Science.gov

Sample records for adjacent bone tissue

  1. Mechanobiology of bone tissue.

    PubMed

    Klein-Nulend, J; Bacabac, R G; Mullender, M G

    2005-12-01

    In order to obtain bones that combine a proper resistance against mechanical failure with a minimum use of material, bone mass and its architecture are continuously being adapted to the prevailing mechanical loads. It is currently believed that mechanical adaptation is governed by the osteocytes, which respond to a loading-induced flow of interstitial fluid through the lacuno-canalicular network by producing signaling molecules. An optimal bone architecture and density may thus not only be determined by the intensity and spatial distribution of mechanical stimuli, but also by the mechanoresponsiveness of osteocytes. Bone cells are highly responsive to mechanical stimuli, but the critical components in the load profile are still unclear. Whether different components such as fluid shear, tension or compression may affect cells differently is also not known. Although both tissue strain and fluid shear stress cause cell deformation, these stimuli might excite different signaling pathways related to bone growth and remodeling. In order to define new approaches for bone tissue engineering in which bioartificial organs capable of functional load bearing are created, it is important to use cells responding to the local forces within the tissue, whereby biophysical stimuli need to be optimized to ensure rapid tissue regeneration and strong tissue repair.

  2. Electromechanical Properties of Bone Tissue.

    NASA Astrophysics Data System (ADS)

    Regimbal, Raymond L.

    Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P < 0.01). In agreement with that shown in model protein-hydroxyapatite systems, it is suggested here that inorganic phosphate ions in solution compete with organic acid groups (e.g. carboxyl and phosphate of collagen, sialoprotein, ...) for positively charged sites on the bone mineral surface and effectively uncouple the bone mineral and organic phase double layers. Mechanically, this uncoupling is manifested as a loss of tissue rigidity when monitoring the midspan deflection of bone beams subject to constant load for a 3 day period. While it is thus

  3. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  4. Collagen for bone tissue regeneration.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Chiono, Valeria; Ciardelli, Gianluca

    2012-09-01

    In the last decades, increased knowledge about the organization, structure and properties of collagen (particularly concerning interactions between cells and collagen-based materials) has inspired scientists and engineers to design innovative collagen-based biomaterials and to develop novel tissue-engineering products. The design of resorbable collagen-based medical implants requires understanding the tissue/organ anatomy and biological function as well as the role of collagen's physicochemical properties and structure in tissue/organ regeneration. Bone is a complex tissue that plays a critical role in diverse metabolic processes mediated by calcium delivery as well as in hematopoiesis whilst maintaining skeleton strength. A wide variety of collagen-based scaffolds have been proposed for different tissue engineering applications. These scaffolds are designed to promote a biological response, such as cell interaction, and to work as artificial biomimetic extracellular matrices that guide tissue regeneration. This paper critically reviews the current understanding of the complex hierarchical structure and properties of native collagen molecules, and describes the scientific challenge of manufacturing collagen-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of innovative techniques for scaffold and material manufacturing that are currently opening the way to the preparation of biomimetic substrates that modulate cell interaction for improved substitution, restoration, retention or enhancement of bone tissue function. PMID:22705634

  5. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  6. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  7. [Sex steroids and bone tissue].

    PubMed

    Ribot, C; Tremollieres, F

    1995-01-01

    The precise mechanism of action of sexual steroids in the regulation of bone tissue is still poorly understood. Besides the indirect action via the production of calciotropic hormones, the fact that receptors respond to oestrogens as well as to androgens and progesterone is evidence that sexual steroids have a direct action in regulating bone activity. The anti-osteoclastic action of oestrogens, via the modulation in osteoblastic production of different substances such as interleukin-1 and -6, TGF beta, GM-CSF which inhibit osteoclastogenesis and bone resorption activity, is well documented. More recently, the direct role in osteoclast inhibition was suggested by the observation that osteoclasts carry oestrogen receptors. Likewise, certain in vivo and in vitro data suggest that oestrogens could also have a positive effect on bone formation regulation. For androgens, currently available data show that in vitro stimulation of bone formation, with increased proliferation and cell differentiation, could be mediated by TGF beta. The role of progesterone is more recently known. In vivo, progesterone increases cell growth and IFGF-II secretion by non-transformed human osteoblasts. The number of potential mechanisms which have already been demonstrated suggest the complexity of sex hormone regulation which leads to the final situation of physiological calcium sparing in the skeleton while maintaining skeletal structure. PMID:7747921

  8. Tissue engineering strategies for bone regeneration.

    PubMed

    Mistry, Amit S; Mikos, Antonios G

    2005-01-01

    Bone loss due to trauma or disease is an increasingly serious health problem. Current clinical treatments for critical-sized defects are problematic and often yield poor healing due to the complicated anatomy and physiology of bone tissue, as well as the limitations of medical technology. Bone tissue engineering offers a promising alternative strategy of healing severe bone injuries by utilizing the body's natural biological response to tissue damage in conjunction with engineering principles. Osteogenic cells, growth factors, and biomaterial scaffolds form the foundation of the many bone tissue engineering strategies employed to achieve repair and restoration of damaged tissue. An ideal biomaterial scaffold will provide mechanical support to an injured site and also deliver growth factors and cells into a defect to encourage tissue growth. Additionally, this biomaterial should degrade in a controlled manner without causing a significant inflammatory response. The following chapter highlights multiple strategies and the most recent advances in various areas of research for bone tissue regeneration.

  9. MRI manifestations of soft-tissue haemangiomas and accompanying reactive bone changes

    PubMed Central

    Pourbagher, A; Pourbagher, M A; Karan, B; Ozkoc, G

    2011-01-01

    Objectives Soft tissue haemangiomas are common benign vascular lesions that can be accompanied by reactive changes in the adjacent bone structure. This study aimed to discuss the MRI features of soft-tissue haemangiomas with an emphasis on changes in bone. Methods The radiographic and MRI findings of 23 patients (9 males, 14 females; mean age 25 years; age range 2–46 years) with soft-tissue haemangiomas were analysed retrospectively. MR images were evaluated for location of the lesion, size, configuration, signal features, contrast patterns, proximity to adjacent bone and changes in the accompanying bone. Excisional biopsy was performed in 15 patients. Results Radiographs demonstrated phleboliths in 8 patients (34%) and reactive bone changes in 4 (19%). On MRI, T1 weighted images showed that most of the lesions were isointense or isohyperintense, as compared with muscle tissue; however, on T2 weighted images all lesions appeared as hyperintense. Following intravenous gadolinium-diethylene triamine pentaacetic acid (DTPA) administration, homogeneous enhancement was observed in 3 lesions and heterogeneous enhancement was seen in 19. No enhancement was observed in one patient. Bone atrophy adjacent to the lesion was observed in four patients. Conclusion MRI is the most valuable means of diagnosing deep soft-tissue haemangiomas. Bone changes can accompany deeply situated haemangiomas; in four of our patients, we found atrophy of the bone adjacent to the lesion. To our knowledge, this is the first report in the literature regarding atrophy of the bone adjacent to a lesion. PMID:21123304

  10. Bone tissue engineering: recent advances and challenges.

    PubMed

    Amini, Ami R; Laurencin, Cato T; Nukavarapu, Syam P

    2012-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.

  11. Bone Tissue Engineering: Recent Advances and Challenges

    PubMed Central

    Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.

    2013-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648

  12. Metallic Nanomaterials for Bone Tissue Engineering.

    PubMed

    Dhivya, S; Ajita, J; Selvamurugan, N

    2015-10-01

    Conventional grafting techniques for bone regeneration are currently being replaced by tissue engineering approaches of using 3D biomimetic materials. Of these biomaterials, metals have the highest mechanical strength; moreover, they play a major role in accelerating bone formation and promoting bone regeneration. They act as cofactors for enzymes, serving as a structural component of bone forming enzymes and proteins, stimulating angiogenesis, increasing extra-cellular matrix synthesis, promoting bone formation, and inhibiting bone resorption. Metals have the inherent ability to promote osseointegration and osteoconductivity and possess antimicrobial activity. The current developments in bone tissue engineering focus on metal surface modifications by physical and chemical treatments to improve their bioactivity. Based on the recent literature available, this review aims at discussing the biological role of metals, namely Zn, Ti, Zr, B, Sr, Mg, Ag, and Cu along with their surface modifications for significantly enhanced bone regeneration.

  13. Recent advances in bone tissue engineering scaffolds

    PubMed Central

    Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit

    2012-01-01

    Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815

  14. Stem cells in bone tissue engineering.

    PubMed

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Mantalaris, Anathathios; Hwang, Yu-Shik

    2010-12-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone.

  15. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue.

    PubMed

    Mullender, M; El Haj, A J; Yang, Y; van Duin, M A; Burger, E H; Klein-Nulend, J

    2004-01-01

    Mechanical force plays an important role in the regulation of bone remodelling in intact bone and bone repair. In vitro, bone cells demonstrate a high responsiveness to mechanical stimuli. Much debate exists regarding the critical components in the load profile and whether different components, such as fluid shear, tension or compression, can influence cells in differing ways. During dynamic loading of intact bone, fluid is pressed through the osteocyte canaliculi, and it has been demonstrated that fluid shear stress stimulates osteocytes to produce signalling molecules. It is less clear how mechanical loads act on mature osteoblasts present on the surface of cancellous or trabecular bone. Although tissue strain and fluid shear stress both cause cell deformation, these stimuli could excite different signalling pathways. This is confirmed by our experimental findings, in human bone cells, that strain applied through the substrate and fluid flow stimulate the release of signalling molecules to varying extents. Nitric oxide and prostaglandin E2 values increased by between two- and nine-fold after treatment with pulsating fluid flow (0.6 +/- 0.3 Pa). Cyclic strain (1000 microstrain) stimulated the release of nitric oxide two-fold, but had no effect on prostaglandin E2. Furthermore, substrate strains enhanced the bone matrix protein collagen I two-fold, whereas fluid shear caused a 50% reduction in collagen I. The relevance of these variations is discussed in relation to bone growth and remodelling. In applications such as tissue engineering, both stimuli offer possibilities for enhancing bone cell growth in vitro.

  16. Vascularization in bone tissue engineering constructs

    PubMed Central

    Mercado-Pagán, Ángel E.; Stahl, Alexander M.; Shanjani, Yaser; Yang, Yunzhi

    2016-01-01

    Vascularization of large bone grafts is one of the main challenges of bone tissue engineering (BTE), and has held back the clinical translation of engineered bone constructs for two decades so far. The ultimate goal of vascularized BTE constructs is to provide a bone environment rich in functional vascular networks to achieve efficient osseointegration and accelerate restoration of function after implantation. To attain both structural and vascular integration of the grafts, a large number of biomaterials, cells, and biological cues have been evaluated. This review will present biological considerations for bone function restoration, contemporary approaches for clinical salvage of large bone defects and their limitations, state-of-the-art research on the development of vascularized bone constructs, and perspectives on evaluating and implementing novel BTE grafts in clinical practice. Success will depend on achieving full graft integration at multiple hierarchical levels, both between the individual graft components as well as between the implanted constructs and their surrounding host tissues. The paradigm of vascularized tissue constructs could not only revolutionize the progress of bone tissue engineering, but could also be readily applied to other fields in regenerative medicine for the development of new innovative vascularized tissue designs. PMID:25616591

  17. Biomimetic nanofibrous scaffolds for bone tissue engineering

    PubMed Central

    Holzwarth, Jeremy M.; Ma, Peter X.

    2011-01-01

    Bone tissue engineering is a highly interdisciplinary field that seeks to tackle the most challenging bone-related clinical issues. The major components of bone tissue engineering are the scaffold, cells, and growth factors. This review will focus on the scaffold and recent advancements in developing scaffolds that can mimic the natural extracellular matrix of bone. Specifically, these novel scaffolds mirror the nanofibrous collagen network that comprises the majority of the non-mineral portion of bone matrix. Using two main fabrication techniques, electrospinning and thermally-induced phase separation, and incorporating bone-like minerals, such as hydroxyapatite, composite nanofibrous scaffolds can improve cell adhesion, stem cell differentiation, and tissue formation. This review will cover the two main processing techniques and how they are being applied to fabricate scaffolds for bone tissue engineering. It will then cover how these scaffolds can enhance the osteogenic capabilities of a variety of cell types and survey the ability of the constructs to support the growth of clinically relevant bone tissue. PMID:21944829

  18. Nanostructured scaffolds for bone tissue engineering.

    PubMed

    Li, Xiaoming; Wang, Lu; Fan, Yubo; Feng, Qingling; Cui, Fu-Zhai; Watari, Fumio

    2013-08-01

    It has been demonstrated that nanostructured materials, compared with conventional materials, may promote greater amounts of specific protein interactions, thereby more efficiently stimulating new bone formation. It has also been indicated that, when features or ingredients of scaffolds are nanoscaled, a variety of interactions can be stimulated at the cellular level. Some of those interactions induce favorable cellular functions while others may leads to toxicity. This review presents the mechanism of interactions between nanoscaled materials and cells and focuses on the current research status of nanostructured scaffolds for bone tissue engineering. Firstly, the main requirements for bone tissue engineering scaffolds were discussed. Then, the mechanism by which nanoscaled materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed.

  19. Approaches for modeling interstitial ultrasound ablation of tumors within or adjacent to bone: Theoretical and experimental evaluations

    PubMed Central

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2014-01-01

    Purpose The objectives of this study were to develop numerical models of interstitial ultrasound ablation of tumors within or adjacent to bone, to evaluate model performance through theoretical analysis, and to validate the models and approximations used through comparison to experiments. Methods 3D transient biothermal and acoustic finite element models were developed, employing four approximations of 7 MHz ultrasound propagation at bone/soft tissue interfaces. The various approximations considered or excluded reflection, refraction, angle-dependence of transmission coefficients, shear mode conversion, and volumetric heat deposition. Simulations were performed for parametric and comparative studies. Experiments within ex vivo tissues and phantoms were performed to validate the models by comparison to simulations. Temperature measurements were conducted using needle thermocouples or MR temperature imaging (MRTI). Finite element models representing heterogeneous tissue geometries were created based on segmented MR images. Results High ultrasound absorption at bone/soft tissue interfaces increased the volumes of target tissue that could be ablated. Models using simplified approximations produced temperature profiles closely matching both more comprehensive models and experimental results, with good agreement between 3D calculations and MRTI. The correlation coefficients between simulated and measured temperature profiles in phantoms ranged from 0.852 to 0.967 (p-value < 0.01) for the four models. Conclusions Models using approximations of interstitial ultrasound energy deposition around bone/soft tissue interfaces produced temperature distributions in close agreement with comprehensive simulations and experimental measurements. These models may be applied to accurately predict temperatures produced by interstitial ultrasound ablation of tumors near and within bone, with applications toward treatment planning. PMID:24102393

  20. Characterization of bone tissue using microstrip antennas.

    PubMed

    Barros, Jannayna D; de Oliveira, Jose Josemar; da Silva, Sandro G

    2010-01-01

    The use of electromagnetic waves in the characterization of biological tissues has been conducted since the nineteenth century after the confirmation that electric and magnetic fields can interact with biological materials. In this paper, electromagnetic waves are used to characterize tissues with different levels of bone mass. In this way, one antenna array on microstrip lines was used. It can be seen that bones with different mass has different behavior in microwave frequencies.

  1. Characterization of bone tissue using microstrip antennas.

    PubMed

    Barros, Jannayna D; de Oliveira, Jose Josemar; da Silva, Sandro G

    2010-01-01

    The use of electromagnetic waves in the characterization of biological tissues has been conducted since the nineteenth century after the confirmation that electric and magnetic fields can interact with biological materials. In this paper, electromagnetic waves are used to characterize tissues with different levels of bone mass. In this way, one antenna array on microstrip lines was used. It can be seen that bones with different mass has different behavior in microwave frequencies. PMID:21097274

  2. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  3. The materials used in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-01

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  4. The materials used in bone tissue engineering

    SciTech Connect

    Tereshchenko, V. P. Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  5. Dentin Matrix Proteins in Bone Tissue Engineering.

    PubMed

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering.

  6. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    PubMed Central

    Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan

    2012-01-01

    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283

  7. Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface

    NASA Astrophysics Data System (ADS)

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2013-02-01

    Preferential heating of bone due to high ultrasound attenuation may enhance thermal ablation performed with cathetercooled interstitial ultrasound applicators in or near bone. At the same time, thermally and acoustically insulating cortical bone may protect sensitive structures nearby. 3D acoustic and biothermal transient finite element models were developed to simulate temperature and thermal dose distributions during catheter-cooled interstitial ultrasound ablation near bone. Experiments in ex vivo tissues and tissue-mimicking phantoms were performed to validate the models and to quantify the temperature profiles and ablated volumes for various distances between the interstitial applicator and the bone surface. 3D patient-specific models selected to bracket the range of clinical usage were developed to investigate what types of tumors could be treated, applicator configurations, insertion paths, safety margins, and other parameters. Experiments show that preferential heating at the bone surface decreases treatment times compared to when bone is absent and that all tissue between an applicator and bone can be ablated when they are up to 2 cm apart. Simulations indicate that a 5-7 mm safety margin of normal bone is needed to protect (thermal dose < 6 CEM43°C and T < 45°C) sensitive structures behind ablated bone. In 3D patient-specific simulations, tumors 1.0-3.8 cm (L) and 1.3-3.0 cm (D) near or within bone were ablated (thermal dose > 240 CEM43°C) within 10 min without damaging the nearby spinal cord, lungs, esophagus, trachea, or major vasculature. Preferential absorption of ultrasound by bone may provide improved localization, faster treatment times, and larger treatment zones in tumors in and near bone compared to other heating modalities.

  8. New bone formation in nude mouse calvaria induced by canine prostate tissue.

    PubMed

    LeRoy, Bruce E; Bahnson, Robert R; Rosol, Thomas J

    2002-11-29

    Osteoblastic metastases are common in patients with advanced prostate cancer. The pathophysiology of the new bone formation at metastatic sites is not currently known, but it is hypothesized that growth factors secreted by the prostate may be involved. Unfortunately, most rodent models of prostate cancer with metastasis to bone are osteolytic and not osteoblastic. Significant osteolysis by tumor cells at metastatic sites also may lead to fractures or bone instability. Misinterpretation of new periosteal bone due to bone instability as tumor-cell osteo-induction is another disadvantage of the osteolytic models. To circumvent these problems, we have developed a model system of new bone formation in the calvaria of nude mice stimulated by normal canine prostate tissue. Collagenase-digested normal prostate tissue was implanted adjacent to the calvaria of nude mice. Calvaria were examined at 2 weeks post-implantation for changes in the bone microenvironment by histology, calcein uptake at sites of bone mineralization, and tartrate-resistant acid phosphatase staining for osteoclasts. The prostate tissue remained viable and induced abundant new woven bone formation on the adjacent periosteal surface. In some cases new bone formation also was induced on the distant or concave calvarial periosteum. The new bone stained intensely with calcein, which demonstrated mineralization of the bone matrix. The new bone formation on prostate-implanted calvaria significantly increased (1.7-fold) the thickness of the calvaria compared with control calvaria. New bone formation was not induced in calvaria of mice implanted with normal canine kidney, urinary bladder, spleen, or skeletal muscle tissue, or mice with surgically-induced disruption of the periosteum. Osteoclast numbers in the medullary spaces and periosteum of calvaria were mildly increased (61%) in mice with implanted prostate tissue. In conclusion, this animal model will be useful for investigating the roles of prostate

  9. Microgravity Stress: Bone and Connective Tissue.

    PubMed

    Bloomfield, Susan A; Martinez, Daniel A; Boudreaux, Ramon D; Mantri, Anita V

    2016-03-15

    The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions.

  10. Microgravity Stress: Bone and Connective Tissue.

    PubMed

    Bloomfield, Susan A; Martinez, Daniel A; Boudreaux, Ramon D; Mantri, Anita V

    2016-04-01

    The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions. PMID:27065165

  11. Electrospun nanostructured scaffolds for bone tissue engineering.

    PubMed

    Prabhakaran, Molamma P; Venugopal, J; Ramakrishna, S

    2009-10-01

    The current challenge in bone tissue engineering is to fabricate a bioartificial bone graft mimicking the extracellular matrix (ECM) with effective bone mineralization, resulting in the regeneration of fractured or diseased bones. Biocomposite polymeric nanofibers containing nanohydroxyapatite (HA) fabricated by electrospinning could be promising scaffolds for bone tissue engineering. Nanofibrous scaffolds of poly-l-lactide (PLLA, 860+/-110 nm), PLLA/HA (845+/-140 nm) and PLLA/collagen/HA (310+/-125 nm) were fabricated, and the morphology, chemical and mechanical characterization of the nanofibers were evaluated using scanning electron microscopy, Fourier transform infrared spectroscopy and tensile testing, respectively. The in vitro biocompatibility of different nanofibrous scaffolds was also assessed by growing human fetal osteoblasts (hFOB), and investigating the proliferation, alkaline phosphatase activity (ALP) and mineralization of cells on different nanofibrous scaffolds. Osteoblasts were found to adhere and grow actively on PLLA/collagen/HA nanofibers with enhanced mineral deposition of 57% higher than the PLLA/HA nanofibers. The synergistic effect of the presence of an ECM protein, collagen and HA in PLLA/collagen/HA nanofibers provided cell recognition sites together with apatite for cell proliferation and osteoconduction necessary for mineralization and bone formation. The results of our study showed that the biocomposite PLLA/collagen/HA nanofibrous scaffold could be a potential substrate for the proliferation and mineralization of osteoblasts, enhancing bone regeneration. PMID:19447211

  12. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    PubMed

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.].

  13. Imaging of alkaline phosphatase activity in bone tissue.

    PubMed

    Gade, Terence P; Motley, Matthew W; Beattie, Bradley J; Bhakta, Roshni; Boskey, Adele L; Koutcher, Jason A; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with (19)Flourine magnetic resonance spectroscopic imaging ((19)FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using (19)Fluorine magnetic resonance spectroscopy ((19)FMRS) and (19)FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. (19)FMRS and (19)FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. (19)FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized (19)FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of (19)FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, (19)FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  14. Matrix metalloproteinase-1 expression in breast cancer and cancer-adjacent tissues by immunohistochemical staining

    PubMed Central

    XUAN, JIAJIA; ZHANG, YUNFENG; ZHANG, XIUJUN; HU, FEN

    2015-01-01

    Although matrix metalloproteinase-1 (MMP-1) has been considered a factor of crucial importance for breast cancer cells invasion and metastasis, the expression of MMP-1 in different breast cancer and cancer-adjacent tissues have not been fully examined. In the present study, immunohistochemical staining was used to detect the MMP-1 expression in non-specific invasive ductal carcinoma of the breast, cancer-adjacent normal breast tissue, lymph node metastatic non-specific invasive ductal carcinoma of the breast and normal lymph node tissue. The results showed that MMP-1 expression is different in the above tissues. MMP-1 had a positive expression in normal lymph node tissue and lymph node metastatic non-specific invasive ductal carcinoma. The MMP-1 negative expression rate was only 6.1% in non-specific invasive ductal carcinoma of the breast and 2.9% in cancer-adjacent normal breast tissue respectively. MMP-1 expression is higher in non-specific invasive ductal carcinoma and lymph node metastatic non-specific invasive ductal carcinoma compared to cancer-adjacent normal breast tissue and normal lymph node tissue. In conclusion, higher expression of MMP-1 in breast cancer may play a crucial role in promoting breast cancer metastasis. PMID:26137243

  15. Bone Tissue Engineering: Past-Present-Future.

    PubMed

    Quarto, Rodolfo; Giannoni, Paolo

    2016-01-01

    Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter.

  16. Pullulan microcarriers for bone tissue regeneration.

    PubMed

    Aydogdu, Hazal; Keskin, Dilek; Baran, Erkan Turker; Tezcaner, Aysen

    2016-06-01

    Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering. PMID:27040238

  17. [Reaction of bone tissue elements on synthetic bioresorbable materials based on lactic and glycolic acids].

    PubMed

    Kulakov, A A; Grigor'ian, A S

    2014-01-01

    The aim of the study was to evaluate the adverse effects of synthetic polymeric bioresorbable materials based on lactic and glycolic acids on the bone tissue. The study was carried-out on 40 Wister-line rats. Four types of bioresorbable polymeric materials were implanted: PolyLactide Glycolide Acid (PLGA), Poly-L-Lactide Acid (PLLA); Poly-96L/4D-Lactide Acid (96/4 PLDLA); Poly-70L/30D-Lactide Acid (70/30 PLDLA). The results showed connective tissue formation (fibrointegration) bordering bone adjacent to implanted materials. This proved the materials to cause pathogenic influence on the bone which mechanisms are described in the article.

  18. Does Metaphyseal Cement Augmentation in Fracture Management Influence the Adjacent Subchondral Bone and Joint Cartilage?

    PubMed Central

    Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R. Geoff; Blauth, Michael

    2015-01-01

    Abstract Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage. Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests. Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24). The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage. PMID:25621690

  19. Effects of holmium:YAG laser on equine articular cartilage and subchondral bone adjacent to traumatic lesions

    NASA Astrophysics Data System (ADS)

    Collier, Michael A.; Haugland, L. Mark; Bellamy, Janine; Johnson, Lanny L.; Rohrer, Michael D.; Walls, Robert C.; Bartels, Kenneth E.

    1994-09-01

    The effects of Ho:YAG laser energy on articular cartilage and subchondral bone adjacent to traumatically created cartilage lesions in a continuous weight-bearing model were investigated. The 2.1 micrometers wavelength was delivered in hand-controlled contact and near-contact hard tissue arthroscopic surgery in a saline medium. Bilateral arthroscopy was performed on normal antebrachiocarpal and intercarpal joints of four adult horses. One-hundred twenty traumatic lesions were created on three weight-bearing articular surfaces with a knife, curette, or a motorized burr. Depths of the lesions were partial and full thickness. Configurations of the lesions were lacerations, scrapes, and craters. Left limbs were used as controls. Right limb lesions were treated with various intensities of laser energy. Animals were sacrificed at intervals of 1, 3, and 8 weeks. Gross microscopic anatomy was documented, and tissue sections were subjected to blind review by a pathologist. Mankin grading for cellularity and proteoglycan content was used to qualitatively evaluate cartilage response. Cartilage adjacent to all lesions exposed to laser energy had better cellularity and proteoglycan content than corresponding controls by Mankin grading.

  20. Nanostructured biomaterials for tissue engineering bone.

    PubMed

    Webster, Thomas J; Ahn, Edward S

    2007-01-01

    Advances in several critical research fields (processing, catalytic, optical, actuation, electrical, mechanical, etc.) have started to benefit from nanotechnology. Nano-technology can be broadly defined as the use of materials and systems whose structures and components exhibit novel and significantly changed properties when control is gained at the atomic, molecular, and supramolecular levels. Specifically, such advances have been found for materials when particulate size is decreased to below 100 nm. However, to date, relatively few advantages have been described for biological applications (specifically, those involving bone tissue engineering). This chapter elucidates several promising examples of how nanophase materials can be used to improve orthopedic implant applications. These include mechanical advantages as well as altered cell functions, leading to increased bone tissue regeneration on a wide range of nanophase materials including ceramics, polymers, metals, and composites thereof. Such advances were previously unimaginable with conventional materials possessing large micron-sized particulates.

  1. Distinguishing epigenetic features of preneoplastic testis tissues adjacent to seminomas and nonseminomas

    PubMed Central

    Skvortsova, Yulia V.; Zinovyeva, Marina V.; Stukacheva, Elena A.; Klimov, Alexey; Tryakin, Alexey A.; Azhikina, Tatyana L.

    2016-01-01

    PIWI pathway proteins are expressed during spermatogenesis where they play a key role in germ cell development. Epigenetic loss of PIWI proteins expression was previously demonstrated in testicular germ cell tumors (TGCTs), implying their involvement in TGCT development. In this work, apart from studying only normal testis and TGCT samples, we also analyzed an intermediate stage, i.e. preneoplastic testis tissues adjacent to TGCTs. Importantly, in this study, we minimized the contribution of patient-to-patient heterogeneity by using matched preneoplastic/TGCT samples. Surprisingly, expression of germ cell marker DDX4 suggests that spermatogenesis is retained in premalignant testis tissues adjacent to nonseminoma, but not those adjacent to seminoma. Moreover, this pattern is followed by expression of PIWI pathway genes, which impacts one of their functions: DNA methylation level over LINE-1 promoters is higher in preneoplastic testis tissues adjacent to nonseminomas than those adjacent to seminomas. This finding might imply distinct routes for development of the two types of TGCTs and could be used as a novel diagnostic marker, possibly, noninvasively. Finally, we studied the role of CpG island methylation in expression of PIWI genes in patient samples and using in vitro experiments in cell line models: a more complex interrelation between DNA methylation and expression of the corresponding genes was revealed. PMID:26843623

  2. [Grading of soft tissue and bone sarcomas].

    PubMed

    Petersen, I; Wardelmann, E

    2016-07-01

    Malignancy grading is an essential element in the classification of sarcomas. It correlates with the prognosis of the disease and the risk of metastasis. This article presents the grading schemes for soft tissue, bone and pediatric sarcomas. It summarizes the histological criteria of the Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) system and the Pediatric Oncology Group as well as the grading of bone tumors by the College of American Pathologists (CAP). Furthermore, the potential relevance of gene expression signatures, the complexity index in sarcoma (CINSARC) and single genetic alterations (p53, MDM2, p16, SWI/SNF, EWSR1 fusions and PAX3/PAX7-FOXO1 fusions) for the prognosis of sarcomas are discussed.

  3. [Grading of soft tissue and bone sarcomas].

    PubMed

    Petersen, I; Wardelmann, E

    2016-07-01

    Malignancy grading is an essential element in the classification of sarcomas. It correlates with the prognosis of the disease and the risk of metastasis. This article presents the grading schemes for soft tissue, bone and pediatric sarcomas. It summarizes the histological criteria of the Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) system and the Pediatric Oncology Group as well as the grading of bone tumors by the College of American Pathologists (CAP). Furthermore, the potential relevance of gene expression signatures, the complexity index in sarcoma (CINSARC) and single genetic alterations (p53, MDM2, p16, SWI/SNF, EWSR1 fusions and PAX3/PAX7-FOXO1 fusions) for the prognosis of sarcomas are discussed. PMID:27384333

  4. Dysplasia of the orbit and adjacent bone associated with plexiform neurofibroma and ocular disease in 42 NF-1 patients.

    PubMed

    Friedrich, Reinhard E; Stelljes, Claudia; Hagel, Christian; Giese, Manfred; Scheuer, Hanna A

    2010-05-01

    Neurofibromas are the hallmark of neurofibromatosis type 1 (NF1). Interestingly, generalised and localised interference or dysfunction of bone is also a key element of the NF1 phenotype. In the skull, NF1-associated orbital dysplasia often results in a severe disfigurement of affected individuals. However, the underlying pathology of orbital dysplasia is a complex phenomenon and up to now poorly understood. This study was performed to describe the orbit in 42 NF1 patients with large, disfiguring soft-tissue tumour of the orbital/eyelid region (plexiform neurofibroma (PNF)). A dysplastic orbit on the affected side was diagnosed in 80.9%. Orbital PNF extension to adjacent regions revealed a significant correlation of orbit and temporal region (0.33, p<0.034), cheek and oral cavity (0.4, p>0.011), oral cavity and nose (0.35, p<0.026), and temporal region and cheek (0.46, p<0.003). Alterations of the optic nerve and adjacent structures were identified on MRI or CT in 14 patients. On plain skull radiographs, only sphenoid wing dysplasia and ipsilateral orbital enlargement were significantly correlated (0.528, p<0.01). This study reveals PNF as the main component of soft tissue affecting eyelids and orbit in those cases, which show a soft tissue mass in the affected orbital region. The oval-shaped orbital rim, typically seen on plain skull radiographs in sagittal projections, seems to be strongly associated with the (lateral and caudal) extension of a PNF and independent from sphenoid wing dysplasia. Several factors constitute the individual orbital dysplasia, including the growth of the invasive PNF.

  5. Vascularized Bone Tissue Engineering: Approaches for Potential Improvement

    PubMed Central

    Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing

    2012-01-01

    Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012

  6. [Progress on strategies to promote vascularization in bone tissue engineering].

    PubMed

    Chen, Kai; Zhang, Chao; Wang, Lu; Mao, Yu-Yan; Lu, Jian-Xi; Chen, Lei

    2015-04-01

    With the continuous development of bone tissue engineering, a variety of emerging bone graft materials provided various methods for repairing bone defects. Early and rapid accomplishment of revascularization of materials interior after implantation of bone transplantation materials is a difficulty faced to bone tissue engineering. Blood vessels ingrowth provides the requisite netritional support for the regeneration reconstruction of bone tissue, for this reason, vascularization plays a significant role in bone tissue engineering. However,there is not a golden standard strategy of vascularization at present. Scaffold materials, cells and growth factors still are three indispensable elements in tissue engineering, and are cardinal points of the promoting vascularization strategies. Multiple growth factors or multiple cells combined with scaffolds, which are hot spots, have obtained excellent vascularization. This review focused on the comprehensive strategies for promoting the successful vascularization of tissue engineered scaffolds.

  7. Biomimetic nanoclay scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  8. Differentially Expressed miRNAs in Tumor, Adjacent, and Normal Tissues of Lung Adenocarcinoma

    PubMed Central

    Tian, Fei; Li, Rui; Chen, Zhenzhu; Shen, Yanting; Lu, Jiafeng; Xie, Xueying; Ge, Qinyu

    2016-01-01

    Lung cancer is the leading cause of cancer deaths. Non-small-cell lung cancer (NSCLC) is the major type of lung cancer. The aim of this study was to characterize the expression profiles of miRNAs in adenocarcinoma (AC), one major subtype of NSCLC. In this study, the miRNAs were detected in normal, adjacent, and tumor tissues by next-generation sequencing. Then the expression levels of differential miRNAs were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In the results, 259, 401, and 389 miRNAs were detected in tumor, adjacent, and normal tissues of pooled AC samples, respectively. In addition, for the first time we have found that miR-21-5p and miR-196a-5p were gradually upregulated from normal to adjacent to tumor tissues; miR-218-5p was gradually downregulated with 2-fold or greater change in AC tissues. These 3 miRNAs were validated by qRT-PCR. Lastly, we predicted target genes of these 3 miRNAs and enriched the potential functions and regulatory pathways. The aberrant miR-21-5p, miR-196a-5p, and miR-218-5p may become biomarkers for diagnosis and prognosis of lung adenocarcinoma. This research may be useful for lung adenocarcinoma diagnosis and the study of pathology in lung cancer. PMID:27247934

  9. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].

    PubMed

    Rogala, Piotr; Uklejewski, Ryszard; Stryła, Wanda

    2002-01-01

    The modern biomechanical two-phase poroelastic model of bone tissue is presented. Bone tissue is treated in this model as a porous elastically deformed solid filled with a viscous newtonian fluid. Traditional one-phase biomechanical model of bone tissue, which is characterized by the Young modulus and the Poisson's coefficient, is still valid and it can be treated as an approximate model in comparison with the more realistic two-phase model of bone tissue. The biomechanical function of fluids in bone is considered. Bone biodynamics is presented in form of the scheme which illustrates the mechano-adaptive, the mechano-electric and the electrophysiologic properties of bone tissue. Essentials of the poroelastic model of bone tissue is the mechanical load induced flow of intraosseous fluid and the associated strain generated electric potentials SGPs.

  10. Structural and nanoindentation studies of stem cell-based tissue-engineered bone.

    PubMed

    Pelled, Gadi; Tai, Kuangshin; Sheyn, Dima; Zilberman, Yoram; Kumbar, Sangamesh; Nair, Lakshmi S; Laurencin, Cato T; Gazit, Dan; Ortiz, Christine

    2007-01-01

    Stem cell-based gene therapy and tissue engineering have been shown to be an efficient method for the regeneration of critical-sized bone defects. Despite being an area of active research over the last decade, no knowledge of the intrinsic ultrastructural and nanomechanical properties of such bone tissue exists. In this study, we report the nanomechanical properties of engineered bone tissue derived from genetically modified mesenchymal stem cells (MSCs) overexpressing the rhBMP2 gene, grown in vivo in the thigh muscle of immunocompetent mice for 4 weeks, compared to femoral bone adjacent to the transplantation site. The two types of bone had similar mineral contents (61 and 65 wt% for engineered and femoral bone, respectively), overall microstructures showing lacunae and canaliculi (both measured by back-scattered electron microscopy), chemical compositions (measured by energy dispersive X-ray analysis), and nanoscale topographical morphologies (measured by tapping-mode atomic force microscopy imaging or TMAFM). Nanoindentation experiments revealed that the small length scale mechanical properties were statistically different with the femoral bone (indented parallel to the bone long axis) being stiffer and harder (apparent elastic modulus, E approximately 27.3+/-10.5 GPa and hardness, H approximately 1.0+/-0.7G Pa) than the genetically engineered bone (E approximately 19.8+/-5.6 GPa, H approximately 0.9+/-0.4G Pa). TMAFM imaging showed clear residual indents characteristic of viscoelastic plastic deformation for both types of bone. However, fine differences in the residual indent area (smaller for the engineered bone), pile up (smaller for the engineered bone), and fracture mechanisms (microcracks for the engineered bone) were observed with the genetically engineered bone behaving more brittle than the femoral control.

  11. Spatiotemporal morphometry of adjacent tissue layers with application to the study of sulcal formation.

    PubMed

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A; Kim, Kio; Rousseau, François; Glenn, Orit A; Barkovich, A James; Studholme, Colin

    2011-01-01

    The process of brain growth involves the expansion of tissue at different rates at different points within the brain. As the layers within the developing brain evolve they can thicken or increase in area as the brain surface begins to fold. In this work we propose a new spatiotemporal formulation of tensor based volume morphometry that is derived in relation to tissue boundaries. This allows the study of the directional properties of tissue growth by separately characterizing the changes in area and thickness of the adjacent layers. The approach uses temporally weighted, local regression across a population of anatomies with different ages to model changes in components of the growth radial and tangential to the boundary between tissue layers. The formulation is applied to the study of sulcal formation from in-utero MR imaging of human fetal brain anatomy. Results show that the method detects differential growth of tissue layers adjacent to the cortical surface, particularly at sulcal locations, as early as 22 gestational weeks. PMID:21995063

  12. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed.

  13. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. PMID:27086202

  14. The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs

    PubMed Central

    Lima, Eric G.; Chao, Pen-hsiu Grace; Ateshian, Gerard A.; Bal, B. Sonny; Cook, James L.; Vunjak-Novakovic, Gordana; Hung, Clark T.

    2008-01-01

    In the current study, evidence is presented demonstrating that devitalized trabecular bone has an inhibitory effect on in vitro chondral tissue development when used as a base material for the tissue-engineering of osteochondral constructs for cartilage repair. Chondrocyte-seeded agarose hydrogel constructs were cultured alone or attached to an underlying bony base in a chemically defined medium formulation that has been shown to yield engineered cartilaginous tissue with native Young's modulus (EY) and glycosaminoglycan (GAG) content. By day 42 in culture the incorporation of a bony base significantly reduced these properties (EY = 87 ± 12 kPa, GAG = 1.9 ± 0.8%ww) compared to the gel-alone group (EY = 642 ± 97 kPa, GAG = 4.6 ± 1.4%ww). Similarly, the mechanical and biochemical properties of chondrocyte-seeded agarose constructs were inhibited when co-cultured adjacent to bone (unattached), suggesting that soluble factors rather than direct cell–bone interactions mediate the chondro-inhibitory bone effects. Altering the method of bone preparation, including demineralization, or the timing of bone introduction in co-culture did not ameliorate the effects. In contrast, osteochondral constructs with native cartilage properties (EY = 730 ± 65 kPa, GAG = 5.2 ± 0.9%ww) were achieved when a porous tantalum metal base material was adopted instead of bone. This work suggests that devitalized bone may not be a suitable substrate for long-term cultivation of osteochondral grafts. PMID:18718655

  15. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  16. Vascularised endosteal bone tissue in armoured sauropod dinosaurs.

    PubMed

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-01-01

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature. PMID:27112710

  17. Vascularised endosteal bone tissue in armoured sauropod dinosaurs

    PubMed Central

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-01-01

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature. PMID:27112710

  18. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing

    PubMed Central

    Clark, Andrew J.; Wiley, Devin T.; Zuckerman, Jonathan E.; Webster, Paul; Chao, Joseph; Lin, James; Yen, Yun; Davis, Mark E.

    2016-01-01

    Nanoparticle-based therapeutics are being used to treat patients with solid tumors. Whereas nanoparticles have been shown to preferentially accumulate in solid tumors of animal models, there is little evidence to prove that intact nanoparticles localize to solid tumors of humans when systemically administered. Here, tumor and adjacent, nonneoplastic tissue biopsies are obtained through endoscopic capture from patients with gastric, gastroesophageal, or esophageal cancer who are administered the nanoparticle CRLX101. Both the pre- and postdosing tissue samples adjacent to tumors show no definitive evidence of either the nanoparticle or its drug payload (camptothecin, CPT) contained within the nanoparticle. Similar results are obtained from the predosing tumor samples. However, in nine of nine patients that were evaluated, CPT is detected in the tumor tissue collected 24–48 h after CRLX101 administration. For five of these patients, evidence of the intact deposition of CRLX101 nanoparticles in the tumor tissue is obtained. Indications of CPT pharmacodynamics from tumor biomarkers such as carbonic anhydrase IX and topoisomerase I by immunohistochemistry show clear evidence of biological activity from the delivered CPT in the posttreatment tumors. PMID:27001839

  19. Sarcomas of Soft Tissue and Bone.

    PubMed

    Ferrari, Andrea; Dirksen, Uta; Bielack, Stefan

    2016-01-01

    The definition of soft tissue and bone sarcomas include a large group of several heterogeneous subtypes of mesenchymal origin that may occur at any age. Among the different sarcomas, rhabdomyosarcoma, synovial sarcoma, Ewing sarcoma and osteosarcoma are aggressive high-grade malignancies that often arise in adolescents and young adults. Managing these malignancies in patients in this age bracket poses various clinical problems, also because different therapeutic approaches are sometimes adopted by pediatric and adult oncologists, even though they are dealing with the same condition. Cooperation between pediatric oncologists and adult medical oncologists is a key step in order to assure the best treatment to these patients, preferably through their inclusion into international clinical trials. PMID:27595362

  20. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    PubMed Central

    Bhattacharya, Indranil; Ghayor, Chafik; Weber, Franz E.

    2016-01-01

    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules. PMID:27781021

  1. [Bone tissue morphological structure in congenital deformations of the jaws].

    PubMed

    Shishkanov, A V; Panin, M G; Shipkova, T P; Chumakov, A A; Komnova, Z D

    2001-01-01

    Morphological structure of bone tissue was studied in various types of congenital deformations of the jaws. Morphological changes in the bone with deformations and the severity of these disorders depended not so much on the type on the deformation, but mainly on its severity, which can be explained by a drastic increase of functional exercise because of impaired occlusion and impossibility of proper chewing. Decelerated weak restructuring of bone tissue and imperfect osteogenesis in deformed bone, similar in various types of deformations, were demonstrated on morphological material. These changes can affect the regenerative potential of the bone in operated zones. PMID:11881460

  2. Chitosan-based scaffolds for bone tissue engineering

    PubMed Central

    Levengood, Sheeny Lan; Zhang, Miqin

    2014-01-01

    Bone defects requiring grafts to promote healing are frequently occurring and costly problems in health care. Chitosan, a biodegradable, naturally occurring polymer, has drawn considerable attention in recent years as scaffolding material in tissue engineering and regenerative medicine. Chitosan is especially attractive as a bone scaffold material because it supports the attachment and proliferation of osteoblast cells as well as formation of mineralized bone matrix. In this review, we discuss the fundamentals of bone tissue engineering and the unique properties of chitosan as a scaffolding material to treat bone defects for hard tissue regeneration. We present the common methods for fabrication and characterization of chitosan scaffolds, and discuss the influence of material preparation and addition of polymeric or ceramic components or biomolecules on chitosan scaffold properties such as mechanical strength, structural integrity, and functional bone regeneration. Finally, we highlight recent advances in development of chitosan-based scaffolds with enhanced bone regeneration capability. PMID:24999429

  3. Bioactive scaffold for bone tissue engineering: An in vivo study

    NASA Astrophysics Data System (ADS)

    Livingston, Treena Lynne

    Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment

  4. Bioactive glass-based scaffolds for bone tissue engineering.

    PubMed

    Will, Julia; Gerhardt, Lutz-Christian; Boccaccini, Aldo R

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate glasses. A brief historical review and the fundamental requirements in the field of bone tissue engineering scaffolds will be presented, followed by a detailed overview of recent developments in bioactive glass-based scaffolds. In addition, the effects of ionic dissolution products of bioactive glasses on osteogenesis and angiogenic properties of scaffolds are briefly addressed. Finally, promising areas of future research and requirements for the advancement of the field are highlighted and discussed.

  5. Elastic properties of a porous titanium-bone tissue composite.

    PubMed

    Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B

    2015-01-01

    The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone. PMID:25953540

  6. Injectable bone tissue engineering using expanded mesenchymal stem cells.

    PubMed

    Yamada, Yoichi; Nakamura, Sayaka; Ito, Kenji; Umemura, Eri; Hara, Kenji; Nagasaka, Tetsuro; Abe, Akihiro; Baba, Shunsuke; Furuichi, Yasushi; Izumi, Yuichi; Klein, Ophir D; Wakabayashi, Toshihiko

    2013-03-01

    Patients suffering from bone defects are often treated with autologous bone transplants, but this therapy can cause many complications. New approaches are therefore needed to improve treatment for bone defects, and stem cell therapy presents an exciting alternative approach. Although extensive evidence from basic studies using stem cells has been reported, few clinical applications using stem cells for bone tissue engineering have been developed. We investigated whether injectable tissue-engineered bone (TEB) composed of mesenchymal stem cells (MSCs) and platelet-rich plasma was able to regenerate functional bone in alveolar deficiencies. We performed these studies in animals and subsequently carried out large-scale clinical studies in patients with long-term follow-up; these showed good bone formation using minimally invasive MSC transplantation. All patients exhibited significantly improved bone volume with no side effects. Newly formed bone areas at 3 months were significantly increased over the preoperation baseline (p < .001) and reached levels equivalent to that of native bone. No significant bone resorption occurred during long-term follow-up. Injectable TEB restored masticatory function in patients. This novel clinical approach represents an effective therapeutic utilization of bone tissue engineering.

  7. Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro.

    PubMed

    Zhou, Jian; Ma, Xiao-Ni; Gao, Yu-Hai; Yan, Juan-Li; Shi, Wen-Gui; Xian, Cory J; Chen, Ke-Ming

    2016-01-01

    Effects of sinusoidal electromagnetic fields (SEMFs) on bone metabolism have not yet been well defined. The present study investigated SEMF effects on bone formation and resorption in rat femur bone tissues in vitro. Cultured femur diaphyseal (cortical bone) and metaphyseal (trabecular bone) tissues were treated with 50 Hz 1.8 mT SEMFs 1.5 h per day for up to 12 days and treatment effects on bone formation and resorption markers and associated gene expression were examined. Treatment with SEMFs caused a significant increase in alkaline phosphatase (ALP) activity and inhibited the tartrate-resistant acid phosphatase (TRACP) activity in the femoral diaphyseal or metaphyseal tissues. SEMFs also significantly increased levels of mRNA expression of osterix (OSX), insulin-like growth factor (IGF-1) and ALP in the bone tissues. SEMF treatment decreased glucose content and increased lactic acid contents in the culture conditioned medium. In addition, treatment with SEMFs decreased mRNA expression levels of bone resorption-related genes TRACP, macrophage colony stimulating factor (M-CSF) and cathepsin K (CTSK) in the cultured bone tissues. In conclusion, the current study demonstrated that treatment with 1.8 mT SEMFs at 1.5 h per day promoted bone formation, increased metabolism and inhibited resorption in both metaphyseal and diaphyseal bone tissues in vitro.

  8. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.

    PubMed

    Moros, Eduardo G; Novak, Petr; Straube, William L; Kolluri, Prashant; Yablonskiy, Dmitriy A; Myerson, Robert J

    2004-03-21

    than fourfold) were induced in soft tissue-like phantom materials adjacent (within approximately 5 mm) to a bovine bone as compared to similar experiments without bone inclusions. For low-power long-exposure experiments, where thermal conduction effects are significant, the thermal impact of bone reached at distances > 10 mm from the bone surface (upstream of the bone). Therefore, we hypothesize that underlying bone exposed to planar ultrasound hyperthermia creates a high-temperature thermal boundary at depth that compensates for beam attenuation, thus producing more uniform temperature distribution in the intervening tissue layers. With appropriate technology, this finding may lead to improved thermal doses in superficial treatment sites such as the chest wall and the head/neck. PMID:15104313

  9. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound

    NASA Astrophysics Data System (ADS)

    Moros, Eduardo G.; Novak, Petr; Straube, William L.; Kolluri, Prashant; Yablonskiy, Dmitriy A.; Myerson, Robert J.

    2004-03-01

    than fourfold) were induced in soft tissue-like phantom materials adjacent (within ~5 mm) to a bovine bone as compared to similar experiments without bone inclusions. For low-power long-exposure experiments, where thermal conduction effects are significant, the thermal impact of bone reached at distances >10 mm from the bone surface (upstream of the bone). Therefore, we hypothesize that underlying bone exposed to planar ultrasound hyperthermia creates a high-temperature thermal boundary at depth that compensates for beam attenuation, thus producing more uniform temperature distribution in the intervening tissue layers. With appropriate technology, this finding may lead to improved thermal doses in superficial treatment sites such as the chest wall and the head/neck.

  10. In vitro simulation of pathological bone conditions to predict clinical outcome of bone tissue engineered materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong Thuy Thi

    According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted

  11. Tissue-engineered autologous grafts for facial bone reconstruction.

    PubMed

    Bhumiratana, Sarindr; Bernhard, Jonathan C; Alfi, David M; Yeager, Keith; Eton, Ryan E; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M; Lopez, Mandi J; Eisig, Sidney B; Vunjak-Novakovic, Gordana

    2016-06-15

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care-the use of bone harvested from another region in the body-has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, native bovine bone matrix, and a perfusion bioreactor for the growth and transport of living grafts, without bone morphogenetic proteins. The ramus-condyle unit, the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatán minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material and crafted it into an anatomically correct shape using image-guided micromilling to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either nonseeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering.

  12. Chitin and chitosan composites for bone tissue regeneration.

    PubMed

    Venkatesan, Jayachandran; Vinodhini, P Angelin; Sudha, Prasad N; Kim, Se-Kwon

    2014-01-01

    In the present world, where there is increased obesity and poor physical activity, the occurrence of bone disorders has also been increased steeply. Therefore, a significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue in the recent years. Bone contains considerable amounts of minerals and proteins. The major component of bone is hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] (60-65%) and is one of the most stable forms of calcium phosphate and it occurs along with other materials including collagen, chondroitin sulfate, keratin sulfate, and lipids. To remedy bone defects, new natural and synthetic materials are needed, which will have very similar properties as that of natural bone. Bone tissue engineering is a relatively new and emerging field, which paves the way for bone repair or regeneration. Polymers can serve as a matrix to support cell growth by having various properties such as biocompatibility, biodegradability, porosity, charge, mechanical strength, and hydrophobicity. Considerable attention has been given to chitin and chitosan composite materials and their applications in the field of bone tissue engineering in the recent years, which are natural biopolymers. This chapter reviews the various composites of chitin and chitosan, which are proved to be potential materials for bone tissue regeneration. PMID:25300543

  13. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction

    PubMed Central

    Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana

    2016-01-01

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  14. Bone tissue engineering and regenerative medicine: targeting pathological fractures.

    PubMed

    Nguyen, Duong T; Burg, Karen J L

    2015-01-01

    Patients with bone diseases have the highest risk of sustaining fractures and of suffering from nonunion bone healing due to tissue degeneration. Current fracture management strategies are limited in design and functionality and do not effectively promote bone healing within a diseased bone environment. Fracture management approaches include pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and nonunions. To target fragility fractures, fracture management strategies should include bioactive bone substitutes designed for the pathological environment. However, the clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted treatment strategy should focus on simulating the physiological in vitro bone environment to predict clinical effectiveness of the engineered bone. An in vitro test system can facilitate reduction of implant failures and non-unions in fragility fractures.

  15. Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology

    PubMed Central

    Bodle, Josephine C.; Hanson, Ariel D.

    2011-01-01

    This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267

  16. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone

    PubMed Central

    Morris, Emma V.; Edwards, Claire M.

    2016-01-01

    The bone marrow is a favored site for a number of cancers, including the hematological malignancy multiple myeloma, and metastasis of breast and prostate cancer. This specialized microenvironment is highly supportive, not only for tumor growth and survival but also for the development of an associated destructive cancer-induced bone disease. The interactions between tumor cells, osteoclasts and osteoblasts are well documented. By contrast, despite occupying a significant proportion of the bone marrow, the importance of bone marrow adipose tissue is only just emerging. The ability of bone marrow adipocytes to regulate skeletal biology and hematopoiesis, combined with their metabolic activity, endocrine functions, and proximity to tumor cells means that they are ideally placed to impact both tumor growth and bone disease. This review discusses the recent advances in our understanding of how marrow adipose tissue contributes to bone metastasis and cancer-induced bone disease. PMID:27471491

  17. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis.

    PubMed

    Tomanik, Magdalena; Nikodem, Anna; Filipiak, Jarosław

    2016-12-01

    Bone tissue is a biological system in which the dynamic processes of, among others, bone formation or internal reconstruction will determine the spatial structure of the tissue and its mechanical properties. The appearance of a factor disturbing the balance between biological processes, e.g. a disease, will cause changes in the spatial structure of bones, thus affecting its mechanical properties. One of the bone diseases most common in an increasingly ageing population is osteoarthritis, also referred to as degenerative joint disease. It is estimated that in 2050 about 1300 million people will show symptoms of OA. The appearance of a pathological stimulus disturbs the balance of the processes of degradation and synthesis of articular cartilage, chondrocytes and the extracellular matrix, and the subchondral bone layer. As osteoarthritis progresses, study of the epiphysis reveals increasingly widespread changes of the articular surface and the internal structure of bone tissue. In this paper, the authors point out the differences in the mechanical properties of cancellous bone tissue forming the proximal epiphysis of the femoral bone during the progressive stages of OA. In order to determine microproperties of bone trabeculae, specimens from different stages of the disease (N=9) were subjected to microindentation testing, which made it possible to determine the material properties of bone tissue, such as microhardness HV and Young׳s modulus E. In addition, mechanical tests were supplemented with Raman spectroscopy, which determine the degree of bone mineralization, and measurements of structural properties based on analysis using microCT. The conducted tests were used to establish both quantitative and quantitative description of changes in the structural and mechanical properties connected with reorganization of trabeculae making up the bone in the various stages of osteoarthritis. The proposed description will supplement existing knowledge in the literature about

  18. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis.

    PubMed

    Tomanik, Magdalena; Nikodem, Anna; Filipiak, Jarosław

    2016-12-01

    Bone tissue is a biological system in which the dynamic processes of, among others, bone formation or internal reconstruction will determine the spatial structure of the tissue and its mechanical properties. The appearance of a factor disturbing the balance between biological processes, e.g. a disease, will cause changes in the spatial structure of bones, thus affecting its mechanical properties. One of the bone diseases most common in an increasingly ageing population is osteoarthritis, also referred to as degenerative joint disease. It is estimated that in 2050 about 1300 million people will show symptoms of OA. The appearance of a pathological stimulus disturbs the balance of the processes of degradation and synthesis of articular cartilage, chondrocytes and the extracellular matrix, and the subchondral bone layer. As osteoarthritis progresses, study of the epiphysis reveals increasingly widespread changes of the articular surface and the internal structure of bone tissue. In this paper, the authors point out the differences in the mechanical properties of cancellous bone tissue forming the proximal epiphysis of the femoral bone during the progressive stages of OA. In order to determine microproperties of bone trabeculae, specimens from different stages of the disease (N=9) were subjected to microindentation testing, which made it possible to determine the material properties of bone tissue, such as microhardness HV and Young׳s modulus E. In addition, mechanical tests were supplemented with Raman spectroscopy, which determine the degree of bone mineralization, and measurements of structural properties based on analysis using microCT. The conducted tests were used to establish both quantitative and quantitative description of changes in the structural and mechanical properties connected with reorganization of trabeculae making up the bone in the various stages of osteoarthritis. The proposed description will supplement existing knowledge in the literature about

  19. Alginate composites for bone tissue engineering: a review.

    PubMed

    Venkatesan, Jayachandran; Bhatnagar, Ira; Manivasagan, Panchanathan; Kang, Kyong-Hwa; Kim, Se-Kwon

    2015-01-01

    Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering.

  20. Chitosan composites for bone tissue engineering--an overview.

    PubMed

    Venkatesan, Jayachandran; Kim, Se-Kwon

    2010-01-01

    Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed.

  1. Chitosan Composites for Bone Tissue Engineering—An Overview

    PubMed Central

    Venkatesan, Jayachandran; Kim, Se-Kwon

    2010-01-01

    Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed. PMID:20948907

  2. Mechanisms of gravity-dependent changes in the bone tissue.

    PubMed

    Rodionova, N V; Oganov, V S; Polkovenko, O V

    2002-07-01

    The most typical changes for the bone under the space flight conditions and a long-term hypokinesia are the following: the decreasing in bone mass, the demineralization and a reducing of a mechanical strength. It can lead to osteopenia and osteoporosis development. Also it increases the risk of fractures of supporting bones. Osteopenies, caused by the microgravity, are partially connected with the increasing of a reduction of trabecular bones. [Cytological mechanisms of gravity-dependent reactions in a bone tissue remain in many respects not clear. The study purpose was the analysis of some ultrastructural changes in bone tissue cells of the monkeys (Macaca mulatta), staying during 2 weeks onboard the biosatellite "Bion-11".

  3. [The influence of mesenchymal stem cells on bone tissue regeneration upon implantation of demineralized bone matrix].

    PubMed

    Krugliakov, P V; Sokolova, I B; Zin'kova, N N; Viĭde, S V; Cherednichenko, N N; Kisliakova, T V; Polyntsev, D G

    2005-01-01

    Mesenchymal stem cells (MSC) are resident pluripotent cells of bone marrow stroma. MSC are able to differentiate into chondroblasts, adipocytes, neurons, glia, cardiomyocytes, or osteoblasts. The problem of MSC usage in cell therapy of bone defects is widely discussed at present. The experiments were carried out using rats of inbred line Wistar-Kyoto. MSC were isolated from bone marrow and cultivated in vitro. Demineralized bone matrices (DBM) were obtained from parietal bones of rats and hens. Part of DBM was loaded with MSC. Bone defects were made in cranium parietal regions. DBM with or without MSC or metal plates were transplanted in these regions. It was shown that the application of MSC increased angiogenesis and osteogenesis in the damaged bone. The implantation of rat's DBM with MSC led to the formation of a full value bone. MSC suppressed inflammation, when transplantation of hen's DBM was carried out. The application of MSC always improved bone tissue regeneration.

  4. Donation FAQs (Bone and Tissue Allografts)

    MedlinePlus

    ... donor family services. Most organ, tissue and eye banks that are members of MTF send tissue to ... according to exact surgical specifications. Small, local tissue banks could not provide this level of quality in ...

  5. Variability and Anisotropy of Fracture Toughness of Cortical Bone Tissue

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, Adel; Nordin, Norhaziqah; Silberschmidt, Vadim

    2012-08-01

    Bones form protective and load-bearing framework of the body. Therefore, their structural integrity is vital for the quality of life. Unfortunately, bones can only sustain a load until a certain limit, beyond which they fail. Therefore, it is essential to study their mechanical and fracture behaviours in order to get an in-depth understanding of the origins of its fracture resistance that, in turn, can assist diagnosis and prevention of bone's trauma. This can be achieved by studying mechanical properties of bone, such as its fracture toughness. Generally, most of bone fractures occur for long bones that consist mostly of cortical bone. Therefore, in this study, only a cortical bone tissue was studied. Since this tissue has an anisotropic behaviour and possesses hierarchical and complex structure, in this paper, an experimental analysis for the fracture toughness of cortical bone tissue is presented in terms of J-integral. The data was obtained using single-edge-notch bending (SENB) cortical specimens of bone tested in a three-point bending setup. Variability of values of fracture toughness was investigated by testing specimens cut from different cortex positions of bovine femur called anterior, posterior, medial, and lateral. In addition, anisotropy ratios of fracture toughness were considered by examining specimens cut from three different orientations: longitudinal, transverse and radial. Moreover, in order to link cortical bone fracture mechanisms with its underlying microstructure, fracture surfaces of specimens from different cortices and along different orientations were studied. Experimental results of this study provide a clear understanding of both variability and anisotropy of cortical bone tissue with regard to its fracture toughness.

  6. Stem and progenitor cells: advancing bone tissue engineering.

    PubMed

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  7. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    PubMed Central

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon

    2013-01-01

    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction. PMID:23824910

  8. [Use of Masson's trichrome method for staining decalcified bone tissue].

    PubMed

    Asonova, S N; Migalkin, N S

    1996-01-01

    The trichrome method of staining undecalcified tissues according to Masson is adjusted for staining decalcified bone sections. The basis for the modification is the authors' data on the preservation of the affinity to staining of the calciphylaxis zones after their decalcification. The adapted Masson's method stains differently a mineralized bone (blue) and an osteoid (red).

  9. Pathologic bone tissues in a Turkey vulture and a nonavian dinosaur: implications for interpreting endosteal bone and radial fibrolamellar bone in fossil dinosaurs.

    PubMed

    Chinsamy, Anusuya; Tumarkin-Deratzian, Allison

    2009-09-01

    We report on similar pathological bone microstructure in an extant turkey vulture (Cathartes aura) and a nonavian dinosaur from Transylvania. Both these individuals exhibit distinctive periosteal reactive bone deposition accompanied by endosteal bone deposits in the medullary cavity. Our findings have direct implications on the two novel bone tissues recently described among nonavian dinosaurs, radial fibrolamellar bone tissue and medullary bone tissue. On the basis of the observed morphology of the periosteal reactive bone in the turkey vulture and the Transylvanian dinosaur, we propose that the radial fibrolamellar bone tissues observed in mature dinosaurs may have had a pathological origin. Our analysis also shows that on the basis of origin, location, and morphology, pathologically derived endosteal bone tissue can be similar to medullary bone tissues described in nonavian dinosaurs. As such, we caution the interpretation of all endosteally derived bone tissue as homologous to avian medullary bone.

  10. Remodeling of tissue-engineered bone structures in vivo.

    PubMed

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L; Merkle, Hans P; Meinel, Lorenz

    2013-09-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  11. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  12. Management of soft tissue and bone sarcomas

    SciTech Connect

    Van Oosterom, A.T.; Van Unnik, J.A.M.

    1986-01-01

    This book contains 32 papers. Some of the titles are: Adjuvant Treatment for Osteosarcoma of the Limbs; Trial 20781 of the SIOP and the EORTC Radiotherapy/Chemotherapy; Application of Magnetic Resonance Imaging (MRI) in Diagnosis and Follow-up During Treatment of Bone Tumors; Radiological Assessment of Local Involvement in Bone Sarcomas; and Prevention of Lung Metastases by Irradiation Alone or Combined with Chemotherapy in an Animal Model.

  13. Effect of Microgravity on Bone Tissue and Calcium Metabolism

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA4 includes short reports concerning: (1) Human Bone Tissue Changes after Long-Term Space Flight: Phenomenology and Possible Mechanics; (2) Prediction of Femoral Neck Bone Mineral Density Change in Space; (3) Dietary Calcium in Space; (4) Calcium Metabolism During Extended-Duration Space Flight; (5) External Impact Loads on the Lower Extremity During Jumping in Simulated Microgravity and the Relationship to Internal Bone Strain; and (6) Bone Loss During Long Term Space Flight is Prevented by the Application of a Short Term Impulsive Mechanical Stimulus.

  14. Is Bone Tissue Really Affected by Swimming? A Systematic Review

    PubMed Central

    Gómez-Bruton, Alejandro; Gónzalez-Agüero, Alejandro; Gómez-Cabello, Alba; Casajús, José A.; Vicente-Rodríguez, Germán

    2013-01-01

    Background Swimming, a sport practiced in hypogravity, has sometimes been associated with decreased bone mass. Aim This systematic review aims to summarize and update present knowledge about the effects of swimming on bone mass, structure and metabolism in order to ascertain the effects of this sport on bone tissue. Methods A literature search was conducted up to April 2013. A total of 64 studies focusing on swimmers bone mass, structure and metabolism met the inclusion criteria and were included in the review. Results It has been generally observed that swimmers present lower bone mineral density than athletes who practise high impact sports and similar values when compared to sedentary controls. However, swimmers have a higher bone turnover than controls resulting in a different structure which in turn results in higher resistance to fracture indexes. Nevertheless, swimming may become highly beneficial regarding bone mass in later stages of life. Conclusion Swimming does not seem to negatively affect bone mass, although it may not be one of the best sports to be practised in order to increase this parameter, due to the hypogravity and lack of impact characteristic of this sport. Most of the studies included in this review showed similar bone mineral density values in swimmers and sedentary controls. However, swimmers present a higher bone turnover than sedentary controls that may result in a stronger structure and consequently in a stronger bone. PMID:23950908

  15. Ultrasound elastography assessment of bone/soft tissue interface

    NASA Astrophysics Data System (ADS)

    Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella

    2016-01-01

    We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.

  16. The role of osteoclasts in bone tissue engineering.

    PubMed

    Detsch, Rainer; Boccaccini, Aldo R

    2015-10-01

    The success of scaffold-based bone regeneration approaches strongly depends on the performance of the biomaterial utilized. Within the efforts of regenerative medicine towards a restitutio ad integrum (i.e. complete reconstruction of a diseased tissue), scaffolds should be completely degraded within an adequate period of time. The degradation of synthetic bone substitute materials involves both chemical dissolution (physicochemical degradation) and resorption (cellular degradation by osteoclasts). Responsible for bone resorption are osteoclasts, cells of haematopoietic origin. Osteoclasts play also a crucial role in bone remodelling, which is essential for the regeneration of bone defects. There is, however, surprisingly limited knowledge about the detailed effects of osteoclasts on biomaterials degradation behaviour. This review covers the relevant fundamental knowledge and progress made in the field of osteoclast activity related to biomaterials used for bone regeneration. In vitro studies with osteoclastic precursor cells on synthetic bone substitute materials show that there are specific parameters that inhibit or enhance resorption. Moreover, analyses of the bone-material interface reveal that biomaterials composition has a significant influence on their degradation in contact with osteoclasts. Crystallinity, grain size, surface bioactivity and density of the surface seem to have a less significant effect on osteoclastic activity. In addition, the topography of the scaffold surface can be tailored to affect the development and spreading of osteoclast cells. The present review also highlights possible areas on which future research is needed and which are relevant to enhance our understanding of the complex role of osteoclasts in bone tissue engineering.

  17. Effects of microgravity on rat bone, cartlage and connective tissues

    NASA Technical Reports Server (NTRS)

    Doty, S.

    1990-01-01

    The response to hypogravity by the skeletal system was originally thought to be the result of a reduction in weight bearing. Thus a reduced rate of new bone formation in the weight-bearing bones was accepted, when found, as an obvious result of hypogravity. However, data on non-weight-bearing tissues have begun to show that other physiological changes can be expected to occur to animals during spaceflight. This overview of the Cosmos 1887 data discusses these results as they pertain to individual bones or tissues because the response seems to depend on the architecture and metabolism of each tissue under study. Various effects were seen in different tissues from the rats flown on Cosmos 1887. The femur showed a reduced bone mineral content but only in the central region of the diaphysis. This same region in the tibia showed changes in the vascularity of bone as well as some osteocytic cell death. The humerus demonstrated reduced morphometric characteristics plus a decrease in mechanical stiffness. Bone mineral crystals did not mature normally as a result of flight, suggesting a defect in the matrix mineralization process. Note that these changes relate directly to the matrix portion of the bone or some function of bone which slowly responds to changes in the environment. However, most cellular functions of bone are rapid responders. The stimulation of osteoblast precursor cells, the osteoblast function in collagen synthesis, a change in the proliferation rate of cells in the epiphyseal growth plate, the synthesis and secretion of osteocalcin, and the movement of water into or out of tissues, are all processes which respond to environmental change. These rapidly responding events produced results from Cosmos 1887 which were frequently quite different from previous space flight data.

  18. [Effect of pulsed CO2-laser irradiation on bone tissue].

    PubMed

    Kholodnov, S E

    1985-01-01

    Different dynamic effects on biological tissue caused by pulsed laser radiation are described. It is shown that the parameters of these effects which take place on the bone tissue affected by pulsed CO2-laser radiation are directly dependent on the parameters of these pulses and may be predicted for any concrete application. PMID:3931698

  19. Composites structures for bone tissue reconstruction

    NASA Astrophysics Data System (ADS)

    Neto, W.; Santos, João.; Avérous, L.; Schlatter, G.; Bretas, Rosario.

    2015-05-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  20. Composites structures for bone tissue reconstruction

    SciTech Connect

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-05-22

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  1. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles

    PubMed Central

    Meka, Archana; Bakthavatchalu, Vasudevan; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Verma, Raj K.; Wallet, Shannon M.; Bhattacharyya, Indraneel; Boyce, Brendan F.; Handfield, Martin; Lamont, Richard J.; Baker, Henry V.; Ebersole, Jeffrey L.; Lakshmyya, Kesavalu N.

    2010-01-01

    Introduction Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. The objectives of this investigation were to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. Methods P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip® arrays to provide a molecular profile of the events that occur following infection of these tissues. Results After P. gingivalis infection, 5517 and 1900 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P ≤ 0.05) and up-regulated. Biological pathways significantly impacted by P. gingivalis infection in tissues and calvarial bone included cell adhesion (immune system) molecules, Toll-like receptors, B cell receptor signaling, TGF-β cytokine family receptor signaling, and MHC class II antigen processing pathways resulting in proinflammatory, chemotactic effects, T cell stimulation, and down regulation of antiviral and T cell chemotactic effects. P. gingivalis-induced inflammation activated osteoclasts, leading to local bone resorption. Conclusion This is the first in vivo evidence that localized P. gingivalis infection differentially induces transcription of a broad array of host genes that differed between inflamed soft tissues and calvarial bone. PMID:20331794

  2. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering.

    PubMed

    Li, Jianhua; Baker, Bryan A; Mou, Xiaoning; Ren, Na; Qiu, Jichuan; Boughton, Robert I; Liu, Hong

    2014-04-01

    With nearly 30 years of progress, tissue engineering has shown promise in developing solutions for tissue repair and regeneration. Scaffolds, together with cells and growth factors, are key components of this development. Recently, an increasing number of studies have reported on the design and fabrication of scaffolding materials. In particular, inspired by the nature of bone, polymer/ceramic composite scaffolds have been studied extensively. The purpose of this paper is to review the recent progress of the naturally derived biopolymers and the methods applied to generate biomimetic biopolymer/calcium phosphate composites as well as their biomedical applications in bone tissue engineering.

  3. Bone tissue reaction around implants placed in a compromised jaw.

    PubMed

    Carmagnola, D; Araújo, M; Berglundh, T; Albrektsson, T; Lindhe, J

    1999-10-01

    The present experiment was carried out to examine bone tissue alterations that occurred around implants at which the marginal level of bone support at fixture installation was different at buccal and lingual surfaces. 8 beagle dogs were randomly divided into one test group and one control group. The mandibular premolars in the left side of the mandible (P1, P2, P3, P4) were extracted. In the 4 dogs of the test group, the buccal bone plate in the mandibular premolar region was removed to establish a bone defect that was about 25 mm long, about 5-6 mm high, and about 4 mm wide. In the 4 dogs of the control group, no bone resection was performed. 8 months after tooth extraction, 3 fixtures (Astra Tech AB, Mölndal, Sweden:TiO-blast: 8x3.5 mm) were installed in each dog. In the 4 dogs of the test group, the implants were positioned in the defect sites in such a way that (i) mechanical stability was achieved and (ii) their lingual surfaces were entirely invested in bone. At the buccal and approximal surfaces of the fixtures, however, the unthreaded portion (2 mm) and the 3 marginal threads remained exposed. In the control group, all implants were following installation entirely surrounded by bone tissue. After a healing period of 3 months, abutment connection was performed and a plaque control program initiated. 4 months later, the dogs were sacrificed. The mandibles were removed and placed in a fixative. Each implant region was dissected, the tissue samples were dehydrated, embedded, sectioned in a bucco-lingual plane and used for light microscopic examination. The findings demonstrated that osseointegration occurred at implants, placed in a chronic defect with large discrepancies between the buccal and lingual bone. During the process of healing and function, however, marked modeling and remodeling of the bone tissue took place. Thus, at the buccal surface, some bone regrowth and osseointegration occurred while at the lingual wall, there was a substantial resorption

  4. Whole body bone tissue and cardiovascular risk in rheumatoid arthritis.

    PubMed

    Popescu, Claudiu; Bojincă, Violeta; Opriş, Daniela; Ionescu, Ruxandra

    2014-01-01

    Introduction. Atherosclerosis and osteoporosis share an age-independent bidirectional correlation. Rheumatoid arthritis (RA) represents a risk factor for both conditions. Objectives. The study aims to evaluate the connection between the estimated cardiovascular risk (CVR) and the loss of bone tissue in RA patients. Methods. The study has a prospective cross-sectional design and it includes female in-patients with RA or without autoimmune diseases; bone tissue was measured using whole body dual X-ray absorptiometry (wbDXA); CVR was estimated using SCORE charts and PROCAM applications. Results. There were 75 RA women and 66 normal women of similar age. The wbDXA bone indices correlate significantly, negatively, and age-independently with the estimated CVR. The whole body bone percent (wbBP) was a significant predictor of estimated CVR, explaining 26% of SCORE variation along with low density lipoprotein (P < 0.001) and 49.7% of PROCAM variation along with glycemia and menopause duration (P < 0.001). Although obese patients had less bone relative to body composition (wbBP), in terms of quantity their bone content was significantly higher than that of nonobese patients. Conclusions. Female patients with RA and female patients with cardiovascular morbidity have a lower whole body bone percent. Obese female individuals have higher whole body bone mass than nonobese patients.

  5. Distinctive Glycerophospholipid Profiles of Human Seminoma and Adjacent Normal Tissues by Desorption Electrospray Ionization Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham

    2011-08-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.

  6. Biomaterials mediated microRNA delivery for bone tissue engineering.

    PubMed

    Sriram, M; Sainitya, R; Kalyanaraman, V; Dhivya, S; Selvamurugan, N

    2015-03-01

    Bone tissue engineering is an alternative strategy to overcome the problems associated with traditional treatments for bone defects. A number of bioactive materials along with new techniques like porous scaffold implantation, gene delivery, 3D organ printing are now-a-days emerging for traditional bone grafts and metal implants. Studying the molecular mechanisms through which these biomaterials induce osteogenesis is an equally hot field. Biomaterials could determine the fate of a cell via microRNAs (miRNAs). miRNAs are short non-coding RNAs that act as post-transcriptional regulators of gene expression and play an essential role for regulation of cell specific lineages including osteogenesis. Thus, this review focuses the recent trends on establishing a link of biomaterials with miRNAs and their delivery for bone tissue engineering applications. PMID:25543062

  7. A Rodent Model to Evaluate the Tissue Response to a Biological Scaffold When Adjacent to a Synthetic Material.

    PubMed

    Dearth, Christopher L; Keane, Timothy J; Scott, Jeffrey R; Daly, Kerry A; Badylak, Stephen F

    2015-10-01

    The use of biologic scaffold materials adjacent to synthetic meshes is commonplace. A prevalent clinical example is two-staged breast reconstruction, where biologic scaffolds are used to provide support and coverage for the inferior aspect of the synthetic expander. However, limited data exist regarding either the kinetics of biologic scaffold integration or the host tissue response to the biologic scaffold materials used for this application or other applications in which such scaffold materials are used. The present study evaluated the temporal host response to a biological scaffold when placed adjacent to a synthetic material. Evaluation criteria included quantification of material contracture and characterization of the host cell response and tissue remodeling events. Results show a decreased thickness of the collagenous tissue layer at biologic scaffold/silicone interface compared to the abdominal wall/silicone interface during the 12-week experimental time course. All test materials were readily incorporated into surrounding host tissue. PMID:26176992

  8. Applications of carbon nanomaterials in bone tissue engineering.

    PubMed

    Venkatesan, Jayachandran; Pallela, Ramjee; Kim, Se-Kwon

    2014-10-01

    In the biomedical field, remarkable advancements have been made in artificial biomaterials for treating bone loss or defects. A variety of synthetic polymers, natural polymers and bioceramics are being used to develop artificial bones. Many natural and synthetic biomaterials, which are being investigated for their physiochemical role in vivo, are currently in the clinical trial stage. Carbon-based prostheses are promising materials that mimic the natural function of bone, e.g., mechanical strength. Recently, carbon-based bone materials, such as carbon nanotubes and graphene, have been widely investigated as potential solutions to several biomedical problems. This review summarizes the biophysicochemical and biomedical properties of carbon nanomaterials composed of polymer and ceramic structures and discusses their functionality in bone tissue engineering.

  9. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  10. The potential impact of bone tissue engineering in the clinic.

    PubMed

    Mishra, Ruchi; Bishop, Tyler; Valerio, Ian L; Fisher, John P; Dean, David

    2016-09-01

    Bone tissue engineering (BTE) intends to restore structural support for movement and mineral homeostasis, and assist in hematopoiesis and the protective functions of bone in traumatic, degenerative, cancer, or congenital malformation. While much effort has been put into BTE, very little of this research has been translated to the clinic. In this review, we discuss current regenerative medicine and restorative strategies that utilize tissue engineering approaches to address bone defects within a clinical setting. These approaches involve the primary components of tissue engineering: cells, growth factors and biomaterials discussed briefly in light of their clinical relevance. This review also presents upcoming advanced approaches for BTE applications and suggests a probable workpath for translation from the laboratory to the clinic. PMID:27549369

  11. Lead in tissues of woodchucks fed crown vetch growing adjacent to a highway

    SciTech Connect

    Young, R.W.; Ridgely, S.L.; Blue, J.T.; Bache, C.A.; Lisk, D.J.

    1986-01-01

    Woodchucks (Marmota monax) were fed crown vetch (Coronilla varia) growing along a major highway that was harvested in 1979, before unleaded gas was widely used, and again in 1985. Crown vetch, harvested 300 m from the nearest road, was fed as the control. The crops were fed as 50% dry weight of the diet for 58 d. The concentrations of lead in the control, 1979 crop, and 1985 crop were, respectively, 0.74, 50.65, and 6.78 ppm dry weight. The average +/- SE) concentrations (ppm, dry weight) of lead found in the tissues of the control, 1979, and 1985 dietary-treatment animals were, respectively, kidney, 0.36 +/- 0.05, 5.78 +/- 0.72, and 0.79 +/- 0.09; liver, 0.09 +/- 0.01, 4.71 +/- 0.17, and 0.46 +/- 0.06; muscle, 0.07 +/- 0.01, 0.14 +/- 0.02, and 0.07 +/- 0.00; blood, 0.09 +/- 0.02, 2.17 +/- 0.13, and 0.31 +/- 0.05; and bone, 1.27 +/- 0.25, 47.52 +/- 7.05, and 3.71 +/- 0.65. No significant differences (p greater than 0.05) between dietary treatments were found in the general hematological analyses of the woodchucks. The ecological significance of these findings is discussed.

  12. Bone remodeling adjacent to total hip replacements: A naturally occurring material design problem

    NASA Astrophysics Data System (ADS)

    Harrigan, Timothy P.; Hamilton, James J.

    1993-10-01

    The reaction of bone to orthopedic implants is an example of a self-adjusting material which changes from a ‘normal state’ to an altered state, based on the mechanical features of the implant and the loads applied to it. The changes in bone around cemented and uncemented femoral total hip components are well documented, and many numerical characterizations of the material reaction to stress have attempted to mimic the natural remodeling process. In this study we review the development of a simple material remodeling rule which yields a stable structure which is optimal and which allows a unique solution. We then use this algorithm to assess the effect of prosthesis stiffness and the presence of a compliant layer on bone remodeling around these implants. An axisymmetric model for axial loading is used to model changes in bone density through the thickness of the cancellous bone around the implants. With cortical remodeling left out of the simulation, the simulations showed density distributions that agreed in general with the results in the literature, and showed a marked difference in response if a compliant layer was added to the prosthesis.

  13. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    PubMed Central

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  14. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.

    PubMed

    Velasco, Marco A; Narváez-Tovar, Carlos A; Garzón-Alvarado, Diego A

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described.

  15. Microcomputed Tomography Characterization of Neovascularization in Bone Tissue Engineering Applications

    PubMed Central

    Young, Simon; Kretlow, James D.; Nguyen, Charles; Bashoura, Alex G.; Baggett, L. Scott; Jansen, John A.; Wong, Mark

    2008-01-01

    Abstract Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs. PMID:18657028

  16. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  17. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  18. Engineering bone tissue substitutes from human induced pluripotent stem cells

    PubMed Central

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-01-01

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease. PMID:23653480

  19. Bone tissue engineering and repair by gene therapy.

    PubMed

    Betz, Volker M; Betz, Oliver B; Harris, Mitchel B; Vrahas, Mark S; Evans, Christopher H

    2008-01-01

    Many clinical conditions require the stimulation of bone growth. The use of recombinant bone morphogenetic proteins does not provide a satisfying solution to these conditions due to delivery problems and high cost. Gene therapy has emerged as a very promising approach for bone repair that overcomes limitations of protein-based therapy. Several preclinical studies have shown that gene transfer technology has the ability to deliver osteogenic molecules to precise anatomical locations at therapeutic levels for sustained periods of time. Both in-vivo and ex-vivo transduction of cells can induce bone formation at ectopic and orthotopic sites. Genetic engineering of adult stem cells from various sources with osteogenic genes has led to enhanced fracture repair, spinal fusion and rapid healing of bone defects in animal models. This review describes current viral and non-viral gene therapy strategies for bone tissue engineering and repair including recent work from the author's laboratory. In addition, the article discusses the potential of gene-enhanced tissue engineering to enter widespread clinical use.

  20. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  1. Positive Association Between Adipose Tissue and Bone Stiffness.

    PubMed

    Berg, R M; Wallaschofski, H; Nauck, M; Rettig, R; Markus, M R P; Laqua, R; Friedrich, N; Hannemann, A

    2015-07-01

    Obesity is often considered to have a protective effect against osteoporosis. On the other hand, several recent studies suggest that adipose tissue may have detrimental effects on bone quality. We therefore aimed to investigate the associations between body mass index (BMI), waist circumference (WC), visceral adipose tissue (VAT) or abdominal subcutaneous adipose tissue (SAT), and bone stiffness. The study involved 2685 German adults aged 20-79 years, who participated in either the second follow-up of the population-based Study of Health in Pomerania (SHIP-2) or the baseline examination of the SHIP-Trend cohort. VAT and abdominal SAT were quantified by magnetic resonance imaging. Bone stiffness was assessed by quantitative ultrasound (QUS) at the heel (Achilles InSight, GE Healthcare). The individual risk for osteoporotic fractures was determined based on the QUS-derived stiffness index and classified in low, medium, and high risk. Linear regression models, adjusted for sex, age, physical activity, smoking status, risky alcohol consumption, diabetes, and height (in models with VAT or abdominal SAT as exposure), revealed positive associations between BMI, WC, VAT or abdominal SAT, and the QUS variables broadband-ultrasound attenuation or stiffness index. Moreover, BMI was positively associated with speed of sound. Our study shows that all anthropometric measures including BMI and, WC as well as abdominal fat volume are positively associated with bone stiffness in the general population. As potential predictors of bone stiffness, VAT and abdominal SAT are not superior to easily available measures like BMI or WC.

  2. Repercussions of NSAIDS drugs on bone tissue: the osteoblast.

    PubMed

    García-Martínez, O; De Luna-Bertos, E; Ramos-Torrecillas, J; Manzano-Moreno, F J; Ruiz, C

    2015-02-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) can act by modulating the behavior of osteoblasts, including their proliferation, differentiation, adhesion, and migration, but not all NSAIDs have these effects. Our objective was to update the information on this issue in a review of the literature in order to offer guidance on the prescription of the appropriate NSAID(s) to patients requiring bone tissue repair. To review current knowledge of this issue by searching for all relevant publications since 2001 in the MEDLINE, EMBASE and Cochrane Library databases, we used the following descriptors: bone tissue, osteoblast, NSAIDs, Anti-inflammatory drugs. Published studies show that most NSAIDs have an adverse effect on osteoblast growth by cell cycle arrest and apoptosis induction. The effect on differentiation varies according to the drug, dose, and treatment time. Osteoblast adhesion is increased and migration decreased by some NSAIDs, such as indomethacin and diclofenac. The antigenic profile or phagocytic function can also be modulated by NSAIDs. In general, NSAIDs have an adverse effect on bone tissue and given the routine administration of NSAIDs to individuals requiring bone repair, in which the osteoblast has an essential role, this effect on bone should be borne in mind.

  3. Electrospun submicron bioactive glass fibers for bone tissue scaffold.

    PubMed

    Lu, H; Zhang, T; Wang, X P; Fang, Q F

    2009-03-01

    Submicron bioactive glass fibers 70S30C (70 mol% SiO(2), 30 mol% CaO) acting as bone tissue scaffolds were fabricated by electrospinning method. The scaffold is a hierarchical pore network that consists of interconnected fibers with macropores and mesopores. The structure, morphological characterization and mechanical properties of the submicron bioactive glass fibers were studied by XRD, EDS, FIIR, SEM, N(2) gas absorption analyses and nanoindentation. The effect of the voltage on the morphology of electrospun bioactive glass fibers was investigated. It was found that decreasing the applied voltage from 19 to 7 kV can facilitate the formation of finer fibers with fewer bead defects. The hardness and Young's modulus of submicron bioactive glass fibers were measured as 0.21 and 5.5 GPa, respectively. Comparing with other bone tissue scaffolds measured by nanoindentation, the elastic modulus of the present scaffold was relatively high and close to the bone.

  4. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, J.W.

    1993-06-08

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  5. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  6. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed Central

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  7. Crestal bone changes on platform-switched implants and adjacent teeth when the tooth-implant distance is less than 1.5 mm.

    PubMed

    Vela, Xavier; Méndez, Víctor; Rodríguez, Xavier; Segalá, Maribel; Tarnow, Dennis P

    2012-04-01

    Because of the peri-implant bone resorption that occurs when a non-platform switched implant is exposed to the oral environment, it has been recommended to maintain 1.5 mm between the tooth and implant to preserve the bone adjacent to the teeth. Several studies have documented that platform-switched implants have less peri-implant bone resorption than matched implants. This retrospective radiographic analysis studied 70 platform-switched implants placed less than 1.5 mm from an adjacent tooth and with prostheses loaded for a minimum of 6 months. The mean distance between the implant and tooth was 0.99 mm (range, 0.20 to 1.49 mm); the mean horizontal and vertical bone resorption was 0.36 and 0.43 mm, respectively. The mean bone peak reduction was 0.37 mm. The results confirm that the use of platform-switched implants reduces bone resorption after two-piece implants have been uncovered and that it is possible to place this type of implant 1 mm from teeth while maintaining the bone level adjacent to them (the bone peak).

  8. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    PubMed Central

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  9. Functionally deficient mesenchymal stem cells reside in the bone marrow niche with M2-macrophages and amyloid-β protein adjacent to loose total joint implants.

    PubMed

    Margulies, Bryan S; DeBoyace, Sean D; Parsons, Adrienne M; Policastro, Connor G; Ee, Jessica S S; Damron, Timothy S

    2015-05-01

    We sought to demonstrate whether there is a difference in the local mesenchymal stem cells (MSC) niche obtained from patients undergoing their first total joint replacement surgery versus those patients undergoing a revision surgery for an failing total joint implant. Bone marrow aspirates collected from patients undergoing revision total joint arthroplasty were observed to be less clonal and the expression of PDGFRα, CD51, ALCAM, endoglin, CXCL12, nestin, and nucleostemin were decreased. Revision MSC were also less able to commit to an osteoblast-lineage or an adipocyte-lineage. Further, in revision MSC, OPG, and IL6 expression were increased. Monocytes, derived from revision whole marrow aspirates, were less capable of differentiating into osteoclasts, the cells implicated in the pathologic degradation of bone. Osteoclasts were also not observed in tissue samples collected adjacent to the implants of revision patients; however, the alternatatively activated M2-macrophage phenotype was observed in parallel with pathologic accumulations of amyloid-β, τ-protien and 3-nitrotyrosine. Despite the limited numbers of patients examined, our data suggest that nucleostemin may be a useful functional marker for MSC while the observation of M2-macrophage infiltration around the implant lays the foundation for future investigation into a novel mechanism that we propose is associated with loose total joint implants.

  10. Combination of negative pressure wound therapy with open bone grafting for bone and soft tissue defects.

    PubMed

    Deng, Kai; Yu, Ai-Xi; Xia, Cheng-Yan; Li, Zong-Huan; Wang, Wei-Yang

    2013-08-01

    The aim of this study was to investigate the efficiency of negative pressure wound therapy (NPWT) combined with open bone graft (OBG; NPWT-OBG) for the treatment of bone and soft tissue defects with polluted wounds in an animal model. All rabbits with bone and soft tissue defects and polluted wounds were randomly divided into two groups, the experimental group (NPWT with bone graft) and the control group (OBG). The efficacy of the treatment was assessed by the wound conditions and healing time. Bacterial bioburdens and bony calluses were evaluated by bacteria counting and X-rays, respectively. Furthermore, granulation tissue samples from the wounds on days 0, 3, 7 and 14 of healing were evaluated for blood vessels and vascular endothelial growth factor (VEGF) levels. Wounds in the experimental group tended to have a shorter healing time, healthier wound conditions, lower bacterial bioburden, improvement of the bony calluses and an increased blood supply compared with those in the control group. With NPWT, wound infection was effectively controlled. For wounds with osseous and soft tissue defects, NPWT combined with bone grafting was demonstrated to be more effective than an OBG.

  11. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  12. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  13. Perspectives on the Role of Nanotechnology in Bone Tissue Engineering

    PubMed Central

    Saiz, Eduardo; Zimmermann, Elizabeth A.; Lee, Janice S.; Wegst, Ulrike G.K.; Tomsia, Antoni P.

    2013-01-01

    Objective This review surveys new developments in bone tissue engineering, specifically focusing on the promising role of nanotechnology and describes future avenues of research. Methods The review first reinforces the need to fabricate scaffolds with multi-dimensional hierarchies for improved mechanical integrity. Next, new advances to promote bioactivity by manipulating the nano-level internal surfaces of scaffolds are examined followed by an evaluation of techniques to using scaffolds as a vehicle for local drug delivery to promote bone regeneration/integration and methods of seeding cells into the scaffold. Results Through a review of the state of the field, critical questions are posed to guide future research towards producing materials and therapies to bring state-of-the-art technology to clinical settings. Significance The development of scaffolds for bone regeneration requires a material able to promote rapid bone formation while possessing sufficient strength to prevent fracture under physiological loads. Success in simultaneously achieving mechanical integrity and sufficient bioactivity with a single material has been limited. However, the use of new tools to manipulate and characterize matter down to the nano-scale may enable a new generation of bone scaffolds that will surpass the performance of autologous bone implants. PMID:22901861

  14. Differential expression of the Na+/I− symporter protein in thyroid cancer and adjacent normal and nodular goiter tissues

    PubMed Central

    WANG, SHASHA; LIANG, JUN; LIN, YANSONG; YAO, RUYONG

    2013-01-01

    The ability of differentiated thyroid cancer and adjacent thyroid cells to concentrate iodine is dependent on their expression of a functional NA+/I− symporter (NIS). Thyroid cancer is insensitive to 131I treatment if the thyroid cells lack the ability to concentrate iodide. Thus, in this study, we aimed to determine whether the NIS protein was differentially expressed in thyroid cancer and various surrounding tissues. We recruited 114 cases of papillary thyroid carcinoma (PTC) and divided them into two groups: 60 patients of 9 males and 51 females with a mean age of 49.55 years who had PTC with surrounding nodular goiter tissue (simplified as GNG), and 54 patients of 8 males and 46 females with a mean age of 45.78 years who had PTC with surrounding normal tissue (Gnormal) after total or near total thyroidectomy. Formalin-fixed and paraffin-embedded tissue sections were prepared for immunohistochemical staining of the NIS protein and semi-quantitative analysis. The NIS protein was expressed in the basolateral membrane of the normal epithelium, while PTC and nodular goiter cells expressed NIS in the cytoplasm and basolateral membrane. The expression levels of the NIS protein were higher in the adjacent normal tissues compared with those of the surrounding nodular goiter tissues (P=0.002) and expression levels of the NIS protein were higher in PTC tissues compared with the surrounding nodular goiter tissues (P=0.008). The data from this study indicate that cancer-surrounding tissues may play a significant role in mediating the sensitivity of PTC patients to radioactive iodine treatment. PMID:23255951

  15. The correlation between mineralization degree and bone tissue stiffness in the porcine mandibular condyle.

    PubMed

    Willems, Nop M B K; Mulder, Lars; den Toonder, Jaap M J; Zentner, Andrej; Langenbach, Geerling E J

    2014-01-01

    The aim of this study was to correlate the local tissue mineral density (TMD) with the bone tissue stiffness. It was hypothesized that these variables are positively correlated. Cancellous and cortical bone samples were derived from ten mandibular condyles taken from 5 young and 5 adult female pigs. The bone tissue stiffness was assessed in three directions using nanoindentation. At each of three tested sides 5 indents were made over the width of 5 single bone elements, resulting in a total number of 1500 indents. MicroCT was used to determine the local TMD at the indented sites. The TMD and the bone tissue stiffness were higher in bone from the adult animals than from the young ones, but did not differ between cancellous and cortical bone. In the adult group, both the TMD and the bone tissue stiffness were higher in the center than at the surface of the bone elements. The mean TMD, thus ignoring the local mineral distribution, had a coefficient of determination (R(2)) with the mean bone tissue stiffness of 0.55, p < 0.05, whereas the correlation between local bone tissue stiffness and the concomitant TMD appeared to be weak (R (2) 0.07, p < 0.001). It was concluded that the mineralization degree plays a larger role in bone tissue stiffness in cancellous than in cortical bone. Our data based on bone from the mandibular condyle suggest that the mineralization degree is not a decisive determinant of the local bone tissue stiffness.

  16. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    PubMed

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  17. Osteolipoma independent of bone tissue: a case report

    PubMed Central

    Alderete, Joseph F; Kose, Ozkan; Ozcan, Ayhan; Cicek, Ilker; Basbozkurt, Mustafa

    2009-01-01

    Introduction Lipomas are the most common benign soft tissue tumors and appear in any part of the body. They typically consist of mature adipose tissue. Osteolipoma is an extremely rare histologic variant of lipoma that contains mature lamellar bone within the tumor and osteolipoma independent of bone tissue are very rare. We report a case of histologically confirmed osteolipoma independent of bone located in the thigh. Case presentation A 47-year-old male presented with a progressively enlarging, painful mass which approximately 10 cm × 8 cm over the anteromedial aspect of his right thigh. Plain films, Computerized Tomography, Magnetic Resonance Imaging and ultrasound guided needle biopsy were performed. Given the benign imaging characteristics and fine needle aspiration, an excisional biopsy was undertaken. The definitive pathologic diagnosis was intramuscular osteolipoma without evidence of malignancy. No recurrence was observed after 18 months follow up. Conclusion Although ossifying lipomas are very rare, it is important to keep them in mind when a lesion with adipose tissue in combination with ossification is encountered. PMID:19918398

  18. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    PubMed

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region.

  19. Remineralized Bone Matrix (RBM) as a Scaffold for Bone Tissue Engineering

    PubMed Central

    Soicher, Matthew A.; Christiansen, Blaine A.; Stover, Susan M.; Leach, J. Kent; Yellowley, Clare E.; Griffiths, Leigh G.; Fyhrie, David P.

    2014-01-01

    There is a need for improved biomaterials for use in treating non-healing bone defects. A number of natural and synthetic biomaterials have been used for the regeneration of bone tissue with mixed results. One approach is to modify native tissue via decellularization or other treatment for use as natural scaffolding for tissue repair. In this study, our goal was to improve on our previously published alternating solution immersion (ASI) method to fabricate a robust, biocompatible, and mechanically competent biomaterial from natural demineralized bone matrix (DBM). The improved method includes an antigen removal (AR) treatment step which improves mineralization and stiffness while removing unwanted proteins. The chemistry of the mineral in the remineralized bone matrix (RBM) was consistent with dicalcium phosphate dihydrate (brushite), a material used clinically in bone healing applications. Mass spectrometry identified proteins removed from the matrix with AR treatment to include α-2 HS-glycoprotein and osteopontin, non-collagenous proteins (NCPs) and known inhibitors of biomineralization. Additionally, the RBM supported the survival, proliferation, and differentiation of human mesenchymal stromal cells (MSCs) in vitro as well or better than other widely used biomaterials including DBM and PLG scaffolds. DNA content increased more than 10-fold on RBM compared to DBM and PLG; likewise, osteogenic gene expression was significantly increased after 1 and 2 weeks. We demonstrated that ASI remineralization has the capacity to fabricate mechanically stiff and biocompatible RBM, a suitable biomaterial for cell culture applications. PMID:24616346

  20. Osteoconductivity of modified fluorcanasite glass-ceramics for bone tissue augmentation and repair.

    PubMed

    Bandyopadhyay-Ghosh, S; Faria, P E P; Johnson, A; Felipucci, D N B; Reaney, I M; Salata, L A; Brook, I M; Hatton, P V

    2010-09-01

    Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na(2)O and CaO or by adding P(2)O(5) to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P(2)O(5) showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation.

  1. Development of porous scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ramay, Hassna Rehman

    In bone tissue engineering, biodegradable scaffolds are used as a temporary biological and mechanical support for new tissue growth. A scaffold must have good biocompatibility, controllable degradation rate, and enough mechanical strength to support bone cell attachment, differentiation, and proliferation as it gradually degrades and finally is completely replaced by new bone tissues. Biological studies and clinical practices have established that a three-dimensional interconnected porous structure is necessary to allow cell attachment, proliferation, and differentiation, and to provide pathways for biofluids. However, the mechanical strength of a material generally decreases as increasing porosity. The conflicting interests between biological and mechanical requirements thus pose a challenge in developing porous scaffolds for load-bearing bone tissue engineering. Two types of ceramic scaffolds, (1) Hydroxaypatite and (2) Hydroxaypatite/tricalcium phosphate, are prepared in this study utilizing a novel technique that combines the gel casting and polymer sponge methods. This technique provides better control over material microstructure and can produce scaffolds with enhanced mechanical toughness and strength. The hydroxyapatite scaffolds prepared by this technique have an open, uniform and interconnected porous structure (˜porosity = 76%) with compressive modulus of 7 GPa, comparable to that of cortical bone, and compressive strength of 5 MPa, comparable to that of cancellous bone. The second type of ceramic scaffold is a biphasic nano composite with tricalcium phosphate as the main matrix reinforced with hydroxyapatite (HA) nano-fibers. The porous scaffold attained a compressive strength of 9.6 MPa (˜porosity = 73%), comparable to the high-end value of cancellous bone. The toughness of the scaffold increased from 1.00 to 1.72 kN/m (˜porosity = 73%), as the addition of HA nano-fibers increased up to 5 wt.%. Polymer scaffolds are prepared using a solid

  2. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area.

    PubMed

    Watanabe, Satoko; Takabatake, Kiyofumi; Tsujigiwa, Hidetsugu; Watanabe, Toshiyuki; Tokuyama, Eijiro; Ito, Satoshi; Nagatsuka, Hitoshi; Kimata, Yoshihiro

    2016-01-01

    Artificial bone materials that exhibit high biocompatibility have been developed and are being widely used for bone tissue regeneration. However, there are no biomaterials that are minimally invasive and safe. In a previous study, we succeeded in developing honeycomb β-tricalcium phosphate (β-TCP) which has through-and-through holes and is able to mimic the bone microenvironment for bone tissue regeneration. In the present study, we investigated how the difference in hole-diameter of honeycomb β-TCP (hole-diameter: 75, 300, 500, and 1600 μm) influences bone tissue regeneration histologically. Its osteoconductivity was also evaluated by implantation into zygomatic bone defects in rats. The results showed that the maximum bone formation was observed on the β-TCP with hole-diameter 300μm, included bone marrow-like tissue and the pattern of bone tissue formation similar to host bone. Therefore, the results indicated that we could control bone tissue formation by creating a bone microenvironment provided by β-TCP. Also, in zygomatic bone defect model with honeycomb β-TCP, the result showed there was osseous union and the continuity was reproduced between the both edges of resected bone and β-TCP, which indicated the zygomatic bone reproduction fully succeeded. It is thus thought that honeycomb β-TCP may serve as an excellent biomaterial for bone tissue regeneration in the head, neck and face regions, expected in clinical applications. PMID:27279797

  3. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area

    PubMed Central

    Watanabe, Satoko; Takabatake, Kiyofumi; Tsujigiwa, Hidetsugu; Watanabe, Toshiyuki; Tokuyama, Eijiro; Ito, Satoshi; Nagatsuka, Hitoshi; Kimata, Yoshihiro

    2016-01-01

    Artificial bone materials that exhibit high biocompatibility have been developed and are being widely used for bone tissue regeneration. However, there are no biomaterials that are minimally invasive and safe. In a previous study, we succeeded in developing honeycomb β-tricalcium phosphate (β-TCP) which has through-and-through holes and is able to mimic the bone microenvironment for bone tissue regeneration. In the present study, we investigated how the difference in hole-diameter of honeycomb β-TCP (hole-diameter: 75, 300, 500, and 1600 μm) influences bone tissue regeneration histologically. Its osteoconductivity was also evaluated by implantation into zygomatic bone defects in rats. The results showed that the maximum bone formation was observed on the β-TCP with hole-diameter 300μm, included bone marrow-like tissue and the pattern of bone tissue formation similar to host bone. Therefore, the results indicated that we could control bone tissue formation by creating a bone microenvironment provided by β-TCP. Also, in zygomatic bone defect model with honeycomb β-TCP, the result showed there was osseous union and the continuity was reproduced between the both edges of resected bone and β-TCP, which indicated the zygomatic bone reproduction fully succeeded. It is thus thought that honeycomb β-TCP may serve as an excellent biomaterial for bone tissue regeneration in the head, neck and face regions, expected in clinical applications. PMID:27279797

  4. Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications

    PubMed Central

    Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua

    2014-01-01

    We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering. PMID:24955961

  5. Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells

    PubMed Central

    Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei

    2015-01-01

    Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953

  6. Ultrastructure And Nanomechanics Of Biological Tissues : Cartilage And Bone

    NASA Astrophysics Data System (ADS)

    Ng, Laurel; Tai, Kuangshin; Plaas, Anna; Grodzinsky, Alan; Ortiz, Christine

    2003-03-01

    The techniques of atomic force microscopy (AFM) and high-resolution force spectroscopy are powerful tools for imaging and probing the nanoscale constituents of biological tissues in near physiological environments. These methods have been employed to obtain images of purified bovine epiphyseal and nasal cartilage aggrecan and partially demineralized adult bovine cortical bone taken from the metaphysis and diaphysis regions of the proximal and distal ends of the tibia. The conformational images and results on dimensions of individual aggrecan molecules and their chondroitin sulfate glycosaminoglycan chains were in good agreement with the biochemically determined compositional data of these preparations. At the whole bone tissue level, the detailed morphology of osteons, lacunae, canaliculi, collagen fibrils, and apatite crystals was obtained. Ongoing experiments include high-resolution chemical force microscopy as a function of age and solution environmental conditions (e.g. ionic strength, pH).

  7. Novel Scaffolds Fabricated Using Oleuropein for Bone Tissue Engineering

    PubMed Central

    Fan, Hui; Hui, Junfeng; Duan, Zhiguang; Fan, Daidi; Mi, Yu; Deng, Jianjun; Li, Hui

    2014-01-01

    We investigated the feasibility of oleuropein as a cross-linking agent for fabricating three-dimensional (3D) porous composite scaffolds for bone tissue engineering. Human-like collagen (HLC) and nanohydroxyapatite (n-HAp) were used to fabricate the composite scaffold by way of cross-linking. The mechanical tests revealed superior properties for the cross-linked scaffolds compared to the uncross-linked scaffolds. The as-obtained composite scaffold had a 3D porous structure with pores ranging from 120 to 300 μm and a porosity of 73.6 ± 2.3%. The cross-linked scaffolds were seeded with MC3T3-E1 Subclone 14 mouse osteoblasts. Fluorescence staining, the Cell Counting Kit-8 (CCK-8) assay, and scanning electron microscopy (SEM) indicated that the scaffolds enhanced cell adhesion and proliferation. Our results indicate the potential of these scaffolds for bone tissue engineering. PMID:24959582

  8. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration

    PubMed Central

    Zhang, Xingdi; Zeng, Deliang; Li, Nan; Wen, Jin; Jiang, Xinquan; Liu, Changsheng; Li, Yongsheng

    2016-01-01

    Mesoporous bioactive glass (MBG), which possesses excellent bioactivity, biocompatibility and osteoconductivity, has played an important role in bone tissue regeneration. However, it is difficult to prepare MBG scaffolds with high compressive strength for applications in bone regeneration; this difficulty has greatly hindered its development and use. To solve this problem, a simple powder processing technique has been successfully developed to fabricate a novel type of MBG scaffold (MBGS). Furthermore, amino or carboxylic groups could be successfully grafted onto MBGSs (denoted as N-MBGS and C-MBGS, respectively) through a post-grafting process. It was revealed that both MBGS and the functionalized MBGSs could significantly promote the proliferation and osteogenic differentiation of bMSCs. Due to its positively charged surface, N-MBGS presented the highest in vitro osteogenic capability of the three samples. Moreover, in vivo testing results demonstrated that N-MBGS could promote higher levels of bone regeneration compared with MBGS and C-MBGS. In addition to its surface characteristics, it is believed that the decreased degradation rate of N-MBGS plays a vital role in promoting bone regeneration. These findings indicate that MBGSs are promising materials with potential practical applications in bone regeneration, which can be successfully fabricated by combining a powder processing technique and post-grafting process. PMID:26763311

  9. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  10. A Thermal Monitoring Sheet with Low Influence from Adjacent Waterbolus for Tissue Surface Thermometry during Clinical Hyperthermia

    PubMed Central

    Arunachalam, K.; Maccarini, P.F.; Stauffer, P. R.

    2009-01-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a two-dimensional array of fiberoptic sensors embedded between two layers of flexible, low loss and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature regulated water coupling bolus was studied using 3D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials, and to compare their thermal responses with omni-directional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508m Kapton MTB® and 0.2032 mm Kapton HN® flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicate the new differential TMS probe design to outperform in terms of both transient response and steady state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface. PMID:18838365

  11. Healing following implantation of periodontitis affected roots into bone tissue.

    PubMed

    Karring, T; Nyman, S; Lindhe, J

    1980-04-01

    The aim of the present experiment was to study whether new connective tissue attachment can occur to root surfaces which have been exposed to the oral environment and subsequently implanted into bone tissue. Twelve teeth in three beagle dogs were subjected to progressive periodontal breakdown to half the root length by placing cotton floss ligatures around the neck of the teeth. Following crown resection and root hemisection, the teeth were root filled and the roots thoroughly scaled and planed. Each root was extracted and implanted into bone cavities prepared in edentolous areas of the jaws in such a way that epithelial migration into the wound and bacterial infection were prevented during healing. Root implantation and sacrifice of the animals were scheduled to allow for observation periods of 1, 2 and 3 months. The results demonstrated that new connective tissue attachment did not occur to root surfaces which had been exposed to the oral environment, but healing was characterized by repair phenomena, i.e. mainly root resorption and ankylosis. In those areas of the roots where periodontal ligament tissue was preserved following tooth extraction, a functionally oriented attachment apparatus was reformed. The results indicate that in addition to apical migration of junctional epithelium and regrowth of subgingival plaque, the type of cells which repopulate the wound area may jeopardize new connective tissue attachment.

  12. Use of NASA Bioreactor in Engineering Tissue for Bone Repair

    NASA Technical Reports Server (NTRS)

    Duke, Pauline

    1998-01-01

    This study was proposed in search for a new alternative for bone replacement or repair. Because the systems commonly used in repair of bony defects form bone by going through a cartilaginous phase, implantation of a piece of cartilage could enhance the healing process by having a more advanced starting point. However, cartilage has seldom been used to replace bone due, in part, to the limitations in conventional culture systems that did not allow production of enough tissue for implants. The NASA-developed bioreactors known as STLV (Slow Turning Lateral Vessel) provide homogeneous distribution of cells, nutrients, and waste products, with less damaging turbulence and shear forces than conventional systems. Cultures under these conditions have higher growth rates, viability, and longevity, allowing larger "tissue-like" aggregates to form, thus opening the possibilities of producing enough tissue for implantation, along with the inherent advantages of in vitro manipulations. To assure large numbers of cells and to eliminate the use of timed embryos, we proposed to use an immortalized mouse limb bud cell line as the source of cells.

  13. Prospect of Stem Cells in Bone Tissue Engineering: A Review

    PubMed Central

    Yousefi, Azizeh-Mitra; James, Paul F.; Akbarzadeh, Rosa; Subramanian, Aswati; Flavin, Conor; Oudadesse, Hassane

    2016-01-01

    Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes. PMID:26880976

  14. Microscale Material Properties of Bone and the Mineralized Tissues of the Intervertebral Disc-Vertebral Body Interface

    NASA Astrophysics Data System (ADS)

    Paietta, Rachel C.

    mineralized biological tissues and at the bone-cartilage interface plays an important mechanical role. Nanoindentation measurements in osteonal bone are affected by location within the lamellar structure, even though mineral volume fraction within a single osteon is relatively consistent compared to the differences observed between bone and calcified cartilage. While increasing mineral volume fraction contributes to increases in modulus in the calcified cartilage layer of the vertebral body-intervertebral disc interface, significant scatter remains. The collagenous matrix structure and type of collagen appear to have a significant influence on modulus as well. Collagen fibers of the disc mineralize adjacent to the bone of the vertebral body, and the persistence of this attachment zone from adolescence through senescence indicates that it likely serves a mechanical function. Fiber insertions into thick calcified cartilage regions likely create mechanically robust anchor points at the osteochondral interface.

  15. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    NASA Astrophysics Data System (ADS)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  16. High-Frequency Vibration Treatment of Human Bone Marrow Stromal Cells Increases Differentiation toward Bone Tissue

    PubMed Central

    Prè, D.; Ceccarelli, G.; Visai, L.; Benedetti, L.; Imbriani, M.; Cusella De Angelis, M. G.; Magenes, G.

    2013-01-01

    In order to verify whether differentiation of adult stem cells toward bone tissue is promoted by high-frequency vibration (HFV), bone marrow stromal cells (BMSCs) were mechanically stimulated with HFV (30 Hz) for 45 minutes a day for 21 or 40 days. Cells were seeded in osteogenic medium, which enhances differentiation towards bone tissue. The effects of the mechanical treatment on differentiation were measured by Alizarin Red test, (q) real-time PCR, and protein content of the extracellular matrix. In addition, we analyzed the proliferation rate and apoptosis of BMSC subjected to mechanical stimulation. A strong increase in all parameters characterizing differentiation was observed. Deposition of calcium was almost double in the treated samples; the expression of genes involved in later differentiation was significantly increased and protein content was higher for all osteogenic proteins. Lastly, proliferation results indicated that stimulated BMSCs have a decreased growth rate in comparison with controls, but both treated and untreated cells do not enter the apoptosis process. These findings could reduce the gap between research and clinical application for bone substitutes derived from patient cells by improving the differentiation protocol for autologous cells and a further implant of the bone graft into the patient. PMID:23585968

  17. Porous expandable device for attachment to bone tissue

    DOEpatents

    Rybicki, Edmund F.; Wheeler, Kenneth Ray; Hulbert, Lewis E.; Karagianes, Manuel Tom; Hassler, Craig R.

    1977-01-01

    A device for attaching to substantially solid living bone tissue, comprising a body member having an outer surface shaped to fit approximately into an empty space in the tissue and having pores into which the tissue can grow to strengthen the bond between the device and the tissue, and adjustable means for expanding the body member against the tissue to an extent such as to provide a compressive stress capable of maintaining a snug and stable fit and of enhancing the growth of the tissue into the pores in the body member. The expanding means is adjustable to provide a stress between the tissue and the body member in the range of about 150 to 750 psi, typically 150 to 350 psi. Typically the body member comprises an expandable cylindrical portion having at least one radial slit extending longitudinally from a first end to the vicinity of the opposite (second) end thereof, at least one radial slit extending longitudinally from the second end to the vicinity of the first end thereof, and a tapered cylindrical hole extending coaxially from a wider circular opening in the first end to a narrower circular opening communicating with the second end.

  18. 21 CFR 892.1170 - Bone densitometer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... densitometer is a device intended for medical purposes to measure bone density and mineral content by x-ray or gamma ray transmission measurements through the bone and adjacent tissues. This generic type of...

  19. 21 CFR 892.1170 - Bone densitometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... densitometer is a device intended for medical purposes to measure bone density and mineral content by x-ray or gamma ray transmission measurements through the bone and adjacent tissues. This generic type of...

  20. 21 CFR 892.1170 - Bone densitometer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... densitometer is a device intended for medical purposes to measure bone density and mineral content by x-ray or gamma ray transmission measurements through the bone and adjacent tissues. This generic type of...

  1. 21 CFR 892.1170 - Bone densitometer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... densitometer is a device intended for medical purposes to measure bone density and mineral content by x-ray or gamma ray transmission measurements through the bone and adjacent tissues. This generic type of...

  2. 21 CFR 892.1170 - Bone densitometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... densitometer is a device intended for medical purposes to measure bone density and mineral content by x-ray or gamma ray transmission measurements through the bone and adjacent tissues. This generic type of...

  3. Computer modelling of the structure of the cortical and trabecular bone tissue

    NASA Astrophysics Data System (ADS)

    Kolmakova, Tatyana

    2015-10-01

    The paper presents computer models of the structure of cortical and trabecular bone tissue. The model fragment of the cortical bone tissue was built based on a real image of the natural bone microstructure. The osteons and Haversian canals were directly taken into consideration. The Volkmann's canals and the orientation of the collagenous mineral fibers in the osteons and the surrounding matrix were considered indirectly. The model fragment of the trabecular bone tissue was built based on the data of structure of the real bone fragments, taking into account the orientation of the trabecules of bones, their length and thickness.

  4. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship

    PubMed Central

    Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S. B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; Shapses, S.

    2012-01-01

    Summary The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. Introduction It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Methods Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18–88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. Results A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r=−0.533, −0.576, respectively; P<0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premeno-pausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. Conclusions An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations. PMID

  5. The influence of hydrostatic pressure on tissue engineered bone development.

    PubMed

    Neßler, K H L; Henstock, J R; El Haj, A J; Waters, S L; Whiteley, J P; Osborne, J M

    2016-04-01

    The hydrostatic pressure stimulation of an appropriately cell-seeded porous scaffold within a bioreactor is a promising method for engineering bone tissue external to the body. We propose a mathematical model, and employ a suite of candidate constitutive laws, to qualitatively describe the effect of applied hydrostatic pressure on the quantity of minerals deposited in such an experimental setup. By comparing data from numerical simulations with experimental observations under a number of stimulation protocols, we suggest that the response of bone cells to an applied pressure requires consideration of two components; (i) a component describing the cell memory of the applied stimulation, and (ii) a recovery component, capturing the time cells require to recover from high rates of mineralisation. PMID:26796221

  6. Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration.

    PubMed

    Venugopal, Jayarama Reddy; Giri Dev, Venkateshwarapuram Rengaswami; Senthilram, Thinakaran; Sathiskumar, Dhayalan; Gupta, Deepika; Ramakrishna, Seeram

    2011-01-01

    Several studies are currently ongoing to construct synthetic bone-like materials with composites of natural and polymeric materials with HA (hydroxyapatite). The present study aims to fabricate composite nanofibrous substrate of Chit/HA (chitosan/HA - 80:25) prepared by dissolving in TFA/DCM (trifluoroacetic acid/dichloromethane) (70:30, w/w) for 5 days and electrospun to fabricate a scaffold for bone tissue engineering. HA (25 wt %) was sonicated for 30 min to obtain a homogenous dispersion of nanoparticles within the Chit (80 wt %) matrix for fabricating composite nanofibrous scaffold (Chit/HA). The nanofibres of Chit and Chit/HA were obtained with fibre diameters of 274 ± 75 and 510 ± 198 nm, respectively, and characterized by FESEM (field emission scanning electron microscopy) and FTIR (Fourier transform infrared). The interaction of hFOBs (human fetal osteoblasts) and nanofibrous substrates were analysed for cell morphology (FESEM), mineralization [ARS (Alizarin Red-S) staining], quantification of minerals and finally identified the elements present in Chit/HA/osteoblasts by EDX (energy-dispersive X-ray) analysis. EDX analysis confirmed that the spherulites contain calcium and phosphorus, the major constituents in calcium phosphate apatite, the mineral phase of the bone. Mineralization was increased significantly (P<0.001) up to 108% in Chit/HA compared with Chit nanofibres. These results confirmed that the electrospun composite Chit/HA nanofibrous substrate is a potential biocomposite material for the proliferation and mineralization of hFOBs required for enhanced bone tissue regeneration. PMID:20923413

  7. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    PubMed Central

    Verboket, René; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  8. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering.

    PubMed

    Won, Jong-Eun; Yun, Ye-Rang; Jang, Jun-Hyeog; Yang, Sung-Hee; Kim, Joong-Hyun; Chrzanowski, Wojciech; Wall, Ivan B; Knowles, Jonathan C; Kim, Hae-Won

    2015-07-01

    Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctional and structurally-stable biomatrices. The hybrid protein, integrated homogeneously with collagen fibrillar networks, preserved structural stability over a month. Biological efficacy of the hybrid matrix was proven onto tethered surface of biopolymer porous scaffolds. Mesenchymal stem cells quickly anchored to the hybrid matrix, forming focal adhesions, and substantially conformed to cytoskeletal extensions, benefited from the fibronectin adhesive domains. Cells achieved high proliferative capacity to reach confluence rapidly and switched to a mature and osteogenic phenotype more effectively, resulting in greater osteogenic matrix syntheses and mineralization, driven by the engineered osteocalcin. The hybrid biomimetic matrix significantly improved in vivo bone formation in calvarial defects over 6 weeks. Based on the series of stimulated biological responses in vitro and in vivo the novel hybrid proteinaceous composition will be potentially useful as stem cell interfacing matrices for osteogenesis and bone regeneration.

  9. Clinical evaluation of expanded mesh connective tissue graft in the treatment for multiple adjacent gingival recessions in the esthetic zone

    PubMed Central

    Shanmugam, M.; Shivakumar, B.; Meenapriya, B.; Anitha, V.; Ashwath, B.

    2015-01-01

    Background: Multiple approaches have been used to replace lost, damaged or diseased gingival tissues. The connective tissue graft (CTG) procedure is the golden standard method for root coverage. Although multiple sites often need grafting, the palatal mucosa supplies only a limited area of grafting material. To overcome this limitation, expanded mesh graft provides a method whereby a graft can be stretched to cover a large area. The aim of this study was to evaluate the effectiveness and the predictability of expanded mesh CTG (e-MCTG) in the treatment of adjacent multiple gingival recessions. Materials and Methods: Sixteen patients aged 20–50 years contributed to 55 sites, each site falling into at least three adjacent Miller's Class 1 or Class 2 gingival recession. The CTG obtained from the palatal mucosa was expanded to cover the recipient bed, which was 1.5 times larger than the graft. Clinical measurements were recorded at baseline and 3 months, 12 months postoperatively. Results: A mean coverage of 1.96 mm ± 0.66 mm and 2.22 mm ± 0.68 mm was obtained at the end of 3rd and 12th month, respectively. Twelve months after surgery a statistically significant increase in CAL (2.2 mm ± 0.68 mm, P < 0.001) and increasing WKT (1.75 ± 0.78, P < 0.001) were obtained. In 80% of the treated sites, 100% root coverage was achieved (mean 93.5%). Conclusions: The results of this study demonstrated that multiple adjacent recessions were treated by using e-MCTG technique can be applied and highly predictable root coverage can be achieved. PMID:26321829

  10. Targeted Chemotherapy in Bone and Soft-Tissue Sarcoma.

    PubMed

    Harwood, Jared L; Alexander, John H; Mayerson, Joel L; Scharschmidt, Thomas J

    2015-10-01

    Historically surgical intervention has been the mainstay of therapy for bone and soft-tissue sarcomas, augmented with adjuvant radiation for local control. Although cytotoxic chemotherapy revolutionized the treatment of many sarcomas, classic treatment regimens are fraught with side effects while outcomes have plateaued. However, since the approval of imatinib in 2002, research into targeted chemotherapy has increased exponentially. With targeted therapies comes the potential for decreased side effects and more potent, personalized treatment options. This article reviews the evolution of medical knowledge regarding sarcoma, the basic science of sarcomatogenesis, and the major targets and pathways now being studied.

  11. Embryonic expression of endogenous retroviral RNAs in somatic tissues adjacent to the Oikopleura germline

    PubMed Central

    Henriet, Simon; Sumic, Sara; Doufoundou-Guilengui, Carlette; Jensen, Marit Flo; Grandmougin, Camille; Fal, Kateryna; Thompson, Eric; Volff, Jean-Nicolas; Chourrout, Daniel

    2015-01-01

    Selective pressure to maintain small genome size implies control of transposable elements, and most old classes of retrotransposons are indeed absent from the very compact genome of the tunicate Oikopleura dioica. Nonetheless, two families of retrotransposons are present, including the Tor elements. The gene organization within Tor elements is similar to that of LTR retrotransposons and retroviruses. In addition to gag and pol, many Tor elements carry a third gene encoding viral envelope-like proteins (Env) that may mediate infection. We show that the Tor family contains distinct classes of elements. In some classes, env mRNA is transcribed from the 5′LTR as in retroviruses. In others, env is transcribed from an additional promoter located downstream of the 5′LTR. Tor Env proteins are membrane-associated glycoproteins which exhibit some features of viral membrane fusion proteins. Whereas some elements are expressed in the adult testis, many others are specifically expressed in embryonic somatic cells adjacent to primordial germ cells. Such embryonic expression depends on determinants present in the Tor elements and not on their surrounding genomic environment. Our study shows that unusual modes of transcription and expression close to the germline may contribute to the proliferation of Tor elements. PMID:25779047

  12. Comparison of mechanical behavior between implant-simulated bone tissue and implant-jaw bone tissue interfaces based on Pull Out testing

    NASA Astrophysics Data System (ADS)

    Lopez, C.; Muñoz, J. C.; Pinillos, J. C.

    2013-11-01

    The main purpose of this research was to achieve a better understanding of the relationship within the mechanical properties of human cadaver jaw bone with kind D2 density regarding a substitute polymer to simulate bone tissue, proposed by the ASTM, to evaluate orthopedic implants. However, despite the existence of several densities of foams and his mechanical characterization has been classified into different degrees of tissue densities to simulate cancellous and cortical bone, the value of the densities are different contrasted with the densities of bone tissue, making difficult to establish direct relationship about mechanical behavior between the polymer and the bone material, and therefore no clear criteria known for choosing the polymeric foam which describes the mechanical behavior of tissue for a specific or particular study. To understand such behavior from bone tissue regarding the polymer samples, on this research was a dental implant inserted into the samples, and subjected to destructive Pull Out test according to ASTM F543The Pull Out strength was compared between implant-jawbone and implant-rigid polyurethane foam interfaces. Thus, the test pieces with mechanical behavior similar to bone tissue, enabling an approximation to choose degree appropriate of polymer to replace the bone tissue in future trials biomechanical.

  13. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    PubMed

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  14. Micro-distribution of uranium in bone after contamination: new insight into its mechanism of accumulation into bone tissue.

    PubMed

    Bourgeois, Damien; Burt-Pichat, Brigitte; Le Goff, Xavier; Garrevoet, Jan; Tack, Pieter; Falkenberg, Gerald; Van Hoorebeke, Luc; Vincze, Laszlo; Denecke, Melissa A; Meyer, Daniel; Vidaud, Claude; Boivin, Georges

    2015-09-01

    After internal contamination, uranium rapidly distributes in the body; up to 20 % of the initial dose is retained in the skeleton, where it remains for years. Several studies suggest that uranium has a deleterious effect on the bone cell system, but little is known regarding the mechanisms leading to accumulation of uranium in bone tissue. We have performed synchrotron radiation-based micro-X-ray fluorescence (SR μ-XRF) studies to assess the initial distribution of uranium within cortical and trabecular bones in contaminated rats' femurs at the micrometer scale. This sensitive technique with high spatial resolution is the only method available that can be successfully applied, given the small amount of uranium in bone tissue. Uranium was found preferentially located in calcifying zones in exposed rats and rapidly accumulates in the endosteal and periosteal area of femoral metaphyses, in calcifying cartilage and in recently formed bone tissue along trabecular bone. Furthermore, specific localized areas with high accumulation of uranium were observed in regions identified as micro-vessels and on bone trabeculae. These observations are of high importance in the study of the accumulation of uranium in bone tissue, as the generally proposed passive chemical sorption on the surface of the inorganic part (apatite) of bone tissue cannot account for these results. Our study opens original perspectives in the field of exogenous metal bio-mineralization. PMID:26084548

  15. Micro-distribution of uranium in bone after contamination: new insight into its mechanism of accumulation into bone tissue.

    PubMed

    Bourgeois, Damien; Burt-Pichat, Brigitte; Le Goff, Xavier; Garrevoet, Jan; Tack, Pieter; Falkenberg, Gerald; Van Hoorebeke, Luc; Vincze, Laszlo; Denecke, Melissa A; Meyer, Daniel; Vidaud, Claude; Boivin, Georges

    2015-09-01

    After internal contamination, uranium rapidly distributes in the body; up to 20 % of the initial dose is retained in the skeleton, where it remains for years. Several studies suggest that uranium has a deleterious effect on the bone cell system, but little is known regarding the mechanisms leading to accumulation of uranium in bone tissue. We have performed synchrotron radiation-based micro-X-ray fluorescence (SR μ-XRF) studies to assess the initial distribution of uranium within cortical and trabecular bones in contaminated rats' femurs at the micrometer scale. This sensitive technique with high spatial resolution is the only method available that can be successfully applied, given the small amount of uranium in bone tissue. Uranium was found preferentially located in calcifying zones in exposed rats and rapidly accumulates in the endosteal and periosteal area of femoral metaphyses, in calcifying cartilage and in recently formed bone tissue along trabecular bone. Furthermore, specific localized areas with high accumulation of uranium were observed in regions identified as micro-vessels and on bone trabeculae. These observations are of high importance in the study of the accumulation of uranium in bone tissue, as the generally proposed passive chemical sorption on the surface of the inorganic part (apatite) of bone tissue cannot account for these results. Our study opens original perspectives in the field of exogenous metal bio-mineralization.

  16. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone.

  17. Electrospun Fibers as a Scaffolding Platform for Bone Tissue Repair

    PubMed Central

    Lyu, Seungyoun; Huang, Chunlan; Yang, Hong; Zhang, Xinping

    2014-01-01

    The purpose of the study is to investigate the effects of electrospun fiber diameter and orientation on differentiation and ECM organization of bone marrow stromal cells (BMSCs), in attempt to provide rationale for fabrication of a periosteum mimetic for bone defect repair. Cellular growth, differentiation, and ECM organization were analyzed on PLGA-based random and aligned fibers using fluorescent microscopy, gene analyses, electron scanning microscopy (SEM), and multiphoton laser scanning microscopy (MPLSM). BMSCs on aligned fibers had a reduced number of ALP+ colony at day 10 as compared to the random fibers of the same size. However, the ALP+ area in the aligned fibers increased to a similar level as the random fibers at day 21 following stimulation with osteogenic media. Compared with the random fibers, BMSCs on the aligned fibers showed a higher expression of OSX and RUNX2. Analyses of ECM on decellularized spun fibers showed highly organized ECM arranged according to the orientation of the spun fibers, with a broad size distribution of collagen fibers in a range of 40nm to 2.4µm. Taken together, our data support the use of submicron-sized electrospun fibers for engineering of oriented fibrous tissue mimetic, such as periosteum, for guided bone repair and reconstruction. PMID:23580466

  18. Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering

    PubMed Central

    Venkatesan, Jayachandran; Bhatnagar, Ira; Kim, Se-Kwon

    2014-01-01

    Over the last few years, significant research has been conducted in the construction of artificial bone scaffolds. In the present study, different types of polymer scaffolds, such as chitosan-alginate (Chi-Alg) and chitosan-alginate with fucoidan (Chi-Alg-fucoidan), were developed by a freeze-drying method, and each was characterized as a bone graft substitute. The porosity, water uptake and retention ability of the prepared scaffolds showed similar efficacy. The pore size of the Chi-Alg and Chi-Alg-fucoidan scaffolds were measured from scanning electron microscopy and found to be 62–490 and 56–437 µm, respectively. In vitro studies using the MG-63 cell line revealed profound cytocompatibility, increased cell proliferation and enhanced alkaline phosphatase secretion in the Chi-Alg-fucoidan scaffold compared to the Chi-Alg scaffold. Further, protein adsorption and mineralization were about two times greater in the Chi-Alg-fucoidan scaffold than the Chi-Alg scaffold. Hence, we suggest that Chi-Alg-fucoidan will be a promising biomaterial for bone tissue regeneration. PMID:24441614

  19. Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Liu, Fwu-Hsing

    2014-10-01

    In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.

  20. Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering

    PubMed Central

    Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2010-01-01

    The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546

  1. Organotypic culture of human bone marrow adipose tissue.

    PubMed

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was <0.8 ng/mL under all culture conditions. Dexamethasone promoted adiponectin gene expression, while insulin inhibited it. This finding suggests that dexamethasone, but not insulin, may serve as a powerful adipogenic factor for BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  2. In-vitro imaging of bone tissue and monitoring of tissue viability by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Wang, Ruikang K.; El Haj, Alicia

    2001-07-01

    Optical coherence tomography (OCT) has developed as a promising medical diagnostic imaging technology for non- invasive in situ cross-sectional imaging of biological tissues. We present this technique to image bone tissue and to monitor the redox state of mitochondria enzyme Cytochrome oxidase (CytOx) in bone for applications in tissue engineering. Superluminescent diode (SLD) with its peak emission wavelength (λ = 820nm) on the absorption band of oxidized form of CytOx was used in the experiments. The results demonstrate that the OCT system is capable of imaging the calvaria of newborn rats tomographically with a resolution at 9 microns, which could only be previously obtained by the conventional excisional biopsy. The thickness of periosteum of various calvarias from different ages of rats can be accurately determined by the system. The backscattered power-versus-depth profile form the liquid phantoms (naphthol green B with intralipid) and tissue specimens (periosteum of calvaria from newborn rats) are used to quantify the absorption changes of the sample. Absorption coefficients of naphthol green B could be quantified accurately by the linear relationship between attenuation coefficients from the slopes of the reflected signals and naphthol green B concentration. The results also show that the attenuation coefficient decreases in periosteums as CytOx being reduced by sodium dithionite, demonstrating the feasibility of this method to monitor the redox state of tissues studied.

  3. Stereomicroscopic evaluation of the joint cartilage and bone tissue in osteoporosis

    NASA Astrophysics Data System (ADS)

    Vasile, Liliana; Torok, Rodica; Deleanu, Bogdan; Marchese, Cristian; Valeanu, Adina; Bodea, Rodica

    2012-06-01

    Aim of the study. Assessment by stereomicroscopy of the severity of lesions in osteoporotic bone at both sexes and to correlate micro-and macro-bone fracture due to low bone density values with the disease evolution. Material and method: The study material consists of fragments of bone from the femoral head, vertebral bone, costal and iliac crest biopsy obtained from patients aged over 70 years, female and male, treated in the County Hospital of Timisoara, Department of Orthopedics. For the purpose of studying the samples in stereomicroscopy and trough polarized light it has been used the Olympus Microscope SZ ×7 and an Olympus camera with 2,5 × digital zoom and a 3× optical zoom in the Vest Politechnic Univesity. Results and discussions: Subchondral bone presents osteolysis associated with a osteoporotic bone transformation. Pseudocystic chondrolisis was noted in the osteoarticular cartilage, in addition with areas of hemorrhagic postfractural necrosis. The osteoporotic bone exhibits ischemic necrosis and focal hemorrhagic necrosis adjacent fracture. Microporosity pattern of the bone observed by stereomicroscopy correspond to the spongy bone osteoporosis images. Morphometry of the bone spiculi reveals length of 154.88 and 498.32 μ. In men we found a greater thickness of bone trabeculi compared with bone texture porosity in women. The subchondral bone supports and fulfills an important role in transmitting forces from the overlying articular cartilage inducing the bone resorbtion. The femoral head fracture may be the final event of many accumulated bone microcracks. Conclusions: Bone fragility depends not only of the spongy bone but also of the cortical bone properties. Osteolysis produced by loss of balance in the process of remodeling in favor of bone resorption leads to the thinning of the subchondral bone at both sexes.

  4. Insights into Reference Point Indentation Involving Human Cortical Bone: Sensitivity to Tissue Anisotropy and Mechanical Behavior

    PubMed Central

    Granke, Mathilde; Coulmier, Aurélie; Uppuganti, Sasidhar; Gaddy, Jennifer A; Does, Mark D; Nyman, Jeffry S

    2014-01-01

    Reference point indentation (RPI) is a microindentation technique involving 20 cycles of loading in “force-control” that can directly assess a patient’s bone tissue properties. Even though preliminary clinical studies indicate a capability for fracture discrimination, little is known about what mechanical behavior the various RPI properties characterize and how these properties relate to traditional mechanical properties of bone. To address this, the present study investigated the sensitivity of RPI properties to anatomical location and tissue organization as well as examined to what extent RPI measurements explain the intrinsic mechanical properties of human cortical bone. Multiple indents with a target force of 10 N were done in 2 orthogonal directions (longitudinal and transverse) per quadrant (anterior, medial, posterior, and lateral) of the femoral mid-shaft acquired from 26 donors (25–101 years old). Additional RPI measurements were acquired for 3 orthogonal directions (medial only). Independent of age, most RPI properties did not vary among these locations, but they did exhibit transverse isotropy such that resistance to indentation is greater in the longitudinal (axial) direction than in the transverse direction (radial or circumferential). Next, beam specimens (~ 2 mm × 5 mm × 40 mm) were extracted from the medial cortex of femoral mid-shafts, acquired from 34 donors (21–99 years old). After monotonically loading the specimens in three-point bending to failure, RPI properties were acquired from an adjacent region outside the span. Indent direction was orthogonal to the bending axis. A significant inverse relationship was found between resistance to indentation and the apparent-level mechanical properties. Indentation distance increase (IDI) and a linear combination of IDI and the loading slope, averaged over cycles 3 through 20, provided the best explanation of the variance in ultimate stress (r2=0.25, p=0.003) and toughness (r2=0.35, p=0

  5. Study of the response of osteogenic sarcoma and adjacent normal tissues to radiation. [/sup 60/Co

    SciTech Connect

    Gaitan-Yanguas, M.

    1981-05-01

    An analysis is made of the surgical specimens of 18 patients with hystologically-proven osteosarcoma who were treated with radiation as the first treatment, and submitted 6 months later to amputation (2 patients had only a second biopsy). Plotting of dose and treatment time against persistence or sterilization of the tumor shows that there is an intermediate zone that extends from 3200 to 5000 rad in 10 days to 8000 to 10,000 rad in 60 to 70 days, inside which the tumor may or may not be destroyed. All cases located above this zone were sterilized; and all those under it showed persistence of viable tumor cells. A similar correlation is made in 47 irradiated patients of the secondary reactions of normal skin and soft tissues surrounding the tumor. An intermediate zone also exists above which all reactions were severe, in some cases reaching necrosis; below this zone, all reactions were mild. When treatment time was longer than 45 days, reactions were only moderate.

  6. Developing bioactive composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Chen, Yun

    bone-like apatite/collagen composite coating. Saos-2 osteoblast-like cells were used to evaluate the cellular behaviors on these biomimetic coatings. Cell morphologies on the surfaces of PLLA films and scaffolds, PLLA films and scaffolds with apatite coating, and PLLA films and scaffolds with apatite/collagen composite coating were studied by SEM. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide (MTT) assay. In addition, differentiated cell function was assessed by measuring alkaline phosphatase activity. These results suggested that the apatite coating and apatite/collagen composite coating fabricated through the accelerated biomimetic processes could improve the interactions between osteoblasts and PLLA. The composite coating was more effective than apatite coating in improving such interactions. PLLA scaffolds coated with submicron collagen fibrils and submicron apatite paticulates are expected to be one of the promising 3D substrates for bone tissue engineering. To facilitate coating into scaffolds, the flowing condition was introduced into the accelerated biomimetic process. The apatite formed in the different sites in the scaffold was characterized using SEM. It was found that the accelerated biomimetic process performed in the flowing condition yielded more uniform spatial distribution of apatite particles than that in the regular shaking condition. This work provides a novel condition for obtaining uniform spatial distribution of bone-like apatite within the scaffolds in a timely manner, which is expected to facilitate uniform distribution of attached cells within the scaffoldsin vitro and in vivo.

  7. Proportion of soft tissue in selected bone cuts fed primarily as enrichments to large carnivores.

    PubMed

    Felicetti, Laura; Kearney, Celeste C; Woodward, Lloyd; Dierenfeld, Ellen S

    2008-03-01

    Zoos often offer large bones or cuts of meat containing bone (bone cuts) to carnivores to provide oral stimulation and behavioral enrichment. Because of its abrasive action, the act of chewing on a bone can increase the oral health of large felids as well as provide an enriching activity. Unfortunately, because the quantity of edible tissue on the bones is usually unknown, when feeding these cuts one can easily miscalculate an animal's caloric and nutrient intake. To fully comprehend the contribution of bones as a dietary item as opposed to an enrichment item, we removed the soft tissue from a total of 70 samples, representing 14 types of bone cuts commonly used in managed carnivore feeding programs. Across types of cuts, soft tissue averaged 50% of wet weight, with pork knuckles averaging the lowest (23%) and horse shanks the greatest (74%) percent soft tissue. Zoo Biol 27:154-158, 2008. (c) 2008 Wiley-Liss, Inc.

  8. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    PubMed Central

    Sun, Han; Yang, Hui-Lin

    2015-01-01

    Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions. PMID:25881610

  9. Bone mineralization: from tissue to crystal in normal and pathological contexts.

    PubMed

    Bala, Y; Farlay, D; Boivin, G

    2013-08-01

    Bone is a complex and structured material; its mechanical behavior results from an interaction between the properties of each level of its structural hierarchy. The degree of mineralization of bone (bone density measured at tissue level) and the characteristics of the mineral deposited (apatite crystals) are major determinants of bone strength. Bone remodeling activity acts as a regulator of the degree of mineralization and of the distribution of mineral at the tissue level, directly impacting bone mechanical properties. Recent findings have highlighted the need to understand the underlying process occurring at the nanostructure level that may be independent of bone remodeling itself. A more global comprehension of bone qualities will need further works designed to characterize what are the consequences on whole bone strength of changes at nano- or microstructure levels relative to each other.

  10. Blood and Interstitial flow in the hierarchical pore space architecture of bone tissue

    PubMed Central

    Cowin, Stephen C.; Cardoso, Luis

    2015-01-01

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. PMID:25666410

  11. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  12. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477

  13. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study

    PubMed Central

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold. PMID:26380018

  14. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    PubMed

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  15. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    PubMed

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering.

  16. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    PubMed

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. PMID:26478356

  17. Novel hybrid materials for preparation of bone tissue engineering scaffolds.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria

    2015-09-01

    The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.

  18. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering.

    PubMed

    Cheng, Tegan L; Murphy, Ciara M; Ravarian, Roya; Dehghani, Fariba; Little, David G; Schindeler, Aaron

    2015-01-01

    Sucrose acetate isobutyrate (SAIB) is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) and found synergy when co-delivering zoledronic acid (ZA) and hydroxyapatite (HA) nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP) nor Bioglass (BG) 45S5 had a significant effect on bone volume (BV) alone or in combination with the ZA. (14)C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%), and BV was further increased with ZA-adsorbed micro-HA and nano-HA (+530% and +889%). These data support the use of ZA-adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering. PMID:26668709

  19. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering

    PubMed Central

    Cheng, Tegan L; Murphy, Ciara M; Ravarian, Roya; Dehghani, Fariba; Little, David G; Schindeler, Aaron

    2015-01-01

    Sucrose acetate isobutyrate (SAIB) is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) and found synergy when co-delivering zoledronic acid (ZA) and hydroxyapatite (HA) nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP) nor Bioglass (BG) 45S5 had a significant effect on bone volume (BV) alone or in combination with the ZA. 14C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%), and BV was further increased with ZA–adsorbed micro-HA and nano-HA (+530% and +889%). These data support the use of ZA–adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering. PMID:26668709

  20. Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain

    PubMed Central

    Allali, Imane; Delgado, Susana; Marron, Pablo Isidro; Astudillo, Aurora; Yeh, Jen Jen; Ghazal, Hassan; Amzazi, Saaïd; Keku, Temitope; Azcarate-Peril, M Andrea

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer in the world and the second leading cause of cancer deaths in the US and Spain. The molecular mechanisms involved in the etiology of CRC are not yet elucidated due in part to the complexity of the human gut microbiota. In this study, we compared the microbiome composition of 90 tumor and matching adjacent tissue (adjacent) from cohorts from the US and Spain by 16S rRNA amplicon sequencing in order to determine the impact of the geographic origin on the CRC microbiome. Data showed a significantly (P < 0.05) higher Phylogenetic Diversity (PD) for the US (PD Adjacent = 26.3 ± 5.3, PD Tumor = 23.3 ± 6.2) compared to the Spanish cohort (PD Adjacent = 18.9 ± 5.9, PD Tumor = 18.7 ± 6.6) while no significant differences in bacterial diversity were observed between tumor and adjacent tissues for individuals from the same country. Adjacent tissues from the Spanish cohort were enriched in Firmicutes (SP = 43.9% and US = 22.2%, P = 0.0001) and Actinobacteria (SP = 1.6% and US = 0.5%, P = 0.0018) compared to US adjacent tissues, while adjacent tissues from the US had significantly higher abundances of Fusobacteria (US = 8.1% and SP = 1.5%, P = 0.0023) and Sinergistetes (US = 0.3% and SP = 0.1%, P = 0.0097). Comparisons between tumor and adjacent tissues in each cohort identified the genus Eikenella significantly over represented in US tumors (T = 0.024% and A = 0%, P = 0.03), and the genera Fusobacterium (T = 10.4% and A = 1.5%, P = <0.0001), Bulleida (T = 0.36% and A = 0.09%, P = 0.02), Gemella (T = 1.46% and A = 0.19%, P = 0.03), Parvimonas (T = 3.14% and A = 0.86%, P = 0.03), Campylobacter (T = 0.15% and A = 0.008%, P = 0.047), and Streptococcus (T = 2.84% and A = 2.19%, P = 0.05) significantly over represented in Spanish tumors. Predicted metagenome functional content from 16S rRNA surveys showed that bacterial motility proteins and proteins involved in flagellar assembly were over represented in adjacent tissues

  1. Can Breast Tumors Affect the Oxidative Status of the Surrounding Environment? A Comparative Analysis among Cancerous Breast, Mammary Adjacent Tissue, and Plasma.

    PubMed

    Panis, C; Victorino, V J; Herrera, A C S A; Cecchini, A L; Simão, A N C; Tomita, L Y; Cecchini, R

    2015-01-01

    In this paper, we investigated the oxidative profile of breast tumors in comparison with their normal adjacent breast tissue. Our study indicates that breast tumors present enhanced oxidative/nitrosative stress, with concomitant augmented antioxidant capacity when compared to the adjacent normal breast. These data indicate that breast cancers may be responsible for the induction of a prooxidant environment in the mammary gland, in association with enhanced TNF-α and nitric oxide. PMID:26697139

  2. Can Breast Tumors Affect the Oxidative Status of the Surrounding Environment? A Comparative Analysis among Cancerous Breast, Mammary Adjacent Tissue, and Plasma.

    PubMed

    Panis, C; Victorino, V J; Herrera, A C S A; Cecchini, A L; Simão, A N C; Tomita, L Y; Cecchini, R

    2015-01-01

    In this paper, we investigated the oxidative profile of breast tumors in comparison with their normal adjacent breast tissue. Our study indicates that breast tumors present enhanced oxidative/nitrosative stress, with concomitant augmented antioxidant capacity when compared to the adjacent normal breast. These data indicate that breast cancers may be responsible for the induction of a prooxidant environment in the mammary gland, in association with enhanced TNF-α and nitric oxide.

  3. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    PubMed

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues. PMID:25995658

  4. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    PubMed

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  5. Hard tissue regeneration using bone substitutes: an update on innovations in materials

    PubMed Central

    Sarkar, Swapan Kumar

    2015-01-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues. PMID:25995658

  6. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.

    PubMed

    Acevedo, Claire; Bale, Hrishikesh; Gludovatz, Bernd; Wat, Amy; Tang, Simon Y; Wang, Mingyue; Busse, Björn; Zimmermann, Elizabeth A; Schaible, Eric; Allen, Matthew R; Burr, David B; Ritchie, Robert O

    2015-12-01

    Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures.

  7. High affinity binding of an engineered, modular peptide to bone tissue.

    PubMed

    Brounts, Sabrina H; Lee, Jae Sung; Weinberg, Sean; Lan Levengood, Sheeny K; Smith, Everett L; Murphy, William L

    2013-05-01

    Bone grafting procedures have become common due in part to a global trend of population aging. Native bone graft is a popular choice when compared to various synthetic bone graft substitutes, owing to superior biological activity. Nonetheless, the insufficient ability of bone allograft to induce new bone formation and the insufficient remodeling of native bone grafts call for osteoinductive factors during bone repair, exemplified by recombinant human bone morphogenetic protein 2 (rhBMP2). We previously developed a modular bone morphogenetic peptide (mBMP) to address complications associated with the clinical use of rhBMP2 as a bone graft substitute. The mBMP is designed to strongly bind to hydroxyapatite, the main inorganic component of bone and teeth, and to provide pro-osteogenic properties analogous to rhBMP2. Our previous in vivo animal studies showed that mBMP bound to hydroxyapatite-coated orthopedic implants with high affinity and stimulated new bone formation. In this study, we demonstrate specific binding of mBMP to native bone grafts. The results show that mBMP binds with high affinity to both cortical and trabecular bones, and that the binding is dependent on the mBMP concentration and incubation time. Importantly, efficient mBMP binding is also achieved in an ex vivo bone bioreactor where bone tissue is maintained viable for several weeks. In addition, mBMP binding can be localized with spatial control on native bone tissue via simple methods, such as dip-coating, spotting, and direct writing. Taken together with the pro-osteogenic activity of mBMP established in previous bone repair models, these results suggest that mBMP may promote bone healing when coated on native bone grafts in a clinically compatible manner.

  8. Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation.

    PubMed

    Rivron, Nicolas C; Raiss, Christian C; Liu, Jun; Nandakumar, Anandkumar; Sticht, Carsten; Gretz, Norbert; Truckenmüller, Roman; Rouwkema, Jeroen; van Blitterswijk, Clemens A

    2012-03-20

    Large bone defects naturally regenerate via a highly vascularized tissue which progressively remodels into cartilage and bone. Current approaches in bone tissue engineering are restricted by delayed vascularization and fail to recapitulate this stepwise differentiation toward bone tissue. Here, we use the morphogen Sonic Hedgehog (Shh) to induce the in vitro organization of an endothelial capillary network in an artificial tissue. We show that endogenous Hedgehog activity regulates angiogenic genes and the formation of vascular lumens. Exogenous Shh further induces the in vitro development of the vasculature (vascular lumen formation, size, distribution). Upon implantation, the in vitro development of the vasculature improves the in vivo perfusion of the artificial tissue and is necessary to contribute to, and enhance, the formation of de novo mature bone tissue. Similar to the regenerating callus, the artificial tissue undergoes intramembranous and endochondral ossification and forms a trabecular-like bone organ including bone-marrow-like cavities. These findings open the door for new strategies to treat large bone defects by closely mimicking natural endochondral bone repair.

  9. [Mechanical strength and mechano-compatibility of tissue-engineered bones].

    PubMed

    Tanaka, Shigeo

    2016-01-01

    Current artificial bones made of metals and ceramics may be replaced around a decade after implantation due to its low durability, which is brought on by a large difference from the host bone in mechanical properties, i.e., low mechano-compatibility. On the other hand, tissue engineering could be a solution with regeneration of bone tissues from stem cells in vitro. However, there are still some problems to realize exactly the same mechanical properties as those of real bone. This paper introduces the technical background of bone tissue engineering and discusses possible methods for installation of mechano-compatibility into a regenerative bone. At the end, future directions toward the realization of ideal mechano-compatible regenerative bone are proposed.

  10. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science.

  11. Evaluation of sodium alginate for bone marrow cell tissue engineering.

    PubMed

    Wang, L; Shelton, R M; Cooper, P R; Lawson, M; Triffitt, J T; Barralet, J E

    2003-09-01

    Sodium alginate has applications as a material for the encapsulation and immobilisation of a variety of cell types for immunoisolatory and biochemical processing applications. It forms a biodegradable gel when crosslinked with calcium ions and it has been exploited in cartilage tissue engineering since chondrocytes do not dedifferentiate when immobilised in it. Despite its attractive properties of degradability, ease of processing and cell immobilisation, there is little work demonstrating the efficacy of alginate gel as a substrate for cell proliferation, except when RGD is modified. In this study we investigated the ability of rat bone marrow cells to proliferate and differentiate on alginates of differing composition and purity. The mechanical properties of the gels were investigated. It was found that high purity and high G-type alginate retained 27% of its initial strength after 12 days in culture and that comparable levels of proliferation were observed on this material and tissue culture plastic. Depending on composition, calcium crosslinked alginate can act as a substrate for rat marrow cell proliferation and has potential for use as 3D degradable scaffold.

  12. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    PubMed

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-06-01

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs. PMID:27187017

  13. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.

    PubMed

    Montjovent, Marc-Olivier; Mark, Silke; Mathieu, Laurence; Scaletta, Corinne; Scherberich, Arnaud; Delabarde, Claire; Zambelli, Pierre-Yves; Bourban, Pierre-Etienne; Applegate, Lee Ann; Pioletti, Dominique P

    2008-03-01

    Fetal bone cells were shown to have an interesting potential for therapeutic use in bone tissue engineering due to their rapid growth rate and their ability to differentiate into mature osteoblasts in vitro. We describe hereafter their capability to promote bone repair in vivo when combined with porous scaffolds based on poly(l-lactic acid) (PLA) obtained by supercritical gas foaming and reinforced with 5 wt.% beta-tricalcium phosphate (TCP). Bone regeneration was assessed by radiography and histology after implantation of PLA/TCP scaffolds alone, seeded with primary fetal bone cells, or coated with demineralized bone matrix. Craniotomy critical size defects and drill defects in the femoral condyle in rats were employed. In the cranial defects, polymer degradation and cortical bone regeneration were studied up to 12 months postoperatively. Complete bone ingrowth was observed after implantation of PLA/TCP constructs seeded with human fetal bone cells. Further tests were conducted in the trabecular neighborhood of femoral condyles, where scaffolds seeded with fetal bone cells also promoted bone repair. We present here a promising approach for bone tissue engineering using human primary fetal bone cells in combination with porous PLA/TCP structures. Fetal bone cells could be selected regarding osteogenic and immune-related properties, along with their rapid growth, ease of cell banking and associated safety. PMID:18178142

  14. Method and system for in vivo measurement of bone tissue using a two level energy source

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  15. An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering.

    PubMed

    Simson, Jacob A; Strehin, Iossif A; Lu, Qiaozhi; Uy, Manuel O; Elisseeff, Jennifer H

    2013-03-11

    A chondroitin sulfate-bone marrow (CS-BM) adhesive hydrogel was used to localize rhBMP-2 to enhance articular cartilage tissue formation. Chondrocyte pellet culture revealed that 0.1 and 1 μg/mL of rhBMP-2 enhanced sulfated-GAG content. rhBMP-2 localization within the hydrogels was investigated, and it was found that BM, CS-NHS, and rhBMP-2 levels and time affected rhBMP-2 retention. Retention was modulated from 82 to 99% over a 3-week period for the material formulations investigated. To evaluate carrier efficacy, rhBMP-2 and bovine articular chondrocytes were encapsulated within CS-BM, and biochemical evaluation revealed significant increases in total collagen production with rhBMP-2. Histological analysis revealed more robust tissue formation and greater type-II collagen production with encapsulated rhBMP-2. Subsequently, a subcutaneous culture of hydrogels revealed increased total collagen, type-II to type-I collagen ratio, and sulfated GAG in samples carrying rhBMP-2. These findings indicate the development of a multifunctional system capable of localizing rhBMP-2 to enhance repair tissue quality. PMID:23320412

  16. Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints.

    PubMed

    Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R Geoff; Blauth, Michael

    2015-01-01

    Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage.Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests.Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24).The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage.

  17. Targeting the hypoxic response in bone tissue engineering: A balance between supply and consumption to improve bone regeneration.

    PubMed

    Stiers, Pieter-Jan; van Gastel, Nick; Carmeliet, Geert

    2016-09-01

    Bone tissue engineering is a promising therapeutic alternative for bone grafting of large skeletal defects. It generally comprises an ex vivo engineered combination of a carrier structure, stem/progenitor cells and growth factors. However, the success of these regenerative implants largely depends on how well implanted cells will adapt to the hostile and hypoxic host environment they encounter after implantation. In this review, we will discuss how hypoxia signalling may be used to improve bone regeneration in a tissue-engineered construct. First, hypoxia signalling induces angiogenesis which increases the survival of the implanted cells as well as stimulates bone formation. Second, hypoxia signalling has also angiogenesis-independent effects on mesenchymal cells in vitro, offering exciting new possibilities to improve tissue-engineered bone regeneration in vivo. In addition, studies in other fields have shown that benefits of modulating hypoxia signalling include enhanced cell survival, proliferation and differentiation, culminating in a more potent regenerative implant. Finally, the stimulation of endochondral bone formation as a physiological pathway to circumvent the harmful effects of hypoxia will be briefly touched upon. Thus, angiogenic dependent and independent processes may counteract the deleterious hypoxic effects and we will discuss several therapeutic strategies that may be combined to withstand the hypoxia upon implantation and improve bone regeneration. PMID:26768117

  18. Human polyethylene granuloma tissues inhibit bone healing in a novel xenograft animal model.

    PubMed

    Esposito, Christina I; Oliver, Rema A; Campbell, Patricia A; Yu, Yan; Walter, William L; Walter, William K; Walsh, William R

    2014-06-01

    During revision of a conventional polyethylene joint replacement, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the polyethylene granuloma tissues. We developed a human/rat xenograft model to investigate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic nude rats. After 3 weeks in vivo, there was a significant difference in the bone volume fraction (Vf ) between empty, primary, and revision defects (p = 0.02), with a lower Vf in defects with revision granuloma tissues compared to defects with primary osteoarthritic tissues. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Therefore, debridement around a metal-on-polyethylene hip replacement may shorten the time it takes to achieve secondary stability around a revision hip replacement.

  19. Bone tissue heating and ablation by short and ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Rice, Colin E. W.; George, Thomas F.

    2010-02-01

    Biological hard tissues, such as those found in bone and teeth, are complex tissues that build a strong mineral structure over an organic matrix framework. The laser-matter interaction for bone hard tissues holds great interest to laser surgery and laser dentistry; the use of short/ultrashort pulses, in particular, shows interesting behaviors not seen in continuous wave lasers. High laser energy densities in ultrashort pulses can be focused on a small irradiated surface (spot diameter is 10-50 μm) leading to rapid temperature rise and thermal ablation of the bone tissue. Ultrashort pulses, specifically those in the picosecond and femtosecond ranges, impose several challenges in modeling bone tissue response. In the present paper we perform time-dependent thermal simulations of short and ultrashort pulse laser-bone interactions in singlepulse and multipulse (set of ultrashort pulses) modes of laser heating. A comparative analysis for both radiation modes is discussed for laser heating of different types of the solid bone on the nanosecond, picosecond and femtosecond time scales. It is shown that ultrashort laser pulses with high energy densities can ablate bone tissue without heating tissues bordering the ablation creator. This reaction is particularly desirable as heat accumulation and thermal damage are the main factors affecting tissue regrowth rates, and thus patient recovery times.

  20. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.

    PubMed

    Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li

    2015-10-21

    Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.

  1. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.

    PubMed

    Zhang, Jiazhen; Nie, Jingyi; Zhang, Qirong; Li, Youliang; Wang, Zhengke; Hu, Qiaoling

    2014-01-01

    Three-dimensional oriented chitosan (CS)/hydroxyapatite (HA) scaffolds were prepared via in situ precipitation method in this research. Scanning electron microscopy (SEM) images indicated that the scaffolds with acicular nano-HA had the spoke-like, multilayer and porous structure. The SEM of osteoblasts which were polygonal or spindle-shaped on the composite scaffolds after seven-day cell culture showed that the cells grew, adhered, and spread well. The results of X-ray powder diffractometer and Fourier transform infrared spectrometer showed that the mineral particles deposited in the scaffold had phase structure similar to natural bone and confirmed that particles were exactly HA. In vitro biocompatibility evaluation indicated the composite scaffolds showed a higher degree of proliferation of MC3T3-E1 cell compared with the pure CS scaffolds and the CS/HA10 scaffold was the highest one. The CS/HA scaffold also had a higher ratio of adhesion and alkaline phosphate activity value of osteoblasts compared with the pure CS scaffold, and the ratio increased with the increase of HA content. The ALP activity value of composite scaffolds was at least six times of the pure CS scaffolds. The results suggested that the composite scaffolds possessed good biocompatibility. The compressive strength of CS/HA15 increased by 33.07% compared with the pure CS scaffold. This novel porous scaffold with three-dimensional oriented structure might have a potential application in bone tissue engineering.

  2. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.

    PubMed

    Rosa, Adalberto Luiz; de Oliveira, Paulo Tambasco; Beloti, Marcio Mateus

    2008-11-01

    Bone tissue has the ability to heal without a scar and to remodel, which promotes three basic functions: locomotion, protection of internal organs and mineral homeostasis. Although bone regeneration is highly efficient, some clinical situations - such as large bone defects - require specific treatments in order to promote bone healing. Allogenic or autologous bone grafts have been used in these procedures with limited success and, based on this, bone tissue-engineering approaches have been investigated extensively. Tissue engineering has been defined as the application of principles and techniques of the life sciences and engineering to the design, modification and growth of living tissues using biomaterials, cells and growth factors, alone or in combination. The association of cells with porous scaffolds to produce 3D hybrid osteogenic constructs is a common subject in bone tissue-engineering research and will be the focus of this review. We will present some aspects of bone biology, the cells and scaffolds used to engineer bone, and techniques to fabricate the hybrid biomaterial.

  3. Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering Applications

    PubMed Central

    Kinoshita, Yukihiko; Maeda, Hatsuhiko

    2013-01-01

    Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies. PMID:24163634

  4. Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering

    PubMed Central

    Boccaccio, A.; Ballini, A.; Pappalettere, C.; Tullo, D.; Cantore, S.; Desiate, A.

    2011-01-01

    Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014. Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance. In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone

  5. Penetration of piperacillin-tazobactam into cancellous and cortical bone tissues.

    PubMed Central

    Incavo, S J; Ronchetti, P J; Choi, J H; Wu, H; Kinzig, M; Sörgel, F

    1994-01-01

    The penetration characteristics of piperacillin-tazobactam into cortical and cancellous bone tissues were investigated in 10 patients undergoing total hip replacement. The concentration ratios of piperacillin/tazobactam were 9.4 +/- 1.8 in cancellous bone tissue and 8.0 +/- 2.2 in cortical bone tissue, which were close to the 8:1 ratio of drugs administered. The mean ratios of drug concentrations in bone and plasma for cancellous and cortical tissue were 23 and 18%, respectively, for piperacillin and 26 and 22%, respectively, for tazobactam. The concentrations of tazobactam achieved are sufficient to exert anti-beta-lactamase activity and supportive of clinical trials involving bone and joint infections, including those caused by beta-lactamase-producing pathogens. PMID:8031071

  6. The clinical value of bone and gallium scintigraphy for soft-tissue sarcomas of the extremities

    SciTech Connect

    Kirchner, P.T.; Simon, M.A.

    1984-03-01

    In a prospective study of forty-five patients, we evaluated the usefulness of bone and gallium scintigraphy prior to definitive surgery for a soft-tissue sarcoma in an extremity. Bone scintigraphy provides a baseline for staging and often reveals periosteal invasion that is not detected by routine radiographs. Blood-pool scintigraphy with bone tracers is very sensitive for a diagnosis of malignant disease. Gallium scintigraphy appeared to be a reliable preoperative indicator of malignant disease of soft tissue (sensitivity, 85 per cent; specificity, 92 per cent) and was useful for detecting the infrequent occult, non-pulmonary metastasis. Combined gallium and bone scintigraphy with blood-pool imaging provided a reliable prediction of the presence or absence of a malignant lesion in patients with a soft-tissue mass in an extremity. We recommend that bone and gallium scintigraphy be routinely used in the initial clinical staging of soft-tissue sarcomas.

  7. Cartilage, bone, and intermandibular connective tissue in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).

    PubMed

    Kemp, Anne

    2013-10-01

    The connective tissue that links the bones of the mandible in the Australian lungfish, Neoceratodus forsteri, has been described as an intermandibular cartilage, and as such has been considered important for phylogenetic analyses among lower vertebrates. However, light and electron microscopy of developing lungfish jaws demonstrates that the intermandibular tissue, like the connective tissue that links the bones of the upper jaw, contains fibroblasts and numerous bundles of collagen fibrils, extending from the trabeculae of the bones supporting the tooth plates. It differs significantly in structure and in staining reactions from the cartilage and the bone found in this species. In common with the cladistian Polypterus and with actinopterygians and some amphibians, lungfish have no intermandibular cartilage. The connective tissue linking the mandibular bones has no phylogenetic significance for systematic grouping of lungfish, as it is present in a range of different groups among lower vertebrates.

  8. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges.

    PubMed

    Baroli, Biancamaria

    2009-04-01

    Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.

  9. Unusual endosteally formed bone tissue in a patagonian basal sauropodomorph dinosaur.

    PubMed

    Cerda, Ignacio A; Chinsamy, Anusuya; Pol, Diego

    2014-08-01

    Mussaurus patagonicus (Dinosauria: Sauropodomorpha) is a basal sauropodomorph from the Late Triassic of southern Argentina that is known from a large number of individuals, including juveniles, subadults, and adults. Here, we report on the occurrence of an unusual bone tissue in an individual of M. patagonicus. The rather atypical bone tissue is located within the femoral medullary cavity and also occurs within several erosion cavities of the midinner part of the cortex. This tissue is well vascularized and is composed of a matrix that consists of abundant and densely packed osteocyte lacunae. Although some features of this tissue resembles avian medullary bone, the histological features are distinctive and share more features with the pathological, reactive bone produced in extant birds in response to a retrovirus-induced disease (avian osteopetrosis). Here, we also discuss and provide histological features to effectively differentiate endosteally formed medullary bone from pathological avian osteopetrosis.

  10. Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Mkhabela, Vuyiswa J.; Ray, Suprakas Sinha

    2015-05-01

    Highly porous three-dimensional polylactide (PLA) scaffolds were obtained from PLA incorporated with different amounts of chitosan-modified montmorillonite (CS-MMT), through solvent casting and particulate leaching method. The processed scaffolds were tested in vitro for their possible application in bone tissue engineering. Scaffolds were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB SEM), Fourier Transform Infra-Red (FTIR), and X-Ray Diffraction (XRD) to study their structure and intermolecular interactions. Bioresorbability tests in simulated body fluid (pH 7.4) were conducted to assess the response of the scaffolds in a simulated physiological condition. The FIB SEM images of the scaffolds showed a porous architecture with gradual change in morphology with increasing CS-MMT concentration. FTIR analysis revealed the presence of both PLA and CS-MMT particles on the surface of the scaffolds. XRD showed that the crystalline unit cell type was the same for all the scaffolds, and crystallinity decreased with an increase in CS-MMT concentration. The scaffolds were found to be bioresorbable, with rapid bioresorbability on the scaffolds with a high CS-MMT concentration.

  11. Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications

    SciTech Connect

    Mkhabela, Vuyiswa J.; Ray, Suprakas Sinha

    2015-05-22

    Highly porous three-dimensional polylactide (PLA) scaffolds were obtained from PLA incorporated with different amounts of chitosan-modified montmorillonite (CS-MMT), through solvent casting and particulate leaching method. The processed scaffolds were tested in vitro for their possible application in bone tissue engineering. Scaffolds were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB SEM), Fourier Transform Infra-Red (FTIR), and X-Ray Diffraction (XRD) to study their structure and intermolecular interactions. Bioresorbability tests in simulated body fluid (pH 7.4) were conducted to assess the response of the scaffolds in a simulated physiological condition. The FIB SEM images of the scaffolds showed a porous architecture with gradual change in morphology with increasing CS-MMT concentration. FTIR analysis revealed the presence of both PLA and CS-MMT particles on the surface of the scaffolds. XRD showed that the crystalline unit cell type was the same for all the scaffolds, and crystallinity decreased with an increase in CS-MMT concentration. The scaffolds were found to be bioresorbable, with rapid bioresorbability on the scaffolds with a high CS-MMT concentration.

  12. High rate properties of porcine skull bone tissue

    NASA Astrophysics Data System (ADS)

    Herwig, Kyle Jeffry

    Several recent studies have shown the importance of understanding the nature of blast injuries. Traditionally, the lungs and other air filled organs were the focus of these injuries but it is being discovered that some level of brain trauma may result after encountering a blast. These injuries are referred to as traumatic brain injuries, or TBI. There has been many clinical studies and statistical analyses done concerning these injuries, but there is still no physical understanding of the problem. In order to develop a model of how this injury can occur, rate dependent material properties of the tissues the stress wave will travel through are needed. In this study, the compressive response of porcine skull bone through the thickness direction was experimentally determined over a wide range of rates, ranging from 0.001 sec -1 to approximately 3000 sec-1. The results reveal that for most mechanical properties there is a clear rate dependence of the material. However, only one subset of the skull section appeared to have a rate dependent initial modulus, with the rest showing no significant statistical dependence on loading rate. Other mechanical properties appeared to be affected by the loading rate, including the strain energy density.

  13. Porous silicon based biomaterials for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sun, Wei

    An ideal material for orthopaedic tissue engineering should be biocompatible, biodegradable, osteoconductive, osteoinductive, mechanically stable, and widely available. Porous silicon (PSi), a silicon based material fulfills these criteria. It is biocompatible and biodegradable, and supports hydroxyapatite nucleation. The micro/nano-architecture of PSi may regulate cell behavior. The surface chemistry of PSi is flexible so that the interfacial properties between this material and living cells can be tailored easily by chemical modifications. In this work, we have demonstrated that PSi can support and promote primary osteoblast growth, protein matrix synthesis, and mineralization both in vitro and in vivo. The osteoconductivity of PSi can be controlled by altering the micro/nano architecture of porous interface. Macro-scale porous silicon (MacPSi), with pore openings of approximately 1 mum, has the highest osteoconductive potential in vitro. We have further developed a hybrid biomaterial by coating MacPSi with recombinant adenovirus vectors encoding bone morphogenetic proteins, thus making the material osteoinductive both in vitro and in vivo. With this material, we are closer to an osteoconductive and osteoinductive medical device with drug delivery functions. The knowledge obtained in this study on the interaction between living cells and a semiconductor material will also be the foundation for further development of electronic and optoelectronic biointerfaced devices.

  14. Mechanical response tissue analyzer for estimating bone strength

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  15. Tissue-engineering strategies for the tendon/ligament-to-bone insertion.

    PubMed

    Smith, Lester; Xia, Younan; Galatz, Leesa M; Genin, Guy M; Thomopoulos, Stavros

    2012-01-01

    Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require reattachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of reinjury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations.

  16. Bone Tissue Engineering Using High Permeability Poly-epsilon-caprolactone Scaffolds Conjugated with Bone Morphogenetic Protein-2

    NASA Astrophysics Data System (ADS)

    Mitsak, Anna Guyer

    Bone is the second most commonly transplanted tissue in the United States. Limitations of current bone defect treatment options include morbidity at the autograft harvest site, mechanical failure, and poorly controlled growth factor delivery. Combining synthetic scaffolds with biologics may address these issues and reduce dependency on autografts. The ideal scaffolding system should promote tissue in-growth and nutrient diffusion, control delivery of biologics and maintain mechanical integrity during bone formation. This dissertation evaluates how scaffold permeability, conjugated bone morphogenetic protein-2 (BMP-2) and differentiation medium affect osteogenesis in vitro and bone growth in vivo.. "High" and "low" permeability polycaprolactone (PCL) scaffolds with regular architectures were manufactured using solid free form fabrication. Bone growth in vivo was evaluated in an ectopic mouse model. High permeability scaffolds promoted better 8 week bone growth, supported tissue penetration into the scaffold core, and demonstrated increased mechanical properties due to newly formed bone. Next, the effects of differentiation medium and conjugated BMP-2 on osteogenesis were compared. Conjugation may improve BMP-2 loading efficiency, help localize bone growth and control release. High permeability scaffolds were conjugated with BMP-2 using the crosslinker, sulfo-SMCC. When adipose-derived and bone marrow stromal cells were seeded onto constructs (with or without BMP-2), BMSC expressed more differentiation markers, and differentiation medium affected differentiation more than BMP-2. In vivo, scaffolds with ADSC pre-differentiated in osteogenic medium (with and without BMP-2) and scaffolds with only BMP-2 grew the most bone. Bone volume did not differ among these groups, but constructs with ADSC had evenly distributed, scaffold-guided bone growth. Analysis of two additional BMP-2 attachment methods (heparin and adsorption) showed highest conjugation efficiency for the

  17. Bone tissue engineering: the role of interstitial fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1994-01-01

    It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.

  18. A combined proximal and distal dislocation of two adjacent metatarsals: double floating metatarsal bones (second-third).

    PubMed

    Christodoulou, A; Ploumis, A; Terzidis, I; Koukoulidis, A

    2003-08-01

    A rare foot injury consisting of an irreducible, closed combined distal and proximal articulation dislocation of two adjacent metatarsals (second and third), called a "double floating metatarsal," was encountered in a 29-year-old man. The anatomy, mechanism of injury, and sequence of the surgical procedure are presented and discussed.

  19. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies.

    PubMed

    Fernandez-Yague, Marc A; Abbah, Sunny Akogwu; McNamara, Laoise; Zeugolis, Dimitrios I; Pandit, Abhay; Biggs, Manus J

    2015-04-01

    The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering. PMID:25236302

  20. Stem cell derived endochondral cartilage stimulates bone healing by tissue transformation

    PubMed Central

    Bahney, Chelsea S; Hu, Diane P; Taylor, Aaron J; Ferro, Federico; Britz, Hayley M; Hallgrimsson, Benedikt; Johnstone, Brian; Miclau, Theodore; Marcucio, Ralph S

    2016-01-01

    Although bone has great capacity for repair, there are a number of clinical situations (fracture non-unions, spinal fusions, revision arthroplasty, segmental defects) in which auto- or allografts augment bone regeneration. Critical failures associated with current grafting treatments include osteonecrosis and limited integration between graft and host tissue. We speculated that the underlying problem with current bone grafting techniques is that they promote bone regeneration through direct osteogenesis. We hypothesized that using cartilage to promote endochondral bone regeneration would leverage normal developmental and repair sequences to produce a well-vascularized regenerate that integrates with the host tissue. In this study we use a translational murine model of a segmental tibia defect to test the clinical utility of bone regeneration from a cartilage graft. We further test the mechanism by which cartilage promotes bone regeneration using in vivo lineage tracing and in vitro culture experiments. Our data show that cartilage grafts support regeneration of a vascularized and integrated bone tissue in vivo, and subsequently propose a translational tissue engineering platform using chondrogenesis of MSCs. Interestingly, lineage tracing experiments show the regenerate was graft derived, suggesting transformation of the chondrocytes into bone. In vitro culture data shows that cartilage explants mineralize with the addition of BMP or by exposure to HUVEC conditioned medium, indicating that endothelial cells directly promote ossification. This study provides pre-clinical data for endochondral bone repair that has potential to significantly improve patient outcomes in a variety of musculoskeletal diseases and injuries. Further, in contrast to the dogmatic view that hypertrophic chondrocytes undergo apoptosis prior to bone formation, our data suggest cartilage can transform into bone by activating the pluripotent transcription factor Oct4A. Together these data

  1. Quantitative plutonium microdistribution in bone tissue of vertebra from a Mayak worker.

    PubMed

    Lyovkina, Yekaterina V; Miller, Scott C; Romanov, Sergey A; Krahenbuhl, Melinda P; Belosokhov, Maxim V

    2010-10-01

    The purpose of this study was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, the quantitative relationships of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in humans as well as other cases with different exposure patterns and types of plutonium.

  2. The orthotropic elastic properties of fibrolamellar bone tissue in juvenile white-tailed deer femora.

    PubMed

    Barrera, John W; Le Cabec, Adeline; Barak, Meir M

    2016-10-01

    Fibrolamellar bone is a transient primary bone tissue found in fast-growing juvenile mammals, several species of birds and large dinosaurs. Despite the fact that this bone tissue is prevalent in many species, the vast majority of bone structural and mechanical studies are focused on human osteonal bone tissue. Previous research revealed the orthotropic structure of fibrolamellar bone, but only a handful of experiments investigated its elastic properties, mostly in the axial direction. Here we have performed for the first time an extensive biomechanical study to determine the elastic properties of fibrolamellar bone in all three orthogonal directions. We have tested 30 fibrolamellar bone cubes (2 × 2 × 2 mm) from the femora of five juvenile white-tailed deer (Odocoileus virginianus) in compression. Each bone cube was compressed iteratively, within its elastic region, in the axial, transverse and radial directions, and bone stiffness (Young's modulus) was recorded. Next, the cubes were kept for 7 days at 4 °C and then compressed again to test whether bone stiffness had significantly deteriorated. Our results demonstrated that bone tissue in the deer femora has an orthotropic elastic behavior where the highest stiffness was in the axial direction followed by the transverse and the radial directions (21.6 ± 3.3, 17.6 ± 3.0 and 14.9 ± 1.9 Gpa, respectively). Our results also revealed a slight non-significant decrease in bone stiffness after 7 days. Finally, our sample size allowed us to establish that population variance was much bigger in the axial direction than the radial direction, potentially reflecting bone adaptation to the large diversity in loading activity between individuals in the loading direction (axial) compared with the normal (radial) direction. This study confirms that the mechanically well-studied human transverse-isotropic osteonal bone is just one possible functional adaptation of bone tissue and that other vertebrate species use

  3. Recent progresses in gene delivery-based bone tissue engineering.

    PubMed

    Lu, Chia-Hsin; Chang, Yu-Han; Lin, Shih-Yeh; Li, Kuei-Chang; Hu, Yu-Chen

    2013-12-01

    Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.

  4. Recent progresses in gene delivery-based bone tissue engineering.

    PubMed

    Lu, Chia-Hsin; Chang, Yu-Han; Lin, Shih-Yeh; Li, Kuei-Chang; Hu, Yu-Chen

    2013-12-01

    Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches. PMID:23994567

  5. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  6. Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements

    SciTech Connect

    Campi, G.; Pezzotti, G.; Fratini, M.; Ricci, A.; Burghammer, M.; Cancedda, R.; Mastrogiacomo, M.; Bukreeva, I.; Cedola, A.

    2013-12-16

    We monitored bone regeneration in a tissue engineering approach. To visualize and understand the structural evolution, the samples have been measured by X-ray micro-diffraction. We find that bone tissue regeneration proceeds through a multi-step mechanism, each step providing a specific diffraction signal. The large amount of data have been classified according to their structure and associated to the process they came from combining Neural Networks algorithms with least square pattern analysis. In this way, we obtain spatial maps of the different components of the tissues visualizing the complex kinetic at the base of the bone regeneration.

  7. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  8. Effect on the contour of bone and soft tissue one year after harvesting chin bone for alveolar cleft repair.

    PubMed

    Dik, E A; de Ruiter, A P; van der Bilt, A; Koole, R

    2010-10-01

    In this study the authors evaluate and quantify the residual bony defect in the mandibular symphysis and its effect on the soft tissue contour a minimum of 1 year after harvesting chin bone. 59 ASA I cleft lip and palate patients, aged 8-19 years were included. In all patients an autologous bone graft from the mandibular symphysis was harvested for transplantation to the alveolar cleft. Lateral cephalograms were used to measure the donor site defects, and the effects on the soft tissue contour. An evident residual defect was measured at the donor site 1 year after harvesting chin bone. A significant relation was seen between age at time of surgery and size of the defect 1 year postoperatively. In older patients a larger defect remained. Using the current surgical technique of harvesting chin bone, complete bony repair of the defect was not achieved. This study shows postoperatively persisting defects that comprise on average 14% of the original peroperative defects. A significant increase in soft tissue thickness was seen at the mandibular symphysis at a minimum of 1 year postoperatively. These changes in the soft tissue chin contour 1 year after harvesting bone are similar to normal growth changes.

  9. [Genetic Aberration and Pathological Diagnosis in Bone and Soft-Tissue Tumors].

    PubMed

    Iura, Kunio; Oda, Yoshinao

    2016-03-01

    Bone and soft-tissue sarcomas comprise a rare, complex, and heterogeneous group of tumors for which it is difficult for even experienced pathologists to provide a conclusive diagnosis. The number of diagnoses made using genetic analysis has increased since the detection of fusion genes in several soft-tissue tumors in the 1990s. Moreover, other specific genetic aberrations have been reported in various bone and soft-tissue tumors. In addition, molecular therapeutic targets have been sought in advanced cases of soft-tissue and bone tumors similar to other organ malignancies. To enable the pathological diagnosis of bone and soft-tissue tumors, it is necessary to combine histological diagnosis with immunohistochemistry and gene analysis findings including fusion gene or other genetic aberrations. In this review, we describe the fusion genes recently reported in bone and soft-tissue tumors such as solitary fibrous tumor, aneurysmal bone cyst, nodular fasciitis, CIC-DUX4 fusion gene-positive small round cell tumors, or BCOR-CCNB3-positive sarcoma as well as other genetic aberrations in dedifferentiated liposarcoma, malignant rhabdoid tumor, cartilaginous tumor, Langerhans cell histiocytosis chondroblastoma, or giant cell tumor of the bone. We also demonstrate their association with pathological diagnosis. PMID:27067846

  10. Effect of cryo-induced microcracks on microindentation of hydrated cortical bone tissue

    SciTech Connect

    Yin Ling; Venkatesan, Sudharshan; Webb, Daryl; Kalyanasundaram, Shankar; Qin Qinghua

    2009-08-15

    Microcracks accumulate in cortical bone tissue as a consequence of everyday cyclic loading. However, it remains unclear to what extent microdamage accumulation contributes to an increase in fracture risk. A cryo-preparation technique was applied to induce microcracks in cortical bone tissue. Microcracks with lengths up to approximately 20 {mu}m, which were initiated mainly on the boundaries of haversian canals, were observed with cryo-scanning electron microscopy. A microindentation technique was applied to study the mechanical loading effect on the microcracked hydrated bone tissue. The microindentation patterns were section-scanned using confocal laser scanning microscopy to understand the deformation and bone damage mechanisms made by mechanical loading. The results show that there was no significant difference with respect to microhardness between the original and microcracked hydrated cortical bone tissues (ANOVA, p > 0.05). The cryo-induced microcracks in the bone tissue were not propagated further under the mechanical loads applied. The deformation mechanism of the microcracked cortical bone tissue was plastic deformation, not brittle fracture.

  11. Regional Variation of Bone Tissue Properties at the Human Mandibular Condyle

    PubMed Central

    Kim, Do-Gyoon; Jeong, Yong-Hoon; Kosel, Erin; Agnew, Amanda M.; McComb, David W.; Bodnyk, Kyle; Hart, Richard T.; Kim, Min Kyung; Han, Sang Yeun; Johnston, William M.

    2015-01-01

    The temporomandibular joint (TMJ) bears different types of static and dynamic loading during occlusion and mastication. As such, characteristics of mandibular condylar bone tissue play an important role in determining the mechanical stability of the TMJ under the macro-level loading. Thus, the objective of this study was to examine regional variation of the elastic, plastic, and viscoelastic mechanical properties of human mandibular condylar bone tissue using nanoindentation. Cortical and trabecular bone were dissected from mandibular condyles of human cadavers (9 males, 54 to 96 years). These specimens were scanned using microcomputed tomography to obtain bone tissue mineral distribution. Then, nanoindentation was conducted on the surface of the same specimens in hydration. Plastic hardness (H) at a peak load, viscoelastic creep (Creep/Pmax), viscosity (η), and tangent delta (tan δ) during a 30 second hold period, and elastic modulus (E) during unloading were obtained by a cycle of indentation at the same site of bone tissue. The tissue mineral and nanoindentation parameters were analyzed for the periosteal and endosteal cortex, and trabecular bone regions of the mandibular condyle. The more mineralized periosteal cortex had higher mean values of elastic modulus, plastic hardness, and viscosity but lower viscoelastic creep and tan δ than the less mineralized trabecular bone of the mandibular condyle. These characteristics of bone tissue suggest that the periosteal cortex tissue may have more effective properties to resist elastic, plastic, and viscoelastic deformation under static loading, and the trabecular bone tissue to absorb and dissipate time-dependent viscoelastic loading energy at the TMJ during static occlusion and dynamic mastication. PMID:25913634

  12. Osteoimmunology: the study of the relationship between the immune system and bone tissue.

    PubMed

    Arboleya, Luis; Castañeda, Santos

    2013-01-01

    Bone tissue is a highly regulated structure, which plays an essential role in various physiological functions. Through autocrine and paracrine mechanisms, bone tissue is involved in hematopoiesis, influencing the fate of hematopoietic stem cells. There are a number of molecules shared by bone cells and immune system cells indicating that there are multiple connections between the immune system and bone tissue. In order to pool all the knowledge concerning both systems, a new discipline known under the term «osteoimmunology» has been developed. Their progress in recent years has been exponential and allowed us to connect and increase our knowledge in areas not seemingly related such as rheumatoid erosion, postmenopausal osteoporosis, bone metastases or periodontal disease. In this review, we have tried to summarize the most important advances that have occurred in the last decade, especially in those areas of interest related to rheumatology.

  13. Osteoimmunology: the study of the relationship between the immune system and bone tissue.

    PubMed

    Arboleya, Luis; Castañeda, Santos

    2013-01-01

    Bone tissue is a highly regulated structure, which plays an essential role in various physiological functions. Through autocrine and paracrine mechanisms, bone tissue is involved in hematopoiesis, influencing the fate of hematopoietic stem cells. There are a number of molecules shared by bone cells and immune system cells indicating that there are multiple connections between the immune system and bone tissue. In order to pool all the knowledge concerning both systems, a new discipline known under the term «osteoimmunology» has been developed. Their progress in recent years has been exponential and allowed us to connect and increase our knowledge in areas not seemingly related such as rheumatoid erosion, postmenopausal osteoporosis, bone metastases or periodontal disease. In this review, we have tried to summarize the most important advances that have occurred in the last decade, especially in those areas of interest related to rheumatology. PMID:23727459

  14. Tissue engineering applications in the management of bone loss

    PubMed Central

    Carulli, Christian; Matassi, Fabrizio; Civinini, Roberto; Innocenti, Massimo

    2013-01-01

    Summary Several conditions in Orthopaedics and Traumatology are characterized by a bone loss. Bone auto- or allo-grafting was considered sufficient to fullfill the defects decades ago; however, large bone defects were challenging for the Surgeons, particularly in case of necessity of structural and biological properties. Bioindusrty proposed over the years synthetic biomaterials, as Demineralized Bone Matrix, bioactive surfaces for implant coponents, and recently recombinant Bone Morphogenetic Proteins. At the same time, the concept of the “biological chamber” and “diamond concept” allowed the scientific community to consider the need of a more complex interaction between scaffolds (matrix), cells (mesenchymal cells), and signaling (growth factors) in order to induce bone regeneration and also to fill small or large bone defects. A brief overview is made on the processes of a physiologic bone metabolism (induction, conduction, osteogenesis), on the latest therapeutical procedures, based on the use of autologous growth factors and cells, and the recent prosthetic or synthetic scaffolds, and the common clinical conditions that may beneficiate of these modern approaches. PMID:23858306

  15. Image-Guided Percutaneous Ablation of Bone and Soft Tissue Tumors

    PubMed Central

    Kurup, A. Nicholas; Callstrom, Matthew R.

    2010-01-01

    Image-guided percutaneous ablation of bone and soft tissue tumors is an effective minimally invasive alternative to conventional therapies, such as surgery and external beam radiotherapy. Proven applications include treatment of benign primary bone tumors, particularly osteoid osteoma, as well as palliation of painful bone metastases. Use of percutaneous ablation in combination with cementoplasty can provide stabilization of metastases at risk for fracture. Local control of oligometastatic disease and treatment of desmoid tumors are emerging applications. PMID:22550367

  16. Is Bone a Target-Tissue for the Nervous System?

    PubMed Central

    García-Castellano, José M; Díaz-Herrera, Pilar; Morcuende, José A

    2000-01-01

    Bone cells respond in specific ways to various hormones and growth factors, but the biology of skeletal innervation and its physiologic significance in bone metabolism is poorly understood. With the introduction of immunohistochemical staining techniques and new molecular biology tools, the knowledge in this field has significantly improved. In this review, we update current understanding of the effects of neuropeptides on bone metabolism, specifically vasoactive intestinal peptide (VIP) and calcitonin-gene related peptide (CGRP). In addition, new information concerning the role of growth factors, such as neurotrophins, is also discussed. There is strong evidence to suggest that bone can be a target of the nervous system. Further investigations in this field will allow us to answer questions related to pre-natal development, bone growth, fracture healing, osteoporosis, osteoarthritis or neoplasias of mesoderm origin. PMID:10934625

  17. Automating the Processing Steps for Obtaining Bone Tissue-Engineered Substitutes: From Imaging Tools to Bioreactors

    PubMed Central

    Costa, Pedro F.; Martins, Albino; Neves, Nuno M.; Gomes, Manuela E.

    2014-01-01

    Bone diseases and injuries are highly incapacitating and result in a high demand for tissue substitutes with specific biomechanical and structural features. Tissue engineering has already proven to be effective in regenerating bone tissue, but has not yet been able to become an economically viable solution due to the complexity of the tissue, which is very difficult to be replicated, eventually requiring the utilization of highly labor-intensive processes. Process automation is seen as the solution for mass production of cellularized bone tissue substitutes at an affordable cost by being able to reduce human intervention as well as reducing product variability. The combination of tools such as medical imaging, computer-aided fabrication, and bioreactor technologies, which are currently used in tissue engineering, shows the potential to generate automated production ecosystems, which will, in turn, enable the generation of commercially available products with widespread clinical application. PMID:24673688

  18. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.

    PubMed

    Wang, Ping; Liu, Xian; Zhao, Liang; Weir, Michael D; Sun, Jirun; Chen, Wenchuan; Man, Yi; Xu, Hockin H K

    2015-05-01

    Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (p<0.05). No significant differences were detected among the three types of stem cells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (p<0.05). De novo bone formation and participation by implanted cells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration.

  19. Radioimmunoassay of bone morphogenetic protein in serum: a tissue-specific parameter of bone metabolism

    SciTech Connect

    Urist, M.R.; Hudak, R.T.

    1984-05-01

    Bone morphogenetic protein (BMP), a paracrine agent inducing cartilage and bone cell differentiation, circulates in the blood and is detectable by BMP radioimmunoassay. Serum BMP levels are higher in growing children and patients with Paget's disease than in normal adults. These observations are interpreted as evidence of a BMP function in the physiology of bone in health and disease.

  20. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.

    PubMed

    Liu, Yuchun; Chan, Jerry K Y; Teoh, Swee-Hin

    2015-02-01

    Poor angiogenesis within tissue-engineered grafts has been identified as a main challenge limiting the clinical introduction of bone tissue-engineering (BTE) approaches for the repair of large bone defects. Thick BTE grafts often exhibit poor cellular viability particularly at the core, leading to graft failure and lack of integration with host tissues. Various BTE approaches have been explored for improving vascularisation in tissue-engineered constructs and are briefly discussed in this review. Recent investigations relating to co-culture systems of endothelial and osteoblast-like cells have shown evidence of BTE efficacy in increasing vascularization in thick constructs. This review provides an overview of key concepts related to bone formation and then focuses on the current state of engineered vascularized co-culture systems using bone repair as a model. It will also address key questions regarding the generation of clinically relevant vascularized bone constructs as well as potential directions and considerations for research with the objective of pursuing engineered co-culture systems in other disciplines of vascularized regenerative medicine. The final objective is to generate serious and functional long-lasting vessels for sustainable angiogenesis that will enable enhanced cellular survival within thick voluminous bone grafts, thereby aiding in bone formation and remodelling in the long term. However, more evidence about the quality of blood vessels formed and its associated functional improvement in bone formation as well as a mechanistic understanding of their interactions are necessary for designing better therapeutic strategies for translation to clinical settings.

  1. Drug delivery using composite scaffolds in the context of bone tissue engineering

    PubMed Central

    Romagnoli, Cecilia; D’Asta, Federica; Brandi, Maria Luisa

    2013-01-01

    Summary Introduction Due to the disadvantages of the current bone autograft and allograft in many clinical condition in which bone regeneration is required in large quantity, engineered biomaterials combined with growth factors, such as bone morphogenetic protein-2 (BMP-2), have been demonstrated to be an effective approach in bone tissue engineering, since they can act both as a scaffold and as a drug delivery system to promote bone repair and regeneration. Area covered Recent advantages in the field of engineered scaffolds have been obtained from the investigation of composite scaffolds designed by the combination of bioceramics, especially hydroxyapatite (HA), and biodegradable polymers, such as poly (D,L-lactide-co-glycolide) (PLGA) and chitosan, in order to realize osteoconductive structures that can mimic the natural properties of bone tissue. Herein it is demonstrated that the incorporation of BMP-2 into different composite scaffolds, by encapsulation, absorption or entrapment, could be advantageous in terms of osteoinduction for new bone tissue engineered scaffolds as drug delivery systems and some of them should be further analyzed to optimized the drug release for future therapeutic applications. Expert opinion New design concepts and fabrication techniques represent novel challenges for further investigations about the development of scaffolds as a drug delivery system for bone tissue regeneration. PMID:24554923

  2. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history.

    PubMed

    Bromage, Timothy G; Lacruz, Rodrigo S; Hogg, Russell; Goldman, Haviva M; McFarlin, Shannon C; Warshaw, Johanna; Dirks, Wendy; Perez-Ochoa, Alejandro; Smolyar, Igor; Enlow, Donald H; Boyde, Alan

    2009-05-01

    Mammalian enamel formation is periodic, including fluctuations attributable to the daily biological clock as well as longer-period oscillations that enigmatically correlate with body mass. Because the scaling of bone mass to body mass is an axiom of vertebrate hard tissue biology, we consider that long-period enamel formation rhythms may reflect corresponding and heretofore unrecognized rhythms in bone growth. The principal aim of this study is to seek a rhythm in bone growth demonstrably related to enamel oscillatory development. Our analytical approach is based in morphology, using a variety of hard tissue microscopy techniques. We first ascertain the relationship among long-period enamel rhythms, the striae of Retzius, and body mass using a large sample of mammalian taxa. In addition, we test whether osteocyte lacuna density (a surrogate for rates of cell proliferation) in bone is correlated with mammalian body mass. Finally, using fluorescently labeled developing bone tissues, we investigate whether the bone lamella, a fundamental microanatomical unit of bone, relates to rhythmic enamel growth increments. Our results confirm a positive correlation between long-period enamel rhythms and body mass and a negative correlation between osteocyte density and body mass. We also confirm that lamellar bone is an incremental tissue, one lamella formed in the species-specific time dependency of striae of Retzius formation. We conclude by contextualizing our morphological research with a current understanding of autonomic regulatory control of the skeleton and body mass, suggesting a central contribution to the coordination of organismal life history and body mass.

  3. Mechanical Strain Using 2D and 3D Bioreactors Induces Osteogenesis: Implications for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    van Griensven, M.; Diederichs, S.; Roeker, S.; Boehm, S.; Peterbauer, A.; Wolbank, S.; Riechers, D.; Stahl, F.; Kasper, C.

    Fracture healing is a complicated process involving many growth factors, cells, and physical forces. In cases, where natural healing is not able, efforts have to be undertaken to improve healing. For this purpose, tissue engineering may be an option. In order to stimulate cells to form a bone tissue several factors are needed: cells, scaffold, and growth factors. Stem cells derived from bone marrow or adipose tissues are the most useful in this regard. The differentiation of the cells can be accelerated using mechanical stimulation. The first part of this chapter describes the influence of longitudinal strain application. The second part uses a sophisticated approach with stem cells on a newly developed biomaterial (Sponceram) in a rotating bed bioreactor with the administration of bone morphogenetic protein-2. It is shown that such an approach is able to produce bone tissue constructs. This may lead to production of larger constructs that can be used in clinical applications.

  4. Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering.

    PubMed

    Daei-Farshbaf, Neda; Ardeshirylajimi, Abdolreza; Seyedjafari, Ehsan; Piryaei, Abbas; Fadaei Fathabady, Fatemeh; Hedayati, Mehdi; Salehi, Mohammad; Soleimani, Masoud; Nazarian, Hamid; Moradi, Sadegh-Lotfalah; Norouzian, Mohsen

    2014-02-01

    The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss(®) and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss(®)-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.

  5. Is there any information on micro-structure in microwave tomography of bone tissue?

    PubMed

    Irastorza, R M; Carlevaro, C M; Vericat, F

    2013-08-01

    In this work, two-dimensional simulations of the microwave dielectric properties of models with ellipses and realistic models of trabecular bone tissue are performed. In these simulations, finite difference time domain methodology has been applied to simulate two-phase structures containing inclusions. The results presented here show that the micro-structure is an important factor in the effective dielectric properties of trabecular bone. We consider the feasibility of using the dielectric behaviour of bone tissue to be an indicator of bone health. The frequency used was 950 MHz. It was found that the dielectric properties can be used as an estimate of the degree of anisotropy of the micro-structure of the trabecular tissue. Conductivity appears to be the most sensitive parameter in this respect. Models with ellipse shaped-inclusions are also tested to study their application to modelling bone tissue. Models with ellipses that had an aspect ratio of a/b=1.5 showed relatively good agreement when compared with realistic models of bone tissue. According to the results presented here, the anisotropy of trabecular bone must be accounted for when measuring its dielectric properties using microwave imaging.

  6. Bone tissue response to plasma-nitrided titanium implant surfaces

    PubMed Central

    FERRAZ, Emanuela Prado; SVERZUT, Alexander Tadeu; FREITAS, Gileade Pereira; SÁ, Juliana Carvalho; ALVES, Clodomiro; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    A current goal of dental implant research is the development of titanium (Ti) surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces. PMID:25760262

  7. Effects of implantation of three-dimensional engineered bone tissue with a vascular-like structure on repair of bone defects

    NASA Astrophysics Data System (ADS)

    Nishi, Masanori; Matsumoto, Rena; Dong, Jian; Uemura, Toshimasa

    2012-12-01

    Previously, to create an implantable bone tissue associated with blood vessels, we co-cultured rabbit bone marrow mesenchymal stem cells (MSCs) with MSC-derived endothelial cells (ECs) within a porous polylactic acid-based scaffold utilizing a rotating wall vessel (RWV) bioreactor. Here, this engineered tissue was orthotopically implanted into defects made in femurs of immunodeficient rats, and histological analysis were carried out to examine the repair of the damage and the formation of bone around the implant. The bone defects were better repaired in the implanted group than control group after 3 weeks. The results indicate that the engineered bone could repair bone defects.

  8. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

    PubMed Central

    Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.

    2013-01-01

    The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505

  9. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    PubMed

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  10. Isotopic evidence for resorption of soft tissues and bone in immobilized dogs

    SciTech Connect

    Klein, L.; Player, J.S.; Heiple, K.G.; Bahniuk, E.; Goldberg, V.M.

    1982-02-01

    Various experimental methods for producing bone and ligament atrophy have yielded contradictory results. These methods include denervation, immobilization (both internal and external), and disarticulation. We studied a model of internal skeletal fixation for twelve weeks in dogs that were chronically prelabeled with 3H-tetracycline, 45Ca, and 3H-proline. Bone resorption was analyzed by the loss of 3H-tetracycline, and bone and soft-tissue mass were analyzed by the radiochemical and chemical analysis of calcium and collagen. The strength of the anterior cruciate ligament was studied in tension to failure when a fast rate of deformation was applied. Failure of the femur-ligament-tibia complex occurred through the insertion of the ligament into the tibia for both the experimental and the control limbs. Loss of collagen was greater in the tibia and femur than in the lateral meniscus and anterior cruciate ligament, and correlated with a mechanical failure via bone. No evidence for collagen replacement in atrophied tissues was found, but one-half of the resorbed calcium was conserved. The marked loss of 3H-tetracycline indicated that bone atrophy was the result of increased resorption of bone rather than decreased bone formation. Clinical Relevance: We have demonstrated significant atrophy of the soft tissues (lateral meniscus and anterior cruciate ligament) as well as of bone in immobilized joints of dogs. It is likely that the decrease in strength of the bone-ligament-bone complex is related to this atrophy of soft tissues and bone around the joint.

  11. Optical clearing in transcutaneous Raman spectroscopy of murine cortical bone tissue

    PubMed Central

    Schulmerich, Matthew V.; Cole, Jacqueline H.; Dooley, Kathryn A.; Kreider, Jaclynn M.; Goldstein, Steven A.

    2010-01-01

    The effect of optical clearing with glycerol on the Raman spectra of bone tissue acquired transcutaneously on right and left tibiae from four mice was studied. Multiple transcutaneous measurements were obtained from each limb; glycerol was then applied as an optical clearing agent, and additional transcutaneous measurements were taken. Glycerol reduces the noise in the raw spectra (p=0.0037) and significantly improves the cross-correlation between the recovered bone factor and the exposed bone measurement in a low signal-to-noise region of the bone spectra (p=0.0245). PMID:18465957

  12. The Effect of Osteoporosis Treatments on Fatigue Properties of Cortical Bone Tissue

    PubMed Central

    Brock, Garry R.; Chen, Julia T.; Ingraffea, Anthony R.; MacLeay, Jennifer; Pluhar, G. Elizabeth; Boskey, Adele L.; van der Meulen, Marjolein C.H.

    2015-01-01

    Bisphosphonates are commonly prescribed for treatment of osteoporosis. Long-term use of bisphosphonates has been correlated to atypical femoral fractures (AFF). AFFs arise from fatigue damage to bone tissue that cannot be repaired due to pharmacologic treatments. Despite fatigue being the primary damage mechanism of AFFs, the effects of osteoporosis treatments on fatigue properties of cortical bone are unknown. To examine if fatigue-life differences occur in bone tissue after different pharmacologic treatments for osteoporosis, we tested bone tissue from the femurs of sheep given a metabolic acidosis diet to induce osteoporosis, followed by treatment with a selective estrogen reception modulator (raloxifene), a bisphosphonate (alendronate or zoledronate), or parathyroid hormone (teriparatide, PTH). Beams of cortical bone tissue were created and tested in four-point bending fatigue to failure. Tissues treated with alendronate had reduced fatigue life and less modulus loss at failure compared to other treatments, while tissue treated with PTH had a prolonged fatigue life. No loss of fatigue life occurred with zoledronate treatment despite its greater binding affinity and potency compared to alendronate. Tissue mineralization measured by microCT did not explain the differences seen in fatigue behavior. Increased fatigue life with PTH suggests that current treatment methods for AFF could have beneficial effects for restoring fatigue life. These results indicate that fatigue life differs with each type of osteoporosis treatment. PMID:25642445

  13. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering

    PubMed Central

    Samorezov, Julia E.; Alsberg, Eben

    2015-01-01

    Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719

  14. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering.

    PubMed

    Santos, Marina I; Tuzlakoglu, Kadriye; Fuchs, Sabine; Gomes, Manuela E; Peters, Kirsten; Unger, Ronald E; Piskin, Erhan; Reis, Rui L; Kirkpatrick, C James

    2008-11-01

    Presently the majority of tissue engineering approaches aimed at regenerating bone relies only on post-implantation vascularization. Strategies that include seeding endothelial cells (ECs) on biomaterials and promoting their adhesion, migration and functionality might be a solution for the formation of vascularized bone. Nano/micro-fiber-combined scaffolds have an innovative structure, inspired by extracellular matrix (ECM) that combines a nano-network, aimed to promote cell adhesion, with a micro-fiber mesh that provides the mechanical support. In this work we addressed the influence of this nano-network on growth pattern, morphology, inflammatory expression profile, expression of structural proteins, homotypic interactions and angiogenic potential of human EC cultured on a scaffold made of a blend of starch and poly(caprolactone). The nano-network allowed cells to span between individual micro-fibers and influenced cell morphology. Furthermore, on nano-fibers as well as on micro-fibers ECs maintained the physiological expression pattern of the structural protein vimentin and PECAM-1 between adjacent cells. In addition, ECs growing on the nano/micro-fiber-combined scaffold were sensitive to pro-inflammatory stimulus. Under pro-angiogenic conditions in vitro, the ECM-like nano-network provided the structural and organizational stability for ECs' migration and organization into capillary-like structures. The architecture of nano/micro-fiber-combined scaffolds elicited and guided the 3D distribution of ECs without compromising the structural requirements for bone regeneration.

  15. Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review.

    PubMed

    Venkatesan, Jayachandran; Kim, Se-Kwon

    2014-10-01

    In recent years, significant development has been achieved in the construction of artificial bone with ceramics, polymers and metals. Nano-hydroxyapatite (nHA) is widely used bioceramic material for bone graft substitute owing to its biocompatibility and osteoconductive properties. nHA with chitin, chitosan, collagen, gelatin, fibrin, polylactic acid, polycaprolactone, poly(lactic-co-glycolic) acid, polyamide, polyvinyl alcohol, polyurethane and polyhydroxybutyrate based composite scaffolds have been explored in the present review for bone graft substitute. This article further reviews the preparative methods, chemical interaction, biocompatibiity, biodegradation, alkaline phosphatase activity, mineralization effect, mechanical properties and delivery of nHA-based nanocomposites for bone tissue regeneration. The nHA based composite biomaterials proved to be promising biomaterials for bone tissue engineering. PMID:25992432

  16. Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing.

    PubMed

    Miller, Gregory J; Gerstenfeld, Louis C; Morgan, Elise F

    2015-11-01

    Uncovering the mechanisms of the sensitivity of bone healing to mechanical factors is critical for understanding the basic biology and mechanobiology of the skeleton, as well as for enhancing clinical treatment of bone injuries. This study refined an experimental method of measuring the strain microenvironment at the site of a bone injury during bone healing. This method used a rat model in which a well-controlled bending motion was applied to an osteotomy to induce the formation of pseudarthrosis that is composed of a range of skeletal tissues, including woven bone, cartilage, fibrocartilage, fibrous tissue, and clot tissue. The goal of this study was to identify both the features of the strain microenvironment associated with formation of these different tissues and the expression of proteins frequently implicated in sensing and transducing mechanical cues. By pairing the strain measurements with histological analyses that identified the regions in which each tissue type formed, we found that formation of the different tissue types occurs in distinct strain microenvironments and that the type of tissue formed is correlated most strongly to the local magnitudes of extensional and shear strains. Weaker correlations were found for dilatation. Immunohistochemical analyses of focal adhesion kinase and rho family proteins RhoA and CDC42 revealed differences within the cartilaginous tissues in the calluses from the pseudarthrosis model as compared to fracture calluses undergoing normal endochondral bone repair. These findings suggest the involvement of these proteins in the way by which mechanical stimuli modulate the process of cartilage formation during bone healing. PMID:25822264

  17. Feasibility of endoscopic laser speckle imaging modality in the evaluation of auditory disorder: study in bone-tissue phantom

    NASA Astrophysics Data System (ADS)

    Yu, Sungkon; Jang, Seulki; Lee, Sangyeob; Park, Jihoon; Ha, Myungjin; Radfar, Edalat; Jung, Byungjo

    2016-03-01

    This study investigates the feasibility of an endoscopic laser speckle imaging modality (ELSIM) in the measurement of perfusion of flowing fluid in optical bone tissue phantom(OBTP). Many studies suggested that the change of cochlear blood flow was correlated with auditory disorder. Cochlear microcirculation occurs under the 200μm thickness bone which is the part of the internal structure of the temporal bone. Concern has been raised regarding of getting correct optical signal from hard tissue. In order to determine the possibility of the measurement of cochlear blood flow under bone tissue using the ELSIM, optical tissue phantom (OTP) mimicking optical properties of temporal bone was applied.

  18. Perivascular Stem Cells: A Prospectively Purified Mesenchymal Stem Cell Population for Bone Tissue Engineering

    PubMed Central

    James, Aaron W.; Zara, Janette N.; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben

    2012-01-01

    Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. PMID:23197855

  19. Aesthetic Surgical Approach for Bone Dehiscence Treatment by Means of Single Implant and Interdental Tissue Regeneration: A Case Report with Five Years of Follow-Up

    PubMed Central

    Lombardo, Giorgio; Pighi, Jacopo; Corrocher, Giovanni; Mascellaro, Anna; Lehrberg, Jeffrey; Marincola, Mauro; Nocini, Pier Francesco

    2016-01-01

    The replacement of single anterior teeth by means of endosseous implants implies the achievement of success in restoring both aesthetic and function. However, the presence of wide endoperiodontal lesions can lead to horizontal hard and soft tissues defects after tooth extraction, making it impossible to correctly place an implant in the compromised alveolar socket. Vertical augmentation procedures have been proposed to solve these clinical situations, but the amount of new regenerated bone is still not predictable. Furthermore, bone augmentation can be complicated by the presence of adjacent teeth, especially if they bring with them periodontal defects. Therefore, it is used to restore periodontal health of adjacent teeth before making any augmentation procedures and to wait a certain healing period before placing an implant in vertically augmented sites, otherwise risking to obtain a nonsatisfactory aesthetic result. All of these procedures, however, lead to an expansion of treatment time which should affect patient compliance. For this reason, this case report suggests a surgical technique to perform vertical bone augmentation at a single gap left by a central upper incisor while placing an implant and simultaneously to regenerate the periodontal attachment of an adjacent lateral incisor, without compromising the aesthetic result. PMID:27119031

  20. Soft Tissue Swelling Associated with the Use of Recombinant Human Bone Morphogenetic Protein-2 in Long Bone Non-unions

    PubMed Central

    Young, Andrew; Mirarchi, Adam

    2015-01-01

    Introduction: This report describes two cases of long bone non-union associated with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) and is the first of its kind. The first case describes a 25-year-old male who sustained a left diaphyseal femoral shaft fracture initially treated with operative fixation using an intramedullary nail, which subsequently loosened distally and was treated with exchange nailing and rhBMP-2 application. This patient developed acute local soft tissue inflammation post-operatively. The second case describes a 61-year-old female who sustained a right diaphyseal humeral shaft fracture that was initially treated with intramedullary nail fixation with subsequent distal interlock screw loosening. She underwent nail removal, and compression plating with rhBMP-2 placement, and postoperatively developed severe acute local tissue swelling centered over the rhBMP-2 sponge. Surgeons should be aware that rhBMP-2 may cause local acute tissue swelling and recombinant bone morphogenic proteins such as rhBMP-2 may have a role in the management for atrophic fracture non-unions. The authors recommend careful consideration prior to rhBMP-2 use in long bone non-unions. PMID:27299059

  1. Non-viral gene therapy for bone tissue engineering.

    PubMed

    Wegman, Fiona; Oner, F Cumhur; Dhert, Wouter J A; Alblas, Jacqueline

    2013-01-01

    The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.

  2. [Bone tissue engineering. Reconstruction of critical sized segmental bone defects in the ovine tibia].

    PubMed

    Reichert, J C; Epari, D R; Wullschleger, M E; Berner, A; Saifzadeh, S; Nöth, U; Dickinson, I C; Schuetz, M A; Hutmacher, D W

    2012-04-01

    Well-established therapies for bone defects are restricted to bone grafts which face significant disadvantages (limited availability, donor site morbidity, insufficient integration). Therefore, the objective was to develop an alternative approach investigating the regenerative potential of medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) and silk-hydroxyapatite (silk-HA) scaffolds.Critical sized ovine tibial defects were created and stabilized. Defects were left untreated, reconstructed with autologous bone grafts (ABG) and mPCL-TCP or silk-HA scaffolds. Animals were observed for 12 weeks. X-ray analysis, torsion testing and quantitative computed tomography (CT) analyses were performed. Radiological analysis confirmed the critical nature of the defects. Full defect bridging occurred in the autograft and partial bridging in the mPCL-TCP group. Only little bone formation was observed with silk-HA scaffolds. Biomechanical testing revealed a higher torsional moment/stiffness (p < 0.05) and CT analysis a significantly higher amount of bone formation for the ABG group when compared to the silk-HA group. No significant difference was determined between the ABG and mPCL-TCP groups. The results of this study suggest that mPCL-TCP scaffolds combined can serve as an alternative to autologous bone grafting in long bone defect regeneration. The combination of mPCL-TCP with osteogenic cells or growth factors represents an attractive means to further enhance bone formation.

  3. The contribution of cortical and trabecular tissues to bone strength: insights from denosumab studies

    PubMed Central

    Iolascon, Giovanni; Napolano, Rosa; Gioia, Margherita; Moretti, Antimo; Riccio, Ilaria; Gimigliano, Francesca

    2013-01-01

    Summary All materials undergo an aging process which is characterized essentially by changes of the rigidity (stiffness), of the ability to absorb the stresses (toughness) and then ultimately in the mechanical resistance (strength). Both cortical and trabecular bone undergo a continuous process of structural remodeling with the main aim to preserve their biomechanical properties. An imbalance in this process, which promotes bone resorption, results in a quantitative loss of bone tissue and in a qualitative alteration of the skeletal microarchitecture, as you can see in osteoporosis, rheumatoid arthritis or bone metastases. Cortical component has a prominent role on strength therefore loss of cortical bone that is prevalent in elderly may explain the higher frequency of fractures of bones composed mainly of cortical bone such as the proximal femur. Remodeling inhibition with denosumab improved structural strength without altering material properties, that can be primarily explained by the combined effects of increased trabecular and cortical bone mass, and reductions in trabecular eroded surfaces and particularly cortical porosity. Denosumab for its mechanism of action and pharmacokinetics results in a significant, early and continued increase in BMD with enhanced bone strength improving both cortical and trabecular bone. PMID:23858311

  4. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.

    PubMed

    Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C

    2013-11-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  5. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography

    PubMed Central

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-01-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496

  6. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography.

    PubMed

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-08-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented.

  7. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography.

    PubMed

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-08-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496

  8. FT-IR Imaging of Native and Tissue-Engineered Bone and Cartilage

    PubMed Central

    Boskey, Adele; Camacho, Nancy Pleshko

    2007-01-01

    Fourier transform Infrared (FT-IR) imaging and microspectroscopy have been extensively applied to the analyses of tissues in health and disease. Spatially resolved mid-infrared data has provided insights into molecular changes that occur in diseases of connective or collagen-based tissues, including osteoarthritis, osteoporosis, osteogenesis imperfecta, osteopetrosis and pathologic calcifications. These techniques have also been used to probe chemical changes associated with load, disuse, and micro-damage in bone, and with degradation and repair in cartilage. This review summarizes the applications of FT-IR microscopy and imaging for analyses of bone and cartilage in healthy and diseased tissues, and illustrates the application of these techniques for the characterization of tissue engineered bone and cartilage. PMID:17175021

  9. Bilateral maxillary sinus floor augmentation with tissue-engineered autologous osteoblasts and demineralized freeze-dried bone

    PubMed Central

    Deshmukh, Aashish; Kalra, Rinku; Chhadva, Shruti; Shetye, Angad

    2015-01-01

    The pneumatization of the maxillary sinus often results in a lack of sufficient alveolar bone for implant placement. In the last decades, maxillary sinus lift has become a very popular procedure with predictable results. Sinus floor augmentation procedures are generally carried out using autologous bone grafts, bone substitutes, or composites of bone and bone substitutes. However, the inherent limitations associated with each of these, have directed the attention of investigators to new technologies like bone tissue engineering. Bone marrow stromal cells have been regarded as multi-potent cells residing in bone marrow. These cells can be harvested from a person, multiplied outside his body using bioengineering principles and technologies and later introduced into a tissue defect. We present a case where tissue-engineered autologous osteoblasts were used along with demineralized freeze-dried bone for sinus floor augmentation. PMID:26097364

  10. Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading

    NASA Astrophysics Data System (ADS)

    Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.

    2015-09-01

    Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.

  11. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering.

    PubMed

    Jayaraman, Praveena; Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Becker, David Laurence; Ramakrishna, Seeram; Srinivasan, Dinesh Kumar

    2015-11-01

    Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration. PMID:26415888

  12. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    NASA Astrophysics Data System (ADS)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  13. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    SciTech Connect

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-02-05

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  14. Mineralization of human bone tissue under hypokinesia and physical exercise with calcium supplements

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Verentsov, Grigori E.; Abratov, Nikolai I.

    It has been suggested that physical exercise and calcium supplements may be used to prevent demineralization of bone tissue under hypokinesia (diminished muscular activity). Thus, the aim of this study was to determine mineral content of bones of 12 physically healthy men aged 19-24 years under 90 days of hypokinesia and intensive physical exercise (PE) with calcium lactate (C) supplements. They were divided into experimental and control groups with 6 men in each. The experimental group of men were subjected to hypokinesia (HK) and intensive PE and took 650 mg C 6 times per day; the control group was placed under pure HK, i.e. without the use of any preventive measures. The mineral content of different bone tissues was measured with a densitometric X-ray method in milligrams of calcium per 1 mm 3 before and after exposure to HK. The level of bone density of the examined bone tissues decreased by 7-9% and 5-7% for the control and experimental groups of men, respectively. A statistical analysis revealed that the reduction of bone mineralization was significant with P < 0.01 in both groups of men. A comparison between bone density changes in the control and experimental groups of men failed to demonstrate significant differences. It was concluded that the level of mineralization of bone tissues decreased under hypokinesia and physical exercise with calcium supplements. Experimental studies of hypokinetic physiology are generally based on the assumption that diminished muscular activity (progressive reduction of number of steps per day) is detrimental to animal and human organisms, since the entire animal kingdom had been formed in an environment of high motor activity which left its imprint on the evolution, structure, function and behaviour of animals and men. The impossibility of the body tissues to retain optimum amounts of fluid and electrolytes is the dominant hypokinetic effect.

  15. Technical report: immunofluorescence and TUNEL staining of celloidin embedded human temporal bone tissues.

    PubMed

    Markaryan, Adam; Nelson, Erik G; Tretiakova, Maria; Hinojosa, Raul

    2008-07-01

    The large archival human temporal bone collections of the world have been fixed in formalin and embedded in celloidin. These treatments have created challenges to the use of contemporary probes, which are routinely used in the evaluation of fresh and frozen tissues, for the analysis of archival temporal bone tissues. Formalin alters the configuration of proteins and can obscure antigens by modifying the epitopes recognized by antibodies. Celloidin embedding provides superior support of the delicate membranous structures of the inner ear to maintain tissue integrity during sectioning, however, inadequate removal of celloidin may limit tissue permeability resulting in poor penetration of large molecules. Methods are described in this manuscript that have allowed reproducible immunofluorescence and TUNEL (terminal deoxynucleotidyl transferase mediated dUTP nick end labeling) staining results in these archival tissues. To our knowledge, successful immunofluorescence staining of type I collagen, immunofluorescence staining of cytochrome c oxidase subunit III (COX III), and TUNEL staining in archival human temporal bone tissues with confocal microscopy has not been previously reported. These results demonstrate the utility of developing techniques to evaluate the existing collections of archival temporal bones which remain our greatest source of tissue for investigating the causes of ear diseases.

  16. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.

    PubMed

    Aydin, Halil Murat; Hu, Bin; Suso, Josep Sulé; El Haj, Alicia; Yang, Ying

    2011-02-21

    The key criteria for assessing the success of bone tissue engineering are the quality and quantity of the produced minerals within the cultured constructs. The accumulation of calcium ions and inorganic phosphates in culture medium serves as nucleating agents for the formation of hydroxyapatite, which is the main inorganic component of bone. Bone nodule formation is one of the hallmarks of mineralization in such cell cultures. In this study, we developed a new two-step procedure to accelerate bone formation in which mouse bone cell aggregates were produced first on various chemically treated non-adhesive substrates. After this step, the bone cells' growth and mineralization were followed in conventional culture plates. The number and size of cell aggregates were studied with light microscopy. The minerals' formation in the form of nodules produced by the cell aggregates and the bone crystal quality were studied with Fourier Transform Infrared (FTIR) spectroscopy. The FTIR spectra of the ash specimens (mineral phase only) from thermal gravimetric analysis (TGA) provided valuable information of the quality of the minerals. The υ(4) PO(4) region (550-650 cm(-1)), which reveals apatitic and non-apatitic HPO(4) or PO(4) environments, and phosphate region (910-1180 cm(-1)) were examined for the minerals produced in the form of nodules. The peak position and intensity of the spectra demonstrate that the quality of the bone produced by cell aggregates, especially from the bigger ones, which were formed on Plunoric treated substrates, exhibit a composition more similar to that of native bone. This work establishes a new protocol for high quality bone formation and characterization, with the potential to be applied to bone tissue engineering.

  17. Cytotoxic Effects and Osteogenic Activity of Calcium Sulfate with and without Recombinant Human Bone Morphogenetic Protein 2 and Nano-Hydroxyapatite Adjacent to MG-63 Cell Line

    PubMed Central

    Ghorbanzadeh, Abdollah; Aminsobhani, Mohsen; Khoshzaban, Ahad; Abbaszadeh, Armin; Ghorbanzadeh, Atiyeh; Shamshiri, Ahmad Reza

    2015-01-01

    Objectives: The aim of this study was to assess the cytotoxic effects and osteogenic activity of recombinant human bone morphogenetic protein (rhBMP2) and nano-hydroxyapatite (n-HA) adjacent to MG-63 cell line. Materials and Methods: To assess cytotoxicity, the 4,5-dimethyl thiazolyl-2,5-diphenyl tetrazolium bromide (MTT) assay was used. Alkaline phosphatase (ALP) activity and osteogenic activity were evaluated using Alizarin red and the von Kossa staining and analyzed by one-way ANOVA followed by Tukey’s post hoc test. Results: The n-HA/calcium sulfate (CS) mixture significantly promoted cell growth in comparison to pure CS. Moreover, addition of rhBMP2 to CS (P=0.02) and also mixing CS with n-HA led to further increase in extracellular calcium production and ALP activity (P=0.03). Conclusion: This in vitro study indicates that a scaffold material in combination with an osteoinductive material is effective for bone matrix formation. PMID:26877731

  18. Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone

    PubMed Central

    Si, Jia-Wen; Wang, Xu-Dong; Shen, Steve GF

    2015-01-01

    In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongoing research of regenerative medicine using stem cells and concurrent advancement in biotechnology have shifted the focus from surgical reconstruction to a novel stem cell-based tissue engineering strategy for customized and functional craniofacial bone regeneration. Given the unique ontogenetical and cell biological properties of perinatal stem cells, emerging evidence has suggested these extraembryonic tissue-derived stem cells to be a promising cell source for extensive use in regenerative medicine and tissue engineering. In this review, we summarize the current achievements and obstacles in stem cell-based craniofacial bone regeneration and subsequently we address the characteristics of various types of perinatal stem cells and their novel application in tissue engineering of craniofacial bone. We propose the promising feasibility and scope of perinatal stem cell-based craniofacial bone tissue engineering for future clinical application. PMID:25621114

  19. Optical detection of carotenoid antioxidants in human bone and surrounding tissue.

    PubMed

    Ermakov, Igor V; Ermakova, Maia R; Rosenberg, Thomas D; Gellermann, Werner

    2013-11-01

    Carotenoids are known to play an important role in health and disease state of living human tissue based on their antioxidant and optical filtering functions. In this study, we show that carotenoids exist in human bone and surrounding fatty tissue both in significant and individually variable concentrations. Measurements of biopsied tissue samples with molecule-specific Raman spectroscopy and high-performance liquid chromatography reveal that all carotenoids that are known to exist in human skin are also present in human bone. This includes all carotenes, lycopene, β-cryptoxanthin, lutein, and zeaxanthin. We propose quantitative reflection imaging as a noncontact optical method suitable for the measurement of composite carotenoid levels in bone and surrounding tissue exposed during open surgeries such as total knee arthroplasty, and as a proof of concept, demonstrate carotenoid measurements in biopsied bone samples. This will allow one to establish potential correlations between internal tissue carotenoid levels and levels in skin and to potentially use already existing optical skin carotenoid tests as surrogate marker for bone carotenoid status.

  20. In situ strategy for bone repair by facilitated endogenous tissue engineering.

    PubMed

    Chen, Jingdi; Zhang, Yujue; Pan, Panpan; Fan, Tiantang; Chen, Mingmao; Zhang, Qiqing

    2015-11-01

    Traditional tissue engineering procedures are expensive and time consuming. Facilitated endogenous tissue engineering (FETE) provides a solution that can avoid the ex vivo culture of autologous cells and initiate in situ reparative endogenous repair processes in vivo. This method involves fabricating a porous scaffold that mimics the environment present during the bone formation process, consisting of components that provide biomimetic interfacial interactions to cells. After the scaffold is implanted, progenitor cells provided by autologous bone marrow and surrounding tissues then differentiate to bone cells under the direction of the in situ scaffold. This paper reports a biomimetic method to prepare a hierarchically structured hybrid scaffold. Bone-like nano hydroxyapatite (HA) was crystallized from a collagen and chitosan (CC) matrix to form a porous scaffold. The in vivo study demonstrates that this nanohybrid scaffold supports excellent bone repair. This means that the FETE approach, in which the cell culture portion of traditional tissue engineering takes place in vivo, can promote the intrinsic regenerative potential of endogenous tissues.

  1. Frontal sinus osteoma removal with the ultrasonic bone aspirator.

    PubMed

    Ehieli, Eric; Chu, Jaemi; Gordin, Eli; Pribitkin, Edmund A

    2012-04-01

    Osteomas, the most common skull tumors, are typically excised through either an open or endoscopic ostectomy using a high-speed drill, a technically challenging procedure that can result in injury to adjacent soft tissue structures. Osteoma removal through ultrasonic bone emulsification and aspiration (UBA) offers the advantages of decreased blood loss, preservation of adjacent soft tissue structures, and precise bone removal. UBA was used to successfully remove a forehead osteoma without injury to adjacent nerves and with a satisfactory cosmetic outcome. We describe skull osteoma removal with an ultrasonic bone aspirator, which offers potential advantages over conventional bone removal techniques.

  2. Lipid Profiles of Canine Invasive Transitional Cell Carcinoma of the Urinary Bladder and Adjacent Normal Tissue by Desorption Electrospray Ionization Imaging Mass Spectrometry

    PubMed Central

    Dill, Allison L.; Ifa, Demian R.; Manicke, Nicholas E.; Costa, Anthony B.; Ramos-Vara, José A.; Knapp, Deborah W.; Cooks, R. Graham

    2009-01-01

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used in an imaging mode to interrogate the lipid profiles of thin tissue sections of canine spontaneous invasive transitional cell carcinoma (TCC) of the urinary bladder (a model of human invasive bladder cancer) as well as adjacent normal tissue from four different dogs. The glycerophospholipids and sphingolipids that appear as intense signals in both the negative ion and positive ion modes were identified by tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation. Differences in the relative distributions of the lipid species were present between the tumor and adjacent normal tissue in both the negative and positive ion modes. DESI-MS images showing the spatial distributions of particular glycerophospholipids, sphinoglipids and free fatty acids in both the negative and positive ion modes were compared to serial tissue sections that were stained with hematoxylin and eosin (H&E). Increased absolute and relative intensities for at least five different glycerophospholipids and three free fatty acids in the negative ion mode and at least four different lipid species in the positive ion mode were seen in the tumor region of the samples in all four dogs. In addition, one sphingolipid species exhibited increased signal intensity in the positive ion mode in normal tissue relative to the diseased tissue. Principal component analysis (PCA) was also used to generate unsupervised statistical images from the negative ion mode data and these images are in excellent agreement with the DESI images obtained from the selected ions and also the H&E stained tissue PMID:19810710

  3. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold.

    PubMed

    Yang, Le; Wang, Qinghua; Peng, Lihua; Yue, Hong; Zhang, Zhendong

    2015-08-01

    Ensuring histocompatibility in the tissue engineering of bones is a complex issue. The aim of this study was to observe the feasibility of chitosan-β-tricalcium phosphate composite in repairing limb bone defects, and to evaluate the therapeutic effects on osteogenesis. Beagle mesenchymal stem cells (MSCs) were divided into an experimental group that was cultured with an injectable form of chitosan-β-tricalcium phosphate composite and a control group. The effect of the composite on bone tissue growth was evaluated by MTT assay. In addition, 12-month-old beagles were subjected to 15-mm femur defects and subsequently implanted with scaffolds to observe the effects on osteogenesis and vascularization. The dogs were subdivided into two groups of five animals: Group A, which was implanted with scaffold-MSC compounds, and Group B, which was implanted with scaffolds alone. The dogs were observed on the 2nd, 4th, 8th and 12th weeks post-implantation. Scanning electron microscopy analysis revealed that the composite was compatible with MSCs, with similar outcomes in the control and experimental groups. MTT analysis additionally showed that the MSCs in the experimental group grew in a similar manner to those in the control group. The composite did not significantly affect the MSC growth or proliferation. In combination with MSCs, the scaffold materials were effective in the promotion of osteogenesis and vascularization. In conclusion, the chitosan-β-tricalcium phosphate composite was compatible with the MSCs and did not affect cellular growth or proliferation, therefore proving to be an effective injectable composite for tissue engineered bone. Simultaneous implantation of stem cells with a carrier composite proved to function effectively in the repair of bone defects.

  4. Genetic and tissue level muscle-bone interactions during unloading and reambulation.

    PubMed

    Judex, S; Zhang, W; Donahue, L R; Ozcivici, E

    2016-01-01

    Little is known about interactions between muscle and bone during the removal and application of mechanical signals. Here, we applied 3wk of hindlimb unloading followed by 3wk of reambulation to a genetically heterogeneous population of 352 adult mice and tested the hypothesis that changes in muscle are associated with changes in bone at the level of the tissue and the genome. During unloading and relative to normally ambulating control mice, most mice lost muscle and cortical bone with large variability across the population. During reambulation, individual mice regained bone and muscle at different rates. Across mice, changes in muscle and trabecular/cortical bone were not correlated to each other during unloading or reambulation. For unloading, we found one significant quantitative trait locus (QTL) for muscle area and five QTLs for cortical bone without overlap between mechano-sensitive muscle and cortical bone QTLs (but some overlap between muscle and trabecular QTLs). The low correlations between morphological changes in muscle and bone, together with the largely distinct genetic regulation of the response indicate that the premise of a muscle-bone unit that co-adjusts its size during (un)loading may need to be reassessed. PMID:27609032

  5. Role of bone-type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification.

    PubMed

    Bobryshev, Yuri V; Orekhov, Alexander N; Sobenin, Igor; Chistiakov, Dimitry A

    2014-01-01

    Matrix vesicle (MV)-mediated mineralization is important for bone ossification. However, under certain circumstances such as atherosclerosis, mineralization may occur in the arterial wall. Bone-type tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes inorganic pyrophosphate (PPi) and generates inorganic phosphate (Pi), which is essential for MV-mediated hydroxyapatite formation. MVs contain another phosphatase, PHOSPHO1, that serves as an additional supplier of Pi. Activation of bone-type tissue-nonspecific alkaline phosphatase (TNAP) in vascular smooth muscle cells precedes vascular calcification. By degrading PPi, TNAP plays a procalcific role changing the Pi/PPi ratio toward mineralization. A pathologic role of bone-type TNAP and PHOSPHO1 make them to be attractive targets for cardiovascular therapy.

  6. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.

    PubMed

    Jin, Yashi; Kundu, Banani; Cai, Yurong; Kundu, Subhas C; Yao, Juming

    2015-10-01

    To fabricate hard tissue implants with bone-like structure using a biomimetic mineralization method is drawing much more attentions in bone tissue engineering. The present work focuses in designing 3D silk fibroin hydrogel to modulate the nucleation and growth of hydroxyapatite crystals via a simple ion diffusion method. The study indicates that Ca(2+) incorporation within the hydrogel provides the nucleation sites for hydroxyapatite crystals and subsequently regulates their oriented growth. The mineralization process is regulated in a Ca(2+) concentration- and minerlization time-dependent way. Further, the compressive strength of the mineralized hydrogels is directly proportional with the mineral content in hydrogel. The orchestrated organic/inorganic composite supports well the viability and proliferation of human osteoblast cells; improved cyto-compatibility with increased mineral content. Together, the present investigation reports a simple and biomimetic process to fabricate 3D bone-like biomaterial with desired efficacy to repair bone defects. PMID:26209967

  7. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue.

    PubMed

    Shi, Yan-Chuan; Baldock, Paul A

    2012-02-01

    Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing

  8. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  9. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction.

    PubMed

    Shah, Nisarg J; Hyder, Md Nasim; Quadir, Mohiuddin A; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J; Nevins, Myron; Spector, Myron; Hammond, Paula T

    2014-09-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration.

  10. Age related changes in the bone tissue under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Podrushnyak, E. P.; Suslov, E. I.

    1980-01-01

    Microroentgenography of nine young people, aged 24-29, before and after hypokinesia (16-37 days strict bed rest), showed that the heel bone density of those with initially high bone density generally decreased and that of those with initially low bone density generally increased. X-ray structural analysis of the femurs of 25 corpses of accidentally killed healthy people, aged 18-70, data are presented and discussed, with the conclusion that the bone hydroxyapatite crystal structure stabilizes by ages 20 to 25, is stable from ages 25 to 60 and decreases in density after age 60. It is concluded that bone tissue structure changes, both with age, and in a comparatively short time in hypokinesia.

  11. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation.

    PubMed

    Hirota, Makoto; Hayakawa, Tohru; Yoshinari, Masao; Ametani, Akihiro; Shima, Takaki; Monden, Yuka; Ozawa, Tomomichi; Sato, Mitsunobu; Koyama, Chika; Tamai, Naoto; Iwai, Toshinori; Tohnai, Iwai

    2012-10-01

    This study investigated the bone regeneration properties of titanium fibre mesh as a tissue engineering material. A thin hydroxyapatite (HA) coating on the titanium fibre web was created using the developed molecular precursor method without losing the complex interior structure. HA-coated titanium fibre mesh showed apatite crystal formation in vitro in a human osteoblast culture. Titanium fibre mesh discs with or without a thin HA coating were implanted into rat cranial bone defects, and the animals were killed at 2 and 4 weeks. The in vivo experience revealed that the amount of newly formed bone was significantly higher in the HA-coated titanium fibre mesh than in the non-coated titanium fibre mesh 2 weeks after implantation. These results suggest that thin HA coating enhances osteoblast activity and bone regeneration in the titanium fibre mesh scaffold. Thin HA-coating improved the ability of titanium fibre mesh to act as a bone regeneration scaffold.

  12. Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells

    PubMed Central

    Mattar, Philipp; Bieback, Karen

    2015-01-01

    Mesenchymal stromal cells (MSC) have gained immense attraction in regenerative medicine, tissue engineering, and immunotherapy. This is based on their differentiation potential and the supply of pro-regenerative and immunomodulatory signals. MSC can be isolated from a multitude of tissue sources, but mainly bone marrow, adipose tissue, and birth-associated tissues (e.g., umbilical cord, cord blood, placenta) appear to be relevant for clinical translation in immune-mediated disorders. However, only a few studies directly compared the immunomodulatory potency of MSC from different tissue sources. This review compiles the current literature regarding the similarities and differences between these three sources for MSCs with a special focus on their immunomodulatory effects on T-lymphocyte subsets and monocytes, macrophages, and dendritic cells. PMID:26579133

  13. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    PubMed

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  14. Experimental and numerical analysis of Izod impact test of cortical bone tissue

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, A. A.; Silberschmidt, V. V.

    2012-05-01

    Bones can only sustain loads until a certain limit, beyond which they fail. Usually, the reasons for bone fracture are traumatic falls, sports injuries, and engagement in transport or industrial accidents. A proper treatment of bones and prevention of their fracture can be supported by in-depth understanding of deformation and fracture behavior of this tissue in such dynamic events. In this paper, a combination of experimental and numerical analysis was carried out in order to comprehend the fracture behavior of cortical bone tissue. Experimental tests were performed to study the transient dynamic behavior of cortical bone tissue under impact bending loading. The variability of absorbed energy for different cortex positions and notch depths was studied using Izod impact tests. Also, Extended Finite-Element Method implemented into the commercial finite-element software Abaqus was used to simulate the crack initiation and growth processes in a cantilever beam of cortical bone exposed to impact loading using the Izod loading scheme. The simulation results show a good agreement with the experimental data.

  15. [Research progress on application of carbon nanotubes in bone tissue engineering scaffold].

    PubMed

    Yao, Mengzhu; Sheng, Xiaoxia; Lin, Jun; Gao, Jianqing

    2016-03-01

    Carbon nanotubes possess excellent mechanical and electrical properties and demonstrate broad application prospects in medical fields. Carbon nanotubes are composed of inorganic materials, natural biodegradable polymer or synthetic biodegradable polymer. The composite bone tissue engineering scaffolds are constructed by particle-hole method, lyophilization, microsphere aggregation method, electrostatic spinning or three-dimensional printing. Composite scaffolds overcome the shortcomings of single material and have good biocompatibility, osteoconduction and osteoinduction. With the study of surface chemistry, toxicology, and biocompatibility, a degradable "human-friendly" carbon nanotubes composite bone tissue scaffold will be available; and under the drive of new fabrication techniques, the clinical application of carbon nanotubes composite bone tissue engineering scaffolds will be better developed.

  16. [Research progress on application of carbon nanotubes in bone tissue engineering scaffold].

    PubMed

    Yao, Mengzhu; Sheng, Xiaoxia; Lin, Jun; Gao, Jianqing

    2016-03-01

    Carbon nanotubes possess excellent mechanical and electrical properties and demonstrate broad application prospects in medical fields. Carbon nanotubes are composed of inorganic materials, natural biodegradable polymer or synthetic biodegradable polymer. The composite bone tissue engineering scaffolds are constructed by particle-hole method, lyophilization, microsphere aggregation method, electrostatic spinning or three-dimensional printing. Composite scaffolds overcome the shortcomings of single material and have good biocompatibility, osteoconduction and osteoinduction. With the study of surface chemistry, toxicology, and biocompatibility, a degradable "human-friendly" carbon nanotubes composite bone tissue scaffold will be available; and under the drive of new fabrication techniques, the clinical application of carbon nanotubes composite bone tissue engineering scaffolds will be better developed. PMID:27273990

  17. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering.

    PubMed

    Lee, K Y; Alsberg, E; Mooney, D J

    2001-08-01

    Degradable and injectable hydrogels may be ideal for bone-tissue engineering, especially in the craniofacial region because of the ease of access for injection. Alginate hydrogels potentially could be used as injectable cell delivery vehicles, but they exhibit a limited range of mechanical properties and uncontrollable disintegration time. Therefore we synthesized new hydrogels, composed of poly(aldehyde guluronate) (PAG) and adipic acid dihydrazide, that have a wide range of mechanical stiffness and controllable degradation rate. MC3T3-E1 cells adhered and multiplied on PAG hydrogels in vitro. When primary rat calvarial osteoblasts were mixed with PAG hydrogels and subcutaneously injected into the backs of mice, mineralized bone tissues were formed 9 weeks following implantation. These hydrogels may find wide utility as an injectable delivery system for bone precursor cells as well as for other applications in tissue engineering. PMID:11340593

  18. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells

    PubMed Central

    Wang, Ping; Zhao, Liang; Liu, Jason; Weir, Michael D; Zhou, Xuedong; Xu, Hockin H K

    2014-01-01

    Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CaP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments. PMID:26273526

  19. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells.

    PubMed

    Wang, Ping; Zhao, Liang; Liu, Jason; Weir, Michael D; Zhou, Xuedong; Xu, Hockin H K

    2014-01-01

    Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CaP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.

  20. Systemic drug delivery systems for bone tissue regeneration- a mini review.

    PubMed

    Xinluan, Wang; Yuxiao, Lai; Helena, Ng HueiLeng; Zhijun, Yang; Ling, Qin

    2015-01-01

    Musculoskeletal metabolic diseases such as osteoporosis have become the major public health problems worldwide in our aging society. Pharmaceutical therapy is one of the approaches to prevent and treat related medical conditions. Most of the clinically used anti-osteoporotic drugs are administered systemically and have demonstrated some side effects in non-skeletal tissues. One of the innovative approaches to prevent potential adverse effects is the development of bone-targeting drug delivery technologies that not only minimizes the systemic toxicity but also improves the pharmacokinetic profile and therapeutic efficacy of chemical drugs. This paper reviews the currently available bone targeting drug delivery systems with emphasis as bone-targeting moieties, including the bonesurface- site-specific (bone formation dominant or bone resorption dominant) and cell-specific moieties. In addition, the connections of drug-bone-targeting moieties-carrier are also summarized, and the newly developed liposomes and nanoparticles are discussed for their potential use and main challenges in delivering therapeutic agents to bone tissue. As a rapid-developing biotechnology, systemic bonetargeting delivery system is promising but still in its infancy where challenges are ahead of us, including the stability and the toxicity issues, especially to fulfill the regulatory requirement to realize bench-to-bedside translation. Newly developed biomaterials and technologies with potential for safer and more effective drug delivery require multidisciplinary collaborations with preclinical and clinical scientists that are essential to facilitate their clinical applications.

  1. Decellularized periosteum as a potential biologic scaffold for bone tissue engineering.

    PubMed

    Chen, Kai; Lin, Xianfeng; Zhang, Qi; Ni, Jinhu; Li, Jianmin; Xiao, Jian; Wang, Yang; Ye, Yiheng; Chen, Li; Jin, Keke; Chen, Lei

    2015-06-01

    Bone grafting or bone substitute is typically used to bridge a bone defect that has been caused by trauma, tumor resection, pathological degeneration, or congenital deformations. However, bone graft healing and remodeling is always a major concern of orthopedic surgeons. Because the periosteum has a remarkable regenerative capacity and is widely recognized to be essential for the initiation of bone graft healing and remodeling, the present study aimed to produce a rabbit decellularized periosteum (D-periosteum) to be used as a biologic scaffold for future bone tissue engineering. We obtained the D-periosteum by employing a combination of commonly used decellularization processes, which include physical methods as well as chemical and enzymatic solutions. The cellular components were effectively removed, and this removal was demonstrated using current decellularization criteria (H&E staining, DAPI staining, DNA quantification and agarose gel electrophoresis); however, there were no significant alterations of the native extracellular matrix (ECM) properties (collagen, glycosaminoglycan (GAG), microarchitecture and mechanical properties). Periosteum-derived cells (PDCs) could adhere, proliferate and infiltrate into the D-periosteum in vitro. The allogenic D-periosteum was implanted subcutaneously into the backs of rabbits over 28 days to study the biocompatibility in vivo. The D-periosteum did not elicit a severe immunogenic response. In summary, a biologic scaffold composed of ECM from periosteum has been successfully developed. The D-periosteum maintains biocompatibility in vitro and in vivo and, therefore, can provide a naturally compatible scaffold for use in future bone tissue engineering.

  2. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Sahin, Fikrettin

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering.

  3. Guidelines for managing data and processes in bone and cartilage tissue engineering

    PubMed Central

    2014-01-01

    Background In the last decades, a wide number of researchers/clinicians involved in tissue engineering field published several works about the possibility to induce a tissue regeneration guided by the use of biomaterials. To this aim, different scaffolds have been proposed, and their effectiveness tested through in vitro and/or in vivo experiments. In this context, integration and meta-analysis approaches are gaining importance for analyses and reuse of data as, for example, those concerning the bone and cartilage biomarkers, the biomolecular factors intervening in cell differentiation and growth, the morphology and the biomechanical performance of a neo-formed tissue, and, in general, the scaffolds' ability to promote tissue regeneration. Therefore standards and ontologies are becoming crucial, to provide a unifying knowledge framework for annotating data and supporting the semantic integration and the unambiguous interpretation of novel experimental results. Results In this paper a conceptual framework has been designed for bone/cartilage tissue engineering domain, by now completely lacking standardized methods. A set of guidelines has been provided, defining the minimum information set necessary for describing an experimental study involved in bone and cartilage regenerative medicine field. In addition, a Bone/Cartilage Tissue Engineering Ontology (BCTEO) has been developed to provide a representation of the domain's concepts, specifically oriented to cells, and chemical composition, morphology, physical characterization of biomaterials involved in bone/cartilage tissue engineering research. Conclusions Considering that tissue engineering is a discipline that traverses different semantic fields and employs many data types, the proposed instruments represent a first attempt to standardize the domain knowledge and can provide a suitable means to integrate data across the field. PMID:24564199

  4. 3D bone tissue growth in hollow fibre membrane bioreactor: implications of various process parameters on tissue nutrition.

    PubMed

    Abdullah, N S; Das, D B; Ye, H; Cui, Z F

    2006-09-01

    New experimental evidence shows that hollow fibre membrane bioreactor (HFMB) may be applied to grow bulky bone tissues which may then be implanted into patients to repair skeletal defects. To design effective bone tissue engineering protocols, it is necessary to determine the quantitative relationships between the cell environment and tissue behaviour in HFMBs and their relationship with nutrient supply. It is also necessary to determine under what conditions nutritional limitations may occur and, hence, may cause cell death. These require that the appropriate bioreactor conditions for generating neotissues, and the nutrient transfer behaviour and chemical reaction during cell growth and extracellular matrix formation are studied thoroughly. In this paper, we aim to use an existing mathematical framework to analyse the influence of various relevant parameters on nutrient supply for bone tissue growth in HFMB. We adopt the well-known Krogh cylinder approximation of the HFMB. The model parameters (e.g., cell metabolic rates) and operating conditions for the mathematical model have been obtained from, or correspond to, in-house experiments with the exception of a few variables which have been taken from the literature. The framework is then used to study oxygen and glucose transport behaviour in the HFMB. Influence of a number of important process parameters, e.g., reaction kinetics, cell density, inlet concentration of nutrients, etc, on the nutrient distributions have been systematically analysed. The work presented in this paper provides insights on unfavourable system designs and specifications which may be avoided to prevent mass transfer limitations for growing bone tissues in HFMB.

  5. Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue.

    PubMed

    Morris, Michael D; Matousek, Pavel; Towrie, Michael; Parker, Anthony W; Goodship, Allen E; Draper, Edward R C

    2005-01-01

    Picosecond time-resolved Raman spectroscopy in equine cortical bone tissue is demonstrated. Using 400-nm pulsed laser excitation (1 ps at 1 kHz) it is shown that Kerr cell gating with a 4-ps window provides simultaneously time-resolved rejection of fluorescence and time-resolved Raman scatter enabling depth profiling through tissue. The Raman shifts are the same as those observed by conventional cw Raman spectroscopy using deep-red or near-infrared lasers. The time decay of Raman photons is shown to fit an inverse square root of time function, suggesting propagation by a diffusive mechanism. Using polystyrene behind a bone specimen, it is shown that the 400-nm laser light penetrates at least 0.31 mm below the surface of a fully mineralized bone tissue specimen and generates observable bone Raman scatter (approximately 415 to 430 nm) through most of this depth. These novel results demonstrate great promise for in vivo applications for studying diseased bone tissue, and ways to optimize the setup are discussed.

  6. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.

    PubMed

    Park, Hyun-Ji; Yu, Seung Jung; Yang, Kisuk; Jin, Yoonhee; Cho, Ann-Na; Kim, Jin; Lee, Bora; Yang, Hee Seok; Im, Sung Gap; Cho, Seung-Woo

    2014-12-01

    Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects.

  7. Use of osteoplastic material to guide bone tissue regeneration deffect.

    PubMed

    Machavariani, A; Mazmishvili, K; Grdzelidze, T; Menabde, G; Amiranashvili, I

    2011-12-01

    The goal of research was study of restoration processes in jaw-teeth bone defects by application of osteoplastic materials in the experiment. The experiment was performed over 32 white (6-12 month old) rats; the animals were divided into 2 groups; 16 animals were enrolled in the first group; the section was performed in the edge of lower jaw; the lower jaw body was revealed. Under the effect of the dental drilling machine and the # 1 cooling mean by the fissure bohrium (distilled water) the defect of the dimension of 2x2 mm was created; the defect was washed by 0/9% saline to remove the bone sawdust; the wound was sutured tightly, in layers. The second group of the experiment was staffed with 16 animals (main group); the similar bone defect of the size 2 x 2mm was created on the rat's jaw's body. After washing of modeled defect we inserted osteopathic materials PORESORB-TCP crystals with the size of 0,6-1.0 mm the wound was sutured tightly, in layers. After the 3-rd, 15-th, 30-th and 90-th days from the date of operation there was performed X-ray and morphological examination over the animals in the control as well as the main group. The analysis of the examination performed over the experimental materials showed that in the control group in samples taken at 90th day the defects were not completely restored. In the test group in samples taken at 90th day reparative regeneration is confirmed. This is stimulated by the factor that within the main group's animals the defect regeneration process is supported with the osteoplastic material PORESORB-TCP.

  8. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation.

    PubMed

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Semeins, Cornelis M; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2005-01-01

    To engineer bone tissue, mechanosensitive cells are needed that are able to perform bone cell-specific functions, such as (re)modeling of bone tissue. In vivo, local bone mass and architecture are affected by mechanical loading, which is thought to provoke a cellular response via loading-induced flow of interstitial fluid. Adipose tissue is an easily accessible source of mesenchymal stem cells for bone tissue engineering, and is available in abundant amounts compared with bone marrow. We studied whether adipose tissue-derived mesenchymal stem cells (AT-MSCs) are responsive to mechanical loading by pulsating fluid flow (PFF) on osteogenic stimulation in vitro. We found that ATMSCs show a bone cell-like response to fluid shear stress as a result of PFF after the stimulation of osteogenic differentiation by 1,25-dihydroxyvitamin D3. PFF increased nitric oxide production, as well as upregulated cyclooxygenase-2, but not cyclooxygenase-1, gene expression in osteogenically stimulated AT-MSCs. These data suggest that AT-MSCs acquire bone cell-like responsiveness to pulsating fluid shear stress on 1,25-dihydroxyvitamin D3-induced osteogenic differentiation. ATMSCs might be able to perform bone cell-specific functions during bone (re)modeling in vivo and, therefore, provide a promising new tool for bone tissue engineering.

  9. Fragmented Adipose Tissue Graft for Bone Healing: Histological and Histometric Study in Rabbits’ Calvaria

    PubMed Central

    Oliveira, Lidiane C.; Giovanini, Allan F.; Abuabara, Allan; Klug, Luiz G.; Gonzaga, Carla C.; Zielak, João C.; Urban, Cícero A.

    2013-01-01

    Objective The adipose tissue represents an important reservoir of stem cells. There are few studies in the literature with which to histologically evaluate whether or not the adipose tissue graft is really a safe option to achieve bone repair. This study histologically analyzed the effect of fragmented autogenous adipose tissue grafts on bone healing in surgically created, critical-size defects (CSD) in a rabbit’s calvaria. Study design Forty-two New Zealand rabbits were used in this study. CSD that were 15 mm in diameter were created in the calvarium of each animal. The defects were randomly divided into two groups: in Group C (control), the defect was filled only by a blood clot and, in Group FAT (i.e., fragmented adipose tissue), the defect was filled with fragmented autogenous adipose tissue grafts. The groups were divided into subgroups (n = 7) for euthanasia at 7, 15, and 40 days after the procedure had been conducted. Histologic and histometric analyses were performed. Data were statistically analysed with ANOVA and Tukey’s tests (p < 0.05). Results The amount of bone formation did not show statistically significant differences seven days after the operation, which indicates that the groups had similar amounts of mineral deposition in the earlier period of the repair. Conversely, a significant of amount of bone matrix deposition was identified in the FAT group at 15 and 40 days following the operation, both on the border and in the body of the defect. Such an outcome was not found in the control group. Conclusion In this study, an autologous adipose tissue graft may be considered as likely biomaterial for bone regeneration, since it positively affected the amount of bone formation in surgically created CSD in the rabbits’ calvaria 40 days after the procedure had been performed. Further investigations with a longer time evaluation are warranted to determine the effectiveness of autologous adipose tissue graft in the bone healing. Key words

  10. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids. PMID:25736591

  11. Functionalized PLGA-doped zirconium oxide ceramics for bone tissue regeneration.

    PubMed

    Lupu-Haber, Yael; Pinkas, Oded; Boehm, Stefanie; Scheper, Thomas; Kasper, Cornelia; Machluf, Marcelle

    2013-12-01

    Bone tissue engineering is an alternative approach to bone grafts. In our study we aim to develop a composite scaffold for bone regeneration made of doped zirconium oxide (ZrO2) conjugated with poly(lactic-co-glycolic acid) (PLGA) particles for the delivery of growth factors. In this composite, the PLGA microspheres are designed to release a crucial growth factor for bone formation, bone morphogenetic protein-2 (BMP2). We found that by changing the polymer's molecular weight and composition, we could control microsphere loading, release and size. The BMP2 released from PLGA microspheres retained its biological activity and increased osteoblastic marker expression in human mesenchymal stem cells (hMSCs). Uncapped PLGA microspheres were conjugated to ZrO2 scaffolds using carbodiimide chemistry, and the composite scaffold was shown to support hMSCs growth. We also demonstrated that human umbilical vein endothelial cells (HUVECs) can be co-cultured with hMSCs on the ZrO2 scaffold for future vascularization of the scaffold. The ZrO2 composite scaffold could serve as a bone substitute for bone grafting applications with the added ability of releasing different growth factors needed for bone regeneration.

  12. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids.

  13. Bone-demineralization diagnosis in a bone-tissue-skin matrix using the pulsed-chirped photothermal radar

    NASA Astrophysics Data System (ADS)

    Kaiplavil, Sreekumar; Mandelis, Andreas

    2012-02-01

    A chirped pulsed photothermal radiometric radar is introduced for the diagnosis of biological samples, especially bones with tissue and skin overlayers. The constraints imposed by the laser safety (maximum permissible exposure, MPE) ceiling on pump laser energy and the strong attenuation of thermal-wave signals in tissues significantly limit the photothermally active depth in most biological specimens to a level which is normally insufficient for practical applications (approx. 1 mm below the skin surface). A theoretical approach for improvement of signal-to-noise ratio (SNR), minimizing the static (dc) component of the photothermal signal and making use of the photothermal radiometric nonlinearity has been introduced and verified by comparing the SNR of four distinct excitation wave forms (sine-wave, square-wave, constant- width and constant duty-cycle pulses) for chirping the pump laser, under constant exposure energy. At low frequencies fixed-pulsewidth chirps of large peak power were found to be superior to all other equal-energy modalities, with an SNR improvement up to two orders of magnitude. Distinct thickness-dependent characteristic delay times in a goat bone were obtained, establishing an active depth resolution range of ca. 2.8 mm in a layered skin-fat- bone structure, a favorable result compared to the maximum reported pulsed photothermal radiometric depth resolution < 1 mm in turbid biological media. Compared to radar peak delay and amplitude, the long-delayed radar output amplitude is found to be more sensitive to subsurface conditions. Two-dimensional spatial plots of this parameter depicting the back surface conditions of bones with and without fat-tissue overlayers are presented.

  14. Relationships between tissue composition and viscoelastic properties in human trabecular bone.

    PubMed

    Ojanen, X; Isaksson, H; Töyräs, J; Turunen, M J; Malo, M K H; Halvari, A; Jurvelin, J S

    2015-01-21

    Trabecular bone is a metabolically active tissue with a high surface to volume ratio. It exhibits viscoelastic properties that may change during aging. Changes in bone properties due to altered metabolism are sensitively revealed in trabecular bone. However, the relationships between material composition and viscoelastic properties of bone, and their changes during aging have not yet been elucidated. In this study, trabecular bone samples from the femoral neck of male cadavers (n=21) aged 17-82 years were collected and the tissue level composition and its associations with the tissue viscoelastic properties were evaluated by using Raman microspectroscopy and nanoindentation, respectively. For composition, collagen content, mineralization, carbonate substitution and mineral crystallinity were evaluated. The calculated mechanical properties included reduced modulus (Er), hardness (H) and the creep parameters (E1, E2, η1and η2), as obtained by fitting the experimental data to the Burgers model. The results indicated that the creep parameters, E1, E2, η1and η2, were linearly correlated with mineral crystallinity (r=0.769-0.924, p<0.001). Creep time constant (η2/E2) tended to increase with crystallinity (r=0.422, p=0.057). With age, the mineralization decreased (r=-0.587, p=0.005) while the carbonate substitution increased (r=0.728, p<0.001). Age showed no significant associations with nanoindentation parameters. The present findings suggest that, at the tissue-level, the viscoelastic properties of trabecular bone are related to the changes in characteristics of bone mineral. This association may be independent of human age.

  15. Ultrastructural elastic deformation of cortical bone tissue probed by NIR Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Finney, William F.; Morris, Michael D.; Wallace, Joseph M.; Kohn, David H.

    2004-07-01

    Raman spectroscopy is used as a probe of ultrastructural (molecular) changes in both the mineral and matrix (protein and glycoprotein, predominantly type I collagen) components of murine cortical bone as it responds to loading in the elastic regime. At the ultrastructural level, crystal structure and protein secondary structure distort as the tissue is loaded. These structural changes are followed as perturbations to tissue spectra. We load tissue in a custom-made dynamic mechanical tester that fits on the stage of a Raman microprobe and can accept hydrated tissue specimens. As the specimen is loaded in tension and/or compression, the shifts in mineral P-O4 v1 and relative band heights in the Amide III band envelope are followed with the microprobe. Average load is measured using a load cell while the tissue is loaded under displacement control. Changes occur in both the mineral and matrix components of bone as a response to elastic deformation. We propose that the mineral apatitic crystal lattice is deformed by movement of calcium and other ions. The matrix is proposed to respond by deformation of the collagen backbone. Raman microspectroscopy shows that bone mineral is not a passive contributor to tissue strength. The mineral active response to loading may function as a local energy storage and dissipation mechanism, thus helping to protect tissue from catastrophic damage.

  16. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies.

    PubMed

    Reichert, Johannes C; Epari, Devakara R; Wullschleger, Martin E; Saifzadeh, Siamak; Steck, Roland; Lienau, Jasmin; Sommerville, Scott; Dickinson, Ian C; Schütz, Michael A; Duda, Georg N; Hutmacher, Dietmar W

    2010-02-01

    Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties; however, they are limited in access and availability and associated with donor-site morbidity, hemorrhage, risk of infection, insufficient transplant integration, graft devitalization, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench-to-bedside translations are still infrequent as the process toward approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence, commercialization, is referred to as the "Valley of Death" and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes and scalable designs and to apply these in preclinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopedic bone engineering from bench to bedside by establishing a preclinical ovine critical-sized tibial segmental bone defect model, and we discuss our preliminary data relating to this decisive step.

  17. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies.

    PubMed

    Reichert, Johannes C; Epari, Devakara R; Wullschleger, Martin E; Saifzadeh, Siamak; Steck, Roland; Lienau, Jasmin; Sommerville, Scott; Dickinson, Ian C; Schütz, Michael A; Duda, Georg N; Hutmacher, Dietmar W

    2010-02-01

    Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties; however, they are limited in access and availability and associated with donor-site morbidity, hemorrhage, risk of infection, insufficient transplant integration, graft devitalization, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench-to-bedside translations are still infrequent as the process toward approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence, commercialization, is referred to as the "Valley of Death" and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes and scalable designs and to apply these in preclinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopedic bone engineering from bench to bedside by establishing a preclinical ovine critical-sized tibial segmental bone defect model, and we discuss our preliminary data relating to this decisive step. PMID:19795978

  18. Bone Grafts

    MedlinePlus

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, ... fractures or cancers. Once your body accepts the bone graft, it provides a framework for growth of new, ...

  19. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    PubMed

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering.

  20. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    PubMed

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. PMID:27524030

  1. Structural changes in femoral bone tissue of rats after subchronic peroral exposure to selenium

    PubMed Central

    2013-01-01

    Background The role of selenium (Se) on bone microarchitecture is still poorly understood. The present study aims to investigate the macroscopic and microscopic structures of femoral bone tissue in adult male rats after subchronic peroral administration of Se. Methods Twenty one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group (Se group) young males were exposed to 5 mg Na2SeO3/L in drinking water, for 90 days. Ten one-month-old males without Se administration served as a control group. At the end of the experiment, macroscopic and microscopic structures of the femurs were analysed using analytical scales, sliding instrument, and polarized light microscopy. Results The body weight, femoral length and cortical bone thickness were significantly decreased in Se group rats. These rats also displayed different microstructure in the middle part of the femur, both in medial and lateral views, where vascular canals expanded into the central area of the bone while, in control rats, these canals occurred only near the endosteal surfaces. Additionally, a smaller number of primary and secondary osteons was identified in Se group rats. Histomorphometric analyses revealed significant increases for area, perimeter, maximum and minimum diameters of primary osteons’ vascular canals but significant reductions for all measured variables of Haversian canals and secondary osteons. Conclusions Se negatively affected the macroscopic and microscopic structures of femoral bone tissue in adult male rats. The results contribute to the knowledge on damaging impact of Se on bone. PMID:23369508

  2. Microfibril Orientation Dominates the Microelastic Properties of Human Bone Tissue at the Lamellar Length Scale

    PubMed Central

    Rupin, Fabienne; Raum, Kay; Peyrin, Françoise; Burghammer, Manfred; Saïed, Amena; Laugier, Pascal

    2013-01-01

    The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies. PMID:23472132

  3. Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults.

    PubMed

    Shen, Wei; Velasquez, Gilbert; Chen, Jun; Jin, Ye; Heymsfield, Steven B; Gallagher, Dympna; Pi-Sunyer, F Xavier

    2014-01-01

    Several large-scale studies have reported the presence of an inverse relationship between bone mineral density (BMD) and bone marrow adipose tissue (BMAT) in adults. We aim to determine if there is an inverse relationship between pelvic volumetric BMD (vBMD) and pelvic BMAT in children and to compare this relationship in children and adults. Pelvic BMAT and bone volume (BV) was evaluated in 181 healthy children (5-17yr) and 495 healthy adults (≥18yr) with whole-body magnetic resonance imaging (MRI). Pelvic vBMD was calculated using whole-body dual-energy X-ray absorptiometry to measure pelvic bone mineral content and MRI-measured BV. An inverse correlation was found between pelvic BMAT and pelvic vBMD in both children (r=-0.374, p<0.001) and adults (r=-0.650, p<0.001). In regression analysis with pelvic vBMD as the dependent variable and BMAT as the independent variable, being a child or adult neither significantly contribute to the pelvic BMD (p=0.995) nor did its interaction with pelvic BMAT (p=0.415). The inverse relationship observed between pelvic vBMD and pelvic BMAT in children extends previous findings that found the inverse relationship to exist in adults and provides further support for a reciprocal relationship between adipocytes and osteoblasts.

  4. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.

    PubMed

    Asaoka, Teruo; Ohtake, Shoji; Furukawa, Katsuko S; Tamura, Akito; Ushida, Takashi

    2013-11-01

    Porous beads of bioactive ceramics such as hydroxyapatite (HAp) and tribasic calcium phosphate (TCP) are considered a promising scaffold for cultivating bone cells. To realize this, α-TCP/HAp functionally graded porous beads are fabricated with two main purposes: to maintain the function of the scaffold with sufficient strength up to the growth of new bone, and is absorbed completely after the growth. HAp is a bioactive material that has both high strength and strong tissue-adhesive properties, but is not readily absorbed by the human body. On the contrary, α-TCP is highly bioabsorbable, resulting in a scaffold that is absorbed before it is completely replaced by bone. In this study, we produced porous, bead-shaped carriers as scaffolds for osteoblast culture. To control the solubility in vivo, the fabricated beads contained α-TCP at the center and HAp at the surface. Cell adaptability of these beads for bone tissue engineering was confirmed in vitro. It was found that α-TCP/HAp bead carriers exhibit low toxicity in the initial stages of cell seeding and cell adhesion. The presence of HAp in the composite bead form effectively increased ALP activity. In conclusion, it is suggested that these newly developed α-TCP/HAp beads are a promising tool for bone tissue engineering.

  5. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate.

    PubMed

    Yu, Hye-Sun; Jang, Jun-Hyeog; Kim, Tae-Il; Lee, Hae-Hyoung; Kim, Hae-Won

    2009-03-01

    Degradable synthetic polymers with a nanofibrous structure have shown great promise in populating and recruiting cells for the reconstruction of damaged tissues. However, poor cell affinity and lack of bioactivity have limited their potential usefulness in bone regeneration. We produced polymeric nanofiber poly(epsilon-caprolactone) (PCL) with its surface mineralized with bone-like apatite for use as bone regenerative and tissue engineering matrices. PCL was first electrospun into a nanofibrous web, and the surface was further mineralized with apatite following a series of solution treatments. The surface of the mineralized PCL nanofiber was observed to be almost fully covered with nanocrystalline apatites. Through mineralization, the wettability of the nanofiber matrix was greatly improved. Moreover, the murine-derived osteoblastic cells were shown to attach and grow actively on the apatite-mineralized nanofibrous substrate. In particular, the mineralized PCL nanofibrous substrate significantly stimulated the expression of bone-associated genes, including Runx2, collagen type I, alkaline phosphatase, and osteocalcin, when compared with the pure PCL nanofiber substrate without mineralization. The currently developed polymer nanofibrous web with the bioactive mineralized surface is considered to be potentially useful as bone regenerative and tissue engineering matrices.

  6. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings*

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Moskowitz, Joshua S.; Quadir, Mohiuddin A.; Morton, Stephen W.; Seeherman, Howard J.; Padera, Robert F.; Spector, Myron; Hammond, Paula T.

    2014-01-01

    The functional success of a biomedical implant critically depends on its stable bonding with the host tissue. Aseptic implant loosening accounts for over half of all joint replacement failures. Various materials, including metals and plastic, confer mechanical integrity to the device, but often these materials are not suitable for direct integration with the host tissue, which leads to implant loosening and patient morbidity. We describe a self-assembled, osteogenic, polymer-based conformal coating that promotes stable mechanical fixation of an implant in a surrogate rodent model. A single modular, polymer-based multilayered coating was deposited using a water-based layer-by-layer approach, by which each element was introduced on the surface in nanoscale layers. Osteoconductive hydroxyapatite (HAP) and osteoinductive bone morphogenetic protein 2 (BMP-2) contained within the nanostructured coating acted synergistically to induce osteoblastic differentiation of endogenous progenitor cells within the bone marrow, without indications of a foreign body response. The tuned release of BMP-2, controlled by a hydrolytically degradable poly(β-amino ester), was essential for tissue regeneration and, in the presence of HAP, the modular coating encouraged the direct deposition of highly cohesive trabecular bone on the implant surface. The bone-implant interfacial tensile strength was significantly higher than standard bone cement, did not fracture at the interface, and had long-term stability. Collectively, these results suggest that the multilayered coating system promotes biological fixation of orthopedic and dental implants to improve surgical outcomes by preventing loosening and premature failure. PMID:23803705

  7. Bone and soft tissue sarcomas during pregnancy: A narrative review of the literature.

    PubMed

    Zarkavelis, George; Petrakis, Dimitrios; Fotopoulos, George; Mitrou, Sotirios; Pavlidis, Nicholas

    2016-07-01

    Bone or soft tissue sarcomas are rarely diagnosed during pregnancy. Until today 137 well documented cases have been reported in the English literature between 1963 and 2014. Thirty-eight pregnant mothers were diagnosed with osteosarcoma, Ewing's sarcoma or chondrosarcoma, whereas 95 other cases of soft tissue sarcomas of various types have been documented. We present the clinical picture and therapeutic management of this coexistence. PMID:27408761

  8. Poly(caprolactone) based magnetic scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Bañobre-López, M.; Piñeiro-Redondo, Y.; De Santis, R.; Gloria, A.; Ambrosio, L.; Tampieri, A.; Dediu, V.; Rivas, J.

    2011-04-01

    Synthetic scaffolds for tissue engineering coupled to stem cells represent a promising approach aiming to promote the regeneration of large defects of damaged tissues or organs. Magnetic nanocomposites formed by a biodegradable poly(caprolactone) (PCL) matrix and superparamagnetic iron doped hydroxyapatite (FeHA) nanoparticles at different PCL/FeHA compositions have been successfully prototyped, layer on layer, through 3D bioplotting. Magnetic measurements, mechanical testing, and imaging were carried out to calibrate both model and technological processing in the magnetized scaffold prototyping. An amount of 10% w/w of magnetic FeHA nanoparticles represents a reinforcement for PCL matrix, however, a reduction of strain at failure is also observed. Energy loss (absorption) measurements under a radio-frequency applied magnetic field were performed in the resulting magnetic scaffolds and very promising heating properties were observed, making them very useful for potential biomedical applications.

  9. Pesticide residues in adipose tissue from hippopotami (Hippopotamus amphibius L) living in and adjacent to the Luangwa River in Zambia.

    PubMed

    Flåøyen, A; Polder, A; Mwase, M; Almli, B; Musonda, M M

    2005-06-01

    The concentration of organochlorines (OCs) such as organochlorine pesticides and polychlorinated biphenyls were measured in adipose tissue collected from 14 male hippopotami at Mfuwe in the southern part of the Luangwa National Park, Zambia. The samples contained low levels of OCs, and the concentrations of OCs were comparable to or lower than reported for wild herbivores studied in other parts of the world.

  10. High-throughput sequencing approach uncovers the miRNome of peritoneal endometriotic lesions and adjacent healthy tissues.

    PubMed

    Saare, Merli; Rekker, Kadri; Laisk-Podar, Triin; Sõritsa, Deniss; Roost, Anne Mari; Simm, Jaak; Velthut-Meikas, Agne; Samuel, Külli; Metsalu, Tauno; Karro, Helle; Sõritsa, Andrei; Salumets, Andres; Peters, Maire

    2014-01-01

    Accumulating data have shown the involvement of microRNAs (miRNAs) in endometriosis pathogenesis. In this study, we used a novel approach to determine the endometriotic lesion-specific miRNAs by high-throughput small RNA sequencing of paired samples of peritoneal endometriotic lesions and matched healthy surrounding tissues together with eutopic endometria of the same patients. We found five miRNAs specific to epithelial cells--miR-34c, miR-449a, miR-200a, miR-200b and miR-141 showing significantly higher expression in peritoneal endometriotic lesions compared to healthy peritoneal tissues. We also determined the expression levels of miR-200 family target genes E-cadherin, ZEB1 and ZEB2 and found that the expression level of E-cadherin was significantly higher in endometriotic lesions compared to healthy tissues. Further evaluation verified that studied miRNAs could be used as diagnostic markers for confirming the presence of endometrial cells in endometriotic lesion biopsy samples. Furthermore, we demonstrated that the miRNA profile of peritoneal endometriotic lesion biopsies is largely masked by the surrounding peritoneal tissue, challenging the discovery of an accurate lesion-specific miRNA profile. Taken together, our findings indicate that only particular miRNAs with a significantly higher expression in endometriotic cells can be detected from lesion biopsies, and can serve as diagnostic markers for endometriosis.

  11. Low dose of continuous – wave microwave irradiation did not cause temperature increase in muscles tissue adjacent to titanium alloy implants – an animal study

    PubMed Central

    2013-01-01

    Background Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Methods Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Results Significant difference between control and microwave treatment group at peak temperatures (Tpeak) and temperature gap (Tgap= Tpeak-Tvally) were observed in deep muscles (Tpeak, 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P < 0.01; Tgap, 5.33 ± 0.21°C vs. 8.10 ± 0.36°C, P < 0.01) and superficial muscles (Tpeak, 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; Tgap, 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (Tpeak, 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; Tgap, 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Conclusion Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant. PMID:24365389

  12. Morpho-functional adaptations in the bone tissue under the space flight conditions.

    PubMed

    Rodionova, N V; Oganov, V S

    2001-07-01

    Microgravity in space flight--situation of a maximum deficit of supporting loading on the skeleton and good model for finding-out of osteopenia and osteoporosis development laws, which are wide-spreading now and are "civilization diseases". Most typical for bones in conditions of a microgravitation by changes are: a decrease of intensity growth and osteoplastic processes, osteopenia and osteoporosis, decreasing of a mechanical strength and the risk of breaches arising (Oganov V.S., Schneider V. (1996)). Cytological mechanisms of gravity-dependent reactions in a bone tissue remain in many respects not-clear. By the purpose of our work was the analysis of some ultrastructural changes in bone tissue cells of the monkeys (Macaca mulatta), staying during two weeks onboard the biosatellite BION -11. PMID:12650186

  13. [Comparative study bone tissue temperature changes by using conventional and piezosurgical methods in dental implantology].

    PubMed

    Kulakov, A A; Vinnichenko, O Yu; Badalyan, V A

    2015-01-01

    The laboratory study compared thermal bone lesion by the formation of dental implant bed using traditional and piezosurgical method with varying degrees of irrigation. The study was carried out on cadaveric mandible and porcine mandible with preserved soft tissues. Implant bed was formed by Implantmed dispenser (W&H, Austria) and AstraTech drills (Sweden) according to standard clinical protocol or by piezosurgical device Implant Center (Satelec Acteon Group, France) with Intra Lift II (Satelec Acteon Group, Франция) and №1 scalpel tips with D1 power under minimal and maximal irrigation. The results showed that the formation of the bone bed was safe when using both conventional and piezosurgical method under copious irrigation. The possibility of bone tissue thermal damage increases when using minimum irrigation or no irrigation.

  14. Morpho-functional adaptations in the bone tissue under the space flight conditions.

    PubMed

    Rodionova, N V; Oganov, V S

    2001-07-01

    Microgravity in space flight--situation of a maximum deficit of supporting loading on the skeleton and good model for finding-out of osteopenia and osteoporosis development laws, which are wide-spreading now and are "civilization diseases". Most typical for bones in conditions of a microgravitation by changes are: a decrease of intensity growth and osteoplastic processes, osteopenia and osteoporosis, decreasing of a mechanical strength and the risk of breaches arising (Oganov V.S., Schneider V. (1996)). Cytological mechanisms of gravity-dependent reactions in a bone tissue remain in many respects not-clear. By the purpose of our work was the analysis of some ultrastructural changes in bone tissue cells of the monkeys (Macaca mulatta), staying during two weeks onboard the biosatellite BION -11.

  15. Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering

    PubMed Central

    Gu, Zhen; Jamal, Syed; Detamore, Michael S.

    2013-01-01

    Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275

  16. A review of chitosan and its derivatives in bone tissue engineering.

    PubMed

    LogithKumar, R; KeshavNarayan, A; Dhivya, S; Chawla, A; Saravanan, S; Selvamurugan, N

    2016-10-20

    Critical-sized bone defects treated with biomaterials offer an efficient alternative to traditional methods involving surgical reconstruction, allografts, and metal implants. Chitosan, a natural biopolymer is widely studied for bone regeneration applications owing to its tunable chemical and biological properties. However, the potential of chitosan to repair bone defects is limited due to its water insolubility, faster in vivo depolymerization, hemo-incompatibility, and weak antimicrobial property. Functionalization of chitosan structure through various chemical modifications provides a solution to these limitations. In this review, current trends of using chitosan as a composite with other polymers and ceramics, and its modifications such as quaternization, carboxyalkylation, hydroxylation, phosphorylation, sulfation and copolymerization in bone tissue engineering are elaborated. PMID:27474556

  17. Conception on the cell mechanisms of bone tissue loss under spase flight conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Oganov, Victor; Kabitskaya, Olga

    Basing on the analysis of available literature and the results of our own electron microscopic and radioautographic researches the data are presented about the morpho-functional peculiarities and succession of cellular interactions in adaptive remodeling of bone structures under normal conditions and after exposure of animals (rats, monkeys, mice) to microgravity (SLS-2, Bion-11, BionM-1). The probable cellular mechanisms of the development of osteopenia and osteoporosis are considered. Our conception on remodeling proposes the following sequence in the development of cellular interactions after decrease of the mechanical loading: a primary response of osteocytes (mechanosensory cells) to the mechanical stimulus; osteocytic remodeling (osteolysis); transmission of the mechanical signals through a system of canals and processes to functionally active osteoblasts and surface osteocytes as well as to the bone-marrow stromal cells and to those lying on bone surfaces. As a response to the mechanical stimulus (microgravity) the system of stromal cell-preosteoblast-osteoblast shows a delay in proliferation, differentiation and specific functioning of the osteogenetic cells, some of the osteoblasts undergo apoptosis. Then the osteoclastic reaction occurs (attraction of monocytes and formation of osteoclasts and bone matrix resorption in the loci of apoptosis of osteoblasts and osteocytes). The macrophagal reaction is followed by osteoblastogenesis, which appears to be a rehabilitating process. However, during prolonged absence of mechanical stimuli (microgravity, long-time immobilization) the adaptive activization of osteoblastogenesis doesn’t occur (as it is the case during the physiological remodeling of bone tissue) or it occurs to a smaller degree. The loading deficit leads to an adaptive differentiation of stromal cells to fibroblastic cells and adipocytes in these remodeling loci. These cell reactions are considered as adaptive-compensatory, but they don’t result

  18. Gene expression in normal-appearing tissue adjacent to prostate cancers are predictive of clinical outcome: evidence for a biologically meaningful field effect

    PubMed Central

    Magi-Galluzzi, Cristina; Maddala, Tara; Falzarano, Sara Moscovita; Cherbavaz, Diana B.; Zhang, Nan; Knezevic, Dejan; Febbo, Phillip G.; Lee, Mark; Lawrence, Hugh Jeffrey; Klein, Eric A.

    2016-01-01

    Purpose We evaluated gene expression in histologically normal-appearing tissue (NT) adjacent to prostate tumor in radical prostatectomy specimens, assessing for biological significance based on prediction of clinical recurrence (cR - metastatic disease or local recurrence). Results A total of 410 evaluable patients had paired tumor and NT. Fortysix genes, representing diverse biological pathways (androgen signaling, stromal response, stress response, cellular organization, proliferation, cell adhesion, and chromatin remodeling) were associated with cR in NT (FDR < 20%), of which 39 concordantly predicted cR in tumor (FDR < 20%). Overall GPS and its stromal response and androgen-signaling gene group components also significantly predicted time to cR in NT (RM-corrected HR/20 units = 1.25; 95% CI: 1.01-1.56; P = 0.024). Experimental Design Expression of 732 genes was measured by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) separately in tumor and adjacent NT specimens from 127 patients with and 374 without cR following radical prostatectomy for T1/T2 prostate cancer. A 17-gene expression signature (Genomic Prostate Score [GPS]), previously validated to predict aggressive prostate cancer when measured in tumor tissue, was also assessed using pre-specified genes and algorithms. Analysis used Cox proportional hazards models, Storey's false discovery rate (FDR) control, and regression to the mean (RM) correction. Conclusions Gene expression profiles, including GPS, from NT adjacent to tumor can predict prostate cancer outcome. These findings suggest that there is a biologically significant field effect in primary prostate cancer that is a marker for aggressive disease. PMID:27121323

  19. Recruitment of bone marrow-derived cells to periodontal tissue defects.

    PubMed

    Kimura, Yasuyuki; Komaki, Motohiro; Iwasaki, Kengo; Sata, Masataka; Izumi, Yuichi; Morita, Ikuo

    2014-01-01

    Bone marrow-derived cells (BMCs) are considered to be a major source of mesenchymal stem cells (MSCs) in adults and are known to be effective in periodontal tissue regeneration. However, whether endogenous BMCs are involved in periodontal tissue repair process is uncertain. We therefore created periodontal tissue defects in the buccal alveolar bone of mandibular first molars in bone marrow chimeric mice, and immunohistochemically examined the expression of stromal cell derived factor-1 (SDF-1) and the mobilization of BMCs. We found that SDF-1 expression was increased around the defects at as early as 1 week after injury and that BMCs were mobilized to the defects, while GFP+/CD45+ were rarely observed. Fluorescence-activated cell sorting (FACS) analysis demonstrated that the number of platelet-derived growth factor receptor (pdgfr) α+/Sca-1+ (PαS) cells in the bone marrow decreased after injury. Taken together, these results suggest that BMCs are mobilized to the periodontal tissue defects. Recruitment of BMCs, including a subset of MSCs could be a new target of periodontal treatment. PMID:25364726

  20. Adipose mesenchymal stem cells in the field of bone tissue engineering.

    PubMed

    Romagnoli, Cecilia; Brandi, Maria Luisa

    2014-04-26

    Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians. Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility, biodegradability and osteoinductivity. Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells (MSCs). In particular, a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue. These adipose stem cells (ASCs) can be obtained in large quantities with little donor site morbidity or patient discomfort, in contrast to the invasive and painful isolation of bone marrow MSCs. The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models, with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients. Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration, the lack of standardization in applied techniques makes the comparison between studies difficult. Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns, which must be resolved to permit application in regenerative medicine.

  1. Frequency-Dependence of Mechanically Stimulated Osteoblastic Calcification in Tissue-Engineered Bone In Vitro.

    PubMed

    Tanaka, Shigeo M; Tachibana, Kohei

    2015-09-01

    The effect of mechanical stimulation on osteogenesis remains controversial, especially with respect to the loading frequency that maximizes osteogenesis. Mechanical stimulation at an optimized frequency may be beneficial for the bone tissue regeneration to promote osteoblastic calcification. The objective of this study was to investigate the frequency-dependent effect of mechanical loading on osteoblastic calcification in the tissue-engineered bones in vitro. Tissue-engineered bones were constructed by seeding rat osteoblasts into a type I collagen sponge scaffold at a cell density of 1600 or 24,000 cells/mm(3). Sinusoidal compressive deformation at the peak of 0.2% was applied to the tissue-engineered bones at 0.2, 2, 10, 20, 40, and 60 Hz for 3 min/day for 14 consecutive days. Optically-monitored calcium content started to increase on days 5-7 and reached the highest value at 2 Hz on day 14; however, no increase was observed at 0.2 Hz and in the control. Ash content measured after the mechanical stimulation also showed the highest at 2 Hz despite the differences in cell seeding density. It was concluded that mechanical stimulation at 2 Hz showed the highest promotional effect for osteogenesis in vitro among the frequencies selected in this study.

  2. Effect of microstructure on micromechanical performance of dry cortical bone tissues

    SciTech Connect

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2009-12-15

    The mechanical properties of bone depend on composition and structure. Previous studies have focused on macroscopic fracture behavior of bone. In the present study, we performed microindentation studies to understand the deformation properties and microcrack-microstructure interactions of dry cortical bone. Dry cortical bone tissues from lamb femurs were tested using Vickers indentation with loads of 0.245-9.8 N. We examined the effect of bone microstructure on deformation and crack propagation using scanning electron microscopy (SEM). The results showed the significant effect of cortical bone microstructure on indentation deformation and microcrack propagation. The indentation deformation of the dry cortical bone was basically plastic at any applied load with a pronounced viscoelastic recovery, in particular at lower loads. More microcracks up to a length of approximately 20 {mu}m occurred when the applied load was increased. At loads of 4.9 N and higher, most microcracks were found to develop from the boundaries of haversian canals, osteocyte lacunae and canaliculi. Some microcracks propagated from the parallel direction of the longitudinal interstitial lamellae. At loads 0.45 N and lower, no visible microcracks were observed.

  3. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.

    PubMed

    Gao, Xiang; Zhang, Xiaohong; Song, Jinlin; Xu, Xiao; Xu, Anxiu; Wang, Mengke; Xie, Bingwu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2015-01-01

    The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering. PMID:26604759

  4. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering

    PubMed Central

    Gao, Xiang; Zhang, Xiaohong; Song, Jinlin; Xu, Xiao; Xu, Anxiu; Wang, Mengke; Xie, Bingwu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2015-01-01

    The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering. PMID:26604759

  5. Pesticide residues in adipose tissue from hippopotami (Hippopotamus amphibius L) living in and adjacent to the Luangwa River in Zambia.

    PubMed

    Flåøyen, A; Polder, A; Mwase, M; Almli, B; Musonda, M M

    2005-06-01

    The concentration of organochlorines (OCs) such as organochlorine pesticides and polychlorinated biphenyls were measured in adipose tissue collected from 14 male hippopotami at Mfuwe in the southern part of the Luangwa National Park, Zambia. The samples contained low levels of OCs, and the concentrations of OCs were comparable to or lower than reported for wild herbivores studied in other parts of the world. PMID:16137136

  6. A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies

    PubMed Central

    Parikh, Mukti R.; Belch, Andrew R.; Pilarski, Linda M; Kirshner, Julia

    2014-01-01

    Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions

  7. Metal debris concentrations in soft tissues adjacent to loosened femoral stems is higher in uncemented than cemented implants

    PubMed Central

    2014-01-01

    Background There are still many questions related to aseptic femoral stem loosening. Systemic and local immune responses to the implanted “foreign body” is one of the reasons for loosening. The purpose of the study was to measure metal ion concentration (Ti, Co, Cr, Mo, Ni, Al) around loosened femoral stems and compare their levels around uncemented and cemented implants. Methods This paper reports 50 hips operated for isolated stem loosening, in 50 patients at the mean age of 57 years (from 21 to 87). There were 25 cemented (Co,Cr29,Mo,Ni) and 25 uncemented (Ti, Al) stems. The mean follow-up from primary hip replacement to revision was 10.1 years (from 0.5 to 17). During the procedure, scar tissue around the stem was taken for analysis of metal ions. Results The concentrations of titanium and aluminium in soft tissues around uncemented loosened stems were higher than cemented ones (p < 0.001, p < 0.001 respectively). However, no statistically significant differences were observed between both types of stems in terms of ions of the metal of which cemented implants had been made of (Co, Cr, Mo, Ni). Conclusions In soft tissue around a loosened stem, the concentrations of metal ions from implants are much higher in case of uncemented stems than of cemented ones. Metal ions from vitalium femoral heads were found around uncemented stems in similar values to cemented streams. PMID:25098913

  8. The effects of corrosive substances on human bone, teeth, hair, nails, and soft tissue.

    PubMed

    Hartnett, Kristen M; Fulginiti, Laura C; Di Modica, Frank

    2011-07-01

    This research investigates the effects of household chemicals on human tissues. Five different human tissues (bone, tooth, hair, fingernails, and skin/muscle/fat) were immersed into six different corrosive agents. These agents consisted of hydrochloric acid, sulfuric acid, lye, bleach, organic septic cleaner, and Coca-Cola(®) soda. Tap water was used as a control. Tissue samples were cut to consistent sizes and submerged in the corrosive liquids. Over time, the appearance, consistency, and weight were documented. Hydrochloric acid was the most destructive agent in this study, consuming most tissues within 24 h. Sulfuric acid was the second most destructive agent in this study. Bleach, lye, and cola had no structural effects on the hard tissues of the body, but did alter the appearance or integrity of the hair, nails, or flesh in some way. The organic septic cleaner and tap water had no effect on any of the human tissue tested during the timeframe of the study. PMID:21447075

  9. The effects of corrosive substances on human bone, teeth, hair, nails, and soft tissue.

    PubMed

    Hartnett, Kristen M; Fulginiti, Laura C; Di Modica, Frank

    2011-07-01

    This research investigates the effects of household chemicals on human tissues. Five different human tissues (bone, tooth, hair, fingernails, and skin/muscle/fat) were immersed into six different corrosive agents. These agents consisted of hydrochloric acid, sulfuric acid, lye, bleach, organic septic cleaner, and Coca-Cola(®) soda. Tap water was used as a control. Tissue samples were cut to consistent sizes and submerged in the corrosive liquids. Over time, the appearance, consistency, and weight were documented. Hydrochloric acid was the most destructive agent in this study, consuming most tissues within 24 h. Sulfuric acid was the second most destructive agent in this study. Bleach, lye, and cola had no structural effects on the hard tissues of the body, but did alter the appearance or integrity of the hair, nails, or flesh in some way. The organic septic cleaner and tap water had no effect on any of the human tissue tested during the timeframe of the study.

  10. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques.

    PubMed

    Turner, C H; Rho, J; Takano, Y; Tsui, T Y; Pharr, G M

    1999-04-01

    Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.

  11. Bioactive glass/polymer composite scaffolds mimicking bone tissue.

    PubMed

    Gentile, Piergiorgio; Mattioli-Belmonte, Monica; Chiono, Valeria; Ferretti, Concetta; Baino, Francesco; Tonda-Turo, Chiara; Vitale-Brovarone, Chiara; Pashkuleva, Iva; Reis, Rui L; Ciardelli, Gianluca

    2012-10-01

    The aim of this work was the preparation and characterization of scaffolds with mechanical and functional properties able to regenerate bone. Porous scaffolds made of chitosan/gelatin (POL) blends containing different amounts of a bioactive glass (CEL2), as inorganic material stimulating biomineralization, were fabricated by freeze-drying. Foams with different compositions (CEL2/POL 0/100; 40/60; 70/30 wt %/wt) were prepared. Samples were crosslinked using genipin (GP) to improve mechanical strength and thermal stability. The scaffolds were characterized in terms of their stability in water, chemical structure, morphology, bioactivity, and mechanical behavior. Moreover, MG63 osteoblast-like cells and periosteal-derived stem cells were used to assess their biocompatibility. CEL2/POL samples showed interconnected pores having an average diameter ranging from 179 ± 5 μm for CEL2/POL 0/100 to 136 ± 5 μm for CEL2/POL 70/30. GP-crosslinking and the increase of CEL2 amount stabilized the composites to water solution (shown by swelling tests). In addition, the SBF soaking experiment showed a good bioactivity of the scaffold with 30 and 70 wt % CEL2. The compressive modulus increased by increasing CEL2 amount up to 2.1 ± 0.1 MPa for CEL2/POL 70/30. Dynamical mechanical analysis has evidenced that composite scaffolds at low frequencies showed an increase of storage and loss modulus with increasing frequency; furthermore, a drop of E' and E″ at 1 Hz was observed, and for higher frequencies both moduli increased again. Cells displayed a good ability to interact with the different tested scaffolds which did not modify cell metabolic activity at the analyzed points. MTT test proved only a slight difference between the two cytotypes analyzed.

  12. Value and limits of μ-CT for nondemineralized bone tissue processing.

    PubMed

    Draenert, Miriam Esther; Draenert, Alice Irène; Forriol, Francisco; Cerler, Michael; Kunzelmann, Karl-Heinz; Hickel, Reinhard; Draenert, Klaus

    2012-04-01

    An experimental approach was performed on 20 giant rabbits to establish the possibilities and limitations of μ-CT for routine processing of nondemineralized bone tissue. Hydroxyapatite (HA) or β-tricalciumphosphate (β-TCP) bead implants or a melange of both, microchambered and solid, were implanted into a standardized and precise defect in the patellar groove. The bone-healing phase was chosen for the histology considering 1 or 2 days, and 2, 3, and 6 weeks. Normal X-ray and μ-CT were applied on all specimens; five specimens in the 6-week stage were additionally processed according to the full range of conventional nondemineralized bone processing methods. μ-CT increased the possibilities of nondemineralized histology with respect to bone morphometry and a complete sequence of sections, thus providing a complete analysis of the bone response. μ-CT was limited in differentiating bone quality, cell analyses, and mineralization stages. The investigation based on normal X-rays is limited to defining integration and excluding the fibrous and bony encapsulation of loose implants. μ-CT allows a 3D evaluation of newly formed bone which is clearly marked against the ceramic implant. It does not allow, however, for the differentiation between woven and lamellar bone, the presentation of the canalicular lacunar system, or on the cell level, revealing canaliculi or details of the mineralization process which can be documented by high-resolution microradiography. Titer dynamics of bone formation remains the domain of polychromatic sequential labeling. The complete sequence of μ-CT slices enhances the possibilities for routine histology, tremendously allowing to the focus on detail histology to topographically well-defined cuts, thus providing more precise conclusions which take into consideration the whole implant.

  13. The relationship between the mechanical anisotropy of human cortical bone tissue and its microstructure

    NASA Astrophysics Data System (ADS)

    Espinoza Orias, Alejandro A.

    Orthopedics research has made significant advances in the areas of biomechanics, bone implants and bone substitute materials. However, to date there is no definitive model to explain the structure-property relationships in bone as a material to enable better implant designs or to develop a true biomechanical analog of bone. The objective of this investigation was to establish a relationship between the elastic anisotropy of cortical bone tissue and its microstructure. Ultrasonic wave propagation was used to measure stiffness coefficients for specimens sectioned along the length of a human femur. The elastic constants were orthotropic and varied with anatomical location. Stiffness coefficients were generally largest at the midshaft and stiffness anisotropy ratios were largest at the distal and proximal ends. These tests were run on four additional human femurs to assess the influence of phenotypic variation, and in most cases, it was found that phenotypes do not exert a significant effect. Stiffness coefficients were shown to be correlated as a power law relation to apparent density, but anisotropy ratios were not. Texture analysis was performed on selected samples to measure the orientation distribution of the bone mineral crystals. Inverse pole figures showed that bone mineral crystals had a preferred crystallographic orientation, coincident with the long axis of the femur, which is its principal loading direction. The degree of preferred orientation was represented in Multiples of a Random Distribution (MRD), and correlated to the anisotropy ratios. Variation in elastic anisotropy was shown to be primarily due to the bone mineral orientation. The results found in this work can be used to incorporate anisotropy into structural analysis for bone as a material.

  14. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus.

    PubMed

    van Lenthe, G Harry; Voide, Romain; Boyd, Steven K; Müller, Ralph

    2008-10-01

    Current practice to determine bone tissue modulus of murine cortical bone is to estimate it from three-point bending tests, using Euler-Bernoulli beam theory. However, murine femora are not perfect beams; hence, results can be inaccurate. Our aim was to assess the accuracy of beam theory, which we tested for two commonly used inbred strains of mice, C57BL/6 (B6) and C3H/He (C3H). We measured the three-dimensional structure of male and female B6 and C3H femora (N=20/group) by means of micro-computed tomography. For each femur five micro-finite element (micro-FE) models were created that simulated three-point bending tests with varying distances between the supports. Tissue modulus was calculated from beam theory using micro-FE results. The accuracy of beam theory was assessed by comparing the beam theory-derived moduli with the modulus as used in the micro-FE analyses. An additional set of fresh-frozen femora (10 B6 and 12 C3H) was biomechanically tested and subjected to the same micro-FE analyses. These combined experimental-computational analyses enabled an unbiased assessment of specimen-specific tissue modulus. We found that by using beam theory, tissue modulus was underestimated for all femora. Femoral geometry and size had strong effects on beam theory-derived tissue moduli. Owing to their relatively thin cortex, underestimation was markedly higher for B6 than for C3H. Underestimation was dependent on support width in a strain-specific manner. From our combined experimental-computational approach we calculated tissue moduli of 12.0+/-1.3 GPa and 13.4+/-2.1 GPa for B6 and C3H, respectively. We conclude that tissue moduli in murine femora are strongly underestimated when calculated from beam theory. Using image-based micro-FE analyses we could precisely quantify this underestimation. We showed that previously reported murine inbred strain-specific differences in tissue modulus are largely an effect of geometric differences, not accounted for by beam theory. We

  15. Design and optimization of a tissue-engineered bone graft substitute

    NASA Astrophysics Data System (ADS)

    Shimko, Daniel Andrew

    2004-12-01

    In 2000, 3.1 million surgical procedures on the musculoskeletal system were reported in the United States. For many of these cases, bone grafting was essential for successful fracture stabilization. Current techniques use intact bone obtained either from the patient (autograft) or a cadaver (allograft) to repair large defects, however, neither source is optimal. Allografts suffer integration problems, and for autografts, the tissue supply is limited. Because of these shortcomings, and the high demand for graft tissues, alternatives are being explored. To successfully engineer a bone graft replacement, one must employ a three pronged research approach, addressing (1) the cells that will inhabit the new tissue, (2) the culture environment that these cells will be exposed to, and (3) the scaffold in which these cells will reside. The work herein examines each of these three aspects in great detail. Both adult and embryonic stem cells (ESCs) were considered for the tissue-engineered bone graft. Both exhibited desirable qualities, however, neither were optimal in all categories examined. In the end, the possibility of teratoma formation and ethical issues surrounding ESCs, made the use of adult marrow-derived stem cells in the remaining experiments obligatory. In subsequent experiments, the adult stem cells' ability to form bone was optimized. Basic fibroblast growth factor, fetal bovine serum, and extracellular calcium supplementation studies were all performed. Ultimately, adult stem cells cultured in alpha-MEM supplemented with 10% fetal bovine serum, 10mM beta-glycerophosphate, 10nM dexamethasone, 50mug/ml ascorbic acid, 1%(v/v) antibiotic/antimycotic, and 10.4mM CaCl2 performed the best, producing nearly four times more mineral than any other medium formulation. Several scaffolds were then investigated including those fabricated from poly(alpha-hydroxy esters), tantalum, and poly-methylmethacrylate. In the final study, the most appealing cell type, medium

  16. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Cao, Xianshuo; Wang, Jun; Liu, Min; Chen, Yong; Cao, Yang; Yu, Xiaolong

    2015-12-01

    A novel composite scaffold based on chitosan-collagen/organomontmorillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

  17. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    SciTech Connect

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.; Sadove, A.M.; Heuvelman, D.; Feder, J. )

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically in all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.

  18. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review.

    PubMed

    Bose, Susmita; Tarafder, Solaiman

    2012-04-01

    Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications.

  19. Bone fibrillogenesis and mineralization: quantitative analysis and implications for tissue elasticity.

    PubMed

    Vuong, Jenny; Hellmich, Christian

    2011-10-21

    Data from bone drying, demineralization, and deorganification tests, collected over a time span of more than 80 years, evidence a myriad of different chemical compositions of different bone materials. However, careful analysis of the data, as to extract the chemical concentrations of hydroxyapatite, of water, and of organic material (mainly collagen) in the extracellular bone matrix, reveals an astonishing fact: it appears that there exists a unique bilinear relationship between organic concentration and mineral concentration, across different species, organs, and age groups, from early childhood to old age: During organ growth, the mineral concentration increases linearly with the organic concentration (which increases during fibrillogenesis), while from adulthood on, further increase of the mineral concentration is accompanied by a decrease in organic concentration. These relationships imply unique mass density-concentration laws for fibrillogenesis and mineralization, which - in combination with micromechanical models - deliver 'universal' mass density-elasticity relationships in extracellular bone matrix-valid across different species, organs, and ages. They turn out as quantitative reflections of the well-instrumented interplay of osteoblasts, osteoclasts, osteocytes, and their precursors, controlling, in a fine-tuned fashion, the chemical genesis and continuous transformation of the extracellular bone matrix. Consideration of the aforementioned rules may strongly affect the potential success of tissue engineering strategies, in particular when translating, via micromechanics, the aforementioned growth and mineralization characteristics into tissue-specific elastic properties.

  20. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering

    PubMed Central

    Kamath, Manjunath Srinivas; Ahmed, Shiek SSJ; Dhanasekaran, M; Santosh, S Winkins

    2014-01-01

    Biomaterials-based three-dimensional scaffolds are being extensively investigated in bone tissue engineering. A potential scaffold should be osteoconductive, osteoinductive, and osteogenic for enhanced bone formation. In this study, a three-dimensional porous polycapro-lactone (PCL) scaffold was engineered for prolonged release of resveratrol. Resveratrol-loaded albumin nanoparticles (RNP) were synthesized and entrapped into a PCL scaffold to form PCL-RNP by a solvent casting and leaching method. An X-ray diffraction study of RNP and PCL-RNP showed that resveratrol underwent amorphization, which is highly desired in drug delivery. Furthermore, Fourier transform infrared spectroscopy indicates that resveratrol was not chemically modified during the entrapment process. Release of resveratrol from PCL-RNP was sustained, with a cumulative release of 64% at the end of day 12. The scaffold was evaluated for its bone-forming potential in vitro using human bone marrow-derived mesenchymal stem cells for 16 days. Alkaline phosphatase activity assayed on days 8 and 12 showed a significant increase in activity (1.6-fold and 1.4-fold, respectively) induced by PCL-RNP compared with the PCL scaffold (the positive control). Moreover, von Kossa staining for calcium deposits on day 16 showed increased mineralization in PCL-RNP. These results suggest PCL-RNP significantly improves mineralization due to its controlled and prolonged release of resveratrol, thereby increasing the therapeutic potential in bone tissue engineering. PMID:24399875

  1. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review

    PubMed Central

    Bose, Susmita; Tarafder, Solaiman

    2012-01-01

    Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. PMID:22127225

  2. The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors.

    PubMed

    Vetsch, Jolanda Rita; Müller, Ralph; Hofmann, Sandra

    2015-08-01

    Bone tissue engineering aims to overcome the drawbacks of current bone regeneration techniques in orthopaedics. Bioreactors are widely used in the field of bone tissue engineering, as they help support efficient nutrition of cultured cells with the possible combination of applying mechanical stimuli. Beneficial influencing parameters of in vitro cultures are difficult to find and are mostly determined by trial and error, which is associated with significant time and money spent. Mathematical simulations can support the finding of optimal parameters. Simulations have evolved over the last 20 years from simple analytical models to complex and detailed computational models. They allow researchers to simulate the mechanical as well as the biological environment experienced by cells seeded on scaffolds in a bioreactor. Based on the simulation results, it is possible to give recommendations about specific parameters for bone bioreactor cultures, such as scaffold geometries, scaffold mechanical properties, the level of applied mechanical loading or nutrient concentrations. This article reviews the evolution in simulating various aspects of dynamic bone culture in bioreactors and reveals future research directions.

  3. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.

    PubMed

    Salguero, Laura; Saadat, Fatemeh; Sevostianov, Igor

    2014-10-17

    The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes - produced by age, microgravity, or some diseases - on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone's microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined.

  4. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering.

    PubMed

    Kim, Beob Soo; Kim, Eun Ji; Choi, Ji Suk; Jeong, Ji Hoon; Jo, Chris Hyunchul; Cho, Yong Woo

    2014-11-01

    The natural tendon-to-bone region has a gradient in structure and composition, which is translated into a spatial variation of chemical, physical, and biological properties. This unique transitional tissue between bone and tendon is not normally recreated during natural bone-to-tendon healing. In this study, we have developed a human collagen-based multilayer scaffold mimicking the tendon-to-bone region. The scaffold consists of four different layers with the following composition gradient: (a) a tendon layer composed of collagen; (b) an uncalcified fibrocartilage layer composed of collagen and chondroitin sulfate; (c) a calcified fibrocartilage layer composed of collagen and less apatite; (d) a bone layer composed of collagen and apatite. The chemical, physical, and mechanical properties of the scaffold were characterized by a scanning electron microscope, porosimeter, universal tensile machine, Fourier transform infrared spectrometer, energy dispersive X-ray analysis apparatus, and thermogravimetric analysis apparatus. The multilayer scaffold provided a gradual transition of the physical, chemical, and mechanical environment and supported the adhesion and proliferation of human fibroblasts, chondrocytes, and osteoblasts toward each corresponding matrix. Overall, our results suggest the feasibility of a human collagen-based multilayer scaffold for regeneration of hard-to-soft interface tissues.

  5. Calcium phosphate compatible bone cement: Characterization, bonding properties and tissue response

    NASA Astrophysics Data System (ADS)

    Roemhildt, Maria Lynn

    A novel, inorganic, bone cement, containing calcium phosphate, developed for implant fixation was evaluated. Setting properties were determined over a range of temperatures. The flow of the cement was greatly increased by application of vibration. Changes in the cement during hydration and aging were evaluated. Compressive strength of the cement over time was studied under simulated physiological conditions from 1 hour to 1 year after setting. After 1 day, this cement had equivalent compressive strength to commercially used PMMA cement. The strength was found to increase over 1 month and high strength was maintained up to 1 year. The shear strength of the cement-metal interface was studied in vitro using a pull-out test. Prepared specimens were stored under physiological conditions and tested at 4 hours, 24 hours, and 60 days. Comparable interfacial shear strength values were found at 4 hours, 24 hours and 60 days for the experimental cement and were not significantly different from values obtained for PMMA cement. In vivo tissue response was evaluated after cement implantation in the femoral medullary canal in canines. Tissue response and bonding at the cement-bone interface were evaluated at 2, 6, and 12 weeks. Cortical bone was found in direct contact with the OC-cement and was healthy. The strength of the cement-bone interface, measured using a push-out test, was significantly higher for the experimental cement than for commercial PMMA bone cement.

  6. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.

    PubMed

    Salgado, Christiane Laranjo; Grenho, Liliana; Fernandes, Maria Helena; Colaço, Bruno Jorge; Monteiro, Fernando Jorge

    2016-01-01

    Designing biomimetic biomaterials inspired by the natural complex structure of bone and other hard tissues is still a challenge nowadays. The control of the biomineralization process onto biomaterials should be evaluated before clinical application. Aiming at bone regeneration applications, this work evaluated the in vitro biodegradation and interaction between human bone marrow stromal cells (HBMSC) cultured on different collagen/nanohydroxyapatite cryogels. Cell proliferation, differentiation, morphology, and metabolic activity were assessed through different protocols. All the biocomposite materials allowed physiologic apatite deposition after incubation in simulated body fluid and the cryogel with the highest nanoHA content showed to have the highest mechanical strength (DMA). The study clearly showed that the highest concentration of nanoHA granules on the cryogels were able to support cell type's survival, proliferation, and individual functionality in a monoculture system, for 21 days. In fact, the biocomposites were also able to differentiate HBMSCs into osteoblastic phenotype. The composites behavior was also assessed in vivo through subcutaneous and bone implantation in rats to evaluate its tissue-forming ability and degradation rate. The cryogels Coll/nanoHA (30 : 70) promoted tissue regeneration and adverse reactions were not observed on subcutaneous and bone implants. The results achieved suggest that scaffolds of Coll/nanoHA (30 : 70) should be considered promising implants for bone defects that present a grotto like appearance with a relatively small access but a wider hollow inside. This material could adjust to small dimensions and when entering into the defect, it could expand inside and remain in close contact with the defect walls, thus ensuring adequate osteoconductivity.

  7. Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering.

    PubMed

    Gu, Zhipeng; Xie, Huixu; Li, Li; Zhang, Xu; Liu, Fei; Yu, Xixun

    2013-05-01

    The key factor for regenerating large segmental bone defects through bone tissue engineering is angiogenesis in scaffolds. Attempts to overcome this problem, it is a good strategy to develop a new scaffold with bioactivity to induce angiogenesis in bone tissue engineering. In our previous research, the ability of strontium-doped calcium polyphosphate (SCPP) to stimulate the release of angiogenic growth factors from cultured osteoblasts was studied. This study was performed to determine the ability of SCPP to induce angiogenesis within in vitro co-culture model of human umbilical vein endothelial cells (HUVEC) and osteoblasts co-cultured. The bioactivity of developed scaffolds to induce angiogenesis in vivo was also researched in this paper. Co-cultured model has been developed in vitro and then cultured with SCPP scaffold as well as calcium polyphosphate (CPP) scaffold and hydroxylapatite (HA) scaffold. The results showed that the optimal ratio of HUVEC and osteoblasts co-cultured model for in vitro angiogenesis was 5:1. The model could maintain for more than 35 days when cultured with the scaffold and show the best activity at 21st day. Compared with those in CPP and HA scaffold, the formation of tube-like structure and the expression of platelet endothelial cell adhesion molecule in co-cultured model is better in SCPP scaffold. The in vivo immunohistochemistry staining for VEGF also showed that SCPP had a potential to promote the formation of angiogenesis and the regeneration of bone. SCPP scaffold could be served as a potential biomaterial with stimulating angiogenesis in bone tissue engineering and bone repair.

  8. In silico evolution of functional morphology: A test on bone tissue biomechanics.

    PubMed

    de Margerie, Emmanuel; Tafforeau, Paul; Rakotomanana, Lalaonirina

    2006-10-22

    Evolutionary algorithms (EAs) use Darwinian principles--selection among random variation and heredity--to find solutions to complex problems. Mostly used in engineering, EAs gain growing interest in ecology and genetics. Here, we assess their usefulness in functional morphology, introducing finite element modelling (FEM) as a simulated mechanical environment for evaluating the 'fitness' of randomly varying structures. We used this method to identify biomechanical adaptations in bone tissue, a long-lasting problem in skeletal morphology. The algorithm started with a bone tissue model containing randomly distributed vascular spaces. The EA randomly mutated the distribution of vascular spaces, and selected the new structure if its mechanical resistance was increased. After some thousands of generations, organized phenotypes emerged, containing vascular canals and sinuses, mimicking real bone tissue organizations. This supported the hypothesis that natural bone microstructures can result from biomechanical adaptation. Despite its limited faithfulness to reality, we discuss the ability of the EA+FEM method to assess adaptation in a dynamic evolutionary framework, which is not possible in the real world because of the generation times of macro-organisms. We also point out the interesting potential of EAs to simulate not only adaptation, but also concurrent evolutionary phenomenons such as historical contingency.

  9. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.

    PubMed

    Lastra, M Laura; Molinuevo, M Silvina; Giussi, Juan M; Allegretti, Patricia E; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, M Susana

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field.

  10. Bisphosphonate-Based Strategies for Bone Tissue Engineering and Orthopedic Implants

    PubMed Central

    Cattalini, Juan Pablo; Boccaccini, Aldo R.; Lucangioli, Silvia

    2012-01-01

    Bisphosphonates (BPs) are a group of well-established drugs that are applied in the development of metabolic bone disorder-related therapies. There is increasing interest also in the application of BPs in the context of bone tissue engineering, which is the topic of this review, in which an extensive overview of published studies on the development and applications of BPs-based strategies for bone regeneration is provided with special focus on the rationale for the use of different BPs in three-dimensional (3D) bone tissue scaffolds. The different alternatives that are investigated to address the delivery and sustained release of these therapeutic drugs in the nearby tissues are comprehensively discussed, and the most significant published approaches on bisphosphonate-conjugated drugs in multifunctional 3D scaffolds as well as the role of BPs within coatings for the improved fixation of orthopedic implants are presented and critically evaluated. Finally, the authors' views regarding the remaining challenges in the fields and directions for future research efforts are highlighted. PMID:22440082

  11. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.

    PubMed

    Lastra, M Laura; Molinuevo, M Silvina; Giussi, Juan M; Allegretti, Patricia E; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, M Susana

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field. PMID:25842133

  12. Boon and Bane of Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis.

    PubMed

    Schmidt-Bleek, Katharina; Kwee, Brian J; Mooney, David J; Duda, Georg N

    2015-08-01

    Delayed healing or nonhealing of bone is an important clinical concern. Although bone, one of the two tissues with scar-free healing capacity, heals in most cases, healing is delayed in more than 10% of clinical cases. Treatment of such delayed healing condition is often painful, risky, time consuming, and expensive. Tissue healing is a multistage regenerative process involving complex and well-orchestrated steps, which are initiated in response to injury. At best, these steps lead to scar-free tissue formation. At the onset of healing, during the inflammatory phase, stationary and attracted macrophages and other immune cells at the fracture site release cytokines in response to injury. This initial reaction to injury is followed by the recruitment, proliferation, and differentiation of mesenchymal stromal cells, synthesis of extracellular matrix proteins, angiogenesis, and finally tissue remodeling. Failure to heal is often associated with poor revascularization. Since blood vessels mediate the transport of circulating cells, oxygen, nutrients, and waste products, they appear essential for successful healing. The strategy of endogenous regeneration in a tissue such as bone is interesting to analyze since it may represent a blueprint of successful tissue formation. This review highlights the interdependency of the time cascades of inflammation, angiogenesis, and tissue regeneration. A better understanding of these inter-relations is mandatory to early identify patients at risk as well as to overcome critical clinical conditions that limit healing. Instead of purely tolerating the inflammatory phase, modulations of inflammation (immunomodulation) might represent a valid therapeutic strategy to enhance angiogenesis and foster later phases of tissue regeneration.

  13. Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM.

    PubMed

    Deegan, Anthony J; Cinque, Gianfelice; Wehbe, Katia; Konduru, Sandeep; Yang, Ying

    2015-02-01

    One novel tissue engineering approach to mimic in vivo bone formation is the use of aggregate or micromass cultures. Various qualitative and quantitative techniques, such as histochemical staining, protein assay kits and RT-PCR, have been used previously on cellular aggregate studies to investigate how these intricate arrangements lead to mature bone tissue. However, these techniques struggle to reveal spatial and temporal distribution of proliferation and mineralization simultaneously. Synchrotron-based Fourier transform infrared microspectroscopy (micro-FTIR) offers a unique insight at the molecular scale by coupling high IR sensitivity to organic matter with the high spatial resolution allowed by diffraction limited SR microbeam. This study is set to investigate the effects of culture duration and aggregate size on the dynamics and spatial distribution of calcification in engineered bone aggregates by a combination of micro-FTIR and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX). A murine bone cell line has been used, and small/large bone aggregates have been induced using different chemically treated culture substrates. Our findings suggest that bone cell aggregate culturing can greatly increase levels of mineralization over short culture periods. The size of the aggregates influences mineralisation rates with larger aggregates mineralizing at a faster rate than their smaller counterparts. The micro-FTIR mapping has demonstrated that mineralization in the larger aggregates initiated from the periphery and spread to the centre, whilst the smaller aggregates have more minerals in the centre at the early stage and deposited more in the periphery after further culturing, implying that aggregate size influences calcification distribution and development over time. SEM/EDX data correlates well with the micro-FTIR results for the total mineral content. Thus, synchrotron-based micro-FTIR can accurately track mineralization process

  14. Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM.

    PubMed

    Deegan, Anthony J; Cinque, Gianfelice; Wehbe, Katia; Konduru, Sandeep; Yang, Ying

    2015-02-01

    One novel tissue engineering approach to mimic in vivo bone formation is the use of aggregate or micromass cultures. Various qualitative and quantitative techniques, such as histochemical staining, protein assay kits and RT-PCR, have been used previously on cellular aggregate studies to investigate how these intricate arrangements lead to mature bone tissue. However, these techniques struggle to reveal spatial and temporal distribution of proliferation and mineralization simultaneously. Synchrotron-based Fourier transform infrared microspectroscopy (micro-FTIR) offers a unique insight at the molecular scale by coupling high IR sensitivity to organic matter with the high spatial resolution allowed by diffraction limited SR microbeam. This study is set to investigate the effects of culture duration and aggregate size on the dynamics and spatial distribution of calcification in engineered bone aggregates by a combination of micro-FTIR and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX). A murine bone cell line has been used, and small/large bone aggregates have been induced using different chemically treated culture substrates. Our findings suggest that bone cell aggregate culturing can greatly increase levels of mineralization over short culture periods. The size of the aggregates influences mineralisation rates with larger aggregates mineralizing at a faster rate than their smaller counterparts. The micro-FTIR mapping has demonstrated that mineralization in the larger aggregates initiated from the periphery and spread to the centre, whilst the smaller aggregates have more minerals in the centre at the early stage and deposited more in the periphery after further culturing, implying that aggregate size influences calcification distribution and development over time. SEM/EDX data correlates well with the micro-FTIR results for the total mineral content. Thus, synchrotron-based micro-FTIR can accurately track mineralization process

  15. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches.

    PubMed

    Hempel, Ute; Müller, Katrin; Preissler, Carolin; Noack, Carolin; Boxberger, Sabine; Dieter, Peter; Bornhäuser, Martin; Wobus, Manja

    2016-01-01

    Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the "aspect plastic adherence" without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts. PMID:27293446

  16. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches

    PubMed Central

    Hempel, Ute; Müller, Katrin; Preissler, Carolin; Noack, Carolin; Boxberger, Sabine; Dieter, Peter; Bornhäuser, Martin; Wobus, Manja

    2016-01-01

    Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the “aspect plastic adherence” without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts. PMID:27293446

  17. Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair

    PubMed Central

    Herrmann, Marietta; Verrier, Sophie; Alini, Mauro

    2015-01-01

    The gold standard for the treatment of critical-size bone defects is autologous or allogenic bone graft. This has several limitations including donor site morbidity and the restricted supply of graft material. Cell-based tissue engineering strategies represent an alternative approach. Mesenchymal stem cells (MSCs) have been considered as a source of osteoprogenitor cells. More recently, focus has been placed on the use of endothelial progenitor cells (EPCs), since vascularization is a critical step in bone healing. Although many of these approaches have demonstrated effectiveness for bone regeneration, cell-based therapies require time consuming and cost-expensive in vitro cell expansion procedures. Accordingly, research is becoming increasingly focused on the homing and stimulation of native cells. The stromal cell-derived factor-1 (SDF-1) – CXCR4 axis has been shown to be critical for the recruitment of MSCs and EPCs. Vascular endothelial growth factor (VEGF) is a key factor in angiogenesis and has been targeted in many studies. Here, we present an overview of the different approaches for delivering homing factors to the defect site by absorption or incorporation to biomaterials, gene therapy, or via genetically manipulated cells. We further review strategies focusing on the stimulation of endogenous cells to support bone repair. Finally, we discuss the major challenges in the treatment of critical-size bone defects and fracture non-unions. PMID:26082926

  18. Biocomposite cryogels as tissue-engineered biomaterials for regeneration of critical-sized cranial bone defects.

    PubMed

    Mishra, Ruchi; Goel, Sudhir Kumar; Gupta, Kailash Chand; Kumar, Ashok

    2014-02-01

    Analysis of the in vivo regeneration capability of any tissue-engineered biomaterial is necessary once it shows potential characteristics during in vitro studies. Thus, we applied polyvinyl alcohol-tetraethylorthosilicate-alginate-calcium oxide (PTAC) biocomposite cryogel on critical-sized cranial bone defects in wistar rats for examining the comparative bone regeneration of cryogel-treated and nontreated defects over a period of 4 weeks. An in-depth analysis was performed from macroscopic level till the gene level. Bone regeneration in cryogel-treated defects was clearly evident from the results, whereas the nontreated group did not show any defect healing except at few peripheral areas. At the macroscopic level, micro-computed tomography analysis revealed new bone formation. This was further confirmed at the cellular level, wherein, new bone formation was demonstrated by hematoxylin and eosin staining. Osteoblastic differentiation was further validated by immunohistological staining of runt-related transcription factor-2 (Runx-2) protein and via calcium-phosphate crystal formation after 2 weeks through scanning electron microscopy and energy dispersive X-ray spectroscopy. Finally, at the gene level, real-time PCR analysis confirmed the mRNA expression of osteoblastic markers, that is, runx-2, collagen type I (Col I), alkaline phosphatase (ALP), and osteocalcin (OCN). Therefore, the results of in vivo cranial defect model studies suggest that PTAC biocomposite cryogels can show suitable potential for human bone regeneration. PMID:24147880

  19. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives

    PubMed Central

    Fu, Qiang; Saiz, Eduardo; Rahaman, Mohamed N.; Tomsia, Antoni P.

    2011-01-01

    The repair and regeneration of large bone defects resulting from disease or trauma remains a significant clinical challenge. Bioactive glass has appealing characteristics as a scaffold material for bone tissue engineering, but the application of glass scaffolds for the repair of load-bearing bone defects is often limited by their low mechanical strength and fracture toughness. This paper provides an overview of recent developments in the fabrication and mechanical properties of bioactive glass scaffolds. The review reveals the fact that mechanical strength is not a real limiting factor in the use of bioactive glass scaffolds for bone repair, an observation not often recognized by most researchers and clinicians. Scaffolds with compressive strengths comparable to those of trabecular and cortical bones have been produced by a variety of methods. The current limitations of bioactive glass scaffolds include their low fracture toughness (low resistance to fracture) and limited mechanical reliability, which have so far received little attention. Future research directions should include the development of strong and tough bioactive glass scaffolds, and their evaluation in unloaded and load-bearing bone defects in animal models. PMID:21912447

  20. Biocomposite cryogels as tissue-engineered biomaterials for regeneration of critical-sized cranial bone defects.

    PubMed

    Mishra, Ruchi; Goel, Sudhir Kumar; Gupta, Kailash Chand; Kumar, Ashok

    2014-02-01

    Analysis of the in vivo regeneration capability of any tissue-engineered biomaterial is necessary once it shows potential characteristics during in vitro studies. Thus, we applied polyvinyl alcohol-tetraethylorthosilicate-alginate-calcium oxide (PTAC) biocomposite cryogel on critical-sized cranial bone defects in wistar rats for examining the comparative bone regeneration of cryogel-treated and nontreated defects over a period of 4 weeks. An in-depth analysis was performed from macroscopic level till the gene level. Bone regeneration in cryogel-treated defects was clearly evident from the results, whereas the nontreated group did not show any defect healing except at few peripheral areas. At the macroscopic level, micro-computed tomography analysis revealed new bone formation. This was further confirmed at the cellular level, wherein, new bone formation was demonstrated by hematoxylin and eosin staining. Osteoblastic differentiation was further validated by immunohistological staining of runt-related transcription factor-2 (Runx-2) protein and via calcium-phosphate crystal formation after 2 weeks through scanning electron microscopy and energy dispersive X-ray spectroscopy. Finally, at the gene level, real-time PCR analysis confirmed the mRNA expression of osteoblastic markers, that is, runx-2, collagen type I (Col I), alkaline phosphatase (ALP), and osteocalcin (OCN). Therefore, the results of in vivo cranial defect model studies suggest that PTAC biocomposite cryogels can show suitable potential for human bone regeneration.

  1. A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds

    PubMed Central

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Lamberti, Luciano; Monno, Giuseppe

    2016-01-01

    Complexity of scaffold geometries and biological mechanisms involved in the bone generation process make the design of scaffolds a quite challenging task. The most common approaches utilized in bone tissue engineering require costly protocols and time-consuming experiments. In this study we present an algorithm that, combining parametric finite element models of scaffolds with numerical optimization methods and a computational mechano-regulation model, is able to predict the optimal scaffold microstructure. The scaffold geometrical parameters are perturbed until the best geometry that allows the largest amounts of bone to be generated, is reached. We study the effects of the following factors: (1) the shape of the pores; (2) their spatial distribution; (3) the number of pores per unit area. The optimal dimensions of the pores have been determined for different values of scaffold Young's modulus and compression loading acting on the scaffold upper surface. Pores with rectangular section were predicted to lead to the formation of larger amounts of bone compared to square section pores; similarly, elliptic pores were predicted to allow the generation of greater amounts of bone compared to circular pores. The number of pores per unit area appears to have rather negligible effects on the bone regeneration process. Finally, the algorithm predicts that for increasing loads, increasing values of the scaffold Young's modulus are preferable. The results shown in the article represent a proof-of-principle demonstration of the possibility to optimize the scaffold microstructure geometry based on mechanobiological criteria. PMID:26722213

  2. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis.

    PubMed

    Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R

    2014-07-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis.

  3. Spectroscopic characterization of bone tissue of experimental animals after glucocorticoid treatment and recovery period

    NASA Astrophysics Data System (ADS)

    Mitić, Žarko J.; Najman, Stevo J.; Cakić, Milorad D.; Ajduković, Zorica R.; Ignjatović, Nenad L.; Nikolić, Ružica S.; Nikolić, Goran M.; Stojanović, Sanja T.; Vukelić, Marija Đ.; Trajanović, Miroslav D.

    2014-09-01

    The influence of glucocorticoids on the composition and mineral/organic content of the mandible in tested animals after recovery and healing phase was investigated in this work. The results of FTIR analysis demonstrated that bone tissue composition was changed after glucocorticoid treatment. The increase of calcium, magnesium, phosphorus content and mineral part of bones was statistically significant in recovery phase and in treatment phase that included calcitonin and thymus extract. Some changes also happened in the organic part of the matrix, as indicated by intensity changes for already present IR bands and the appearance of new IR bands in the region 3500-1300 cm-1.

  4. Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Thein-Han, W. W.; Misra, R. D. K.

    2009-09-01

    We describe the structure of biodegradable chitosan-nanohydroxyapatite (nHA) composites scaffolds and their interaction with pre-osteoblasts for bone tissue engineering. The scaffolds were fabricated via freezing and lyophilization. The nanocomposite scaffolds were characterized by a highly porous structure and pore size of ˜50-125 μm, irrespective of nHA content. The observed significant enhancement in the biological response of pre-osteoblast on nanocomposite scaffolds expressed in terms of cell attachment, proliferation, and widespread morphology in relation to pure chitosan points toward their potential use as scaffold material for bone regeneration.

  5. Design and application of chitosan/biphasic calcium phosphate porous scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sendemir-Urkmez, Aylin

    For the restoration of maxillofacial bone tissue, design of novel tissue engineering scaffolds capable of inducing bone remodeling through the delivery of mesenchymal stem cells (MSCs) and an angiogenic growth factor, directly at the site of the defect was investigated in order to replace autogenous cancellous bone grafts with synthetic materials. Porous, three dimensional scaffolds were fabricated by a freeze drying method. In culture media, biphasic calcium phosphate particles within chitosan produced a surface reprecipitate of a composition similar to natural apatite that led to a uniform distribution of cells and mineralized ECM through chemotaxis. Further, the reprecipitation regulated the differentiation pathway and phenotype commitment of stem cells by altering the initial cell attachment morphology and actin cytoskeleton organization. In order to induce neovascularization after implantation, constructs were designed to be loaded with gelatin microspheres that delivered basic fibroblast growth factor (bFGF), a potent angiogenic factor. In vitro proliferation tests performed on fibroblastic cells showed no detectible loss of bFGF activity when delivered through enzymatic degradation of gelatin. Laser scanning confocal microscopy was used to demonstrate that gelatin microspheres can be injected evenly into cell-scaffold constructs owing to the spongy characteristics of the scaffold. To examine the binding interactions of bFGF with surface bound gelatin, a label free biosensor system, Biomolecular INteraction Detection sensor (BIND) was used. Results confirm that the principal interaction that takes place between bFGF and gelatin is electrostatic. Cell loaded tissue engineered constructs were produced in vitro at clinically relevant sizes and implanted with and without bFGF into a porcine mandibular defect model. Tissue engineered constructs facilitated the healing of mandibular defects only if combined with delivery of bFGF via gelatin microspheres. b

  6. Low temperature setting polymer-ceramic composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sethuraman, Swaminathan

    Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo

  7. Wound healing after irradiation of bone tissues by Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Watanabe, Hisashi; Yoshino, Toshiaki; Aoki, Akira; Ishikawa, Isao

    1997-05-01

    Clinical applications of Er:YAG laser are now developing in periodontics and restorative dentistry. To date, there have been few studies indicating safety criteria for intraoral usage of the Er:YAG laser. The present study examined the effects of the Er:YAG laser on bone tissues, supposing mis- irradiation in the oral cavity during dental application, especially periodontal surgery. The experiments were performed using the newly-developed Er:YAG laser apparatus equipped with a contact probe. In experiment 1, 10 pulses of laser irradiation were administered to the parietal bone of a rat at 50, 150 and 300 mJ/pulse with and without water irrigation, changing the irradiation distance to 0, 5, 10 and 20 mm, respectively. As a control, electric knife was employed. Macroscopic and SEM observations of the wound surface were performed. In experiment 2, laser irradiation in a straight line was performed at 150 mJ/pulse, 1- pps and 0,5, 10 mm irradiation distance without water irrigation. Wound healing was observed histologically at 0, 3, 7, 14 and 28 days after laser irradiation and compared with that of the control. Non-contact irradiation by Er:YAG laser did not cause severe damage to the parietal bone tissue under water irrigation. Contact irradiation induced a limited wound, however, new bone formation was observed 28 days after laser irradiation, while osseous defect with thermal degenerative tissue remained at the control site. In conclusion, irradiation with an Er:YAG laser would not cause severe damage to surrounding bone tissues in the oral cavity when used within the usual power settings for dental treatment. Furthermore, this laser may be applicable for osseous surgery because of its high ablation efficiency and good wound healing after irradiation.

  8. Connective tissue-bone onlay graft with enamel matrix derivative for treatment of gingival recession: a case report.

    PubMed

    Nozawa, Takeshi; Sugiyama, Takahiko; Satoh, Tohru; Tanaka, Koji; Enomoto, Hiroaki; Ito, Koichi

    2002-12-01

    We describe a case of gingival recession in which root coverage and coronal bone regrowth were achieved after treatment with a connective tissue-bone graft and enamel matrix derivative. The connective tissue-bone graft was harvested from a maxillary edentulous area and then curved to fit the root surfaces of the maxillary left central and lateral incisors. Enamel matrix derivative was applied to the root surfaces, and the connective tissue-bone graft was fixed to the interdental bone by a titanium screw. Six months later, the exposed roots were covered with thick gingiva, and coronal regrowth of thick bone was evident at reentry surgery. This technique is useful for esthetic restoration placement with an intracrevicular margin on teeth with a thin, receding gingiva.

  9. Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors

    PubMed Central

    de Peppo, Giuseppe Maria; Vunjak-Novakovic, Gordana; Marolt, Darja

    2014-01-01

    Human pluripotent stem cells represent an unlimited source of skeletal tissue progenitors for studies of bone biology, pathogenesis, and the development of new approaches for bone reconstruction and therapies. In order to construct in vitro models of bone tissue development and to grow functional, clinical-size bone substitutes for transplantation, cell cultivation in three-dimensional environments composed of porous osteoconductive scaffolds and dynamic culture systems—bioreactors—has been studied. Here, we describe a stepwise procedure for the induction of human embryonic and induced pluripotent stem cells (collectively termed PSCs) into mesenchymal-like progenitors, and their subsequent cultivation on decellularized bovine bone scaffolds in perfusion bioreactors, to support the development of viable, stable bone-like tissue in defined geometries. PMID:24281874

  10. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources.

    PubMed

    Stockmann, Philipp; Park, Jung; von Wilmowsky, Cornelius; Nkenke, Emeka; Felszeghy, Endre; Dehner, Jan-Friedrich; Schmitt, Christian; Tudor, Christian; Schlegel, Karl Andreas

    2012-06-01

    Due to donor side morbidity and the absence of osteogenic properties in bone substitutes, there is a growing need for an alternative to traditional bone grafting within the scope of tissue engineering. This animal study was conducted to compare the in vivo osteogenic potential of adipose-derived (AD), periosteum-derived (PD) and bone marrow-derived (BM) mesenchymal stem/progenitor cells (MSC). Autologous mesenchymal stem/progenitor cells of named tissue origin were induced into osteogenic differentiation following in vitro cell expansion. Ex vivo cultivated cells were seeded on a collagen scaffold and subsequently added to freshly created monocortical calvarial bone defects in 21 domestic pigs. Pure collagen scaffold served as a control defect. The animals were sacrificed at specific time points and de novo bone formation was quantitatively analyzed by histomorphometry. Bone volume/total defect volume (BV/TV) and the mineralization rate of newly formed bone were compared among the groups. In the early stages of wound healing, up to 30 days, the test defects did not show better bone regeneration than those in the control defect, but the bone healing process in the test defects was accelerated in the later stage compared to those in the control defect. All the test defects showed complete osseous healing after 90 days compared to those in the control defect. During the observation period, no significant differences in BV/TV and mineralization of newly formed bone among the test defects were observed. Irrespective of the tissue sources of MSC, the speed and pattern of osseous healing after cell transplantations into monocortical bone defects were comparable. Our results indicate that the efficiency of autologous AD-MSC, PD-MSC and BM-MSC transplantation following ex vivo cell expansion is not significantly different for the guided regeneration of bone defects.

  11. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources.

    PubMed

    Stockmann, Philipp; Park, Jung; von Wilmowsky, Cornelius; Nkenke, Emeka; Felszeghy, Endre; Dehner, Jan-Friedrich; Schmitt, Christian; Tudor, Christian; Schlegel, Karl Andreas

    2012-06-01

    Due to donor side morbidity and the absence of osteogenic properties in bone substitutes, there is a growing need for an alternative to traditional bone grafting within the scope of tissue engineering. This animal study was conducted to compare the in vivo osteogenic potential of adipose-derived (AD), periosteum-derived (PD) and bone marrow-derived (BM) mesenchymal stem/progenitor cells (MSC). Autologous mesenchymal stem/progenitor cells of named tissue origin were induced into osteogenic differentiation following in vitro cell expansion. Ex vivo cultivated cells were seeded on a collagen scaffold and subsequently added to freshly created monocortical calvarial bone defects in 21 domestic pigs. Pure collagen scaffold served as a control defect. The animals were sacrificed at specific time points and de novo bone formation was quantitatively analyzed by histomorphometry. Bone volume/total defect volume (BV/TV) and the mineralization rate of newly formed bone were compared among the groups. In the early stages of wound healing, up to 30 days, the test defects did not show better bone regeneration than those in the control defect, but the bone healing process in the test defects was accelerated in the later stage compared to those in the control defect. All the test defects showed complete osseous healing after 90 days compared to those in the control defect. During the observation period, no significant differences in BV/TV and mineralization of newly formed bone among the test defects were observed. Irrespective of the tissue sources of MSC, the speed and pattern of osseous healing after cell transplantations into monocortical bone defects were comparable. Our results indicate that the efficiency of autologous AD-MSC, PD-MSC and BM-MSC transplantation following ex vivo cell expansion is not significantly different for the guided regeneration of bone defects. PMID:21723141

  12. Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering.

    PubMed

    Aravamudhan, Aja; Ramos, Daisy M; Nip, Jonathan; Harmon, Matthew D; James, Roshan; Deng, Meng; Laurencin, Cato T; Yu, Xiaojun; Kumbar, Sangamesh G

    2013-04-01

    Scaffold based bone tissue engineering (BTE) has made great progress in regenerating lost bone tissue. Materials of natural and synthetic origin have been used for scaffold fabrication. Scaffolds derived from natural polymers offer greater bioactivity and biocompatibility with mammalian tissues to favor tissue healing, due to their similarity to native extracellular matrix (ECM) components. Often it is a challenge to fabricate natural polymer based scaffolds for BTE applications without compromising their bioactivity, while maintaining adequate mechanical properties. In this work, we report the fabrication and characterization of cellulose and collagen based micro-nano structured scaffolds using human osteoblasts (HOB) for BTE applications. These porous micro-nano structured scaffolds (average pore diameter 190 +/- 10 microm) exhibited mechanical properties in the mid range of human trabecular bone (compressive modulus 266.75 +/- 33.22 MPa and strength 12.15 3 +/- 2.23 MPa). These scaffolds supported the greater adhesion and phenotype maintenance of cultured HOB as reflected by higher levels of osteogenic enzyme alkaline phosphatase and mineral deposition compared to control polyester micro-nano structured scaffolds of identical pore properties. These natural polymer based micro-nano structured scaffolds may serve as alternatives to polyester based scaffolds for BTE applications.

  13. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering.

    PubMed

    Yang, Mingying; Zhou, Guanshan; Castano-Izquierdo, Harold; Zhu, Ye; Mao, Chuanbin

    2015-03-01

    Small intestinal submucosa (SIS) membranes as a decellularized tissue are known to be a natural nanofibrous biomaterial mainly made of type I collagen fibers and containing some growth factors (fibroblast growth factor 2 and transforming growth factor β) desired in tissue engineering. Here we show that the SIS membranes can promote the formation of bone mineral hydroxylapatite (HAP) crystals along the collagen fibers constituting the membranes from a HAP-supersaturated solution. The resultant biomineralized HAP-SIS scaffolds were found to promote the attachment, growth and osteogenic differentiation of mesenchymal stem cells (MSCs) in both basal and osteogenic media by the evaluation of osteogenic marker formation. More importantly, the HAP-SIS scaffolds could induce the osteogenic differentiation in the basal media without osteogenic supplements due to the presence of HAP crystals in the scaffolds. Histological characterization of the MSC-seeded scaffolds showed that HAP-SIS scaffolds are biocompatible and promote the formation of new tissue in vitro. The biomineralized SIS membranes mimic some aspects of natural bone in terms of the composition and nanostructures and can find potential use in bone tissue engineering. PMID:25883539

  14. The role of membrane ERα signaling in bone and other major estrogen responsive tissues

    PubMed Central

    Gustafsson, K. L.; Farman, H.; Henning, P.; Lionikaite, V.; Movérare-Skrtic, S.; Wu, J.; Ryberg, H.; Koskela, A.; Gustafsson, J.-Å.; Tuukkanen, J.; Levin, E. R.; Ohlsson, C.; Lagerquist, M. K.

    2016-01-01

    Estrogen receptor α (ERα) signaling leads to cellular responses in several tissues and in addition to nuclear ERα-mediated effects, membrane ERα (mERα) signaling may be of importance. To elucidate the significance, in vivo, of mERα signaling in multiple estrogen-responsive tissues, we have used female mice lacking the ability to localize ERα to the membrane due to a point mutation in the palmitoylation site (C451A), so called Nuclear-Only-ER (NOER) mice. Interestingly, the role of mERα signaling for the estrogen response was highly tissue-dependent, with trabecular bone in the axial skeleton being strongly dependent (>80% reduction in estrogen response in NOER mice), cortical and trabecular bone in long bones, as well as uterus and thymus being partly dependent (40–70% reduction in estrogen response in NOER mice) and effects on liver weight and total body fat mass being essentially independent of mERα (<35% reduction in estrogen response in NOER mice). In conclusion, mERα signaling is important for the estrogenic response in female mice in a tissue-dependent manner. Increased knowledge regarding membrane initiated ERα actions may provide means to develop new selective estrogen receptor modulators with improved profiles. PMID:27388455

  15. Core-shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering.

    PubMed

    Olmos Buitrago, Jennifer; Perez, Roman A; El-Fiqi, Ahmed; Singh, Rajendra K; Kim, Joong-Hyun; Kim, Hae-Won

    2015-12-01

    Moldable hydrogels that incorporate stem cells hold great promise for tissue engineering. They secure the encapsulated cells for required periods while allowing a permeable exchange of nutrients and gas with the surroundings. Core-shell fibrous structured hydrogel system represents these properties relevant to stem cell delivery and defect-adjustable tissue engineering. A designed dual concentric nozzle is used to simultaneously deposit collagen and alginate with a core-shell structured continuous fiber form in the ionic calcium bath. We aimed to impart extrinsic osteogenic cues in the nanoparticulate form, i.e., bioactive glass nanoparticles (BGn), inside the alginate shell, while encapsulating rat mesenchymal stem cells in the collagen core. Ionic measurement in aqueous solution indicated a continuous release of calcium ions from the BGn-added and -free scaffolds, whereas silicon was only released from the BGn-containing scaffolds. The presence of BGn allowed higher number of cells to migrate into the scaffolds when implanted in subcutaneous tissues of rat. Cell viability was preserved in the presence of the BGn, with no significant differences noticed from the control. The presence of BGn enhanced the osteogenic differentiation of the encapsulated rat mesenchymal stem cells, presenting higher levels of alkaline phosphatase activity as well as bone related genes, including collagen type I, bone sialoprotein and osteocalcin. Taken together, the incorporated BGn potentiated the capacity of the core-shell fibrous hydrogel system to deliver stem cells targeting bone tissue engineering.

  16. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering

    PubMed Central

    Yang, Mingying; Zhou, Guanshan; Castano-Izquierdo, Harold; Zhu, Ye; Mao, Chuanbin

    2015-01-01

    Small intestinal submucosa (SIS) membranes as a decellularized tissue are known to be a natural nanofibrous biomaterial mainly made of type I collagen fibers and containing some growth factors (fibroblast growth factor 2 and transforming growth factor β) desired in tissue engineering. Here we show that the SIS membranes can promote the formation of bone mineral hydroxylapatite (HAP) crystals along the collagen fibers constituting the membranes from a HAP-supersaturated solution. The resultant biomineralized HAP-SIS scaffolds were found to promote the attachment, growth and osteogenic differentiation of mesenchymal stem cells (MSCs) in both basal and osteogenic media by the evaluation of osteogenic marker formation. More importantly, the HAP-SIS scaffolds could induce the osteogenic differentiation in the basal media without osteogenic supplements due to the presence of HAP crystals in the scaffolds. Histological characterization of the MSC-seeded scaffolds showed that HAP-SIS scaffolds are biocompatible and promote the formation of new tissue in vitro. The biomineralized SIS membranes mimic some aspects of natural bone in terms of the composition and nanostructures and can find potential use in bone tissue engineering. PMID:25883539

  17. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone.

    PubMed

    Raghavan, Mekhala; Sahar, Nadder D; Kohn, David H; Morris, Michael D

    2012-04-01

    There is growing evidence that bone composition and tissue-level mechanical properties are significant determinants of skeletal integrity. In the current study, Raman spectroscopy and nanoindentation testing were co-localized to analyze tissue-level compositional and mechanical properties in skeletally mature young (4 or 5 months) and old (19 months) murine femora at similar spatial scales. Standard multivariate linear regression analysis revealed age-dependent patterns in the relationships between mechanical and compositional properties at the tissue scale. However, changes in bone material properties with age are often complex and nonlinear, and can be missed with linear regression and correlation-based methods. A retrospective data mining approach was implemented using non-linear multidimensional visualization and classification to identify spectroscopic and nanoindentation metrics that best discriminated bone specimens of different age-classes. The ability to classify the specimens into the correct age group increased by using combinations of Raman and nanoindentation variables (86-96% accuracy) as compared to using individual measures (59-79% accuracy). Metrics that best classified 4 or 5 month and 19 month specimens (2-age classes) were mineral to matrix ratio, crystallinity, modulus and plasticity index. Metrics that best distinguished between 4, 5 and 19 month specimens (3-age classes) were mineral to matrix ratio, crystallinity, modulus, hardness, cross-linking, carbonate to phosphate ratio, creep displacement and creep viscosity. These findings attest to the complexity of mechanisms underlying bone tissue properties and draw attention to the importance of considering non-linear interactions between tissue-level composition and mechanics that may work together to influence material properties with age. The results demonstrate that a few non-linearly combined compositional and mechanical metrics provide better discriminatory information than a single metric

  18. Self-Assembling Peptide Nanofibers Coupled with Neuropeptide Substance P for Bone Tissue Engineering

    PubMed Central

    Kim, Su Hee; Hur, Woojune; Kim, Ji Eun; Min, Hye Jeong; Kim, Sukwha; Min, Hye Sook; Kim, Byeung Kyu; Kim, Soo Hyun

    2015-01-01

    The number of patients requiring flat bone transplantation continues to increase worldwide. Cell transplantation has been successfully applied clinically; however, it causes another defect site and the time requirements to harvest cells and expand them are considerable. In this study, KLD12/KLD12-SP (KLD12+KLD12-substance P [SP]) was designed to mimic endogenous tissue-healing processes. The structures of KLD12, KLD12-SP, and KLD12/KLD12-SP were observed by transmission electron microscopy and circular dichroism spectra. KLD12/KLD12-SP nanofibers (5–10 nm) were created under physiological conditions by formation of a β-sheet structure. The ability of mesenchymal stem cells (MSCs) to recruit KLD12/KLD12-SP was observed by using an in vivo fluorescence imaging system. Labeled human bone marrow stromal cells supplied via an intravenous injection were recruited to the scaffold containing KLD12/KLD12-SP. Polylactic acid/beta-tricalcium phosphate (PLA/β-TCP) scaffolds filled with KLD12/KLD12-SP were applied to repair calvarial defects. The composite constructs (groups: defect, PLA/β-TCP, PLA/β-TCP/KLD12, and PLA/β-TCP/KLD12/KLD12-SP) were implanted into rat defect sites. Bone tissue regeneration was evaluated by observing gross morphology by hematoxylin and eosin and Masson's trichrome staining at 12 and 24 weeks after surgery. Gross morphology showed that the defect site was filled with new tissue that was integrated with host tissue in the KLD12/KLD12-SP group. In addition, from the staining data, cells were recruited to the defect site and lacunae structures formed in the KLD12/KLD12-SP group. From these results, the PLA/β-TCP+KLD12/KLD12-SP composite construct was considered for enhancement of bone tissue regeneration without cell transplantation. PMID:25411965

  19. Co-cultured tissue-specific scaffolds for tendon/bone interface engineering

    PubMed Central

    Bumgardner, Joel D; Cole, Judith A; Smith, Richard A; Haggard, Warren O

    2014-01-01

    The tendon/ligament-to-bone interface has a complex organization to enable transfer of forces through the tendon/ligament to the bone. The purpose of this study is to create a co-culture environment enabling a tissue-specific tendon region and tissue-specific bone region on a degradable scaffold, using NIH 3T3 fibroblast–deposited extracellular matrix and MC 3T3 osteoblast–deposited extracellular matrix, respectively. Before full characterization of the deposited extracellular matrix coating can be analyzed, co-culture parameters including culture medium and seeding technique should be addressed. An appropriate medium formulation was developed to reduce fibroblast to osteoblast mineralization by adjusting beta-glycerophosphate concentrations. Standard growth medium with fetal bovine serum + 3 mM beta-glycerophosphate + 25 µg/mL ascorbic acid was found to be the most suitable formulation evaluated in these study conditions. Seeding and cell migration studies of co-cultured fibroblast- and osteoblast-specific scaffolds were performed to identify whether tissue regions could be created on the scaffold. Fibroblast and osteoblast regions were successfully seeded and little to no cell migration was observed up to 42 h after seeding. Finally, a preliminary analysis of basic extracellular matrix components was measured in the fibroblast, osteoblast, and transition regions. Tissue-specific DNA, glycosaminoglycan, and collagen were found in uniform amounts on the scaffolds and were not different significantly between scaffold regions. In conclusion, initial steps to create tissue-specific fibroblast and osteoblast regions on a degradable scaffold were successful in preparation for further characterization investigations as a tendon-to-bone interface scaffold. PMID:25383167

  20. Co-cultured tissue-specific scaffolds for tendon/bone interface engineering.

    PubMed

    Cooper, Jared O; Bumgardner, Joel D; Cole, Judith A; Smith, Richard A; Haggard, Warren O

    2014-01-01

    The tendon/ligament-to-bone interface has a complex organization to enable transfer of forces through the tendon/ligament to the bone. The purpose of this study is to create a co-culture environment enabling a tissue-specific tendon region and tissue-specific bone region on a degradable scaffold, using NIH 3T3 fibroblast-deposited extracellular matrix and MC 3T3 osteoblast-deposited extracellular matrix, respectively. Before full characterization of the deposited extracellular matrix coating can be analyzed, co-culture parameters including culture medium and seeding technique should be addressed. An appropriate medium formulation was developed to reduce fibroblast to osteoblast mineralization by adjusting beta-glycerophosphate concentrations. Standard growth medium with fetal bovine serum + 3 mM beta-glycerophosphate + 25 µg/mL ascorbic acid was found to be the most suitable formulation evaluated in these study conditions. Seeding and cell migration studies of co-cultured fibroblast- and osteoblast-specific scaffolds were performed to identify whether tissue regions could be created on the scaffold. Fibroblast and osteoblast regions were successfully seeded and little to no cell migration was observed up to 42 h after seeding. Finally, a preliminary analysis of basic extracellular matrix components was measured in the fibroblast, osteoblast, and transition regions. Tissue-specific DNA, glycosaminoglycan, and collagen were found in uniform amounts on the scaffolds and were not different significantly between scaffold regions. In conclusion, initial steps to create tissue-specific fibroblast and osteoblast regions on a degradable scaffold were successful in preparation for further characterization investigations as a tendon-to-bone interface scaffold.

  1. Use of perfusion bioreactors and large animal models for long bone tissue engineering.

    PubMed

    Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E

    2014-04-01

    Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.

  2. Differentiation potentials of perivascular cells in the bone tissue remodeling zones under microgravity

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Katkova, Olena

    Adaptive remodeling processes in the skeleton bones occur in the close topographical interconnection with blood capillaries followed by perivascular cells. Radioautographic studies with 3Н- thymidine (Kimmel D.B., Fee W.S., 1980; Rodionova N.V., 1989, 2006) has shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic ones. Using electron microscopy and cytochemistry we studied perivsacular cells in metaphysis of the rats femoral bones under conditions of modeling microgravity (28 days duration) and in femoral bonеs metaphyses of rats flown on board of the space laboratory (Spacelab - 2) It was revealed that population of the perivascular cells is not homogeneous in adaptive zones of the remodeling in both control and test groups (lowering support loading). This population comprises adjacent to endothelium little differentiated forms and isolated cells with differentiation features (specific volume of rough endoplasmic reticulum in cytoplasm is increased). Majority of the perivascular cells in the control group reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In little differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of animals under microgravitaty reaction to the alkaline phosphatase is registered not for all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. There is also visible trend of individual alkaline phosphatase containing perivascular cells amounts decrease (i.e. osteogenic cells-precursors). Under microgravity some little differentiated perivascular cells reveal destruction signs. Found decrease trend of the alkaline phosphatase containing cells (i.e. osteogenic cells) number in

  3. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    PubMed

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.

  4. The Use of Total Human Bone Marrow Fraction in a Direct Three-Dimensional Expansion Approach for Bone Tissue Engineering Applications: Focus on Angiogenesis and Osteogenesis

    PubMed Central

    Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-01-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion. PMID:25333855

  5. Metals in Bone Tissue of Antillean Manatees from the Gulf of Mexico and Chetumal Bay, Mexico.

    PubMed

    Romero-Calderón, Ana G; Morales-Vela, Benjamin; Rosíles-Martínez, René; Olivera-Gómez, León D; Delgado-Estrella, Alberto

    2016-01-01

    Concentrations of seven metals (As, Cd, Cr, Cu, Pb, Ni, and Zn) were analyzed in 33 bone tissue samples of Antillean manatees (Trichechus manatus manatus) found dead in lagoons and rivers of Tabasco and Campeche in the Gulf of Mexico and Chetumal Bay in the Caribbean region. The concentrations of Cr, Cu, Pb, and Zn were significantly different between regions, with greater levels found in the Gulf of Mexico group than in the Mexican Caribbean group (p < 0.05). Pb concentrations differed significantly between adults and calves. No differences were observed between sexes. Metal concentrations detected in the manatee bones were higher than most of those reported for bones in other marine mammals around the world. Future studies are necessary to establish whether the metal concentrations represent a risk to the health of the species. PMID:26519079

  6. Metals in Bone Tissue of Antillean Manatees from the Gulf of Mexico and Chetumal Bay, Mexico.

    PubMed

    Romero-Calderón, Ana G; Morales-Vela, Benjamin; Rosíles-Martínez, René; Olivera-Gómez, León D; Delgado-Estrella, Alberto

    2016-01-01

    Concentrations of seven metals (As, Cd, Cr, Cu, Pb, Ni, and Zn) were analyzed in 33 bone tissue samples of Antillean manatees (Trichechus manatus manatus) found dead in lagoons and rivers of Tabasco and Campeche in the Gulf of Mexico and Chetumal Bay in the Caribbean region. The concentrations of Cr, Cu, Pb, and Zn were significantly different between regions, with greater levels found in the Gulf of Mexico group than in the Mexican Caribbean group (p < 0.05). Pb concentrations differed significantly between adults and calves. No differences were observed between sexes. Metal concentrations detected in the manatee bones were higher than most of those reported for bones in other marine mammals around the world. Future studies are necessary to establish whether the metal concentrations represent a risk to the health of the species.

  7. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering.

    PubMed

    Fan, Tiantang; Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Hu, Yimin; Liu, Xiaocui; Shi, Xuetao; Zhang, Qiqing

    2016-11-01

    The fabrication of bone scaffolds with interconnected porous structure, adequate mechanical properties and excellent biocompatibility presents a great challenge. Herein, a hybrid nanostructured chitosan/chondroitin sulfate/hydroxyapatite (ChS/CSA/HAP) in situ composite scaffold was prepared by in situ fabrication and freeze-drying technique. The composition and morphology of scaffold were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It proved that the low crystallinity of HAP crystals were uniformly distributed in ChS/CSA organic matrix and the nanostructured hybrid scaffold exhibited good mechanical property. The biocompatibility and in vitro bioactivity were detected by MTT-assay, maturation (alkaline phosphatase (ALP) activity), Hoechst 33258 and PI fluorescence staining. In vitro tests indicated that the hybrid scaffold not only promoted the adhesion and proliferation of osteoblasts, but also improved the growth of the osteoblasts. Therefore, it is promising for bone repair application in bone tissue engineering.

  8. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K.

    PubMed

    Muthukumar, Thangavelu; Aravinthan, Adithan; Sharmila, Judith; Kim, Nam Soo; Kim, Jong-Hoon

    2016-11-01

    In this study, suitable scaffold materials for bone tissue engineering were successfully prepared using fish scale collagen, hydroxyapatite, chitosan, and beta-tricalcium phosphate. Porous composite scaffolds were prepared by freeze drying method. The Korean traditional medicinal ginseng compound K, a therapeutic agent for the treatment of osteoporosis that reduces inflammation and enhances production of bone morphogenetic protein-2, was incorporated into the composite scaffold. The scaffold was characterized for pore size, swelling, density, degradation, mineralization, cell viability and attachment, and its morphological features were examined using scanning electron microscopy. This characterization and in vitro analysis showed that the prepared scaffold was biocompatible and supported the growth of MG-63 cells, and therefore has potential as an alternative approach for bone regeneration. PMID:27516305

  9. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration.

    PubMed

    Bayer, E A; Gottardi, R; Fedorchak, M V; Little, S R

    2015-12-10

    Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed.

  10. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.

    PubMed

    Zhang, Xue; Li, Xiao-Wu; Li, Ji-Guang; Sun, Xu-Dong

    2014-09-01

    Porous magnesium has been recently recognized as a biodegradable metal for bone substitute applications. A novel porous Mg scaffold with three-dimensional (3D) interconnected pores and with a porosity of 33-54% was produced by the fiber deposition hot pressing (FDHP) technology. The microstructure and morphologies of the porous Mg scaffold were characterized by scanning electron microscopy (SEM), and the effects of porosities on the microstructure and mechanical properties of the porous Mg were investigated. Experimental results indicate that the measured Young's modulus and compressive strength of the Mg scaffold are ranged in 0.10-0.37 GPa, and 11.1-30.3 MPa, respectively, which are fairly comparable to those of cancellous bone. Such a porous Mg scaffold having a 3D interconnected network structure has the potential to be used in bone tissue engineering.

  11. Comparison of heavy metal concentrations in tissues of red foxes from adjacent urban, suburban, and rural areas.

    PubMed

    Dip, R; Stieger, C; Deplazes, P; Hegglin, D; Müller, U; Dafflon, O; Koch, H; Naegeli, H

    2001-05-01

    The red fox (Vulpes vulpes) is a representative of the canid family with wide distribution in the Northern Hemisphere and Australia. The increasing utilization of urbanized habitats by red foxes prompted us to test whether this species may be used to monitor the presence of anthropogenic pollutants in cities or suburbs. For that purpose, we compared the concentrations of heavy metals (Cd, Pb, Cu, Zn) in foxes from urban, suburban, and rural areas within the municipality of Zürich (Switzerland). The kidney and liver of suburban and rural foxes contained the highest Cd concentrations, whereas urban foxes contained the highest Pb levels. In the kidney of suburban foxes, Cd concentrations increased from a median value of 0.73 mg/kg in juvenile animals to 1.82 mg/kg in adults. Similarly, the liver of suburban foxes contained increasing Cd levels from a median of 0.21 mg/kg in juvenile animals to 0.94 mg/kg in adults. An age-dependent storage of Cd was also found in foxes from the rural surroundings, but no such accumulation occurred in urban foxes from the city center, where even adult animals contained very low Cd levels. Conversely, foxes from the urban center were characterized by elevated Pb concentrations during the first 2 years of life, but this transient Pb accumulation was absent in suburban or rural animals. The liver of juvenile foxes contained a median Pb concentration of 0.99 mg/kg in the city compared to only 0.47 and 0.37 mg/kg in the suburban and rural area, respectively. Thus, we found that animals from separate environmental compartments contain different patterns of tissue residues, implying that red foxes may serve as a bioindicator species to detect certain toxic hazards in urbanized habitats. PMID:11525499

  12. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue.

    PubMed

    Maciejewska, Karina; Drzazga, Zofia; Kaszuba, Michał

    2014-01-01

    Osteoporosis is one of the most common debilitating disease around the world and it is more and more established among young people. There are well known recommendations for nutrition of newborns and children concerning adequate calcium and vitamin D intake in order to maintain proper bone density. Nevertheless, important role in structure and function of a healthy bone tissue is played by an integration between all constituents including elements other than Ca, like trace elements, which control vital processes in bone tissue. It is important from scientific point of view as well as prevention of bone diseases, to monitor the mineralization process considering changes of the concentration of minerals during first stage of bone formation. This work presents studies of trace element (zinc, strontium, and iron) concentration in bones and teeth of Wistar rats at the age of 7, 14, and 28 days. Energy dispersive X-ray fluorescence (EDXRF) was used to examine mandibles, skulls, femurs, tibiae, and incisors. The quantitative analysis was performed using fundamental parameters method (FP). Zn and Sr concentrations were highest for the youngest individuals and decreased with age of rats, while Fe content was stable in bone matrix for most studied bones. Our results reveal the necessity of monitoring concentration of not only major, but also minor elements, because the trace elements play special role in the first period of bone development. PMID:24615876

  13. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.

    PubMed

    Rodrigues, Márcia T; Martins, Albino; Dias, Isabel R; Viegas, Carlos A; Neves, Nuno M; Gomes, Manuela E; Reis, Rui L

    2012-11-01

    Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffolding. Using emergent (nano)technologies scaffold designing may be critically improved, enabling highly functional tissue substitutes for bone applications. This study aims to develop novel biodegradable composite scaffolds of tricalcium phosphate (TCPs) and electrospun nanofibers of poly(ϵ-caprolactone) (PCL), combining TCPs osteoconductivity with PCL biocompatibility and elasticity, mimicking bone structure and composition. We hypothesized that scaffolds with such structure/composition would stimulate the proliferation and differentiation of bone marrow stromal cells (BMSCs) towards the osteogenic phenotype. Composite scaffolds, developed by electrospining using consecutive stacked layers of PCL and TCPs, were characterized by FTIR spectroscopy, X-Ray diffraction and scanning electronic microscopy. Cellular behavior was assessed in goat BMSCs seeded onto composite scaffolds and cultured in static or dynamic conditions, using basal or osteogenic media during 7, 14 or 21 days. Cellular proliferation was quantified and osteogenic differentiation confirmed by alkaline phosphatase activity, alizarin red staining and immunocytochemistry for osteocalcin and collagen I. Results suggest that PCL-TCP scaffolds provide a 3D support for gBMSCs proliferation and osteogenic differentiation with production of ECM. TCPs positively stimulate the osteogenic process, especially under dynamic conditions, where PCL-TCP scaffolds are sufficient to promote osteogenic differentiation even in basal medium conditions. The enhancement of the osteogenic potential in dynamic conditions evidences the synergistic effect of scaffold composition and dynamic stimulation in g

  14. Achieving Interconnected Pore Architecture in Injectable PolyHIPEs for Bone Tissue Engineering

    PubMed Central

    Robinson, Jennifer L.; Moglia, Robert S.; Stuebben, Melissa C.; McEnery, Madison A.P.

    2014-01-01

    Template polymerization of a high internal phase emulsion (polyHIPE) is a relatively new method to produce tunable high-porosity scaffolds for tissue regeneration. This study focuses on the development of biodegradable injectable polyHIPEs with interconnected porosity that have the potential to fill bone defects and enhance healing. Our laboratory previously fabricated biodegradable polyHIPEs that cure in situ upon injection; however, these scaffolds possessed a closed-pore morphology, which could limit bone ingrowth. To address this issue, HIPEs were fabricated with a radical initiator dissolved in the organic phase rather than the aqueous phase of the emulsion. Organic-phase initiation resulted in macromer densification forces that facilitated pore opening during cure. Compressive modulus and strength of the polyHIPEs were found to increase over 2 weeks to 43±12 MPa and 3±0.2 MPa, respectively, properties comparable to cancellous bone. The viscosity of the HIPE before cure (11.0±2.3 Pa·s) allowed for injection and filling of the bone defect, retention at the defect site during cure under water, and microscale integration of the graft with the bone. Precuring the materials before injection allowed for tuning of the work and set times. Furthermore, storage of the HIPEs before cure for 1 week at 4°C had a negligible effect on pore architecture after injection and cure. These findings indicate the potential of these emulsions to be stored at reduced temperatures and thawed in the surgical suite before injection. Overall, this work highlights the potential of interconnected propylene fumarate dimethacrylate polyHIPEs as injectable scaffolds for bone tissue engineering. PMID:24124758

  15. Use of microfocus computerized tomography as a new technique for characterizing bone tissue around oral implants.

    PubMed

    Van Oossterwyck, H; Duyck, J; Vander Sloten, J; Van der Perre, G; Jansen, J; Wevers, M; Naert, I

    2000-01-01

    Qualitative and quantitative analysis of peri-implant tissues around retrieved oral implants is typically done by means of light microscopy on thin histological sections containing the metal surface and the undecalcified bone. It remains, however, a labor-intensive and thus time-consuming job. Moreover, it is a destructive technique that allows tissue quantification in only a limited number of two-dimensional sections. As an alternative, we evaluated the bone structure around screw-shaped titanium implants by means of microfocus computerized tomography (micro-CT) because it presents a number of advantages compared to conventional sectioning techniques: micro-CT is nondestructive, fast, and allows a fully three-dimensional characterization of the bone structure around the implant. Images can be reconstructed in an arbitrary plane, and three-dimensional reconstructions are also possible. Because of its high resolution, individual trabeculae can be visualized. The accuracy of micro-CT was qualitatively evaluated by comparing histological sections with the corresponding CT slices for the same specimen. The overall trabecular structure is very similar according to both techniques. Even very close to the interface, the titanium implant does not seem to produce significant artifacts. Furthermore, because the complete digital data on the trabecular bone structure around the implant is available, it is possible to create finite-element models of the bone-implant system that model the trabeculae in detail so that mechanical stress transfer at the interface can be studied at the level of individual trabeculae. Therefore, micro-CT seems to be very promising for the in vitro assessment of the three-dimensional bone structure around oral implants. Further research will be needed to evaluate its accuracy in a more quantitative way. PMID:11831302

  16. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.

    PubMed

    Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum

    2016-07-01

    Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. PMID:26999521

  17. Microdissection specimens of connective, chondrous, or Bone Tissue of human osteosarcomas and chondrosarcomas transplanted to athymic nude mice.

    PubMed

    Nilsson, O S; Lindholm, T S; Nilsonne, U

    1982-01-01

    Five osteosarcomas and two chondrosarcomas were microdissected to separate tumor compartments of calcified, chondrous, and connective tissue. The compartments were lyophilized separately and transplanted subcutaneously or intramuscularly into nude mice for three, four, and five weeks, respectively. In three of the osteosarcomas and in one of the chrondrosarcomas, calcified tissue induced ectopic bone formation by the host, while cartilaginous tissue induced ectopic bone formation in one of the osteosarcomas and in one of the chondrosarcomas. The tumor-derived connective tissue did not induce osteogenic response in the host tissue. Thus, the ability to develop an osteoinductive response and to produce bone morphogenetic protein seems to be restricted to the population of cells that eventually will, or have, differentiated into bone or cartilage.

  18. Utilizing Core–Shell Fibrous Collagen-Alginate Hydrogel Cell Delivery System for Bone Tissue Engineering

    PubMed Central

    Perez, Roman A.; Kim, Meeju; Kim, Tae-Hyun; Kim, Joong-Hyun; Lee, Jae Ho; Park, Jeong-Hui; Knowles, Jonathan C.

    2014-01-01

    Three-dimensional matrices that encapsulate and deliver stem cells with defect-tuned formulations are promising for bone tissue engineering. In this study, we designed a novel stem cell delivery system composed of collagen and alginate as the core and shell, respectively. Mesenchymal stem cells (MSCs) were loaded into the collagen solution and then deposited directly into a fibrous structure while simultaneously sheathing with alginate using a newly designed core–shell nozzle. Alginate encapsulation was achieved by the crosslinking within an adjusted calcium-containing solution that effectively preserved the continuous fibrous structure of the inner cell-collagen part. The constructed hydrogel carriers showed a continuous fiber with a diameter of ∼700–1000 μm for the core and 200–500 μm for the shell area, which was largely dependent on the alginate concentration (2%–5%) as well as the injection rate (20–80 mL/h). The water uptake capacity of the core–shell carriers was as high as 98%, which could act as a pore channel to supply nutrients and oxygen to the cells. Degradation of the scaffolds showed a weight loss of ∼22% at 7 days and ∼43% at 14 days, suggesting a possible role as a degradable tissue-engineered construct. The MSCs encapsulated within the collagen core showed excellent viability, exhibiting significant cellular proliferation up to 21 days with levels comparable to those observed in the pure collagen gel matrix used as a control. A live/dead cell assay also confirmed similar percentages of live cells within the core–shell carrier compared to those in the pure collagen gel, suggesting the carrier was cell compatible and was effective for maintaining a cell population. Cells allowed to differentiate under osteogenic conditions expressed high levels of bone-related genes, including osteocalcin, bone sialoprotein, and osteopontin. Further, when the core–shell fibrous carriers were implanted in a rat calvarium defect, the bone

  19. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    PubMed

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications.

  20. Biotemplated syntheses of macroporous materials for bone tissue engineering scaffolds and experiments in vitro and vivo.

    PubMed

    Li, Xing; Zhao, Yayun; Bing, Yue; Li, Yaping; Gan, Ning; Guo, Zhiyong; Peng, Zhaoxiang; Zhu, Yabin

    2013-06-26

    The macroporous materials were prepared from the transformation of cuttlebone as biotemplates under hydrothermal reactions and characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric/differential thermal analyses (TG-DTA), and scanning electron microscopy (SEM). Cell experimental results showed that the prepared materials as bone tissue engineering scaffolds or fillers had fine biocompatibility suitable for adhesion and proliferation of the hMSCs (human marrow mesenchymal stem cells). Histological analyses were carried out by implanting the scaffolds into a rabbit femur, where the bioresorption, degradation, and biological activity of the scaffolds were observed in the animal body. The prepared scaffolds kept the original three-dimensional frameworks with the ordered porous structures, which made for blood circulation, nutrition supply, and the cells implantation. The biotemplated syntheses could provide a new effective approach to prepare the bone tissue engineering scaffold materials. PMID:23742223

  1. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect

    Lepel, E.A.; Laul, J.C.

    1983-10-01

    Data have been presented for 35 elements determined by INAA for NBS oyster tissue (SRM 1566) and for 38 elements determined by INAA and RNAA for IAEA animal bone (H-5). The experimental data showed excellent agreement with published values wherever the comparison exists. Additional trace-element data in the ppb range have been presented for the elements Sc, Sb, Cs, La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Yb, Lu, Hf, Ta, W and Th in NBS oyster tissue. Also, additional trace-element data for IAEA animal bone (H-5) in the ppb range for the elements Al, Sc, Co, Rb, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, lu, Hf, Ta and Th have been presented.

  2. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering.

    PubMed

    Pattnaik, Soumitri; Nethala, Sricharan; Tripathi, Anjali; Saravanan, Sekaran; Moorthi, Ambigapathi; Selvamurugan, Nagarajan

    2011-12-01

    A scaffold harboring the desired features such as biodegradation, biocompatibility, porous structure could serve as template for bone tissue engineering. In the present study, chitosan (CS), nano-scaled silicon dioxide (Si) and zirconia (Zr) were combined by freeze drying technique to fabricate a bio-composite scaffold. The bio-composite scaffold (CS/Si/Zr) was characterized by SEM, XRD and FT-IR studies. The scaffold possessed a porous nature with pore dimensions suitable for cell infiltration and colonization. The presence of zirconia in the CS/Si/Zr scaffold decreased swelling and increased biodegradation, protein adsorption and bio-mineralization properties. The CS/Si/Zr scaffold was also found to be non-toxic to rat osteoprogenitor cells. Thus, we suggest that CS/Si/Zr bio-composite scaffold is a potential candidate to be used for bone tissue engineering.

  3. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    PubMed Central

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2015-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26798448

  4. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    PubMed Central

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  5. On ultrasound waves guided by bones with coupled soft tissues: a mechanism study and in vitro calibration.

    PubMed

    Chen, Jiangang; Su, Zhongqing

    2014-07-01

    The influence of soft tissues coupled with cortical bones on precision of quantitative ultrasound (QUS) has been an issue in the clinical bone assessment in conjunction with the use of ultrasound. In this study, the effect arising from soft tissues on propagation characteristics of guided ultrasound waves in bones was investigated using tubular Sawbones phantoms covered with a layer of mimicked soft tissue of different thicknesses and elastic moduli, and an in vitro porcine femur in terms of the axial transmission measurement. Results revealed that presence of soft tissues can exert significant influence on the propagation of ultrasound waves in bones, leading to reduced propagation velocities and attenuated wave magnitudes compared with the counterparts in a free bone in the absence of soft tissues. However such an effect is not phenomenally dependent on the variations in thickness and elastic modulus of the coupled soft tissues, making it possible to compensate for the coupling effect regardless of the difference in properties of the soft tissues. Based on an in vitro calibration, this study proposed quantitative compensation for the effect of soft tissues on ultrasound waves in bones, facilitating development of high-precision QUS.

  6. Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering

    SciTech Connect

    Yizhi, M.; Yi-Xian, Q; DiMasi, E; Xiaolan, B; Rafailovich, M; Pernodet, N

    2009-01-01

    Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro.

  7. Indentation size effect of cortical bones submitted to different soft tissue removals.

    PubMed

    Bandini, A; Chicot, D; Berry, P; Decoopman, X; Pertuz, A; Ojeda, D

    2013-04-01

    Properties of elasticity, hardness and viscosity are determined for the study of the visco-elastoplastic behavior of bones. The mechanical properties are compared in two upright sections of the bone due to their anisotropy. Besides, influence of hydration treatments leading to structural modifications of collagen and ground substance contents of bones on the mechanical properties is studied on a femoral cortical bovine bone. The treatments applied to the bone are used by forensic anthropologists to remove the soft tissue and modifying the hydration degree coupled to the collagen content. From instrumented indentation experiments, the hardness is characterized by the macrohardness and a hardness length-scale factor stating the hardness-load dependence. The elastic modulus results from the application of the methodology of Oliver and Pharr (1992). The coefficient of viscosity is deduced from a rheological model representing the indenter time-displacement observed under the application of a constant load. As a result, all the mechanical properties are found to be lower in the transverse section in an extent depending on the hydration treatment, i.e. the different values are located between 5% and 25% for the hardness around 0.5GPa, between 25% and 40% for the elastic modulus around 20GPa and between 2% and 35% for the coefficient of viscosity around 60GPa.s. Unexpectedly, the elastic modulus to coefficient of viscosity ratio is found to be independent on the hydration treatment.

  8. Biodegradable, Phosphate-containing, Dual-Gelling Macromers for Cellular Delivery in Bone Tissue Engineering

    PubMed Central

    Watson, Brendan M.; Vo, Tiffany N.; Tatara, Alexander M.; Shah, Sarita R.; Scott, David W.; Engel, Paul S.; Mikos, Antonios G.

    2015-01-01

    Injectable, biodegradable, dual-gelling macromer solutions were used to encapsulate mesenchymal stem cells (MSCs) within stable hydrogels when elevated to physiologic temperature. Pendant phosphate groups were incorporated in the N-isopropyl acrylamide-based macromers to improve biointegration and facilitate hydrogel degradation. The MSCs were shown to survive the encapsulation process, and live cells were detected within the hydrogels for up to 28 days in vitro. Cell-laden hydrogels were shown to undergo significant mineralization in osteogenic medium. Cell-laden and acellular hydrogels were implanted into a critical-size rat cranial defect for 4 and 12 weeks. Both cell-laden and acellular hydrogels were shown to degrade in vivo and help to facilitate bone growth into the defect. Improved bone bridging of the defect was seen with the incorporation of cells, as well as with higher phosphate content of the macromer. Furthermore, direct bone-to-hydrogel contact was observed in the majority of implants, which is not commonly seen in this model. The ability of these macromers to deliver stem cells while forming in situ and subsequently degrade while facilitating bone ingrowth into the defect makes this class of macromers a promising material for craniofacial bone tissue engineering. PMID:26232878

  9. Retrospective study on bone-level and soft-tissue-level cylindrical implants.

    PubMed

    Lopez, M A; Andreasi Bassi, M; Confalone, L; Gaudio, R M; Lombardo, L; Lauritano, D

    2016-01-01

    The purpose of this prospective clinical study was to evaluate the survival rate (SVR - i.e. fixtures still in place at the end of the observation period) and success rate (SCR - i.e. bone resorption around implant neck) of two cylindrical implant systems. Both systems were equipped with a tapered connection, one requiring a bone-level (BL) placement, while the other a soft-tissue-level (STL) placement. In the period between January 1996 and October 2011, a total of 150 implants (76 in females and 74 in males, mean age 60±11 years) were inserted. The mean post-surgical follow-up was 84±47 months. Several parameters were evaluated as potential outcome conditioners: age, gender, diabetes, smoking, periodontitis, type of edentulism, replaced tooth, jaw location (i.e. maxilla or mandible), bone graft, immediate loading, post-extractive, type of prosthesis, implant diameter and length. An SPSS program was used for statistical analysis. Only two fixtures were lost, therefore SVR was 98.7%. SCR, expressed through the mean marginal bone loss, was 92%. The mean peri-implant bone loss was 0.121.47 mm for BL implants and 0.041.3 mm for STL implants. None of the studied variables had a statistical significant impact on SVR or SCR. Cylindrical implants are reliable for oral rehabilitation. PMID:27469547

  10. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.

    PubMed

    Dhand, Chetna; Ong, Seow Theng; Dwivedi, Neeraj; Diaz, Silvia Marrero; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Fazil, Mobashar H U T; Liu, Shouping; Seitz, Vera; Wintermantel, Erich; Beuerman, Roger W; Ramakrishna, Seeram; Verma, Navin K; Lakshminarayanan, Rajamani

    2016-10-01

    Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3. The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries. PMID:27475728

  11. Hybrid Matrix Grafts to Favor Tissue Regeneration in Rabbit Femur Bone Lesions

    PubMed Central

    Goy, Dante Pascual; Gorosito, Emmanuel; Costa, Hermes S; Mortarino, Pablo; Pedemonte, Noelia Acosta; Toledo, Javier; Mansur, Herman S; Pereira, Marivalda M; Battaglino, Ricardo; Feldman, Sara

    2012-01-01

    At present, typical approaches employed to repair fractures and other bone lesions tend to use matrix grafts to promote tissue regeneration. These grafts act as templates, which promote cellular adhesion, growth and proliferation, osteoconduction, and even osteoinduction, which commonly results in de novo osteogenesis. The present work aimed to study the bone-repairing ability of hybrid matrixes (HM) prepared with polyvinyl alcohol (PVA) and bioactive glass in an experimental rabbit model. The HM were prepared by combining 30% bioactive glass (nominal composition of 58% SiO2 -33 % CaO - 9% P2O5) and 70% PVA. New Zealand rabbits were randomly divided into the control group (C group) and two groups with bone lesions, in which one received a matrix implant HM (Implant group), while the other did not (no Implant group). Clinical monitoring showed no altered parameters from either the Implant or the no Implant groups as compared to the control group, for the variables of diet grades, day and night temperatures and hemograms. In the Implant group, radiologic and tomographic studies showed implanted areas with clean edges in femoral non-articular direction, and radio-dense images that suggest incipient integration. Minimum signs of phlogosis could be observed, whereas no signs of rejection at this imaging level could be identified. Histological analysis showed evidence of osteo-integration, with the formation of a trabecular bone within the implant. Together, these results show that implants of hybrid matrixes of bioactive glass are capable of promoting bone regeneration. PMID:22848334

  12. Tissue-Engineered Mandibular Bone Reconstruction for Continuity Defects: A Systematic Approach to the Literature

    PubMed Central

    Junker, Rüdiger; Jongpaiboonkit, Leenaporn; Jansen, John A.

    2014-01-01

    Background: Despite significant surgical advances over the last decades, segmental mandibular bone repair remains a challenge. In light of this, tissue engineering might offer a next step in the evolution of mandibular reconstruction. Purpose: The purpose of the present report was to (1) systematically review preclinical in vivo as well as clinical literature regarding bone tissue engineering for mandibular continuity defects, and (2) to analyze their effectiveness. Materials and Methods: An electronic search in the databases of the National Library of Medicine and ISI Web of Knowledge was carried out. Only publications in English were considered, and the search was broadened to animals and humans. Furthermore, the reference lists of related review articles and publications selected for inclusion in this review were systematically screened. Results of histology data and amount of bone bridging were chosen as primary outcome variables. However, for human reports, clinical radiographic evidence was accepted for defined primary outcome variable. The biomechanical properties, scaffold degradation, and clinical wound healing were selected as co-outcome variables. Results: The electronic search in the databases of the National Library of Medicine and ISI Web of Knowledge resulted in the identification of 6727 and 5017 titles, respectively. Thereafter, title assessment and hand search resulted in 128 abstracts, 101 full-text articles, and 29 scientific papers reporting on animal experiments as well as 11 papers presenting human data on the subject of tissue-engineered reconstruction of mandibular continuity defects that could be included in the present review. Conclusions: It was concluded that (1) published preclinical in vivo as well as clinical data are limited, and (2) tissue-engineered approaches demonstrate some clinical potential as an alternative to autogenous bone grafting. PMID:23865639

  13. Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter

    2012-10-01

    During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.

  14. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation.

  15. [The application progress of human urine derived stem cells in bone tissue engineering].

    PubMed

    Gao, Peng; Jiang, Dapeng; Li, Zhaozhu

    2016-04-01

    The research of bone tissue engineering bases on three basic directions of seed cells, scaffold materials and growth information. Stem cells have been widely studied as seed cells. Human urine-derived stem cell (hUSC) is extracted from urine and described to be adhesion growth, cloning, expression of the majority of mesenchymal stem cell markers and peripheral cell markers, multi-potential and no tumor but stable karyotype with passaging many times. Some researches proposed that hUSC might be a new source of seed cells in tissue engineering because of their invasive and convenient obtention, stable culture and multiple differentiation potential. PMID:27029208

  16. The effect of mechanical strain on soft (cardiovascular) and hard (bone) tissues

    PubMed Central

    Boccafoschi, Francesca; Mosca, Cecilia; Ramella, Martina; Valente, Guido; Cannas, Mario

    2013-01-01

    Mechanical stress plays a pivotal role in developing and maintaining tissues functionalities. Cells are constantly subjected to strain and compressive forces that are sensed by specialized membrane mechanosensors and converted in biochemical signals able to differently influence cellular behavior in terms of surviving, differentiation and extracellular matrix remodeling. This review focuses on the effects of mechanical strain on soft and hard tissues. Unexpectedly, different cells share almost the same membrane mechanosensors and the relative intracellular pathways, but to ultimately obtain very different biological effects. The events occurring in cardiovascular and bone tissues are treated in details, showing that integrins, cadherins, growth factor receptors and ions channels specifically expressed in the different tissues are the major actors of the sight. However, MAPkinases and RhoGTPases are mainly involved in the biochemical intracellular signaling directed to nuclear modifications. PMID:23287581

  17. Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    PubMed

    Zaslansky, Paul; Currey, John D; Fleck, Claudia

    2016-01-01

    The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing. PMID:27615450

  18. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.

    PubMed

    Wang, Zhen Xiang; Lloyd, Ashley A; Burket, Jayme C; Gourion-Arsiquaud, Samuel; Donnelly, Eve

    2016-03-01

    Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals

  19. [Mandibular bone tissue regeneration after the introduction of the implantation system performed on the basis of carbon composite material].

    PubMed

    Chetvertnykh, V A; Loginova, N P; Astashina, N B; Rogozhnikov, G I; Rapekta, S I

    2013-01-01

    The purpose of this study was to investigate the processes of regeneration of bone tissue after the introduction of new implant systems. In the experiment, performed on 10 male pigs of Landras breed aged 50-55 days and weighing 17-18.5 kg, the time course of histological changes was studied in the area of mandibular regeneration after the formation of tissue defect and the introduction of the implant of a proposed construction. Morphological analysis of the experimental results 90, 180 and 270 days after the operation demonstrated the process of reparative regeneration of damaged bone along implant-bone block boundaries. Bone repair proceeded through the stage of formation of the woven bone with its progressive substitution by the lamellar bone, with the maintenance of the shape, size and symmetry of the damaged organ. PMID:23805619

  20. [Mandibular bone tissue regeneration after the introduction of the implantation system performed on the basis of carbon composite material].</