-trimethyl­benzene rings [centroid–centroid distance = 3.766 (2) Å]. The piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds and these dimers are further linked by C—H⋯O hydrogen bonds into chains propagating along [010]. PMID:22969648

  2. 2-[(E)-2-(4-Eth-oxy-phen-yl)ethen-yl]-1-methyl-quinolinium 4-fluoro-benzene-sulfonate.

    PubMed

    Fun, Hoong-Kun; Kobkeatthawin, Thawanrat; Ruanwas, Pumsak; Quah, Ching Kheng; Chantrapromma, Suchada

    2014-01-01

    In the structure of the title salt, C20H20NO(+)·C6H4FO3S(-), the 4-(eth-oxy-phen-yl)ethenyl unit is disordered over two positions with a refined site-occupancy ratio of 0.610 (6):0.390 (6). The cation is nearly planar, the dihedral angle between the quinolinium and benzene rings being 6.7 (4) and 1.7 (7)° for the major and minor components, respectively. The eth-oxy group is essentially coplanar with the benzene ring [C-O-C-Cmethy = 177.1 (8) and 177.8 (12)° for the major and minor components, respectively]. In the crystal, cations and anions are linked into chains along the b-axis direction by C-H⋯Osulfon-yl weak inter-actions. These chains are further connected into sheets parallel to (001) by C-H⋯Osulfon-yl weak inter-actions. The chains are also stacked along the a axis through π-π inter-actions involving the quinolinium and benzene rings [centroid-centroid distances = 3.636 (5) Å for the major component and 3.800 (9) Å for the minor component]. C-H⋯π inter-actions are also present.

  3. Why Is Benzene Unique? Screening Magnetic Properties of C6 H6 Isomers.

    PubMed

    Janda, Tomáš; Foroutan-Nejad, Cina

    2018-05-25

    Magnetic properties are commonly used to identify new aromatic molecules because it is generally believed that magnetization and energetic stability are correlated. To verify the potential correlation between the energy and magnetic response properties, we examined a set of 198 isomers of C 6 H 6 . The energy and magnetic properties of these molecules can be directly compared with no need to invoke any arbitrary reference state because the studied systems are all isomers. Benzene is the global minimum on the potential energy surface of C 6 H 6 , 35 kcal mol -1 lower in energy than the second most stable isomer, fulvene. Unlike its electronic energy, isotropic magnetizability of benzene is slightly lower than the average magnetizability of its isomers. Altogether, 44 isomers of C 6 H 6 were identified to have more negative magnetic susceptibility than benzene but were between 67.0 to 168.6 kcal mol -1 higher in energy than benzene. However, benzene is unique in two ways. Analyzing the paramagnetic contribution to the magnetic susceptibility as originally suggested by Bilde and Hansen (Mol. Phys., 1997, 92, 237) revealed that 53 molecules have lower paramagnetic susceptibility than benzene but among monocyclic systems benzene has the least paramagnetic susceptibility. Furthermore, benzene has the largest out-of-plane magnetic susceptibility that originates from the strongest ring current among all studied species. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Roles of Ring-Hydroxylating Dioxygenases in Styrene and Benzene Catabolism in Rhodococcus jostii RHA1▿ †

    PubMed Central

    Patrauchan, Marianna A.; Florizone, Christine; Eapen, Shawn; Gómez-Gil, Leticia; Sethuraman, Bhanu; Fukuda, Masao; Davies, Julian; Mohn, William W.; Eltis, Lindsay D.

    2008-01-01

    Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the ΔbphAa and etbAa1::cmrA etbAa2::aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the β-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta- and ortho-cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling. PMID:17965160

  5. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.

    PubMed

    Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L

    2016-01-19

    Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.

  6. Forming a Two-Ring Polycyclic Aromatic Hydrocarbon without a Benzene Intermediate: the Reaction of Propargyl with Acetylene

    NASA Astrophysics Data System (ADS)

    Osborn, David; Savee, John; Selby, Talitha; Welz, Oliver; Taatjes, Craig

    The reaction of acetylene (HCCH) with a resonance-stabilized free radical is a commonly invoked mechanism for the generation of polycyclic aromatic hydrocarbons (PAH), which are likely precursors of soot particles in combustion. In this work, we examine the sequential addition of acetylene to the propargyl radical (H2CCCH) at temperatures of 800 and 1000 K. Using time-resolved multiplexed photoionization mass spectrometry with tunable ionizing radiation, we identified the isomeric forms of the C5H5 and C7H7 intermediates in this reaction sequence, and confirmed that the final C9H8 product is the two-ring aromatic compound indene. We identified two different resonance-stabilized C5H5 intermediates, with different temperature dependencies. Furthermore, the C7H7 intermediate is the tropyl radical (c-C7H7) , not the benzyl radical (C6H5CH2) , as is usually assumed in combustion environments. These experimental results are in general agreement with the latest electronic structure / master equation results of da Silva et al. This work shows a pathway for PAH formation that bypasses benzene / benzyl intermediates.

  7. 4-Meth­oxy-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Geffken, Detlef; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The indazole ring system [maximum deviation = 0.013 (2) Å] of the title compound, C15H15N3O3S, makes a dihedral angle of 50.11 (7)° with the benzene ring. In the crystal, cohesion is provided by C—H⋯O and N—H⋯N hydrogen bonds, which link the molecules into chains propagating along the b-axis direction. PMID:24427037

  8. N-(3-Chloro-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2013-10-12

    In the title compound, C14H12ClN3O3S, the fused five- and six-membered rings are folded slightly along the common edge, forming a dihedral angle of 3.2 (1)°. The mean plane through the indazole system makes a dihedral angle of 30.75 (7)° with the distant benzene ring. In the crystal, N-H⋯O hydrogen bonds link the mol-ecules, forming a two-dimensional network parallel to (001).

  9. Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Xiang, Zhang

    2013-10-01

    It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.

  10. Inner hydrogen atom transfer in benzo-fused low symmetrical metal-free tetraazaporphyrin and phthalocyanine analogues: density functional theory studies.

    PubMed

    Qi, Dongdong; Zhang, Yuexing; Cai, Xue; Jiang, Jianzhuang; Bai, Ming

    2009-02-01

    Density functional theory (DFT) calculations were carried out to study the inner hydrogen atom transfer in low symmetrical metal-free tetrapyrrole analogues ranging from tetraazaporphyrin H(2)TAP (A(0)B(0)C(0)D(0)) to naphthalocyanine H(2)Nc (A(2)B(2)C(2)D(2)) via phthalocyanine H(2)Pc (A(1)B(1)C(1)D(1)). All the transition paths of sixteen different compounds (A(0)B(0)C(0)D(0)-A(2)B(2)C(2)D(2) and A(0)B(0)C(m)D(n), m benzene rings onto the TAP skeleton have significant effect on the potential energy barrier of the inner hydrogen atom transfer. Introducing fused benzene rings onto the hydrogen-releasing pyrrole rings can increase the transitivity of inner hydrogen atom and thus lower the transfer barrier of this inner hydrogen atom while fusing benzene rings onto the hydrogen-accepting pyrrole rings will increase the hydrogen transfer barrier to this pyrrole ring. The transient cis-isomer intermediate with hydrogen atoms joined to the two adjacent pyrrole rings with less fused benzene rings is much stable than the others. It is also found that the benzene rings fused directly onto pyrrole rings have more effect on the inner hydrogen atom transfer than the outer benzene rings fused onto the periphery of isoindole rings. The present work, representing the first effort towards systematically understanding the effect of ring enlargement through asymmetrical peripheral fusion of benzene ring(s) onto the TAP skeleton on the inner hydrogen transfer of tetrapyrrole derivatives, will be helpful in clarifying the N-H tautomerization phenomenon and detecting the cis-porphyrin isomer in bio-systems.

  11. N-[2-(5-Bromo-2-morpholin-4-ylpyrim­idin-4-ylsulfan­yl)-4-meth­oxy­phen­yl]-2,4,6-trimethyl­benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    In the title compound, C24H27BrN4O4S2, the mol­ecule is twisted at the sulfonyl S atom with a C—S(O2)—N(H)—C torsion angle of 62.6 (3)°. The benzene rings bridged by the sulfonamide group are tilted to each other by a dihedral angle of 60.6 (1)°. The dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 62.7 (1)°. The morpholine ring adopts a chair conformation. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 2,4,6-trimethyl­benzene rings [centroid–centroid distance = 3.793 (2) Å]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into a chain along the b axis. PMID:23284396

  12. A quantitative method for estimating dermal benzene absorption from benzene-containing hydrocarbon liquids.

    PubMed

    Petty, Stephen E; Nicas, Mark; Boiarski, Anthony A

    2011-01-01

    This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations < or = 5% vol/vol. When a liquid other than pure benzene is on nonoccluded skin, benzene may preferentially evaporate from the liquid, which thereby decreases the benzene flux. We present a time-averaging method here for estimating the reduced dermal flux during evaporation. Example calculations are presented for benzene at 2% vol/vol in gasoline, and for benzene at 0.1% vol/vol in a less volatile liquid. We also discuss other factors affecting dermal absorption.

  13. Urinary excretion of unmetabolized benzene as an indicator of benzene exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghittori, S.; Fiorentino, M.L.; Maestri, L.

    1993-03-01

    Benzene concentrations in urine samples (Cu, ng/L) from 110 workers exposed to benzene in chemical plants and gasoline pumps were determined by injecting urine supernate into a gas chromatograph. The urine was saturated with anhydrous N2SO4 to facilitate the passage of benzene in the air over the urine. The solvent was stripped from the urine surface and concentrated on an adsorbent substrate (Carbotrap tube) by means of a suction pump (flow rate 150 ml/m). Wash-up of the head space was achieved by simultaneous intake of filtered air through charcoal. Benzene was thermically desorbed and injected in a column (thermal tubemore » disorder, Supelco; 370 degrees C thermal flash; borosilicate capillary glass column SPB-1, 60 m length, 0.75 mm ID, 1 microns film thickness; GC Dani 8580-FID). Benzene concentrations in the urine from 40 non-exposed subjects (20 smokers > 20 cigarette/d and 20 nonsmokers) were also determined [median value of 790 ng/L (10.17 nmol/L) and 131 ng/L (1.70 nmol/L), respectively]. The 8-h time-weighted exposure intensity (Cl, micrograms/m3) of individual workers was monitored by means of charcoal tubes. The median value for exposure to benzene was 736 micrograms/m3 (9.42 mumol/m3) [geometric standard deviation (GSD) = 2.99; range 64 micrograms/m3 (0.82 mumol/m3) to 13,387 micrograms/m3 (171.30 mumol/m3)]. The following linear correlation was found between benzene concentrations in urine (Cu, ng/L) and benzene concentrations in the breathing zone (Cl, micrograms/m3): log(Cu) = 0.645 x log(Cl) + 1.399 r = .559, n = 110, p < .0001 With exclusion of workers who smoked from the study, the correlation between air benzene concentration and benzene measured in urine was: log(Cu) = 0.872 x log(Cl) + 0.6 r = .763, n = 63, p < .0001 The study results indicate that the urinary level of benzene is an indicator of occupational exposure to benzene.« less

  14. Observation of Trans-Ethanol and Gauche-Ethanol Complexes with Benzene Using Matrix Isolation Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Amicangelo, Jay; Silbaugh, Matthew J.

    2016-06-01

    Ethanol can exist in two conformers, one in which the OH group is trans to the methyl group (trans-ethanol) and the other in which the OH group is gauche to the methyl group (gauche-ethanol). Matrix isolation infrared spectra of ethanol deposited in 20 K argon matrices display distinct infrared peaks that can be assigned to the trans-ethanol and gauche-ethanol conformers, particularly with the O-H stretching vibrations. Given this, matrix isolation experiments were performed in which ethanol (C_2H_5OH) and benzene (C_6H_6) were co-deposited in argon matrices at 20 K in order to determine if conformer specific ethanol complexes with benzene could be observed in the infrared spectra. New infrared peaks that can be attributed to the trans-ethanol and gauche-ethanol complexes with benzene have been observed near the O-H stretching vibrations of ethanol. The initial identification of the new infrared peaks as being due to the ethanol-benzene complexes was established by performing a concentration study (1:200 to 1:1600 S/M ratios), by comparing the co-deposition spectra with the spectra of the individual monomers, by matrix annealing experiments (35 K), and by performing experiments using isotopically labeled ethanol (C_2D_5OD) and benzene (C_6D_6). Quantum chemical calculations were also performed for the C_2H_5OH-C_6H_6 complexes using density functional theory (B3LYP) and ab initio (MP2) methods. Stable minima were found for the both the trans-ethanol and gauche-ethanol complexes with benzene at both levels of theory and were predicted to have similar interaction energies. Both complexes can be characterized as H-π complexes, in which the ethanol is above the benzene ring with the hydroxyl hydrogen interacting with the π cloud of the ring. The theoretical O-H stretching frequencies for the complexes were predicted to be shifted from the monomer frequencies and from each other and these results were used to make the conformer specific infrared peak assignments

  15. 4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth-oxy]benzene-1,2-dicarbo-nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations.

    PubMed

    Shamsudin, Norzianah; Tan, Ai Ling; Young, David J; Jotani, Mukesh M; Otero-de-la-Roza, A; Tiekink, Edward R T

    2016-04-01

    In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth-oxy-benzene-1,2-dicarbo-nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol(-1) higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra-molecular π-π inter-actions. In the crystal, methyl-ene-C-H⋯N(triazol-yl) and carbo-nitrile-N⋯π(benzene) inter-actions lead to supra-molecular chains along the a axis. Supra-molecular layers in the ab plane arise as the chains are connected by benzene-C-H⋯N(carbo-nitrile) inter-actions; layers stack with no directional inter-actions between them. The specified inter-molecular contacts along with other, weaker contributions to the supra-molecular stabilization are analysed in a Hirshfeld surface analysis.

  16. Identification of human cell responses to benzene and benzene metabolites.

    PubMed

    Gillis, Bruce; Gavin, Igor M; Arbieva, Zarema; King, Stephen T; Jayaraman, Sundararajan; Prabhakar, Bellur S

    2007-09-01

    Benzene is a common air pollutant and confirmed carcinogen, especially in reference to the hematopoietic system. In the present study we analyzed cytokine/chemokine production by, and gene expression induction in, human peripheral blood mononuclear cells upon their exposure to the benzene metabolites catechol, hydroquinone, 1,2,4-benzenetriol, and p-benzoquinone. Protein profiling showed that benzene metabolites can stimulate the production of chemokines, the proinflammatory cytokines TNF-alpha and IL-6, and the Th2 cytokines IL-4 and IL-5. Activated cells showed concurrent suppression of anti-inflammatory cytokine IL-10 expression. We also identified changes in global gene expression patterns in response to benzene metabolite challenges by using high-density oligonucleotide microarrays. Treatment with 1,2,4-benzenetriol resulted in the suppression of genes related to the regulation of protein expression and a concomitant activation of genes that encode heat shock proteins and cytochrome P450 family members. Protein and gene expression profiling identified unique human cellular responses upon exposure to benzene and benzene metabolites.

  17. Effects of Tetrafluoroborate and Bis(trifluoromethylsulfonyl)amide Anions on the Microscopic Structures of 1-Methyl-3-octylimidazolium-Based Ionic Liquids and Benzene Mixtures: A Multiple Approach by ATR-IR, NMR, and Femtosecond Raman-Induced Kerr Effect Spectroscopy.

    PubMed

    Shirota, Hideaki; Kakinuma, Shohei; Itoyama, Yu; Umecky, Tatsuya; Takamuku, Toshiyuki

    2016-01-28

    The microscopic aspects of the two series of mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4])-benzene and 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)amide ([MOIm][NTf2])-benzene were investigated by several spectroscopic techniques such as attenuated total reflectance IR (ATR-IR), NMR, and fs-Raman-induced Kerr effect spectroscopy (fs-RIKES). All three different spectroscopic results indicate that the anions more strongly interact with the cations in the [MOIm][BF4]-benzene mixtures than in the [MOIm][NTf2]-benzene mixtures. This also explains the different miscibility features between the two mixture systems well. The xC6H6 dependences of the chemical shifts and the C-H out-of-plane bending mode of benzene are similar: the changes are large in the high benzene concentration (xC6H6 > ∼ 0.6) compared to the low benzene concentration. In contrast, the linear xC6H6 dependences of the first moments of the low-frequency spectra less than 200 cm(-1) were observed in both the [MOIm][BF4]-benzene and [MOIm][NTf2]-benzene systems. The difference in the xC6H6 dependent features between the chemical shifts and intramolecular vibrational mode and the intermolecular/interionic vibrational bands might come from the different probing space scales. The traces of the parallel aromatic ring structure and the T-shape structure were found in the ATR-IR and NMR experiments, but fs-RIKES did not observe a clear trace of the local structure. This might imply that the interactions between the imidazolium and benzene rings are not strong enough to librate the imidazolium and benzene rings together. The bulk properties, such as miscibility, density, viscosity, and surface tension, of the two ionic liquid-benzene mixture series were also compared to the microscopic aspects.

  18. Understanding of assembly phenomena by aromatic-aromatic interactions: benzene dimer and the substituted systems.

    PubMed

    Lee, Eun Cheol; Kim, Dongwook; Jurecka, Petr; Tarakeshwar, P; Hobza, Pavel; Kim, Kwang S

    2007-05-10

    Interactions involving aromatic rings are important in molecular/biomolecular assembly and engineering. As a consequence, there have been a number of investigations on dimers involving benzene or other substituted pi systems. In this Feature Article, we examine the relevance of the magnitudes of their attractive and repulsive interaction energy components in governing the geometries of several pi-pi systems. The geometries and the associated binding energies were evaluated at the complete basis set (CBS) limit of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using a least biased scheme for the given data set. The results for the benzene dimer indicate that the floppy T-shaped structure (center-to-center distance: 4.96 A, with an axial benzene off-centered above the facial benzene) is isoenergetic in zero-point-energy (ZPE) corrected binding energy (D0) to the displaced-stacked structure (vertical interplanar distance: 3.54 A). However, the T-shaped structure is likely to be slightly more stable (D0 approximately equal to 2.4-2.5 kcal/mol) if quadruple excitations are included in the coupled cluster calculations. The presence of substituents on the aromatic ring, irrespective of their electron withdrawing or donating nature, leads to an increase in the binding energy, and the displaced-stacked conformations are more stabilized than the T-shaped conformers. This explains the wide prevalence of displaced stacked structures in organic crystals. Despite that the dispersion energy is dominating, the substituent as well as the conformational effects are correlated to the electrostatic interaction. This electrostatic origin implies that the substituent effect would be reduced in polar solution, but important in apolar media, in particular, for assembling processes.

  19. Percutaneous penetration of benzene and benzene contained in solvents used in the rubber industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maibach, H.I.; Anjo, D.M.

    1981-09-01

    Penetration of benzene through the skin of the rhesus monkey was determined using /sup 14/C-benzene, and quantitating the labelled metabolites in urine. The modes of application and amounts of benzene that penetrated the skin (indicated in parentheses) are as follows: (1) a single, direct cutaneous application of liquid benzene (0.172 +/- 0.139%); (2) a single application of benzene-containing (0.36%) solvent (0.0805 +/- 0.0306%); (3) multiple washes with full-strength benzene (0.848 +/- 0.0806%); (4) multiple washes with the benzene-containing (0.35%) solvent (0.431 +/- 0.258%); (5) removal of the stratum corneum followed by application of full-strength benzene (0.09 +/- 0.627%); and (6)more » application of benzene to the palmar surface (0.651 +/- 0.482%). Until more complete human data becomes available, benzene penetration in the monkey may be used to estimate penetration in man, both for industrial hygiene purposes and general toxicological use.« less

  20. Carbo-biphenyls and Carbo-terphenyls: Oligo(phenylene ethynylene) Ring Carbo-mers.

    PubMed

    Zhu, Chongwei; Poater, Albert; Duhayon, Carine; Kauffmann, Brice; Saquet, Alix; Maraval, Valérie; Chauvin, Remi

    2018-05-14

    Ring carbo-mers of oligo(phenylene ethynylene)s (OPEn, n=0-2), made of C 2 -catenated C 18 carbo-benzene rings, have been synthesized and characterized by NMR and UV-vis spectroscopy, crystallography and voltammetry. Analyses of crystal and DFT-optimized structures show that the C 18 rings preserve their individual aromatic character according to structural and magnetic criteria (NICS indices). Carbo-terphenyls (n=2) are reversibly reduced at ca. -0.42 V/SCE, i.e. 0.41 V more readily than the corresponding carbo-benzene (-0.83 V/SCE), thus revealing efficient inter-ring π-conjugation. An accurate linear fit of E 1/2 red1 vs. the DFT LUMO energy suggests a notably higher value (-0.30 V/SCE) for a carbo-quaterphenyl congener (n=3). Increase with n of the effective π-conjugation is also evidenced by a red shift of two of the three main visible light absorption bands, all being assigned to TDDFT-calculated excited states, one of them restricting to a HOMO→LUMO main one-electron transition. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Molecular mechanisms in the pyrolysis of unsaturated chlorinated hydrocarbons: formation of benzene rings. 2. Experimental and kinetic modeling studies.

    PubMed

    McIntosh, Grant J; Russell, Douglas K

    2013-05-23

    The mechanism of formation of benzene rings during the pyrolysis of dichloro- and trichloroethylenes has been investigated by the method of laser powered homogeneous pyrolysis coupled with product analysis by gas chromatography. Additionally, selected (co)pyrolyses between the chlorinated ethylenes, CH2Cl2, C4Cl4, C4Cl6, and C2H2 have been performed to explicitly probe the roles of 2C3 and C4/C2 reaction pairs in aromatic growth. The presence of odd-carbon products in neat C4Cl6 pyrolyses indicates that 2C3 processes are operative in these systems; however, comparison with product yields from C2HCl3 suggests that C4/C2 processes dominate most other systems. This is further evidenced by an absence of C3 and other odd-carbon species in (co)pyrolyses with dichloromethane which should seed C3-based growth. The reactions of perchlorinated C4 species C4Cl5, C4Cl3, and C4Cl4 with C2Cl2 were subsequently explored through extensive kinetic simulations of the possible reaction pathways based on previous kinetic models and the exhaustive quantum chemical investigations of our preceding work. The experimental and theoretical results strongly suggest that, at moderate temperatures, aromatic ring formation from chlorinated ethylenes normally follows a Diels-Alder coupling of C4 and C2 molecular units followed by internal shifts; the one exception is the C4Cl4 + C2Cl2 system, where steric factors lead to the formation of nonaromatic products. There is little evidence for radical-based routes in these systems.

  2. 2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one.

    PubMed

    Ren, Dong-Mei

    2013-05-01

    In the title compound, C14H19NO, the dihedral angle between the benzene ring and the plane of the amide group is 80.6 (1)°. In the crystal, mol-ecules are connected via weak C-H⋯O hydrogen bonds, forming chains along the c-axis direction. The conformation of the five-memebred ring is an envelope, with one of the ring C atoms adjacent to the ring N atom as the flap atom.

  3. Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy.

    PubMed

    Jochum, Tobias; Michalzik, Beate; Bachmann, Anne; Popp, Jürgen; Frosch, Torsten

    2015-05-07

    Soil and groundwater contamination with benzene can cause serious environmental damage. However, many soil microorganisms are capable to adapt and are known to strongly control the fate of organic contamination. Innovative cavity enhanced Raman multi-gas spectroscopy (CERS) was applied to investigate the short-term response of the soil micro-flora to sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. (13)C-labeled benzene was spiked on a silty-loamy soil column in order to track and separate the changes in heterotrophic soil respiration - involving (12)CO2 and O2- from the natural attenuation process of benzene degradation to ultimately form (13)CO2. The respiratory quotient (RQ) decreased from a value 0.98 to 0.46 directly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with the maximum (13)CO2 concentration rate (0.63 μmol m(-2) s(-1)), indicating the highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into (13)CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore. The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration.

  4. Analysis of the magnetically induced current density of molecules consisting of annelated aromatic and antiaromatic hydrocarbon rings.

    PubMed

    Sundholm, Dage; Berger, Raphael J F; Fliegl, Heike

    2016-06-21

    Magnetically induced current susceptibilities and current pathways have been calculated for molecules consisting of two pentalene groups annelated with a benzene (1) or naphthalene (2) moiety. Current strength susceptibilities have been obtained by numerically integrating separately the diatropic and paratropic contributions to the current flow passing planes through chosen bonds of the molecules. The current density calculations provide novel and unambiguous current pathways for the unusual molecules with annelated aromatic and antiaromatic hydrocarbon moieties. The calculations show that the benzene and naphthalene moieties annelated with two pentalene units as in molecules 1 and 2, respectively, are unexpectedly antiaromatic sustaining only a local paratropic ring current around the ring, whereas a weak diatropic current flows around the C-H moiety of the benzene ring. For 1 and 2, the individual five-membered rings of the pentalenes are antiaromatic and a slightly weaker semilocal paratropic current flows around the two pentalene rings. Molecules 1 and 2 do not sustain any net global ring current. The naphthalene moiety of the molecule consisting of a naphthalene annelated with two pentalene units (3) does not sustain any strong ring current that is typical for naphthalene. Instead, half of the diatropic current passing the naphthalene moiety forms a zig-zag pattern along the C-C bonds of the naphthalene moiety that are not shared with the pentalene moieties and one third of the current continues around the whole molecule partially cancelling the very strong paratropic semilocal ring current of the pentalenes. For molecule 3, the pentalene moieties and the individual five-membered rings of the pentalenes are more antiaromatic than for 1 and 2. The calculated current patterns elucidate why the compounds with formally [4n + 2] π-electrons have unusual aromatic properties violating the Hückel π-electron count rule. The current density calculations also provide

  5. N-(2-Allyl-4-eth-oxy-2H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen

    2014-05-01

    The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into dimers, which are further linked by C-H⋯O hydrogen bonds, forming columns parallel to the b axis.

  6. Crystal structure of N-(3-chloro-1-methyl-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Gamouh, Ahmed; Saadi, Mohamed; El Ammari, Lahcen

    2014-09-01

    In the title compound, C15H14ClN3O3S, the dihedral angle between the planes of the indazole ring system (r.m.s. deviation = 0.007 Å) and the benzene ring is 89.05 (7)°. The meth-oxy C atom deviates from its attached ring by 0.196 (3) Å. In the crystal, inversion dimers linked by pairs of N-H⋯O hydrogen bonds generate R 2 (2)(8) loops. The dimers are connected into [010] chains by C-H⋯O inter-actions.

  7. Triptycene-Based Microporous Cyanate Resins for Adsorption/Separations of Benzene/Cyclohexane and Carbon Dioxide Gas.

    PubMed

    Deng, Gaoyang; Wang, Zhonggang

    2017-11-29

    Triptycene-based cyanate monomers 2,6,14-tricyanatotriptycene (TPC) and 2,6,14-tris(4-cyanatophenyl)triptycene (TPPC) that contain different numbers of benzene rings per molecule were synthesized, from which two microporous cyanate resins PCN-TPC and PCN-TPPC were prepared. Of interest is the observation that the two polymers have very similar porosity parameters, but PCN-TPPC uptakes considerably higher benzene (77.8 wt %) than PCN-TPC (17.6 wt %) at room temperature since the higher concentration of phenyl groups in PCN-TPPC enhances the π-π interaction with benzene molecules. Besides, the adsorption capacity of benzene in PCN-TPPC is dramatically 7 times as high as that of cyclohexane. Contrary to the adsorption of organic vapors, at 273 K and 1.0 bar, PCN-TPC with more heteroatoms in the network skeleton displays larger uptake of CO 2 and higher CO 2 /N 2 selectivity (16.4 wt %, 60) than those of PCN-TPPC (14.0 wt %, 39). The excellent and unique adsorption properties exhibit potential applications in the purification of small molecular organic hydrocarbons, e.g., separation of benzene from benzene/cyclohexane mixture as well as CO 2 capture from flue gas. Moreover, the results are helpful for deeply understanding the effect of porous and chemical structures on the adsorption properties of organic hydrocarbons and CO 2 gas.

  8. Crystal structure of (E)-2-[(2-bromopyridin-3-yl)methyl-idene]-6-meth-oxy-3,4-di-hydro-naphthalen-1(2H)-one and 3-[(E)-(6-meth-oxy-1-oxo-1,2,3,4-tetra-hydro-naphthalen-2-ylidene)meth-yl]pyridin-2(1H)-one.

    PubMed

    Zingales, Sarah K; Moore, Morgan E; Goetz, Andrew D; Padgett, Clifford W

    2016-07-01

    The title compounds C17H14BrNO2, (I), and C17H15NO3, (II), were obtained from the reaction of 6-meth-oxy-3,4-di-hydro-2H-naphthalen-1-one and 2-bromo-nicotinaldehyde in ethanol. Compound (I) was the expected product and compound (II) was the oxidation product from air exposure. In the crystal structure of compound (I), there are no short contacts or hydrogen bonds. The structure does display π-π inter-actions between adjacent benzene rings and adjacent pyridyl rings. Compound (II) contains two independent mol-ecules, A and B, in the asymmetric unit; both are non-planar, the dihedral angles between the meth-oxy-benzene and 1H-pyridin-2-one mean planes being 35.07 (9)° in A and 35.28 (9)°in B. In each mol-ecule, the 1H-pyridin-2-one unit participates in inter-molecular N-H⋯O hydrogen bonding to another mol-ecule of the same type (A to A or B to B). The structure also displays π-π inter-actions between the pyridyl and the benzene rings of non-equivalent mol-ecules (viz., A to B and B to A).

  9. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  10. Anaerobic Benzene Degradation in Petroleum-Contaminated Aquifer Sediments after Inoculation with a Benzene-Oxidizing Enrichment

    PubMed Central

    Weiner, Jonathan M.; Lovley, Derek R.

    1998-01-01

    Sediments from the sulfate-reduction zone of a petroleum-contaminated aquifer, in which benzene persisted, were inoculated with a benzene-oxidizing, sulfate-reducing enrichment from aquatic sediments. Benzene was degraded, with apparent growth of the benzene-degrading population over time. These results suggest that the lack of benzene degradation in the sulfate-reduction zones of some aquifers may result from the failure of the appropriate benzene-degrading sulfate reducers to colonize the aquifers rather than from environmental conditions that are adverse for anaerobic benzene degradation. PMID:9464422

  11. N-(3-Chloro-1H-indazol-5-yl)-4-meth­oxy­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C14H12ClN3O3S, the fused five- and six-membered rings are folded slightly along the common edge, forming a dihedral angle of 3.2 (1)°. The mean plane through the indazole system makes a dihedral angle of 30.75 (7)° with the distant benzene ring. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules, forming a two-dimensional network parallel to (001). PMID:24454078

  12. Molecular mechanisms in the pyrolysis of unsaturated chlorinated hydrocarbons: formation of benzene rings. 1. Quantum chemical studies.

    PubMed

    McIntosh, Grant J; Russell, Douglas K

    2013-05-23

    Analogues of important aromatic growth mechanisms in hydrocarbon pyrolysis and combustion systems are extended to chlorinated systems. We consider the addition of C2Cl2 to both C4Cl3 and C4Cl5 radicals at the M06-2X/6-311+G(3df,3p)//B3LYP/6-31G(d) level of theory, and we demonstrate that these reaction systems have much in common with those of nonchlorinated species. In particular, we find that these radicals appear to lead preferentially to fulvenes, and not to the observed aromatic products, as is found in nonchlorinated systems. We have therefore also considered nonradical C4/C2 channels by way of Diels-Alder cyclization of C4Cl4/C2Cl2 and C4H2Cl2/C2HCl pairs to describe aromatic formation. While the latter pair readily leads to the formation of partially chlorinated benzenes, the fully chlorinated congeners are sterically prohibited from ring closing directly; this leads to a series of novel rearrangement processes which predict the formation of hexachloro-1,5-diene-3-yne, in addition to hexachlorobenzene, in good agreement with experiment. This suggests, for the first time, that facile nonradical routes to aromatic formation are operative in partially and fully chlorinated pyrolysis and combustion systems.

  13. Crystal structure of di-μ-chlorido-bis-(chlorido-{N1,N1-diethyl-N4-[(pyridin-2-yl-κN)methyl-idene]benzene-1,4-di-amine-κN4}mercury(II)).

    PubMed

    Faizi, Md Serajul Haque; Dege, Necmi; Goleva, Kateryna

    2017-06-01

    The title dinuclear mercury(II) complex, [Hg 2 Cl 4 (C 16 H 19 N 3 ) 2 ], synthesized from the pyridine-derived Schiff base ( E )- N 1 , N 1 -diethyl- N 4 -[(pyridin-2-yl)methyl-idene]benzene-1,4-di-amine (DPMBD), has inversion symmetry. The five-coordinated Hg II atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π-π inter-actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].

  14. Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments.

    PubMed Central

    Thomas, K A; Smith, G M; Thomas, T B; Feldmann, R J

    1982-01-01

    The atomic environments of 170 phenylalanine-residue aromatic rings from 28 protein crystal structures are transformed into a common orientation and combined to calculate an average three-dimensional environment. The spatial distribution of atom types in this environment reveals a preferred interaction between oxygen atoms and the edge of the planar aromatic rings. From the difference in frequency of interaction of oxygen atoms with the edge and the top of the ring, an apparent net free energy difference of interaction favoring the edge of the ring is estimated to be about -1 kcal/mol (1 cal = 4.184 J). Ab initio quantum mechanical calculations, performed on a model consisting of benzene and formamide, indicate that the observed geometry is stabilized by a favorable enthalpic interaction. Although benzene rings are considered to be nonpolar, the electron distribution is a complex multipole with no net dipole moment. The observed interaction orientation frequencies demonstrate that these multipolar electron distributions, when occurring at the short distances encountered in densely packed protein molecules, are significant determinants of internal packing geometries. PMID:6956896

  15. Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community.

    PubMed

    Posman, Kevin M; DeRito, Christopher M; Madsen, Eugene L

    2017-02-15

    Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [ 13 C]benzene enabled us to obtain 13 C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. Benzene is a human carcinogen whose

  16. Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community

    PubMed Central

    Posman, Kevin M.; DeRito, Christopher M.

    2016-01-01

    ABSTRACT Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE Benzene is a human

  17. Trends in electron-ion dissociative recombination of benzene analogs with functional group substitutions: Negative Hammett σpara values

    NASA Astrophysics Data System (ADS)

    Osborne, David; Lawson, Patrick Andrew; Adams, Nigel; Dotan, Itzhak

    2014-06-01

    An in-depth study of the effects of functional group substitution on benzene's electron-ion dissociative recombination (e-IDR) rate constant has been conducted. The e-IDR rate constants for benzene, biphenyl, toluene, ethylbenzene, anisole, phenol, and aniline have been measured using a Flowing Afterglow equipped with an electrostatic Langmuir probe (FALP). These measurements have been made over a series of temperatures from 300 to 550 K. A relationship between the Hammett σpara values for each compound and rate constant has indicated a trend in the e-IDR rate constants and possibly in their temperature dependence data. The Hammett σpara value is a method to describe the effect a functional group substituted to a benzene ring has upon the reaction rate constant.

  18. Adsorption of benzene on low index surfaces of platinum in the presence of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    K, Ayishabi P.; Chatanathodi, Raghu

    2017-10-01

    We have studied the adsorption of benzene on three low index surfaces of platinum using plane-wave Density Functional Theory (DFT) calculations, taking into consideration van der Waals (vdW) interaction. Experimentally, it is known that benzene adsorbs at the bridge site on the (111) surface, but in case of (110) and (100), this is not known yet. Our calculations show that benzene preferably adsorbs on bridge position on Pt(111) surface, whereas on Pt(110) and Pt(100) surfaces, the hollow position is energetically more favoured. The structural and electronic modifications of molecule and the surfaces are also examined. In all cases, adsorption-induced distortions of adsorbate-substrate complex are found to be modest in character, but relatively maximum in case of the (110) facet. The molecule is bound most strongly to the (110) surface. Importantly, we find that adsorption at bridge and atop positions are energetically feasible on the (110) surface, with the canting of benzene ring at a small angle from the metal plane. We study changes in electronic structure and the net charge transfer upon adsorption of benzene on all three low index planes. Inclusion of vdW interactions is important for obtaining realistic adsorption strengths for benzene on various Pt facets.

  19. BENZENE OXIDE PROTEIN ADDUCTS AS BIOMARKERS OF BENZENE EXPOSURE

    EPA Science Inventory

    Benzene is known to be hematotoxic and carcinogenic in animals and humans. While metabolism is required for toxicity, the identity of the ultimate carcinogen(s) remains unknown. Benzene oxide (BO) is the first and most abundant of the metabolites, but very little is known about...

  20. Evidence of Accretion in Saturn's F Ring (Invited)

    NASA Astrophysics Data System (ADS)

    Agnor, C. B.; Buerle, K.; Murray, C. D.; Evans, M. W.; Cooper, N. J.; Williams, G. W.

    2010-12-01

    Lying slightly outside the classical Roche radius and being strongly perturbed by the adjacent moons Prometheus and Pandora, Saturn's F ring represents a unique astrophysical laboratory for examining the processes of mass accretion and moonlet formation. Recent images from the Cassini spacecraft reveal optically thick clumps, capable of casting shadows, and associated structures in regions of the F ring following close passage by Prometheus. Here we examine the accretion environment of the F ring and Prometheus' role in moonlet formation and evolution. Using the observed structures adjacent to these clumps and dynamical arguments we estimate the masses of these clumps and find them comparable to that of ~10-20-km contiguous moonlets. Further, we show that Prometheus' perturbations on the F ring create regions of enhanced density and low relative velocity that may accelerate the accretion of clumps and moonlets.

  1. N-(1-Allyl-3-chloro-4-eth-oxy-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-06-01

    In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8).

  2. Bis[2-(2-pyridylmethyl­eneamino)benzene­sulfonato-κ3 N,N′,O]cobalt(II) dihydrate

    PubMed Central

    Huang, Xue-Ren; Ou-Yang, Miao; Yang, Ge-Ge; Meng, Xiu-Jin; Jiang, Yi-Min

    2009-01-01

    The title complex, [Co(C12H9N2O3S)2]·2H2O, has site symmetry 2 with the CoII cation located on a twofold rotation axis. Two tridentate 2-(2-pyridylmethyl­eneamino)benzene­sulfonate (paba) ligands chelate to the CoII cation in a distorted octa­hedral geometry. The pyridine and benzene rings in the paba ligand are oriented at a dihedral angle of 42.86 (13)°. Inter­molecular O—H⋯O and C—H⋯O hydrogen bonding is present in the crystal structure. PMID:21578190

  3. Interaction of benzene thiol and thiolate with small gold clusters.

    PubMed

    Letardi, Sara; Cleri, Fabrizio

    2004-06-01

    We studied the interaction between benzene thiol and thiolate molecules, and gold clusters made of 1 to 3 atoms, by means of ab initio density functional theory in the local density approximation. We find that the thiolate is energetically more stable than the thiol, however the process of detachment of H from the thiol appears to be possibly mediated by the intermediate step of H chemisorption on Au. Cleavage of the S-H bond is accompanied by a 90 degrees rotation of the molecule around the S-Au bond, showing a strong steric specificity. Such a rotation is induced by the relative energy shift of the S atom p orbitals with respect to the benzene pi ring and the Au d orbitals. By analyzing the correlation of the bond energy, bond lengths, and HOMO-LUMO gap with the number of S-Au bonds, we find that the thiolate S atom appears to prefer a low-coordination condition on Au clusters. (c) 2004 American Institute of Physics.

  4. MEASUREMENT OF BENZENE OXIDE IN THE BLOOD OF RATS FOLLOWING ADMINISTRATION OF BENZENE

    EPA Science Inventory

    Although it is generally assumed that metabolism of benzene proceeds through an initial step involving oxidation to benzene oxide (BO) by CYP450 in the liver, the production of BO has never been unambiguously confirmed in animals dosed with benzene. Furthermore, prevailing hypo...

  5. (Z)-5-(4-Fluoro­benzyl­idene)-1,3-thia­zolidine-2,4-dione

    PubMed Central

    Sun, Hong-Shun; Xu, Ye-Ming; He, Wei; Tang, Shi-Gui; Guo, Cheng

    2008-01-01

    In the title compound, C10H6FNO2S, the benzene and thia­zolidine rings make a dihedral angle of 7.52 (3)°. Intra­molecular C—H⋯O and C—H⋯S hydrogen bonds result in the formation of nearly planar five- and six-membered rings; the adjacent rings are nearly coplanar. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules. PMID:21201543

  6. 4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]benzene-1,2-dicarbo­nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations

    PubMed Central

    Shamsudin, Norzianah; Tan, Ai Ling; Young, David J.; Jotani, Mukesh M.; Otero-de-la-Roza, A.; Tiekink, Edward R. T.

    2016-01-01

    In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth­oxy–benzene-1,2-dicarbo­nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol−1 higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra­molecular π–π inter­actions. In the crystal, methyl­ene-C—H⋯N(triazol­yl) and carbo­nitrile-N⋯π(benzene) inter­actions lead to supra­molecular chains along the a axis. Supra­molecular layers in the ab plane arise as the chains are connected by benzene-C—H⋯N(carbo­nitrile) inter­actions; layers stack with no directional inter­actions between them. The specified inter­molecular contacts along with other, weaker contributions to the supra­molecular stabilization are analysed in a Hirshfeld surface analysis. PMID:27375890

  7. Cavity ring down spectrometry for disease diagnostics using exhaled air

    NASA Astrophysics Data System (ADS)

    Revalde, G.; Grundšteins, K.; Alnis, J.; Skudra, A.

    2017-12-01

    In this paper we report the current stage of the development of a cavity ring-down spectrometer (CRDS) system using exhaled human breath analysis for the diagnostics of different diseases like diabetes and later lung cancer. The portable CRDS system is made in ultraviolet spectral region using Nd:Yag laser 266 nm pulsed light. Calibration of the CRDS system was performed using generated samples by KinTek automated permeation tube system and self-prepared mixtures with known concentration of benzene and acetone in air. First experiments showed that the limits of detection for benzene and acetone are several tens of ppb.

  8. Stacking interactions of hydrogen-bridged rings – stronger than the stacking of benzene molecules.

    PubMed

    Blagojević, Jelena P; Zarić, Snežana D

    2015-08-21

    Analysis of crystal structures from the Cambridge Structural Database showed that 27% of all planar five-membered hydrogen-bridged rings, possessing only single bonds within the ring, form intermolecular stacking interactions. Interaction energy calculations show that interactions can be as strong as -4.9 kcal mol(-1), but dependent on ring structure.

  9. Facts about Benzene

    MedlinePlus

    ... Disposal of Contaminated Clothing .” If you think your water supply may have benzene in it, drink bottled water until you are sure your water supply is safe. If someone has swallowed benzene, do ...

  10. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  11. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  12. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  13. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  14. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  15. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  16. Topological ring currents in the "empty" ring of benzo-annelated perylenes.

    PubMed

    Dickens, Timothy K; Mallion, Roger B

    2011-01-27

    Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.

  17. N-(2-{[5-Bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Kant, Rajni; Gupta, Vivek K.; Kapoor, Kamini; Kumar, Mohan; Mallesha, L.; Sridhar, M. A.

    2012-01-01

    In the title compound, C22H23BrN4O4S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 68.9 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 69.7 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 4-methylbenzene rings [centroid–centroid distance = 3.934 (2) Å]. The morpholine ring adopts a chair conformation and is disordered over two positions with an occupancy ratio of 0.853 (6):0.147 (6). In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains extending along the a axis and further, through C—H⋯N and C—H⋯O inter­actions, into a three-dimensional supramolecular structure. PMID:22905015

  18. N-(3-Chloro-4-eth-oxy-1-methyl-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Saadi, Mohamed; El Ammari, Lahcen

    2014-06-01

    The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-eth-oxy group, respectively. In the crystal, mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into inversion dimers, which are further linked by π-π inter-actions between the diazole rings [inter-centroid distance = 3.4946 (11) Å], forming chains parallel to [101].

  19. Studying the local structure of liquid in chloro- and alkyl-substituted benzene derivatives via the molecular scattering of light

    NASA Astrophysics Data System (ADS)

    Kargin, I. D.; Lanshina, L. V.; Abramovich, A. I.

    2017-09-01

    The coefficients of scattering and the depolarization of scattered light are measured in liquid benzene, chlorobenzene, o-dichlorobenzene, o-chlorotoluene, toluene, and o-xylene in the temperature range of 293‒368 K at a wavelength of 546 nm. Isothermic compressibility, internal pressure, and the functions of radial and orientational correlation are calculated for these liquids in the indicated temperature range, using the classical theory of molecular light scattering. We show that the local structure of these liquids is determined by orthogonal contacts between benzene rings (the T-configuration) and stacked (S-type) configurations. T-configurations predominate in benzene, chlorobenzene, and o-chlorotoluene, while toluene, o-xylene, and o-dichlorobenzene are characterized by S-configurations. It is also shown that the local structures of these liquids are reorganized in a certain temperature range.

  20. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects.

    PubMed

    Carbonari, Damiano; Chiarella, Pieranna; Mansi, Antonella; Pigini, Daniela; Iavicoli, Sergio; Tranfo, Giovanna

    2016-01-01

    Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.

  1. Molecular dynamics simulation of gas-phase ozone reactions with sabinene and benzene.

    PubMed

    Ridgway, H F; Mohan, B; Cui, X; Chua, K J; Islam, M R

    2017-06-01

    Gas-phase reactions of ozone (O 3 ) with volatile organic compounds were investigated both by experiment and molecular simulations. From our experiments, it was found ozone readily reacts with VOC pure components and reduces it effectively. By introducing ozone intermittently, the reaction between VOC and ozone is markedly enhanced. In order to understand the relationship between intermediate reactions and end products, ozone reaction with benzene and alicyclic monoterpene sabinene were simulated via a novel hybrid quantum mechanical/molecular mechanics (QM/MM) algorithm that forced repeated bimolecular collisions. Molecular orbital (MO) rearrangements (manifested as bond dissociation or formation), resulting from the collisions, were computed by semi-empirical unrestricted Hartree-Fock methods (e.g., RM1). A minimum of 975 collisions between ozone and targeted organic species were performed to generate a distribution of reaction products. Results indicated that benzene and sabinene reacted with ozone to produce a range of stable products and intermediates, including carbocations, ring-scission products, as well as peroxy (HO 2 and HO 3 ) and hydroxyl (OH) radicals. Among the stable sabinene products observed included formaldehyde and sabina-ketone, which have been experimentally demonstrated in gas-phase ozonation reactions. Among the benzene ozonation products detected composed of oxygen mono-substituted aromatic C 6 H 5 O, which may undergo further transformation or rearrangement to phenol, benzene oxide or 2,4-cyclohexadienone; a phenomenon which has been experimentally observed in vapor-phase photocatalytic ozonation reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. (1E,4E)-1,5-Bis[4-(di­ethyl­amino)­phen­yl]penta-1,4-dien-3-one

    PubMed Central

    Ruanwas, Pumsak; Chantrapromma, Suchada; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2014-01-01

    There are two crystallograpically independent mol­ecules in the asymmetric unit of the title bis­chalcone derivative, C25H32N2O. Both mol­ecules are twisted with a dihedral angle between the two substituted benzene rings of 11.19 (16)° in one mol­ecule and 14.40 (15)° in the other. The central penta-1,4-dien-3-one fragments make dihedral angles of 8.49 (17) and 4.26 (17)° with the two adjacent benzene rings in one mol­ecule, whereas the corresponding values are 8.42 (16) and 6.18 (16)° in the other. In the crystal, mol­ecules are arranged into chains along the c-axis direction. Adjacent chains are inter-linked by weak inter­molecular C—H⋯O inter­actions. The crystal is further stabilized by C—H⋯π inter­actions. PMID:24860388

  3. Law and regulation of benzene.

    PubMed Central

    Feitshans, I L

    1989-01-01

    OSHA has created final benzene regulations after extensive rulemakings on two occasions, 1978 and 1987. These standards have been the subject of extensive litigation for nearly 20 years. This article examines in detail the conceptual underpinnings of the Benzene Case, (which was decided by the U.S. Supreme Court in 1980) in light of U.S. administrative law precedents that have set limits upon administrative discretion under the test for "substantial evidence" and the "hard look doctrine." This article also addresses recent developments in the wake of the Benzene Case and their implications for benzene regulations following the "significant risk" doctrine in that case. This article briefly describes other national, regional, and international laws governing the use of benzene. This article concludes that the revisions of the benzene regulation and subsequent rulemaking provide substantial evidence of scientific underpinnings for regulatory action and that laws from other nations reflect an international consensus that occupational exposure to benzene is a proper subject of regulation. Such regulations and policies are therefore likely to withstand scrutiny and remain enforceable as widely accepted norms. PMID:2792048

  4. N-(1-Allyl-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Abderrafia, Hafid; Saadi, Mohamed; El Ammari, Lahcen

    2013-11-30

    The asymmetric unit of the title compound, C17H17N3O2S, contains two independent mol-ecules linked by an N-H⋯O hydrogen bond. The mol-ecules show different conformations. In the first mol-ecule, the fused five- and six-membered ring system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 85.1 (4)°. The dihedral angle with the methyl-benzene-sulfonamide group is 78.8 (1)°. On the other hand, in the second mol-ecule, the dihedral angles between the indazole plane and the allyl and methyl-benzene-sulfonamide groups are 80.3 (3) and 41.5 (1)°, respectively. In the crystal, mol-ecules are further linked by N-H⋯N and C-H⋯O hydrogen bonds, forming a three-dimensional network.

  5. Benzene patterns in different urban environments and a prediction model for benzene rates based on NOx values

    NASA Astrophysics Data System (ADS)

    Paz, Shlomit; Goldstein, Pavel; Kordova-Biezuner, Levana; Adler, Lea

    2017-04-01

    Exposure to benzene has been associated with multiple severe impacts on health. This notwithstanding, at most monitoring stations, benzene is not monitored on a regular basis. The aims of the study were to compare benzene rates in different urban environments (region with heavy traffic and industrial region), to analyse the relationship between benzene and meteorological parameters in a Mediterranean climate type, to estimate the linkages between benzene and NOx and to suggest a prediction model for benzene rates based on NOx levels in order contribute to a better estimation of benzene. Data were used from two different monitoring stations, located on the eastern Mediterranean coast: 1) a traffic monitoring station in Tel Aviv, Israel (TLV) located in an urban region with heavy traffic; 2) a general air quality monitoring station in Haifa Bay (HIB), located in Israel's main industrial region. At each station, hourly, daily, monthly, seasonal, and annual data of benzene, NOx, mean temperature, relative humidity, inversion level, and temperature gradient were analysed over three years: 2008, 2009, and 2010. A prediction model for benzene rates based on NOx levels (which are monitored regularly) was developed to contribute to a better estimation of benzene. The severity of benzene pollution was found to be considerably higher at the traffic monitoring station (TLV) than at the general air quality station (HIB), despite the location of the latter in an industrial area. Hourly, daily, monthly, seasonal, and annual patterns have been shown to coincide with anthropogenic activities (traffic), the day of the week, and atmospheric conditions. A strong correlation between NOx and benzene allowed the development of a prediction model for benzene rates, based on NOx, the day of the week, and the month. The model succeeded in predicting the benzene values throughout the year (except for September). The severity of benzene pollution was found to be considerably higher at the

  6. First results of cavity ring down signals from exhaled air

    NASA Astrophysics Data System (ADS)

    Revalde, G.; Grundšteins, K.; Alnis, J.; Skudra, A.

    2017-12-01

    In this paper we report first results from the developed cavity ring-down spectrometer for application in human breath analysis for the diagnostics of diabetes and later for early detection of lung cancer. Our cavity ring-down spectrometer works in UV region with pulsed Nd:YAG laser at 266 nm wavelength. First experiments allow us to determine acetone and benzene at the level bellow ppm. In our experiment, first results from breath samples from volunteers after doing different activities were collected and examined. Influence of the smoking on the breath signals also was examined.

  7. A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies.

    PubMed

    Vilella, Laia; Conde, Ana; Balcells, David; Díaz-Requejo, M Mar; Lledós, Agustí; Pérez, Pedro J

    2017-12-01

    A dual mechanism for direct benzene catalytic hydroxylation is described. Experimental studies and DFT calculations have provided a mechanistic explanation for the acid-free, Tp x Cu-catalyzed hydroxylation of benzene with hydrogen peroxide (Tp x = hydrotrispyrazolylborate ligand). In contrast with other catalytic systems that promote this transformation through Fenton-like pathways, this system operates through a copper-oxyl intermediate that may interact with the arene ring following two different, competitive routes: (a) electrophilic aromatic substitution, with the copper-oxyl species acting as the formal electrophile, and (b) the so-called rebound mechanism, in which the hydrogen is abstracted by the Cu-O moiety prior to the C-O bond formation. Both pathways contribute to the global transformation albeit to different extents, the electrophilic substitution route seeming to be largely favoured.

  8. The toxicity of benzene and its metabolism and molecular pathology in human risk assessment.

    PubMed Central

    Yardley-Jones, A; Anderson, D; Parke, D V

    1991-01-01

    Benzene, a common industrial chemical and a component of gasoline, is radiomimetic and exposure may lead progressively to aplastic anaemia, leukaemia, and multiple myeloma. Although benzene has been shown to cause many types of genetic damage, it has consistently been classified as a non-mutagen in the Ames test, possibly because of the inadequacy of the S9 microsomal activation system. The metabolism of benzene is complex, yielding glucuronide and sulphate conjugates of phenol, quinol, and catechol, L-phenylmercapturic acid, and muconaldehyde and trans, trans-muconic acid by ring scission. Quinol is oxidised to p-benzoquinone, which binds to vital cellular components or undergoes redox cycling to generate oxygen radicals; muconaldehyde, like p-benzoquinone, is toxic through depletion of intracellular glutathione. Exposure to benzene may also induce the microsomal mixed function oxidase, cytochrome P450 IIE1, which is probably responsible for the oxygenation of benzene, but also has a propensity to generate oxygen radicals. The radiomimetic nature of benzene and its ability to induce different sites of neoplasia indicate that formation of oxygen radicals is a major cause of benzene toxicity, which involves multiple mechanisms including synergism between arylating and glutathione-depleting reactive metabolites and oxygen radicals. The occupational exposure limit in the United Kingdom (MEL) and the United States (PEL) was 10 ppm based on the association of benzene exposure with aplastic anaemia, but recently was lowered to 5 ppm and 1 ppm respectively, reflecting a concern for the risk of neoplasia. The American Conference of Governmental Industrial Hygienists (ACGIH) has even more recently recommended that, as benzene is considered an A1 carcinogen, the threshold limit value (TLV) should be decreased to 0.1 ppm. Only one study in man, based on nine cases of benzene associated fatal neoplasia, has been considered suitable for risk assessment. Recent re-evaluation of

  9. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1995-12-19

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.

  10. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1995-01-01

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.

  11. Structural features of small benzene clusters (C6H6)n (n ≤ 30) as investigated with the all-atom OPLS potential.

    PubMed

    Takeuchi, Hiroshi

    2012-10-18

    The structures of the simplest aromatic clusters, benzene clusters (C(6)H(6))(n), are not well elucidated. In the present study, benzene clusters (C(6)H(6))(n) (n ≤ 30) were investigated with the all-atom optimized parameters for liquid simulation (OPLS) potential. The global minima and low-lying minima of the benzene clusters were searched with the heuristic method combined with geometrical perturbations. The structural features and growth sequence of the clusters were examined by carrying out local structure analyses and structural similarity evaluation with rotational constants. Because of the anisotropic interaction between the benzene molecules, the local structures consisting of 13 molecules are considerably deviated from regular icosahedron, and the geometries of some of the clusters are inconsistent with the shapes constructed by the interior molecules. The distribution of the angle between the lines normal to two neighboring benzene rings is anisotropic in the clusters, whereas that in the liquid benzene is nearly isotropic. The geometries and energies of the low-lying configurations and the saddle points between them suggest that most of the configurations previously detected in supersonic expansions take different orientations for one to four neighboring molecules.

  12. A two-dimensional ZnII coordination polymer constructed from benzene-1,2,3-tricarboxylic acid and N,N'-bis[(pyridin-4-yl)methylidene]hydrazine.

    PubMed

    Wang, Xiangfei; Yang, Fang; Tang, Meng; Yuan, Limin; Liu, Wenlong

    2015-07-01

    The hydrothermal synthesis of the novel complex poly[aqua(μ4-benzene-1,2,3-tricarboxylato)[μ2-4,4'-(hydrazine-1,2-diylidenedimethanylylidene)dipyridine](μ3-hydroxido)dizinc(II)], [Zn(C9H3O6)(OH)(C12H10N4)(H2O)]n, is described. The benzene-1,2,3-tricarboxylate ligand connects neighbouring Zn4(OH)2 secondary building units (SBUs) producing an infinite one-dimensional chain. Adjacent one-dimensional chains are connected by the N,N'-bis[(pyridin-4-yl)methylidene]hydrazine ligand, forming a two-dimensional layered structure. Adjacent layers are stacked to generate a three-dimensional supramolecular architecture via O-H...O hydrogen-bond interactions. The thermal stability of this complex is described and the complex also appears to have potential for application as a luminescent material.

  13. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    PubMed

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  14. N-(2-Allyl-4-eth­oxy-2H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into dimers, which are further linked by C—H⋯O hydrogen bonds, forming columns parallel to the b axis. PMID:24860413

  15. The angular electronic band structure and free particle model of aromatic molecules: High-frequency photon-induced ring current

    NASA Astrophysics Data System (ADS)

    Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray

    2017-05-01

    This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.

  16. Leukemia and Benzene

    PubMed Central

    Snyder, Robert

    2012-01-01

    Excessive exposure to benzene has been known for more than a century to damage the bone marrow resulting in decreases in the numbers of circulating blood cells, and ultimately, aplastic anemia. Of more recent vintage has been the appreciation that an alternative outcome of benzene exposure has been the development of one or more types of leukemia. While many investigators agree that the array of toxic metabolites, generated in the liver or in the bone marrow, can lead to traumatic bone marrow injury, the more subtle mechanisms leading to leukemia have yet to be critically dissected. This problem appears to have more general interest because of the recognition that so-called “second cancer” that results from prior treatment with alkylating agents to yield tumor remissions, often results in a type of leukemia reminiscent of benzene-induced leukemia. Furthermore, there is a growing literature attempting to characterize the fine structure of the marrow and the identification of so called “niches” that house a variety of stem cells and other types of cells. Some of these “niches” may harbor cells capable of initiating leukemias. The control of stem cell differentiation and proliferation via both inter- and intra-cellular signaling will ultimately determine the fate of these transformed stem cells. The ability of these cells to avoid checkpoints that would prevent them from contributing to the leukemogenic response is an additional area for study. Much of the study of benzene-induced bone marrow damage has concentrated on determining which of the benzene metabolites lead to leukemogenesis. The emphasis now should be directed to understanding how benzene metabolites alter bone marrow cell biology. PMID:23066403

  17. Benzene and toluene in the surface air of northern Eurasia from TROICA-12 campaign along the Trans-Siberian Railway

    NASA Astrophysics Data System (ADS)

    Skorokhod, Andrey I.; Berezina, Elena V.; Moiseenko, Konstantin B.; Elansky, Nikolay F.; Belikov, Igor B.

    2017-05-01

    Volatile organic compounds (VOCs) were measured by proton transfer reaction mass spectrometry (PTR-MS) on a mobile laboratory in a transcontinental TROICA-12 (21 July-4 August 2008) campaign along the Trans-Siberian Railway from Moscow to Vladivostok. Surface concentrations of benzene (C6H6) and toluene (C7H8) along with non-methane hydrocarbons (NMHCs), CO, O3, SO2, NO, NO2 and meteorology are analyzed in this study to identify the main sources of benzene and toluene along the Trans-Siberian Railway. The most measurements in the TROICA-12 campaign were conducted under low-wind/stagnant conditions in moderately ( ˜ 78 % of measurements) to weakly polluted ( ˜ 20 % of measurements) air directly affected by regional anthropogenic sources adjacent to the railway. Only 2 % of measurements were identified as characteristic of highly polluted urban atmosphere. Maximum values of benzene and toluene during the campaign reached 36.5 and 45.6 ppb, respectively, which is significantly less than their short-term exposure limits (94 and 159 ppb for benzene and toluene, respectively). About 90 % of benzene and 65 % of toluene content is attributed to motor vehicle transport and 10 and 20 %, respectively, provided by the other local- and regional-scale sources. The highest average concentrations of benzene and toluene are measured in the industrial regions of the European Russia (up to 0.3 and 0.4 ppb for benzene and toluene, respectively) and south Siberia (up to 0.2 and 0.4 ppb for benzene and toluene, respectively). Total contribution of benzene and toluene to photochemical ozone production along the Trans-Siberian Railway is about 16 % compared to the most abundant organic VOC - isoprene. This contribution, however, is found to be substantially higher (up to 60-70 %) in urbanized areas along the railway, suggesting an important role of anthropogenic pollutant sources in regional ozone photochemistry and air quality.

  18. Crystal structure of N-(3-chloro-1-methyl-1H-indazol-5-yl)-4-meth­oxy­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Gamouh, Ahmed; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    In the title compound, C15H14ClN3O3S, the dihedral angle between the planes of the indazole ring system (r.m.s. deviation = 0.007 Å) and the benzene ring is 89.05 (7)°. The meth­oxy C atom deviates from its attached ring by 0.196 (3) Å. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) loops. The dimers are connected into [010] chains by C—H⋯O inter­actions. PMID:25309293

  19. Single Benzene Green Fluorophore: Solid-State Emissive, Water-Soluble, and Solvent- and pH-Independent Fluorescence with Large Stokes Shifts.

    PubMed

    Beppu, Teruo; Tomiguchi, Kosuke; Masuhara, Akito; Pu, Yong-Jin; Katagiri, Hiroshi

    2015-06-15

    Benzene is the simplest aromatic hydrocarbon with a six-membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5-bis(methylsulfonyl)-1,4-diaminobenzene as a novel architecture for green fluorophores, established based on an effective push-pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid-state emissive, water-soluble, and solvent- and pH-independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π-conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Anaerobic Benzene Oxidation by Geobacter Species

    PubMed Central

    Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

    2012-01-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648

  1. Basin-ring spacing on the Moon, Mercury, and Mars

    USGS Publications Warehouse

    Pike, R.J.; Spudis, P.D.

    1987-01-01

    Radial spacing between concentric rings of impact basins that lack central peaks is statistically similar and nonrandom on the Moon, Mercury, and Mars, both inside and outside the main ring. One spacing interval, (2.0 ?? 0.3)0.5D, or an integer multiple of it, dominates most basin rings. Three analytical approaches yield similar results from 296 remapped or newly mapped rings of 67 multi-ringed basins: least-squares of rank-grouped rings, least-squares of rank and ring diameter for each basin, and averaged ratios of adjacent rings. Analysis of 106 rings of 53 two-ring basins by the first and third methods yields an integer multiple (2 ??) of 2.00.5D. There are two exceptions: (1) Rings adjacent to the main ring of multi-ring basins are consistently spaced at a slightly, but significantly, larger interval, (2.1 ?? 0.3)0.5D; (2) The 88 rings of 44 protobasins (large peak-plus-inner-ring craters) are spaced at an entirely different interval (3.3 ?? 0.6)0.5D. The statistically constant and target-invariant spacing of so many rings suggests that this characteristic may constrain formational models of impact basins on the terrestrial planets. The key elements of such a constraint include: (1) ring positions may not have been located by the same process(es) that formed ring topography; (2) ring location and emplacement of ring topography need not be coeval; (3) ring location, but not necessarily the mode of ring emplacement, reflects one process that operated at the time of impact; and (4) the process yields similarly-disposed topographic features that are spatially discrete at 20.5D intervals, or some multiple, rather than continuous. These four elements suggest that some type of wave mechanism dominates the location, but not necessarily the formation, of basin rings. The waves may be standing, rather than travelling. The ring topography itself may be emplaced at impact by this and/or other mechanisms and may reflect additional, including post-impact, influences. ?? 1987

  2. All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure.

    PubMed

    Matsui, Katsuma; Segawa, Yasutomo; Itami, Kenichiro

    2014-11-19

    The design and synthesis of a series of carbon nanocages consisting solely of benzene rings are described. Carbon nanocages are appealing molecules not only because they represent junction unit structures of branched carbon nanotubes, but also because of their potential utilities as unique optoelectronic π-conjugated materials and guest-encapsulating hosts. Three sizes of strained, conjugated [n.n.n]carbon nanocages (1, n = 4; 2, n = 5; 3, n = 6) were synthesized with perfect size-selectivity. Cyclohexane-containing units and 1,3,5-trisubstituted benzene-containing units were assembled to yield the minimally strained bicyclic precursors, which were successfully converted into the corresponding carbon nanocages via acid-mediated aromatization. X-ray crystallography of 1 confirmed the cage-shaped structure with an approximately spherical void inside the cage molecule. The present studies revealed the unique properties of carbon nanocages, including strain energies, size-dependent absorption and fluorescence, as well as unique size-dependency for the electronic features of 1-3.

  3. (2-{[2-(1H-Benzimidazol-2-yl-κN 3)phen­yl]imino­methyl-κN}-5-methyl­phenolato-κO)chloridozinc(II)

    PubMed Central

    Eltayeb, Naser Eltaher; Teoh, Siang Guan; Chantrapromma, Suchada; Fun, Hoong-Kun

    2011-01-01

    In the title mononuclear complex, [Zn(C21H16N3O)Cl], the ZnII ion is coordinated in a distorted tetra­hedral geometry by two benzimidazole N atoms and one phenolate O atom from the tridentate Schiff base ligand and a chloride ligand. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the adjacent benzene ring and the methyl­phenolate group benzene ring, respectively. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds into chains along [100]. Furthermore, weak C—H⋯O and C—H⋯π inter­actions, in addition to π–π inter­actions with centroid–centroid distances in the range 3.5826 (13)–3.9681 (13) Å, are also observed. PMID:22065469

  4. A cluster of bacterial genes for anaerobic benzene ring biodegradation

    PubMed Central

    Egland, Paul G.; Pelletier, Dale A.; Dispensa, Marilyn; Gibson, Jane; Harwood, Caroline S.

    1997-01-01

    A reductive benzoate pathway is the central conduit for the anaerobic biodegradation of aromatic pollutants and lignin monomers. Benzene ring reduction requires a large input of energy and this metabolic capability has, so far, been reported only in bacteria. To determine the molecular basis for this environmentally important process, we cloned and analyzed genes required for the anaerobic degradation of benzoate and related compounds from the phototrophic bacterium, Rhodopseudomonas palustris. A cluster of 24 genes was identified that includes twelve genes likely to be involved in anaerobic benzoate degradation and additional genes that convert the related compounds 4-hydroxybenzoate and cyclohexanecarboxylate to benzoyl-CoA. Genes encoding benzoyl-CoA reductase, a novel enzyme able to overcome the resonance stability of the aromatic ring, were identified by directed mutagenesis. The gene encoding the ring-cleavage enzyme, 2-ketocyclohexanecarboxyl-CoA hydrolase, was identified by assaying the enzymatic activity of the protein expressed in Escherichia coli. Physiological data and DNA sequence analyses indicate that the benzoate pathway consists of unusual enzymes for ring reduction and cleavage interposed among enzymes homologous to those catalyzing fatty acid degradation. The cloned genes should be useful as probes to identify benzoate degradation genes from other metabolically distinct groups of anaerobic bacteria, such as denitrifying bacteria and sulfate-reducing bacteria. PMID:9177244

  5. N-(1-Allyl-3-chloro-4-eth­oxy-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8). PMID:24940237

  6. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  7. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Benzene. 21.97 Section 21... TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  8. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  9. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Benzene. 21.97 Section 21... TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  10. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  11. Steric/π-electronic insulation of the carbo-benzene ring: dramatic effects of tert-butyl vs phenyl crowns on geometric, chromophoric, redox and magnetic properties.

    PubMed

    Listunov, Dymytrii; Duhayon, Carine; Poater, Albert; Mazères, Serge; Saquet, Alix; Maraval, Valérie; Chauvin, Remi

    2018-04-13

    Hexa-tert-butyl-carbo-benzene C18tBu6 and three phenylated counterparts C18tBumPh6-m (m = 4, 2) have been synthesized. The peralkylated version (m = 6) provides experimental access to intrinsic features of the insulated C18 core independently from the influence of π-conjugated substituent. Over the series, structural, spectroscopical and electrochemical properties are compared with those of the hexaphenylated reference (m = 0). Anchoring tBu substituents at the C18 macrocycle is shown to enhance stability and solubility, and to dramatically modify UV-vis absorption and redox properties. Whereas all the carbo-benzenes reported hitherto were obtained as dark-reddish/greenish solids, crystals and solutions of C18tBu6 happen to be yellow (max = 379 nm vs 472 nm for C18Ph6). By comparison to C18Ph6, reduction of C18tBu6 remains reversible but occurs at a twice higher absolute potential (E1/2 = -1.36 V vs -0.72 V). Systematic X-ray diffraction analyses and DFT calculations show that the C18 ring symmetry is the nearest to D6h for m = 6, indicating a maximum geometrical aromaticity. According to calculated nucleus independent chemical shifts, the macrocyclic magnetic aromaticity is also found to be maximum for C18tBu6: NICS(0)=-17.2 ppm, vs -18.0±0.1 ppm for the theoretical references C18H6 and C18F6, and -13.5 ppm for C18Ph6. Accurate correlations of NICS(0) with experimental or calculated maximum UV-vis absorption wavelength max and chemical hardness =ELUMO-EHOMO are evidenced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Particle-bound benzene from diesel engine exhaust.

    PubMed

    Muzyka, V; Veimer, S; Shmidt, N

    1998-12-01

    The large surface area of the carbon core of diesel exhaust particles may contribute to the adsorption or condensation of such volatile carcinogenic organic compounds as benzene. The attention of this study focused on determining the distribution of benzene between the gas and particulate phases in the breathing zone of bus garage workers. Benzene and suspended particulate matter were evaluated jointly in the air of a municipal bus garage. Personal passive monitors were used for benzene sampling in the breathing zone of the workers. Active samplers were used for sampling diesel exhaust particles and the benzene associated with them. The benzene levels were measured by gas chromatography. Diesel engine exhaust from buses was the main source of air pollution caused by benzene and particles in this study. The concentration of benzene in the gas and particulate phases showed a wide range of variation, depending on the distance of the workplace from the operating diesel engine. Benzene present in the breathing zone of the workers was distributed between the gas and particulate phases. The amounts of benzene associated with particles were significantly lower in summer than in winter. The particulate matter of diesel exhaust contains benzene in amounts comparable to the concentrations of carcinogenic polycyclic aromatic hydrocarbons (PAH) and the usually found nitro-PAH. The concentration of benzene in the gas phase and in the suspended particulate matter of air can serve as an additional indicator of exposure to diesel exhaust and its carcinogenicity.

  13. Synthesis and Detonation Properties of 5-Amino-2,4,6-trinitro-1,3-dihydroxy-benzene.

    PubMed

    Zhang, Xingcheng; Xiong, Hualin; Yang, Hongwei; Cheng, Guangbin

    2017-06-01

    5-Amino-4,6-dinitro-1,3-dihydroxy-benzene ( 6 ) was synthesized through the ring-opening reaction of macrocyclic compound  4 with the aid of VNS (vicarious nucleophilic substitution of hydrogen) reaction conditions. The mechanism of ring opening of macrocyclic compound  4 was studied. 5-Amino-2,4,6-trinitro-1,3-dihydroxy-benzene ( 8 ) was obtained after the nitration of 6 in KNO 3 and concentrated sulfuric acid. The thermal stability, sensitivity, and other detonation performances of 6 or 8 were compared to commercially used 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) or 1,3,5-trinitrotriazacyclohexane (RDX), respectively. All target compounds were characterized by using single-crystal X-ray diffraction, NMR spectroscopy, elemental analysis, and differential scanning calorimetry. The sensitivities were determined by using BAM methods (drop-hammer and friction tests). Performance parameters, including heats of formation and detonation properties, were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. It is worth pointing out that compound  8 has a remarkable measured density of 2.078 g cm -3 at 298 K. In addition, compound  8 is more insensitive than RDX (compound  8 : IS =11 J; RDX: IS =7 J; IS is the impact sensitivity).

  14. Structural analysis of the binding modes of minor groove ligands comprised of disubstituted benzenes

    PubMed Central

    Hawkins, Cheryl A.; Watson, Charles; Yan, Yinfa; Gong, Bing; Wemmer, David E.

    2001-01-01

    Two-dimensional homonuclear NMR was used to characterize synthetic DNA minor groove-binding ligands in complexes with oligonucleotides containing three different A-T binding sites. The three ligands studied have a C2 axis of symmetry and have the same general structural motif of a central para-substituted benzene ring flanked by two meta-substituted rings, giving the molecules a crescent shape. As with other ligands of this shape, specificity seems to arise from a tight fit in the narrow minor groove of the preferred A-T-rich sequences. We found that these ligands slide between binding subsites, behavior attributed to the fact that all of the amide protons in the ligand backbone cannot hydrogen bond to the minor groove simultaneously. PMID:11160926

  15. 1-Nitro-4-(4-nitro-phen-oxy)benzene: a second monoclinic polymorph.

    PubMed

    Naz, Mehwish; Akhter, Zareen; McKee, Vickie; Nadeem, Arif

    2013-11-06

    In the title compound, C12H8N2O5, the aromatic rings are inclined to one another by 56.14 (7)°. The nitro groups are inclined by to the benzene rings to which they are attached by 3.86 (17) and 9.65 (15)°. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming a three-dimensional structure. The title compound is a new monoclinic polymorph, crystallizing in space group P21/c. The first polymorph crystallized in space group C2/c and the mol-ecule possesses twofold rotation symmetry. Two low-temperature structures of this polymorph (150 K and 100 K, respectively) have been reported [Meciarova et al. (2004). Private Communication (refcode IXOGAD). CCDC, Cambridge, England, and Dey & Desiraju (2005). Chem. Commun. pp. 2486-2488].

  16. [Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].

    PubMed

    Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa

    2015-06-01

    In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture

  17. Ammonium 4-meth­oxy­benzene­sulfonate

    PubMed Central

    Suarez, Sebastián; Doctorovich, Fabio; Baggio, Ricardo

    2012-01-01

    The mol­ecular structure of the title compound, NH4 +·C7H7O4S−, is featureless [the methoxy C atom deviating 0.173 (6) Å from the phenyl mean plane] with inter­atomic distances and angles in the expected ranges. The main feature of inter­est is the packing mode. Hydro­philic (SO3 and NH4) and hydro­phobic (PhOCH3) parts in the structure segregate, the former inter­acting through a dense hydrogen-bonding scheme, leading to a well connected two-dimensional structure parallel to (100) and the latter hydro­phobic groups acting as spacers for an inter­planar separation of c/2 = 10.205 (2) Å. In spite of being aligned along [110], the benzene rings stack in a far from parallel fashion [viz. consecutive ring centers determine a broken line with a 164.72 (12)° zigzag angle], thus preventing any possible π–π inter­action. PMID:22798885

  18. Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens

    PubMed Central

    Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A.; Bain, Timothy S.; Lovley, Derek R.

    2013-01-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation. PMID:24096430

  19. Inorganic benzenes as the noncovalent interaction donor: a study of the π-hole interactions.

    PubMed

    Chu, Runtian; Zhang, Xueying; Meng, Lingpeng; Zeng, Yanli

    2017-11-08

    For inorganic benzenes C 3 N 3 X 3 and B 3 O 3 X 3 (X = H, F, CN), the positive electrostatic potentials (π-hole) were discovered above and below the inorganic benzene ring center. Then, the π-hole interactions between the inorganic benzenes and NCH have been designed and investigated by MP2/aug-cc-pVDZ calculations. In this paper, the termolecular complexes B 3 O 3 X 3 ···NCH···NCH, C 3 N 3 X 3 ···NCH···NCH (X = H, F, CN) were also designed to illustrate the enhancing effects of the H···N hydrogen bond on the π-hole interactions. The π-hole interaction energy was influenced by the strength of different electron-withdrawing substituents of inorganic benzenes, gradually increasing in the order of X = H, F, CN. What's more, the π electron densities account for 71~88% of the total electron densities, indicating the strength of interaction energy is mainly determined by π-type electron densities. Graphical abstract The termolecular complexes B 3 O 3 X 3 ···NCH···NCH, C 3 N 3 X 3 ···NCH···NCH (X = H, F, CN) were designed to illustrate the enhancing effects of the H···N hydrogen bond on the π-hole interactions.

  20. Interactive effects of PAHs with different rings and As on their uptake, transportation, and localization in As hyperaccumulator.

    PubMed

    Liao, Xiaoyong; Wu, Zeying; Ma, Xu; Gong, Xuegang; Yan, Xiulan

    2017-11-01

    In order to illuminate the mechanism of the interaction of polycyclic aromatic hydrocarbon (PAH) with different benzene rings and arsenic (As) in As hyperaccumulator, Pteris vittata L., the uptakes of PAHs were investigated using hydroponics simulation and localizations of PAHs in the plant were determined using two-photon laser scanning confocal microscopy (TPLSCM). The results showed that the total As concentration in different parts of P. vittata decreased in the presence of PAHs with increased numbers of benzene rings: 38.0-47.4% for benzo(a)pyrene (BaP, five rings), 20.5-35.9% for pyrene (PYR, four rings), and 13.7-16.6% for fluorine (FLU, three rings). BaP and PYR concentrations increased, while FLU concentration decreased in the presence of As. The results of TPLSCM revealed that PAHs distributed in epidermal cells of roots, xylem, and endothelial cells of rachis, epidermis, and stomatal cells of pinnae; however, the fluorescence intensity of BaP and PYR were higher than FLU significantly in plant. This study provided important basis to further research on interactive effects of PAHs and As in the P. vittata. These findings were important to understand the mechanisms of PAH and As translocation and distribution by P. vittata.

  1. Concomitant aerobic biodegradation of benzene and thiophene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyreborg, S.; Arvin, E.; Broholm, K.

    The concomitant aerobic biodegradation of benzene and thiophene was investigated in microcosm experiments using a groundwater enrichment culture. Benzene was biodegraded within 1 d, whereas thiophene could not be biodegraded as the sole source of carbon and energy. Some interesting phenomena were observed when both benzene and thiophene were present. In most cases, removal of thiophene was observed, and the removal occurred concomitantly with the biodegradation of benzene, suggesting that benzene was used as a primary substrate in the cometabolic biodegradation of thiophene. No biodegradation of the two compounds was observed for some combinations of concentrations, suggesting that thiophene couldmore » act as an inhibitor to benzene biodegradation. However, this effect could be overcome if more benzene was added to the microcosm. Residual concentrations of benzene and thiophene were observed in some microcosms and the data indicated that the biodegradation of the two compounds stopped when a critical threshold ratio between the concentrations of thiophene and benzene was reached. This ratio varied between 10 and 20. Results from modeling the biodegradation data suggested that thiophene was cometabolized concomitantly with the biodegradation of benzene and that the biodegradation may be described by a modified model based on a traditional model with an inhibition term incorporated.« less

  2. Crystal structures of 3,3'-bis-(hy-droxy-dimethylsilan-yl)azo-benzene and 4,4'-bis-(hy-droxy-dimethyl-silane)azo-benzene.

    PubMed

    Strüben, Jan; Hoffmann, Jonas; Presa-Soto, David; Näther, Christian; Staubitz, Anne

    2016-11-01

    The title compounds {systematic names ( E )-[diazene-1,2-diylbis(3,1-phenyl-ene)]bis-(di-methyl-silanol) and ( E )-[diazene-1,2-diylbis(4,1-phenyl-ene)]bis-(di-methyl-silanol)}, both of the sum formula C 16 H 22 N 2 O 2 Si 2 , were obtained by transmetallation of the respective bis-stannylated azo-benzenes with di-chloro-dimethyl-silane and esterification followed by hydrolysis. The asymmetric unit of 3,3'-diazenediylbis[dimeth-yl(phen-yl)silanol] (with the silanol functional group in a meta position) consists of two mol-ecules, of which one occupies a general position, whereas the second is located on a centre of inversion. In 4,4'-diazenediylbis[dimeth-yl(phen-yl)silanol] (with the silanol functional group in a para position) likewise two mol-ecules are present in the asymmetric unit, but in this case both occupy general positions. Differences between all mol-ecules can be found in the torsions about the N=N bond, as well as in the dihedral angles between the benzene rings. In both structures, inter-molecular O-H⋯O hydrogen bonding is observed, leading to the formation of layers parallel to (01-1) for (I) and to chains parallel to the a axis for (II).

  3. Benzene formation in electronic cigarettes.

    PubMed

    Pankow, James F; Kim, Kilsun; McWhirter, Kevin J; Luo, Wentai; Escobedo, Jorge O; Strongin, Robert M; Duell, Anna K; Peyton, David H

    2017-01-01

    The heating of the fluids used in electronic cigarettes ("e-cigarettes") used to create "vaping" aerosols is capable of causing a wide range of degradation reaction products. We investigated formation of benzene (an important human carcinogen) from e-cigarette fluids containing propylene glycol (PG), glycerol (GL), benzoic acid, the flavor chemical benzaldehyde, and nicotine. Three e-cigarette devices were used: the JUULTM "pod" system (provides no user accessible settings other than flavor cartridge choice), and two refill tank systems that allowed a range of user accessible power settings. Benzene in the e-cigarette aerosols was determined by gas chromatography/mass spectrometry. Benzene formation was ND (not detected) in the JUUL system. In the two tank systems benzene was found to form from propylene glycol (PG) and glycerol (GL), and from the additives benzoic acid and benzaldehyde, especially at high power settings. With 50:50 PG+GL, for tank device 1 at 6W and 13W, the formed benzene concentrations were 1.9 and 750 μg/m3. For tank device 2, at 6W and 25W, the formed concentrations were ND and 1.8 μg/m3. With benzoic acid and benzaldehyde at ~10 mg/mL, for tank device 1, values at 13W were as high as 5000 μg/m3. For tank device 2 at 25W, all values were ≤~100 μg/m3. These values may be compared with what can be expected in a conventional (tobacco) cigarette, namely 200,000 μg/m3. Thus, the risks from benzene will be lower from e-cigarettes than from conventional cigarettes. However, ambient benzene air concentrations in the U.S. have typically been 1 μg/m3, so that benzene has been named the largest single known cancer-risk air toxic in the U.S. For non-smokers, chronically repeated exposure to benzene from e-cigarettes at levels such as 100 or higher μg/m3 will not be of negligible risk.

  4. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    NASA Astrophysics Data System (ADS)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  5. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  6. N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    The title compound, C22H23BrN4O3S2, crystallizes with two mol­ecules, A and B, in the asymmetric unit. In one of these, the meth­oxy group is disordered over two sets of sites in a 0.565 (9):0.435 (9) ratio. The benzene rings bridged by the sulfonamide group are tilted relative to each other by 37.4 (1) and 56.1 (1)° in mol­ecules A and B, respectively, while the dihedral angles between the sulfur-bridged pyrimidine and benzene rings are 72.4 (1) and 70.2 (1)° for A and B, respectively. The piperidine ring adopts a chair conformation in both mol­ecules. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur for both A and B; the dimers are linked into [010] chains by C—H⋯O hydrogen bonds. The crystal structure also features inversion-generated aromatic π–π stacking inter­actions between the pyrimidine rings for both mol­ecules [centroid–centroid distances = 3.412 (2) (mol­ecule A) and 3.396 (2) Å (mol­ecule B)]. PMID:23284517

  7. Is benzene exposure from gasoline carcinogenic?

    PubMed

    Jamall, Ijaz S; Willhite, Calvin C

    2008-02-01

    This article questions the basis for benzene as the carcinogenic surrogate in deriving health risk-based 'clean-up levels' for gasoline-impacted soil and groundwater at leaking underground storage tank properties. The epidemiological evidence suggests that acute myelogenous leukemia (AML) associated with chronic occupational benzene exposure can be best described by sigmoid dose-response relationships. A review of the molecular toxicology and kinetics of benzene points to the existence of threshold mechanisms in the induction of leukemia. The toxicological and epidemiological literature on chronic exposure to unleaded gasoline indicates that the benzene exposures required to induce a measurable carcinogenic response are substantially greater than exposures likely to be encountered from exposure to gasoline at contaminated properties. Thus, assuming that theoretical cancer risks associated with exposure to benzene from gasoline reflect actual health risks associated with such environmental exposures to gasoline and using these theoretical cancer risks and cancer potency factors for benzene to dictate soil and groundwater clean up of gasoline are not scientifically defensible.

  8. N-(3-Chloro-4-eth­oxy-1-methyl-1H-indazol-5-yl)-4-meth­oxy­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-eth­oxy group, respectively. In the crystal, mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into inversion dimers, which are further linked by π–π inter­actions between the diazole rings [inter­centroid distance = 3.4946 (11) Å], forming chains parallel to [101]. PMID:24940259

  9. Anaerobic degradation of benzene in diverse anoxic environments

    USGS Publications Warehouse

    Kazumi, J.; Caldwell, M.E.; Suflita, J.M.; Lovely, D.R.; Young, L.Y.

    1997-01-01

    Benzene has often been observed to be resistant to microbial degradation under anoxic conditions. A number of recent studies, however, have demonstrated that anaerobic benzene utilization can occur. This study extends the previous reports of anaerobic benzene degradation to sediments that varied with respect to contamination input, predominant redox condition, and salinity. In spite of differences in methodology, microbial degradation of benzene was noted in slurries constructed with sediments from various geographical locations and range from aquifer sands to fine-grained estuarine muds, under methanogenic, sulfate-reducing, and iron-reducing conditions. In aquifer sediments under methanogenic conditions, benzene loss was concomitant with methane production, and microbial utilization of [14C]benzene yielded 14CO2 and 14CH4. In slurries with estuarine and aquifer sediments under sulfate-reducing conditions, the loss of sulfate in amounts consistent with the stoichiometric degradation of benzene or the conversion of [14C]benzene to 14CO2 indicates that benzene was mineralized. Benzene loss also occurred in the presence of Fe(III) in sediments from freshwater environments. Microbial benzene utilization, however, was not observed under denitrifying conditions. These results indicate that the potential for the anaerobic degradation of benzene, which was once thought to be resistant to non-oxygenase attack, exists in a variety of aquatic sediments from widely distributed locations.

  10. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    DOE PAGES

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; ...

    2015-09-01

    The proton-driven ATP synthase (F OF 1) is comprised of two rotary, stepping motors (F O and F 1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other F O subunits (ab 2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure.more » Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the

  11. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.

    The proton-driven ATP synthase (F OF 1) is comprised of two rotary, stepping motors (F O and F 1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other F O subunits (ab 2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure.more » Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the

  12. Mechanistic considerations in benzene physiological model development.

    PubMed

    Medinsky, M A; Kenyon, E M; Seaton, M J; Schlosser, P M

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase II enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  13. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  14. 1,2-Diiodo-4,5-dimethyl­benzene

    PubMed Central

    Hathaway, Bruce A.; Kilgore, Uriah J.; Bond, Marcus R.

    2009-01-01

    The structure of the title compound, C8H8I2, conforms closely to the mm2 symmetry expected for the free mol­ecule and is the first reported structure of a diiodo­dimethyl­benzene. Repulsion by neighboring I atoms and the neighboring methyl groups opposite to them results in a slight elongation of the mol­ecule along the approximate twofold rotation axis that bis­ects the ring between the two I atoms. In the extended structure, the mol­ecules form inversion-related pairs which are organized in approximately hexa­gonal close-packed layers and the layers then stacked so that mol­ecules in neighboring layers abut head-to-tail in a manner that optimizes dipole–dipole inter­actions. PMID:21583089

  15. Elevated Atmospheric Levels of Benzene and Benzene-Related Compounds from Unconventional Shale Extraction and Processing: Human Health Concern for Residential Communities.

    PubMed

    Rich, Alisa L; Orimoloye, Helen T

    2016-01-01

    The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency's Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P.

  16. 2-Hy-droxy-16-[(E)-4-methyl-benzyl-idene]-13-(4-methyl-phen-yl)-12-phenyl-1,11-diaza-penta-cyclo-[12.3.1.0.0.0]octa-deca-3(8),4,6-triene-9,15-dione.

    PubMed

    Kumar, Raju Suresh; Osman, Hasnah; Abdul Rahim, Aisyah Saad; Goh, Jia Hao; Fun, Hoong-Kun

    2010-07-24

    In the title compound, C(37)H(32)N(2)O(3), an intra-molecular O-H⋯N hydrogen bond generates a five-membered ring, producing an S(5) motif. The piperidone ring adopts a half-chair conformation. The two fused pyrrolidine rings have similar envelope conformations. The interplanar angles between the benzene rings A/B and C/D are 75.68 (7) and 30.22 (6)°, respectively. In the crystal structure, adjacent mol-ecules are inter-connected into chains propagating along the [010] direction via inter-molecular C-H⋯O hydrogen bonds. Further stabilization is provided by weak C-H⋯π inter-actions.

  17. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  18. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  19. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  20. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  1. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  2. N-(1-Allyl-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Abderrafia, Hafid; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The asymmetric unit of the title compound, C17H17N3O2S, contains two independent mol­ecules linked by an N—H⋯O hydrogen bond. The mol­ecules show different conformations. In the first mol­ecule, the fused five- and six-membered ring system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 85.1 (4)°. The dihedral angle with the methyl­benzene­sulfonamide group is 78.8 (1)°. On the other hand, in the second mol­ecule, the dihedral angles between the indazole plane and the allyl and methyl­benzene­sulfonamide groups are 80.3 (3) and 41.5 (1)°, respectively. In the crystal, mol­ecules are further linked by N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:24454264

  3. 54 FR 38044: National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By- Product Recovery Plants

    EPA Pesticide Factsheets

    Final Rule on National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.

  4. Can Baird's and Clar's Rules Combined Explain Triplet State Energies of Polycyclic Conjugated Hydrocarbons with Fused 4nπ- and (4n + 2)π-Rings?

    PubMed

    Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik

    2017-06-16

    Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.

  5. The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum.

    PubMed

    Setsungnern, Arnon; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-11-01

    Benzene, a carcinogenic compound, has been reported as a major indoor air pollutant. Chlorophytum comosum (C. comosum) was reported to be the highest efficient benzene removal plant among other screened plants. Our previous studies found that plants under light conditions could remove gaseous benzene higher than under dark conditions. Therefore, C. comosum exposure to airborne benzene was studied under different light quality at the same light intensity. C. comosum could remove 500 ppm gaseous benzene with the highest efficiency of 68.77% under Blue:Red = 1:1 LED treatments and the lowest one appeared 57.41% under white fluorescent treatment within 8 days. After benzene was uptaken by C. comosum, benzene was oxidized to be phenol in the plant cells by cytochrome P450 monooxygenase system. Then, phenol was catalyzed to be catechol that was confirmed by the up-regulation of phenol 2-monooxygenase (PMO) gene expression. After that, catechol was changed to cic, cis-muconic acid. Interestingly, cis,cis-muconic acid production was found in the plant tissues higher than phenol and catechol. The result confirmed that NADPH-cytochrome P450 reductase (CPR), cytochrome b5 (cyt b5), phenol 2-monooxygenase (PMO) and cytochrome P450 90B1 (CYP90B1) in plant cells were involved in benzene degradation or detoxification. In addition, phenol, catechol, and cis,cis-muconic acid production were found under the Blue-Red LED light conditions higher than under white fluorescent light conditions due to under LED light conditions gave higher NADPH contents. Hence, C. comosum under the Blue-Red LED light conditions had a high potential to remove benzene in a contaminated site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Consistent assignment of the vibrations of symmetric and asymmetric ortho-disubstituted benzenes

    NASA Astrophysics Data System (ADS)

    Tuttle, William D.; Gardner, Adrian M.; Andrejeva, Anna; Kemp, David J.; Wakefield, Jonathan C. A.; Wright, Timothy G.

    2018-02-01

    The form of molecular vibrations, and changes in these, give valuable insights into geometric and electronic structure upon electronic excitation or ionization, and within families of molecules. Here, we give a description of the phenyl-ring-localized vibrational modes of the ground (S0) electronic states of a wide range of ortho-disubstituted benzene molecules including both symmetrically- and asymmetrically-substituted cases. We conclude that the use of the commonly-used Wilson or Varsányi mode labels, which are based on the vibrational motions of benzene itself, is misleading and ambiguous. In addition, we also find the use of the Mi labels for monosubstituted benzenes [A.M. Gardner, T.G. Wright. J. Chem. Phys. 135 (2011) 114305], or the recently-suggested labels for para-disubstituted benzenes [A. Andrejeva, A.M. Gardner, W.D. Tuttle, T.G. Wright, J. Molec. Spectrosc. 321, 28 (2016)] are not appropriate. Instead, we label the modes consistently based upon the Mulliken (Herzberg) method for the modes of ortho-difluorobenzene (pDFB) under Cs symmetry, since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules. By studying the vibrational wavenumbers from the same force field while varying the mass of the substituent, we are able to identify the corresponding modes across a wide range of molecules and hence provide consistent assignments. We assign the vibrations of the following sets of molecules: the symmetric o-dihalobenzenes, o-xylene and catechol (o-dihydroxybenzene); and the asymmetric o-dihalobenzenes, o-halotoluenes, o-halophenols and o-cresol. In the symmetrically-substituted species, we find a pair of in-phase and out-of-phase carbon-substituent stretches, and this motion persists in asymmetrically-substituted molecules for heavier substituents. When at least one of the substituents is light, then we find that these evolve into localized carbon-substituent stretches.

  7. Refiners have several options for reducing gasoline benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, A.R.; Hernandez-Robinson, A.; Ram, S.

    1993-09-13

    Although the linkage between gasoline benzene content and evaporative, running, and tailpipe emission is not yet defined, the U.S. 1990 Clean Air Act Amendments mandate a benzene content of less than 1.0 vol% in reformulated gasolines. Likewise, the California Air Resources Board plans to restrict benzene to less than about 0.8 vol %. Mobil Research and Development Corp. and Badger Co. Inc. have developed several alternatives for reducing benzene levels in gasoline. Where benzene extraction is viable and maximum catalytic reformer hydrogen is needed, the companies' cumene and ethylbenzene processes are desirable. Mobil's benzene reduction process can be an alternativemore » to benzene hydrosaturation. All of these processes utilize low-value offgas from the fluid catalytic cracking (FCC) unit.« less

  8. Mechanical seal having a double-tier mating ring

    DOEpatents

    Khonsari, Michael M.; Somanchi, Anoop K.

    2005-09-13

    An apparatus and method to enhance the overall performance of mechanical seals in one of the following ways: by reducing seal face wear, by reducing the contact surface temperature, or by increasing the life span of mechanical seals. The apparatus is a mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) comprising a rotating ring and a double-tier mating ring. In a preferred embodiment, the double-tier mating ring comprises a first and a second stationary ring that together form an agitation-inducing, guided flow channel to allow for the removal of heat generated at the seal face of the mating ring by channeling a coolant entering the mating ring to a position adjacent to and in close proximity with the interior surface area of the seal face of the mating ring.

  9. Benzene

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 02 / 001F TOXICOLOGICAL REVIEW OF BENZENE ( NONCANCER EFFECTS ) ( CAS No . 71 - 43 - 2 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) October 2002 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been

  10. Intercalation of Transition Metals into Stacked Benzene Rings: A Model Study of the Intercalation of Transition Metals into Bilayered Graphene.

    PubMed

    Youn, Il Seung; Kim, Dong Young; Singh, N Jiten; Park, Sung Woo; Youn, Jihee; Kim, Kwang S

    2012-01-10

    Structures of neutral metal-dibenzene complexes, M(C6H6)2 (M = Sc-Zn), are investigated by using Møller-Plesset second order perturbation theory (MP2). The benzene molecules change their conformation and shape upon complexation with the transition metals. We find two types of structures: (i) stacked forms for early transition metal complexes and (ii) distorted forms for late transition metal ones. The benzene molecules and the metal atom are bound together by δ bonds which originate from the interaction of π-MOs and d orbitals. The binding energy shows a maximum for Cr(C6H6)2, which obeys the 18-electron rule. It is noticeable that Mn(C6H6)2, a 19-electron complex, manages to have a stacked structure with an excess electron delocalized. For other late transition metal complexes having more than 19 electrons, the benzene molecules are bent or stray away from each other to reduce the electron density around a metal atom. For the early transition metals, the M(C6H6) complexes are found to be more weakly bound than M(C6H6)2. This is because the M(C6H6) complexes do not have enough electrons to satisfy the 18-electron rule, and so the M(C6H6)2 complexes generally tend to have tighter binding with a shorter benzene-metal length than the M(C6H6) complexes, which is quite unusual. The present results could provide a possible explanation of why on the Ni surface graphene tends to grow in a few layers, while on the Cu surface the weak interaction between the copper surface and graphene allows for the formation of a single layer of graphene, in agreement with chemical vapor deposition experiments.

  11. Substituent and ring effects on enthalpies of formation: 2-methyl- and 2-ethylbenzimidazoles versus benzene- and imidazole-derivatives

    NASA Astrophysics Data System (ADS)

    Jiménez, Pilar; Roux, María Victoria; Dávalos, Juan Z.; Temprado, Manuel; Ribeiro da Silva, Manuel A. V.; Ribeiro da Silva, Maria Das Dores M. C.; Amaral, Luísa M. P. F.; Cabildo, Pilar; Claramunt, Rosa M.; Mó, Otilia; Yáñez, Manuel; Elguero, José

    The enthalpies of combustion, heat capacities, enthalpies of sublimation and enthalpies of formation of 2-methylbenzimidazole (2MeBIM) and 2-ethylbenzimidazole (2EtBIM) are reported and the results compared with those of benzimidazole itself (BIM). Theoretical estimates of the enthalpies of formation were obtained through the use of atom equivalent schemes. The necessary energies were obtained in single-point calculations at the B3LYP/6-311+G(d,p) on B3LYP/6-31G* optimized geometries. The comparison of experimental and calculated values of benzenes, imidazoles and benzimidazoles bearing H (unsubstituted), methyl and ethyl groups shows remarkable homogeneity. The energetic group contribution transferability is not followed, but either using it or adding an empirical interaction term, it is possible to generate an enormous collection of reasonably accurate data for different substituted heterocycles (pyrazole-derivatives, pyridine-derivatives, etc.) from the large amount of values available for substituted benzenes and those of the parent (pyrazole, pyridine) heterocycles.

  12. Non-parametric estimation of low-concentration benzene metabolism.

    PubMed

    Cox, Louis A; Schnatter, A Robert; Boogaard, Peter J; Banton, Marcy; Ketelslegers, Hans B

    2017-12-25

    Two apparently contradictory findings in the literature on low-dose human metabolism of benzene are as follows. First, metabolism is approximately linear at low concentrations, e.g., below 10 ppm. This is consistent with decades of quantitative modeling of benzene pharmacokinetics and dose-dependent metabolism. Second, measured benzene exposure and metabolite concentrations for occupationally exposed benzene workers in Tianjin, China show that dose-specific metabolism (DSM) ratios of metabolite concentrations per ppm of benzene in air decrease steadily with benzene concentration, with the steepest decreases below 3 ppm. This has been interpreted as indicating that metabolism at low concentrations of benzene is highly nonlinear. We reexamine the data using non-parametric methods. Our main conclusion is that both findings are correct; they are not contradictory. Low-concentration metabolism can be linear, with metabolite concentrations proportional to benzene concentrations in air, and yet DSM ratios can still decrease with benzene concentrations. This is because a ratio of random variables can be negatively correlated with its own denominator even if the mean of the numerator is proportional to the denominator. Interpreting DSM ratios that decrease with air benzene concentrations as evidence of nonlinear metabolism is therefore unwarranted when plots of metabolite concentrations against benzene ppm in air show approximately straight-line relationships between them, as in the Tianjin data. Thus, an apparent contradiction that has fueled heated discussions in the recent literature can be resolved by recognizing that highly nonlinear, decreasing DSM ratios are consistent with linear metabolism. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Mobil-Badger technologies for benzene reduction in gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, A.R.; Ram, S.; Hernandez, A.

    1993-01-01

    Many refiners will need to reduce the barrels per day of benzene entering the motor gasoline pool. Mobil and Badger have developed and now jointly license three potential refinery alternatives to conventional benzene hydrosaturation to achieve this: Mobil Benzene Reduction, Ethylbenzene and Cumene. The Mobil Benzene Reduction Process (MBR) uses dilute olefins in FCC offgas to extensively alkylate dilute benzene as found in light reformate, light FCC gasoline, or cyclic C[sub 6] naphtha. MBR raises octanes and lowers C[sub 5]+ olefins. MBR does not involve costly hydrogen addition. The refinery-based Mobil/Badger Ethylbenzene Process reacts chemical-grade benzene extracted from light reformatemore » with dilute ethylene found in treated FCC offgas to make high-purity ethylbenzene. EB is the principal feedstock for the production of styrene. The Mobil/Badger Cumene Process alkylates FCC-derived dilute propylene and extracted benzene to selectively yield isopropyl benzene (cumene). Cumene is the principal feedstock for the production of phenol. All three processes use Mobil developed catalysts.« less

  14. Cytokine Network Involvement in Subjects Exposed to Benzene

    PubMed Central

    Gangemi, Sebastiano

    2014-01-01

    Benzene represents an ubiquitous pollutant both in the workplace and in the general environment. Health risk and stress posed by benzene have long been a concern because of the carcinogenic effects of the compound which was classified as a Group 1 carcinogen to humans and animals. There is a close correlation between leukemia, especially acute myeloid leukemia, and benzene exposure. In addition, exposure to benzene can cause harmful effects on immunological, neurological, and reproductive systems. Benzene can directly damage hematopoietic progenitor cells, which in turn could lead to apoptosis or may decrease responsiveness to cytokines and cellular adhesion molecules. Alternatively, benzene toxicity to stromal cells or mature blood cells could disrupt the regulation of hematopoiesis, including hematopoietic commitment, maturation, or mobilization, through the network of cytokines, chemokines, and adhesion molecules. Today there is mounting evidence that benzene may alter the gene expression, production, or processing of several cytokines in vitro and in vivo. The purpose of this review was to systematically analyze the published cases of cytokine effects on human benzene exposure, particularly hematotoxicity, and atopy, and on lungs. PMID:25202711

  15. Oxidation Mechanisms of Toluene and Benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1995-01-01

    An expanded and improved version of a previously published benzene oxidation mechanism is presented and shown to model published experimental data fairly successfully. This benzene submodel is coupled to a modified version of a toluene oxidation submodel from the recent literature. This complete mechanism is shown to successfully model published experimental toluene oxidation data for a highly mixed flow reactor and for higher temperature ignition delay times in a shock tube. A comprehensive sensitivity analysis showing the most important reactions is presented for both the benzene and toluene reacting systems. The NASA Lewis toluene mechanism's modeling capability is found to be equivalent to that of the previously published mechanism which contains a somewhat different benzene submodel.

  16. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  17. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  18. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  19. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  20. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  1. Competitive Nitration of Benzene-Fluorobenzene and Benzene-Toluene Mixtures: Orientation and Reactivity Studies Using HPLC

    ERIC Educational Resources Information Center

    Blankespoor, Ronald L.; Hogendoorn, Stephanie; Pearson, Andrea

    2007-01-01

    The reactivity and orientation effects of a substituent are analyzed by using HPLC to determine the competitive nitration of the benzene-toluene and benzene-fluorobenzene mixtures. The results have shown that HPLC is an excellent instrumental method to use in analyzing these mixtures.

  2. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  3. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  4. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  5. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  6. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  7. Current collapse in tunneling transport through benzene.

    PubMed

    Hettler, M H; Wenzel, W; Wegewijs, M R; Schoeller, H

    2003-02-21

    We investigate the electrical transport through a system of benzene coupled to metal electrodes by electron tunneling. Using electronic structure calculations, a semiquantitative model for the pi electrons of the benzene is derived that includes general two-body interactions. After exact diagonalization of the benzene model the transport is computed using perturbation theory for weak electrode-benzene coupling (golden rule approximation). We include the effect of an applied electric field on the molecular states, as well as radiative relaxation. We predict a current collapse and strong negative differential conductance due to a "blocking" state when the electrode is coupled to the para-position of benzene. In contrast, for coupling to the meta-position, a series of steps in the I-V curve is found.

  8. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  9. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  10. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  11. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  12. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  13. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  14. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  15. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  16. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  17. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  18. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  19. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  20. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  1. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  2. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  3. Experimental and Theoretical Studies on Gas-Phase Fragmentation Reactions of Protonated Methyl Benzoate: Concomitant Neutral Eliminations of Benzene, Carbon Dioxide, and Methanol

    NASA Astrophysics Data System (ADS)

    Xia, Hanxue; Zhang, Yong; Attygalle, Athula B.

    2018-06-01

    Protonated methyl benzoate, upon activation, fragments by three distinct pathways. The m/z 137 ion for the protonated species generated by helium-plasma ionization (HePI) was mass-selected and subjected to collisional activation. In one fragmentation pathway, the protonated molecule generated a product ion of m/z 59 by eliminating a molecule of benzene (Pathway I). The m/z 59 ion (generally recognized as the methoxycarbonyl cation) produced in this way, then formed a methyl carbenium ion in situ by decarboxylation, which in turn evoked an electrophilic aromatic addition reaction on the benzene ring by a termolecular process to generate the toluenium cation (Pathway II). Moreover, protonated methyl benzoate undergoes also a methanol loss (Pathway III). However, it is not a simple removal of a methanol molecule after a protonation on the methoxy group. The incipient proton migrates to the ring and randomizes to a certain degree before a subsequent transfer of one of the ring protons to the alkoxy group for the concomitant methanol elimination. The spectrum recorded from deuteronated methyl benzoate showed two peaks at m/z 105 and 106 for the benzoyl cation at a ratio of 2:1, confirming the charge-imparting proton is mobile. However, the proton transfer from the benzenium intermediate to the methoxy group for the methanol loss occurs before achieving a complete state of scrambling. [Figure not available: see fulltext.

  4. Computer-aided rational design of novel EBF analogues with an aromatic ring.

    PubMed

    Wang, Shanshan; Sun, Yufeng; Du, Shaoqing; Qin, Yaoguo; Duan, Hongxia; Yang, Xinling

    2016-06-01

    Odorant binding proteins (OBPs) are important in insect olfactory recognition. These proteins bind specifically to insect semiochemicals and induce their seeking, mating, and alarm behaviors. Molecular docking and molecular dynamics simulations were performed to provide computational insight into the interaction mode between AgamOBP7 and novel (E)-β-farnesene (EBF) analogues with an aromatic ring. The ligand-binding cavity in OBP7 was found to be mostly hydrophobic due to the presence of several nonpolar residues. The interactions between the EBF analogues and the hydrophobic residues in the binding cavity increased in strength as the distance between them decreased. The EBF analogues with an N-methyl formamide or ester linkage had higher docking scores than those with an amide linkage. Moreover, delocalized π-π and electrostatic interactions were found to contribute significantly to the binding between the ligand benzene ring and nearby protein residues. To design new compounds with higher activity, four EBF analogues D1-D4 with a benzene ring were synthesized and evaluated based on their docking scores and binding affinities. D2, which had an N-methyl formamide group linkage, exhibited stronger binding than D1, which had an amide linkage. D4 exhibited particularly strong binding due to multiple hydrophobic interactions with the protein. This study provides crucial foundations for designing novel EBF analogues based on the OBP structure. Graphical abstract The design strategy of new EBF analogues based on the OBP7 structure.

  5. Benzene as a Chemical Hazard in Processed Foods.

    PubMed

    Salviano Dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1-10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.

  6. Benzene exposure monitoring of Tunisian workers.

    PubMed

    Chakroun, Radhouane; Kaabachi, Néziha; Hedhili, Abderrazek; Feki, Moncef; Nouaigui, Habib; Ben Laiba, Mohamed; Mebazaa, Abderraouf

    2002-12-01

    To monitor benzene exposure and to check reliability of urinary trans,trans-Muconic Acid (t,t-MA) as a bio-marker of benzene exposure in local conditions, a study was conducted on 30 Tunisian exposed workers (20 tanker fillers and 10 filling station attendants). The analyses were carried out on environmental air and urinary t,t-MA before (t,t-MAA) and at the end of work shift (t,t-MAB). 20 nonoccupationally exposed subjects were also investigated. The average value of environmental benzene concentration was 0.17 ppm. The differences between t,t-MAA and t,t-MAB concentrations and between t,t-MAB and t,t-MA measured in controls (t,t-MAC) were both significant (p < 0.001). Benzene air concentrations were well correlated with t,t-MAB: R = 0.76. In the nonexposed group, average t,t-MA concentrations is significantly higher among smokers than nonsmokers (P < 0.02). Analysis of urinary t,t-MA offers a relatively simple and suitable method for benzene exposure monitoring.

  7. Determinants of indoor benzene in Europe

    NASA Astrophysics Data System (ADS)

    Lai, H. K.; Jantunen, M. J.; Künzli, N.; Kulinskaya, E.; Colvile, R.; Nieuwenhuijsen, M. J.

    This study identified the key determinants associated with the indoor benzene concentrations that were measured between 1996 and 2000 using the EXPOLIS protocol in the residences of six European cities, including Athens (Greece), Basel (Switzerland), Helsinki (Finland), Milan (Italy), Oxford (United Kingdom), and Prague (Czech Republic). Two consecutive days of home indoor and home outdoor measurements of benzene were carried out at the homes of adult participants on different dates and seasons during the sampling period. Regression models, with interactions searched by all-possible subset method, were used to assess the city effects and the determinants of home indoor benzene (adjusted R2=0.57, n=412). Outdoor benzene concentrations, outdoor temperature, wind speed, the use of anti-moth products, and indoor smoking in terms of number of cigarettes consumed per day were shown to be the key determinants of indoor benzene concentrations. The model was further used to predict the indoor benzene levels in cities. Non-linear relationships were commonly found, indicating that a unit change in the indoor concentration cannot be simply estimated by a proportional change of the determinant, and the pattern of relationships could be differed in different places. This finding is important in formulating indoor air quality guidelines as well as calculating an accurate health risk estimate based on the estimates of population's lifetime exposure levels.

  8. [4-(All­yloxy)phen­yl](phen­yl)methanone

    PubMed Central

    D’Vries, Richard F.; Grande, Carlos D.; Chaur, Manuel N.; Ellena, Javier A.; Advincula, Rigoberto C.

    2014-01-01

    The structure of the title compound, C16H14O2, features a dihedral angle of 54.4 (3)° between the aromatic rings. The allyl group is rotated by 37.4 (4)° relative to the adjacent benzene ring. The crystal packing is characterized by numerous C—H⋯O and C—H⋯π inter­actions. Most of these inter­actions occur in layers along (011). The layers are linked by C—H⋯π inter­actions along [100], forming a three-dimensional network. PMID:25161593

  9. Benzene formation in Titan's lower atmosphere

    NASA Astrophysics Data System (ADS)

    Plane, J. M. C.; Douglas, K.; Blitz, M. A.; Heard, D. E.; Seakins, P. W.; Feng, W.; Willacy, K.

    2017-09-01

    The most distinctive feature of Saturn's moon Titan is that it is covered in a thick haze. The haze consists of organic particles called tholins, of which benzene is thought to be an important precursor. Here we examine two pathways to form benzene. The first involves reactions on cosmic dust particles, which mostly do not ablate when entering Titan's atmosphere and accumulate in the lower atmosphere. We have shown in the laboratory that acetylene molecules stick on synthetic cosmic dust at low temperatures, and react efficiently to make benzene. The second pathway is through gas phase reactions involving radical species formed through methane photochemistry. A new lab study shows that the rates of critical reactions involving these radicals vary unexpectedly at low temperatures, leading to significant changes in important benzene precursors.

  10. Benzene as a Chemical Hazard in Processed Foods

    PubMed Central

    Salviano dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food. PMID:26904662

  11. Benzene exposure is associated with epigenetic changes (Review).

    PubMed

    Fenga, Concettina; Gangemi, Silvia; Costa, Chiara

    2016-04-01

    Benzene is a volatile aromatic hydrocarbon solvent and is known as one of the predominant air pollutants in the environment. Chronic exposure to benzene is known to cause aplastic anemia and increased risk of acute myelogenous leukemia in humans. Although the mechanisms by which benzene causes toxicity remain to be fully elucidated, it is widely accepted that its metabolism is crucial to its toxicity, with involvement of one or more reactive metabolites. Novel approaches aimed at evaluating different mechanisms by which benzene can impact on human health by altering gene regulation have been developed. Among these novel approaches, epigenetics appears to be promising. The present review article summarizes the most important findings, reported from the literature, on epigenetic modifications correlated to benzene exposure. A computerized search in PubMed was performed in November 2014, using search terms, including 'benzene', 'epigenetic', 'histone modifications', 'DNA methylation' and 'microRNA'. Epidemiological and experimental studies have demonstrated the potential epigenetic effects of benzene exposure. Several of the epigenomic changes observed in response to environmental exposures may be mechanistically associated with susceptibility to diseases. However, further elucidation of the mechanisms by which benzene alters gene expression may improve prediction of the toxic potential of novel compounds introduced into the environment, and allow for more targeted and appropriate disease prevention strategies.

  12. Benzene derivatives produced by Fusarium graminearum - Short communication.

    PubMed

    Ntushelo, Khayalethu; Setshedi, Itumeleng

    2015-06-01

    Using NMR spectroscopy benzene derivatives were detected in mycelia of Fusarium graminearum, a pathogen of wheat and maize. In previous studies F. graminearum was found to cause cancer to humans and benzene derivatives were detected in breath of cancer sufferers. Surprisingly, no study found benzene derivatives to be the cancerous agents in F. graminearum. In this study we detected benzene derivatives in F. graminearum and propose to study their role as cancer agents.

  13. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards. (a) Material safety data sheet. A material safety data sheet (MSDS) addressing benzene must be made available...

  14. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards. (a) Material safety data sheet. A material safety data sheet (MSDS) addressing benzene must be made available...

  15. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards. (a) Material safety data sheet. A material safety data sheet (MSDS) addressing benzene must be made available...

  16. (E)-1-(2-Amino­phen­yl)-3-(3,4,5-trimeth­oxy­phen­yl)prop-2-en-1-one

    PubMed Central

    Chantrapromma, Suchada; Ruanwas, Pumsak; Fun, Hoong-Kun

    2011-01-01

    In the asymmetric unit of the title chalcone derivative, C18H19NO4, there are three crystallographically independent mol­ecules (mol­ecules A, B and C). In mol­ecule A, the dihedral angle between two benzene rings is 12.22 (10)° and the plane of the central prop-2-en-1-one unit makes dihedral angles of 11.02 (13) and 2.64 (12)° with the two adjacent benzene rings. The corresponding angles in mol­ecule B are 12.35 (10), 18.78 (12) and 7.29 (12)°, respectively, and those in mol­ecule C are 15.40 (10), 15.62 (3) and 3.19 (13)°. In each mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure, the mol­ecules B are linked by inter­molecular N—H⋯O hydrogen bonds into a zigzag chain along the c axis, while the mol­ecules A and C are linked together via an N—H⋯O hydrogen bond into a dimer. Adjacent dimers are further connected by N—H⋯N hydrogen bonds into a three-dimensional network. Weak C—H⋯O and C—H⋯π inter­actions are also observed. PMID:22064816

  17. Crystal structure of 1,3-bis-(1H-benzotriazol-1-yl-meth-yl)benzene.

    PubMed

    Macías, Mario A; Nuñez-Dallos, Nelson; Hurtado, John; Suescun, Leopoldo

    2016-06-01

    The mol-ecular structure of the title compound, C20H16N6, contains two benzotriazole units bonded to a benzene nucleus in a meta configuration, forming dihedral angles of 88.74 (11) and 85.83 (10)° with the central aromatic ring and 57.08 (9)° with each other. The three-dimensional structure is controlled mainly by weak C-H⋯N and C-H⋯π inter-actions. The mol-ecules are connected in inversion-related pairs, forming the slabs of infinite chains that run along the [-110] and [110] directions.

  18. Models of S/π interactions in protein structures: Comparison of the H2S–benzene complex with PDB data

    PubMed Central

    Ringer, Ashley L.; Senenko, Anastasia; Sherrill, C. David

    2007-01-01

    S/π interactions are prevalent in biochemistry and play an important role in protein folding and stabilization. Geometries of cysteine/aromatic interactions found in crystal structures from the Brookhaven Protein Data Bank (PDB) are analyzed and compared with the equilibrium configurations predicted by high-level quantum mechanical results for the H2S–benzene complex. A correlation is observed between the energetically favorable configurations on the quantum mechanical potential energy surface of the H2S–benzene model and the cysteine/aromatic configurations most frequently found in crystal structures of the PDB. In contrast to some previous PDB analyses, configurations with the sulfur over the aromatic ring are found to be the most important. Our results suggest that accurate quantum computations on models of noncovalent interactions may be helpful in understanding the structures of proteins and other complex systems. PMID:17766371

  19. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Elwassif, Maged; Battaglia, Fortunato; Bikson, Marom

    2008-06-01

    We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric ring. We compared the focality of each configuration targeting cortical structures oriented normal to the surface ('surface-radial' and 'cross-section radial'), cortical structures oriented along the brain surface ('surface-tangential' and 'cross-section tangential') and non-oriented cortical surface structures ('surface-magnitude' and 'cross-section magnitude'). For surface-radial fields, we further considered the 'polarity' of modulation (e.g. superficial cortical neuron soma hyper/depolarizing). The distant-bipolar configuration, which is comparable with commonly used TCS protocols, resulted in diffuse (un-focal) modulation with bi-directional radial modulation under each electrode and tangential modulation between electrodes. Increasing the proximity of the two electrodes (adjacent-bipolar electrode configuration) increased focality, at the cost of more surface current. At similar electrode distances, the tripolar-electrodes configuration produced comparable peak focality, but reduced radial bi-directionality. The concentric-ring configuration resulted in the highest spatial focality and uni-directional radial modulation, at the expense of increased total surface current. Changing ring dimensions, or use of two concentric rings, allow titration of this balance. The concentric-ring design may thus provide an optimized configuration for targeted modulation of superficial cortical neurons.

  20. The contribution of benzene to smoking-induced leukemia.

    PubMed

    Korte, J E; Hertz-Picciotto, I; Schulz, M R; Ball, L M; Duell, E J

    2000-04-01

    Cigarette smoking is associated with an increased risk of leukemia; benzene, an established leukemogen, is present in cigarette smoke. By combining epidemiologic data on the health effects of smoking with risk assessment techniques for low-dose extrapolation, we assessed the proportion of smoking-induced total leukemia and acute myeloid leukemia (AML) attributable to the benzene in cigarette smoke. We fit both linear and quadratic models to data from two benzene-exposed occupational cohorts to estimate the leukemogenic potency of benzene. Using multiple-decrement life tables, we calculated lifetime risks of total leukemia and AML deaths for never, light, and heavy smokers. We repeated these calculations, removing the effect of benzene in cigarettes based on the estimated potencies. From these life tables we determined smoking-attributable risks and benzene-attributable risks. The ratio of the latter to the former constitutes the proportion of smoking-induced cases attributable to benzene. Based on linear potency models, the benzene in cigarette smoke contributed from 8 to 48% of smoking-induced total leukemia deaths [95% upper confidence limit (UCL), 20-66%], and from 12 to 58% of smoking-induced AML deaths (95% UCL, 19-121%). The inclusion of a quadratic term yielded results that were comparable; however, potency models with only quadratic terms resulted in much lower attributable fractions--all < 1%. Thus, benzene is estimated to be responsible for approximately one-tenth to one-half of smoking-induced total leukemia mortality and up to three-fifths of smoking-related AML mortality. In contrast to theoretical arguments that linear models substantially overestimate low-dose risk, linear extrapolations from empirical data over a dose range of 10- to 100-fold resulted in plausible predictions.

  1. Benzene exposure is associated with cardiovascular disease risk.

    PubMed

    Abplanalp, Wesley; DeJarnett, Natasha; Riggs, Daniel W; Conklin, Daniel J; McCracken, James P; Srivastava, Sanjay; Xie, Zhengzhi; Rai, Shesh; Bhatnagar, Aruni; O'Toole, Timothy E

    2017-01-01

    Benzene is a ubiquitous, volatile pollutant present at high concentrations in toxins (e.g. tobacco smoke) known to increase cardiovascular disease (CVD) risk. Despite its prevalence, the cardiovascular effects of benzene have rarely been studied. Hence, we examined whether exposure to benzene is associated with increased CVD risk. The effects of benzene exposure in mice were assessed by direct inhalation, while the effects of benzene exposure in humans was assessed in 210 individuals with mild to high CVD risk by measuring urinary levels of the benzene metabolite trans,trans-muconic acid (t,t-MA). Generalized linear models were used to assess the association between benzene exposure and CVD risk. Mice inhaling volatile benzene had significantly reduced levels of circulating angiogenic cells (Flk-1+/Sca-1+) as well as an increased levels of plasma low-density lipoprotein (LDL) compared with control mice breathing filtered air. In the human cohort, urinary levels of t,t-MA were inversely associated several populations of circulating angiogenic cells (CD31+/34+/45+, CD31+/34+/45+/AC133-, CD34+/45+/AC133+). Although t,t-MA was not associated with plasma markers of inflammation or thrombosis, t,t-MA levels were higher in smokers and in individuals with dyslipidemia. In smokers, t,t-MA levels were positively associated with urinary metabolites of nicotine (cotinine) and acrolein (3-hydroxymercapturic acid). Levels of t,t-MA were also associated with CVD risk as assessed using the Framingham Risk Score and this association was independent of smoking. Thus, benzene exposure is associated with increased CVD risk and deficits in circulating angiogenic cells in both smokers and non-smokers.

  2. Benzene exposure is associated with cardiovascular disease risk

    PubMed Central

    Riggs, Daniel W.; Conklin, Daniel J.; McCracken, James P.; Srivastava, Sanjay; Xie, Zhengzhi; Rai, Shesh; Bhatnagar, Aruni; O’Toole, Timothy E.

    2017-01-01

    Benzene is a ubiquitous, volatile pollutant present at high concentrations in toxins (e.g. tobacco smoke) known to increase cardiovascular disease (CVD) risk. Despite its prevalence, the cardiovascular effects of benzene have rarely been studied. Hence, we examined whether exposure to benzene is associated with increased CVD risk. The effects of benzene exposure in mice were assessed by direct inhalation, while the effects of benzene exposure in humans was assessed in 210 individuals with mild to high CVD risk by measuring urinary levels of the benzene metabolite trans,trans-muconic acid (t,t-MA). Generalized linear models were used to assess the association between benzene exposure and CVD risk. Mice inhaling volatile benzene had significantly reduced levels of circulating angiogenic cells (Flk-1+/Sca-1+) as well as an increased levels of plasma low-density lipoprotein (LDL) compared with control mice breathing filtered air. In the human cohort, urinary levels of t,t-MA were inversely associated several populations of circulating angiogenic cells (CD31+/34+/45+, CD31+/34+/45+/AC133–, CD34+/45+/AC133+). Although t,t-MA was not associated with plasma markers of inflammation or thrombosis, t,t-MA levels were higher in smokers and in individuals with dyslipidemia. In smokers, t,t-MA levels were positively associated with urinary metabolites of nicotine (cotinine) and acrolein (3-hydroxymercapturic acid). Levels of t,t-MA were also associated with CVD risk as assessed using the Framingham Risk Score and this association was independent of smoking. Thus, benzene exposure is associated with increased CVD risk and deficits in circulating angiogenic cells in both smokers and non-smokers. PMID:28886060

  3. Volatilization of benzene and eight alkyl-substituted benzene compounds from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1988-01-01

    Predicting the fate of organic compounds in streams and rivers often requires knowledge of the volatilization characteristics of the compounds. The reference-substance concept, involving laboratory-determined ratios of the liquid-film coefficients for volatilization of the organic compounds to the liquid-film coefficient for oxygen absorption, is used to predict liquid-film coefficients for streams and rivers. In the absence of experimental data, two procedures have been used for estimating these liquid-film coefficient ratios. These procedures, based on the molecular-diffusion coefficient and on the molecular weight, have been widely used but never extensively evaluated. Liquid-film coefficients for the volatilization of benzene and eight alkyl-substituted benzene compounds (toluene through n-octylbenzene) from water were measured in a constant-temperature, stirred water bath. Liquid-film coefficients for oxygen absorption were measured simultaneously. A range of water mixing conditions was used with a water temperature of 298.2 K. The ratios of the liquid-film coefficients for volatilization to the liquid-film coefficient for oxygen absorption for all of the organic compounds were independent of mixing conditions in the water. Experimental ratios ranged from 0.606 for benzene to 0.357 for n-octylbenzene. The molecular-diffusion-coefficient procedure accurately predicted the ratios for ethylbenzene through n-pentylbenzene with a power dependence of 0.566 on the molecular-diffusion coefficient, in agreement with published values. Predicted ratios for benzene and toluene were slightly larger than the experimental ratios. These differences were attributed to possible interactions between the molecules of these compounds and the water molecules and to benzene-benzene interactions that form dimers. Because these interactions also are likely to occur in natural waters, it was concluded that the experimental ratios are more correct than the predicted ratios for

  4. Reactions of benzene oxide with thiols including glutathione.

    PubMed

    Henderson, Alistair P; Barnes, Martine L; Bleasdale, Christine; Cameron, Richard; Clegg, William; Heath, Sarah L; Lindstrom, Andrew B; Rappaport, Stephen M; Waidyanatha, Suramya; Watson, William P; Golding, Bernard T

    2005-02-01

    S-Phenylmercapturic acid is a minor metabolite of benzene used as a biomarker for human benzene exposures. The reaction of intracellular glutathione with benzene oxide-oxepin, the initial metabolite of benzene, is presumed to give 1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which undergoes dehydration to S-phenylglutathione, the precursor of S-phenylmercapturic acid. To validate the proposed route to S-phenylglutathione, reactions of benzene oxide-oxepin with glutathione and other sulfur nucleophiles have been studied. The reaction of benzene oxide with an excess of aqueous sodium sulfide, followed by acetylation, gave bis-(6-trans-5-acetoxycyclohexa-1,3-dienyl)sulfide, the structure of which was proved by X-ray crystallography. Reactions of benzene oxide-oxepin in a 95:5 (v/v) mixture of phosphate buffer in D2O with (CD3)2SO were monitored by 1H NMR spectroscopy. In the absence of glutathione, the half-life of benzene oxide-oxepin was ca. 34 min at 25 degrees C and pD 7.0. The half-life was not affected in the range of 2-15 mM glutathione in the presence and absence of a commercial sample of human glutathione S-transferase (at pH 7.0, 8.0, 8.5, or 10.0). The adduct 1-(S-glutathionyl)-cyclohexa-3,5-diene-2-ol was identified in these reaction mixtures, especially at higher pH, by mass spectrometry and by its acid-catalyzed decomposition to S-phenylglutathione. Incubation of benzene oxide with N-acetyl-L-cysteine at 37 degrees C and pH 10.0 and subsequent mass spectrometric analysis of the mixture showed formation of pre-S-phenylmercapturic acid and the dehydration product, S-phenylmercapturic acid. The data validate the premise that benzene oxide-oxepin can be captured by glutathione to give (1R,2R)- and/or (1S,2S)-1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which dehydrate to S-phenylglutathione. The capture is a relatively inefficient process at pH 7 that is accelerated at higher pH. These studies account for the observation that the metabolism of benzene is

  5. Reconstructing metabolic pathways of a member of the genus Pelotomaculum suggesting its potential to oxidize benzene to carbon dioxide with direct reduction of sulfate.

    PubMed

    Dong, Xiyang; Dröge, Johannes; von Toerne, Christine; Marozava, Sviatlana; McHardy, Alice C; Meckenstock, Rainer U

    2017-03-01

    The enrichment culture BPL is able to degrade benzene with sulfate as electron acceptor and is dominated by an organism of the genus Pelotomaculum. Members of Pelotomaculum are usually known to be fermenters, undergoing syntrophy with anaerobic respiring microorganisms or methanogens. By using a metagenomic approach, we reconstructed a high-quality genome (∼2.97 Mbp, 99% completeness) for Pelotomaculum candidate BPL. The proteogenomic data suggested that (1) anaerobic benzene degradation was activated by a yet unknown mechanism for conversion of benzene to benzoyl-CoA; (2) the central benzoyl-CoA degradation pathway involved reductive dearomatization by a class II benzoyl-CoA reductase followed by hydrolytic ring cleavage and modified β-oxidation; (3) the oxidative acetyl-CoA pathway was utilized for complete oxidation to CO2. Interestingly, the genome of Pelotomaculum candidate BPL has all the genes for a complete sulfate reduction pathway including a similar electron transfer mechanism for dissimilatory sulfate reduction as in other Gram-positive sulfate-reducing bacteria. The proteome analysis revealed that the essential enzymes for sulfate reduction were all formed during growth with benzene. Thus, our data indicated that, besides its potential to anaerobically degrade benzene, Pelotomaculum candidate BPL is the first member of the genus that can perform sulfate reduction. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Species comparison of hepatic and pulmonary metabolism of benzene.

    PubMed

    Powley, M W; Carlson, G P

    1999-12-06

    Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, and rat to determine species differences in the metabolism of benzene to phenol, hydroquinone and catechol, indicate that the rat is most similar, both quantitatively and qualitatively, to the human in pulmonary microsomal metabolism of benzene. With hepatic microsomes, rat is most similar to human in metabolite formation at the two lower concentrations examined (24 and 200 microM), while at the two higher concentrations (700 and 1000 microM) mouse is most similar in phenol formation. In all species, the enzyme system responsible for benzene metabolism approached saturation in hepatic microsomes but not in pulmonary microsomes. In pulmonary microsomes from mouse, rat, and human, phenol appeared to competitively inhibit benzene metabolism resulting in a greater proportion of phenol being converted to hydroquinone when the benzene concentration increased. The opposite effect was seen in hepatic microsomes. These findings support the hypothesis that the lung plays an important role in benzene metabolism, and therefore, toxicity.

  7. Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Hua, Jianhao; Yang, Yaling

    2018-06-01

    An efficient cadmium sulfide quantum-dots (CdS QDs) and carbon dots (CDs) modified TiO2 photocatalyst (CdS/CDs-TiO2) was successfully fabricated. The as-prepared ternary nano-composites simultaneously improved the photo-corrosion of CdS and amplified its photocatalytic activity. The introduction of CdS QDs and CDs could enhance more absorbance of light, prevent the undesirable electron/hole recombination, and promote charge separation, which was important for the continuous formation of rad OH and rad O2- radicals. When the optimal mass ratio of CdS QDs to CDs was 3:1, above 90% degradation efficiencies were achieved for benzene within 1 h and toluene in 2 h, while that of pure TiO2 (P25), CdS QDs-TiO2, CDs-TiO2 nano-composites was around 15%. Owing to the symmetric structure and conjugation of methyl with benzene ring, the degradation of toluene was more difficult than benzene to carry on. The new fabricated nano-composites showed good prospective application of cleaning up refractory pollutants and the resource utilization.

  8. Thiophene/thiazole-benzene replacement on guanidine derivatives targeting α2-Adrenoceptors.

    PubMed

    Flood, Aoife; Trujillo, Cristina; Sanchez-Sanz, Goar; Kelly, Brendan; Muguruza, Carolina; Callado, Luis F; Rozas, Isabel

    2017-09-29

    Searching for improved antagonists of α 2 -adrenoceptors, a thorough theoretical study comparing the aromaticity of phenyl-, pyridinyl-, thiophenyl- and thiazolylguanidinium derivatives has been carried out [at M06-2X/6-311++G(p,d) computational level] confirming that thiophene and thiazole will be good 'ring equivalents' to benzene in these guanidinium systems. Based on these results, a small but chemically diverse library of guanidine derivatives (15 thiophenes and 2 thiazoles) were synthesised to explore the effect that the bioisosteric change has on affinity and activity at α 2 -adrenoceptors in comparison with our previously studied phenyl derivatives. All compounds were tested for their α 2 -adrenoceptor affinity and unsubstituted guanidinothiophenes displayed the strongest affinities in the same range as the phenyl analogues. In the case of cycloakyl systems, thiophenes with 6-membered rings showed the largest affinities, while for the thiazoles the 5-membered analogue presented the strongest affinity. From all the compounds tested for noradrenergic activity, only one compound exhibited agonistic activity, while two compounds showed very promising antagonism of α 2 -adrenoceptors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Sub-Doppler Electronic Spectrum of the BENZENE-D2 Complex

    NASA Astrophysics Data System (ADS)

    Hayashi, Masato; Ohshima, Yasuhiro

    2014-06-01

    Excitation spectrum of the benzene-D2 van der Waals (vdW) complex in the vicinity of the S1 ← S0 601 vibronic transition of the monomer was recorded by utilizing mass-selective two-color resonance-enhanced two-photon ionization. Extensive adiabatic cooling with the rotational temperature of ěrb|<| 0.5 K was conducted by the high-pressure pulsed expansion, and sub-Doppler resolution yielding the line width of 250 MHz was realized in a collimated molecular beam by employing Fourier-transform-limited ultraviolet pulses for the excitation. In contrast to our previous study on the benzene-H2 complex, weaker binding ortho nuclear-spin isomer, correlating to the j = 0 state of a freely rotating D2, was observed in addition to the stronger binding para isomer (with j = 1), by using a gas sample of normal D2. Three and two vibronic bands involving vdW-mode excitation were observed for the para and ortho isomers, respectively. By comparing the present results with those of the benzene-H2 complex, we made unambiguous assignments on the vdW modes involved in each observed band, and obtained complete sets of vibrational frequencies of all the three vdW modes for the both H2 and D2 isotopomers in the S1 61 manifold. One of the vdW frequency correlates to the splitting between the m = 0 and ± 1 sublevels in the j = 1 state of a freely rotating H2/D2 molecule, and the potential barrier for the hindered internal rotation has been evaluated to be ca. 60 cm-1 from the values. Ratio of the vdW frequencies between the H2 and D2 species deviate significantly from the value for the harmonic vibration (i.e., √{2} ≈ 1.4), indicating substantial anharmonic character of the vdW modes in the complex. M. Hayashi and Y. Ohshima, Chem. Phys. 419, 131-137 (2013). M. Hayashi and Y. Ohshima, J. Phys. Chem. A 117, 9819-9830 (2013).

  10. 1-Methyl-4-(4-nitro­benzo­yl)pyridinium perchlorate

    PubMed Central

    Gruber, Tobias; Eissmann, Frank; Weber, Edwin; Schüürmann, Gerrit

    2011-01-01

    In the main mol­ecule of the title compound, C13H11N2O3 +·ClO4 −, the two aromatic rings are twisted by 56.19 (3)° relative to each other and the nitro group is not coplanar with the benzene ring [36.43 (4)°]. The crystal packing is dominated by infinite aromatic stacks in the a-axis direction. These are formed by the benzene units of the mol­ecule featuring an alternating arrangement, which explains the two different distances of 3.3860 (4) and 3.4907 (4) Å for the aromatic units (these are the perpendicular distances of the centroid of one aromatic ring on the mean plane of the other other aromatic ring). Adjacent stacks are connected by π–π stacking between two pyridinium units [3.5949 (4) Å] and weak C—H⋯O inter­actions. The perchlorate anions are accomodated in the lattice voids connected to the cation via weak C—H⋯O contacts between the O atoms of the anion and various aromatic as well as methyl H atoms. PMID:22059070

  11. (2E)-3-(6-Meth­oxy­naphthalen-2-yl)-1-[4-(methyl­sulfan­yl)phen­yl]prop-2-en-1-one

    PubMed Central

    Fun, Hoong-Kun; Chia, Tze Shyang; Padaki, Mahesh; Isloor, Arun M.; Ismail, A. F.

    2012-01-01

    The asymmetric unit of the title compound, C21H18O2S, consists of two crystallographically independent mol­ecules (A and B). The mol­ecules exist in a trans conformation with respect to the central C=C bond. The naphthalene ring system makes dihedral angles of 51.62 (12) (mol­ecule A) and 52.69 (12)° (mol­ecule B) with the benzene ring. In mol­ecule A, the prop-2-en-1-one group forms dihedral angles of 22.84 (15) and 29.02 (12)° with the adjacent naphthalene ring system and benzene ring, respectively, whereas the corresponding angles are 30.04 (12) and 23.33 (12)° in mol­ecule B. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds into head-to-tail chains along the a axis. The crystal packing also features C—H⋯π inter­actions. The crystal studied was a pseudo-merohedral twin with twin law (100 0-10 00-1) and a refined component ratio of 0.6103 (16):0.3897 (16). PMID:22798922

  12. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  13. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  14. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  15. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  16. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  17. Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus▿†

    PubMed Central

    Holmes, Dawn E.; Risso, Carla; Smith, Jessica A.; Lovley, Derek R.

    2011-01-01

    Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]benzene to [14C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [14C]benzoate was produced from [14C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms. PMID:21742914

  18. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  19. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  20. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  1. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  2. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  3. 46 CFR 151.50-60 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of a...

  4. 46 CFR 151.50-60 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of a...

  5. 46 CFR 151.50-60 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of a...

  6. 46 CFR 151.50-60 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of a...

  7. 46 CFR 151.50-60 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of a...

  8. An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System

    NASA Astrophysics Data System (ADS)

    Vincent, Alan

    1996-10-01

    All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.

  9. N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide hemi-hydrate.

    PubMed

    Chicha, Hakima; Kouakou, Assoman; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The fused five- and six-membered rings in the title compound, C17H16ClN3O3S·0.5H2O, are practically coplanar, with the maximum deviation from the mean plane being 0.057 (3) Å for the C atom bound to the exocyclic N atom. The indazole system makes a dihedral angle of 66.18 (12)° with the plane through the benzene ring, and it is nearly perpendicular to the allyl group, as indicated by the N-N-C-C torsion angle of 79.2 (3)°. In the crystal, the water mol-ecule, lying on a twofold axis, forms O-H⋯N and accepts N-H⋯O hydrogen bonds. Additional C-H⋯O hydrogen bonds contribute to the formation of a chain along the b-axis direction.

  10. Inhibition of carboxylesterases by benzil (diphenylethane-1,2-dione) and heterocyclic analogues is dependent upon the aromaticity of the ring and the flexibility of the dione moiety.

    PubMed

    Hyatt, Janice L; Stacy, Vanessa; Wadkins, Randy M; Yoon, Kyoung Jin P; Wierdl, Monika; Edwards, Carol C; Zeller, Matthias; Hunter, Allen D; Danks, Mary K; Crundwell, Guy; Potter, Philip M

    2005-08-25

    Benzil has been identified as a potent selective inhibitor of carboxylesterases (CEs). Essential components of the molecule required for inhibitory activity include the dione moiety and the benzene rings, and substitution within the rings affords increased selectivity toward CEs from different species. Replacement of the benzene rings with heterocyclic substituents increased the K(i) values for the compounds toward three mammalian CEs when using o-nitrophenyl acetate as a substrate. Logarithmic plots of the K(i) values versus the empirical resonance energy, the heat of union of formation energy, or the aromatic stabilization energy determined from molecular orbital calculations for the ring structures yielded linear relationships that allowed prediction of the efficacy of the diones toward CE inhibition. Using these data, we predicted that 2,2'-naphthil would be an excellent inhibitor of mammalian CEs. This was demonstrated to be correct with a K(i) value of 1 nM being observed for a rabbit liver CE. In addition, molecular simulations of the movement of the ring structures around the dione dihedral indicated that the ability of the compounds to inhibit CEs was due, in part, to rotational constraints enforced by the dione moiety. Overall, these studies identify subdomains within the aromatic ethane-1,2-diones, that are responsible for CE inhibition.

  11. Benzene: a case study in parent chemical and metabolite interactions.

    PubMed

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  12. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  13. Isomer-Specific Spectroscopy of Benzene-(H2O)n, n = 6,7: Benzene's Role in Reshaping Water's Three-Dimensional Networks.

    PubMed

    Tabor, Daniel P; Kusaka, Ryoji; Walsh, Patrick S; Sibert, Edwin L; Zwier, Timothy S

    2015-05-21

    The water hexamer and heptamer are the smallest sized water clusters that support three-dimensional hydrogen-bonded networks, with several competing structures that could be altered by interactions with a solute. Using infrared-ultraviolet double resonance spectroscopy, we record isomer-specific OH stretch infrared spectra of gas-phase benzene-(H2O)(6,7) clusters that demonstrate benzene's surprising role in reshaping (H2O)(6,7). The single observed isomer of benzene-(H2O)6 incorporates an inverted book structure rather than the cage or prism. The main conformer of benzene-(H2O)7 is an inserted-cubic structure in which benzene replaces one water molecule in the S4-symmetry cube of the water octamer, inserting itself into the water cluster by engaging as a π H-bond acceptor with one water and via C-H···O donor interactions with two others. The corresponding D(2d)-symmetry inserted-cube structure is not observed, consistent with the calculated energetic preference for the S4 over the D(2d) inserted cube. A reduced-dimension model that incorporates stretch-bend Fermi resonance accounts for the spectra in detail and sheds light on the hydrogen-bonding networks themselves and on the perturbations imposed on them by benzene.

  14. Benzene and childhood acute leukemia in Oklahoma.

    PubMed

    Janitz, Amanda E; Campbell, Janis E; Magzamen, Sheryl; Pate, Anne; Stoner, Julie A; Peck, Jennifer D

    2017-10-01

    Although childhood cancer is a leading cause of childhood mortality in the US, evidence regarding the etiology is lacking. The goal of this study was to evaluate the association between benzene, a known carcinogen, and childhood acute leukemia. We conducted a case-control study including cases diagnosed with acute leukemia between 1997 and 2012 (n = 307) from the Oklahoma Central Cancer Registry and controls matched on week of birth from birth certificates (n = 1013). We used conditional logistic regression to evaluate the association between benzene, measured with the 2005 National-Scale Air Toxics Assessment (NATA) at census tract of the birth residence, and childhood acute leukemia. We observed no differences in benzene exposure overall between cases and controls. However, when stratified by year of birth, cases born from 2005 to 2010 had a three-fold increased unadjusted odds of elevated exposure compared to controls born in this same time period (4th Quartile OR: 3.53, 95% CI: 1.35, 9.27). Furthermore, the estimates for children with acute myeloid leukemia (AML) were stronger than those with acute lymphoid leukemia, though not statistically significant. While we did not observe an association between benzene and childhood leukemia overall, our results suggest that acute leukemia is associated with increased benzene exposure among more recent births, and children with AML may have increased benzene exposure at birth. Using the NATA estimates allowed us to assess a specific pollutant at the census tract level, providing an advantage over monitor or point source data. Our study, however, cannot rule out the possibility that benzene may be a marker of other traffic-related exposures and temporal misclassification may explain the lack of an association among earlier births. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol

    NASA Astrophysics Data System (ADS)

    Jha, Omkant; Yadav, T. K.; Yadav, R. A.

    2018-01-01

    Structural and vibrational studies for the most stable conformer of dopamine {4-(2-Aminoethyl) benzene-1, 2-diol} have been carried out at the DFT/B3LYP/6-311 ++G** level using the Gaussian 09 software. The IR and Raman spectra have been recorded and analyzed in light of the computed vibrational parameters using the DFT and the PEDs computed with the help of the GAR2PED software. Some of the fundamentals have considerably changed frequencies in going from benzene to dopamine. Except the rocking and wagging modes of the NH2 group the other four modes are pure group modes. The rocking and wagging modes of the NH2 group show mixing with the other modes. The two Osbnd H stretching vibrations are highly localized modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO study suggests the existence of charge transfer within the molecule and the energy gap supports the pharmacological active property of the dopamine molecule. The NBO analysis has been carried out to understand the proper and improper hydrogen bonding.

  16. Benzene exposure and risk of non-Hodgkin lymphoma.

    PubMed

    Smith, Martyn T; Jones, Rachael M; Smith, Allan H

    2007-03-01

    Exposure to benzene, an important industrial chemical and component of gasoline, is a widely recognized cause of leukemia, but its association with non-Hodgkin lymphoma (NHL) is less clear. To clarify this issue, we undertook a systematic review of all case-control and cohort studies that identified probable occupational exposures to benzene and NHL morbidity or mortality. We identified 43 case-control studies of NHL outcomes that recognized persons with probable occupational exposure to benzene. Forty of these 43 (93%) studies show some elevation of NHL risk, with 23 of 43 (53%) studies finding statistically significant associations between NHL risk and probable benzene exposure. We also identified 26 studies of petroleum refinery workers reporting morbidity or mortality for lymphomas and all neoplasms and found that in 23 (88%), the rate of lymphoma morbidity or mortality was higher than that for all neoplasms. A substantial healthy-worker effect was evident in many of the studies and a comprehensive reevaluation of these studies with appropriate adjustments should be undertaken. Numerous studies have also reported associations between benzene exposure and the induction of lymphomas in mice. Further, because benzene is similar to alkylating drugs and radiation in producing leukemia, it is plausible that it might also produce lymphoma as they do and by similar mechanisms. Potential mechanisms include immunotoxicity and the induction of double-strand breaks with subsequent chromosome damage resulting in translocations and deletions. We conclude that, overall, the evidence supports an association between occupational benzene exposure and NHL.

  17. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  18. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  19. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  20. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  1. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  2. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  3. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  4. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  5. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  6. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  7. Excited state of protonated benzene and toluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves-López, Natalia; Dedonder-Lardeux, Claude; Jouvet, Christophe, E-mail: Christophe.jouvet@univ-amu.fr

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)].

  8. Studies on the mechanism of benzene toxicity.

    PubMed Central

    Snyder, R; Dimitriadis, E; Guy, R; Hu, P; Cooper, K; Bauer, H; Witz, G; Goldstein, B D

    1989-01-01

    Using the 59Fe uptake method of Lee et al. it was shown that erythropoiesis in female mice was inhibited following IP administration of benzene, hydroquinone, p-benzoquinone, and muconaldehyde. Toluene protected against the effects of benzene. Coadministration of phenol plus either hydroquinone or catechol resulted in greatly increased toxicity. The combination of metabolites most effective in reducing iron uptake was hydroquinone plus muconaldehyde. We have also shown that treating animals with benzene leads to the formation of adducts of bone marrow DNA as measured by the 32P-postlabeling technique. PMID:2792049

  9. Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate

    NASA Astrophysics Data System (ADS)

    Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi

    2017-09-01

    Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.

  10. High-resolution imaging of Saturn's main rings during the Cassini Ring-Grazing Orbits and Grand Finale

    NASA Astrophysics Data System (ADS)

    Tiscareno, M. S.

    2017-12-01

    Cassini is ending its spectacular 13-year mission at Saturn with a two-part farewell, during which it has obtained the sharpest and highest-fidelity images ever taken of Saturn's rings. From December 2016 to April 2017, the spacecraft executed 20 near-polar orbits that passed just outside the outer edge of the main rings; these "Ring-Grazing Orbits" provided the mission's best viewing of the A and F rings and the outer B ring. From April to September 2017, the spacecraft is executing 22 near-polar orbits that pass between the innermost D ring and the planet's clouds; this "Grand Finale" provides the mission's best viewing of the C and D rings and the inner B ring. 1) Clumpy BeltsClumpy structure called "straw" was previously observed in parts of the main rings [Porco et al. 2005, Science]. New images show this structure with greater clarity. More surprisingly, new images reveal strong radial variations in the degree and character of clumpiness, which are probably an index for particle properties and interactions. Belts with different clumpiness characteristics are often adjacent to each other and not easily correlated with other ring characteristics. 2) PropellersA "propeller" is a local disturbance in the ring created by an embedded moon [Tiscareno et al. 2006, Nature; 2010, ApJL]. Cassini has observed two classes of propellers: small propellers that swarm in the "Propeller Belts" of the mid-A ring, and "Giant Propellers" whose individual orbits can be tracked in the outer A ring. Both are shown in unprecedented detail in new images. Targeted flybys of Giant Propellers were executed on both the lit and unlit sides of the ring (see figure), yielding enhanced ability to convert brightness to optical depth and surface density. 3) Impact Ejecta CloudsBeing a large and delicate system, Saturn's rings function as a detector of their planetary environment. Cassini images of impact ejecta clouds in the rings previously constrained the population of decimeter

  11. A physically interpretable quantum-theoretic QSAR for some carbonic anhydrase inhibitors with diverse aromatic rings, obtained by a new QSAR procedure.

    PubMed

    Clare, Brian W; Supuran, Claudiu T

    2005-03-15

    A QSAR based almost entirely on quantum theoretically calculated descriptors has been developed for a large and heterogeneous group of aromatic and heteroaromatic carbonic anhydrase inhibitors, using orbital energies, nodal angles, atomic charges, and some other intuitively appealing descriptors. Most calculations have been done at the B3LYP/6-31G* level of theory. For the first time we have treated five-membered rings by the same means that we have used for benzene rings in the past. Our flip regression technique has been expanded to encompass automatic variable selection. The statistical quality of the results, while not equal to those we have had with benzene derivatives, is very good considering the noncongeneric nature of the compounds. The most significant correlation was with charge on the atoms of the sulfonamide group, followed by the nodal orientation and the solvation energy calculated by COSMO and the charge polarization of the molecule calculated as the mean absolute Mulliken charge over all atoms.

  12. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  13. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  14. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  15. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  16. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  17. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  18. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  19. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  20. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  1. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  2. Genotoxic effects of occupational exposure to benzene in gasoline station workers

    PubMed Central

    SALEM, Eman; EL-GARAWANI, Islam; ALLAM, Heba; EL-AAL, Bahiga Abd; HEGAZY, Mofrih

    2017-01-01

    Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability. PMID:29070767

  3. Genotoxic effects of occupational exposure to benzene in gasoline station workers.

    PubMed

    Salem, Eman; El-Garawani, Islam; Allam, Heba; El-Aal, Bahiga Abd; Hegazy, Mofrih

    2018-04-07

    Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.

  4. Benzene waste operations NESHAP. Waiver guidance document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    Subpart FF of 40 CFR Part 61 addresses benzene emissions from waste operations at petroleum refineries, chemical manufacturing plants, coke by-product plants, and waste management units that manage wastes from these facilities. Subpart FF, also known as the benzene waste operations national emission standards for hazardous air pollutants (NESHAP), was amended and published in the Federal Register on January 7, 1993. Facilities unable to comply with the NESHAP by April 7, 1993, may apply for a waiver of compliance for a period that shall not extend beyond January 7, 1995. As a condition of the waiver, facilities will be requiredmore » to mitigate benzene air emissions that result from the delay in compliance with the NESHAP. The document outlines the goals and objectives of the benzene waste NESHAP waiver policy, and provides guidance for preparing, reviewing and evaluating waiver requests.« less

  5. Clinical analysis of 43 cases of chronic benzene poisoning.

    PubMed

    Kuang, Shouren; Liang, Weihui

    2005-05-30

    Benzene can result in bone marrow suppression. Chronic benzene poisoning (CBP) can be found among workers with excessive benzene exposure. CBP could give the appearance of different types of disorders such as leukopenia, agranulocytosis, anemia, pancytopenia, aplastic anemia (AA), myelodysplastic syndrome (MDS), and leukemia. This paper describes 43 CBP cases with the patients' ages ranging from 18 to 36 years (average: 23 years). Among them, 13 (30%) were male and 30 (70%) were female. Their job titles were furniture maker, shoemaker, industrial painter and metal shop worker. Their work durations ranged from 1.5 to 72 months (average: 14 months). Benzene levels in these workplaces exceeded 30 mg/m3. Ten of the 43 cases (23%) were diagnosed as mild cases of CBP, another 10 (23%) were moderate, and 23 (53%) were severe. Treatment for CBP included the following: cessation of benzene exposure, general supportive therapy, antibiotics, vitamins, corticosteroids, androgens, colony-stimulating factors (G-CSF, GM-CSF), blood component therapy, and traditional Chinese medicine. Thirty-three (77%) of the cases recovered completely, nine (21%) cases improved, and one (2%) died. In general, prognosis of CBP cases is optimistic when appropriate treatment is given. However, a few of the benzene-induced AA cases showed no response to treatment, which raises questions about the traditional view of the pathogenesis of the illness. Furthermore, only a part of the population with the same level of benzene exposure would suffer from the disease. Still, CBP cases with the same benzene exposure level exhibited different extents of severity of the illness. This evidence suggests strongly the existence of individual susceptibility. Detection of the biological markers regarding the individual susceptibility would be valuable for screening workers who are not suitable to be exposed to benzene.

  6. Benzene degradation in a denitrifying biofilm reactor: activity and microbial community composition.

    PubMed

    van der Waals, Marcelle J; Atashgahi, Siavash; da Rocha, Ulisses Nunes; van der Zaan, Bas M; Smidt, Hauke; Gerritse, Jan

    2017-06-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 μmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.

  7. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium.

    PubMed Central

    Yadav, J S; Reddy, C A

    1993-01-01

    Degradation of the BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes) group of organopollutants by the white-rot fungus Phanerochaete chrysosporium was studied. Our results show that the organism efficiently degrades all the BTEX components when these compounds are added either individually or as a composite mixture. Degradation was favored under nonligninolytic culture conditions in malt extract medium, in which extracellular lignin peroxidases (LIPs) and manganese-dependent peroxidases (MNPs) are not produced. The noninvolvement of LIPs and MNPs in BTEX degradation was also evident from in vitro studies using concentrated extracellular fluid containing LIPs and MNPs and from a comparison of the extents of BTEX degradation by the wild type and the per mutant, which lacks LIPs and MNPs. A substantially greater extent of degradation of all the BTEX compounds was observed in static than in shaken liquid cultures. Furthermore, the level of degradation was relatively higher at 25 than at 37 degrees C, but pH variations between 4.5 and 7.0 had little effect on the extent of degradation. Studies with uniformly ring-labeled [14C]benzene and [14C]toluene showed substantial mineralization of these compounds to 14CO2. PMID:8481002

  8. Crystal structure of 5,15-bis-(4-methyl-phen-yl)-10,20-bis-(4-nitro-phen-yl)porphyrin nitro-benzene disolvate.

    PubMed

    Baptayev, Bakhytzhan; Adilov, Salimgerey

    2018-01-01

    The whole mol-ecule of the title porphyrin, C 46 H 32 N 6 O 4 ·2C 6 H 5 NO 2 , which crystallized as a nitro-benzene disolvate, is generated by inversion symmetry. The porphyrin macrocycle is almost planar, the maximum deviation from the mean plane of the non-hydrogen atoms is 0.097 (2) Å. The aryl rings at the meso positions are inclined to this mean plane by 74.84 (6)° for the nitro-phenyl rings and 73.37 (7)° for the tolyl rings. In the crystal, the porphyrin mol-ecules are linked by C-H⋯O hydrogen bonds, forming chains along [100]. The solvent mol-ecules are also linked by C-H⋯O hydrogen bonds, forming chains along [100]. Inter-digitation of the p -tolyl groups along the c axis creates rectangular channels in which the solvent mol-ecules are located.

  9. Superconductivity in solid benzene molecular crystal.

    PubMed

    Zhong, Guo-Hua; Yang, Chun-Lei; Chen, Xiao-Jia; Lin, Hai-Qing

    2018-06-20

    Light-element compounds hold great promise of high critical temperature superconductivity judging from the theoretical perspective. A hydrogen-rich material, benzene, is such a kind of candidate but also an organic compound. A series of first-principles calculations are performed on the electronic structures, dynamics properties, and electron-phonon interactions of solid benzene at high pressures. Benzene is found to be dynamically stable in the pressure range of 180-200 GPa and to exhibit superconductivity with a maximum transition temperature of 20 K at 195 GPa. The phonon modes of carbon atoms are identified to mainly contribute to the electron-phonon interactions driving this superconductivity. The predicted superconductivity in this simplest pristine hydrocarbon shows a common feature in aromatic hydrocarbons and also makes it a bridge to organic and hydrogen-rich superconductors.

  10. Superconductivity in solid benzene molecular crystal

    NASA Astrophysics Data System (ADS)

    Zhong, Guo-Hua; Yang, Chun-Lei; Chen, Xiao-Jia; Lin, Hai-Qing

    2018-06-01

    Light-element compounds hold great promise of high critical temperature superconductivity judging from the theoretical perspective. A hydrogen-rich material, benzene, is such a kind of candidate but also an organic compound. A series of first-principles calculations are performed on the electronic structures, dynamics properties, and electron–phonon interactions of solid benzene at high pressures. Benzene is found to be dynamically stable in the pressure range of 180–200 GPa and to exhibit superconductivity with a maximum transition temperature of 20 K at 195 GPa. The phonon modes of carbon atoms are identified to mainly contribute to the electron–phonon interactions driving this superconductivity. The predicted superconductivity in this simplest pristine hydrocarbon shows a common feature in aromatic hydrocarbons and also makes it a bridge to organic and hydrogen-rich superconductors.

  11. Increased leukemia-associated gene expression in benzene-exposed workers

    PubMed Central

    Li, Keqiu; Jing, Yaqing; Yang, Caihong; Liu, Shasha; Zhao, Yuxia; He, Xiaobo; Li, Fei; Han, Jiayi; Li, Guang

    2014-01-01

    Long-term exposure to benzene causes several adverse health effects, including an increased risk of acute myeloid leukemia. This study was to identify genetic alternations involved in pathogenesis of leukemia in benzene-exposed workers without clinical symptoms of leukemia. This study included 33 shoe-factory workers exposed to benzene at levels from 1 ppm to 10 ppm. These workers were divided into 3 groups based on the benzene exposure time, 1- < 7, 7- < 12, and 12- < 24 years. 17 individuals without benzene exposure history were recruited as controls. Cytogenetic analysis using Affymetrix Cytogenetics Array found copy-number variations (CNVs) in several chromosomes of benzene-exposed workers. Expression of targeted genes in these altered chromosomes, NOTCH1 and BSG, which play roles in leukemia pathogenesis, was further examined using real-time PCR. The NOTCH1 mRNA level was significantly increased in all 3 groups of workers, and the NOTCH1 mRNA level in the 12- < 24 years group was significantly higher than that in 1- < 7 and 7- < 12 years groups. Compared to the controls, the BSG mRNA level was significantly increased in 7- < 12 and 12- < 24 years groups, but not in the 1- < 7 years group. These results suggest that CNVs and leukemia-related gene expression might play roles in leukemia development in benzene-exposed workers. PMID:24993241

  12. Environmental and occupational exposure to benzene in Thailand.

    PubMed

    Navasumrit, Panida; Chanvaivit, Sirirat; Intarasunanont, Pornpat; Arayasiri, Manaswee; Lauhareungpanya, Narumon; Parnlob, Varaporn; Settachan, Daam; Ruchirawat, Mathuros

    2005-05-30

    Exposure to benzene in air is a concern in Thailand, particularly since it was observed that the incidence of blood-related cancers, such as leukemia and lymphoma, has increased in the past few decades. In Bangkok, the mean atmospheric levels of benzene on main roads and in schools were 33.71 and 8.25 ppb, respectively, while in gasoline service stations and petrochemical factories the mean ambient levels were 64.78 and 66.24 ppb, respectively. Cloth vendors (22.61 ppb) and grilled-meat vendors (28.19 ppb) working on the roadsides were exposed to significantly higher levels of benzene than the control group (12.95 ppb; p<0.05). Bangkok school children (5.50 ppb) were exposed to significantly higher levels of benzene than provincial school children (2.54 ppb; p<0.01). Factory workers (73.55 ppb) and gasoline service attendants (121.67 ppb) were exposed to significantly higher levels of benzene than control workers (4.77 ppb; p<0.001). In accordance with the increased benzene exposures, levels of urinary trans,trans-muconic acid (MA) were significantly increased in all benzene-exposed groups. In school children, the levels of MA were relatively high, taking into account the much lower level of exposure. Blood benzene levels were also significantly increased in Bangkok school children (77.97 ppt; p<0.01), gasoline service attendants (641.84 ppt; p<0.05) and factory workers (572.61 ppt; p<0.001), when compared with the respective controls. DNA damage, determined as DNA strand breaks, was found to be elevated in gasoline service attendants, petrochemical factory workers, and Bangkok school children (p<0.001). The cytogenetic challenge assay, which measures DNA repair capacity, showed varying levels of significant increases in the numbers of dicentrics and deletions in gasoline service attendants, petrochemical factory workers and Bangkok school children, indicating a decrease in DNA repair capacity in these subjects.

  13. Benzene inhalation effects upon tetanus antitoxin. Responses and leukemogenesis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, R D; Drew, R T; Bernstein, D M

    1980-01-01

    The effects of inhaled benzene on primary and secondary antibody responses and the incidence of leukemia in mice are reported. Young adult mice were given 5, 12, or 22 exposures to 400 ppM benzene for 6 hrs/day 5 days/week. After the exposure periods, the mice were immunized with absorbed tetanus toxoid (APTT) and/or fluid tetanus toxid (FTT). Exposure to benzene increasingly suppressed primary antibody responses to both antigens. Secondary antibody responses to FTT were nearly normal in animals given 10, 15, or 20 exposures to 400 ppM benzene. Other groups of mice were exposed to either 200 ppM or 50more » ppM benzene. Primary antibody responses elicited with FTT and/or APTT were nearly normal in all mice exposed to 50 ppM benzene and in mice exposed to 200 ppM benzene for 5 days. However, 10 and 20 exposures to 200 ppM benzene inhibited antibody production. The effects of chronically inhaled 300 ppM benzene on the time of onset and incidence of leukemia in 400 7-month-old female HRS/J mice were also studied. Two genotypes were used; the (hr/hr) hairless mice are leukemia-prone, whereas the (hr/+) haired mice are more resistant to leukemia. The exposure continued for a period of 6 months. Lymphoid, myeloid, and mixed (lymphoid and myeloid) leukemias were observed. Ninety percent of the (hr/hr) mice exposed to benzene died from leukemia as compared with 91% for the (hr/hr) air control group. Eighty-five percent of the (hr/+) mice exposed to benzene died from leukemia as compared with 81% for the (hr/+) air control group. Exposures to 300 ppM benzene did not alter the time of onset or the incidence of leukemia commonly expected in HRS/J mice.« less

  14. Crystal structure of 1,3-bis­(1H-benzotriazol-1-yl­meth­yl)benzene

    PubMed Central

    Macías, Mario A.; Nuñez-Dallos, Nelson; Hurtado, John; Suescun, Leopoldo

    2016-01-01

    The mol­ecular structure of the title compound, C20H16N6, contains two benzotriazole units bonded to a benzene nucleus in a meta configuration, forming dihedral angles of 88.74 (11) and 85.83 (10)° with the central aromatic ring and 57.08 (9)° with each other. The three-dimensional structure is controlled mainly by weak C—H⋯N and C—H⋯π inter­actions. The mol­ecules are connected in inversion-related pairs, forming the slabs of infinite chains that run along the [-110] and [110] directions. PMID:27308049

  15. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  16. Low-dose metabolism of benzene in humans: science and obfuscation

    PubMed Central

    Rappaport, Stephen M.

    2013-01-01

    Benzene is a ubiquitous air pollutant that causes human leukemia and hematotoxic effects. Although the mechanism by which benzene causes toxicity is unclear, metabolism is required. A series of articles by Kim et al. used air and biomonitoring data from workers in Tianjin, China, to investigate the dose-specific metabolism (DSM) of benzene over a wide range of air concentrations (0.03–88.9 p.p.m.). Kim et al. concluded that DSM of benzene is greatest at air concentrations <1 p.p.m. This provocative finding motivated the American Petroleum Institute to fund a study by Price et al. to reanalyze the original data. Although their formal ‘reanalysis’ reproduced Kim’s finding of enhanced DSM at sub-p.p.m. benzene concentrations, Price et al. argued that Kim’s methods were inappropriate for assigning benzene exposures to low exposed subjects (based on measurements of urinary benzene) and for adjusting background levels of metabolites (based on median values from the 60 lowest exposed subjects). Price et al. then performed uncertainty analyses under alternative approaches, which led them to conclude that ‘… the Tianjin data appear to be too uncertain to support any conclusions …’ regarding the DSM of benzene. They also argued that the apparent low-dose metabolism of benzene could be explained by ‘lung clearance.’ In addressing these criticisms, we show that the methods and arguments presented by Price et al. are scientifically unsound and that their results are unreliable. PMID:23222815

  17. Temporal Variation in the Association between Benzene and Leukemia Mortality

    PubMed Central

    Richardson, David B.

    2008-01-01

    Background Benzene is a human carcinogen. Exposure to benzene occurs in occupational and environmental settings. Objective I evaluated variation in benzene-related leukemia with age at exposure and time since exposure. Methods I evaluated data from a cohort of 1,845 rubber hydrochloride workers. Benzene exposure–leukemia mortality trends were estimated by applying proportional hazards regression methods. Temporal variation in the impact of benzene on leukemia rates was assessed via exposure time windows and fitting of a multistage cancer model. Results The association between leukemia mortality and benzene exposures was of greatest magnitude in the 10 years immediately after exposure [relative rate (RR) at 10 ppm-years = 1.19; 95% confidence interval (CI), 1.10–1.29]; the association was of smaller magnitude in the period 10 to < 20 years after exposure (RR at 10 ppm-years = 1.05; 95% CI, 0.97–1.13); and there was no evidence of association ≥ 20 years after exposure. Leukemia was more strongly associated with benzene exposures accrued at ≥ 45 years of age (RR at 10 ppm-years = 1.11; 95% CI, 1.04–1.17) than with exposures accrued at younger ages (RR at 10 ppm-years = 1.01; 95% CI, 0.92–1.09). Jointly, these temporal effects can be efficiently modeled as a multistage process in which benzene exposure affects the penultimate stage in disease induction. Conclusions Further attention should be given to evaluating the susceptibility of older workers to benzene-induced leukemia. PMID:18335105

  18. [Epidemiological study of cytopenia among benzene-exposed workers and its influential factors].

    PubMed

    Peng, Juan-juan; Liu, Mei-xia; Yang, Feng; Guo, Wei-wei; Zhuang, Ran; Jia, Xian-dong

    2013-03-01

    To evaluate the benzene exposure level and cytopenia among the benzene exposed workers in Shanghai, China and to analyze the influential factors for the health of benzene-exposed workers. A total of 3314 benzene-exposed workers, who were from 85 benzene-related enterprises selected by stratified random sampling based on enterprise sizes and industries, were included in the study. The time-weighted average (TWA) concentration of benzene in each workshop was measured by individual sampling and fixed point sampling, and the benzene exposure level in workshop was evaluated accordingly. The occupational health examination results and health status of benzene-exposed workers were collected. The median of TW A concentrations of benzene was 0.3 mg/m3. The TWA concentrations measured at 7 ( 1.4%) of the 504 sampling points were above the safety limit. Of the 7 points, 3 were from large enterprises, 2 from medium enterprises, and 2 from small enterprises; 3 were from shipbuilding industry, 1 from chemical industry, and 3 from light industry. Of the 3314 benzene-exposed workers, 451 ( 13.6%) had cytopenia, including 339 males ( 339/2548, 13.3%) and 112 females ( 112/766, 14.6% ). There were significant differences in the incidence rates of leukopenia and neutropenia among the benzene-exposed workers of different sexes and ages (P<0.05); there were significant differences in the incidence rate of cytopenia among the benzene-exposed workers of different ages and working years ( P<0.05 ); there were significant differences in the incidence of neutropenia among the benzene exposed workers of different working years ( P<0.05). Monitoring and intervention measures should be enhanced to protect the benzene-exposed workers in the large enterprises in shipbuilding industry and medium and private enterprises in chemical industry from occupational hazards.

  19. A FODO racetrack ring for nuSTORM: design and optimization

    DOE PAGES

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-17

    Here, the goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize themore » arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less

  20. A FODO racetrack ring for nuSTORM: design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-01

    The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arcmore » length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less

  1. Single metal catalysis: DFT and CAS modelling of species involved in the Fe cation assisted transformation of acetylene to benzene

    NASA Astrophysics Data System (ADS)

    Altun, Zikri; Bleda, Erdi; Trindle, Carl

    2017-09-01

    Gas phase conversion of acetylene to benzene, assisted by a single metal cation such as Fe(+), Ru(+) and Rh(+), offers an attractive prospect for application of computational modelling techniques to catalytic processes. Gas phase processes are not complicated by environmental effects and the participation of a single metal atom is a significant simplification. Still the process is complex, owing to the possibility of several low-energy spin states and the abundance of alternative structures. By density functional theory modelling using recently developed models with range and dispersion corrections, we locate and characterise a number of extreme points on the FeC6H6(+) surface, some of which have not been described previously. These include eta-1, eta-2 and eta-3 complexes of Fe(+) with the C4H4 ring. We identify new FeC6H6(+) structures as well, which may be landmarks for the Fe(+)-catalysed production of benzene from acetylene. The Fe(+) benzene complex is the most stable species on the FeC6H6 cation surface. With the abundant energy of complexation available in the isolated gas phase species, detachment of the Fe(+) and production of benzene can be efficient. We address the issue raised by other investigators whether multi-configurational self-consistent field methods are essential to the proper description of these systems. We find that the relative energy of intrinsically multi-determinant doublets is strongly affected, but judge that the density functional theory (DFT) description provides more accurate estimates of energetics and a more plausible reaction path.

  2. Crystal structures of three lead(II) acetate-bridged di-amino-benzene coordination polymers.

    PubMed

    Geiger, David K; Parsons, Dylan E; Zick, Patricia L

    2014-12-01

    Poly[tris-(acetato-κ(2) O,O')(μ2-acetato-κ(3) O,O':O)tetra-kis-(μ3-acetato-κ(4) O,O':O:O')bis-(benzene-1,2-di-amine-κN)tetra-lead(II)], [Pb4(CH3COO)8(C6H8N2)2] n , (I), poly[(acetato-κ(2) O,O')(μ3-acetato-κ(4) O,O':O:O')(4-chloro-benzene-1,2-diamine-κN)lead(II)], [Pb(CH3COO)2(C6H7ClN2)] n , (II), and poly[(κ(2) O,O')(μ3-acetato-κ(4) O,O':O:O')(3,4-di-amino-benzo-nitrile-κN)lead(II)], [Pb(CH3COO)2(C7H7N3)] n , (III), have polymeric structures in which monomeric units are joined by bridging acetate ligands. All of the Pb(II) ions exhibit hemidirected coordination. The repeating unit in (I) is composed of four Pb(II) ions having O6, O6N, O7 and O6N coordination spheres, respectively, where N represents a monodentate benzene-1,2-di-amine ligand and O acetate O atoms. Chains along [010] are joined by bridging acetate ligands to form planes parallel to (10-1). (II) and (III) are isotypic and have one Pb(II) ion in the asymmetric unit that has an O6N coordination sphere. Pb2O2 units result from a symmetry-imposed inversion center. Polymeric chains parallel to [100] exhibit hydrogen bonding between the amine and acetate ligands. In (III), additional hydrogen bonds between cyano groups and non-coordinating amines join the chains by forming R 2 (2)(14) rings.

  3. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-08-01

    The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).

  4. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  5. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  6. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  7. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  8. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  9. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  10. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  11. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  12. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  13. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  14. High-power microwave-induced TM{sub 01} plasma ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schamiloglu, E.; Jordan, R.; Moreland, L.D.

    1996-02-01

    Open-shutter photography was used to capture the air breakdown pattern induced by a TM{sub 01} mode radiated by a high-power backward wave oscillator. The resultant plasma ring was formed in air adjacent to a conical horn antenna fitted with a membrane to keep the experiment under vacuum. This image was digitized and further processed using Khoros 2.0 software to obtain the dimensions of the plasma ring. This information was used in an air breakdown analysis to estimate the radiated power, and agrees within 10% with the power measured using field mapping with an open-ended WR-90 waveguide.

  15. Velocity-dependent emission factors of benzene, toluene and C 2-benzenes of a passenger car equipped with and without a regulated 3-way catalyst

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Forss, Anna-Maria; Bach, Christian; Mattrel, Peter

    Time-resolved chemical ionization mass spectrometry (CI-MS) has been used to investigate the velocity-dependent emission factors for benzene, toluene, the C 2-benzenes (xylenes and ethyl benzene) and nitrogen monoxide of a gasoline-driven passenger car (1.4 l, model year 1995) driven with or without catalytic exhaust gas treatment. A set of seven different driving cycles - including the European Driving Cycle (EDC), the US Urban (FTP 75) and the Highway driving cycles - with a total driving time of 12,000 s have been studied. From the obtained emission data, two sets of 15,300 and 17,200 data points which represent transient driving in the velocity range of 0-150 km h -1 and in an acceleration window of -2-3 m s -2 were explored to gain velocity-dependent emission factors. The passenger car, equipped with a regulated rhodium-platinum based three-way catalyst, showed optimal conversion efficiency (>95%) for benzene in the velocity range of 60-120 km h -1. The conversion of benzene was reduced (<80%) when driving below 50 km h -1 and the BTXE emissions significantly increased when driven at higher speed and engine load (>130 km h -1). Whereas the conversion efficiency for the class of C 2-benzenes was reduced to 10%, no net conversion could be found for toluene and benzene when driven above 130 km h -1. In contrast, the benzene and toluene emissions exceeded those of the untreated exhaust gas in the velocity range of 130-150 km h -1 by 50-92% and by 10-34%, respectively. Thus, benzene and toluene were formed across the examined three-way catalyst if the engine is operated for an extended time in a fuel-rich mode (lambda<1).

  16. Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.

    PubMed

    Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B

    2017-02-15

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP 22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin

  17. Biomonitoring of gasoline station attendants exposed to benzene: Effect of gender.

    PubMed

    Moro, Angela M; Brucker, Natália; Charão, Mariele F; Baierle, Marília; Sauer, Elisa; Goethel, Gabriela; Barth, Anelise; Nascimento, Sabrina N; Gauer, Bruna; Durgante, Juliano; Amaral, Beatriz S; Neto, Francisco R A; Gioda, Adriana; Garcia, Solange C

    2017-01-01

    Women are employed in increasing numbers as gasoline station attendants, a work category with risk of exposure to benzene. We have assessed the effect of gender on biomarkers of occupational benzene exposure. Gasoline station attendants (20 men and 20 women) and 40 control individuals (20 men and 20 women) with no history of occupational benzene exposure were evaluated. Benzene exposure was monitoring by environmental and biological measurements. Urinary trans,trans-muconic acid levels, well-known genetic and hematological alterations linked to benzene exposure, and non-cancer effects on the immune, hepatic, and renal systems were investigated. Our results suggest a potential effect of gender on some effects of occupational benzene exposure, particularly the hematological parameters and trans,trans-muconic acid levels. Despite limitations of our study, our findings provide important considerations about occupational exposure of women to benzene and may contribute to the development of occupational protection standards. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  19. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  20. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  1. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  2. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  3. Biological monitoring of workers exposed to benzene in the coke oven industry.

    PubMed Central

    Drummond, L; Luck, R; Afacan, A S; Wilson, H K

    1988-01-01

    Workers in the coke oven industry are potentially exposed to low concentrations of benzene. There is a need to establish a well validated biological monitoring procedure for low level benzene exposure. The use of breath and blood benzene and urinary phenol has been explored in conjunction with personal monitoring data. At exposures of about 1 ppm benzene, urinary phenol is of no value as an indicator of uptake/exposure. Benzene in blood was measured by head space gas chromatography but the concentrations were only just above the detection limit. The determination of breath benzene collected before the next shift is non-specific in the case of smokers. The most useful monitor at low concentrations appears to be breath benzene measured at the end-of-shift. PMID:3378002

  4. Environmental and biological monitoring of benzene during self-service automobile refueling.

    PubMed Central

    Egeghy, P P; Tornero-Velez, R; Rappaport, S M

    2000-01-01

    Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (SD = 5.8 mg/m(3); median duration = 3 min) with a range of < 0.076-36 mg/m(3), and postexposure breath levels averaged 160 microg/m(3) (SD = 260 microg/m(3)) with a range of < 3.2-1,400 microg/m(3). Log-transformed exposures and breath levels were significantly correlated (r = 0.77, p < 0.0001). We used mixed-effects statistical models to gauge the relative influences of environmental and subject-specific factors on benzene exposure and breath levels and to investigate the importance of various covariates obtained by questionnaire. Model fitting yielded three significant predictors of benzene exposure, namely, fuel octane grade (p = 0.0011), duration of exposure (p = 0.0054), and season of the year (p = 0.032). Likewise, another model yielded three significant predictors of benzene concentration in breath, specifically, benzene exposure (p = 0.0001), preexposure breath concentration (p = 0.0008), and duration of exposure (p = 0.038). Variability in benzene concentrations was remarkable, with 95% of the estimated values falling within a 274-fold range, and was comprised entirely of the within-person component of variance (representing exposures of the same subject at different times of refueling). The corresponding range for benzene concentrations in breath was 41-fold and was comprised primarily of the within-person variance component (74% of the total variance). Our results indicate that environmental rather than interindividual differences are primarily responsible for

  5. Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol].

    PubMed

    Jha, Omkant; Yadav, T K; Yadav, R A

    2018-01-15

    Structural and vibrational studies for the most stable conformer of dopamine {4-(2-Aminoethyl) benzene-1, 2-diol} have been carried out at the DFT/B3LYP/6-311++G** level using the Gaussian 09 software. The IR and Raman spectra have been recorded and analyzed in light of the computed vibrational parameters using the DFT and the PEDs computed with the help of the GAR2PED software. Some of the fundamentals have considerably changed frequencies in going from benzene to dopamine. Except the rocking and wagging modes of the NH 2 group the other four modes are pure group modes. The rocking and wagging modes of the NH 2 group show mixing with the other modes. The two OH stretching vibrations are highly localized modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO study suggests the existence of charge transfer within the molecule and the energy gap supports the pharmacological active property of the dopamine molecule. The NBO analysis has been carried out to understand the proper and improper hydrogen bonding. Copyright © 2017. Published by Elsevier B.V.

  6. Hexa-μ-chlorido-hexa­chlorido(η6-hexa­methyl­benzene)trialuminium(III)lanthanum(III) benzene solvate

    PubMed Central

    Filatov, Alexander S.; Gifford, Sarah N.; Kumar, D. Krishna; Petrukhina, Marina A.

    2009-01-01

    In the title compound, [Al3LaCl12(C12H18)]·C6H6, all mol­ecules are located on a mirror plane. Three chloridoaluminate groups and a hexa­methyl­benzene mol­ecule are bound to the central lanthanum(III) ion, forming a distorted penta­gonal bipyramid with the η6-coordinated arene located at the apical position. The hexa­methyl­benzene ligand disordered between two orientations in a 1:1 ratio is also involved in parallel-slipped π–π stacking inter­molecular inter­actions with a benzene solvent mol­ecule [centroid–centroid distance 3.612 (4) Å]. PMID:21582071

  7. Residual toxicity after biodegradation: interactions among benzene, toluene, and chloroform.

    PubMed

    da Silva Nunes-Halldorson, Vânia; Steiner, Robert L; Smith, Geoffrey B

    2004-02-01

    A microbial enrichment originating from a pristine aquifer was found to aerobically biodegrade benzene and toluene, but not chloroform. This enrichment culture was used to study changes in pollutant toxicity as affected by biodegradative activity. Two assays for toxicity were used: (1) a 48-h acute toxicity test using the freshwater invertebrate Ceriodaphnia dubia and (2) microbial biodegradation activity as affected by the presence of mixed pollutants. At 20-ppm concentrations, toluene was significantly more toxic (99% mortality) to C. dubia than benzene (48% mortality) or chloroform (40% mortality). Also at 20-ppm concentrations, but before biodegradation, toluene was significantly more toxic (88% mortality) to C. dubia than benzene (33% mortality). After biodegradation of 98% of toluene and benzene, significant residual toxicity still remained in the bacterial supernatant: toluene-degraded supernatant caused 33% mortality in C. dubia and benzene-degraded supernatant caused 24% mortality. In the second toxicity assay, examining the effect of mixed pollutants on biodegradation activity, the presence of benzene slowed the biodegradation of toluene, but chloroform had no effect on either benzene or toluene biodegradation. Results indicate that significant toxicity remain after biodegradation and that halogenated aliphatic hydrocarbons may have little or no effect on aromatic hydrocarbon biodegradation at sites impacted by mixed pollutants.

  8. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1,4-Benzoquinone).

    PubMed

    Chen, Yujiao; Sun, Pengling; Bai, Wenlin; Gao, Ai

    2016-11-15

    Benzene is an environmental and industrial chemical which is widely utilized in various applications. Our previous study showed that miR-133a expression was down-regulated in chronic benzene poisoning workers, but the mechanism of miR-133a in benzene-induced hematotoxicity remains unclear. In this population-based study, benzene-exposed group recruited workers whose concentration of air benzene was 3.50±1.60mg/m(3), and control workers who were exposed to 0.06±0.01mg/m(3) air benzene. By comparison, Caspase-9 and Caspase-3 was up-regulated while miR-133a expression decreased in benzene-exposed workers. Pearson correlation analysis showed that miR-133a was reversely correlated with pro-apoptotic gene Caspase-9 in population-based study. Moreover, multiple linear regressions indicated that miR-133a was positively associated with blood cells count. To explore the underlying mechanism of miR-133a in benzene-induced hematotoxicity, AO/EB staining and TEM ultrastructural analysis were conducted to verify the activation of apoptosis in Human Leukemic U937 Cells induced by benzene metabolites (1,4-Benzoquinone, 1,4-BQ), while the mechanism of miR-133a in 1,4-BQ-induced apoptosis was performed using lentivirus vectors transfection. The results demonstrated that 1,4-BQ evidently induced mitochondria-mediated apoptosis and increased pro-apoptotic genes (Caspase-9 and Caspase-3) expression in a dose-dependent manner. The mechanistic study showed 1,4-BQ decreased miR-133a expression and miR-133a over-expression attenuated 1, 4-BQ-caused upregulation of Caspase-9, Caspase-3 and apoptosis. In conclusion, our research suggested that benzene induced hematotoxicity by decreasing miR-133a and caspase-dependent apoptosis which might contribute to the underlying mechanism of miR-133a in benzene-induced hematotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN P-10-76...

  10. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN P-10-76...

  11. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN P-10-76...

  12. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  13. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  14. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  15. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  16. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  17. Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Forss, Anna-Maria; Saxer, Christian J.; Wilhelm, Patrick

    The US urban driving cycle (FTP-75) is widely used to estimate both the emissions under hot engine conditions as well as those associated with the cold start. Applying fast analysis techniques such as chemical ionization mass spectrometry (CI-MS) the warm-up behavior of individual vehicles can be monitored at a time resolution of 1 s. CI-MS has been used to investigate the emissions of methane, benzene and the alkyl benzene class of compounds. The amount of the emissions at cold start influence was deduced from the time-resolved emission data of four gasoline-driven vehicle classes representing the vehicle technology of the last two decades. Overall, the emissions of five EURO-0, 20 EURO-1, 18 EURO-2 and so far of six EURO-3 passenger cars were recorded. The test vehicles were selected from the currently operating Swiss car fleet based on the car sales statistics. The average methane, benzene and alkyl benzene cold start emissions are reported using both, the traditional bag method as well as the regression model. At room temperature a clear reduction of 94%, 81% and 85% was found for the methane, benzene and alkyl benzene cold start emissions from EURO-0 to EURO-3 technology, respectively.

  18. Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.

    PubMed

    Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F

    2010-12-01

    Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.

  19. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  20. Carcinogenic Effects of Benzene: An Update (Draft Report)

    EPA Science Inventory

    The major issue addressed in this document involves the nature and magnitude of the risk of cancer to humans exposed to low levels of benzene. Occupational studies continue to provide the bulk of evidence of benzenes carcinogenicity. Workers are exposed at much higher levels than...

  1. Dehydrogenation of benzene on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  2. Hydrogen bonding in the benzene-ammonia dimer

    NASA Technical Reports Server (NTRS)

    Rodham, David A.; Suzuki, Sakae; Suenram, Richard D.; Lovas, Frank J.; Dasgupta, Siddharth; Goddard, William A., III; Blake, Geoffrey A.

    1993-01-01

    High-resolution optical and microwave spectra of the gas-phase benzene-ammonia dimer were obtained, showing that the ammonia molecule resides above the benzene plane and undergoes free, or nearly free, internal rotation. To estimate the binding energy (De) and other global properties of the intermolecular potential, theoretical calculations were performed for the benzene-ammonia dimer, using the Gaussian 92 (Fritsch, 1992) program at the MP2/6-31G** level. The predicted De was found to be at the lowest end of the range commonly accepted for hydrogen bonding and considerably below that of C6H6-H2O, consistent with the gas-phase acidities of ammonia and water. The observed geometry greatly resembles the amino-aromatic interaction found naturally in proteins.

  3. Dehydrogenation of benzene on Pt(111) surface.

    PubMed

    Gao, W; Zheng, W T; Jiang, Q

    2008-10-28

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  4. Biodegradation of Benzene by Halophilic and Halotolerant Bacteria under Aerobic Conditions

    PubMed Central

    A. Nicholson, Carla; Z. Fathepure, Babu

    2004-01-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment. PMID:14766609

  5. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions.

    PubMed

    Nicholson, Carla A; Fathepure, Babu Z

    2004-02-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment.

  6. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  7. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  8. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  9. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  10. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  11. UV spectral shift of benzene in sub- and supercritical water

    NASA Astrophysics Data System (ADS)

    Kometani, Noritsugu; Takemiya, Koji; Yonezawa, Yoshiro; Amita, Fujitsugu; Kajimoto, Okitsugu

    2004-08-01

    UV absorption spectra of benzene have been measured over the wide range of temperature and pressure from the ambient state to the supercritical state ( T = 400 °C and P = 40 MPa). The analysis of the spectral shift of benzene in water relative to that in the gas indicates that at T = 380 and 390 °C the local solvent density around benzene is likely to be depressed below the bulk density for densities near the critical density. It is found that π-hydrogen bond between benzene and water becomes evident with lowering temperature below T = 340 °C.

  12. A novel low-temperature dendritic cyclotrimerization of 2,6-diacetyl pyridine leading to mesoporous carbon containing pyridine rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Yongsoon; Wang, Chong M.; Engelhard, Mark H.

    2009-07-01

    A simple, direct synthesis of a mesoporous carbon containing pyridine rings is described. This synthesis utilizes the SiCl4 induced cyclotrimerization of 2,6-diacetylpyridine to make a dendritic polymer, built of alternating benzene and pyridine rings. The cyclotrimerization allows for a high degree of crosslinking to take place at low temperatures stabilizing the mesostructure and allowing the carbonization to be carried out at only 600°C, the lowest temperature reported to date for an N-doped mesoporous carbon. The functional mesoporous carbon so formed was found to have a surface area of 1275 m2/g, 35Å pores, and contain 6.8% N.

  13. Experimental Observations of Vortex Ring Interaction with the Fluid Adjacent to a Surface.

    DTIC Science & Technology

    1983-10-01

    minute. The water enters the inlet tank from a distribution manifold pipe and rises vertically through a 15 cm. thick plastic sponge. The flow then passes...parts exposed to water are made from PVC plastic to resist corrosion. The generator was designed to have interchangeable parts which allow the generation...of vortex rings over a range of caracteristics . The motor speed is continuously variable up to a speed of 7400 rpm. Cams with stroke lengths of 0.64

  14. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  15. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  16. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  17. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  18. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  19. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  20. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  1. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  2. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  3. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    PubMed

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  4. Distribution and growth of salps in a Kuroshio warm-core ring during summer 1987

    NASA Astrophysics Data System (ADS)

    Tsuda, Atsushi; Nemoto, Takahisa

    1992-03-01

    A salp bloom, accounting for 47% of the macrozooplankton wet weight in the upper 200 m, was observed in a Kuroshio warm-core ring and adjacent areas during September 1987. Although salps had wide distribution and high biomass in the ring and adjacent southern areas, they did not occur north of the northern ring front. Thalia democratica dominated in these areas and Salpa fusiformis was abundant at some stations. Salps were distributed only in the upper 200 m of the water column. The maximum abundance of T. democratica was in the surface mixed layer, 0-20 m. S. fusiformis was most abundant from 50 to 75 m. Diel vertical migration was observed only for solitary zooids of S. fusiformis. All other salps appeared only on the surface. The growth of aggregate zooids of T. democratica was investigated with the time-series sampling during a 28-h sampling period following a drifter. Several cohorts were identified in the length-frequency distributions. The average relative growth rate in length was 8.0% per hour. Carbon consumption by the T. democratica population, calculated from the derived growth rate, suggested that T. democratica was a major consumer of the primary production in the ring.

  5. An analysis of violations of Osha's (1987) occupational exposure to benzene standard.

    PubMed

    Williams, Pamela R D

    2014-01-01

    The Occupational Safety and Health Administration (OSHA), which was formed by the Occupational Safety and Health Act of 1970 (OSH Act), establishes enforceable health and safety standards in the workplace and issues violations and penalties for non-compliance with these standards. The purpose of the current study was to evaluate the number and type of violations of the OSHA (1987) Occupational Exposure to Benzene Standard. Violations of the OSHA Hazard Communication Standard (HCS), particularly those that may pertain to specific provisions of the benzene standard, were also assessed. All analyses were based on OSHA inspection data that have been collected since the early 1970s and that are publicly available from the U.S. Department of Labor enforcement website. Analysis of these data shows that fewer than a thousand OSHA violations of the benzene standard have been issued over the last 25+ years. The results for benzene are in contrast to those for some other toxic and hazardous substances that are regulated by OSHA, such as blood-borne pathogens, lead, and asbestos, for which there have been issued tens of thousands of OSHA violations. The number of benzene standard violations also varies by time period, standard provision, industry sector, and other factors. In particular, the greatest number of benzene standard violations occurred during the late 1980s to early/mid 1990s, soon after the 1987 final benzene rule was promulgated. The majority of benzene standard violations also pertain to noncompliance with specific provisions and subprovisions of the standard dealing with initial exposure monitoring requirements, the communication of hazards to employees, and medical surveillance programs. Only a small fraction of HCS violations are attributed, at least in part, to potential benzene hazards in the workplace. In addition, most benzene standard violations are associated with specific industries within the manufacturing sector where benzene or benzene

  6. Comparative study of charge division in substituted benzene cations

    NASA Astrophysics Data System (ADS)

    Lee, Kang Taek; Sung, Jiha; Lee, Kwang Jun; Kim, Hyung Min; Han, Kyu Young; Park, Young Dong; Kim, Seong Keun

    2007-06-01

    A recently proposed phenomenon of charge division in a molecular cation [K. T. Lee et al., J. Am. Chem. Soc. 129, 2588 (2007)] was examined in a number of molecules by experiment and theory. We investigated the spatial distribution of electrostatic charge in the cation of the following benzene derivatives: n-propylbenzene (PB), 3-phenylpropionic acid (PPA), 2-phenylethyl alcohol (PEAL), and 2-phenylethylamine (PEA). A density functional theory calculation indicated that the positive charge was divided into two cationic charge cores in both conformers of PEA+, while it is localized mainly on the phenyl group in PB+, PPA+, and PEAL+. This finding was experimentally verified by the characteristic range of electronic transition of these species reflected in the fragmentation pattern of the mass spectra. The degree of charge division in PEA+ was slightly less than in the cationic conformers of L-phenylalanine in its subgroup II. The charge distribution in a phenyl-containing cation is suggested to depend on whether there exists a functional group that can act as a competing charge core against the phenyl ring.

  7. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    PubMed

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Stochastic resonance algorithm applied to quantitative analysis for weak chromatographic signals of alkyl halides and alkyl benzenes in water samples.

    PubMed

    Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai

    2009-09-01

    The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.

  9. Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-03-01

    The interactions between vortex tubes and magnetic-flux rings in incompressible magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, which are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, which have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields, are also indicated.

  10. [Factors affecting benzene diffusion from contaminated soils to the atmosphere and flux characteristics].

    PubMed

    Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng

    2013-12-01

    The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.

  11. Stereodynamics and edge-to-face CH-π aromatic interactions in imino compounds containing heterocyclic rings.

    PubMed

    González-Rosende, M Eugenia; Castillo, Encarna; Jennings, W Brian; Malone, John F

    2017-02-07

    By comparison with close contact interactions between benzene rings there is a paucity of experimental data available for attractive interactions involving aromatic heterocyclic rings, especially for small molecules in solution. Herein we describe aromatic heterocyclic and carbocyclic edge-to face interactions and conformational stereodynamics of N-1,2-diphenylethyl imines bearing a phenyl group and either a 2-pyridyl, 3-pyridyl, 2-thiophene or 2-furanyl moiety on the imino carbon. X-ray crystal structures have been determined for two compounds. Slow rotation about the phenyl-imino bond in the E-isomers and around the heterocycle-imino bond in the Z-isomers of the pyridyl compounds was observed at low temperatures by NMR. Abnormally large shielding of one ortho hydrogen indicates that both the imino phenyl and heterocycle rings can engage in an edge-to-face interaction with the N-terminal phenyl moiety in the appropriate isomer. Some rotational barriers around the phenyl-imino and heterocycle-imino bonds were measured.

  12. Peer Review Comments on the IRIS Assessment of Benzene

    EPA Pesticide Factsheets

    Attachment to IRIS file for benzene, January 19, 2000, RESPONSE TO THE PEER REVIEW COMMENTS, II. Extrapolation of the Benzene Inhalation Unit Risk Estimate to the Oral Route of Exposure (EPA/NCEA-W-0517, July 1999)

  13. Benzene exposure: An overview of monitoring methods and their findings

    PubMed Central

    Weisel, Clifford P.

    2014-01-01

    Benzene has been measured throughout the environment and is commonly emitted in several industrial and transportation settings leading to widespread environmental and occupational exposures. Inhalation is the most common exposure route but benzene rapidly penetrates the skin and can contaminant water and food resulting in dermal and ingestion exposures. While less toxic solvents have been substituted for benzene, it still is a component of petroleum products, including gasoline, and is a trace impurity in industrial products resulting in continued sub to low ppm occupational exposures, though higher exposures exist in small, uncontrolled workshops in developing countries. Emissions from gasoline/petrochemical industry are its main sources to the ambient air, but a person’s total inhalation exposure can be elevated from emissions from cigarettes, consumer products and gasoline powered engines/tools stored in garages attached to homes. Air samples are collected in canisters or on adsorbent with subsequent quantification by gas chromatography. Ambient air concentrations vary from sub-ppb range, low ppb, and tens of ppb in rural/suburban, urban, and source impacted areas, respectively. Short-term environmental exposures of ppm occur during vehicle fueling. Indoor air concentrations of tens of ppb occur in microenvironments containing indoor sources. Occupational and environmental exposures have declined where regulations limit benzene in gasoline (<1%) and cigarette smoking has been banned from public and work places. Similar controls should be implemented worldwide to reduce benzene exposure. Biomarkers of benzene used to estimate exposure and risk include: benzene in breath, blood and urine; its urinary metabolites: phenol, t,t-muconic acid (t,tMA) and S-phenylmercapturic acid (sPMA); and blood protein adducts. The biomarker studies suggest benzene environmental exposures are in the sub to low ppb range though non-benzene sources for urinary metabolites

  14. N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-meth­oxy­benzene­sulfonamide hemi­hydrate

    PubMed Central

    Chicha, Hakima; Kouakou, Assoman; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The fused five- and six-membered rings in the title compound, C17H16ClN3O3S·0.5H2O, are practically coplanar, with the maximum deviation from the mean plane being 0.057 (3) Å for the C atom bound to the exocyclic N atom. The indazole system makes a dihedral angle of 66.18 (12)° with the plane through the benzene ring, and it is nearly perpendicular to the allyl group, as indicated by the N—N—C—C torsion angle of 79.2 (3)°. In the crystal, the water mol­ecule, lying on a twofold axis, forms O—H⋯N and accepts N—H⋯O hydrogen bonds. Additional C—H⋯O hydrogen bonds contribute to the formation of a chain along the b-axis direction. PMID:24109418

  15. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE AND 1,4-BENZOQUINONE AFTER ADMINISTRATION OF BENZENE TO F344 RATS

    EPA Science Inventory

    The stability of cysteinyl adducts of benzene oxide (BO) and mono-S-substituted cysteinyl adducts of 1,4-benzoquinone (1,4-BQ) was investigated in both hemoglobin (Hb) and albumin (Alb) following administration of a single oral dose of 400 mg [U-14C/13C6]benzene/kg body weight ...

  16. Establishment of a Methanogenic Benzene-Degrading Culture and its Implication in Bioremediation

    NASA Astrophysics Data System (ADS)

    Qiao, W.; Luo, F.; Bawa, N.; Guo, S.; Ye, S.; Edwards, E.

    2017-12-01

    Benzene is a known human carcinogen and it is a common pollutant in groundwater, mainly resulting from petrochemical industry. Anaerobic degradation of benzene has significant advantages over aerobic processes for in situ bioremediation. In this study, new methanogenic and sulfate-reducing benzene degrading cultures have been enriched. Microbial community composition was characterized with two other previously established benzene-degrading cultures, and their potential use in bioaugmentation is investigated. In this study, a lab microcosm study was conducted anaerobically with contaminated soil and groundwater from a former chemical plant. Benzene degradation was observed in the presence of co-contaminants and electron donor. Through repetitive amendment of benzene, two enrichment cultures have been developed under sulfate and methanogenic conditions. Results from DNA amplicon sequencing and qPCR analysis revealed that an organism similar to previously described benzene-degrading Deltaproteobacterium has been enriched. The microbial community of this culture was compared with other two methanogenic benzene-degrading enrichment cultures that were derived from an oil refinery and a decommissioned gasoline station, and have been maintained for decades. Deltaproteobacterium ORM2-like microbes were dominate in all enrichment cultures, which brought to light benzene-degrading microbes, ORM2 were enriched under different geological conditions distributed around the world. The relative abundance of methanogens was much lower compared to previously established cultures, although substantial amount of methane was produced. The peripheral organisms also vary. To investigate effectiveness of using ORM2-dominant enrichment cultures in bioremediation, microcosm studies were set up using contaminated materials, and a ORM2-dominating methanogenic benzene-degrading culture was used for bioaugmentation. Results revealed that benzene degradation was speeded up under methanogenic or

  17. Crystal structure of 3-(adamantan-1-yl)-4-(4-chloro-phen-yl)-1H-1,2,4-triazole-5(4H)-thione.

    PubMed

    Al-Wabli, Reem I; El-Emam, Ali A; Alroqi, Obaid S; Chidan Kumar, C S; Fun, Hoong-Kun

    2015-02-01

    The title compound, C18H20ClN3S, is a functionalized triazoline-3-thione derivative. The benzene ring is almost perpendic-ular to the planar 1,2,4-triazole ring [maximum deviation = 0.007 (1) Å] with a dihedral angle of 89.61 (5)° between them and there is an adamantane substituent at the 3-position of the triazole-thione ring. In the crystal, N-H⋯S hydrogen-bonding inter-actions link the mol-ecules into chains extending along the c-axis direction. The crystal packing is further stabilized by weak C-H⋯π inter-actions that link adjacent chains into a two-dimensional structure in the bc plane. The crystal studied was an inversion twin with a 0.50 (3):0.50 (3) domain ratio.

  18. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    PubMed

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1). © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P.

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (Cmore » 2H 2) n +, just like ionized acetylene clusters. The fragmentation products result from reactive ion- molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C 4H 4 + and C 6H 6 + structures solvated with one or more neutral acetylene molecules. Such species contain large amounts ( > 2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C 2H 2) n + isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C 6H 6 + isomers. Lastly, these results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.« less

  20. Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation

    PubMed Central

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P.; Fang, Yigang; Kostko, Oleg

    2017-01-01

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2)n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM. PMID:28484019

  1. Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation.

    PubMed

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P; Fang, Yigang; Kostko, Oleg; Ahmed, Musahid; Head-Gordon, Martin

    2017-05-23

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C 2 H 2 ) n + , just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C 4 H 4 + and C 6 H 6 + structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C 2 H 2 ) n + isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C 6 H 6 + isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.

  2. Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation

    DOE PAGES

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P.; ...

    2017-05-08

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (Cmore » 2H 2) n +, just like ionized acetylene clusters. The fragmentation products result from reactive ion- molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C 4H 4 + and C 6H 6 + structures solvated with one or more neutral acetylene molecules. Such species contain large amounts ( > 2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C 2H 2) n + isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C 6H 6 + isomers. Lastly, these results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.« less

  3. [Myelofibrosis in a benzene-exposed cleaning worker].

    PubMed

    Bausà, Roser; Navarro, Lydia; Cortès-Franch, Imma

    Long-term exposure to benzene has been associated with several blood malignancies, including aplastic anemia, myeloproliferative neoplasms, and different leukemias. We present a case of primary myelofibrosis in a 59-year-old woman who worked as a cleaner at a car dealership and automobile mechanic shop. For 25 years, she used gasoline as a degreaser and solvent to clean engine parts, floors and work desks on a daily basis. She was referred by her primary care provider to the Occupational Health Unit of Barcelona to assess whether her illness was work-related. Review of her job history and working conditions revealed chronic exposure to benzene in the absence of adequate preventive measures. An association between benzene exposure and myeloproliferative disease was established, suspicious for an occupational disease. Copyright belongs to the Societat Catalana de Salut Laboral.

  4. Mesoporous poly(ionic liquid) supported palladium(II) catalyst for oxidative coupling of benzene under atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Liu, Yangqing; Wang, Kai; Hou, Wei; Shan, Wanjian; Li, Jing; Zhou, Yu; Wang, Jun

    2018-01-01

    Multi-functional mesoporous poly(ionic liquid) (MPIL) containing pyridine-based ionic liquid (IL) moieties and adjacent double sbnd COOH groups was synthesized through the free radical copolymerization of IL monomer N-propane sulfonate-4-vinylpyridine, maleic anhydride and divinylbenzene. Palladium(II) species were anchored on this MPIL support, affording the first efficient heterogeneous catalyst for the oxidative coupling of benzene to biphenyl under atmospheric oxygen at low temperature. The biphenyl yield of 15.0% (selectivity: 98.5%, turnover number: 62) was even higher than the one over the homogeneous counterpart palladium acetate. The catalyst can be facilely separated and reused. The IL moiety in the polymeric framework endowed the formation of immobilized palladium(II) species with high electrophilicity, which responds to the high performance.

  5. Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity.

    PubMed

    Zheng, Min; Lin, Feiliang; Hou, Fenxia; Li, Guilan; Zhu, Caiying; Xu, Peiyu; Xing, Caihong; Wang, Qianfei

    2017-08-16

    Benzene is a primary industrial chemical and a ubiquitous environmental pollutant. ERCC3 is a key player in nucleotide excision repair. Recent studies suggested that site-specific methylation is a possible mechanism of the transcriptional dysregulation by blocking transcription factors binding. We previously found that the average promoter methylation level of ERCC3 was increased in benzene-exposed workers. In order to test whether specific CpG sites of ERCC3 play an important role in benzene-induced epigenetic changes and whether the specific methylation patterns are associated with benzene hematotoxicity, we analyzed the promoter methylation levels of individual CpG sites, transcription factor binding motif and the correlation between aberrant CpG methylation and hematotoxicity in 76 benzene-exposed workers and 24 unexposed controls in China. Out of all the CpGs analyzed, two CpG units located 43 bp upstream and 99 bp downstream of the transcription start site of ERCC3 (CpG 2-4 and CpG 17-18, respectively), showed the most pronounced increase in methylation levels in benzene-exposed workers, compared with unexposed controls (Mean ± SD: 5.86 ± 2.77% vs. 4.92 ± 1.53%, p = 0.032; 8.45 ± 4.09% vs. 6.79 ± 2.50%, p = 0.024, respectively). Using the JASPAR CORE Database, we found that CpG 2-4 and CpG 17-18 were bound by three putative transcription factors (TFAP2A, E2F4 and MZF1). Furthermore, the methylation levels for CpG 2-4 were correlated negatively with the percentage of neutrophils ( β = -0.676, p = 0.005) in benzene-exposed workers. This study demonstrates that CpG-specific DNA methylation in the ERCC3 promoter region may be involved in benzene-induced epigenetic modification and it may contribute to benzene-induced hematotoxicity.

  6. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  7. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  8. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  9. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  10. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  11. Evidence for non-linear metabolism at low benzene exposures? A reanalysis of data.

    PubMed

    McNally, K; Sams, C; Loizou, G D; Jones, K

    2017-12-25

    The presence of a high-affinity metabolic pathway for low level benzene exposures of less than one part per million (ppm) has been proposed although a pathway has not been identified. The variation of metabolite molar fractions with increasing air benzene concentrations was suggested as evidence of significantly more efficient benzene metabolism at concentrations <0.1 ppm The evidence for this pathway is predicated on a rich data set from a study of Chinese shoe workers exposed to a wide range of benzene concentrations (not just "low level"). In this work we undertake a further independent re-analysis of this data with a focus on the evidence for an increase in the rate of metabolism of benzene exposures of less than 1 ppm. The analysis dataset consisted of measurements of benzene and toluene from personal air samplers, and measurements of unmetabolised benzene and toluene and five metabolites (phenol hydroquinone, catechol, trans, trans-muconic acid and s-phenylmercapturic acid) from post-shift urine samples for 213 workers with an occupational exposure to benzene (and toluene) and 139 controls. Measurements from control subjects were used to estimate metabolite concentrations resulting from non-occupational sources, including environmental sources of benzene. Data from occupationally exposed subjects were used to estimate metabolite concentrations as a function of benzene exposure. Correction for background (environmental exposure) sources of metabolites was achieved through a comparison of geometric means in occupationally exposed and control populations. The molar fractions of the five metabolites as a function of benzene exposure were computed. A supra-linear relationship between metabolite concentrations and benzene exposure was observed over the range 0.1-10 ppm benzene, however over the range benzene exposures of between 0.1 and 1 ppm only a modest departure from linearity was observed. The molar fractions estimated in this work were near constant over

  12. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  13. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  14. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  15. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  16. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  17. Effects of nitrogenous substituent groups on the benzene dication

    NASA Astrophysics Data System (ADS)

    Forgy, C. C.; Schlimgen, A. W.; Mazziotti, D. A.

    2018-05-01

    The benzene dication possesses a pentagonal-pyramidal structure with a hexacoordinated carbon. In contrast, halogenated benzene dications retain a similar structure to their parent molecules. In this work, we report on theoretical studies of the structures of the dications of benzene with nitrogenous substituents. We find that the nitrobenzene dication favours a near ideal pentagonal-pyramidal structure, while the aniline dication favours a flat, hexagonal structure. Reduced-density-matrices methods give predictions in agreement with available ab initio calculations and experiment. These results are also compared with those from the Hartree-Fock method and density functional theory.

  18. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.

  19. Structure and stability of fluorine-substituted benzene-argon complexes: The decisive role of exchange-repulsion and dispersion interactions

    NASA Astrophysics Data System (ADS)

    Tarakeshwar, P.; Kim, Kwang S.; Kraka, Elfi; Cremer, Dieter

    2001-10-01

    The van der Waals complexes benzene-argon (BAr), fluorobenzene-argon (FAr), p-difluorobenzene-argon (DAr) are investigated at the second-order Møller-Plesset (MP2) level of theory using the 6-31+G(d), cc-pVDZ, aug-cc-pVTZ, and [7s4p2d1f/4s3p1d/3s1p] basis sets. Geometries, binding energies, harmonic vibrational frequencies, and density distribution are calculated where basis set superposition errors are corrected with the counterpoise method. Binding energies turn out to be almost identical (MP2/[7s4p2d1f/4s3p1d/3s1p]: 408, 409, 408 cm-1) for BAr, FAr, and DAr. Vibrationally corrected binding energies (357, 351, 364 cm-1) agree well with experimental values (340, 344, and 339 cm-1). Symmetry adapted perturbation theory (SAPT) is used to decompose binding energies and to examine the influence of attractive and repulsive components. Fluorine substituents lead to a contraction of the π density of the benzene ring, thus reducing the destabilizing exchange-repulsion and exchange-induction effects. At the same time, both the polarizing power and the polarizability of the π-density of the benzene derivative decreases thus reducing stabilizing induction and dispersion interactions. Stabilizing and destabilizing interactions largely cancel each other out to give comparable binding energies. The equilibrium geometry of the Ar complex is also a result of the decisive influence of exchange-repulsion and dispersive interactions.

  20. Crystal structure of bis-(μ-3-nitro-benzoato)-κ3O,O':O;κ3O:O,O'-bis-[bis-(3-cyano-pyridine-κN1)(3-nitro-benzoato-κ2O,O')cadmium].

    PubMed

    Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali

    2017-03-01

    The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.

  1. The immunotoxicological pattern of subchronic and chronic benzene exposure in rats.

    PubMed

    Karaulov, Alexander V; Mikhaylova, Irina V; Smolyagin, Alexander I; Boev, Viktor M; Kalogeraki, Alexandra; Tsatsakis, Aristides M; Engin, Ayse Basak

    2017-06-05

    Exposure to benzene and its inevitable metabolites can result in deleterious effects on human health, including lymphocytopenia, hematotoxicity and cancer. However, the duration of exposure might alter the effects including immune consequences. The aim of this study was to determine whether benzene could modulate lymphocyte proliferation induced by the T cell mitogen concanavalin A, in rats, at different exposure durations. 386 Wistar rats were assigned into control and treatment groups which were subdivided into groups for 45, 90 and 135days for 0,6mL/kg of drinking water mixed benzene treatment. The percentage of CD3+, CD4+, CD8+ spleen lymphocytes was defined using the flow cytometer. Interleukin (IL)-4, IL-6, IL-10 and interferon-gamma, in supernatants of splenocyte cultures stimulated with Concanavalin A, were assessed by enzyme-linked immunosorbent assay (ELISA) technique. The decrease in the total lymphocyte and T cell counts were associated with increased benzene exposure duration. Th2-type cytokine, IL-4 significantly increased, whereas IL-6, CD4+T cells, CD4+/CD8+ ratio and CD3+ T cells decreased. Despite the positive correlation between benzene toxicity and indicated increased immune responses, 45-day exposure to benzene appeared to be the most sensitive time point for evaluating benzene cytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  3. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  4. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  5. INVESTIGATION OF BENZENE OXIDE IN BONE MARROW AND OTHER TISSUES OF F344 RATS FOLLOWING METABOLISM OF BENZENE IN VITRO AND IN VIVO

    EPA Science Inventory

    This study examines the initial activation of benzene, exploring key aspects of its metabolism by measurement of benzene oxide (BO) and BO-protein adducts in vitro and in vivo. To assess the potential influence of various factors on the production of BO, microsomes were prepare...

  6. Desorption Kinetics of Benzene and Cyclohexane from a Graphene Surface.

    PubMed

    Smith, R Scott; Kay, Bruce D

    2018-01-18

    The desorption kinetics for benzene and cyclohexane from a graphene covered Pt(111) surface were investigated using temperature-programmed desorption (TPD). The benzene desorption spectra show well-resolved monolayer and multilayer desorption peaks. The benzene monolayer and submonolayer TPD spectra for coverages greater than ∼0.1 ML have nearly the same desorption peak temperature and have line shapes which are consistent with first-order desorption kinetics. For benzene coverages greater than 1 ML, the TPD spectra align on a common leading edge which is consistent with zero-order desorption. An "inversion" procedure in which the prefactor is varied to find the value that best reproduces the entire set of experimental desorption spectra was used to analyze the benzene data. The inversion analysis of the benzene TPD spectra yielded a desorption activation energy of 54 ± 3 kJ/mol with a prefactor of 10 17±1 s -1 . The TPD spectra for cyclohexane also have well-resolved monolayer and multilayer desorption features. The desorption leading edges for the monolayer and the multilayer TPD spectra are aligned indicating zero-order desorption kinetics in both cases. An Arrhenius analysis of the monolayer cyclohexane TPD spectra yielded a desorption activation energy of 53.5 ± 2 kJ/mol with a prefactor of 10 16±1 ML s -1 .

  7. (2E)-3-(4-Cyano­phen­yl)-1-(4,4′′-difluoro-5′-meth­oxy-1,1′:3′,1′′-terphenyl-4′-yl)prop-2-en-1-one

    PubMed Central

    Fun, Hoong-Kun; Loh, Wan-Sin; Samshuddin, S.; Narayana, B.; Sarojini, B. K.

    2012-01-01

    In the title compound, C29H19F2NO2, the central benzene ring forms a dihedral angle of 56.92 (12)° with the cyano­benzene ring and dihedral angles of 40.91 (12) and 44.76 (12)° with the two fluoro­benzene rings. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into sheets lying parallel to the ab plane. The crystal packing also features C—H⋯π inter­actions involving the central benzene ring. PMID:22719638

  8. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  9. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  10. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  11. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  12. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  13. Dermal exposure assessment to benzene and toluene using charcoal cloth pads.

    PubMed

    van Wendel de Joode, Berna; Tielemans, Erik; Vermeulen, Roel; Wegh, Hillion; Kromhout, Hans

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and toluene in workers of a petrochemical plant. Inhalation and dermal exposure levels to benzene and toluene were assessed for workers of a petrochemical plant performing different jobs. Benzene uptake was assessed by determining S-phenylmercapturic acid in workers' urine samples. Dermal exposure levels on the charcoal pads were adjusted for ambient air levels of benzene and toluene by subtracting the amount of benzene or toluene measured in personal air from the amount of benzene or toluene measured on the charcoal pad. In general, measured external and internal exposure levels were low. The estimated contribution of the dermal route to internal benzene exposure levels was less than 0.06% for all jobs. Toluene personal air concentrations and benzene and toluene dermal exposure levels differed statistically significantly between job titles. For benzene, differences between jobs were larger for adjusted dermal exposures (maximum 17-fold, P = 0.02) than for inhalation exposures (maximum two-fold, P = 0.08). Also for toluene, although less clear, differences between jobs were larger for adjusted dermal exposures (maximum 23-fold, P = 0.01) as compared to inhalation exposures (maximum 10-fold, P = 0.01). Charcoal pads appeared to measure dermal exposures to benzene and toluene in addition to ambient air levels. Future studies applying charcoal cloth pads for the dermal exposure assessment at workplaces with higher dermal exposure to organic solvents may provide more insight into the biological relevance of dermal exposure levels measured by charcoal cloth pads. In addition, the design of the dermal sampler might be improved by configuring a dermal sampler, where part of the

  14. Effective ligand functionalization of zirconium-based metal-organic frameworks for the adsorption and separation of benzene and toluene: a multiscale computational study.

    PubMed

    Wu, Ying; Chen, Huiyong; Liu, Defei; Xiao, Jing; Qian, Yu; Xi, Hongxia

    2015-03-18

    The adsorption and separation properties of benzene and toluene on the zirconium-based frameworks UiO-66, -67, -68, and their functional analogues UiO-Phe and UiO-Me2 were studied using grand canonical Monte Carlo simulations, density functional theory, and ideal adsorbed solution theory. Remarkable higher adsorption uptakes of benzene and toluene at low pressures on UiO-Phe and -Me2 were found compared to their parent framework UiO-67. It can be ascribed to the presence of functional groups (aromatic rings and methyl groups) that significantly intensified the adsorption, majorly by reducing the effective pore size and increasing the interaction strength with the adsorbates. At high pressures, the pore volumes and accessible surfaces of the frameworks turned out to be the dominant factors governing the adsorption. In the case of toluene/benzene separation, toluene selectivities of UiOs showed a two-stage separation behavior at the measured pressure range, resulting from the greater interaction affinities of toluene at low pressures and steric hindrance effects at high pressures. Additionally, the counterbalancing factors of enhanced π delocalization and suitable pore size of UiO-Phe gave rise to the highest toluene selectivity, suggesting the ligand functionalization strategy could reach both high adsorption capacity and separation selectivity from aromatic mixtures at low concentrations.

  15. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  16. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  17. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  18. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  19. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  20. Diffusion of benzene confined in the oriented nanochannels of chrysotile asbestos fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, E.; Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115; Kumzerov, Yu.A.

    We used quasielastic neutron scattering to study the dynamics of benzene that completely fills the nanochannels of chrysotile asbestos fibers with a characteristic diameter of about 5 nm. The macroscopical alignment of the nanochannels in fibers provided an interesting opportunity to study anisotropy of the dynamics of confined benzene by means of collecting the data with the scattering vector either parallel or perpendicular to the fibers axes. The translational diffusive motion of benzene molecules was found to be isotropic. While bulk benzene freezes at 278.5 K, we observed the translational dynamics of the supercooled confined benzene on the time scalemore » of hundreds of picoseconds even below 200 K, until at about 160 K its dynamics becomes too slow for the {mu}eV resolution of the neutron backscattering spectrometer. The residence time between jumps for the benzene molecules measured in the temperature range of 260 K to 320 K demonstrated low activation energy of 2.8 kJ/mol.« less

  1. Structural Degradation and Swelling of Lipid Bilayer under the Action of Benzene.

    PubMed

    Odinokov, Alexey; Ostroumov, Denis

    2015-12-03

    Benzene and other nonpolar organic solvents can accumulate in the lipid bilayer of cellular membranes. Their effect on the membrane structure and fluidity determines their toxic properties and antibiotic action of the organic solvents on the bacteria. We performed molecular dynamics simulations of the interaction of benzene with the dimyristoylphosphatidylcholine (DMPC) bilayer. An increase in the membrane surface area and fluidity was clearly detected. Changes in the acyl chain ordering, tilt angle, and overall bilayer thickness were, however, much less marked. The dependence of all computed quantities on the benzene content showed two regimes separated by the solubility limit of benzene in water. When the amount of benzene exceeded this point, a layer of almost pure benzene started to grow between the membrane leaflets. This process corresponds to the nucleation of a new phase and provides a molecular mechanism for the mechanical rupture of the bilayer under the action of nonpolar compounds.

  2. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    PubMed

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. Which ornamental plant species effectively remove benzene from indoor air?

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  4. Self-collected breath sampling for monitoring low-level benzene exposures among automobile mechanics.

    PubMed

    Egeghy, Peter P; Nylander-French, Leena; Gwin, Kristin K; Hertz-Picciotto, Irva; Rappaport, Stephen M

    2002-07-01

    Automobile mechanics are exposed to benzene through their contact with gasoline vapor and engine exhaust. This study investigated the benzene uptake associated with these exposures. We first evaluated the reliability of self-collected breath samples among a subset of subjects and found good agreement between these samples and those collected under expert supervision (intraclass correlation coefficient 0.79, n = 69). We then used self-monitoring together with a longitudinal sampling design (with up to three measurements per worker) to measure benzene in air and benzene in end-exhaled breath among 81 workers from 12 automobile repair garages in North Carolina. A statistically significant difference (P < 0.0001, Mann-Whitney rank sum test) was observed between non-smokers and smokers for post-exposure benzene concentration in breath (median values of 18.9 and 39.1 micro g/m(3), respectively). Comparing pre- and post-exposure breath concentrations within these two groups, the difference was significant among non-smokers (P < 0.0001) but not significant among smokers (P > 0.05). Mixed effects regression analysis using backwards elimination yielded five significant predictors of benzene concentration in breath, namely benzene exposure (P < 0.0001), pre-exposure benzene concentration in breath (P = 0.021), smoking status (P < 0.0001), fuel system work (P = 0.0043) and carburetor cleaner use (P < 0.0001). The between-person variance component comprised only 28% of the total variance in benzene levels in breath, indicating that differences among individuals related to physiological and metabolic characteristics had little influence on benzene uptake among these workers.

  5. Genome-Wide Functional Profiling Reveals Genes Required for Tolerance to Benzene Metabolites in Yeast

    PubMed Central

    North, Matthew; Tandon, Vickram J.; Thomas, Reuben; Loguinov, Alex; Gerlovina, Inna; Hubbard, Alan E.; Zhang, Luoping; Smith, Martyn T.; Vulpe, Chris D.

    2011-01-01

    Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease. PMID:21912624

  6. Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity

    PubMed Central

    Lin, Feiliang; Hou, Fenxia; Li, Guilan; Zhu, Caiying; Xu, Peiyu; Xing, Caihong; Wang, Qianfei

    2017-01-01

    Benzene is a primary industrial chemical and a ubiquitous environmental pollutant. ERCC3 is a key player in nucleotide excision repair. Recent studies suggested that site-specific methylation is a possible mechanism of the transcriptional dysregulation by blocking transcription factors binding. We previously found that the average promoter methylation level of ERCC3 was increased in benzene-exposed workers. In order to test whether specific CpG sites of ERCC3 play an important role in benzene-induced epigenetic changes and whether the specific methylation patterns are associated with benzene hematotoxicity, we analyzed the promoter methylation levels of individual CpG sites, transcription factor binding motif and the correlation between aberrant CpG methylation and hematotoxicity in 76 benzene-exposed workers and 24 unexposed controls in China. Out of all the CpGs analyzed, two CpG units located 43 bp upstream and 99 bp downstream of the transcription start site of ERCC3 (CpG 2–4 and CpG 17–18, respectively), showed the most pronounced increase in methylation levels in benzene-exposed workers, compared with unexposed controls (Mean ± SD: 5.86 ± 2.77% vs. 4.92 ± 1.53%, p = 0.032; 8.45 ± 4.09% vs. 6.79 ± 2.50%, p = 0.024, respectively). Using the JASPAR CORE Database, we found that CpG 2–4 and CpG 17–18 were bound by three putative transcription factors (TFAP2A, E2F4 and MZF1). Furthermore, the methylation levels for CpG 2–4 were correlated negatively with the percentage of neutrophils (β = −0.676, p = 0.005) in benzene-exposed workers. This study demonstrates that CpG-specific DNA methylation in the ERCC3 promoter region may be involved in benzene-induced epigenetic modification and it may contribute to benzene-induced hematotoxicity. PMID:28813025

  7. Environmental exposure to benzene: an update.

    PubMed Central

    Wallace, L

    1996-01-01

    During the 1990s, several large-scale studies of benzene concentrations in air, food, and blood have added to our knowledge of its environmental occurrence. In general, the new studies have confirmed the earlier findings of the U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) studies and other large-scale studies in Germany and the Netherlands concerning the levels of exposure and major sources. For example, the new studies found that personal exposures exceeded indoor concentrations of benzene, which in turn exceeded outdoor concentrations. The new studies of food concentrations have confirmed earlier indications that food is not an important pathway for benzene exposure. The results of the National Health and Nutrition Examination Survey on blood levels in a nationwide sample of 883 persons are in good agreement with the concentrations in exhaled breath measured in about 800 persons a decade earlier in the TEAM studies. Major sources of exposure continue to be active and passive smoking, auto exhaust, and driving or riding in automobiles. New methods in breath and blood sampling and analysis offer opportunities to investigate short-term peak exposures and resulting body burden under almost any conceivable field conditions. PMID:9118882

  8. (Nitrato-κ2 O,O′)bis­(1,10-phenanthroline-κ2 N,N′)copper(II) tricyano­methanide

    PubMed Central

    Lacková, Katarína; Potočňák, Ivan

    2012-01-01

    The title compound, [Cu(NO3)(C12H8N2)2][C(CN)3], is formed of discrete [Cu(NO3)(phen)2]+ complex cations (phen is 1,10-phenanthroline) and C(CN)3 − counter-anions. The CuII atom has an asymmetric tetragonal–bipyramidal (4 + 1+1) stereochemistry with a pseudo-C 2 symmetry axis bis­ecting the nitrate ligand and passing through the CuII atom between the two phen ligands. The four N atoms of the phen ligands coordinate to the CuII atom with Cu—N distances in the range 1.974 (2)–2.126 (2) Å, while the two O atoms coordinate at substanti­ally different distances [2.154 (2) and 2.586 (2) Å]. The structure is stabilized by C—H⋯O hydrogen bonds and weak π–π inter­actions between nearly parallel benzene and pyridine rings of two adjacent phen mol­ecules, with centroid–centroid distances of 3.684 (2) and 3.6111 (2) Å, and between π-electrons of the tricyano­methanide anion and the pyridine or benzene rings [N⋯(ring centroid) distances = 3.553 (3)–3.875 (3) Å]. PMID:23468758

  9. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... personal protective equipment in emergency situations; (vi) The meaning of a regulated area and the means..., control measures such as personal protection equipment, and first aid procedures for benzene. A copy of... to benzene; (iv) The measures that may be taken and the equipment that may be used to protect persons...

  10. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... personal protective equipment in emergency situations; (vi) The meaning of a regulated area and the means..., control measures such as personal protection equipment, and first aid procedures for benzene. A copy of... to benzene; (iv) The measures that may be taken and the equipment that may be used to protect persons...

  11. Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst.

    PubMed

    Pajaro-Castro, Nerlis; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2017-06-21

    Naphthalene and benzene are widely-used volatile organic compounds. The aim of this research was to examine the toxicological effects of naphthalene and benzene against Tribolium castaneum as an animal model. Adult insects were exposed to these aromatic compounds to assess mortality after 4-48 h of exposure. The lethal concentration 50 (LC 50 ) for naphthalene, naphthalin, and benzene were 63.6 µL/L, 20.0 µL/L, and 115.9 µL/L in air, respectively. Real-time polymerase chain reaction (PCR) analysis revealed expression changes in genes related to oxidative stress and metabolism [Glutathione S-Transferase (Gst), and Cytochrome P450 6BQ8 (Cyp6bq8)]; reproduction and metamorphosis [Hormone receptor in 39-like protein (Hr39), Ecdysone receptor: (Ecr), and Chitin synthase 2 (Chs2)]; and neurotransmission [Histamine-gated chloride channel 2 (Hiscl2)] in insects exposed for 4 h to 70.2 µL/L naphthalene. Adults exposed to benzene (80 µL/L; 4 h) overexpressed genes related to neurotransmission [GABA-gated anion channel (Rdl), Hiscl2, and GABA-gated ion channel (Grd)]; reproduction and metamorphosis [Ultraspiracle nuclear receptor (USP), Ecr; and Hr39]; and development (Chs2). The data presented here provides evidence that naphthalene and benzene inhalation are able to induce alterations on reproduction, development, metamorphosis, oxidative stress, metabolism, neurotransmission, and death of the insect.

  12. Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C-H Amination and Hydroxylation.

    PubMed

    Zheng, Yi-Wen; Chen, Bin; Ye, Pan; Feng, Ke; Wang, Wenguang; Meng, Qing-Yuan; Wu, Li-Zhu; Tung, Chen-Ho

    2016-08-17

    We present a blueprint for aromatic C-H functionalization via a combination of photocatalysis and cobalt catalysis and describe the utility of this strategy for benzene amination and hydroxylation. Without any sacrificial oxidant, we could use the dual catalyst system to produce aniline directly from benzene and ammonia, and phenol from benzene and water, both with evolution of hydrogen gas under unusually mild conditions in excellent yields and selectivities.

  13. Disturbance response indicators of Impatiens walleriana exposed to benzene and chromium.

    PubMed

    Campos, V; Lessa, S S; Ramos, R L; Shinzato, M C; Medeiros, T A M

    2017-08-03

    The purpose of this study was to evaluate the remediation potential and disturbance response indicators of Impatiens walleriana exposed to benzene and chromium. Numerous studies over the years have found abundant evidence of the carcinogenicity of benzene and chromium (VI) in humans. Benzene and chromium are two toxic industrial chemicals commonly found together at contaminated sites, and one of the most common management strategies employed in the recovery of sites contaminated by petroleum products and trace metals is in situ remediation. Given that increasing interest has focused on the use of plants as depollution agents, direct injection tests and benzene misting were performed on I. walleriana to evaluate the remediation potential of this species. I. walleriana accumulated hexavalent chromium, mainly in the root system (164.23 mg kg -1 ), to the detriment of the aerial part (39.72 mg kg -1 ), and presented visible damage only at the highest concentration (30 mg L -1 ). Unlike chromium (VI), chromium (III) was retained almost entirely by the soil, leaving it available for removal by phytotechnology. However, after the contamination stopped, I. walleriana responded positively to the detoxification process, recovering its stem stiffness and leaf color. I. walleriana showed visible changes such as leaf chlorosis during the ten days of benzene contamination. When benzene is absorbed by the roots, it is translocated to and accumulated in the plant's aerial part. This mechanism the plant uses ensures its tolerance to the organic compound, enabling the species to survive and reproduce after treatment with benzene. Although I. walleriana accumulates minor amounts of hexavalent chromium in the aerial part, this amount suffices to induce greater oxidative stress and to increase the amount of hydrogen peroxide when compared to that of benzene. It was therefore concluded that I. walleriana is a species that possesses desirable characteristics for phytotechnology.

  14. 40 CFR 721.10260 - Benzene, 1,3-bis(1-chloro-1-methylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1,3-bis(1-chloro-1... Specific Chemical Substances § 721.10260 Benzene, 1,3-bis(1-chloro-1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,3...

  15. 40 CFR 721.10280 - Benzene ethenyl-, polymer with 1,3-butadiene, brominated.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene ethenyl-, polymer with 1,3... Specific Chemical Substances § 721.10280 Benzene ethenyl-, polymer with 1,3-butadiene, brominated. (a... benzene ethenyl-, polymer with 1,3-butadiene, brominated (PMN P-10-476; CAS No. 1195978-93-8)) is subject...

  16. 40 CFR 721.10260 - Benzene, 1,3-bis(1-chloro-1-methylethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1,3-bis(1-chloro-1... Specific Chemical Substances § 721.10260 Benzene, 1,3-bis(1-chloro-1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,3...

  17. 40 CFR 721.10260 - Benzene, 1,3-bis(1-chloro-1-methylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1,3-bis(1-chloro-1... Specific Chemical Substances § 721.10260 Benzene, 1,3-bis(1-chloro-1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,3...

  18. 40 CFR 721.10280 - Benzene ethenyl-, polymer with 1,3-butadiene, brominated.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene ethenyl-, polymer with 1,3... Specific Chemical Substances § 721.10280 Benzene ethenyl-, polymer with 1,3-butadiene, brominated. (a... benzene ethenyl-, polymer with 1,3-butadiene, brominated (PMN P-10-476; CAS No. 1195978-93-8)) is subject...

  19. Diallyl trisulfide (DATS) suppresses benzene-induced cytopenia by modulating haematopoietic cell apoptosis.

    PubMed

    Han, Wenting; Wang, Shuo; Jiang, Lulu; Wang, Hui; Li, Ming; Wang, Xujing; Xie, Keqin

    2017-12-01

    Benzene is a well-known occupational and environmental toxicant associated with cytopenia, which is characterized by a disorder in the peripheral blood cell counts. However, no effective preventive strategy has been developed yet to tackle the exposure to benzene in daily life. The aim of this study was to evaluate the protective effects of diallyl trisulfide (DATS) on benzene-induced haematopoietic damage and to reveal its potential mechanisms of action. In our study, male Sprague-Dawley rats were divided into six groups. Rats were administered with benzene (1.3 g/kg BW by gavage) to establish the benzene poisoning model, while the DATS treatment groups were treated with benzene plus DATS (15 mg/kg, 30 mg/kg, 45 mg/kg, respectively, by gavage) for 28 days. Our results demonstrated that the counts of peripheral blood WBC and RBC decreased to 31.0% and 79.2%, respectively, in the benzene poisoning model group compared to the control. However, blood cell counts were restored by DATS treatment (30 mg/kg, 45 mg/kg). The apoptosis rates of peripheral blood mononuclear cells (PBMCs) and bone marrow cells (BMCs) were increased to 274% and 284%, respectively, following benzene exposure. Furthermore, expression levels of Bcl-2, PI3K and p-Akt were downregulated and those of Bax were upregulated in both cell types. Moreover, the oxidative parameters (oxygen species, malonaldehyde) were significantly increased, while the non-enzymatic GSH/GSSG ratios and the activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and catalase) were decreased. Interestingly, DATS treatment can restore the WBC number by 267.1% and 304.8% while RBC number by 108.6% and 117.7% in 30,45 mg/k DATS treated groups. In summary, we demonstrated that benzene-induced cytopenia was related to the apoptosis of PBMCs and BMCs, and DATS treatment could prevent benzene-induced cytopenia by suppressing oxidative stress-mediated cell apoptosis via the PI3K/Akt pathway. Copyright

  20. Geogenic sources of benzene in aquifers used for public supply, California

    USGS Publications Warehouse

    Landon, Matthew K.; Belitz, Kenneth

    2012-01-01

    Statistical evaluation of two large statewide data sets from the California State Water Board's Groundwater Ambient Monitoring and Assessment Program (1973 wells) and the California Department of Public Health (12417 wells) reveals that benzene occurs infrequently (1.7%) and at generally low concentrations (median detected concentration of 0.024 μg/L) in groundwater used for public supply in California. When detected, benzene is more often related to geogenic (45% of detections) than anthropogenic sources (27% of detections). Similar relations are evident for the sum of 17 hydrocarbons analyzed. Benzene occurs most frequently and at the highest concentrations in old, brackish, and reducing groundwater; the detection frequency was 13.0% in groundwater with tritium <1 pCi/L, specific conductance >1600 μS/cm, and anoxic conditions. This groundwater is typically deep (>180 m). Benzene occurs somewhat less frequently in recent, shallow, and reducing groundwater; the detection frequency was 2.6% in groundwater with tritium ≥1 pCi/L, depth <30 m, and anoxic conditions. Evidence for geogenic sources of benzene include: higher concentrations and detection frequencies with increasing well depth, groundwater age, and proximity to oil and gas fields; and higher salinity and lower chloride/iodide ratios in old groundwater with detections of benzene, consistent with interactions with oil-field brines.