Science.gov

Sample records for adjacent bone tissue

  1. [Bone tissue engineering scaffolds].

    PubMed

    Fang, Liru; Weng, Wenjian; Shen, Ge; Han, Gaorong; Santos, J D; Du, Peiyi

    2003-03-01

    Bone tissue engineering may provide an alternative to the repairs to skeletal defects resulting from disease, trauma or surgery. Scaffold has played an important role in bone tissue engineering, which functions as the architecture for bone in growth. In this paper, the authors gave a brief introduction about the requirement of bone tissue engineering scaffold, the key of the design of scaffolds and the current research on this subject. PMID:12744187

  2. Cell interactions in bone tissue engineering

    PubMed Central

    Pirraco, R P; Marques, A P; Reis, R L

    2010-01-01

    Abstract Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and new bottom-up approaches are needed. The study of the cellular interactions between the cells relevant for bone biology can be of essential importance to that. In living bone, cells are in a context where communication with adjacent cells is almost permanent. Many fundamental works have been addressing these communications nonetheless, in a bone TE approach, the 3D perspective, being part of the microenvironment of a bone cell, is as crucial. Works combining the study of cell-to-cell interactions in a 3D environment are not as many as expected. Therefore, the bone TE field should not only gain knowledge from the field of fundamental Biology but also contribute for further understanding the biology of bone. In this review, a summary of the main works in the field of bone TE, aiming at studying cellular interactions in a 3D environment, and how they contributed towards the development of a functional engineered bone tissue, is presented. PMID:20050963

  3. Bone tissue engineering in osteoporosis.

    PubMed

    Jakob, Franz; Ebert, Regina; Ignatius, Anita; Matsushita, Takashi; Watanabe, Yoshinobu; Groll, Juergen; Walles, Heike

    2013-06-01

    Osteoporosis is a polygenetic, environmentally modifiable disease, which precipitates into fragility fractures of vertebrae, hip and radius and also confers a high risk of fractures in accidents and trauma. Aging and the genetic molecular background of osteoporosis cause delayed healing and impair regeneration. The worldwide burden of disease is huge and steadily increasing while the average life expectancy is also on the rise. The clinical need for bone regeneration applications, systemic or in situ guided bone regeneration and bone tissue engineering, will increase and become a challenge for health care systems. Apart from in situ guided tissue regeneration classical ex vivo tissue engineering of bone has not yet reached the level of routine clinical application although a wealth of scaffolds and growth factors has been developed. Engineering of complex bone constructs in vitro requires scaffolds, growth and differentiation factors, precursor cells for angiogenesis and osteogenesis and suitable bioreactors in various combinations. The development of applications for ex vivo tissue engineering of bone faces technical challenges concerning rapid vascularization for the survival of constructs in vivo. Recent new ideas and developments in the fields of bone biology, materials science and bioreactor technology will enable us to develop standard operating procedures for ex vivo tissue engineering of bone in the near future. Once prototyped such applications will rapidly be tailored for compromised conditions like vitamin D and sex hormone deficiencies, cellular deficits and high production of regeneration inhibitors, as they are prevalent in osteoporosis and in higher age. PMID:23562167

  4. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  5. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  6. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  7. Bone and soft tissue ablation.

    PubMed

    Foster, Ryan C B; Stavas, Joseph M

    2014-06-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  8. Multi-focal histiocytosis X of bone in two adjacent vertebrae causing paraplegia.

    PubMed

    Turgut, M; Gurçay, O

    1992-03-01

    This report describes a case of multi-focal histiocytosis X of bone in two adjacent vertebrae that caused a spinal cord compression. This case was treated radically with combined surgery and postoperative radiotherapy (RT). PMID:1550511

  9. MRI manifestations of soft-tissue haemangiomas and accompanying reactive bone changes

    PubMed Central

    Pourbagher, A; Pourbagher, M A; Karan, B; Ozkoc, G

    2011-01-01

    Objectives Soft tissue haemangiomas are common benign vascular lesions that can be accompanied by reactive changes in the adjacent bone structure. This study aimed to discuss the MRI features of soft-tissue haemangiomas with an emphasis on changes in bone. Methods The radiographic and MRI findings of 23 patients (9 males, 14 females; mean age 25 years; age range 2–46 years) with soft-tissue haemangiomas were analysed retrospectively. MR images were evaluated for location of the lesion, size, configuration, signal features, contrast patterns, proximity to adjacent bone and changes in the accompanying bone. Excisional biopsy was performed in 15 patients. Results Radiographs demonstrated phleboliths in 8 patients (34%) and reactive bone changes in 4 (19%). On MRI, T1 weighted images showed that most of the lesions were isointense or isohyperintense, as compared with muscle tissue; however, on T2 weighted images all lesions appeared as hyperintense. Following intravenous gadolinium-diethylene triamine pentaacetic acid (DTPA) administration, homogeneous enhancement was observed in 3 lesions and heterogeneous enhancement was seen in 19. No enhancement was observed in one patient. Bone atrophy adjacent to the lesion was observed in four patients. Conclusion MRI is the most valuable means of diagnosing deep soft-tissue haemangiomas. Bone changes can accompany deeply situated haemangiomas; in four of our patients, we found atrophy of the bone adjacent to the lesion. To our knowledge, this is the first report in the literature regarding atrophy of the bone adjacent to a lesion. PMID:21123304

  10. [Comparative proteomic analysis of cancerous and adjacent normal lung tissues].

    PubMed

    Lee, Ki Beom; Pi, Kyung Bae

    2010-01-01

    Lung cancer is the leading cause of cancer-related mortality in industrialized countries. Unfortunately, most lung cancers are found too late for a cure, therefore early detection and treatment is very important. We have applied proteomic analysis by using two-dimensional gel electrophoresis and peptide mass fingerprinting techniques for examination of cancerous and adjacent non-cancerous lung tissues from the same patient. The aim of the study was to find proteins, which could be used as biomarkers for diagnosis and monitoring of this disease. Indeed, we found differences in expression of several proteins, related to various cellular activities, such as, chaperoning (e.g., GRP96, GRP78, HSP27), metabolism and oxidation stress (e.g., L-fucose, GST), cytoskeleton (e.g., tubulin beta 2/3, beta actin), cell adhesion (e.g., annexin A5/3), binding proteins (e.g., 14-3-3 theta) and signal transduction. These changes may be important for progression of carcinogenesis; they may be used as the molecular-support for future diagnostic markers. PMID:21395069

  11. Bone Tissue Engineering: Recent Advances and Challenges

    PubMed Central

    Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.

    2013-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648

  12. Recent advances in bone tissue engineering scaffolds

    PubMed Central

    Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit

    2012-01-01

    Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815

  13. Vascularization in bone tissue engineering constructs

    PubMed Central

    Mercado-Pagán, Ángel E.; Stahl, Alexander M.; Shanjani, Yaser; Yang, Yunzhi

    2016-01-01

    Vascularization of large bone grafts is one of the main challenges of bone tissue engineering (BTE), and has held back the clinical translation of engineered bone constructs for two decades so far. The ultimate goal of vascularized BTE constructs is to provide a bone environment rich in functional vascular networks to achieve efficient osseointegration and accelerate restoration of function after implantation. To attain both structural and vascular integration of the grafts, a large number of biomaterials, cells, and biological cues have been evaluated. This review will present biological considerations for bone function restoration, contemporary approaches for clinical salvage of large bone defects and their limitations, state-of-the-art research on the development of vascularized bone constructs, and perspectives on evaluating and implementing novel BTE grafts in clinical practice. Success will depend on achieving full graft integration at multiple hierarchical levels, both between the individual graft components as well as between the implanted constructs and their surrounding host tissues. The paradigm of vascularized tissue constructs could not only revolutionize the progress of bone tissue engineering, but could also be readily applied to other fields in regenerative medicine for the development of new innovative vascularized tissue designs. PMID:25616591

  14. Approaches for modeling interstitial ultrasound ablation of tumors within or adjacent to bone: Theoretical and experimental evaluations

    PubMed Central

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2014-01-01

    Purpose The objectives of this study were to develop numerical models of interstitial ultrasound ablation of tumors within or adjacent to bone, to evaluate model performance through theoretical analysis, and to validate the models and approximations used through comparison to experiments. Methods 3D transient biothermal and acoustic finite element models were developed, employing four approximations of 7 MHz ultrasound propagation at bone/soft tissue interfaces. The various approximations considered or excluded reflection, refraction, angle-dependence of transmission coefficients, shear mode conversion, and volumetric heat deposition. Simulations were performed for parametric and comparative studies. Experiments within ex vivo tissues and phantoms were performed to validate the models by comparison to simulations. Temperature measurements were conducted using needle thermocouples or MR temperature imaging (MRTI). Finite element models representing heterogeneous tissue geometries were created based on segmented MR images. Results High ultrasound absorption at bone/soft tissue interfaces increased the volumes of target tissue that could be ablated. Models using simplified approximations produced temperature profiles closely matching both more comprehensive models and experimental results, with good agreement between 3D calculations and MRTI. The correlation coefficients between simulated and measured temperature profiles in phantoms ranged from 0.852 to 0.967 (p-value < 0.01) for the four models. Conclusions Models using approximations of interstitial ultrasound energy deposition around bone/soft tissue interfaces produced temperature distributions in close agreement with comprehensive simulations and experimental measurements. These models may be applied to accurately predict temperatures produced by interstitial ultrasound ablation of tumors near and within bone, with applications toward treatment planning. PMID:24102393

  15. Divergent viral presentation among human tumors and adjacent normal tissues.

    PubMed

    Cao, Song; Wendl, Michael C; Wyczalkowski, Matthew A; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J; Gay, Hiram; Chen, Ken; Rader, Janet S; Dipersio, John F; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  16. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  17. Characterization of bone tissue using microstrip antennas.

    PubMed

    Barros, Jannayna D; de Oliveira, Jose Josemar; da Silva, Sandro G

    2010-01-01

    The use of electromagnetic waves in the characterization of biological tissues has been conducted since the nineteenth century after the confirmation that electric and magnetic fields can interact with biological materials. In this paper, electromagnetic waves are used to characterize tissues with different levels of bone mass. In this way, one antenna array on microstrip lines was used. It can be seen that bones with different mass has different behavior in microwave frequencies. PMID:21097274

  18. The materials used in bone tissue engineering

    SciTech Connect

    Tereshchenko, V. P. Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  19. The materials used in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-01

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  20. Dentin Matrix Proteins in Bone Tissue Engineering

    PubMed Central

    Ravindran, Sriram

    2016-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering. PMID:26545748

  1. Vascularization in bone tissue engineering constructs.

    PubMed

    Mercado-Pagán, Ángel E; Stahl, Alexander M; Shanjani, Yaser; Yang, Yunzhi

    2015-03-01

    Vascularization of large bone grafts is one of the main challenges of bone tissue engineering (BTE), and has held back the clinical translation of engineered bone constructs for two decades so far. The ultimate goal of vascularized BTE constructs is to provide a bone environment rich in functional vascular networks to achieve efficient osseointegration and accelerate restoration of function after implantation. To attain both structural and vascular integration of the grafts, a large number of biomaterials, cells, and biological cues have been evaluated. This review will present biological considerations for bone function restoration, contemporary approaches for clinical salvage of large bone defects and their limitations, state-of-the-art research on the development of vascularized bone constructs, and perspectives on evaluating and implementing novel BTE grafts in clinical practice. Success will depend on achieving full graft integration at multiple hierarchical levels, both between the individual graft components as well as between the implanted constructs and their surrounding host tissues. The paradigm of vascularized tissue constructs could not only revolutionize the progress of BTE, but could also be readily applied to other fields in regenerative medicine for the development of new innovative vascularized tissue designs. PMID:25616591

  2. Current Trends in Bone Tissue Engineering

    PubMed Central

    Péault, Bruno; James, Aaron W.

    2014-01-01

    The development of tissue engineering and regeneration constitutes a new platform for translational medical research. Effective therapies for bone engineering typically employ the coordinated manipulation of cells, biologically active signaling molecules, and biomimetic, biodegradable scaffolds. Bone tissue engineering has become increasingly dependent on the merging of innovations from each of these fields, as they continue to evolve independently. This foreword will highlight some of the most recent advances in bone tissue engineering and regeneration, emphasizing the interconnected fields of stem cell biology, cell signaling biology, and biomaterial research. These include, for example, novel methods for mesenchymal stem cell purification, new methods of Wnt signaling pathway manipulation, and cutting edge computer assisted nanoscale design of bone scaffold materials. In the following special issue, we sought to incorporate these diverse areas of emphasis in order to reflect current trends in the field. PMID:24804256

  3. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    PubMed Central

    Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan

    2012-01-01

    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283

  4. Bone tissue as a systemic endocrine regulator.

    PubMed

    Zofkova, I

    2015-01-01

    Bone is a target tissue for hormones, such as the sex steroids, parathormon, vitamin D, calcitonin, glucocorticoids, and thyroid hormones. In the last decade, other "non-classic" hormones that modulate the bone tissue have been identified. While incretins (GIP and GLP-1) inhibit bone remodeling, angiotensin acts to promote remodeling. Bone morphogenetic protein (BMP) has also been found to have anabolic effects on the skeleton by activating bone formation during embryonic development, as well as in the postnatal period of life. Bone has also been identified as an endocrine tissue that produces a number of hormones, that bind to and modulate extra-skeletal receptors. Osteocalcin occupies a central position in this context. It can increase insulin secretion, insulin sensitivity and regulate metabolism of fatty acids. Moreover, osteocalcin also influences phosphate metabolism via osteocyte-derived FGF23 (which targets the kidneys and parathyroid glands to control phosphate reabsorption and metabolism of vitamin D). Finally, osteocalcin stimulates testosterone synthesis in Leydig cells and thus may play some role in male fertility. Further studies are necessary to confirm clinically important roles for skeletal tissue in systemic regulations. PMID:25470522

  5. Evolving concepts in bone tissue engineering.

    PubMed

    Cowan, Catherine M; Soo, Chia; Ting, Kang; Wu, Benjamin

    2005-01-01

    The field of tissue engineering integrates the latest advances in molecular biology, biochemistry, engineering, material science, and medical transplantation. Researchers in the developing field of regenerative medicine have identified bone tissue engineering as an attractive translational target. Clinical problems requiring bone regeneration are diverse, and no single regeneration approach will likely resolve all defects. Recent advances in the field of tissue engineering have included the use of sophisticated biocompatible scaffolds, new postnatal multipotent cell populations, and the appropriate cellular stimulation. In particular, synthetic polymer scaffolds allow for fast and reproducible construction, while still retaining biocompatible characteristics. These criteria relate to the immediate goal of determining the ideal implant. The search is becoming a reality with widespread availability of biocompatible scaffolds; however, the desired parameters have not been clearly defined. Currently, most research focuses on the use of bone morphogenetic proteins (BMPs), specifically BMP-2 and BMP-7. These proteins induce osteogenic differentiation in vitro, as well as bone defect healing in vivo. Protein-scaffold interactions that enhance BMP binding are of the utmost importance, since prolonged BMP release creates the most osteogenic microenvironment. Transition into clinical studies has had only mild success and relies on large doses of BMPs for bone formation. Advances within the field of bone tissue engineering will likely overcome these challenges and lead to more clinically relevant therapies. PMID:15797456

  6. Tissue landscape alters adjacent cell fates during Drosophila egg development

    PubMed Central

    Manning, Lathiena; Weideman, Ann Marie; Peercy, Bradford; Starz-Gaiano, Michelle

    2015-01-01

    Extracellular signaling molecules control many biological processes, but the influence of tissue architecture on the local concentrations of these factors is unclear. Here we examine this issue in the Drosophila egg chamber, where two anterior cells secrete Unpaired (Upd) to activate Signal Transducer and Activator of Transcription (STAT) signaling in the epithelium. High STAT signaling promotes cell motility. Genetic analysis shows that all cells near the Upd source can respond. However, using upright imaging, we show surprising asymmetries in STAT activation patterns, suggesting that some cells experience different Upd levels than predicted by their location. We develop a three-dimensional mathematical model to characterize the spatio-temporal distribution of the activator. Simulations show that irregular tissue domains can produce asymmetric distributions of Upd, consistent with results in vivo. Mutant analysis substantiates this idea. We conclude that cellular landscape can heavily influence the effect of diffusible activators and should be more widely considered. PMID:26082073

  7. Effects of radiotherapy on uveal melanomas and adjacent tissues.

    PubMed

    Groenewald, C; Konstantinidis, L; Damato, B

    2013-02-01

    Most uveal melanomas are treated with radiotherapy. An adequate understanding of the effects of radiation on the tumour and the healthy ocular tissues is necessary. Ionizing radiation damages cell membranes, organelles, and DNA. Irradiated cells are lysed or undergo apoptosis, necrosis, and senescence. These effects occur in tumour cells and vascular endothelial cells, resulting in tumour shrinkage, ischaemia, infarction, exudation, and fibrosis, which can cause exudative maculopathy, serous retinal detachment, rubeosis, and neovascular glaucoma (ie, 'toxic tumour syndrome'). Such abnormalities must be distinguished from collateral damage to healthy ocular tissues that receive high doses of radiation, and these include radiation-induced retinopathy, optic neuropathy, choroidopathy, cataract, and scleral necrosis. Radiation retinopathy can be treated effectively with photodynamic therapy, anti-angiogenic agents, and intravitreal steroid injections. In some patients, optic neuropathy may improve with intravitreal steroids or anti-angiogenic agents. Neovascular glaucoma resolves with intra-cameral bevacizumab. Exudative retinal detachment can regress with intra-vitreal steroid injections. Cataract is treated in the usual manner. Scleral necrosis, if severe, may require grafting, possibly using a lamellar flap from the same eye. Depending on the bulk of the residual toxic tumour, treatment can consist of intra-vitreal steroids and/or anti-angiogenic agents, transpupillary thermotherapy or photodynamic therapy to the tumour, or surgical removal of the tumour by endo- or exo-resection. Measures aimed at preventing collateral damage include eccentric placement of ruthenium plaques or iodine seeds and delivery of a notched proton beam. The decision to treat a uveal melanoma with radiotherapy requires the ability to manage iatrogenic side effects and complications. PMID:23196647

  8. Effects of radiotherapy on uveal melanomas and adjacent tissues

    PubMed Central

    Groenewald, C; Konstantinidis, L; Damato, B

    2013-01-01

    Most uveal melanomas are treated with radiotherapy. An adequate understanding of the effects of radiation on the tumour and the healthy ocular tissues is necessary. Ionizing radiation damages cell membranes, organelles, and DNA. Irradiated cells are lysed or undergo apoptosis, necrosis, and senescence. These effects occur in tumour cells and vascular endothelial cells, resulting in tumour shrinkage, ischaemia, infarction, exudation, and fibrosis, which can cause exudative maculopathy, serous retinal detachment, rubeosis, and neovascular glaucoma (ie, ‘toxic tumour syndrome'). Such abnormalities must be distinguished from collateral damage to healthy ocular tissues that receive high doses of radiation, and these include radiation-induced retinopathy, optic neuropathy, choroidopathy, cataract, and scleral necrosis. Radiation retinopathy can be treated effectively with photodynamic therapy, anti-angiogenic agents, and intravitreal steroid injections. In some patients, optic neuropathy may improve with intravitreal steroids or anti-angiogenic agents. Neovascular glaucoma resolves with intra-cameral bevacizumab. Exudative retinal detachment can regress with intra-vitreal steroid injections. Cataract is treated in the usual manner. Scleral necrosis, if severe, may require grafting, possibly using a lamellar flap from the same eye. Depending on the bulk of the residual toxic tumour, treatment can consist of intra-vitreal steroids and/or anti-angiogenic agents, transpupillary thermotherapy or photodynamic therapy to the tumour, or surgical removal of the tumour by endo- or exo-resection. Measures aimed at preventing collateral damage include eccentric placement of ruthenium plaques or iodine seeds and delivery of a notched proton beam. The decision to treat a uveal melanoma with radiotherapy requires the ability to manage iatrogenic side effects and complications. PMID:23196647

  9. Matrix metalloproteinase-1 expression in breast cancer and cancer-adjacent tissues by immunohistochemical staining

    PubMed Central

    XUAN, JIAJIA; ZHANG, YUNFENG; ZHANG, XIUJUN; HU, FEN

    2015-01-01

    Although matrix metalloproteinase-1 (MMP-1) has been considered a factor of crucial importance for breast cancer cells invasion and metastasis, the expression of MMP-1 in different breast cancer and cancer-adjacent tissues have not been fully examined. In the present study, immunohistochemical staining was used to detect the MMP-1 expression in non-specific invasive ductal carcinoma of the breast, cancer-adjacent normal breast tissue, lymph node metastatic non-specific invasive ductal carcinoma of the breast and normal lymph node tissue. The results showed that MMP-1 expression is different in the above tissues. MMP-1 had a positive expression in normal lymph node tissue and lymph node metastatic non-specific invasive ductal carcinoma. The MMP-1 negative expression rate was only 6.1% in non-specific invasive ductal carcinoma of the breast and 2.9% in cancer-adjacent normal breast tissue respectively. MMP-1 expression is higher in non-specific invasive ductal carcinoma and lymph node metastatic non-specific invasive ductal carcinoma compared to cancer-adjacent normal breast tissue and normal lymph node tissue. In conclusion, higher expression of MMP-1 in breast cancer may play a crucial role in promoting breast cancer metastasis. PMID:26137243

  10. Coexisiting adenoma and granuloma involving the right inferior parathyroid gland with adjacent ectopic thymic tissue

    PubMed Central

    Gupta, Mayank; Kandasamy, Subramaniam

    2014-01-01

    Inflammatory lesions, particularly granulomas, involving adenoma of the parathyroid gland are rare. Ectopic thymic tissue is commonly associated with the thyroid and/or parathyroid gland due to their close embryonic relationship. We report a rare case of coexisting adenoma and granuloma of the parathyroid gland with adjacent ectopic thymic tissue. PMID:24957592

  11. Bone Tissue Engineering: Past-Present-Future.

    PubMed

    Quarto, Rodolfo; Giannoni, Paolo

    2016-01-01

    Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter. PMID:27236664

  12. Telomere length in hepatocellular carcinoma and paired adjacent non-tumor tissues by quantitative PCR.

    PubMed

    Zhang, Yujing; Shen, Jing; Ming-Whei; Lee, Yu Po-Huang; Santella, Regina M

    2007-12-01

    Telomere shortening limits the proliferative capacity of human cells, restrains the regenerative capacity of organ systems during chronic diseases and aging and also induces chromosomal instability as well as initiation of cancer. Previous studies demonstrated that telomeres are often significantly shorter in tumor tissue, including hepatocellular carcinoma (HCC), compared to the surrounding tissue, but telomere length in HCC tissues was not correlated with several clinical parameters, such as age, sex, HBV or HCV infections and tumor size. In the present study, the telomere length ratio of 36 paired HCC, and their adjacent non-tumor tissues was measured by quantitative PCR (Q-PCR). The mean telomere lengths (SD) for HCC and adjacent non-tumor tissues were 0.26 (0.10) and 0.47 (0.20) respectively (t = 6.22, P < 0.0001). There was a large difference in the distribution of subjects based on telomere length in tumor and adjacent non-tumor tissues. The number of tumors with telomere length shorter than 0.50 was much higher than that of adjacent non-tumor tissues; more than 90% of the tissues with telomere length > or = 0.50 were adjacent non-tumor tissues. The correlations between telomere length and aflatoxin B1- and polycyclic aromatic hydrocarbon-DNA adducts level, p53 mutations and p16 hypermethylation status were also tested, but no significant associations were found. The relationship between telomere length shortening, chemical carcinogen exposure, and genetic and epigenetic changes in hepatocarcinogenesis needs further investigation. PMID:18058461

  13. Pullulan microcarriers for bone tissue regeneration.

    PubMed

    Aydogdu, Hazal; Keskin, Dilek; Baran, Erkan Turker; Tezcaner, Aysen

    2016-06-01

    Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering. PMID:27040238

  14. Does Metaphyseal Cement Augmentation in Fracture Management Influence the Adjacent Subchondral Bone and Joint Cartilage?

    PubMed Central

    Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R. Geoff; Blauth, Michael

    2015-01-01

    Abstract Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage. Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests. Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24). The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage. PMID:25621690

  15. Effects of holmium:YAG laser on equine articular cartilage and subchondral bone adjacent to traumatic lesions

    NASA Astrophysics Data System (ADS)

    Collier, Michael A.; Haugland, L. Mark; Bellamy, Janine; Johnson, Lanny L.; Rohrer, Michael D.; Walls, Robert C.; Bartels, Kenneth E.

    1994-09-01

    The effects of Ho:YAG laser energy on articular cartilage and subchondral bone adjacent to traumatically created cartilage lesions in a continuous weight-bearing model were investigated. The 2.1 micrometers wavelength was delivered in hand-controlled contact and near-contact hard tissue arthroscopic surgery in a saline medium. Bilateral arthroscopy was performed on normal antebrachiocarpal and intercarpal joints of four adult horses. One-hundred twenty traumatic lesions were created on three weight-bearing articular surfaces with a knife, curette, or a motorized burr. Depths of the lesions were partial and full thickness. Configurations of the lesions were lacerations, scrapes, and craters. Left limbs were used as controls. Right limb lesions were treated with various intensities of laser energy. Animals were sacrificed at intervals of 1, 3, and 8 weeks. Gross microscopic anatomy was documented, and tissue sections were subjected to blind review by a pathologist. Mankin grading for cellularity and proteoglycan content was used to qualitatively evaluate cartilage response. Cartilage adjacent to all lesions exposed to laser energy had better cellularity and proteoglycan content than corresponding controls by Mankin grading.

  16. [Analysis of bone tissues by intravital imaging].

    PubMed

    Mizuno, Hiroki; Yamashita, Erika; Ishii, Masaru

    2016-05-01

    In recent years,"the fluorescent imaging techniques"has made rapid advances, it has become possible to observe the dynamics of living cells in individuals or tissues. It has been considered that it is extremely difficult to observe the living bone marrow directly because bone marrow is surrounded by a hard calcareous. But now, we established a method for observing the cells constituting the bone marrow of living mice in real time by the use of the intravital two-photon imaging system. In this article, we show the latest data and the reports about the hematopoietic stem cells and the leukemia cells by using the intravital imaging techniques, and also discuss its further application. PMID:27117619

  17. Distinguishing epigenetic features of preneoplastic testis tissues adjacent to seminomas and nonseminomas

    PubMed Central

    Skvortsova, Yulia V.; Zinovyeva, Marina V.; Stukacheva, Elena A.; Klimov, Alexey; Tryakin, Alexey A.; Azhikina, Tatyana L.

    2016-01-01

    PIWI pathway proteins are expressed during spermatogenesis where they play a key role in germ cell development. Epigenetic loss of PIWI proteins expression was previously demonstrated in testicular germ cell tumors (TGCTs), implying their involvement in TGCT development. In this work, apart from studying only normal testis and TGCT samples, we also analyzed an intermediate stage, i.e. preneoplastic testis tissues adjacent to TGCTs. Importantly, in this study, we minimized the contribution of patient-to-patient heterogeneity by using matched preneoplastic/TGCT samples. Surprisingly, expression of germ cell marker DDX4 suggests that spermatogenesis is retained in premalignant testis tissues adjacent to nonseminoma, but not those adjacent to seminoma. Moreover, this pattern is followed by expression of PIWI pathway genes, which impacts one of their functions: DNA methylation level over LINE-1 promoters is higher in preneoplastic testis tissues adjacent to nonseminomas than those adjacent to seminomas. This finding might imply distinct routes for development of the two types of TGCTs and could be used as a novel diagnostic marker, possibly, noninvasively. Finally, we studied the role of CpG island methylation in expression of PIWI genes in patient samples and using in vitro experiments in cell line models: a more complex interrelation between DNA methylation and expression of the corresponding genes was revealed. PMID:26843623

  18. Distinguishing epigenetic features of preneoplastic testis tissues adjacent to seminomas and nonseminomas.

    PubMed

    Gainetdinov, Ildar V; Kondratieva, Sofia A; Skvortsova, Yulia V; Zinovyeva, Marina V; Stukacheva, Elena A; Klimov, Alexey; Tryakin, Alexey A; Azhikina, Tatyana L

    2016-04-19

    PIWI pathway proteins are expressed during spermatogenesis where they play a key role in germ cell development. Epigenetic loss of PIWI proteins expression was previously demonstrated in testicular germ cell tumors (TGCTs), implying their involvement in TGCT development. In this work, apart from studying only normal testis and TGCT samples, we also analyzed an intermediate stage, i.e. preneoplastic testis tissues adjacent to TGCTs. Importantly, in this study, we minimized the contribution of patient-to-patient heterogeneity by using matched preneoplastic/TGCT samples. Surprisingly, expression of germ cell marker DDX4 suggests that spermatogenesis is retained in premalignant testis tissues adjacent to nonseminoma, but not those adjacent to seminoma. Moreover, this pattern is followed by expression of PIWI pathway genes, which impacts one of their functions: DNA methylation level over LINE-1 promoters is higher in preneoplastic testis tissues adjacent to nonseminomas than those adjacent to seminomas. This finding might imply distinct routes for development of the two types of TGCTs and could be used as a novel diagnostic marker, possibly, noninvasively. Finally, we studied the role of CpG island methylation in expression of PIWI genes in patient samples and using in vitro experiments in cell line models: a more complex interrelation between DNA methylation and expression of the corresponding genes was revealed. PMID:26843623

  19. Muscle and bone, two interconnected tissues.

    PubMed

    Tagliaferri, Camille; Wittrant, Yohann; Davicco, Marie-Jeanne; Walrand, Stéphane; Coxam, Véronique

    2015-05-01

    As bones are levers for skeletal muscle to exert forces, both are complementary and essential for locomotion and individual autonomy. In the past decades, the idea of a bone-muscle unit has emerged. Numerous studies have confirmed this hypothesis from in utero to aging works. Space flight, bed rest as well as osteoporosis and sarcopenia experimentations have allowed to accumulate considerable evidence. Mechanical loading is a key mechanism linking both tissues with a central promoting role of physical activity. Moreover, the skeletal muscle secretome accounts various molecules that affect bone including insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor (FGF-2), interleukin-6 (IL-6), IL-15, myostatin, osteoglycin (OGN), FAM5C, Tmem119 and osteoactivin. Even though studies on the potential effects of bone on muscle metabolism are sparse, few osteokines have been identified. Prostaglandin E2 (PGE2) and Wnt3a, which are secreted by osteocytes, osteocalcin (OCN) and IGF-1, which are produced by osteoblasts and sclerostin which is secreted by both cell types, might impact skeletal muscle cells. Cartilage and adipose tissue are also likely to participate to this control loop and should not be set aside. Indeed, chondrocytes are known to secrete Dickkopf-1 (DKK-1) and Indian hedgehog (Ihh) and adipocytes produce leptin, adiponectin and IL-6, which potentially modulate bone and muscle metabolisms. The understanding of this system will enable to define new levers to prevent/treat sarcopenia and osteoporosis at the same time. These strategies might include nutritional interventions and physical exercise. PMID:25804855

  20. Preclinical imaging in bone tissue engineering.

    PubMed

    Ventura, Manuela; Boerman, Otto C; de Korte, Chris; Rijpkema, Mark; Heerschap, Arend; Oosterwijk, Egbert; Jansen, John A; Walboomers, X Frank

    2014-12-01

    Since X-rays were discovered, in 1895, and since the first radiological image of a hand, bone tissue has been the subject of detailed medical imaging. However, advances in bone engineering, including the increased complexity of implant scaffolds, currently also underline the limits of X-ray imaging. Therefore, advanced follow-up imaging methods are pivotal to develop. The field of noninvasive, high-sensitivity, and high-resolution anatomical and functional imaging techniques (optical, ultrasound, positron emission tomography, single-photon emission computed tomography, magnetic resonance, etc.) offers a wide variety of tools that potentially could be considered as alternatives, or at least supportive, to the most commonly used X-ray computed tomography. Moreover, dedicated preclinical scanners have become available, with sensitivity and resolution even higher than clinical scanners, thus favoring a quick translation from preclinical to clinical applications. Furthermore, the armamentarium of bone-specific probes and contrast agents for each of this imaging modalities is constantly growing. This review focuses on such preclinical imaging tools, each with its respective strengths and weaknesses, used alone or in combination. Especially, multimodal imaging will dramatically contribute to improve the knowledge on bone healing regenerative processes. PMID:24720381

  1. Candidates Cell Sources to Regenerate Alveolar Bone from Oral Tissue

    PubMed Central

    Nishimura, Masahiro; Takase, Kazuma; Suehiro, Fumio; Murata, Hiroshi

    2012-01-01

    Most of the cases of dental implant surgery, especially the bone defect extensively, are essential for alveolar ridge augmentation. As known as cell therapy exerts valuable effects on bone regeneration, numerous reports using various cells from body to regenerate bone have been published, including clinical reports. Mesenchymal cells that have osteogenic activity and have potential to be harvested from intra oral site might be a candidate cells to regenerate alveolar bone, even dentists have not been harvested the cells outside of mouth. This paper presents a summary of somatic cells in edentulous tissues which could subserve alveolar bone regeneration. The candidate tissues that might have differentiation potential as mesenchymal cells for bone regeneration are alveolar bone chip, bone marrow from alveolar bone, periosteal tissue, and gingival tissue. Understanding their phenotype consecutively will provide a rational approach for alveolar ridge augmentation. PMID:22505911

  2. [Grading of soft tissue and bone sarcomas].

    PubMed

    Petersen, I; Wardelmann, E

    2016-07-01

    Malignancy grading is an essential element in the classification of sarcomas. It correlates with the prognosis of the disease and the risk of metastasis. This article presents the grading schemes for soft tissue, bone and pediatric sarcomas. It summarizes the histological criteria of the Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) system and the Pediatric Oncology Group as well as the grading of bone tumors by the College of American Pathologists (CAP). Furthermore, the potential relevance of gene expression signatures, the complexity index in sarcoma (CINSARC) and single genetic alterations (p53, MDM2, p16, SWI/SNF, EWSR1 fusions and PAX3/PAX7-FOXO1 fusions) for the prognosis of sarcomas are discussed. PMID:27384333

  3. Bone and Soft Tissue Pathology: Diagnostic and Prognostic Implications.

    PubMed

    Gibbs, Julie; Henderson-Jackson, Evita; Bui, Marilyn M

    2016-10-01

    Soft tissue and bone tumors are a heterogeneous group of tumors most often classified according to the type of tissue they most closely histologically resemble. Although sarcomas are rare, greater than 100 histologic subtypes of benign and malignant soft tissue and bone tumors are currently recognized. In this article, the authors review the current pathologic definitions, the classification and grading systems, supportive ancillary techniques, and the prognostic implications for some of the more common soft tissue and bone tumors. PMID:27542635

  4. Vascularized Bone Tissue Engineering: Approaches for Potential Improvement

    PubMed Central

    Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing

    2012-01-01

    Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012

  5. Biomimetic nanoclay scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  6. Differentially Expressed miRNAs in Tumor, Adjacent, and Normal Tissues of Lung Adenocarcinoma

    PubMed Central

    Tian, Fei; Li, Rui; Chen, Zhenzhu; Shen, Yanting; Lu, Jiafeng; Xie, Xueying; Ge, Qinyu

    2016-01-01

    Lung cancer is the leading cause of cancer deaths. Non-small-cell lung cancer (NSCLC) is the major type of lung cancer. The aim of this study was to characterize the expression profiles of miRNAs in adenocarcinoma (AC), one major subtype of NSCLC. In this study, the miRNAs were detected in normal, adjacent, and tumor tissues by next-generation sequencing. Then the expression levels of differential miRNAs were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In the results, 259, 401, and 389 miRNAs were detected in tumor, adjacent, and normal tissues of pooled AC samples, respectively. In addition, for the first time we have found that miR-21-5p and miR-196a-5p were gradually upregulated from normal to adjacent to tumor tissues; miR-218-5p was gradually downregulated with 2-fold or greater change in AC tissues. These 3 miRNAs were validated by qRT-PCR. Lastly, we predicted target genes of these 3 miRNAs and enriched the potential functions and regulatory pathways. The aberrant miR-21-5p, miR-196a-5p, and miR-218-5p may become biomarkers for diagnosis and prognosis of lung adenocarcinoma. This research may be useful for lung adenocarcinoma diagnosis and the study of pathology in lung cancer. PMID:27247934

  7. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].

    PubMed

    Rogala, Piotr; Uklejewski, Ryszard; Stryła, Wanda

    2002-01-01

    The modern biomechanical two-phase poroelastic model of bone tissue is presented. Bone tissue is treated in this model as a porous elastically deformed solid filled with a viscous newtonian fluid. Traditional one-phase biomechanical model of bone tissue, which is characterized by the Young modulus and the Poisson's coefficient, is still valid and it can be treated as an approximate model in comparison with the more realistic two-phase model of bone tissue. The biomechanical function of fluids in bone is considered. Bone biodynamics is presented in form of the scheme which illustrates the mechano-adaptive, the mechano-electric and the electrophysiologic properties of bone tissue. Essentials of the poroelastic model of bone tissue is the mechanical load induced flow of intraosseous fluid and the associated strain generated electric potentials SGPs. PMID:12238403

  8. Spatiotemporal morphometry of adjacent tissue layers with application to the study of sulcal formation.

    PubMed

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A; Kim, Kio; Rousseau, François; Glenn, Orit A; Barkovich, A James; Studholme, Colin

    2011-01-01

    The process of brain growth involves the expansion of tissue at different rates at different points within the brain. As the layers within the developing brain evolve they can thicken or increase in area as the brain surface begins to fold. In this work we propose a new spatiotemporal formulation of tensor based volume morphometry that is derived in relation to tissue boundaries. This allows the study of the directional properties of tissue growth by separately characterizing the changes in area and thickness of the adjacent layers. The approach uses temporally weighted, local regression across a population of anatomies with different ages to model changes in components of the growth radial and tangential to the boundary between tissue layers. The formulation is applied to the study of sulcal formation from in-utero MR imaging of human fetal brain anatomy. Results show that the method detects differential growth of tissue layers adjacent to the cortical surface, particularly at sulcal locations, as early as 22 gestational weeks. PMID:21995063

  9. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. PMID:27086202

  10. Coordinated tissue-specific regulation of adjacent alternative 3′ splice sites in C. elegans

    PubMed Central

    Ragle, James Matthew; Katzman, Sol; Akers, Taylor F.; Barberan-Soler, Sergio; Zahler, Alan M.

    2015-01-01

    Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus. PMID:25922281

  11. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing

    PubMed Central

    Clark, Andrew J.; Wiley, Devin T.; Zuckerman, Jonathan E.; Webster, Paul; Chao, Joseph; Lin, James; Yen, Yun; Davis, Mark E.

    2016-01-01

    Nanoparticle-based therapeutics are being used to treat patients with solid tumors. Whereas nanoparticles have been shown to preferentially accumulate in solid tumors of animal models, there is little evidence to prove that intact nanoparticles localize to solid tumors of humans when systemically administered. Here, tumor and adjacent, nonneoplastic tissue biopsies are obtained through endoscopic capture from patients with gastric, gastroesophageal, or esophageal cancer who are administered the nanoparticle CRLX101. Both the pre- and postdosing tissue samples adjacent to tumors show no definitive evidence of either the nanoparticle or its drug payload (camptothecin, CPT) contained within the nanoparticle. Similar results are obtained from the predosing tumor samples. However, in nine of nine patients that were evaluated, CPT is detected in the tumor tissue collected 24–48 h after CRLX101 administration. For five of these patients, evidence of the intact deposition of CRLX101 nanoparticles in the tumor tissue is obtained. Indications of CPT pharmacodynamics from tumor biomarkers such as carbonic anhydrase IX and topoisomerase I by immunohistochemistry show clear evidence of biological activity from the delivered CPT in the posttreatment tumors. PMID:27001839

  12. Vascularised endosteal bone tissue in armoured sauropod dinosaurs

    PubMed Central

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-01-01

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature. PMID:27112710

  13. Vascularised endosteal bone tissue in armoured sauropod dinosaurs.

    PubMed

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-01-01

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature. PMID:27112710

  14. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  15. Adipose-Derived Stromal Vascular Fraction Differentially Expands Breast Progenitors in Tissue Adjacent to Tumors Compared to Healthy Breast Tissue

    PubMed Central

    Chatterjee, Sumanta; Laliberte, Mike; Blelloch, Sarah; Ratanshi, Imran; Safneck, Janice; Buchel, Ed

    2015-01-01

    Background: Autologous fat grafts supplemented with adipose-derived stromal vascular fraction are used in reconstructive and cosmetic breast procedures. Stromal vascular fraction contains adipose-derived stem cells that are thought to encourage wound healing, tissue regeneration, and graft retention. Although use of stromal vascular fraction has provided exciting perspectives for aesthetic procedures, no studies have yet been conducted to determine whether its cells contribute to breast tissue regeneration. The authors examined the effect of these cells on the expansion of human breast epithelial progenitors. Methods: From patients undergoing reconstructive breast surgery following mastectomies, abdominal fat, matching tissue adjacent to breast tumors, and the contralateral non–tumor-containing breast tissue were obtained. Ex vivo co-cultures using breast epithelial cells and the stromal vascular fraction cells were used to study the expansion potential of breast progenitors. Breast reduction samples were collected as a source of healthy breast cells. Results: The authors observed that progenitors present in healthy breast tissue or contralateral non–tumor-containing breast tissue showed significant and robust expansion in the presence of stromal vascular fraction (5.2- and 4.8-fold, respectively). Whereas the healthy progenitors expanded up to 3-fold without the stromal vascular fraction cells, the expansion of tissue adjacent to breast tumor progenitors required the presence of stromal vascular fraction cells, leading to a 7-fold expansion, which was significantly higher than the expansion of healthy progenitors with stromal vascular fraction. Conclusions: The use of stromal vascular fraction might be more beneficial to reconstructive operations following mastectomies compared with cosmetic corrections of the healthy breast. Future studies are required to examine the potential risk factors associated with its use. CLINICAL QUESTION/LEVEL OF EVIDENCE

  16. Sarcomas of Soft Tissue and Bone.

    PubMed

    Ferrari, Andrea; Dirksen, Uta; Bielack, Stefan

    2016-01-01

    The definition of soft tissue and bone sarcomas include a large group of several heterogeneous subtypes of mesenchymal origin that may occur at any age. Among the different sarcomas, rhabdomyosarcoma, synovial sarcoma, Ewing sarcoma and osteosarcoma are aggressive high-grade malignancies that often arise in adolescents and young adults. Managing these malignancies in patients in this age bracket poses various clinical problems, also because different therapeutic approaches are sometimes adopted by pediatric and adult oncologists, even though they are dealing with the same condition. Cooperation between pediatric oncologists and adult medical oncologists is a key step in order to assure the best treatment to these patients, preferably through their inclusion into international clinical trials. PMID:27595362

  17. Chitosan-based scaffolds for bone tissue engineering

    PubMed Central

    Levengood, Sheeny Lan; Zhang, Miqin

    2014-01-01

    Bone defects requiring grafts to promote healing are frequently occurring and costly problems in health care. Chitosan, a biodegradable, naturally occurring polymer, has drawn considerable attention in recent years as scaffolding material in tissue engineering and regenerative medicine. Chitosan is especially attractive as a bone scaffold material because it supports the attachment and proliferation of osteoblast cells as well as formation of mineralized bone matrix. In this review, we discuss the fundamentals of bone tissue engineering and the unique properties of chitosan as a scaffolding material to treat bone defects for hard tissue regeneration. We present the common methods for fabrication and characterization of chitosan scaffolds, and discuss the influence of material preparation and addition of polymeric or ceramic components or biomolecules on chitosan scaffold properties such as mechanical strength, structural integrity, and functional bone regeneration. Finally, we highlight recent advances in development of chitosan-based scaffolds with enhanced bone regeneration capability. PMID:24999429

  18. Bioactive scaffold for bone tissue engineering: An in vivo study

    NASA Astrophysics Data System (ADS)

    Livingston, Treena Lynne

    Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment

  19. Histopathological effects of intraoperative radiotherapy on pancreas and adjacent tissues: a postmortem analysis

    SciTech Connect

    Hoekstra, H.J.; Restrepo, C.; Kinsella, T.J.; Sindelar, W.F.

    1988-02-01

    Intraoperative radiotherapy (IORT) has been utilized in the treatment of resectable and unresectable pancreatic carcinoma at the National Cancer Institute. Detailed autopsy analyses of the radiation effects on the pancreas and adjacent tissues were performed on 13 patients dying at various times following therapy. IORT can induce a progressive retroperitoneal fibrosis and fibrosis of the porta hepatis in patients with resectable pancreatic carcinoma. In unresectable pancreatic carcinoma, the major expression of intraoperative irradiation with external beam irradiation is a progressive fibrosis of the pancreas with vascular sclerosis, nerve degeneration, atrophy of acinar cells, and atypical changes in the ducts of the pancreas, as well as degenerative changes of the pancreatic tumor.

  20. Elastic properties of a porous titanium-bone tissue composite.

    PubMed

    Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B

    2015-01-01

    The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone. PMID:25953540

  1. Bone tissue remodeling and development: focus on matrix metalloproteinase functions.

    PubMed

    Paiva, Katiucia Batista Silva; Granjeiro, José Mauro

    2014-11-01

    Bone-forming cells originate from distinct embryological layers, mesoderm (axial and appendicular bones) and ectoderm (precursor of neural crest cells, which mainly form facial bones). These cells will develop bones by two principal mechanisms: intramembranous and endochondral ossification. In both cases, condensation of multipotent mesenchymal cells occurs, at the site of the future bone, which differentiate into bone and cartilage-forming cells. During long bone development, an initial cartilaginous template is formed and replaced by bone in a coordinated and refined program involving chondrocyte proliferation and maturation, vascular invasion, recruitment of adult stem cells and intense remodeling of cartilage and bone matrix. Matrix metalloproteinases (MMPs) are the most important enzymes for cleaving structural components of the extracellular matrix (ECM), as well as other non-ECM molecules in the ECM space, pericellular perimeter and intracellularly. Thus, the bioactive molecules generated act on several biological events, such as development, tissue remodeling and homeostasis. Since the discovery of collagenase in bone cells, more than half of the MMP members have been detected in bone tissues under both physiological and pathological conditions. Pivotal functions of MMPs during development and bone regeneration have been revealed by knockout mouse models, such as chondrocyte proliferation and differentiation, osteoclast recruitment and function, bone modeling, coupling of bone resorption and formation (bone remodeling), osteoblast recruitment and survival, angiogenesis, osteocyte viability and function (biomechanical properties); as such alterations in MMP function may alter bone quality. In this review, we look at the principal properties of MMPs and their inhibitors (TIMPs and RECK), provide an up-date on their known functions in bone development and remodeling and discuss their potential application to Bone Bioengineering. PMID:25157440

  2. In vitro simulation of pathological bone conditions to predict clinical outcome of bone tissue engineered materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong Thuy Thi

    According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted

  3. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction

    PubMed Central

    Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana

    2016-01-01

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  4. Tissue-engineered autologous grafts for facial bone reconstruction.

    PubMed

    Bhumiratana, Sarindr; Bernhard, Jonathan C; Alfi, David M; Yeager, Keith; Eton, Ryan E; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M; Lopez, Mandi J; Eisig, Sidney B; Vunjak-Novakovic, Gordana

    2016-06-15

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care-the use of bone harvested from another region in the body-has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, native bovine bone matrix, and a perfusion bioreactor for the growth and transport of living grafts, without bone morphogenetic proteins. The ramus-condyle unit, the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatán minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material and crafted it into an anatomically correct shape using image-guided micromilling to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either nonseeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  5. Bone tissue engineering: state of the art and future trends.

    PubMed

    Salgado, António J; Coutinho, Olga P; Reis, Rui L

    2004-08-01

    Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents. PMID:15468269

  6. Raman tomography of tissue phantoms and bone tissue

    NASA Astrophysics Data System (ADS)

    Schulmerich, Matthew V.; Srinivasan, Subhadra; Kreider, Jaclynn; Cole, Jacqueline H.; Dooley, Kathryn A.; Goldstein, Steven A.; Pogue, Brian W.; Morris, Michael D.

    2008-02-01

    We report tomographic reconstruction of objects located several millimeters below the surface of highly scattering media. For this purpose we adapted proven software developed for fluorescence tomography with and without the use of spatial priors1. For this first demonstration we acquired Raman spectra using an existing ring/disk fiber optic probe with fifty collection fibers2. Several illumination ring diameters were employed to generate multiple angles of incidence. Tomographic reconstruction from Raman scatter was tested using a 9.5 mm diameter Teflon® sphere embedded in a gel of agarose and 1% Intralipid. Blind reconstruction of the sphere using the 732 cm -1 C-F stretch yielded an accurate shape but an inaccurate depth. Using the known shape and position of the object as spatial priors, a more accurate reconstruction was obtained. We also demonstrated a reconstruction of the tibial diaphysis of an intact canine hind limb using spatial priors generated from micro-computed tomography. In this first demonstration of Raman tomography in animal tissue, the P-O stretch of the bone mineral at 958 cm -1 was used for the reconstruction. An accurate shape and depth were recovered.

  7. Bone mechanobiology, gravity and tissue engineering: effects and insights.

    PubMed

    Ruggiu, Alessandra; Cancedda, Ranieri

    2015-12-01

    Bone homeostasis strongly depends on fine tuned mechanosensitive regulation signals from environmental forces into biochemical responses. Similar to the ageing process, during spaceflights an altered mechanotransduction occurs as a result of the effects of bone unloading, eventually leading to loss of functional tissue. Although spaceflights represent the best environment to investigate near-zero gravity effects, there are major limitations for setting up experimental analysis. A more feasible approach to analyse the effects of reduced mechanostimulation on the bone is represented by the 'simulated microgravity' experiments based on: (1) in vitro studies, involving cell cultures studies and the use of bioreactors with tissue engineering approaches; (2) in vivo studies, based on animal models; and (3) direct analysis on human beings, as in the case of the bed rest tests. At present, advanced tissue engineering methods allow investigators to recreate bone microenvironment in vitro for mechanobiology studies. This group and others have generated tissue 'organoids' to mimic in vitro the in vivo bone environment and to study the alteration cells can go through when subjected to unloading. Understanding the molecular mechanisms underlying the bone tissue response to mechanostimuli will help developing new strategies to prevent loss of tissue caused by altered mechanotransduction, as well as identifying new approaches for the treatment of diseases via drug testing. This review focuses on the effects of reduced gravity on bone mechanobiology by providing the up-to-date and state of the art on the available data by drawing a parallel with the suitable tissue engineering systems. PMID:25052837

  8. Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology

    PubMed Central

    Bodle, Josephine C.; Hanson, Ariel D.

    2011-01-01

    This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267

  9. The role of perfusion bioreactors in bone tissue engineering

    PubMed Central

    Gaspar, Diana Alves; Gomide, Viviane; Monteiro, Fernando Jorge

    2012-01-01

    Tissue engineering has emerged as a possible alternative to current treatments for bone injuries and defects. However, the common tissue engineering approach presents some obstacles to the development of functional tissues, such as insufficient nutrient and metabolite transport and non-homogenous cell distribution. Culture of bone cells in three-dimensional constructs in bioreactor systems is a solution for those problems as it improves mass transport in the culture system. For bone tissue engineering spinner flasks, rotating wall vessels and perfusion systems have been investigated, and based on these, variations that support cell seeding and mechanical stimulation have also been researched. This review aims at providing an overview of the concepts, advantages and future applications of bioreactor systems for bone tissue engineering with emphasis on the design of different perfusion systems and parameters that can be optimized. PMID:23507883

  10. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone

    PubMed Central

    Morris, Emma V.; Edwards, Claire M.

    2016-01-01

    The bone marrow is a favored site for a number of cancers, including the hematological malignancy multiple myeloma, and metastasis of breast and prostate cancer. This specialized microenvironment is highly supportive, not only for tumor growth and survival but also for the development of an associated destructive cancer-induced bone disease. The interactions between tumor cells, osteoclasts and osteoblasts are well documented. By contrast, despite occupying a significant proportion of the bone marrow, the importance of bone marrow adipose tissue is only just emerging. The ability of bone marrow adipocytes to regulate skeletal biology and hematopoiesis, combined with their metabolic activity, endocrine functions, and proximity to tumor cells means that they are ideally placed to impact both tumor growth and bone disease. This review discusses the recent advances in our understanding of how marrow adipose tissue contributes to bone metastasis and cancer-induced bone disease. PMID:27471491

  11. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis.

    PubMed

    Tomanik, Magdalena; Nikodem, Anna; Filipiak, Jarosław

    2016-12-01

    Bone tissue is a biological system in which the dynamic processes of, among others, bone formation or internal reconstruction will determine the spatial structure of the tissue and its mechanical properties. The appearance of a factor disturbing the balance between biological processes, e.g. a disease, will cause changes in the spatial structure of bones, thus affecting its mechanical properties. One of the bone diseases most common in an increasingly ageing population is osteoarthritis, also referred to as degenerative joint disease. It is estimated that in 2050 about 1300 million people will show symptoms of OA. The appearance of a pathological stimulus disturbs the balance of the processes of degradation and synthesis of articular cartilage, chondrocytes and the extracellular matrix, and the subchondral bone layer. As osteoarthritis progresses, study of the epiphysis reveals increasingly widespread changes of the articular surface and the internal structure of bone tissue. In this paper, the authors point out the differences in the mechanical properties of cancellous bone tissue forming the proximal epiphysis of the femoral bone during the progressive stages of OA. In order to determine microproperties of bone trabeculae, specimens from different stages of the disease (N=9) were subjected to microindentation testing, which made it possible to determine the material properties of bone tissue, such as microhardness HV and Young׳s modulus E. In addition, mechanical tests were supplemented with Raman spectroscopy, which determine the degree of bone mineralization, and measurements of structural properties based on analysis using microCT. The conducted tests were used to establish both quantitative and quantitative description of changes in the structural and mechanical properties connected with reorganization of trabeculae making up the bone in the various stages of osteoarthritis. The proposed description will supplement existing knowledge in the literature about

  12. Early Growth Response1and Fatty Acid Synthase Expression is Altered in Tumor Adjacent Prostate Tissue and Indicates Field Cancerization

    PubMed Central

    Jones, Anna C.; Trujillo, Kristina A.; Phillips, Genevieve K.; Fleet, Trisha M.; Murton, Jaclyn K.; Severns, Virginia; Shah, Satyan K.; Davis, Michael S.; Smith, Anthony Y.; Griffith, Jeffrey K.; Fischer, Edgar G.; Bisoffi, Marco

    2011-01-01

    BACKGROUND Field cancerization denotes the occurrence of molecular alterations in histologically normal tissues adjacent to tumors. In prostate cancer, identification of field cancerization has several potential clinical applications. However, prostate field cancerization remains ill defined. Our previous work has shown up-regulated mRNA of the transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS) in tissues adjacent to prostate cancer. METHODS Immunofluorescence data were analyzed quantitatively by spectral imaging and linear unmixing to determine the protein expression levels of EGR-1 and FAS in human cancerous, histologically normal adjacent, and disease-free prostate tissues. RESULTS EGR-1 expression was elevated in both structurally intact tumor adjacent (1.6× on average) and in tumor (3.0× on average) tissues compared to disease-free tissues. In addition, the ratio of cytoplasmic versus nuclear EGR-1 expression was elevated in both tumor adjacent and tumor tissues. Similarly, FAS expression was elevated in both tumor adjacent (2.7× on average) and in tumor (2.5× on average) compared to disease-free tissues. CONCLUSIONS EGR-1 and FAS expression is similarly deregulated in tumor and structurally intact adjacent prostate tissues and defines field cancerization. In cases with high suspicion of prostate cancer but negative biopsy, identification of field cancerization could help clinicians target areas for repeat biopsy. Field cancerization at surgical margins on prostatectomy specimen should also be looked at as a predictor of cancer recurrence. EGR-1 and FAS could also serve as molecular targets for chemoprevention. PMID:22127986

  13. The control of bone induction in soft tissues.

    PubMed

    Gray, D H; Speak, K S

    1979-09-01

    The induction of bone at the boundary of parenchymal organs has been studied using acid demineralized rib implants in rabbits. The induction of bone is usually confined to that portion of an implant protruding from such an organ though both scant cartilage induction and the induction of bone within the territory of parenchymal organs were seen on a few occasions. Neonatal splenectomy does not influence the inductive properties of bone matrix in muscle or other soft tissues. The inclusion of composite autografts of liver and acid demineralized bone in muscle results in a reduction in the induction rate. It is postulated that the parenchymal organs exclude osteoprogenitor cells and possibly blood-bone bone-marrow-derived osteoinductor releasing cells by some mechanism that is diffusable, thus preventing the initial inductive event. Composite grafts of matrix and muscle produce bone in these tissue, demonstrating that once bone cell differentiation by induction is initiated bone tissue develops even in spleen, liver and kidney parenchyma. PMID:389518

  14. Alginate composites for bone tissue engineering: a review.

    PubMed

    Venkatesan, Jayachandran; Bhatnagar, Ira; Manivasagan, Panchanathan; Kang, Kyong-Hwa; Kim, Se-Kwon

    2015-01-01

    Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering. PMID:25020082

  15. Chitosan Composites for Bone Tissue Engineering—An Overview

    PubMed Central

    Venkatesan, Jayachandran; Kim, Se-Kwon

    2010-01-01

    Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed. PMID:20948907

  16. Donation FAQs (Bone and Tissue Allografts)

    MedlinePlus

    ... donor family services. Most organ, tissue and eye banks that are members of MTF send tissue to ... according to exact surgical specifications. Small, local tissue banks could not provide this level of quality in ...

  17. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    PubMed Central

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon

    2013-01-01

    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction. PMID:23824910

  18. Importance of dual delivery systems for bone tissue engineering.

    PubMed

    Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ou, Keng-Liang; Mao, Chuanbin; Hosseinkhani, Hossein

    2016-03-10

    Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering. PMID:26805518

  19. Electrospun nanofibrous 3D scaffold for bone tissue engineering.

    PubMed

    Eap, Sandy; Ferrand, Alice; Palomares, Carlos Mendoza; Hébraud, Anne; Stoltz, Jean-François; Mainard, Didier; Schlatter, Guy; Benkirane-Jessel, Nadia

    2012-01-01

    Tissue engineering aims at developing functional substitutes for damaged tissues by mimicking natural tissues. In particular, tissue engineering for bone regeneration enables healing of some bone diseases. Thus, several methods have been developed in order to produce implantable biomaterial structures that imitate the constitution of bone. Electrospinning is one of these methods. This technique produces nonwoven scaffolds made of nanofibers which size and organization match those of the extracellular matrix. Until now, seldom electrospun scaffolds were produced with thickness exceeding one millimeter. This article introduces a new kind of electrospun membrane called 3D scaffold of thickness easily exceeding one centimeter. The manufacturing involves a solution of poly(ε-caprolactone) in DMF/DCM system. The aim is to establish parameters for electrospinning in order to characterize these 3D scaffolds and, establish whether such scaffolds are potentially interesting for bone regeneration. PMID:22766712

  20. Remodeling of tissue-engineered bone structures in vivo.

    PubMed

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L; Merkle, Hans P; Meinel, Lorenz

    2013-09-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  1. Remodeling of tissue-engineered bone structures in vivo

    PubMed Central

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J.; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L.; Merkle, Hans P.; Meinel, Lorenz

    2013-01-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106 – 212 μm), medium (212 – 300 μm) and large pore diameter ranges (300 – 425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter all implants integrated well, vascularization was advanced and, bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  2. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  3. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration.

    PubMed

    Tang, Daniel; Tare, Rahul S; Yang, Liang-Yo; Williams, David F; Ou, Keng-Liang; Oreffo, Richard O C

    2016-03-01

    The rising incidence of bone disorders has resulted in the need for more effective therapies to meet this demand, exacerbated by an increasing ageing population. Bone tissue engineering is seen as a means of developing alternatives to conventional bone grafts for repairing or reconstructing bone defects by combining biomaterials, cells and signalling factors. However, skeletal tissue engineering has not yet achieved full translation into clinical practice as a consequence of several challenges. The use of additive manufacturing techniques for bone biofabrication is seen as a potential solution, with its inherent capability for reproducibility, accuracy and customisation of scaffolds as well as cell and signalling factor delivery. This review highlights the current research in bone biofabrication, the necessary factors for successful bone biofabrication, in addition to the current limitations affecting biofabrication, some of which are a consequence of the limitations of the additive manufacturing technology itself. PMID:26803405

  4. Management of soft tissue and bone sarcomas

    SciTech Connect

    Van Oosterom, A.T.; Van Unnik, J.A.M.

    1986-01-01

    This book contains 32 papers. Some of the titles are: Adjuvant Treatment for Osteosarcoma of the Limbs; Trial 20781 of the SIOP and the EORTC Radiotherapy/Chemotherapy; Application of Magnetic Resonance Imaging (MRI) in Diagnosis and Follow-up During Treatment of Bone Tumors; Radiological Assessment of Local Involvement in Bone Sarcomas; and Prevention of Lung Metastases by Irradiation Alone or Combined with Chemotherapy in an Animal Model.

  5. Melatonin Effects on Hard Tissues: Bone and Tooth

    PubMed Central

    Liu, Jie; Huang, Fang; He, Hong-Wen

    2013-01-01

    Melatonin is an endogenous hormone rhythmically produced in the pineal gland under the control of the suprachiasmatic nucleus (SCN) and the light/dark cycle. This indole plays an important role in many physiological processes including circadian entrainment, blood pressure regulation, seasonal reproduction, ovarian physiology, immune function, etc. Recently, the investigation and applications of melatonin in the hard tissues bone and tooth have received great attention. Melatonin has been investigated relative to bone remolding, osteoporosis, osseointegration of dental implants and dentine formation. In the present review, we discuss the large body of published evidence and review data of melatonin effects on hard tissues, specifically, bone and tooth. PMID:23665905

  6. Effect of Microgravity on Bone Tissue and Calcium Metabolism

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA4 includes short reports concerning: (1) Human Bone Tissue Changes after Long-Term Space Flight: Phenomenology and Possible Mechanics; (2) Prediction of Femoral Neck Bone Mineral Density Change in Space; (3) Dietary Calcium in Space; (4) Calcium Metabolism During Extended-Duration Space Flight; (5) External Impact Loads on the Lower Extremity During Jumping in Simulated Microgravity and the Relationship to Internal Bone Strain; and (6) Bone Loss During Long Term Space Flight is Prevented by the Application of a Short Term Impulsive Mechanical Stimulus.

  7. Is Bone Tissue Really Affected by Swimming? A Systematic Review

    PubMed Central

    Gómez-Bruton, Alejandro; Gónzalez-Agüero, Alejandro; Gómez-Cabello, Alba; Casajús, José A.; Vicente-Rodríguez, Germán

    2013-01-01

    Background Swimming, a sport practiced in hypogravity, has sometimes been associated with decreased bone mass. Aim This systematic review aims to summarize and update present knowledge about the effects of swimming on bone mass, structure and metabolism in order to ascertain the effects of this sport on bone tissue. Methods A literature search was conducted up to April 2013. A total of 64 studies focusing on swimmers bone mass, structure and metabolism met the inclusion criteria and were included in the review. Results It has been generally observed that swimmers present lower bone mineral density than athletes who practise high impact sports and similar values when compared to sedentary controls. However, swimmers have a higher bone turnover than controls resulting in a different structure which in turn results in higher resistance to fracture indexes. Nevertheless, swimming may become highly beneficial regarding bone mass in later stages of life. Conclusion Swimming does not seem to negatively affect bone mass, although it may not be one of the best sports to be practised in order to increase this parameter, due to the hypogravity and lack of impact characteristic of this sport. Most of the studies included in this review showed similar bone mineral density values in swimmers and sedentary controls. However, swimmers present a higher bone turnover than sedentary controls that may result in a stronger structure and consequently in a stronger bone. PMID:23950908

  8. Ultrasound elastography assessment of bone/soft tissue interface

    NASA Astrophysics Data System (ADS)

    Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella

    2016-01-01

    We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.

  9. Effects of microgravity on rat bone, cartlage and connective tissues

    NASA Technical Reports Server (NTRS)

    Doty, S.

    1990-01-01

    The response to hypogravity by the skeletal system was originally thought to be the result of a reduction in weight bearing. Thus a reduced rate of new bone formation in the weight-bearing bones was accepted, when found, as an obvious result of hypogravity. However, data on non-weight-bearing tissues have begun to show that other physiological changes can be expected to occur to animals during spaceflight. This overview of the Cosmos 1887 data discusses these results as they pertain to individual bones or tissues because the response seems to depend on the architecture and metabolism of each tissue under study. Various effects were seen in different tissues from the rats flown on Cosmos 1887. The femur showed a reduced bone mineral content but only in the central region of the diaphysis. This same region in the tibia showed changes in the vascularity of bone as well as some osteocytic cell death. The humerus demonstrated reduced morphometric characteristics plus a decrease in mechanical stiffness. Bone mineral crystals did not mature normally as a result of flight, suggesting a defect in the matrix mineralization process. Note that these changes relate directly to the matrix portion of the bone or some function of bone which slowly responds to changes in the environment. However, most cellular functions of bone are rapid responders. The stimulation of osteoblast precursor cells, the osteoblast function in collagen synthesis, a change in the proliferation rate of cells in the epiphyseal growth plate, the synthesis and secretion of osteocalcin, and the movement of water into or out of tissues, are all processes which respond to environmental change. These rapidly responding events produced results from Cosmos 1887 which were frequently quite different from previous space flight data.

  10. Tissue engineering strategies for promoting vascularized bone regeneration.

    PubMed

    Almubarak, Sarah; Nethercott, Hubert; Freeberg, Marie; Beaudon, Caroline; Jha, Amit; Jackson, Wesley; Marcucio, Ralph; Miclau, Theodore; Healy, Kevin; Bahney, Chelsea

    2016-02-01

    This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods. PMID:26608518

  11. Physiological bases of bone regeneration I. Histology and physiology of bone tissue.

    PubMed

    Fernández-Tresguerres-Hernández-Gil, Isabel; Alobera-Gracia, Miguel Angel; del-Canto-Pingarrón, Mariano; Blanco-Jerez, Luis

    2006-01-01

    Bone is the only body tissue capable of regeneration, allowing the restitutio ad integrum following trauma. In the event of a fracture or bone graft, new bone is formed, which following the remodeling process is identical to the pre-existing. Bone is a dynamic tissue in constant formation and resorption. This balanced phenomena, known as the remodeling process, allows the renovation of 5-15% of the total bone mass per year under normal conditions. Bone remodeling consists of the resorption of a certain amount of bone by osteoclasts, likewise the formation of osteoid matrix by osteoblasts, and its subsequent mineralization. This phenomenon occurs in small areas of the cortical bone or the trabecular surface, called Basic Multicellular Units (BMU). Treatment in Traumatology, Orthopedics, Implantology, and Maxillofacial and Oral Surgery, is based on the biologic principals of bone regeneration, in which cells, extracellular matrix, and osteoinductive signals are involved. The aim of this paper is to provide an up date on current knowledge on the biochemical and physiological mechanisms of bone regeneration, paying particular attention to the role played by the cells and proteins of the bone matrix. PMID:16388294

  12. [Effect of pulsed CO2-laser irradiation on bone tissue].

    PubMed

    Kholodnov, S E

    1985-01-01

    Different dynamic effects on biological tissue caused by pulsed laser radiation are described. It is shown that the parameters of these effects which take place on the bone tissue affected by pulsed CO2-laser radiation are directly dependent on the parameters of these pulses and may be predicted for any concrete application. PMID:3931698

  13. Composites structures for bone tissue reconstruction

    NASA Astrophysics Data System (ADS)

    Neto, W.; Santos, João.; Avérous, L.; Schlatter, G.; Bretas, Rosario.

    2015-05-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  14. Composites structures for bone tissue reconstruction

    SciTech Connect

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-05-22

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  15. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles

    PubMed Central

    Meka, Archana; Bakthavatchalu, Vasudevan; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Verma, Raj K.; Wallet, Shannon M.; Bhattacharyya, Indraneel; Boyce, Brendan F.; Handfield, Martin; Lamont, Richard J.; Baker, Henry V.; Ebersole, Jeffrey L.; Lakshmyya, Kesavalu N.

    2010-01-01

    Introduction Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. The objectives of this investigation were to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. Methods P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip® arrays to provide a molecular profile of the events that occur following infection of these tissues. Results After P. gingivalis infection, 5517 and 1900 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P ≤ 0.05) and up-regulated. Biological pathways significantly impacted by P. gingivalis infection in tissues and calvarial bone included cell adhesion (immune system) molecules, Toll-like receptors, B cell receptor signaling, TGF-β cytokine family receptor signaling, and MHC class II antigen processing pathways resulting in proinflammatory, chemotactic effects, T cell stimulation, and down regulation of antiviral and T cell chemotactic effects. P. gingivalis-induced inflammation activated osteoclasts, leading to local bone resorption. Conclusion This is the first in vivo evidence that localized P. gingivalis infection differentially induces transcription of a broad array of host genes that differed between inflamed soft tissues and calvarial bone. PMID:20331794

  16. Dimethyloxaloylglycine Improves Angiogenic Activity of Bone Marrow Stromal Cells in the Tissue-Engineered Bone

    PubMed Central

    Ding, Hao; Chen, Song; Song, Wen-Qi; Gao, You-Shui; Guan, Jun-Jie; Wang, Yang; Sun, Yuan; Zhang, Chang-Qing

    2014-01-01

    One of the big challenges in tissue engineering for treating large bone defects is to promote the angiogenesis of the tissue-engineered bone. Hypoxia inducible factor-1α (HIF-1α) plays an important role in angiogenesis-osteogenesis coupling during bone regeneration, and can activate a broad array of angiogenic factors. Dimethyloxaloylglycine (DMOG) can activate HIF-1α expression in cells at normal oxygen tension. In this study, we explored the effect of DMOG on the angiogenic activity of bone mesenchymal stem cells (BMSCs) in the tissue-engineered bone. The effect of different concentrations of DMOG on HIF-1a expression in BMSCs was detected with western blotting, and the mRNA expression and secretion of related angiogenic factors in DMOG-treated BMSCs were respectively analyzed using qRT-PCR and enzyme linked immunosorbent assay. The tissue-engineered bone constructed with β-tricalcium phosphate (β-TCP) and DMOG-treated BMSCs were implanted into the critical-sized calvarial defects to test the effectiveness of DMOG in improving the angiogenic activity of BMSCs in the tissue-engineered bone. The results showed DMOG significantly enhanced the mRNA expression and secretion of related angiogenic factors in BMSCs by activating the expression of HIF-1α. More newly formed blood vessels were observed in the group treated with β-TCP and DMOG-treated BMSCs than in other groups. And there were also more bone regeneration in the group treated with β-TCP and DMOG-treated BMSCs. Therefore, we believed DMOG could enhance the angiogenic activity of BMSCs by activating the expression of HIF-1α, thereby improve the angiogenesis of the tissue-engineered bone and its bone healing capacity. PMID:25013382

  17. A mechanism of bone tissue loss in monkeys (BION - 11).

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.; Oganov, V. S.

    The elucidation of mechanisms of bone tissue loss under the spaceflight conditions remains an actual problem until now It was established that primary reactions to a mechanical stress evolve at the cellular level therefore the main attention of the researchers was aimed at studying bone tissue cells and their interactions With the use of electron microscopy we studied osteoblasts osteocytes osteoclasts and stromal cells in bioptats of the iliac bone crest from monkeys flown on board the satellite guillemotleft BION - 11 guillemotright during 2 weeks The flight samples were compared with the vivarium and simulation controls The functional state of cells was evaluated by the degree of development of organelles for specific biosyntheses rough endoplasmic reticulum Golgy complex nucleus state interrelation with a mineralized matrix The analysis of the obtained results and data of other authors Klein -- Nulend et al 2003 etc permits to suppose that the following sequence of cell interactions underlies the bone tissue loss during mechanical stress microgravity reaction of mechano-sensitive osteocytes to a mechanical stimulus consisting in enhancement of osteolytic processes in cells which results in a partial bone tissue loss along the local unloading Simultaneously the modulating signals are transmitted through a system of canals and processes towards active osteoblasts surface osteocytes and bone marrow stromal cells as well As a reply to a mechanical stimulus there occurs a reduction slowing down of proliferation

  18. Distinctive Glycerophospholipid Profiles of Human Seminoma and Adjacent Normal Tissues by Desorption Electrospray Ionization Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham

    2011-08-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.

  19. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.

    PubMed

    Abdel-Wahab, Adel A; Alam, Khurshid; Silberschmidt, Vadim V

    2011-07-01

    Bone fractures affect the health of many people and have a significant social and economic effect. Often, bones fracture due to impacts, sudden falls or trauma. In order to numerically model the fracture of a cortical bone tissue caused by an impact it is important to know parameters characterising its viscoelastoplastic behaviour. These parameters should be measured for various orientations in a bone tissue to assess bone's anisotropy linked to its microstructure. So, the first part of this study was focused on quantification of elastic-plastic behaviour of cortical bone using specimens cut along different directions with regard to the bone axis-longitudinal (axial) and transverse. Due to pronounced non-linearity of the elastic-plastic behaviour of the tissue, cyclic loading-unloading uniaxial tension tests were performed to obtain the magnitudes of elastic moduli not only from the initial loading part of the cycle but also from its unloading part. Additional tests were performed with different deformation rates to study the bone's strain-rate sensitivity. The second part of this study covered creep and relaxation properties of cortical bone for two directions and four different anatomical positions-anterior, posterior, medial and lateral-to study the variability of bone's properties. Since viscoelastoplasticity of cortical bone affects its damping properties due to energy dissipation, the Dynamic Mechanical Analysis (DMA) technique was used in the last part of our study to obtain magnitudes of storage and loss moduli for various frequencies. Based on analysis of elastic-plastic behaviour of the bovine cortical bone tissue, it was found that magnitudes of the longitudinal Young's modulus for four cortical positions were in the range of 15-24 GPa, while the transversal modulus was lower--between 10 and 15 GPa. Axial strength for various anatomical positions was also higher than transversal strength with significant differences in magnitudes for those positions

  20. A Rodent Model to Evaluate the Tissue Response to a Biological Scaffold When Adjacent to a Synthetic Material.

    PubMed

    Dearth, Christopher L; Keane, Timothy J; Scott, Jeffrey R; Daly, Kerry A; Badylak, Stephen F

    2015-10-01

    The use of biologic scaffold materials adjacent to synthetic meshes is commonplace. A prevalent clinical example is two-staged breast reconstruction, where biologic scaffolds are used to provide support and coverage for the inferior aspect of the synthetic expander. However, limited data exist regarding either the kinetics of biologic scaffold integration or the host tissue response to the biologic scaffold materials used for this application or other applications in which such scaffold materials are used. The present study evaluated the temporal host response to a biological scaffold when placed adjacent to a synthetic material. Evaluation criteria included quantification of material contracture and characterization of the host cell response and tissue remodeling events. Results show a decreased thickness of the collagenous tissue layer at biologic scaffold/silicone interface compared to the abdominal wall/silicone interface during the 12-week experimental time course. All test materials were readily incorporated into surrounding host tissue. PMID:26176992

  1. Biomaterials mediated microRNA delivery for bone tissue engineering.

    PubMed

    Sriram, M; Sainitya, R; Kalyanaraman, V; Dhivya, S; Selvamurugan, N

    2015-03-01

    Bone tissue engineering is an alternative strategy to overcome the problems associated with traditional treatments for bone defects. A number of bioactive materials along with new techniques like porous scaffold implantation, gene delivery, 3D organ printing are now-a-days emerging for traditional bone grafts and metal implants. Studying the molecular mechanisms through which these biomaterials induce osteogenesis is an equally hot field. Biomaterials could determine the fate of a cell via microRNAs (miRNAs). miRNAs are short non-coding RNAs that act as post-transcriptional regulators of gene expression and play an essential role for regulation of cell specific lineages including osteogenesis. Thus, this review focuses the recent trends on establishing a link of biomaterials with miRNAs and their delivery for bone tissue engineering applications. PMID:25543062

  2. Lead in tissues of woodchucks fed crown vetch growing adjacent to a highway

    SciTech Connect

    Young, R.W.; Ridgely, S.L.; Blue, J.T.; Bache, C.A.; Lisk, D.J.

    1986-01-01

    Woodchucks (Marmota monax) were fed crown vetch (Coronilla varia) growing along a major highway that was harvested in 1979, before unleaded gas was widely used, and again in 1985. Crown vetch, harvested 300 m from the nearest road, was fed as the control. The crops were fed as 50% dry weight of the diet for 58 d. The concentrations of lead in the control, 1979 crop, and 1985 crop were, respectively, 0.74, 50.65, and 6.78 ppm dry weight. The average +/- SE) concentrations (ppm, dry weight) of lead found in the tissues of the control, 1979, and 1985 dietary-treatment animals were, respectively, kidney, 0.36 +/- 0.05, 5.78 +/- 0.72, and 0.79 +/- 0.09; liver, 0.09 +/- 0.01, 4.71 +/- 0.17, and 0.46 +/- 0.06; muscle, 0.07 +/- 0.01, 0.14 +/- 0.02, and 0.07 +/- 0.00; blood, 0.09 +/- 0.02, 2.17 +/- 0.13, and 0.31 +/- 0.05; and bone, 1.27 +/- 0.25, 47.52 +/- 7.05, and 3.71 +/- 0.65. No significant differences (p greater than 0.05) between dietary treatments were found in the general hematological analyses of the woodchucks. The ecological significance of these findings is discussed.

  3. Tookad-mediated photodynamic effects on the prostate and its adjacent tissues: in vivo study in canine models

    NASA Astrophysics Data System (ADS)

    Huang, Zheng; Chen, Qun; Luck, David; Beckers, Jill; Blanc, Dominique; Hetzel, Fred W.

    2005-04-01

    Photodynamic therapy (PDT) mediated with a vascular acting photosensitizer Tookad (pd-bacteriopheophorbide), was investigated as an alternative treatment modality for prostate cancer. Tookad photodynamic effects on the prostate and its adjacent tissues were evaluated in canine models. Interstitial prostate PDT was performed by irradiating individual lobes with a diode laser (763 nm) and 1-cm cylindrical diffuser fibers at various light doses to activate the IV administered photosensitizer Tookad (1 - 2 mg/kg). The sensitivity of the adjacent tissues to Tookad-PDT was determined by superficially irradiating the surfaces of the bladder, colon, abdominal muscle and pelvic plexus with a microlens fiber at various drug/light doses. PDT effect on the prostatic urethra was evaluated by transurethral irradiation. The prostate and adjacent tissues were harvested one-week after the treatment and subjected to histopathologic examination. At one-week post interstitial prostate PDT, the animals recovered well with little or no urethral complications. PDT induced prostate lesions were characterized by marked hemorrhagic necrosis. The bladder, colon, abdominal muscle and pelvic plexus, appeared to also be sensitive to Tookad-PDT at light dose levels greater than 40 Jcm2. Urethral mucosa appeared less sensitive to Tookad-PDT. In conclusion, Tookad-mediated PDT demonstrates very strong vascular effects and can provide an effective alternative for the treatment of localized prostate cancer. Protection of the adjacent tissues should be taken into consideration in the total prostate ablation process due to their sensitivity to the Tookad-mediated PDT.

  4. The potential impact of bone tissue engineering in the clinic.

    PubMed

    Mishra, Ruchi; Bishop, Tyler; Valerio, Ian L; Fisher, John P; Dean, David

    2016-09-01

    Bone tissue engineering (BTE) intends to restore structural support for movement and mineral homeostasis, and assist in hematopoiesis and the protective functions of bone in traumatic, degenerative, cancer, or congenital malformation. While much effort has been put into BTE, very little of this research has been translated to the clinic. In this review, we discuss current regenerative medicine and restorative strategies that utilize tissue engineering approaches to address bone defects within a clinical setting. These approaches involve the primary components of tissue engineering: cells, growth factors and biomaterials discussed briefly in light of their clinical relevance. This review also presents upcoming advanced approaches for BTE applications and suggests a probable workpath for translation from the laboratory to the clinic. PMID:27549369

  5. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  6. Bone remodeling adjacent to total hip replacements: A naturally occurring material design problem

    NASA Astrophysics Data System (ADS)

    Harrigan, Timothy P.; Hamilton, James J.

    1993-10-01

    The reaction of bone to orthopedic implants is an example of a self-adjusting material which changes from a ‘normal state’ to an altered state, based on the mechanical features of the implant and the loads applied to it. The changes in bone around cemented and uncemented femoral total hip components are well documented, and many numerical characterizations of the material reaction to stress have attempted to mimic the natural remodeling process. In this study we review the development of a simple material remodeling rule which yields a stable structure which is optimal and which allows a unique solution. We then use this algorithm to assess the effect of prosthesis stiffness and the presence of a compliant layer on bone remodeling around these implants. An axisymmetric model for axial loading is used to model changes in bone density through the thickness of the cancellous bone around the implants. With cortical remodeling left out of the simulation, the simulations showed density distributions that agreed in general with the results in the literature, and showed a marked difference in response if a compliant layer was added to the prosthesis.

  7. Contrast-enhanced X-ray microtomography of the bone structure adjacent to oral implants

    NASA Astrophysics Data System (ADS)

    Tesei, L.; Casseler, F.; Dreossi, D.; Mancini, L.; Tromba, G.; Zanini, F.

    2005-08-01

    One of the most important aims about cortical and cancellous bone research is to understand the factors that determine their mechanical properties, how these properties are maintained, and how bone reacts to changes in its environment, such as the introduction of a titanium implant. Trabecular morphometry has been traditionally assessed in two dimensions, where the structural parameters are either inspected visually or measured from sections, and the third dimension is added on the basis of stereology. Particularly, limiting is the destructive nature of this extremely time consuming procedure, preventing the specimens from being used for other measurements. The most common technique used to overcome some of the limitations of two-dimensional analysis is stereo- or scanning microscopy to assess three-dimensional structural indices qualitatively. Synchrotron radiation X-ray computed microtomography is a particular kind of X-ray computerized axial tomography with higher resolution and the possibility to choose among a very wide range of X-ray energies. Beam energies ranging between 30 and 40 keV will provide a satisfactory signal-to-noise ratio and contrast for bone, except for the parts falling in the shadow of the Ti implant. Higher beam energies would provide correctly exposed images, with lower -to noise ratio for the bone trabecular structure. We will show how the use of alternative materials, such as aluminum, while not altering the evaluation of the mechanical impact of an implant, allows a satisfactory non-destructive, three-dimensional analysis of the bone-implant interface.

  8. Radiologic Approach to Bone and Soft Tissue Sarcomas.

    PubMed

    Caracciolo, Jamie T; Letson, G Douglas

    2016-10-01

    Diagnostic imaging plays an important role in evaluation and treatment planning of patients with musculoskeletal tumors. This article discusses various imaging modalities available in the work-up, staging, and surveillance of patients with primary bone and soft tissue neoplasms. A systematic approach to initial evaluation of newly suspected bone lesions and soft tissue masses is presented. Reviewed are relevant imaging features of musculoskeletal neoplasms that help predict tumor biology and risk of malignancy and findings that define internal tumor composition and allow for accurate preoperative histopathologic diagnosis before intervention. Finally, the role of diagnostic imaging in tumor staging, evaluation of response to neoadjuvant therapy, and postoperative surveillance is discussed. PMID:27542636

  9. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    PubMed Central

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  10. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  11. Engineering bone tissue substitutes from human induced pluripotent stem cells

    PubMed Central

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-01-01

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease. PMID:23653480

  12. Repercussions of NSAIDS drugs on bone tissue: the osteoblast.

    PubMed

    García-Martínez, O; De Luna-Bertos, E; Ramos-Torrecillas, J; Manzano-Moreno, F J; Ruiz, C

    2015-02-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) can act by modulating the behavior of osteoblasts, including their proliferation, differentiation, adhesion, and migration, but not all NSAIDs have these effects. Our objective was to update the information on this issue in a review of the literature in order to offer guidance on the prescription of the appropriate NSAID(s) to patients requiring bone tissue repair. To review current knowledge of this issue by searching for all relevant publications since 2001 in the MEDLINE, EMBASE and Cochrane Library databases, we used the following descriptors: bone tissue, osteoblast, NSAIDs, Anti-inflammatory drugs. Published studies show that most NSAIDs have an adverse effect on osteoblast growth by cell cycle arrest and apoptosis induction. The effect on differentiation varies according to the drug, dose, and treatment time. Osteoblast adhesion is increased and migration decreased by some NSAIDs, such as indomethacin and diclofenac. The antigenic profile or phagocytic function can also be modulated by NSAIDs. In general, NSAIDs have an adverse effect on bone tissue and given the routine administration of NSAIDs to individuals requiring bone repair, in which the osteoblast has an essential role, this effect on bone should be borne in mind. PMID:25625244

  13. Positive Association Between Adipose Tissue and Bone Stiffness.

    PubMed

    Berg, R M; Wallaschofski, H; Nauck, M; Rettig, R; Markus, M R P; Laqua, R; Friedrich, N; Hannemann, A

    2015-07-01

    Obesity is often considered to have a protective effect against osteoporosis. On the other hand, several recent studies suggest that adipose tissue may have detrimental effects on bone quality. We therefore aimed to investigate the associations between body mass index (BMI), waist circumference (WC), visceral adipose tissue (VAT) or abdominal subcutaneous adipose tissue (SAT), and bone stiffness. The study involved 2685 German adults aged 20-79 years, who participated in either the second follow-up of the population-based Study of Health in Pomerania (SHIP-2) or the baseline examination of the SHIP-Trend cohort. VAT and abdominal SAT were quantified by magnetic resonance imaging. Bone stiffness was assessed by quantitative ultrasound (QUS) at the heel (Achilles InSight, GE Healthcare). The individual risk for osteoporotic fractures was determined based on the QUS-derived stiffness index and classified in low, medium, and high risk. Linear regression models, adjusted for sex, age, physical activity, smoking status, risky alcohol consumption, diabetes, and height (in models with VAT or abdominal SAT as exposure), revealed positive associations between BMI, WC, VAT or abdominal SAT, and the QUS variables broadband-ultrasound attenuation or stiffness index. Moreover, BMI was positively associated with speed of sound. Our study shows that all anthropometric measures including BMI and, WC as well as abdominal fat volume are positively associated with bone stiffness in the general population. As potential predictors of bone stiffness, VAT and abdominal SAT are not superior to easily available measures like BMI or WC. PMID:25929703

  14. Novel electrospun nanotholits/PHB scaffolds for bone tissue regeneration.

    PubMed

    Xavier Filho, Lauro; Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine

    2013-07-01

    Nanotholits is an osteoinductor or be, stimulates the bone regeneration, enabling bigger migration of the cells for formation of the bone tissue regeneration mainly because nanotholits are rich in minerals considered essential to the bone mineralization process on a protein matrix (otolin) as hydroxiapatite. In order to improve its biodegrability and bioresorption in new platforms for tissue engineering, it was electrospun PHB/nanotholits from aqueous solutions of this polymer at concentrations of nanotholits 1% (w/v) and compared morphological and thermal properties with PHB/nanotholits casting films. Electrospun PHB/nanotholits mats presents more symmetric nanopore structure than casting films mats observed by SEM images mainly because the orientation of pores along the longitudinal direction of the electrospun fibers. Nanotholits influences in PHB electrospun/casting was analyzed using transmission infrared spectroscopy (FTIR). TGA showed similar thermal properties but DSC showed distinct thermal properties and crystallinity process of the developed bionanocomposite mainly because of different processing. PMID:23901495

  15. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, J.W.

    1993-06-08

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  16. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  17. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed Central

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  18. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    PubMed Central

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  19. Wide-field Raman imaging for bone detection in tissue.

    PubMed

    Papour, Asael; Kwak, Jin Hee; Taylor, Zach; Wu, Benjamin; Stafsudd, Oscar; Grundfest, Warren

    2015-10-01

    Inappropriate bone growth in soft tissue can occur after trauma to a limb and can cause a disruption to the healing process. This is known as Heterotopic Ossification (HO) in which regions in the tissue start to mineralize and form microscopic bone-like structures. These structures continue to calcify and develop into large, non-functional bony masses that cause pain, limit limb movement, and expose the tissue to reoccurring infections; in the case of open wounds this can lead to amputation as a result of a failed wound. Both Magnetic Resonance Imaging (MRI) and X-ray imaging have poor sensitivity and specificity for the detection of HO, thus delaying therapy and leading to poor patient outcomes. We present a low-power, fast (1 frame per second) optical Raman imaging system with a large field of view (1 cm(2)) that can differentiate bone tissue from soft tissue without spectroscopy, this in contrast to conventional Raman microscopy systems. This capability may allow for the development of instrumentation which permits bedside diagnosis of HO. PMID:26504639

  20. Tissue engineering of bone: material and matrix considerations.

    PubMed

    Khan, Yusuf; Yaszemski, Michael J; Mikos, Antonios G; Laurencin, Cato T

    2008-02-01

    When the normal physiologic reaction to fracture does not occur, such as in fracture nonunions or large-scale traumatic bone injury, surgical intervention is warranted. Autografts and allografts represent current strategies for surgical intervention and subsequent bone repair, but each possesses limitations, such as donor-site morbidity with the use of autograft and the risk of disease transmission with the use of allograft. Synthetic bone-graft substitutes, developed in an effort to overcome the inherent limitations of autograft and allograft, represent an alternative strategy. These synthetic graft substitutes, or matrices, are formed from a variety of materials, including natural and synthetic polymers, ceramics, and composites, that are designed to mimic the three-dimensional characteristics of autograft tissue while maintaining viable cell populations. Matrices also act as delivery vehicles for factors, antibiotics, and chemotherapeutic agents, depending on the nature of the injury to be repaired. This intersection of matrices, cells, and therapeutic molecules has collectively been termed tissue engineering. Depending on the specific application of the matrix, certain materials may be more or less well suited to the final structure; these include polymers, ceramics, and composites of the two. Each category is represented by matrices that can form either solid preformed structures or injectable forms that harden in situ. This article discusses the myriad design considerations that are relevant to successful bone repair with tissue-engineered matrices and provides an overview of several manufacturing techniques that allow for the actualization of critical design parameters. PMID:18292355

  1. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration

    PubMed Central

    Bush, Joshua R.; Liang, Haixiang; Dickinson, Molly; Botchwey, Edward A.

    2016-01-01

    The hemicellulose xylan, which has immunomodulatory effects, has been combined with chitosan to form a composite hydrogel to improve the healing of bone fractures. This thermally responsive and injectable hydrogel, which is liquid at room temperature and gels at physiological temperature, improves the response of animal host tissue compared with similar pure chitosan hydrogels in tissue engineering models. The composite hydrogel was placed in a subcutaneous model where the composite hydrogel is replaced by host tissue within 1 week, much earlier than chitosan hydrogels. A tibia fracture model in mice showed that the composite encourages major remodeling of the fracture callus in less than 4 weeks. A non-union fracture model in rat femurs was used to demonstrate that the composite hydrogel allows bone regeneration and healing of defects that with no treatment are unhealed after 6 weeks. These results suggest that the xylan/chitosan composite hydrogel is a suitable bone graft substitute able to aid in the repair of large bone defects.

  2. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  3. 3D conductive nanocomposite scaffold for bone tissue engineering.

    PubMed

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  4. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons.

    PubMed

    Shavers, M R; Poston, J W; Cucinotta, F A; Wilson, J W

    1996-04-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed. PMID:8617586

  5. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  6. Perspectives on the Role of Nanotechnology in Bone Tissue Engineering

    PubMed Central

    Saiz, Eduardo; Zimmermann, Elizabeth A.; Lee, Janice S.; Wegst, Ulrike G.K.; Tomsia, Antoni P.

    2013-01-01

    Objective This review surveys new developments in bone tissue engineering, specifically focusing on the promising role of nanotechnology and describes future avenues of research. Methods The review first reinforces the need to fabricate scaffolds with multi-dimensional hierarchies for improved mechanical integrity. Next, new advances to promote bioactivity by manipulating the nano-level internal surfaces of scaffolds are examined followed by an evaluation of techniques to using scaffolds as a vehicle for local drug delivery to promote bone regeneration/integration and methods of seeding cells into the scaffold. Results Through a review of the state of the field, critical questions are posed to guide future research towards producing materials and therapies to bring state-of-the-art technology to clinical settings. Significance The development of scaffolds for bone regeneration requires a material able to promote rapid bone formation while possessing sufficient strength to prevent fracture under physiological loads. Success in simultaneously achieving mechanical integrity and sufficient bioactivity with a single material has been limited. However, the use of new tools to manipulate and characterize matter down to the nano-scale may enable a new generation of bone scaffolds that will surpass the performance of autologous bone implants. PMID:22901861

  7. The influence of environmental factors on bone tissue engineering.

    PubMed

    Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M

    2013-05-01

    Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. PMID:23165885

  8. Biocomposite nanofibres and osteoblasts for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Venugopal, J.; Vadgama, P.; Sampath Kumar, T. S.; Ramakrishna, S.

    2007-02-01

    Nanofibres and nanocomposites are highly promising recent additions to materials in relation to tissue engineering. Mimicking the architecture of an extracellular matrix is one of the major challenges for tissue engineering. An operationally simple electrospinning technique was used to fabricate polycaprolactone/nanohydroxyapatite/collagen (PCL/nHA/Col) biocomposite nanofibrous scaffolds to provide mechanical support and to direct the growth of human fetal osteoblasts (hFOB) for tissue engineering of bone. Biocomposite nanofibres constructed with PCL, nHA and collagen type I combinations gave fibre diameters around 189 ± 0.026 to 579 ± 272 nm and pore sizes 2-35 µm. Resulting nanofibrous scaffolds were highly porous (>80%) structures and provided a sufficient open pore structure for cell occupancy whilst allowing free transport of nutrients and metabolic waste products; moreover, vascular in-growth was facilitated. The pore organization was determined by the deposition process, including interconnections of the fibre network. The mineralization was significantly increased (55%) in PCL/nHA/Col biocomposite nanofibrous scaffolds after 10 days of culture and appeared as minerals synthesized by osteoblast cells. The unique nanoscale biocomposite system had inherent surface functionalization for hFOB adhesion, migration, proliferation and mineralization to form a bone tissue for the regeneration of bone defects.

  9. Osteolipoma independent of bone tissue: a case report

    PubMed Central

    Alderete, Joseph F; Kose, Ozkan; Ozcan, Ayhan; Cicek, Ilker; Basbozkurt, Mustafa

    2009-01-01

    Introduction Lipomas are the most common benign soft tissue tumors and appear in any part of the body. They typically consist of mature adipose tissue. Osteolipoma is an extremely rare histologic variant of lipoma that contains mature lamellar bone within the tumor and osteolipoma independent of bone tissue are very rare. We report a case of histologically confirmed osteolipoma independent of bone located in the thigh. Case presentation A 47-year-old male presented with a progressively enlarging, painful mass which approximately 10 cm × 8 cm over the anteromedial aspect of his right thigh. Plain films, Computerized Tomography, Magnetic Resonance Imaging and ultrasound guided needle biopsy were performed. Given the benign imaging characteristics and fine needle aspiration, an excisional biopsy was undertaken. The definitive pathologic diagnosis was intramuscular osteolipoma without evidence of malignancy. No recurrence was observed after 18 months follow up. Conclusion Although ossifying lipomas are very rare, it is important to keep them in mind when a lesion with adipose tissue in combination with ossification is encountered. PMID:19918398

  10. Growth factor-eluting technologies for bone tissue engineering.

    PubMed

    Nyberg, Ethan; Holmes, Christina; Witham, Timothy; Grayson, Warren L

    2016-04-01

    Growth factors are essential orchestrators of the normal bone fracture healing response. For non-union defects, delivery of exogenous growth factors to the injured site significantly improves healing outcomes. However, current clinical methods for scaffold-based growth factor delivery are fairly rudimentary, and there is a need for greater spatial and temporal regulation to increase their in vivo efficacy. Various approaches used to provide spatiotemporal control of growth factor delivery from bone tissue engineering scaffolds include physical entrapment, chemical binding, surface modifications, biomineralization, micro- and nanoparticle encapsulation, and genetically engineered cells. Here, we provide a brief review of these technologies, describing the fundamental mechanisms used to regulate release kinetics. Examples of their use in pre-clinical studies are discussed, and their capacities to provide tunable, growth factor delivery are compared. These advanced scaffold systems have the potential to provide safer, more effective therapies for bone regeneration than the systems currently employed in the clinic. PMID:25967594

  11. Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications

    PubMed Central

    Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua

    2014-01-01

    We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering. PMID:24955961

  12. Nanomechanical properties of hybrid coatings for bone tissue engineering.

    PubMed

    Skarmoutsou, Amalia; Lolas, Georgios; Charitidis, Costas A; Chatzinikolaidou, Maria; Vamvakaki, Maria; Farsari, Maria

    2013-09-01

    Bone tissue engineering has emerged as a promising alternative approach in the treatment of bone injuries and defects arising from malformation, osteoporosis, and tumours. In this approach, a temporary scaffold possessing mechanical properties resembling those of natural bone is needed to serve as a substrate enhancing cell adhesion and growth, and a physical support to guide the formation of the new bone. In this regard, the scaffold should be biocompatible, biodegradable, malleable and mechanically strong. Herein, we investigate the mechanical properties of three coatings of different chemical compositions onto silanized glass substrates; a hybrid material consisting of methacryloxypropyl trimethoxysilane and zirconium propoxide, a type of a hybrid organic-inorganic material of the above containing also 50 mol% 2-(dimethylamino)ethyl methacrylate (DMAEMA) moieties and a pure organic material, based on PDMAEMA. This study investigates the variations in the measured hardness and reduced modulus values, wear resistance and plastic behaviour before and after samples' submersion in cell culture medium. Through this analysis we aim to explain how hybrid materials behave under applied stresses (pile-up formations), how water uptake changes this behaviour, and estimate how these materials will react while interaction with cells in tissue engineering applications. Finally, we report on the pre-osteoblastic cell adhesion and proliferation on three-dimensional structures of the hybrid materials within the first hour and up to 7 days in culture. It was evident that hybrid structure, consisting of 50 mol% organic-inorganic material, reveals good mechanical behaviour, wear resistance and cell adhesion and proliferation, suggesting a possible candidate in bone tissue engineering. PMID:23726922

  13. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area

    PubMed Central

    Watanabe, Satoko; Takabatake, Kiyofumi; Tsujigiwa, Hidetsugu; Watanabe, Toshiyuki; Tokuyama, Eijiro; Ito, Satoshi; Nagatsuka, Hitoshi; Kimata, Yoshihiro

    2016-01-01

    Artificial bone materials that exhibit high biocompatibility have been developed and are being widely used for bone tissue regeneration. However, there are no biomaterials that are minimally invasive and safe. In a previous study, we succeeded in developing honeycomb β-tricalcium phosphate (β-TCP) which has through-and-through holes and is able to mimic the bone microenvironment for bone tissue regeneration. In the present study, we investigated how the difference in hole-diameter of honeycomb β-TCP (hole-diameter: 75, 300, 500, and 1600 μm) influences bone tissue regeneration histologically. Its osteoconductivity was also evaluated by implantation into zygomatic bone defects in rats. The results showed that the maximum bone formation was observed on the β-TCP with hole-diameter 300μm, included bone marrow-like tissue and the pattern of bone tissue formation similar to host bone. Therefore, the results indicated that we could control bone tissue formation by creating a bone microenvironment provided by β-TCP. Also, in zygomatic bone defect model with honeycomb β-TCP, the result showed there was osseous union and the continuity was reproduced between the both edges of resected bone and β-TCP, which indicated the zygomatic bone reproduction fully succeeded. It is thus thought that honeycomb β-TCP may serve as an excellent biomaterial for bone tissue regeneration in the head, neck and face regions, expected in clinical applications. PMID:27279797

  14. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area.

    PubMed

    Watanabe, Satoko; Takabatake, Kiyofumi; Tsujigiwa, Hidetsugu; Watanabe, Toshiyuki; Tokuyama, Eijiro; Ito, Satoshi; Nagatsuka, Hitoshi; Kimata, Yoshihiro

    2016-01-01

    Artificial bone materials that exhibit high biocompatibility have been developed and are being widely used for bone tissue regeneration. However, there are no biomaterials that are minimally invasive and safe. In a previous study, we succeeded in developing honeycomb β-tricalcium phosphate (β-TCP) which has through-and-through holes and is able to mimic the bone microenvironment for bone tissue regeneration. In the present study, we investigated how the difference in hole-diameter of honeycomb β-TCP (hole-diameter: 75, 300, 500, and 1600 μm) influences bone tissue regeneration histologically. Its osteoconductivity was also evaluated by implantation into zygomatic bone defects in rats. The results showed that the maximum bone formation was observed on the β-TCP with hole-diameter 300μm, included bone marrow-like tissue and the pattern of bone tissue formation similar to host bone. Therefore, the results indicated that we could control bone tissue formation by creating a bone microenvironment provided by β-TCP. Also, in zygomatic bone defect model with honeycomb β-TCP, the result showed there was osseous union and the continuity was reproduced between the both edges of resected bone and β-TCP, which indicated the zygomatic bone reproduction fully succeeded. It is thus thought that honeycomb β-TCP may serve as an excellent biomaterial for bone tissue regeneration in the head, neck and face regions, expected in clinical applications. PMID:27279797

  15. Osteoconductivity of modified fluorcanasite glass-ceramics for bone tissue augmentation and repair.

    PubMed

    Bandyopadhyay-Ghosh, S; Faria, P E P; Johnson, A; Felipucci, D N B; Reaney, I M; Salata, L A; Brook, I M; Hatton, P V

    2010-09-01

    Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na(2)O and CaO or by adding P(2)O(5) to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P(2)O(5) showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation. PMID:20336751

  16. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface. PMID:18838365

  17. A Thermal Monitoring Sheet with Low Influence from Adjacent Waterbolus for Tissue Surface Thermometry during Clinical Hyperthermia

    PubMed Central

    Arunachalam, K.; Maccarini, P.F.; Stauffer, P. R.

    2009-01-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a two-dimensional array of fiberoptic sensors embedded between two layers of flexible, low loss and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature regulated water coupling bolus was studied using 3D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials, and to compare their thermal responses with omni-directional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508m Kapton MTB® and 0.2032 mm Kapton HN® flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicate the new differential TMS probe design to outperform in terms of both transient response and steady state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface. PMID:18838365

  18. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration

    PubMed Central

    Zhang, Xingdi; Zeng, Deliang; Li, Nan; Wen, Jin; Jiang, Xinquan; Liu, Changsheng; Li, Yongsheng

    2016-01-01

    Mesoporous bioactive glass (MBG), which possesses excellent bioactivity, biocompatibility and osteoconductivity, has played an important role in bone tissue regeneration. However, it is difficult to prepare MBG scaffolds with high compressive strength for applications in bone regeneration; this difficulty has greatly hindered its development and use. To solve this problem, a simple powder processing technique has been successfully developed to fabricate a novel type of MBG scaffold (MBGS). Furthermore, amino or carboxylic groups could be successfully grafted onto MBGSs (denoted as N-MBGS and C-MBGS, respectively) through a post-grafting process. It was revealed that both MBGS and the functionalized MBGSs could significantly promote the proliferation and osteogenic differentiation of bMSCs. Due to its positively charged surface, N-MBGS presented the highest in vitro osteogenic capability of the three samples. Moreover, in vivo testing results demonstrated that N-MBGS could promote higher levels of bone regeneration compared with MBGS and C-MBGS. In addition to its surface characteristics, it is believed that the decreased degradation rate of N-MBGS plays a vital role in promoting bone regeneration. These findings indicate that MBGSs are promising materials with potential practical applications in bone regeneration, which can be successfully fabricated by combining a powder processing technique and post-grafting process. PMID:26763311

  19. Prospect of Stem Cells in Bone Tissue Engineering: A Review

    PubMed Central

    Yousefi, Azizeh-Mitra; James, Paul F.; Akbarzadeh, Rosa; Subramanian, Aswati; Flavin, Conor; Oudadesse, Hassane

    2016-01-01

    Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes. PMID:26880976

  20. Use of NASA Bioreactor in Engineering Tissue for Bone Repair

    NASA Technical Reports Server (NTRS)

    Duke, Pauline

    1998-01-01

    This study was proposed in search for a new alternative for bone replacement or repair. Because the systems commonly used in repair of bony defects form bone by going through a cartilaginous phase, implantation of a piece of cartilage could enhance the healing process by having a more advanced starting point. However, cartilage has seldom been used to replace bone due, in part, to the limitations in conventional culture systems that did not allow production of enough tissue for implants. The NASA-developed bioreactors known as STLV (Slow Turning Lateral Vessel) provide homogeneous distribution of cells, nutrients, and waste products, with less damaging turbulence and shear forces than conventional systems. Cultures under these conditions have higher growth rates, viability, and longevity, allowing larger "tissue-like" aggregates to form, thus opening the possibilities of producing enough tissue for implantation, along with the inherent advantages of in vitro manipulations. To assure large numbers of cells and to eliminate the use of timed embryos, we proposed to use an immortalized mouse limb bud cell line as the source of cells.

  1. Bone transplantation and tissue engineering, part III: allografts, bone grafting and bone banking in the twentieth century.

    PubMed

    Hernigou, Philippe

    2015-03-01

    During the 20th century, allograft implantation waned in popularity as a clinical activity. Reports appeared in the literature describing several small series of patients in whom bone was obtained from amputation specimens or recently deceased individuals. The concept of bone banking became a reality during and after World War II when the National Naval Tissue Bank was established in Bethesda and a number of small banks sprang up in hospitals throughout the world. Small fragments, either of cortical or medullary bone, from these banks were used heterotopically to augment spinal fusions, to implant into cyst cavities, or to serve as a scaffolding for repair of non- or delayed union of fractures of the long bones. PMID:25720358

  2. Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement

    PubMed Central

    Lau, Anthony G.; Sun, Junjiang; Hannah, William B.; Livingston, Eric W.; Heymann, Dominique; Bateman, Ted A.; Monahan, Paul E.

    2015-01-01

    Introduction While chronic degenerative arthropathy is the main morbidity of hemophilia, a very high prevalance of low bone density is also seen in men and boys with hemophilia. The current study investigates bone degradation in the knee joint of hemophilic mice resulting from hemarthrosis and the efficacy of aggressive treatment with factor VIII in the period surrounding injury to prevent bone pathology. Methods Skeletally mature factor VIII knock-out mice were subjected to knee joint hemorrhage induced by puncture of the left knee joint capsule. Mice received either intravenous Factor VIII treatment or placebo immediately prior to injury and at hours 4, 24, 48, 72 and 96 after hemorrhage. Mice were euthanized two-weeks after injury and the joint morphology and loss of bone in the proximal tibia was assessed using microCT imaging. Results Quantitative microCT imaging of the knee joint found acute bone loss at the proximal tibia following injury including loss of trabecular bone volumetric density and bone mineral density, as well as trabecular connectivity density, number, and thickness. Unexpectedly, joint injury also resulted in calcification of the joint soft tissues including the tendons, ligaments, menisci, and cartilage. Treatment with factor VIII prevented this bone and soft tissue degeneration. Conclusion Knee joint hemorrhage resulted in acute changes of adjacent bone including loss of bone density and mineralization of joint soft tissues. The rapid calcification and loss of bone has implications for the initiation and progression of osteoarthritic degradation following joint bleeding. PMID:24712867

  3. Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement.

    PubMed

    Lau, A G; Sun, J; Hannah, W B; Livingston, E W; Heymann, D; Bateman, T A; Monahan, P E

    2014-09-01

    While chronic degenerative arthropathy is the main morbidity of haemophilia, a very high prevalence of low bone density is also seen in men and boys with haemophilia. This study investigates bone degradation in the knee joint of haemophilic mice resulting from haemarthrosis and the efficacy of aggressive treatment with factor VIII in the period surrounding injury to prevent bone pathology. Skeletally mature factor VIII knock-out mice were subjected to knee joint haemorrhage induced by puncture of the left knee joint capsule. Mice received either intravenous factor VIII treatment or placebo immediately prior to injury and at hours 4, 24, 48, 72 and 96 after haemorrhage. Mice were killed 2-weeks after injury and the joint morphology and loss of bone in the proximal tibia was assessed using microCT imaging. Quantitative microCT imaging of the knee joint found acute bone loss at the proximal tibia following injury including loss of trabecular bone volumetric density and bone mineral density, as well as trabecular connectivity density, number and thickness. Unexpectedly, joint injury also resulted in calcification of the joint soft tissues including the tendons, ligaments, menisci and cartilage. Treatment with factor VIII prevented this bone and soft tissue degeneration. Knee joint haemorrhage resulted in acute changes in adjacent bone including loss of bone density and mineralization of joint soft tissues. The rapid calcification and loss of bone has implications for the initiation and progression of osteoarthritic degradation following joint bleeding. PMID:24712867

  4. Microscale Material Properties of Bone and the Mineralized Tissues of the Intervertebral Disc-Vertebral Body Interface

    NASA Astrophysics Data System (ADS)

    Paietta, Rachel C.

    mineralized biological tissues and at the bone-cartilage interface plays an important mechanical role. Nanoindentation measurements in osteonal bone are affected by location within the lamellar structure, even though mineral volume fraction within a single osteon is relatively consistent compared to the differences observed between bone and calcified cartilage. While increasing mineral volume fraction contributes to increases in modulus in the calcified cartilage layer of the vertebral body-intervertebral disc interface, significant scatter remains. The collagenous matrix structure and type of collagen appear to have a significant influence on modulus as well. Collagen fibers of the disc mineralize adjacent to the bone of the vertebral body, and the persistence of this attachment zone from adolescence through senescence indicates that it likely serves a mechanical function. Fiber insertions into thick calcified cartilage regions likely create mechanically robust anchor points at the osteochondral interface.

  5. Adult stem cells in bone and cartilage tissue engineering.

    PubMed

    Salgado, António J; Oliveira, João T; Pedro, Adriano J; Reis, Rui L

    2006-09-01

    The progressive increase in life expectancy within the last century has led to the appearance of novel health related problems, some of those within the musculoskeletal field. Among the latter, one can find diseases such as osteoporosis, rheumatoid arthritis and bone cancer, just to mention some of the most relevant. Other related problems are those that arise from serious injuries, often leading to non-recoverable critical size defects. The therapies currently used to treat this type of diseases/injuries are based on the use of pharmaceutical agents, auto/allotransplant and synthetic materials. However, such solutions present a number of inconveniences and therefore, there is a constant search for novel therapeutic solutions. The appearance of a novel field of science called Tissue engineering brought some hope for the solution of the above mentioned problems. In this field, it is believed that by combining a 3D porous template--scaffold--with an adequate cell population, with osteo or chondrogenic potential, it will be possible to develop bone and cartilage tissue equivalents that when implanted in vivo, could lead to the total regeneration of the affected area. This ideal cell population should have a series of properties, namely a high osteo and chondrogenic potential and at the same time, should be easily expandable and maintained in cultures for long periods of time. Due to its natural and intrinsic properties, stem cells are one of the best available cell types. However, after this sentence, the readers may ask, "Which Stem Cells?". During the last 10/15 years, the scientific community witnessed and reported the appearance of several sources of stem cells with both osteo and chondrogenic potential. Therefore, the present review intends to make an overview of data reported on different sources of adult stem cells (bone marrow, periosteum, adipose tissue, skeletal muscle and umbilical cord) for bone and cartilage regenerative medicine, namely those focusing on

  6. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    NASA Astrophysics Data System (ADS)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  7. Anisotropy of bovine cortical bone tissue damage properties.

    PubMed

    Szabó, M E; Thurner, P J

    2013-01-01

    Bone is a heterogeneous, anisotropic natural composite material. Several studies have measured human cortical bone elastic properties in different anatomical directions and found that the Young's modulus was highest in the longitudinal, followed by the tangential and then by the radial direction. This study compared the Young's modulus, the accumulated microdamage and local strains related to the failure process in these three anatomical directions. Cortical bone samples (≈360 μm×360 μm) were mechanically tested in three-point bending and concomitantly imaged to assess local strains using digital image correlation technique. The bone whitening effect was used to detect microdamage formation and propagation. No statistically significant difference was found between the Young's modulus of longitudinal (9.4±2.0 GPa) and tangential (9.9±1.8 GPa) bovine bone samples, as opposed to previous findings on human bone samples. The same similarity was found for the whitening values (5000±1900 pix/mm(2) for longitudinal, 5800±2600 pix/mm(2) for tangential) and failure strains (16.8±7.0% for longitudinal, 19.1±3.2% for tangential) as well. However, significantly lower values were observed in the radial samples for Young's modulus (5.92±0.77 GPa), whitening (none or minimal) and failure strain (10.8±3.8%). For strains at whitening onset, no statistically significant difference was seen for the longitudinal (5.1±1.6%) and radial groups (4.2±2.0%), however, the tangential values were significantly greater (7.0±2.4%). The data implies that bovine cortical bone tissue in long bones is designed to withstand higher loads in the longitudinal and tangential directions than in the radial one. A possible explanation of the anisotropy in the mechanical parameters derived here might be the structure of the tissues in the three directions tested. PMID:23063771

  8. Fluid-fluid level: a nonspecific finding in tumors of bone and soft tissue.

    PubMed

    Tsai, J C; Dalinka, M K; Fallon, M D; Zlatkin, M B; Kressel, H Y

    1990-06-01

    Fluid-fluid levels have commonly been reported to occur in aneurysmal bone cysts but have also been seen in telangiectatic osteosarcoma, chondroblastoma, and giant cell tumor of bone. The authors reviewed their experience with nine bone and three soft-tissue tumors that showed fluid-fluid levels on computed tomographic or magnetic resonance images. The bone tumors included fibrous dysplasia, simple bone cyst, recurrent malignant fibrous histiocytoma of bone, two classical osteosarcomas, and four aneurysmal bone cysts. The soft-tissue tumors included soft-tissue hemangioma and two synovial sarcomas. Except for aneurysmal bone cysts, these types of tumors have not been reported to be associated with fluid-fluid levels. Radiologic-pathologic correlation was available in seven patients; in all seven, the fluid-fluid levels indicated prior hemorrhage. The authors conclude that the presence of fluid-fluid levels in bone or soft-tissue tumors cannot be considered diagnostic of any particular tumor. PMID:2160676

  9. Computer modelling of the structure of the cortical and trabecular bone tissue

    NASA Astrophysics Data System (ADS)

    Kolmakova, Tatyana

    2015-10-01

    The paper presents computer models of the structure of cortical and trabecular bone tissue. The model fragment of the cortical bone tissue was built based on a real image of the natural bone microstructure. The osteons and Haversian canals were directly taken into consideration. The Volkmann's canals and the orientation of the collagenous mineral fibers in the osteons and the surrounding matrix were considered indirectly. The model fragment of the trabecular bone tissue was built based on the data of structure of the real bone fragments, taking into account the orientation of the trabecules of bones, their length and thickness.

  10. The influence of hydrostatic pressure on tissue engineered bone development.

    PubMed

    Neßler, K H L; Henstock, J R; El Haj, A J; Waters, S L; Whiteley, J P; Osborne, J M

    2016-04-01

    The hydrostatic pressure stimulation of an appropriately cell-seeded porous scaffold within a bioreactor is a promising method for engineering bone tissue external to the body. We propose a mathematical model, and employ a suite of candidate constitutive laws, to qualitatively describe the effect of applied hydrostatic pressure on the quantity of minerals deposited in such an experimental setup. By comparing data from numerical simulations with experimental observations under a number of stimulation protocols, we suggest that the response of bone cells to an applied pressure requires consideration of two components; (i) a component describing the cell memory of the applied stimulation, and (ii) a recovery component, capturing the time cells require to recover from high rates of mineralisation. PMID:26796221

  11. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship

    PubMed Central

    Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S. B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; Shapses, S.

    2012-01-01

    Summary The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. Introduction It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Methods Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18–88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. Results A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r=−0.533, −0.576, respectively; P<0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premeno-pausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. Conclusions An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations. PMID

  12. Clinical evaluation of expanded mesh connective tissue graft in the treatment for multiple adjacent gingival recessions in the esthetic zone

    PubMed Central

    Shanmugam, M.; Shivakumar, B.; Meenapriya, B.; Anitha, V.; Ashwath, B.

    2015-01-01

    Background: Multiple approaches have been used to replace lost, damaged or diseased gingival tissues. The connective tissue graft (CTG) procedure is the golden standard method for root coverage. Although multiple sites often need grafting, the palatal mucosa supplies only a limited area of grafting material. To overcome this limitation, expanded mesh graft provides a method whereby a graft can be stretched to cover a large area. The aim of this study was to evaluate the effectiveness and the predictability of expanded mesh CTG (e-MCTG) in the treatment of adjacent multiple gingival recessions. Materials and Methods: Sixteen patients aged 20–50 years contributed to 55 sites, each site falling into at least three adjacent Miller's Class 1 or Class 2 gingival recession. The CTG obtained from the palatal mucosa was expanded to cover the recipient bed, which was 1.5 times larger than the graft. Clinical measurements were recorded at baseline and 3 months, 12 months postoperatively. Results: A mean coverage of 1.96 mm ± 0.66 mm and 2.22 mm ± 0.68 mm was obtained at the end of 3rd and 12th month, respectively. Twelve months after surgery a statistically significant increase in CAL (2.2 mm ± 0.68 mm, P < 0.001) and increasing WKT (1.75 ± 0.78, P < 0.001) were obtained. In 80% of the treated sites, 100% root coverage was achieved (mean 93.5%). Conclusions: The results of this study demonstrated that multiple adjacent recessions were treated by using e-MCTG technique can be applied and highly predictable root coverage can be achieved. PMID:26321829

  13. 21 CFR 892.1170 - Bone densitometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... densitometer is a device intended for medical purposes to measure bone density and mineral content by x-ray or gamma ray transmission measurements through the bone and adjacent tissues. This generic type of...

  14. Embryonic expression of endogenous retroviral RNAs in somatic tissues adjacent to the Oikopleura germline

    PubMed Central

    Henriet, Simon; Sumic, Sara; Doufoundou-Guilengui, Carlette; Jensen, Marit Flo; Grandmougin, Camille; Fal, Kateryna; Thompson, Eric; Volff, Jean-Nicolas; Chourrout, Daniel

    2015-01-01

    Selective pressure to maintain small genome size implies control of transposable elements, and most old classes of retrotransposons are indeed absent from the very compact genome of the tunicate Oikopleura dioica. Nonetheless, two families of retrotransposons are present, including the Tor elements. The gene organization within Tor elements is similar to that of LTR retrotransposons and retroviruses. In addition to gag and pol, many Tor elements carry a third gene encoding viral envelope-like proteins (Env) that may mediate infection. We show that the Tor family contains distinct classes of elements. In some classes, env mRNA is transcribed from the 5′LTR as in retroviruses. In others, env is transcribed from an additional promoter located downstream of the 5′LTR. Tor Env proteins are membrane-associated glycoproteins which exhibit some features of viral membrane fusion proteins. Whereas some elements are expressed in the adult testis, many others are specifically expressed in embryonic somatic cells adjacent to primordial germ cells. Such embryonic expression depends on determinants present in the Tor elements and not on their surrounding genomic environment. Our study shows that unusual modes of transcription and expression close to the germline may contribute to the proliferation of Tor elements. PMID:25779047

  15. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering.

    PubMed

    Won, Jong-Eun; Yun, Ye-Rang; Jang, Jun-Hyeog; Yang, Sung-Hee; Kim, Joong-Hyun; Chrzanowski, Wojciech; Wall, Ivan B; Knowles, Jonathan C; Kim, Hae-Won

    2015-07-01

    Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctional and structurally-stable biomatrices. The hybrid protein, integrated homogeneously with collagen fibrillar networks, preserved structural stability over a month. Biological efficacy of the hybrid matrix was proven onto tethered surface of biopolymer porous scaffolds. Mesenchymal stem cells quickly anchored to the hybrid matrix, forming focal adhesions, and substantially conformed to cytoskeletal extensions, benefited from the fibronectin adhesive domains. Cells achieved high proliferative capacity to reach confluence rapidly and switched to a mature and osteogenic phenotype more effectively, resulting in greater osteogenic matrix syntheses and mineralization, driven by the engineered osteocalcin. The hybrid biomimetic matrix significantly improved in vivo bone formation in calvarial defects over 6 weeks. Based on the series of stimulated biological responses in vitro and in vivo the novel hybrid proteinaceous composition will be potentially useful as stem cell interfacing matrices for osteogenesis and bone regeneration. PMID:25934278

  16. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    PubMed

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  17. [Structural features of ectopic bone-like tissue in porous hydroxyapatite blocks].

    PubMed

    Hattori, Shigetaka

    2008-06-01

    Calcium phosphate ceramics are widely used as bone substitutes because of their favorable biocompatibility and osteoconductivity. Some studies have reported that porous hydroxyapatite (HA), with its special structure, implanted at ectopic (non-bone) sites, exhibits osteoinductive activity. However, few studies have examined the detailed ultrastructure of mineralized tissue formed in biomaterials like HA. Therefore, it is important to examine whether the mineralized tissue exhibits structural characteristics of normal bone tissue. Thus, in this study, we subcutaneously implanted hydroxyapatite blocks (5 x 5 x 7 mm) into the backs of adult dogs, and performed detailed morphological examination of the bone-like tissue formed, which showed a lamellar structure. Immunohistochemical staining revealed that the matrix fibers of the bone-like tissue were mainly composed of type I collagen. The pattern of crystal deposition in matrix fibers and the structure of osteoblast-, osteocyte-, bone-lining-, and osteoclast-like cells were similar to those of normal bone tissue and osteogenic cells, respectively. These results indicate that cellular events observed in normal bone formation and remodeling occur in bone-like tissue as well, and suggest that bone-like tissue in HA blocks is very similar to bone tissue. PMID:18634458

  18. The state of human bone tissue during space flight

    NASA Astrophysics Data System (ADS)

    Oganov, V. S.; Rakhmanov, A. S.; Novikov, V. E.; Zatsepin, S. T.; Rodionova, S. S.; Cann, Ch.

    The results of studying the bone tissue of cosmonauts after the flights (4-8 month) have been compared to the data of investigating the healthy individuals during head-down tilt (HDT, 370 days). Noninvasive methods (computer tomography, gammaphoton absorptiometry) revealed a decrease in the vertebral spongy mineral density or a increase of this parameter by a similar magnitude versus the individual preflight values in some cosmonauts. During studies of clinical cases of osteoporosis it was shown that the vertebral mineral density ratios and presence or absence of vertebral compression fractures in different age groups are nonequal.

  19. Comparison of mechanical behavior between implant-simulated bone tissue and implant-jaw bone tissue interfaces based on Pull Out testing

    NASA Astrophysics Data System (ADS)

    Lopez, C.; Muñoz, J. C.; Pinillos, J. C.

    2013-11-01

    The main purpose of this research was to achieve a better understanding of the relationship within the mechanical properties of human cadaver jaw bone with kind D2 density regarding a substitute polymer to simulate bone tissue, proposed by the ASTM, to evaluate orthopedic implants. However, despite the existence of several densities of foams and his mechanical characterization has been classified into different degrees of tissue densities to simulate cancellous and cortical bone, the value of the densities are different contrasted with the densities of bone tissue, making difficult to establish direct relationship about mechanical behavior between the polymer and the bone material, and therefore no clear criteria known for choosing the polymeric foam which describes the mechanical behavior of tissue for a specific or particular study. To understand such behavior from bone tissue regarding the polymer samples, on this research was a dental implant inserted into the samples, and subjected to destructive Pull Out test according to ASTM F543The Pull Out strength was compared between implant-jawbone and implant-rigid polyurethane foam interfaces. Thus, the test pieces with mechanical behavior similar to bone tissue, enabling an approximation to choose degree appropriate of polymer to replace the bone tissue in future trials biomechanical.

  20. Bone marrow adipose tissue: formation, function and regulation.

    PubMed

    Suchacki, Karla J; Cawthorn, William P; Rosen, Clifford J

    2016-06-01

    The human body requires an uninterrupted supply of energy to maintain metabolic homeostasis and energy balance. To sustain energy balance, excess consumed calories are stored as glycogen, triglycerides and protein, allowing the body to continue to function in states of starvation and increased energy expenditure. Adipose tissue provides the largest natural store of excess calories as triglycerides and plays an important role as an endocrine organ in energy homeostasis and beyond. This short review is intended to detail the current knowledge of the formation and role of bone marrow adipose tissue (MAT), a largely ignored adipose depot, focussing on the role of MAT as an endocrine organ and highlighting the pharmacological agents that regulate MAT. PMID:27022859

  1. Micro-distribution of uranium in bone after contamination: new insight into its mechanism of accumulation into bone tissue.

    PubMed

    Bourgeois, Damien; Burt-Pichat, Brigitte; Le Goff, Xavier; Garrevoet, Jan; Tack, Pieter; Falkenberg, Gerald; Van Hoorebeke, Luc; Vincze, Laszlo; Denecke, Melissa A; Meyer, Daniel; Vidaud, Claude; Boivin, Georges

    2015-09-01

    After internal contamination, uranium rapidly distributes in the body; up to 20 % of the initial dose is retained in the skeleton, where it remains for years. Several studies suggest that uranium has a deleterious effect on the bone cell system, but little is known regarding the mechanisms leading to accumulation of uranium in bone tissue. We have performed synchrotron radiation-based micro-X-ray fluorescence (SR μ-XRF) studies to assess the initial distribution of uranium within cortical and trabecular bones in contaminated rats' femurs at the micrometer scale. This sensitive technique with high spatial resolution is the only method available that can be successfully applied, given the small amount of uranium in bone tissue. Uranium was found preferentially located in calcifying zones in exposed rats and rapidly accumulates in the endosteal and periosteal area of femoral metaphyses, in calcifying cartilage and in recently formed bone tissue along trabecular bone. Furthermore, specific localized areas with high accumulation of uranium were observed in regions identified as micro-vessels and on bone trabeculae. These observations are of high importance in the study of the accumulation of uranium in bone tissue, as the generally proposed passive chemical sorption on the surface of the inorganic part (apatite) of bone tissue cannot account for these results. Our study opens original perspectives in the field of exogenous metal bio-mineralization. PMID:26084548

  2. Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Liu, Fwu-Hsing

    2014-10-01

    In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.

  3. Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering

    PubMed Central

    Venkatesan, Jayachandran; Bhatnagar, Ira; Kim, Se-Kwon

    2014-01-01

    Over the last few years, significant research has been conducted in the construction of artificial bone scaffolds. In the present study, different types of polymer scaffolds, such as chitosan-alginate (Chi-Alg) and chitosan-alginate with fucoidan (Chi-Alg-fucoidan), were developed by a freeze-drying method, and each was characterized as a bone graft substitute. The porosity, water uptake and retention ability of the prepared scaffolds showed similar efficacy. The pore size of the Chi-Alg and Chi-Alg-fucoidan scaffolds were measured from scanning electron microscopy and found to be 62–490 and 56–437 µm, respectively. In vitro studies using the MG-63 cell line revealed profound cytocompatibility, increased cell proliferation and enhanced alkaline phosphatase secretion in the Chi-Alg-fucoidan scaffold compared to the Chi-Alg scaffold. Further, protein adsorption and mineralization were about two times greater in the Chi-Alg-fucoidan scaffold than the Chi-Alg scaffold. Hence, we suggest that Chi-Alg-fucoidan will be a promising biomaterial for bone tissue regeneration. PMID:24441614

  4. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. PMID:26117771

  5. Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering

    PubMed Central

    Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2010-01-01

    The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546

  6. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Dogan, Fatih; Bal, B Sonny

    2008-06-01

    Freeze casting of aqueous suspensions was investigated as a method for preparing porous hydroxyapatite (HA) scaffolds for eventual application to bone tissue engineering. Suspensions of HA particles (10-20 volume percent) were frozen unidirectionally in a cylindrical mold placed on a cold steel substrate (-20 degrees C). After sublimation of the ice, sintering for 3 h at 1350 degrees C produced constructs with dense HA lamellae, with porosity of approximately 50%, and inter-lamellar pore widths of 5-30 microm. These constructs had compressive strengths of 12 +/- 1 MPa and 5 +/- 1 MPa in the directions parallel and perpendicular to the freezing direction, respectively. Manipulation of the microstructure was achieved by modifying the solvent composition of the suspension used for freeze casting. The use of water-glycerol mixtures (20 wt% glycerol) resulted in the production of constructs with finer pores (1-10 microm) and a larger number of dendritic growth connecting the HA lamellae, and higher strength. On the other hand, the use of water-dioxane mixtures (60 wt% dioxane) resulted in a cellular-type microstructure with larger pores (90-110 microm). The mechanical response showed high strain tolerance (5-10% at the maximum stress), high strain for failure (>20%) and sensitivity to the loading rate. The favorable mechanical behavior of the porous constructs, coupled with the ability to modify their microstructure, indicates the potential of the present freeze casting route for the production of porous scaffolds for bone tissue engineering. PMID:18458369

  7. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications.

    PubMed

    Kumar, Alok; Biswas, Krishanu; Basu, Bikramjit

    2015-02-01

    The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. PMID:24737723

  8. Peculiarities of the bone tissue resorption under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, N.; Oganov, V.; Polkovenko, O.; Nitsevich, T.

    The actual problem - peculiarities of resorptive processes in the spongiose of thingbones - we studied with the use of tranmissive electron microscopy in experiments on rats (American space station SLS-2) and on monkeys Macaca mulatt? (BION-11). Animals were onboard during 2 weeks. There was established, that the resorption happen with osteoclasts participation. They can create groups of cells. In the osteoclasts population we indicated not typical for the control (ground experiment) "giant" cells, which have on ultrathin sections 5-6 nuclei, many lysosomes, well developed "light" zone and "brush-border". The destruction of minera lized matrix in bone lacunas also happens by the way of osteolytic activity of osteocytes. Lysosome ferments of osteocytes are secreted by the eczocytosis. The osteocytic osteolysis, as well as the osteoclastic one can be seen as a physiological, gormon-dependent mechanism of resorption. The presence of a considerable number of neutrophiles, which enter in some zones of resorption is also typical. When these neutrophiles destruct, they release lysosomic ferments that dissolve the bone matrix. In some zones of resorption we noted the presence of the row from collagen fibrils, which loosed crystals , on mineralized matrix borders. The cell detritus is noted in zones of surface dissolving among crystallic conglomerates. It certificates the processes of osteogenic cells destruction that happen here. So, under the microgravity conditions in zones of adaptive remodeling of the spongiose the processes of the bone tissue resorption happen by some ways, namely: by the functional activization of osteoclasts; by the osteocytic osteolysis increasing; as a result of hydrolytic activity of neutrophiles, entering in these zones, and also by the local demineralization and further destruction of bone matrix surface zones.

  9. In-vitro imaging of bone tissue and monitoring of tissue viability by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Wang, Ruikang K.; El Haj, Alicia

    2001-07-01

    Optical coherence tomography (OCT) has developed as a promising medical diagnostic imaging technology for non- invasive in situ cross-sectional imaging of biological tissues. We present this technique to image bone tissue and to monitor the redox state of mitochondria enzyme Cytochrome oxidase (CytOx) in bone for applications in tissue engineering. Superluminescent diode (SLD) with its peak emission wavelength (λ = 820nm) on the absorption band of oxidized form of CytOx was used in the experiments. The results demonstrate that the OCT system is capable of imaging the calvaria of newborn rats tomographically with a resolution at 9 microns, which could only be previously obtained by the conventional excisional biopsy. The thickness of periosteum of various calvarias from different ages of rats can be accurately determined by the system. The backscattered power-versus-depth profile form the liquid phantoms (naphthol green B with intralipid) and tissue specimens (periosteum of calvaria from newborn rats) are used to quantify the absorption changes of the sample. Absorption coefficients of naphthol green B could be quantified accurately by the linear relationship between attenuation coefficients from the slopes of the reflected signals and naphthol green B concentration. The results also show that the attenuation coefficient decreases in periosteums as CytOx being reduced by sodium dithionite, demonstrating the feasibility of this method to monitor the redox state of tissues studied.

  10. Microsurgical Techniques Used to Construct the Vascularized and Neurotized Tissue Engineered Bone

    PubMed Central

    Fan, Junjun; Bi, Long; Jin, Dan; Wei, Kuanhai; Chen, Bin; Zhang, Zhiyong; Pei, Guoxian

    2014-01-01

    The lack of vascularization in the tissue engineered bone results in poor survival and ossification. Tissue engineered bone can be wrapped in the soft tissue flaps which are rich in blood supply to complete the vascularization in vivo by microsurgical technique, and the surface of the bone graft can be invaded with new vascular network. The intrinsic vascularization can be induced via a blood vessel or an arteriovenous loop located centrally in the bone graft by microsurgical technique. The peripheral nerve especially peptidergic nerve has effect on the bone regeneration. The peptidergic nerve can be used to construct the neurotized tissue engineered bone by implanting the nerve fiber into the center of bone graft. Thus, constructing a highly vascularized and neurotized tissue engineered bone according with the theory of biomimetics has become a useful method for repairing the large bone defect. Many researchers have used the microsurgical techniques to enhance the vascularization and neurotization of tissue engineered bone and to get a better osteogenesis effect. This review aims to summarize the microsurgical techniques mostly used to construct the vascularized and neurotized tissue engineered bone. PMID:24900962

  11. Insights into Reference Point Indentation Involving Human Cortical Bone: Sensitivity to Tissue Anisotropy and Mechanical Behavior

    PubMed Central

    Granke, Mathilde; Coulmier, Aurélie; Uppuganti, Sasidhar; Gaddy, Jennifer A; Does, Mark D; Nyman, Jeffry S

    2014-01-01

    Reference point indentation (RPI) is a microindentation technique involving 20 cycles of loading in “force-control” that can directly assess a patient’s bone tissue properties. Even though preliminary clinical studies indicate a capability for fracture discrimination, little is known about what mechanical behavior the various RPI properties characterize and how these properties relate to traditional mechanical properties of bone. To address this, the present study investigated the sensitivity of RPI properties to anatomical location and tissue organization as well as examined to what extent RPI measurements explain the intrinsic mechanical properties of human cortical bone. Multiple indents with a target force of 10 N were done in 2 orthogonal directions (longitudinal and transverse) per quadrant (anterior, medial, posterior, and lateral) of the femoral mid-shaft acquired from 26 donors (25–101 years old). Additional RPI measurements were acquired for 3 orthogonal directions (medial only). Independent of age, most RPI properties did not vary among these locations, but they did exhibit transverse isotropy such that resistance to indentation is greater in the longitudinal (axial) direction than in the transverse direction (radial or circumferential). Next, beam specimens (~ 2 mm × 5 mm × 40 mm) were extracted from the medial cortex of femoral mid-shafts, acquired from 34 donors (21–99 years old). After monotonically loading the specimens in three-point bending to failure, RPI properties were acquired from an adjacent region outside the span. Indent direction was orthogonal to the bending axis. A significant inverse relationship was found between resistance to indentation and the apparent-level mechanical properties. Indentation distance increase (IDI) and a linear combination of IDI and the loading slope, averaged over cycles 3 through 20, provided the best explanation of the variance in ultimate stress (r2=0.25, p=0.003) and toughness (r2=0.35, p=0

  12. Stereomicroscopic evaluation of the joint cartilage and bone tissue in osteoporosis

    NASA Astrophysics Data System (ADS)

    Vasile, Liliana; Torok, Rodica; Deleanu, Bogdan; Marchese, Cristian; Valeanu, Adina; Bodea, Rodica

    2012-06-01

    Aim of the study. Assessment by stereomicroscopy of the severity of lesions in osteoporotic bone at both sexes and to correlate micro-and macro-bone fracture due to low bone density values with the disease evolution. Material and method: The study material consists of fragments of bone from the femoral head, vertebral bone, costal and iliac crest biopsy obtained from patients aged over 70 years, female and male, treated in the County Hospital of Timisoara, Department of Orthopedics. For the purpose of studying the samples in stereomicroscopy and trough polarized light it has been used the Olympus Microscope SZ ×7 and an Olympus camera with 2,5 × digital zoom and a 3× optical zoom in the Vest Politechnic Univesity. Results and discussions: Subchondral bone presents osteolysis associated with a osteoporotic bone transformation. Pseudocystic chondrolisis was noted in the osteoarticular cartilage, in addition with areas of hemorrhagic postfractural necrosis. The osteoporotic bone exhibits ischemic necrosis and focal hemorrhagic necrosis adjacent fracture. Microporosity pattern of the bone observed by stereomicroscopy correspond to the spongy bone osteoporosis images. Morphometry of the bone spiculi reveals length of 154.88 and 498.32 μ. In men we found a greater thickness of bone trabeculi compared with bone texture porosity in women. The subchondral bone supports and fulfills an important role in transmitting forces from the overlying articular cartilage inducing the bone resorbtion. The femoral head fracture may be the final event of many accumulated bone microcracks. Conclusions: Bone fragility depends not only of the spongy bone but also of the cortical bone properties. Osteolysis produced by loss of balance in the process of remodeling in favor of bone resorption leads to the thinning of the subchondral bone at both sexes.

  13. Current Concepts of Bone Tissue Engineering for Craniofacial Bone Defect Repair

    PubMed Central

    Fishero, Brian Alan; Kohli, Nikita; Das, Anusuya; Christophel, John Jared; Cui, Quanjun

    2014-01-01

    Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair. PMID:25709750

  14. Developing bioactive composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Chen, Yun

    bone-like apatite/collagen composite coating. Saos-2 osteoblast-like cells were used to evaluate the cellular behaviors on these biomimetic coatings. Cell morphologies on the surfaces of PLLA films and scaffolds, PLLA films and scaffolds with apatite coating, and PLLA films and scaffolds with apatite/collagen composite coating were studied by SEM. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide (MTT) assay. In addition, differentiated cell function was assessed by measuring alkaline phosphatase activity. These results suggested that the apatite coating and apatite/collagen composite coating fabricated through the accelerated biomimetic processes could improve the interactions between osteoblasts and PLLA. The composite coating was more effective than apatite coating in improving such interactions. PLLA scaffolds coated with submicron collagen fibrils and submicron apatite paticulates are expected to be one of the promising 3D substrates for bone tissue engineering. To facilitate coating into scaffolds, the flowing condition was introduced into the accelerated biomimetic process. The apatite formed in the different sites in the scaffold was characterized using SEM. It was found that the accelerated biomimetic process performed in the flowing condition yielded more uniform spatial distribution of apatite particles than that in the regular shaking condition. This work provides a novel condition for obtaining uniform spatial distribution of bone-like apatite within the scaffolds in a timely manner, which is expected to facilitate uniform distribution of attached cells within the scaffoldsin vitro and in vivo.

  15. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    PubMed Central

    Sun, Han; Yang, Hui-Lin

    2015-01-01

    Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions. PMID:25881610

  16. Blood and Interstitial flow in the hierarchical pore space architecture of bone tissue

    PubMed Central

    Cowin, Stephen C.; Cardoso, Luis

    2015-01-01

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. PMID:25666410

  17. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  18. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study

    PubMed Central

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold. PMID:26380018

  19. Single walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p < 0.05) among all composites. Gene expression of alkaline phosphatase, collagen I, osteocalcin, osteopontin, Runx-2, and Bone Sialoprotein was observed on all composites. In conclusion, SWCNT/PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. PMID:23629922

  20. Chitosan and alginate scaffolds for bone tissue regeneration.

    PubMed

    Olmez, S S; Korkusuz, P; Bilgili, H; Senel, S

    2007-06-01

    Polymeric scaffold for tissue regeneration was developed for veterinary applications. Oxytetracycline hydrochloride (OTC), which is a widely used antibiotic in veterinary medicine was chosen as the model compound. Gel formulations using chitosan and alginate were prepared in distilled water or in 1% (v/v) acetic acid solution. Sponges were also prepared by a freeze-drying process. Tripolyphosphate was used for cross-linking. Viscosity was decreased in the presence of OTC in chitosan gels whereas no difference was found with alginate gels. All gels showed pseudoplastic behaviour. Water absorption capacity was highest with chitosan/alginate sponges. The solvent used for preparation of the chitosan gels was found to affect the release of OTC. The release of OTC from the sponges was increased by cross-linking. Chitosan/alginate sponges showed the slowest and lowest drug release among the developed sponge formulations in this study. The formulations were found to be biocompatible, inducing no adverse reaction in vivo on surgically formed bone defects of radius of rabbits. The level of organization of the remodelled new bone in the treatment groups was better than that of control. Incorporation of OTC into formulations did not show any considerable enhancing effect. PMID:17663189

  1. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    PubMed

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. PMID:26478356

  2. Microporous Nanofibrous Fibrin-based Scaffolds for Bone Tissue Engineering

    PubMed Central

    Osathanon, Thanaphum; Linnes, Michael L.; Rajachar, Rupak M.; Ratner, Buddy D.; Somerman, Martha J.; Giachelli, Cecilia M.

    2008-01-01

    The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds with tightly controllable pore size, pore interconnection, and calcium phosphate deposition was developed. Microporous, nanofibrous fibrin scaffolds were fabricated using sphere-templating methods. Composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to fibrin scaffolds and nHA incorporated fibrin scaffolds (0.25 g and 0.5 g). All types of scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2. PMID:18640716

  3. Photoacoustic and ultrasound imaging of cancellous bone tissue

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Tan, Joel W. Y.; Mandelis, Andreas

    2015-07-01

    We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ˜1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.

  4. Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain

    PubMed Central

    Allali, Imane; Delgado, Susana; Marron, Pablo Isidro; Astudillo, Aurora; Yeh, Jen Jen; Ghazal, Hassan; Amzazi, Saaïd; Keku, Temitope; Azcarate-Peril, M Andrea

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer in the world and the second leading cause of cancer deaths in the US and Spain. The molecular mechanisms involved in the etiology of CRC are not yet elucidated due in part to the complexity of the human gut microbiota. In this study, we compared the microbiome composition of 90 tumor and matching adjacent tissue (adjacent) from cohorts from the US and Spain by 16S rRNA amplicon sequencing in order to determine the impact of the geographic origin on the CRC microbiome. Data showed a significantly (P < 0.05) higher Phylogenetic Diversity (PD) for the US (PD Adjacent = 26.3 ± 5.3, PD Tumor = 23.3 ± 6.2) compared to the Spanish cohort (PD Adjacent = 18.9 ± 5.9, PD Tumor = 18.7 ± 6.6) while no significant differences in bacterial diversity were observed between tumor and adjacent tissues for individuals from the same country. Adjacent tissues from the Spanish cohort were enriched in Firmicutes (SP = 43.9% and US = 22.2%, P = 0.0001) and Actinobacteria (SP = 1.6% and US = 0.5%, P = 0.0018) compared to US adjacent tissues, while adjacent tissues from the US had significantly higher abundances of Fusobacteria (US = 8.1% and SP = 1.5%, P = 0.0023) and Sinergistetes (US = 0.3% and SP = 0.1%, P = 0.0097). Comparisons between tumor and adjacent tissues in each cohort identified the genus Eikenella significantly over represented in US tumors (T = 0.024% and A = 0%, P = 0.03), and the genera Fusobacterium (T = 10.4% and A = 1.5%, P = <0.0001), Bulleida (T = 0.36% and A = 0.09%, P = 0.02), Gemella (T = 1.46% and A = 0.19%, P = 0.03), Parvimonas (T = 3.14% and A = 0.86%, P = 0.03), Campylobacter (T = 0.15% and A = 0.008%, P = 0.047), and Streptococcus (T = 2.84% and A = 2.19%, P = 0.05) significantly over represented in Spanish tumors. Predicted metagenome functional content from 16S rRNA surveys showed that bacterial motility proteins and proteins involved in flagellar assembly were over represented in adjacent tissues

  5. Can Breast Tumors Affect the Oxidative Status of the Surrounding Environment? A Comparative Analysis among Cancerous Breast, Mammary Adjacent Tissue, and Plasma

    PubMed Central

    Panis, C.; Victorino, V. J.; Herrera, A. C. S. A.; Cecchini, A. L.; Simão, A. N. C.; Tomita, L. Y.; Cecchini, R.

    2016-01-01

    In this paper, we investigated the oxidative profile of breast tumors in comparison with their normal adjacent breast tissue. Our study indicates that breast tumors present enhanced oxidative/nitrosative stress, with concomitant augmented antioxidant capacity when compared to the adjacent normal breast. These data indicate that breast cancers may be responsible for the induction of a prooxidant environment in the mammary gland, in association with enhanced TNF-α and nitric oxide. PMID:26697139

  6. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering.

    PubMed

    Cheng, Tegan L; Murphy, Ciara M; Ravarian, Roya; Dehghani, Fariba; Little, David G; Schindeler, Aaron

    2015-01-01

    Sucrose acetate isobutyrate (SAIB) is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) and found synergy when co-delivering zoledronic acid (ZA) and hydroxyapatite (HA) nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP) nor Bioglass (BG) 45S5 had a significant effect on bone volume (BV) alone or in combination with the ZA. (14)C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%), and BV was further increased with ZA-adsorbed micro-HA and nano-HA (+530% and +889%). These data support the use of ZA-adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering. PMID:26668709

  7. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering

    PubMed Central

    Cheng, Tegan L; Murphy, Ciara M; Ravarian, Roya; Dehghani, Fariba; Little, David G; Schindeler, Aaron

    2015-01-01

    Sucrose acetate isobutyrate (SAIB) is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) and found synergy when co-delivering zoledronic acid (ZA) and hydroxyapatite (HA) nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP) nor Bioglass (BG) 45S5 had a significant effect on bone volume (BV) alone or in combination with the ZA. 14C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%), and BV was further increased with ZA–adsorbed micro-HA and nano-HA (+530% and +889%). These data support the use of ZA–adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering. PMID:26668709

  8. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    PubMed

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues. PMID:25995658

  9. How bone tissue and cells experience elevated temperatures during orthopaedic cutting: an experimental and computational investigation.

    PubMed

    Dolan, Eimear B; Vaughan, Ted J; Niebur, Glen L; Casey, Conor; Tallon, David; McNamara, Laoise M

    2014-02-01

    During orthopaedic surgery elevated temperatures due to cutting can result in bone injury, contributing to implant failure or delayed healing. However, how resulting temperatures are experienced throughout bone tissue and cells is unknown. This study uses a combination of experiments (forward-looking infrared (FLIR)) and multiscale computational models to predict thermal elevations in bone tissue and cells. Using multiple regression analysis, analytical expressions are derived allowing a priori prediction of temperature distribution throughout bone with respect to blade geometry, feed-rate, distance from surface, and cooling time. This study offers an insight into bone thermal behavior, informing innovative cutting techniques that reduce cellular thermal damage. PMID:24317222

  10. [Structural mechanisms and mathematical modeling of the bone tissue damage caused by hyper-speed impact].

    PubMed

    Ishchenko, A N; Belov, N N; Gaĭdash, A A; Iugov, N T; Bashirov, R S; Afanas'eva, S A; Sinitsa, L N

    2011-03-01

    Method of computer modeling of behavior of cylindrical and lamellar bones under the hypervelocity impact is suggested. This method allows in the frame of mechanics of continuous medium to calculate the stress strain behavior and damage in bone tissues under the shock wave impact. The processes of shock correlation of steel fragments of different shape with diaphysis of cylindrical bones and flat bone of calvaria under the impact 500 m/s are studied. The given method can be used for the evaluation of damage area of bone tissue of shock wave osteoporosis under the gunshot wound. PMID:21770310

  11. Hard tissue regeneration using bone substitutes: an update on innovations in materials

    PubMed Central

    Sarkar, Swapan Kumar

    2015-01-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues. PMID:25995658

  12. Discovery and verification of protein differences between Er positive/Her2/neu negative breast tumor tissue and matched adjacent normal breast tissue.

    PubMed

    Weitzel, Lindsay-Rae B; Byers, Tim; Allen, Jenna; Finlayson, Christina; Helmke, Steve M; Hokanson, John E; Hunsucker, Stephen W; Murphy, James R; Newell, Keri; Queensland, Kelly M; Singh, Meenakshi; Wischmeyer, Paul E; Duncan, Mark W; Elias, Anthony

    2010-11-01

    This study was designed to quantify and identify differences in protein levels between tumor and adjacent normal breast tissue from the same breast in 18 women with stage I/II ER positive/Her2/neu negative invasive breast cancer. Eighteen separate difference gel electrophoresis (DIGE) gels were run (1 gel per patient). Relative quantification was based on DIGE analysis. After excision and tryptic digestion, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and peptide mass mapping were used to identify protein spots. Two hundred and forty-three spots were differentially abundant between normal and cancer tissues. Fifty spots were identified: 41 were over abundant and nine were less abundant in cancers than in normal breast tissue. Western blotting provided independent confirmation for three of the most biologically and statistically interesting proteins. All 18 gels were replicated by another technician and 32% of the differentially abundant proteins were verified by the duplicate analysis. Follow-up studies are now examining these proteins as biomarkers in blood. PMID:20087651

  13. N-methyl pyrrolidone as a potent bone morphogenetic protein enhancer for bone tissue regeneration.

    PubMed

    Miguel, Blanca San; Ghayor, Chafik; Ehrbar, Martin; Jung, Ronald E; Zwahlen, Roger A; Hortschansky, Peter; Schmoekel, Hugo G; Weber, Franz E

    2009-10-01

    In medicine, N-methyl pyrrolidone (NMP) has a long track record as a constituent in medical devices approved by the Food and Drug Administration and thus can be considered as a safe and biologically inactive small chemical. In the present study, we report on the newly discovered pharmaceutical property of NMP in enhancing bone regeneration in a rabbit calvarial defect model in vivo. At the cellular level, the pharmaceutical effect of NMP was confirmed, in particular, in combination with bone morphogenetic protein (BMP)-2, because NMP increased early and late markers for maturation of preosteoblasts and human bone marrow-derived stem cells in vitro. When we used the multipotent cell line C2C12 without autologous BMP expression, NMP alone had no effect on alkaline phosphatase activity, a marker for osteogenic transdifferentiation. Nevertheless, in combination with low BMP-2 doses, alkaline phosphatase activity was more than eight times as great. Thus, the pharmaceutical NMP mode of action is that of an enhancer of BMP activity. The dependency of the effects of NMP on BMP was confirmed in preosteoblasts because noggin, an extracellular BMP inhibitor, suppressed NMP-induced increases in early markers for osteoblast maturation in vitro. At the molecular level, NMP was shown to have no effect on the binding of BMP-2 to the ectodomain of the high-affinity BMP receptor IA. However, NMP further increased the phosphorylation of p38 and Smad1,5,8 induced by BMP-2. Thus, the small chemical NMP enhances BMP activity by increasing the kinase activity of the BMP receptor complex for Smad1,5,8 and p38 and could be employed as a potent drug for bone tissue regeneration and engineering. PMID:19320543

  14. [Mechanical strength and mechano-compatibility of tissue-engineered bones].

    PubMed

    Tanaka, Shigeo

    2016-01-01

    Current artificial bones made of metals and ceramics may be replaced around a decade after implantation due to its low durability, which is brought on by a large difference from the host bone in mechanical properties, i.e., low mechano-compatibility. On the other hand, tissue engineering could be a solution with regeneration of bone tissues from stem cells in vitro. However, there are still some problems to realize exactly the same mechanical properties as those of real bone. This paper introduces the technical background of bone tissue engineering and discusses possible methods for installation of mechano-compatibility into a regenerative bone. At the end, future directions toward the realization of ideal mechano-compatible regenerative bone are proposed. PMID:26728535

  15. [Fluid-fluid levels in bone and soft tissue tumors demonstrated by MR imaging].

    PubMed

    Sone, M; Ehara, S; Sasaki, M; Nakasato, T; Tamakawa, Y; Shiraishi, H; Abe, M

    1992-08-25

    Fluid-fluid levels in bone tumors have been described in aneurysmal bone cysts and other cystic tumors of bones and soft tissue tumors. We experienced three bone tumors (simple bone cyst, bone metastasis, and osteosarcoma) and three soft tissue tumors (fibrosarcoma, two cases of cavernous hemangioma) that showed fluid-fluid levels on MR, and investigated their cause. Causes included blood in the cystic spaces, hemorrhage in the tumor, the telangiectatic component of the osteosarcoma, and the cavernous component of the hemangioma. No specific diagnosis could be made based on the finding of fluid-fluid levels. We conclude that fluid-fluid levels on MR are rather nonspecific findings in bone and soft tissue tumors and that the diagnosis should be made on the basis of other radiological and clinical findings. PMID:1408681

  16. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science. PMID:26748447

  17. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering.

    PubMed

    Chowdhury, S; Thomas, Vinoy; Dean, Derrick; Catledge, Shane A; Vohra, Yogesh K

    2005-11-01

    We report nanoindentation mechanical properties measurements on porous ceramic scaffolds made for tissue engineering applications. The scaffolds have been made from tricalcium phosphate (TCP), hydroxyapatite (HA) nanopowder and mixed powders of HA (50 wt%) and TCP (50 wt%) using the polyurethane sponge method, which produces open porous ceramic scaffolds through replication of a porous polymer template. The scaffolds prepared by this method have a controllable pore size and interconnected pore structure. The crystal structures and morphology of porous scaffolds were determined by X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. Nanoindentation measurements to a depth of 600 nm showed a Young's modulus value of 10.3 GPa for HA+TCP composite scaffolds and 1.5 GPa for TCP scaffolds. The hardness values were 240 MPa for HA+TCP composites and 21 MPa for TCP sample respectively. The results showed that the mechanical properties of the biodegradable scaffolds can be considerably enhanced with the addition of HA while maintaining the interconnected open pores and pore geometry desirable for bone tissue engineering. PMID:16433415

  18. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.

    PubMed

    Boissard, C I R; Bourban, P-E; Tami, A E; Alini, M; Eglin, D

    2009-11-01

    Biodegradable viscoelastic poly(ester urethane)-based scaffolds show great promise for tissue engineering. In this study, the preparation of hydroxyapatite nanoparticles (nHA)/poly(ester urethane) composite scaffolds using a salt-leaching-phase inverse process is reported. The dispersion of nHA microaggregates in the polymer matrix were imaged by microcomputed X-ray tomography, allowing a study of the effect of the nHA mass fraction and process parameters on the inorganic phase dispersion, and ultimately the optimization of the preparation method. How the composite scaffold's geometry and mechanical properties change with the nHA mass fraction and the process parameters were assessed. Increasing the amount of nHA particles in the composite scaffold decreased the porosity, increased the wall thickness and consequently decreased the pore size. The Young's modulus of the poly(ester urethane) scaffold was improved by 50% by addition of 10 wt.% nHA (from 0.95+/-0.5 to 1.26+/-0.4 MPa), while conserving poly(ester urethane) viscoelastic properties and without significant changes in the scaffold macrostructure. Moreover, the process permitted the inclusion of nHA particles not only in the poly(ester urethane) matrix, but also at the surface of the scaffold pores, as shown by scanning electron microscopy. nHA/poly(ester urethane) composite scaffolds have great potential as osteoconductive constructs for bone tissue engineering. PMID:19442765

  19. Polarization-Correlation Analysis of Anisotropic Structures in Bone Tissue for the Diagnostics of Pathological Changes

    NASA Astrophysics Data System (ADS)

    Angel'Skiĭ, O. V.; Ushenko, A. G.; Burkovets, D. N.; Ushenko, Yu. A.

    2001-03-01

    A method for the correlation analysis of polarization-filtered laser images of bone tissue is considered. Its ability to visualize the bone-tissue multifractal network in its normal and pathological states is analyzed. A set of criteria for the optical diagnostics of osteoporosis is determined.

  20. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    PubMed

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-01-01

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs. PMID:27187017

  1. Method and system for in vivo measurement of bone tissue using a two level energy source

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  2. [Quantitative plutonium microdistribution in bone tissue of vertebra from occupationally exposed worker].

    PubMed

    Levkina, E V; Romanov, S A; Miller, S C; Krahenbuhl, M P; Belosokhov, M V

    2008-01-01

    The purpose of this work is the receiving of quantitative data on Pu microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. Thoracic vertebra sample was taken for the study from former Mayak worker with rather high Pu burden, including information on occupational and exposure history, medical information and data on Pu content in organs. Lexan film autodiagrams were obtained using method of neutron-induced autoradiography from bone tissue sections. Quantitative analysis of randomly selected vision fields on one of autoradiograms was performed: fission fragment tracks Pu in different bone tissue areas were calculated, surface of bone tissue areas were defined. Quantitative information on Pu microdistribution in human bone tissue was obtained for the first time. On the basis of obtained data quantitative relation of Pu decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. Actual quantitative relation of decays in bone volume to decays on bone surface is significantly different from recommended by ICRP for cortical fraction. Biokinetic model parameters of extrapulmonary ICRP compartment might need to be adjusted after expansion of data set on quantitative Pu microdistribution in other bone types in human that will involve new cases with different exposure pattern of radionuclide. PMID:18689262

  3. Biological and biophysical principles in extracorporal bone tissue engineering. Part I.

    PubMed

    Meyer, U; Joos, U; Wiesmann, H P

    2004-06-01

    Advances in the field of bone tissue engineering have encouraged physicians to introduce these techniques into clinical practice. Bone tissue engineering is the construction, repair or replacement of damaged or missing bone in humans or animals. Engineering of bone can take place within the animal body or extracorporal in a bioreactor for later grafting into the body. Appropriate cell types and non-living substrata are minimal requirements for an extracorporal tissue engineering approach. This review discusses the biological and biophysical background of in vitro bone tissue engineering. Biochemical and biophysical stimuli of cell growth and differentiation are regarded as potent tools to improve bone formation in vitro. The paper focuses on basic principles in extracorporal engineering of bone-like tissues, intended to be implanted in animal experiments and clinical studies. Particular attention is given in this part to the contributions of cell and material science to the development of bone-like tissues. Several approaches are at the level of clinical applicability and it can be expected that widespread use of engineered bone constructs will change the surgeon's work in the near future. PMID:15145032

  4. Higher FOXP3-TSDR demethylation rates in adjacent normal tissues in patients with colon cancer were associated with worse survival

    PubMed Central

    2014-01-01

    Background The influence of natural regulatory T cells (nTregs) on the patients with colon cancer is unclear. Demethylated status of the Treg-specific demethylated region (TSDR) of the FOXP3 gene was reported to be a potential biomarker for the identification of nTregs. Methods The demethylation rate of the TSDR (TSDR-DMR) was calculated by using methylation-specific quantitative polymerase chain reaction (MS-qPCR) assay. The expression of TSDR-DMR and FOXP3 mRNA was investigated in various colorectal cancer cell lines. A total of 130 colon carcinoma samples were utilized to study the DMR at tumor sites (DMRT) and adjacent normal tissue (DMRN). The correlations between DMRs and clinicopathological variables of patients with colon cancer were studied. Results The TSDR-DMRs varied dramatically among nTregs (97.920 ± 0.466%) and iTregs (3.917 ± 0.750%). Significantly, DMRT (3.296 ± 0.213%) was higher than DMRN (1.605 ± 0.146%) (n = 130, p = 0.000). Higher DMRN levels were found in female patients (p = 0.001) and those with distant metastases (p = 0.017), and were also associated with worse recurrence-free survival in non-stage IV patients (low vs. high, p = 0.022). However, further Cox multivariate analysis revealed that the FOXP3-TSDR status does not have prognostic value. Conclusion MS-qPCR assays of FOXP3-TSDR can efficiently distinguish nTregs from non-nTregs. Abnormal recruitment of nTregs occurs in the local tumor microenvironment. Infiltration of tissue-resident nTregs may have a negative role in anti-tumor effects in patients with colon cancer; however, this role is limited and complicated. PMID:24938080

  5. The effect of Tookad-mediated photodynamic ablation of the prostate gland on adjacent tissues - in vivo study in a canine model

    PubMed Central

    Huang, Zheng; Chen, Qun; Dole, Kenneth C.; Barqawi, Al B.; Chen, Yang K.; Blanc, Dominique; Wilson, Brian C.; Hetzel, Fred W.

    2008-01-01

    Summary Photodynamic therapy (PDT) mediated with vascular acting photosensitizer Tookad (pd-bacteriopheophorbide) was investigated as an alternative modality for treating prostate cancer. Photodynamic effects on the prostate gland and its adjacent tissues were evaluated in a canine model. Interstitial prostate PDT was performed by irradiating individual lobes with a cylindrical diffuser fiber at various drug/light doses. The sensitivity of the adjacent tissues to Tookad PDT was determined by directly irradiating the surface of the bladder, colon, abdominal muscle and pelvic plexus with a microlens fiber at various drug/light doses. The prostate and adjacent tissues were harvested one-week after the treatment and subjected to histopathological examination. PDT-induced prostate lesions were characterized by marked hemorrhagic necrosis. The bladder, colon, abdominal muscle and pelvic plexus appeared to be sensitive to PDT although the Tookad PDT-induced responses in these tissues were minimal compared to that of the prostate gland at the same dose levels. Nevertheless, the protection of the adjacent tissues should be taken into consideration during the total prostate ablation process due to their sensitivity to PDT. The sensitivity of the prostatic urethra is worth further investigation. Direct intraurethral irradiation might provide an ideal means to determine the sensitivity of the prostatic urethra and might lead to transurethral PDT protocols for the management of benign prostatic hyperplasia. PMID:18046488

  6. An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering.

    PubMed

    Simson, Jacob A; Strehin, Iossif A; Lu, Qiaozhi; Uy, Manuel O; Elisseeff, Jennifer H

    2013-03-11

    A chondroitin sulfate-bone marrow (CS-BM) adhesive hydrogel was used to localize rhBMP-2 to enhance articular cartilage tissue formation. Chondrocyte pellet culture revealed that 0.1 and 1 μg/mL of rhBMP-2 enhanced sulfated-GAG content. rhBMP-2 localization within the hydrogels was investigated, and it was found that BM, CS-NHS, and rhBMP-2 levels and time affected rhBMP-2 retention. Retention was modulated from 82 to 99% over a 3-week period for the material formulations investigated. To evaluate carrier efficacy, rhBMP-2 and bovine articular chondrocytes were encapsulated within CS-BM, and biochemical evaluation revealed significant increases in total collagen production with rhBMP-2. Histological analysis revealed more robust tissue formation and greater type-II collagen production with encapsulated rhBMP-2. Subsequently, a subcutaneous culture of hydrogels revealed increased total collagen, type-II to type-I collagen ratio, and sulfated GAG in samples carrying rhBMP-2. These findings indicate the development of a multifunctional system capable of localizing rhBMP-2 to enhance repair tissue quality. PMID:23320412

  7. Bone tissue heating and ablation by short and ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Rice, Colin E. W.; George, Thomas F.

    2010-02-01

    Biological hard tissues, such as those found in bone and teeth, are complex tissues that build a strong mineral structure over an organic matrix framework. The laser-matter interaction for bone hard tissues holds great interest to laser surgery and laser dentistry; the use of short/ultrashort pulses, in particular, shows interesting behaviors not seen in continuous wave lasers. High laser energy densities in ultrashort pulses can be focused on a small irradiated surface (spot diameter is 10-50 μm) leading to rapid temperature rise and thermal ablation of the bone tissue. Ultrashort pulses, specifically those in the picosecond and femtosecond ranges, impose several challenges in modeling bone tissue response. In the present paper we perform time-dependent thermal simulations of short and ultrashort pulse laser-bone interactions in singlepulse and multipulse (set of ultrashort pulses) modes of laser heating. A comparative analysis for both radiation modes is discussed for laser heating of different types of the solid bone on the nanosecond, picosecond and femtosecond time scales. It is shown that ultrashort laser pulses with high energy densities can ablate bone tissue without heating tissues bordering the ablation creator. This reaction is particularly desirable as heat accumulation and thermal damage are the main factors affecting tissue regrowth rates, and thus patient recovery times.

  8. Targeting the hypoxic response in bone tissue engineering: A balance between supply and consumption to improve bone regeneration.

    PubMed

    Stiers, Pieter-Jan; van Gastel, Nick; Carmeliet, Geert

    2016-09-01

    Bone tissue engineering is a promising therapeutic alternative for bone grafting of large skeletal defects. It generally comprises an ex vivo engineered combination of a carrier structure, stem/progenitor cells and growth factors. However, the success of these regenerative implants largely depends on how well implanted cells will adapt to the hostile and hypoxic host environment they encounter after implantation. In this review, we will discuss how hypoxia signalling may be used to improve bone regeneration in a tissue-engineered construct. First, hypoxia signalling induces angiogenesis which increases the survival of the implanted cells as well as stimulates bone formation. Second, hypoxia signalling has also angiogenesis-independent effects on mesenchymal cells in vitro, offering exciting new possibilities to improve tissue-engineered bone regeneration in vivo. In addition, studies in other fields have shown that benefits of modulating hypoxia signalling include enhanced cell survival, proliferation and differentiation, culminating in a more potent regenerative implant. Finally, the stimulation of endochondral bone formation as a physiological pathway to circumvent the harmful effects of hypoxia will be briefly touched upon. Thus, angiogenic dependent and independent processes may counteract the deleterious hypoxic effects and we will discuss several therapeutic strategies that may be combined to withstand the hypoxia upon implantation and improve bone regeneration. PMID:26768117

  9. Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering Applications

    PubMed Central

    Kinoshita, Yukihiko; Maeda, Hatsuhiko

    2013-01-01

    Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies. PMID:24163634

  10. Cryogel-PCL combination scaffolds for bone tissue repair.

    PubMed

    Van Rie, Jonas; Declercq, Heidi; Van Hoorick, Jasper; Dierick, Manuel; Van Hoorebeke, Luc; Cornelissen, Ria; Thienpont, Hugo; Dubruel, Peter; Van Vlierberghe, Sandra

    2015-03-01

    The present work describes the development and the evaluation of cryogel-poly-ε-caprolactone combinatory scaffolds for bone tissue engineering. Gelatin was selected as cell-interactive biopolymer to enable the adhesion and the proliferation of mouse calvaria pre-osteoblasts while poly-ε-caprolactone was applied for its mechanical strength required for the envisaged application. In order to realize suitable osteoblast carriers, methacrylamide-functionalized gelatin was introduced into 3D printed poly-ε-caprolactone scaffolds created using the Bioplotter technology, followed by performing a cryogenic treatment which was concomitant with the redox-initiated, covalent crosslinking of the gelatin derivative (i.e. cryogelation). In a first part, the efficiency of the cryogelation process was determined using gel fraction experiments and by correlating the results with conventional hydrogel formation at room temperature. Next, the optimal cryogelation parameters were fed into the combinatory approach and the scaffolds developed were characterized for their structural and mechanical properties using scanning electron microscopy, micro-computed tomography and compression tests respectively. In a final part, in vitro biocompatibility assays indicated a good colonization of the pre-osteoblasts and the attachment of viable cells onto the cryogenic network. However, the results also show that the cellular infiltration throughout the entire scaffold is suboptimal, which implies that the scaffold design should be optimized by reducing the cryogel density. PMID:25690621

  11. Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications

    SciTech Connect

    Mkhabela, Vuyiswa J.; Ray, Suprakas Sinha

    2015-05-22

    Highly porous three-dimensional polylactide (PLA) scaffolds were obtained from PLA incorporated with different amounts of chitosan-modified montmorillonite (CS-MMT), through solvent casting and particulate leaching method. The processed scaffolds were tested in vitro for their possible application in bone tissue engineering. Scaffolds were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB SEM), Fourier Transform Infra-Red (FTIR), and X-Ray Diffraction (XRD) to study their structure and intermolecular interactions. Bioresorbability tests in simulated body fluid (pH 7.4) were conducted to assess the response of the scaffolds in a simulated physiological condition. The FIB SEM images of the scaffolds showed a porous architecture with gradual change in morphology with increasing CS-MMT concentration. FTIR analysis revealed the presence of both PLA and CS-MMT particles on the surface of the scaffolds. XRD showed that the crystalline unit cell type was the same for all the scaffolds, and crystallinity decreased with an increase in CS-MMT concentration. The scaffolds were found to be bioresorbable, with rapid bioresorbability on the scaffolds with a high CS-MMT concentration.

  12. Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Mkhabela, Vuyiswa J.; Ray, Suprakas Sinha

    2015-05-01

    Highly porous three-dimensional polylactide (PLA) scaffolds were obtained from PLA incorporated with different amounts of chitosan-modified montmorillonite (CS-MMT), through solvent casting and particulate leaching method. The processed scaffolds were tested in vitro for their possible application in bone tissue engineering. Scaffolds were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB SEM), Fourier Transform Infra-Red (FTIR), and X-Ray Diffraction (XRD) to study their structure and intermolecular interactions. Bioresorbability tests in simulated body fluid (pH 7.4) were conducted to assess the response of the scaffolds in a simulated physiological condition. The FIB SEM images of the scaffolds showed a porous architecture with gradual change in morphology with increasing CS-MMT concentration. FTIR analysis revealed the presence of both PLA and CS-MMT particles on the surface of the scaffolds. XRD showed that the crystalline unit cell type was the same for all the scaffolds, and crystallinity decreased with an increase in CS-MMT concentration. The scaffolds were found to be bioresorbable, with rapid bioresorbability on the scaffolds with a high CS-MMT concentration.

  13. High rate properties of porcine skull bone tissue

    NASA Astrophysics Data System (ADS)

    Herwig, Kyle Jeffry

    Several recent studies have shown the importance of understanding the nature of blast injuries. Traditionally, the lungs and other air filled organs were the focus of these injuries but it is being discovered that some level of brain trauma may result after encountering a blast. These injuries are referred to as traumatic brain injuries, or TBI. There has been many clinical studies and statistical analyses done concerning these injuries, but there is still no physical understanding of the problem. In order to develop a model of how this injury can occur, rate dependent material properties of the tissues the stress wave will travel through are needed. In this study, the compressive response of porcine skull bone through the thickness direction was experimentally determined over a wide range of rates, ranging from 0.001 sec -1 to approximately 3000 sec-1. The results reveal that for most mechanical properties there is a clear rate dependence of the material. However, only one subset of the skull section appeared to have a rate dependent initial modulus, with the rest showing no significant statistical dependence on loading rate. Other mechanical properties appeared to be affected by the loading rate, including the strain energy density.

  14. Vascularized Bone Tissue Formation Induced by Fiber-Reinforced Scaffolds Cultured with Osteoblasts and Endothelial Cells

    PubMed Central

    Liu, Xinhui; Zhang, Guoping; Hou, Chuanyong; Wang, Hua; Yang, Yelin; Guan, Guoping; Dong, Wei; Gao, Hongyang

    2013-01-01

    The repair of the damaged bone tissue caused by damage or bone disease was still a problem. Current strategies including the use of autografts and allografts have the disadvantages, namely, diseases transmission, tissue availability and donor morbidity. Bone tissue engineering has been developed and regarded as a new way of regenerating bone tissues to repair or substitute damaged or diseased ones. The main limitation in engineering in vitro tissues is the lack of a sufficient blood vessel system, the vascularization. In this paper, a new-typed hydroxyapatite/collagen composite scaffold which was reinforced by chitosan fibers and cultured with osteoblasts and endothelial cells was fabricated. General observation, histological observation, detection of the degree of vascularization, and X-ray examination had been done to learn the effect of vascularized bone repair materials on the regeneration of bone. The results show that new vessel and bone formed using implant cultured with osteoblasts and endothelial cells. Nanofiber-reinforced scaffold cultured with osteoblasts and endothelial cells can induce vascularized bone tissue formation. PMID:24369019

  15. Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission.

    PubMed

    Chen, Jiangang; Foiret, Josquin; Minonzio, Jean-Gabriel; Talmant, Maryline; Su, Zhongqing; Cheng, Li; Laugier, Pascal

    2012-05-21

    Human soft tissue is an important factor that influences the assessment of human long bones using quantitative ultrasound techniques. To investigate such influence, a series of soft tissue-bone phantoms (a bone-mimicking plate coated with a layer of water, glycerol or silicon rubber) were ultrasonically investigated using a probe with multi-emitter and multi-receiver arrays in an axial transmission configuration. A singular value decomposition signal processing technique was applied to extract the frequency-dependent wavenumbers of several guided modes. The results indicate that the presence of a soft tissue-mimicking layer introduces additional guided modes predicted by a fluid waveguide model. The modes propagating in the bone-mimicking plate covered by the soft-tissue phantom are only slightly modified compared to their counterparts in the free bone-mimicking plate, and they are still predicted by an elastic transverse isotropic two-dimensional waveguide. Altogether these observations suggest that the soft tissue-bone phantoms can be modeled as two independent waveguides. Even in the presence of the overlying soft tissue-mimicking layer, the modes propagating in the bone-mimicking plate can still be extracted and identified. These results suggest that our approach can be applied for the purpose of the characterization of the material and structural properties of cortical bone. PMID:22538382

  16. Cartilage, bone, and intermandibular connective tissue in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).

    PubMed

    Kemp, Anne

    2013-10-01

    The connective tissue that links the bones of the mandible in the Australian lungfish, Neoceratodus forsteri, has been described as an intermandibular cartilage, and as such has been considered important for phylogenetic analyses among lower vertebrates. However, light and electron microscopy of developing lungfish jaws demonstrates that the intermandibular tissue, like the connective tissue that links the bones of the upper jaw, contains fibroblasts and numerous bundles of collagen fibrils, extending from the trabeculae of the bones supporting the tooth plates. It differs significantly in structure and in staining reactions from the cartilage and the bone found in this species. In common with the cladistian Polypterus and with actinopterygians and some amphibians, lungfish have no intermandibular cartilage. The connective tissue linking the mandibular bones has no phylogenetic significance for systematic grouping of lungfish, as it is present in a range of different groups among lower vertebrates. PMID:23801584

  17. Early tissue responses to zoledronate, locally delivered by bone screw, into a compromised cancellous bone site: a pilot study

    PubMed Central

    2014-01-01

    Background In fracture treatment, adequate fixation of implants is crucial to long-term clinical performance. Bisphosphonates (BP), potent inhibitors of osteoclastic bone resorption, are known to increase peri-implant bone mass and accelerate primary fixation. However, adverse effects are associated with systemic use of BPs. Thus, Zoledronic acid (ZOL) a potent BP was loaded on bone screws and evaluated in a local delivery model. Whilst mid- to long-term effects are already reported, early cellular events occurring at the implant/bone interface are not well described. The present study investigated early tissue responses to ZOL locally delivered, by bone screw, into a compromised cancellous bone site. Methods ZOL was immobilized on fibrinogen coated titanium screws. Using a bilateral approach, ZOL loaded test and non-loaded control screws were implanted into femoral condyle bone defects, created by an overdrilling technique. Histological analyses of the local tissue effects such as new bone formation and osteointegration were performed at days 1, 5 and 10. Results Histological evaluation of the five day ZOL group, demonstrated a higher osseous differentiation trend. At ten days an early influx of mesenchymal and osteoprogenitor cells was seen and a higher level of cellular proliferation and differentiation (p < 5%). In the ZOL group bone-to-screw contact and bone volume values within the defect tended to increase. Local drug release did not induce any adverse cellular effects. Conclusion This study indicates that local ZOL delivery into a compromised cancellous bone site actively supports peri-implant osteogenesis, positively affecting mesenchymal cells, at earlier time points than previously reported in the literature. PMID:24656151

  18. Mechanical response tissue analyzer for estimating bone strength

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  19. Effects of gas produced by degradation of Mg-Zn-Zr Alloy on cancellous bone tissue.

    PubMed

    Wang, Jingbo; Jiang, Hongfeng; Bi, Yanze; Sun, Jin e; Chen, Minfang; Liu, Debao

    2015-10-01

    Mg-Zn-Zr alloy cylinders were implanted into the femoral condyles of Japanese big-ear white rabbits. X-ray showed that by 12 weeks following implantation the implant became obscure, around which the low-density area appeared and enlarged. By 24 weeks, the implant was more obscure and the density of the surrounding cancellous bone increased. Scanning electron microscopy examination showed bone tissue on the surface of the alloy attached by living fibers at 12 weeks. Micro-CT confirmed that new bone tissue on the surface of the residual alloy implant increased from 12 weeks to 24 weeks. By 12 weeks, many cavities in the cancellous bone tissue around the implant were noted with a CT value, similar to gas value, and increasing by 24 weeks (P<0.01). Histological examination of hard tissue slices showed that bone tissue was visibly attached to the alloy in the femoral condyle at 12 weeks. The trabecular bone tissues became more intact and dense, and the cavities were filled with soft tissue at 24 weeks. In general, gas produced by the degradation of the Mg-Zn-Zr alloy can cause cavitation within cancellous bone, which does not affect osteogenesis of Mg alloy. PMID:26117789

  20. Bone Tissue Engineering Using High Permeability Poly-epsilon-caprolactone Scaffolds Conjugated with Bone Morphogenetic Protein-2

    NASA Astrophysics Data System (ADS)

    Mitsak, Anna Guyer

    Bone is the second most commonly transplanted tissue in the United States. Limitations of current bone defect treatment options include morbidity at the autograft harvest site, mechanical failure, and poorly controlled growth factor delivery. Combining synthetic scaffolds with biologics may address these issues and reduce dependency on autografts. The ideal scaffolding system should promote tissue in-growth and nutrient diffusion, control delivery of biologics and maintain mechanical integrity during bone formation. This dissertation evaluates how scaffold permeability, conjugated bone morphogenetic protein-2 (BMP-2) and differentiation medium affect osteogenesis in vitro and bone growth in vivo.. "High" and "low" permeability polycaprolactone (PCL) scaffolds with regular architectures were manufactured using solid free form fabrication. Bone growth in vivo was evaluated in an ectopic mouse model. High permeability scaffolds promoted better 8 week bone growth, supported tissue penetration into the scaffold core, and demonstrated increased mechanical properties due to newly formed bone. Next, the effects of differentiation medium and conjugated BMP-2 on osteogenesis were compared. Conjugation may improve BMP-2 loading efficiency, help localize bone growth and control release. High permeability scaffolds were conjugated with BMP-2 using the crosslinker, sulfo-SMCC. When adipose-derived and bone marrow stromal cells were seeded onto constructs (with or without BMP-2), BMSC expressed more differentiation markers, and differentiation medium affected differentiation more than BMP-2. In vivo, scaffolds with ADSC pre-differentiated in osteogenic medium (with and without BMP-2) and scaffolds with only BMP-2 grew the most bone. Bone volume did not differ among these groups, but constructs with ADSC had evenly distributed, scaffold-guided bone growth. Analysis of two additional BMP-2 attachment methods (heparin and adsorption) showed highest conjugation efficiency for the

  1. Bone tissue engineering: the role of interstitial fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1994-01-01

    It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.

  2. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies.

    PubMed

    Fernandez-Yague, Marc A; Abbah, Sunny Akogwu; McNamara, Laoise; Zeugolis, Dimitrios I; Pandit, Abhay; Biggs, Manus J

    2015-04-01

    The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering. PMID:25236302

  3. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction.

    PubMed

    Maiorana, Carlo; Beretta, Mario; Rancitelli, Davide; Grossi, Giovanni Battista; Cicciù, Marco; Herford, Alan Scott

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489

  4. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction

    PubMed Central

    Rancitelli, Davide; Grossi, Giovanni Battista; Herford, Alan Scott

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489

  5. Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements

    SciTech Connect

    Campi, G.; Pezzotti, G.; Fratini, M.; Ricci, A.; Burghammer, M.; Cancedda, R.; Mastrogiacomo, M.; Bukreeva, I.; Cedola, A.

    2013-12-16

    We monitored bone regeneration in a tissue engineering approach. To visualize and understand the structural evolution, the samples have been measured by X-ray micro-diffraction. We find that bone tissue regeneration proceeds through a multi-step mechanism, each step providing a specific diffraction signal. The large amount of data have been classified according to their structure and associated to the process they came from combining Neural Networks algorithms with least square pattern analysis. In this way, we obtain spatial maps of the different components of the tissues visualizing the complex kinetic at the base of the bone regeneration.

  6. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  7. QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER

    PubMed Central

    Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.

    2010-01-01

    The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087

  8. Quantitative plutonium microdistribution in bone tissue of vertebra from a Mayak worker.

    PubMed

    Lyovkina, Yekaterina V; Miller, Scott C; Romanov, Sergey A; Krahenbuhl, Melinda P; Belosokhov, Maxim V

    2010-10-01

    The purpose of this study was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, the quantitative relationships of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in humans as well as other cases with different exposure patterns and types of plutonium. PMID:20838087

  9. The orthotropic elastic properties of fibrolamellar bone tissue in juvenile white-tailed deer femora.

    PubMed

    Barrera, John W; Le Cabec, Adeline; Barak, Meir M

    2016-10-01

    Fibrolamellar bone is a transient primary bone tissue found in fast-growing juvenile mammals, several species of birds and large dinosaurs. Despite the fact that this bone tissue is prevalent in many species, the vast majority of bone structural and mechanical studies are focused on human osteonal bone tissue. Previous research revealed the orthotropic structure of fibrolamellar bone, but only a handful of experiments investigated its elastic properties, mostly in the axial direction. Here we have performed for the first time an extensive biomechanical study to determine the elastic properties of fibrolamellar bone in all three orthogonal directions. We have tested 30 fibrolamellar bone cubes (2 × 2 × 2 mm) from the femora of five juvenile white-tailed deer (Odocoileus virginianus) in compression. Each bone cube was compressed iteratively, within its elastic region, in the axial, transverse and radial directions, and bone stiffness (Young's modulus) was recorded. Next, the cubes were kept for 7 days at 4 °C and then compressed again to test whether bone stiffness had significantly deteriorated. Our results demonstrated that bone tissue in the deer femora has an orthotropic elastic behavior where the highest stiffness was in the axial direction followed by the transverse and the radial directions (21.6 ± 3.3, 17.6 ± 3.0 and 14.9 ± 1.9 Gpa, respectively). Our results also revealed a slight non-significant decrease in bone stiffness after 7 days. Finally, our sample size allowed us to establish that population variance was much bigger in the axial direction than the radial direction, potentially reflecting bone adaptation to the large diversity in loading activity between individuals in the loading direction (axial) compared with the normal (radial) direction. This study confirms that the mechanically well-studied human transverse-isotropic osteonal bone is just one possible functional adaptation of bone tissue and that other vertebrate species use

  10. Prostate Field Cancerization: Deregulated Expression of Macrophage Inhibitory Cytokine 1 (MIC-1) and Platelet Derived Growth Factor A (PDGF-A) in Tumor Adjacent Tissue

    PubMed Central

    Jones, Anna C.; Shoshan, Dor S.; Fischer, Edgar G.; Trujillo, Kristina A.; Bisoffi, Marco

    2015-01-01

    Prostate field cancerization denotes molecular alterations in histologically normal tissues adjacent to tumors. Such alterations include deregulated protein expression, as we have previously shown for the key transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS). Here we add the two secreted factors macrophage inhibitory cytokine 1 (MIC-1) and platelet derived growth factor A (PDGF-A) to the growing list of protein markers of prostate field cancerization. Expression of MIC-1 and PDGF-A was measured quantitatively by immunofluorescence and comprehensively analyzed using two methods of signal capture and several groupings of data generated in human cancerous (n = 25), histologically normal adjacent (n = 22), and disease-free (n = 6) prostate tissues. A total of 208 digitized images were analyzed. MIC-1 and PDGF-A expression in tumor tissues were elevated 7.1x to 23.4x and 1.7x to 3.7x compared to disease-free tissues, respectively (p<0.0001 to p = 0.08 and p<0.01 to p = 0.23, respectively). In support of field cancerization, MIC-1 and PDGF-A expression in adjacent tissues were elevated 7.4x to 38.4x and 1.4x to 2.7x, respectively (p<0.0001 to p<0.05 and p<0.05 to p = 0.51, respectively). Also, MIC-1 and PDGF-A expression were similar in tumor and adjacent tissues (0.3x to 1.0x; p<0.001 to p = 0.98 for MIC-1; 0.9x to 2.6x; p<0.01 to p = 1.00 for PDGF-A). All analyses indicated a high level of inter- and intra-tissue heterogeneity across all types of tissues (mean coefficient of variation of 86.0%). Our data shows that MIC-1 and PDGF-A expression is elevated in both prostate tumors and structurally intact adjacent tissues when compared to disease-free specimens, defining field cancerization. These secreted factors could promote tumorigenesis in histologically normal tissues and lead to tumor multifocality. Among several clinical applications, they could also be exploited as indicators of disease in false negative

  11. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  12. Treatment of long bone intramedullary infection using the RIA for removal of infected tissue: indications, method and clinical results.

    PubMed

    Zalavras, Charalampos G; Sirkin, Michael

    2010-11-01

    Treatment of intramedullary infections of long bones is based upon the principles of surgical debridement, irrigation, fracture site stabilization, soft tissue coverage, and antibiotic administration. Reaming of the medullary canal is an essential component of surgical debridement because it removes intramedullary debris and infected bone surrounding the removed intramedullary device and within the intramedullary canal. The Reamer-Irrigator-Aspirator (RIA) has distinct features that appear to be beneficial for management of intramedullary infections. It allows reaming under simultaneous irrigation and aspiration, which minimizes the residual amount of infected fluid and tissue in the medullary canal and the propagation of infected material. The disposable reamer head is sharp, which combined with the continuous irrigation may attenuate the increased temperature associated with reaming and its potential adverse effects on adjacent endosteal bone. The disadvantage of the RIA is increased cost because of use of disposable parts. Potential complications can be avoided by detailed preoperative planning and careful surgical technique. The RIA should be used with caution in patients with narrow medullary canals and in infections involving the metaphysis or a limited part of the medullary canal. Reaming of the canal is performed with one pass of the RIA under careful fluoroscopic control. Limited information is available in the literature on the results of the RIA for management of intramedullary infections of long bones; however preliminary results are promising. The RIA device appears to be an effective and safe tool for debridement of the medullary canal and management of intramedullary infections of the long bones. Further research is needed to clarify the exact contribution of the RIA in the management of these infections. PMID:21144927

  13. PULSED FOCUSED ULTRASOUND TREATMENT OF MUSCLE MITIGATES PARALYSIS-INDUCED BONE LOSS IN THE ADJACENT BONE: A STUDY IN A MOUSE MODEL

    PubMed Central

    Poliachik, Sandra L.; Khokhlova, Tatiana D.; Wang, Yak-Nam; Simon, Julianna C.; Bailey, Michael R.

    2015-01-01

    Bone loss can result from bed rest, space flight, spinal cord injury or age-related hormonal changes. Current bone loss mitigation techniques include pharmaceutical interventions, exercise, pulsed ultrasound targeted to bone and whole body vibration. In this study, we attempted to mitigate paralysis-induced bone loss by applying focused ultrasound to the midbelly of a paralyzed muscle. We employed a mouse model of disuse that uses onabotulinumtoxinA-induced paralysis, which causes rapid bone loss in 5 d. A focused 2 MHz transducer applied pulsed exposures with pulse repetition frequency mimicking that of motor neuron firing during walking (80 Hz), standing (20 Hz), or the standard pulsed ultrasound frequency used in fracture healing (1 kHz). Exposures were applied daily to calf muscle for 4 consecutive d. Trabecular bone changes were characterized using micro-computed tomography. Our results indicated that application of certain focused pulsed ultrasound parameters was able to mitigate some of the paralysis-induced bone loss. PMID:24857416

  14. [Genetic Aberration and Pathological Diagnosis in Bone and Soft-Tissue Tumors].

    PubMed

    Iura, Kunio; Oda, Yoshinao

    2016-03-01

    Bone and soft-tissue sarcomas comprise a rare, complex, and heterogeneous group of tumors for which it is difficult for even experienced pathologists to provide a conclusive diagnosis. The number of diagnoses made using genetic analysis has increased since the detection of fusion genes in several soft-tissue tumors in the 1990s. Moreover, other specific genetic aberrations have been reported in various bone and soft-tissue tumors. In addition, molecular therapeutic targets have been sought in advanced cases of soft-tissue and bone tumors similar to other organ malignancies. To enable the pathological diagnosis of bone and soft-tissue tumors, it is necessary to combine histological diagnosis with immunohistochemistry and gene analysis findings including fusion gene or other genetic aberrations. In this review, we describe the fusion genes recently reported in bone and soft-tissue tumors such as solitary fibrous tumor, aneurysmal bone cyst, nodular fasciitis, CIC-DUX4 fusion gene-positive small round cell tumors, or BCOR-CCNB3-positive sarcoma as well as other genetic aberrations in dedifferentiated liposarcoma, malignant rhabdoid tumor, cartilaginous tumor, Langerhans cell histiocytosis chondroblastoma, or giant cell tumor of the bone. We also demonstrate their association with pathological diagnosis. PMID:27067846

  15. Regional Variation of Bone Tissue Properties at the Human Mandibular Condyle

    PubMed Central

    Kim, Do-Gyoon; Jeong, Yong-Hoon; Kosel, Erin; Agnew, Amanda M.; McComb, David W.; Bodnyk, Kyle; Hart, Richard T.; Kim, Min Kyung; Han, Sang Yeun; Johnston, William M.

    2015-01-01

    The temporomandibular joint (TMJ) bears different types of static and dynamic loading during occlusion and mastication. As such, characteristics of mandibular condylar bone tissue play an important role in determining the mechanical stability of the TMJ under the macro-level loading. Thus, the objective of this study was to examine regional variation of the elastic, plastic, and viscoelastic mechanical properties of human mandibular condylar bone tissue using nanoindentation. Cortical and trabecular bone were dissected from mandibular condyles of human cadavers (9 males, 54 to 96 years). These specimens were scanned using microcomputed tomography to obtain bone tissue mineral distribution. Then, nanoindentation was conducted on the surface of the same specimens in hydration. Plastic hardness (H) at a peak load, viscoelastic creep (Creep/Pmax), viscosity (η), and tangent delta (tan δ) during a 30 second hold period, and elastic modulus (E) during unloading were obtained by a cycle of indentation at the same site of bone tissue. The tissue mineral and nanoindentation parameters were analyzed for the periosteal and endosteal cortex, and trabecular bone regions of the mandibular condyle. The more mineralized periosteal cortex had higher mean values of elastic modulus, plastic hardness, and viscosity but lower viscoelastic creep and tan δ than the less mineralized trabecular bone of the mandibular condyle. These characteristics of bone tissue suggest that the periosteal cortex tissue may have more effective properties to resist elastic, plastic, and viscoelastic deformation under static loading, and the trabecular bone tissue to absorb and dissipate time-dependent viscoelastic loading energy at the TMJ during static occlusion and dynamic mastication. PMID:25913634

  16. Identification of reliable reference genes for quantitative gene expression studies in oral squamous cell carcinomas compared to adjacent normal tissues in the F344 rat model.

    PubMed

    Peng, Xinjian; McCormick, David L

    2016-08-01

    Oral squamous cell carcinomas (OSCCs) induced in F344 rats by 4-nitroquinoline-1-oxide (4-NQO) demonstrate considerable phenotypic similarity to human oral cancers and the model has been widely used for carcinogenesis and chemoprevention studies. Molecular characterization of this model needs reliable reference genes (RGs) to avoid false- positive and -negative results for proper interpretation of gene expression data between tumor and adjacent normal tissues. Microarray analysis of 11 pairs of OSCC and site-matched phenotypically normal oral tissues from 4-NQO-treated rats identified 10 stably expressed genes in OSCC compared to adjacent normal tissues (p>0.5, CV<15%) that could serve as potential RGs in this model. The commonly used 27 RGs in the rat were also analyzed based on microarray data and most of them were found unsuitable for RGs in this model. Traditional RGs such as ACTB and GAPDH were significantly altered in OSCC compared to adjacent normal tissues (p<0.01, n=11); however, the Hsp90ab1 was ranked as the best RG candidate and the combination of Hsp90ab1 and HPRT1 was identified by NormFinder to be a superior reference for gene normalization among the commonly used RGs. This result was also validated by RT-PCR based on the selected top RG candidate pool. These data suggest that there are no common RGs suitable for different models and RG(s) should be identified before gene expression analysis. We successfully identified Hsp90ab1 as a stable RG in 4-NQO-induced OSCC compared to adjacent normal tissues in F344 rats. The combination of two stably expressed genes may be a better option for gene normalization in tissue samples. PMID:27375172

  17. In vivo assessment of new resorbable PEG-PPG-PEG copolymer/starch bone wax in bone healing and tissue reaction of bone defect in rabbit model.

    PubMed

    Suwanprateeb, J; Kiertkrittikhoon, S; Kintarak, J; Suvannapruk, W; Thammarakcharoen, F; Rukskul, P

    2014-09-01

    In this study, in vivo performance of novel resorbable bone wax based on a miscible blend between PEG-PPG-PEG copolymer mixtures and pregelatinized starch at 0 and 25 percent by weight including hemostasis, tissue reaction and bone healing in a non-critical size tibia defect model were assessed and compared with commercial non-resorbable bone wax. Systemic reaction was evaluated by blood chemistry while local reaction, bone quantity and quality were evaluated by microcomputed tomography (microCT) and histology analyses. It was observed that the resorbable bone waxes did not show any adverse systemic reaction and resorbed from the defects within approximately 2 days after application. They were as effective as the commercial bone wax in hemostasis, but provided better adherence to the bone surface. The incorporation of pre-gelatinized starch in the formulation could further help in improved molding texture and decreased glove adherence. MicroCT and histology analyses showed that the resorbable bone waxes did not inhibit the osteogenesis whereas commercial bone wax impaired bone healing and displayed inflammation and foreign body reactions. PMID:24913421

  18. Image-Guided Percutaneous Ablation of Bone and Soft Tissue Tumors

    PubMed Central

    Kurup, A. Nicholas; Callstrom, Matthew R.

    2010-01-01

    Image-guided percutaneous ablation of bone and soft tissue tumors is an effective minimally invasive alternative to conventional therapies, such as surgery and external beam radiotherapy. Proven applications include treatment of benign primary bone tumors, particularly osteoid osteoma, as well as palliation of painful bone metastases. Use of percutaneous ablation in combination with cementoplasty can provide stabilization of metastases at risk for fracture. Local control of oligometastatic disease and treatment of desmoid tumors are emerging applications. PMID:22550367

  19. Automating the Processing Steps for Obtaining Bone Tissue-Engineered Substitutes: From Imaging Tools to Bioreactors

    PubMed Central

    Costa, Pedro F.; Martins, Albino; Neves, Nuno M.; Gomes, Manuela E.

    2014-01-01

    Bone diseases and injuries are highly incapacitating and result in a high demand for tissue substitutes with specific biomechanical and structural features. Tissue engineering has already proven to be effective in regenerating bone tissue, but has not yet been able to become an economically viable solution due to the complexity of the tissue, which is very difficult to be replicated, eventually requiring the utilization of highly labor-intensive processes. Process automation is seen as the solution for mass production of cellularized bone tissue substitutes at an affordable cost by being able to reduce human intervention as well as reducing product variability. The combination of tools such as medical imaging, computer-aided fabrication, and bioreactor technologies, which are currently used in tissue engineering, shows the potential to generate automated production ecosystems, which will, in turn, enable the generation of commercially available products with widespread clinical application. PMID:24673688

  20. Effect of cadmium on bone tissue in growing animals.

    PubMed

    Rodríguez, Juliana; Mandalunis, Patricia Mónica

    2016-08-01

    Accumulation of cadmium (Cd), an extremely toxic metal, can cause renal failure, decreased vitamin D synthesis, and consequently osteoporosis. The aim of this work was to evaluate the effect of Cd on two types of bone in growing Wistar rats. Sixteen 21-day-old male Wistar rats were assigned to one of two groups. The Cd group subcutaneously received 0.5mg/kg of CdCl2 5 times weekly for 3 months. The control group similarly received bidistilled water. Following euthanasia, the mandibles and tibiae were resected, fixed, decalcified and processed histologically to obtain sections for H&E and tartrate-resistant acid phosphatase (TRAP) staining. Photomicrographs were used to determine bone volume (BV/TV%), total growth cartilage width (GPC.Wi) hypertrophic cartilage width (HpZ.Wi), percentage of yellow bone marrow (%YBM), megakaryocyte number (N.Mks/mm(2)), and TRAP+osteoclast number (N.TRAP+Ocl/mm(2)). Results were statistically analyzed using Student's t test. Cd exposed animals showed a significant decrease in subchondral bone volume and a significant increase in TRAP+ osteoclast number and percentage of yellow bone marrow in the tibia, and an increase in megakaryocyte number in mandibular interradicular bone. No significant differences were observed in the remaining parameters. The results obtained with this experimental design show that Cd would seemingly have a different effect on subchondral and interradicular bone. The decrease in bone volume and increase in tibial yellow bone marrow suggest that cadmium inhibits differentiation of mesenchymal cells to osteoblasts, favoring differentiation into adipocytes. The different effects of Cd on interradicular bone might be due to the protective effect of the mastication forces. PMID:27312893

  1. Spatial variation in osteonal bone properties relative to tissue and animal age.

    PubMed

    Gourion-Arsiquaud, Samuel; Burket, Jayme C; Havill, Lorena M; DiCarlo, Edward; Doty, Stephen B; Mendelsohn, Richard; van der Meulen, Marjolein C H; Boskey, Adele L

    2009-07-01

    Little is known about osteonal bone mineral and matrix properties, although these properties are of major importance for the understanding of bone alterations related to age and bone diseases such as osteoporosis. During aging, bone undergoes modifications that compromise their structural integrity as shown clinically by the increase of fracture incidence with age. Based on Fourier transform infrared (FTIR) analysis from baboons between 0 and 32 yr of age, consistent systematic variations in bone properties as a function of tissue age are reported within osteons. The patterns observed were independent of animal age and positively correlated with bone tissue elastic behavior measured by nano-indentation. As long as tissue age is expressed as a percentage of the entire osteon radius, osteonal analyses can be used to characterize disease changes independent of the size of the osteon. These mineral and matrix analyses can be used to explain bone fragility. The mineral content (mineral-to-matrix ratio) was correlated with the animal age in both old (interstitial) and newly formed bone tissue, showing for the first time that age-related changes in BMC can be explain by an alteration in the mineralization process itself and not only by an imbalance in the remodeling process. PMID:19210217

  2. Development of three-dimensional tissue engineered bone-oral mucosal composite models.

    PubMed

    Almela, Thafar; Brook, Ian M; Moharamzadeh, Keyvan

    2016-04-01

    Tissue engineering of bone and oral mucosa have been extensively studied independently. The aim of this study was to develop and investigate a novel combination of bone and oral mucosa in a single 3D in vitro composite tissue mimicking the natural structure of alveolar bone with an overlying oral mucosa. Rat osteosarcoma (ROS) cells were seeded into a hydroxyapatite/tri-calcium phosphate scaffold and bone constructs were cultured in a spinner bioreactor for 3 months. An engineered oral mucosa was fabricated by air/liquid interface culture of immortalized OKF6/TERET-2 oral keratinocytes on collagen gel-embedded fibroblasts. EOM was incorporated into the engineered bone using a tissue adhesive and further cultured prior to qualitative and quantitative assessments. Presto Blue assay revealed that ROS cells remained vital throughout the experiment. The histological and scanning electron microscope examinations showed that the cells proliferated and densely populated the scaffold construct. Micro computed tomography (micro-CT) scanning revealed an increase in closed porosity and a decrease in open and total porosity at the end of the culture period. Histological examination of bone-oral mucosa model showed a relatively differentiated parakeratinized epithelium, evenly distributed fibroblasts in the connective tissue layer and widely spread ROS cells within the bone scaffold. The feasibility of fabricating a novel bone-oral mucosa model using cell lines is demonstrated. Generating human 'normal' cell-based models with further characterization is required to optimize the model for in vitro and in vivo applications. PMID:26883949

  3. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, S.; Adel-Wahab, A.; Silberschmidt, V.

    2013-07-01

    A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions.

  4. Bone tissue response to plasma-nitrided titanium implant surfaces.

    PubMed

    Ferraz, Emanuela Prado; Sverzut, Alexander Tadeu; Freitas, Gileade Pereira; Sá, Juliana Carvalho; Alves, Clodomiro; Beloti, Marcio Mateus; Rosa, Adalberto Luiz

    2015-01-01

    A current goal of dental implant research is the development of titanium (Ti) surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces. PMID:25760262

  5. Bone tissue response to plasma-nitrided titanium implant surfaces

    PubMed Central

    FERRAZ, Emanuela Prado; SVERZUT, Alexander Tadeu; FREITAS, Gileade Pereira; SÁ, Juliana Carvalho; ALVES, Clodomiro; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    A current goal of dental implant research is the development of titanium (Ti) surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces. PMID:25760262

  6. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

    PubMed Central

    Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.

    2013-01-01

    The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505

  7. Effects of implantation of three-dimensional engineered bone tissue with a vascular-like structure on repair of bone defects

    NASA Astrophysics Data System (ADS)

    Nishi, Masanori; Matsumoto, Rena; Dong, Jian; Uemura, Toshimasa

    2012-12-01

    Previously, to create an implantable bone tissue associated with blood vessels, we co-cultured rabbit bone marrow mesenchymal stem cells (MSCs) with MSC-derived endothelial cells (ECs) within a porous polylactic acid-based scaffold utilizing a rotating wall vessel (RWV) bioreactor. Here, this engineered tissue was orthotopically implanted into defects made in femurs of immunodeficient rats, and histological analysis were carried out to examine the repair of the damage and the formation of bone around the implant. The bone defects were better repaired in the implanted group than control group after 3 weeks. The results indicate that the engineered bone could repair bone defects.

  8. Prostate cancer specific integrin αvβ3 modulates bone metastatic growth and tissue remodeling

    PubMed Central

    McCabe, NP; De, S; Vasanji, A; Brainard, J; Byzova, TV

    2009-01-01

    The management of pain and morbidity owing to the spreading and growth of cancer within bone remains to be a paramount problem in clinical care. Cancer cells actively transform bone, however, the molecular requirements and mechanisms of this process remain unclear. This study shows that functional modulation of the αvβ3 integrin receptor in prostate cancer cells is required for progression within bone and determines tumor-induced bone tissue transformation. Using histology and quantitative microCT analysis, we show that αvβ3 integrin is required not only for tumor growth within the bone but for tumor-induced bone gain, a response resembling bone lesions in prostate cancer patients. Expression of normal, fully functional αvβ3 enabled tumor growth in bone (incidence: 4/4), whereas αvβ3 (—), inactive or constitutively active mutants of αvβ3 did not (incidence: 0/4, 0/6 and 1/7, respectively) within a 35-day-period. This response appeared to be bone-specific in comparison to the subcutis where tumor incidence was greater than 60% for all groups. Interestingly, bone residing prostate cancer cells expressing normal or dis-regulated αvβ3 (either inactive of constitutively active), but not those lacking β3 promoted bone gain or afforded protection from bone loss in the presence or absence of histologically detectable tumor 35 days following implantation. As bone is replete with ligands for β3 integrin, we next demonstrated that αvβ3 integrin activation on tumor cells is essential for the recognition of key bone-specific matrix proteins. As a result, prostate cancer cells expressing fully functional but not dis-regulated αvβ3 integrin are able to control their own adherence and migration to bone matrix, functions that facilitate tumor growth and control bone lesion development. PMID:17369840

  9. Isotopic evidence for resorption of soft tissues and bone in immobilized dogs

    SciTech Connect

    Klein, L.; Player, J.S.; Heiple, K.G.; Bahniuk, E.; Goldberg, V.M.

    1982-02-01

    Various experimental methods for producing bone and ligament atrophy have yielded contradictory results. These methods include denervation, immobilization (both internal and external), and disarticulation. We studied a model of internal skeletal fixation for twelve weeks in dogs that were chronically prelabeled with 3H-tetracycline, 45Ca, and 3H-proline. Bone resorption was analyzed by the loss of 3H-tetracycline, and bone and soft-tissue mass were analyzed by the radiochemical and chemical analysis of calcium and collagen. The strength of the anterior cruciate ligament was studied in tension to failure when a fast rate of deformation was applied. Failure of the femur-ligament-tibia complex occurred through the insertion of the ligament into the tibia for both the experimental and the control limbs. Loss of collagen was greater in the tibia and femur than in the lateral meniscus and anterior cruciate ligament, and correlated with a mechanical failure via bone. No evidence for collagen replacement in atrophied tissues was found, but one-half of the resorbed calcium was conserved. The marked loss of 3H-tetracycline indicated that bone atrophy was the result of increased resorption of bone rather than decreased bone formation. Clinical Relevance: We have demonstrated significant atrophy of the soft tissues (lateral meniscus and anterior cruciate ligament) as well as of bone in immobilized joints of dogs. It is likely that the decrease in strength of the bone-ligament-bone complex is related to this atrophy of soft tissues and bone around the joint.

  10. Immunohistochemical quantification of the cobalamin transport protein, cell surface receptor and Ki-67 in naturally occurring canine and feline malignant tumors and in adjacent normal tissues

    PubMed Central

    Sysel, Annette M.; Valli, Victor E.; Bauer, Joseph A.

    2015-01-01

    Cancer cells have an obligate need for cobalamin (vitamin B12) to enable DNA synthesis necessary for cellular replication. This study quantified the immunohistochemical expression of the cobalamin transport protein (transcobalamin II; TCII), cell surface receptor (transcobalamin II-R; TCII-R) and proliferation protein (Ki-67) in naturally occurring canine and feline malignant tumors, and compared these results to expression in corresponding adjacent normal tissues. All malignant tumor tissues stained positively for TCII, TCII-R and Ki-67 proteins; expression varied both within and between tumor types. Expression of TCII, TCII-R and Ki-67 was significantly higher in malignant tumor tissues than in corresponding adjacent normal tissues in both species. There was a strong correlation between TCII and TCII-R expression, and a modest correlation between TCII-R and Ki-67 expression in both species; a modest association between TCII and Ki-67 expression was present in canine tissues only. These results demonstrate a quantifiable, synchronous up-regulation of TCII and TCII-R expression by proliferating canine and feline malignant tumors. The potential to utilize these proteins as biomarkers to identify neoplastic tissues, streamline therapeutic options, evaluate response to anti-tumor therapy and monitor for recurrent disease has important implications in the advancement of cancer management for both human and companion animal patients. PMID:25633912

  11. New Mechanism of Bone Cancer Pain: Tumor Tissue-Derived Endogenous Formaldehyde Induced Bone Cancer Pain via TRPV1 Activation.

    PubMed

    Wan, You

    2016-01-01

    In recent years, our serial investigations focused on the role of cancer cells-derived endogenous formaldehyde in bone cancer pain. We found that cancer cells produced formaldehyde through demethylation process by serine hydroxymethyltransferase (SHMT1 and SHMT2) and lysine-specific histone demethylase 1 (LSD1). When the cancer cells metastasized into bone marrow, the elevated endogenous formaldehyde induced bone cancer pain through activation on the transient receptor potential vanilloid subfamily member 1 (TRPV1) in the peripheral nerve fibers. More interestingly, TRPV1 expressions in the peripheral fibers were upregulated by the local insulin-like growth factor I (IGF-I) produced by the activated osteoblasts. In conclusion, tumor tissue-derived endogenous formaldehyde induced bone cancer pain via TRPV1 activation. PMID:26900062

  12. Cytokine Combination Therapy Prediction for Bone Remodeling in Tissue Engineering Based on the Intracellular Signaling Pathway

    PubMed Central

    Sun, Xiaoqiang; Su, Jing; Bao, Jiguang; Peng, Tao; Zhang, Le; Zhang, Yuanyuan; Yang, Yunzhi; Zhou, Xiaobo

    2012-01-01

    The long-term performance of tissue-engineered bone grafts is determined by a dynamic balance between bone regeneration and resorption. We proposed using embedded cytokine slow-releasing hydrogels to tune this balance toward a desirable final bone density. In this study we established a systems biology model, and quantitatively explored the combinatorial effects of delivered cytokines from hydrogels on final bone density. We hypothesized that: 1) bone regeneration was driven by transcription factors Runx2 and Osterix, which responded to released cytokines, such as Wnt, BMP2, and TGFβ, drove the development of osteoblast lineage, and contributed to bone mass generation; and 2) the osteoclast lineage, on the other hand, governed the bone resorption, and communications between these two lineages determined the dynamics of bone remodeling. In our model, Intracellular signaling pathways were represented by ordinary differential equations, while the intercellular communications and cellular population dynamics were modeled by stochastic differential equations. Effects of synergistic cytokine combinations were evaluated by Loewe index and Bliss index. Simulation results revealed that the Wnt/BMP2 combinations released from hydrogels showed best control of bone regeneration and synergistic effects, and suggested optimal dose ratios of given cytokine combinations released from hydrogels to most efficiently control the long-term bone remodeling. We revealed the characteristics of cytokine combinations of Wnt/BMP2 which could be used to guide the design of in vivo bone scaffolds and the clinical treatment of some diseases such as osteoporosis. PMID:22910219

  13. The Effect of Osteoporosis Treatments on Fatigue Properties of Cortical Bone Tissue

    PubMed Central

    Brock, Garry R.; Chen, Julia T.; Ingraffea, Anthony R.; MacLeay, Jennifer; Pluhar, G. Elizabeth; Boskey, Adele L.; van der Meulen, Marjolein C.H.

    2015-01-01

    Bisphosphonates are commonly prescribed for treatment of osteoporosis. Long-term use of bisphosphonates has been correlated to atypical femoral fractures (AFF). AFFs arise from fatigue damage to bone tissue that cannot be repaired due to pharmacologic treatments. Despite fatigue being the primary damage mechanism of AFFs, the effects of osteoporosis treatments on fatigue properties of cortical bone are unknown. To examine if fatigue-life differences occur in bone tissue after different pharmacologic treatments for osteoporosis, we tested bone tissue from the femurs of sheep given a metabolic acidosis diet to induce osteoporosis, followed by treatment with a selective estrogen reception modulator (raloxifene), a bisphosphonate (alendronate or zoledronate), or parathyroid hormone (teriparatide, PTH). Beams of cortical bone tissue were created and tested in four-point bending fatigue to failure. Tissues treated with alendronate had reduced fatigue life and less modulus loss at failure compared to other treatments, while tissue treated with PTH had a prolonged fatigue life. No loss of fatigue life occurred with zoledronate treatment despite its greater binding affinity and potency compared to alendronate. Tissue mineralization measured by microCT did not explain the differences seen in fatigue behavior. Increased fatigue life with PTH suggests that current treatment methods for AFF could have beneficial effects for restoring fatigue life. These results indicate that fatigue life differs with each type of osteoporosis treatment. PMID:25642445

  14. Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model

    PubMed Central

    Kaempfen, Alexandre; Todorov, Atanas; Güven, Sinan; Largo, René D.; Jaquiéry, Claude; Scherberich, Arnaud; Martin, Ivan; Schaefer, Dirk J.

    2015-01-01

    The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone) seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step) or only after six weeks of subcutaneous “incubation” (2-step). After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed. PMID:26053395

  15. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering

    PubMed Central

    Samorezov, Julia E.; Alsberg, Eben

    2015-01-01

    Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719

  16. Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review.

    PubMed

    Venkatesan, Jayachandran; Kim, Se-Kwon

    2014-10-01

    In recent years, significant development has been achieved in the construction of artificial bone with ceramics, polymers and metals. Nano-hydroxyapatite (nHA) is widely used bioceramic material for bone graft substitute owing to its biocompatibility and osteoconductive properties. nHA with chitin, chitosan, collagen, gelatin, fibrin, polylactic acid, polycaprolactone, poly(lactic-co-glycolic) acid, polyamide, polyvinyl alcohol, polyurethane and polyhydroxybutyrate based composite scaffolds have been explored in the present review for bone graft substitute. This article further reviews the preparative methods, chemical interaction, biocompatibiity, biodegradation, alkaline phosphatase activity, mineralization effect, mechanical properties and delivery of nHA-based nanocomposites for bone tissue regeneration. The nHA based composite biomaterials proved to be promising biomaterials for bone tissue engineering. PMID:25992432

  17. Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing.

    PubMed

    Miller, Gregory J; Gerstenfeld, Louis C; Morgan, Elise F

    2015-11-01

    Uncovering the mechanisms of the sensitivity of bone healing to mechanical factors is critical for understanding the basic biology and mechanobiology of the skeleton, as well as for enhancing clinical treatment of bone injuries. This study refined an experimental method of measuring the strain microenvironment at the site of a bone injury during bone healing. This method used a rat model in which a well-controlled bending motion was applied to an osteotomy to induce the formation of pseudarthrosis that is composed of a range of skeletal tissues, including woven bone, cartilage, fibrocartilage, fibrous tissue, and clot tissue. The goal of this study was to identify both the features of the strain microenvironment associated with formation of these different tissues and the expression of proteins frequently implicated in sensing and transducing mechanical cues. By pairing the strain measurements with histological analyses that identified the regions in which each tissue type formed, we found that formation of the different tissue types occurs in distinct strain microenvironments and that the type of tissue formed is correlated most strongly to the local magnitudes of extensional and shear strains. Weaker correlations were found for dilatation. Immunohistochemical analyses of focal adhesion kinase and rho family proteins RhoA and CDC42 revealed differences within the cartilaginous tissues in the calluses from the pseudarthrosis model as compared to fracture calluses undergoing normal endochondral bone repair. These findings suggest the involvement of these proteins in the way by which mechanical stimuli modulate the process of cartilage formation during bone healing. PMID:25822264

  18. Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering

    PubMed Central

    Suárez-González, Darilis; Barnhart, Kara; Saito, Eiji; Vanderby, Ray; Hollister, Scott; Murphy, William L.

    2010-01-01

    Current bone tissue engineering strategies aim to grow a tissue similar to native bone by combining cells and biologically active molecules with a scaffold material. In this study, a macroporous scaffold made from the seaweed-derived polymer alginate was synthesized and mineralized for cell-based bone tissue engineering applications. Nucleation of a bone-like hydroxyapatite mineral was achieved by incubating the scaffold in modified simulated body fluids (mSBF) for four weeks. Analysis using scanning electron microscopy and energy dispersive x-ray analysis indicated growth of a continuous layer of mineral primarily composed of calcium and phosphorous. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue. In addition to the mineral characterization, the ability to control nucleation on the surface, into the bulk of the material, or on the inner pore surfaces of scaffolds was demonstrated. Finally, human MSCs attached and proliferated on the mineralized scaffolds and cell attachment improved when seeding cells on mineral coated alginate scaffolds. This novel alginate- HAP composite material could be used in bone tissue engineering as a scaffold material to deliver cells, and perhaps also biologically active molecules. PMID:20574984

  19. Molecular characterization of Treponema denticola infection-induced bone and soft tissue transcriptional profiles

    PubMed Central

    Bakthavatchalu, V.; Meka, A.; Sathishkumar, S.; Lopez, M.C.; Verma, R.K.; Wallet, S.M.; Bhattacharyya, I.; Boyce, B.F.; Mans, J.; Lamont, R.J.; Baker, H.V.; Ebersole, J.L.; Kesavalu, L.

    2010-01-01

    SUMMARY Treponema denticola is associated with subgingival biofilms in adult periodontitis and with acute necrotizing ulcerative gingivitis. However, the molecular mechanisms by which T. denticola impacts periodontal inflammation and alveolar bone resorption remain unclear. Here, we examined changes in the host transcriptional profiles during a T. denticola infection using a murine calvarial model of inflammation and bone resorption. T. denticola was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and the calvarial bones were excised. RNA was isolated and analysed for transcript profiling using Murine GeneChip® arrays. Following T. denticola infection, 2905 and 1234 genes in the infected calvarial bones and soft tissues, respectively, were differentially expressed (p ≤ 0.05). Biological pathways significantly impacted by T. denticola infection in calvarial bone and calvarial tissue included leukocyte transendothelial migration, cell adhesion (immune system) molecules, cell cycle, extracellular matrix–receptor interaction, focal adhesion, B-cell receptor signaling and transforming growth factor-β signaling pathways resulting in proinflammatory, chemotactic effects, and T-cell stimulation. In conclusion, localized T. denticola infection differentially induces transcription of a broad array of host genes, the profiles of which differed between inflamed calvarial bone and soft tissues. PMID:20618700

  20. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.

    PubMed

    Jansen, Edwin J P; Sladek, Raymond E J; Bahar, Hila; Yaffe, Avinoam; Gijbels, Marion J; Kuijer, Roel; Bulstra, Sjoerd K; Guldemond, Nick A; Binderman, Itzhak; Koole, Leo H

    2005-07-01

    Porous polymeric scaffolds play a key role in most tissue-engineering strategies. A series of non-degrading porous scaffolds was prepared, based on bulk-copolymerisation of 1-vinyl-2-pyrrolidinone (NVP) and n-butyl methacrylate (BMA), followed by a particulate-leaching step to generate porosity. Biocompatibility of these scaffolds was evaluated in vitro and in vivo. Furthermore, the scaffold materials were studied using the so-called demineralised bone matrix (DBM) as an evaluation system in vivo. The DBM, which is essentially a part of a rat femoral bone after processing with mineral acid, provides a suitable environment for ectopic bone formation, provided that the cavity of the DBM is filled with bone marrow prior to subcutaneous implantation in the thoracic region of rats. Various scaffold materials, differing with respect to composition and, hence, hydrophilicity, were introduced into the centre of DBMs. The ends were closed with rat bone marrow, and ectopic bone formation was monitored after 4, 6, and 8 weeks, both through X-ray microradiography and histology. The 50:50 scaffold particles were found to readily accommodate formation of bone tissue within their pores, whereas this was much less the case for the more hydrophilic 70:30 counterpart scaffolds. New healthy bone tissue was encountered inside the pores of the 50:50 scaffold material, not only at the periphery of the constructs but also in the center. Active osteoblast cells were found at the bone-biomaterial interfaces. These data indicate that the hydrophobicity of the biomaterial is, most likely, an important design criterion for polymeric scaffolds which should promote the healing of bone defects. Furthermore, it is argued that stable, non-degrading porous biomaterials, like those used in this study, provide an important tool to expand our comprehension of the role of biomaterials in scaffold-based tissue engineering approaches. PMID:15701371

  1. Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level

    PubMed Central

    Schulte, Friederike A.; Ruffoni, Davide; Lambers, Floor M.; Christen, David; Webster, Duncan J.; Kuhn, Gisela; Müller, Ralph

    2013-01-01

    Bone is able to react to changing mechanical demands by adapting its internal microstructure through bone forming and resorbing cells. This process is called bone modeling and remodeling. It is evident that changes in mechanical demands at the organ level must be interpreted at the tissue level where bone (re)modeling takes place. Although assumed for a long time, the relationship between the locations of bone formation and resorption and the local mechanical environment is still under debate. The lack of suitable imaging modalities for measuring bone formation and resorption in vivo has made it difficult to assess the mechanoregulation of bone three-dimensionally by experiment. Using in vivo micro-computed tomography and high resolution finite element analysis in living mice, we show that bone formation most likely occurs at sites of high local mechanical strain (p<0.0001) and resorption at sites of low local mechanical strain (p<0.0001). Furthermore, the probability of bone resorption decreases exponentially with increasing mechanical stimulus (R2 = 0.99) whereas the probability of bone formation follows an exponential growth function to a maximum value (R2 = 0.99). Moreover, resorption is more strictly controlled than formation in loaded animals, and ovariectomy increases the amount of non-targeted resorption. Our experimental assessment of mechanoregulation at the tissue level does not show any evidence of a lazy zone and suggests that around 80% of all (re)modeling can be linked to the mechanical micro-environment. These findings disclose how mechanical stimuli at the tissue level contribute to the regulation of bone adaptation at the organ level. PMID:23637993

  2. Bone Grafts

    MedlinePlus

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  3. Hierarchically biomimetic scaffold of a collagen-mesoporous bioactive glass nanofiber composite for bone tissue engineering.

    PubMed

    Hsu, Fu-Yin; Lu, Meng-Ru; Weng, Ru-Chun; Lin, Hsiu-Mei

    2015-04-01

    Mesoporous bioactive glass nanofibers (MBGNFs) were prepared by a sol-gel/electrospinning technique. Subsequently, a collagen-MBGNF (CM) composite scaffold that simultaneously possessed a macroporous structure and collagen nanofibers was fabricated by a gelation and freeze-drying process. Additionally, immersing the CM scaffold in a simulated body fluid resulted in the formation of bone-like apatite minerals on the surface. The CM scaffold provided a suitable environment for attachment to the cytoskeleton. Based on the measured alkaline phosphatase activity and protein expression levels of osteocalcin and bone sialoprotein, the CM scaffold promoted the differentiation and mineralization of MG63 osteoblast-like cells. In addition, the bone regeneration ability of the CM scaffold was examined using a rat calvarial defect model in vivo. The results revealed that CM is biodegradable and could promote bone regeneration. Therefore, a CM composite scaffold is a potential bone graft for bone tissue engineering applications. PMID:25805665

  4. Soft Tissue Swelling Associated with the Use of Recombinant Human Bone Morphogenetic Protein-2 in Long Bone Non-unions

    PubMed Central

    Young, Andrew; Mirarchi, Adam

    2015-01-01

    Introduction: This report describes two cases of long bone non-union associated with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) and is the first of its kind. The first case describes a 25-year-old male who sustained a left diaphyseal femoral shaft fracture initially treated with operative fixation using an intramedullary nail, which subsequently loosened distally and was treated with exchange nailing and rhBMP-2 application. This patient developed acute local soft tissue inflammation post-operatively. The second case describes a 61-year-old female who sustained a right diaphyseal humeral shaft fracture that was initially treated with intramedullary nail fixation with subsequent distal interlock screw loosening. She underwent nail removal, and compression plating with rhBMP-2 placement, and postoperatively developed severe acute local tissue swelling centered over the rhBMP-2 sponge. Surgeons should be aware that rhBMP-2 may cause local acute tissue swelling and recombinant bone morphogenic proteins such as rhBMP-2 may have a role in the management for atrophic fracture non-unions. The authors recommend careful consideration prior to rhBMP-2 use in long bone non-unions. PMID:27299059

  5. Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material.

    PubMed

    Walboomers, X Frank; Jansen, John A

    2005-08-01

    Scaffold materials for bone tissue engineering often are supplemented with bone morphogenetic proteins (BMPs). In the current study we aimed to investigate COLLOSS, a bovine extracellular matrix product containing native BMPs. Hollow cylindrical implants were made, with a length of 10 mm, a 3 mm inner diameter, and a 5 mm outer diameter, from titanium fibre mesh. The central space of the tube was filled with 20 mg COLLOSS. Subsequently, these implants, as well as non-loaded controls, were implanted subcutaneously into the back of Wistar rats, with n=6 for all study groups. After implantation periods of 2, 8, and 12 weeks, tissue-covered implants were retrieved, and sections were made, perpendicular to the long axis of the tube. Histology showed, that all implants were surrounded by a thin fibrous tissue capsule. After 2 weeks of implantation, the COLLOSS material was reduced in size inside the loaded implants, but no bone-like tissue formation was evident. After 8 weeks, in two out of six loaded specimens, new-formed bone- and bone marrow-like tissues could be observed. After 12 weeks, this had increased to five out of six COLLOSS-loaded samples. The amount of bone-like tissue did not differ between 8 and 12 weeks, and on average occupied 15% of the central space of the tube. In the non-loaded control samples, only connective tissue ingrowth was observed. In conclusion, we can say that COLLOSS material loaded in a titanium fibre mesh tube, showed bone-inducing properties. The final efficacy of these osteo-inductive properties has to be confirmed in future large animal studies. PMID:15763257

  6. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography

    PubMed Central

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-01-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496

  7. Aesthetic Surgical Approach for Bone Dehiscence Treatment by Means of Single Implant and Interdental Tissue Regeneration: A Case Report with Five Years of Follow-Up

    PubMed Central

    Lombardo, Giorgio; Pighi, Jacopo; Corrocher, Giovanni; Mascellaro, Anna; Lehrberg, Jeffrey; Marincola, Mauro; Nocini, Pier Francesco

    2016-01-01

    The replacement of single anterior teeth by means of endosseous implants implies the achievement of success in restoring both aesthetic and function. However, the presence of wide endoperiodontal lesions can lead to horizontal hard and soft tissues defects after tooth extraction, making it impossible to correctly place an implant in the compromised alveolar socket. Vertical augmentation procedures have been proposed to solve these clinical situations, but the amount of new regenerated bone is still not predictable. Furthermore, bone augmentation can be complicated by the presence of adjacent teeth, especially if they bring with them periodontal defects. Therefore, it is used to restore periodontal health of adjacent teeth before making any augmentation procedures and to wait a certain healing period before placing an implant in vertically augmented sites, otherwise risking to obtain a nonsatisfactory aesthetic result. All of these procedures, however, lead to an expansion of treatment time which should affect patient compliance. For this reason, this case report suggests a surgical technique to perform vertical bone augmentation at a single gap left by a central upper incisor while placing an implant and simultaneously to regenerate the periodontal attachment of an adjacent lateral incisor, without compromising the aesthetic result. PMID:27119031

  8. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.

    PubMed

    Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C

    2013-11-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  9. FT-IR Imaging of Native and Tissue-Engineered Bone and Cartilage

    PubMed Central

    Boskey, Adele; Camacho, Nancy Pleshko

    2007-01-01

    Fourier transform Infrared (FT-IR) imaging and microspectroscopy have been extensively applied to the analyses of tissues in health and disease. Spatially resolved mid-infrared data has provided insights into molecular changes that occur in diseases of connective or collagen-based tissues, including osteoarthritis, osteoporosis, osteogenesis imperfecta, osteopetrosis and pathologic calcifications. These techniques have also been used to probe chemical changes associated with load, disuse, and micro-damage in bone, and with degradation and repair in cartilage. This review summarizes the applications of FT-IR microscopy and imaging for analyses of bone and cartilage in healthy and diseased tissues, and illustrates the application of these techniques for the characterization of tissue engineered bone and cartilage. PMID:17175021

  10. Conception on the Cell Mechanisms of Bone Tissue Loss

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.

    2008-06-01

    Basing on the analysis of available literature, the results of our own electron microscopic and radioautographic researches the data are presented about the morphofunctional peculiarities and succession of cellular interactions in adaptive remodeling of bone structures after exposure of animals (rats, monkeys) to microgravity (station SLS-2, Bion-11). The probable cellular mechanisms of the development of osteopenia and osteoporosis are considered.

  11. Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading

    NASA Astrophysics Data System (ADS)

    Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.

    2015-09-01

    Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.

  12. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering.

    PubMed

    Jayaraman, Praveena; Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Becker, David Laurence; Ramakrishna, Seeram; Srinivasan, Dinesh Kumar

    2015-11-01

    Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration. PMID:26415888

  13. Model of the distraction callus tissue behavior during bone transport based in experiments in vivo.

    PubMed

    Mora-Macías, Juan; Reina-Romo, Esther; Domínguez, Jaime

    2016-08-01

    Bone transport studies have measured the forces related to bone segment distraction (Brunner et al., 1994; Hyodo et al., 1996). However, no distraction force distribution between callus and docking-site was reported. Besides, most of these works have not provided continuous and long-term force relaxation measurements. The fit of the relaxation curves allows for modeling the mechanical behavior of the callus tissue during distraction osteogenesis, particularly in bone transport, where the resistance of the soft tissue and muscle is reduced compared with the bone lengthening. Bone transport experiments were carried out in sheep in which the distraction force was monitored continuously in vivo. The daily force relaxation curves were fitted, and two experimental models of the mechanical behavior of the callus tissue were obtained, assuming the total daily force relaxation or the accumulation of the residual forces. According to these models, the residual force 24h after each distraction step was a maximum of 71.6N, and the peak distraction force increased with the number of steps from 7-34N to 41-246N. The maximum residual force values that were predicted are much lower than those measured during bone lengthening in the literature. These results indirectly differentiate the influence of the surrounding soft tissues during bone transport compared with bone lengthening. Moreover, experimental measurements showed that distraction force through the docking-site was negligible with respect to distraction force through the callus. Experimental models of the callus tissue allow for an understanding of the mechanobiology of distraction osteogenesis and for predicting outcomes in its application processes. PMID:27111628

  14. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.

    PubMed

    Luo, Zuyuan; Yang, Yue; Deng, Yi; Sun, Yuhua; Yang, Hongtao; Wei, Shicheng

    2016-07-01

    Good bioactivity and osteogenesis of three-dimensional porous alginate scaffolds (PAS) are critical for bone tissue engineering. In this work, alginate and bone-forming peptide-1 (BFP-1), derived from bone morphogenetic protein-7 (BMP-7), have been combined together (without carbodiimide chemistry treatment) to develop peptide-incorporated PAS (p-PAS) for promoting bone repairing ability. The mechanical properties and SEM images show no difference between pure PAS and p-PAS. The release kinetics of the labeled peptide with 6-carboxy tetramethyl rhodamine from the PAS matrix suggests that the peptide is released in a relatively sustained manner. In the cell experiment, p-PAS show higher cell adhesion, spreading, proliferation and alkaline phosphatase (ALP) activity than the pristine PAS group, indicating that the BFP-1 released from p-PAS could significantly promote the aggregation and differentiation of osteoblasts, especially at 10μg/mL of trapped peptide concentration (p-PAS-10). Furthermore, p-PAS-10 was implanted into Beagle calvarial defects and bone regeneration was analyzed after 4 weeks. New bone formation was assessed by calcein and Masson's trichrome staining. The data reveal that p-PAS group exhibits significantly enhanced oseto-regenerative capability in vivo. The peptide-modified PAS with promoted bioactivity and osteogenic differentiation in vitro as well as bone formation ability in vivo could be promising tissue engineering materials for repairing and regeneration of bone defects. PMID:27022863

  15. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    SciTech Connect

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-02-05

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  16. Lipid Profiles of Canine Invasive Transitional Cell Carcinoma of the Urinary Bladder and Adjacent Normal Tissue by Desorption Electrospray Ionization Imaging Mass Spectrometry

    PubMed Central

    Dill, Allison L.; Ifa, Demian R.; Manicke, Nicholas E.; Costa, Anthony B.; Ramos-Vara, José A.; Knapp, Deborah W.; Cooks, R. Graham

    2009-01-01

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used in an imaging mode to interrogate the lipid profiles of thin tissue sections of canine spontaneous invasive transitional cell carcinoma (TCC) of the urinary bladder (a model of human invasive bladder cancer) as well as adjacent normal tissue from four different dogs. The glycerophospholipids and sphingolipids that appear as intense signals in both the negative ion and positive ion modes were identified by tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation. Differences in the relative distributions of the lipid species were present between the tumor and adjacent normal tissue in both the negative and positive ion modes. DESI-MS images showing the spatial distributions of particular glycerophospholipids, sphinoglipids and free fatty acids in both the negative and positive ion modes were compared to serial tissue sections that were stained with hematoxylin and eosin (H&E). Increased absolute and relative intensities for at least five different glycerophospholipids and three free fatty acids in the negative ion mode and at least four different lipid species in the positive ion mode were seen in the tumor region of the samples in all four dogs. In addition, one sphingolipid species exhibited increased signal intensity in the positive ion mode in normal tissue relative to the diseased tissue. Principal component analysis (PCA) was also used to generate unsupervised statistical images from the negative ion mode data and these images are in excellent agreement with the DESI images obtained from the selected ions and also the H&E stained tissue PMID:19810710

  17. [Great Scandinavian Jahre Prize 1993. Studies of cartilage and bone yields new knowledge of tissue homeostasis].

    PubMed

    Heinegård, D

    1994-01-01

    Increased knowledge of connective tissue, such as cartilage and bone, has improved our understanding of tissue replenishment under normal and pathological conditions. Although developments in this field are still at an early stage, it is already possible to discern avenues for future development leading to new diagnostic and therapeutic methods in connective tissue diseases. In this article, Dick Heinegård, the second recipient of the Jahre Prize for 1993, gives an account of his research. PMID:8121785

  18. The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective.

    PubMed

    Laurencin, Cato T; Khan, Yusuf; Kofron, Michele; El-Amin, Saadiq; Botchwey, Edward; Yu, Xiaojun; Cooper, James A

    2006-06-01

    Musculoskeletal repair is a major challenge for orthopaedic surgeons. The burden of repair is compounded by supply constraints and morbidity associated with autograft and allograft tissue. We report 15 years of research regarding tissue engineering and biological substitutes for bone and ligaments. Our approach has focused on biomaterial selection, scaffold development, cell selection, cell/material interaction, and growth factor delivery. We have extensively tested poly(ester), poly(anhydride), poly(phosphazene) derivatives, and composite materials using biocompatibility, degradation, and mechanical analyses for bone and ligament tissue engineering. We have developed novel three-dimensional matrices with a pore structure and mechanical properties similar to native tissue. We also have reported on the attachment, growth, proliferation, and differentiation of cells cultured on several scaffolds. Through extensive molecular analysis, in vitro culture condition analysis, and in vivo evaluation, our findings provide new methods of bone tissue regeneration using three-dimensional tissue engineered scaffolds, bioactive bone cement composite materials, and three-dimensional tissue engineered scaffolds for ligament regeneration. PMID:16741478

  19. Cytotoxic Effects and Osteogenic Activity of Calcium Sulfate with and without Recombinant Human Bone Morphogenetic Protein 2 and Nano-Hydroxyapatite Adjacent to MG-63 Cell Line

    PubMed Central

    Ghorbanzadeh, Abdollah; Aminsobhani, Mohsen; Khoshzaban, Ahad; Abbaszadeh, Armin; Ghorbanzadeh, Atiyeh; Shamshiri, Ahmad Reza

    2015-01-01

    Objectives: The aim of this study was to assess the cytotoxic effects and osteogenic activity of recombinant human bone morphogenetic protein (rhBMP2) and nano-hydroxyapatite (n-HA) adjacent to MG-63 cell line. Materials and Methods: To assess cytotoxicity, the 4,5-dimethyl thiazolyl-2,5-diphenyl tetrazolium bromide (MTT) assay was used. Alkaline phosphatase (ALP) activity and osteogenic activity were evaluated using Alizarin red and the von Kossa staining and analyzed by one-way ANOVA followed by Tukey’s post hoc test. Results: The n-HA/calcium sulfate (CS) mixture significantly promoted cell growth in comparison to pure CS. Moreover, addition of rhBMP2 to CS (P=0.02) and also mixing CS with n-HA led to further increase in extracellular calcium production and ALP activity (P=0.03). Conclusion: This in vitro study indicates that a scaffold material in combination with an osteoinductive material is effective for bone matrix formation. PMID:26877731

  20. Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone

    PubMed Central

    Si, Jia-Wen; Wang, Xu-Dong; Shen, Steve GF

    2015-01-01

    In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongoing research of regenerative medicine using stem cells and concurrent advancement in biotechnology have shifted the focus from surgical reconstruction to a novel stem cell-based tissue engineering strategy for customized and functional craniofacial bone regeneration. Given the unique ontogenetical and cell biological properties of perinatal stem cells, emerging evidence has suggested these extraembryonic tissue-derived stem cells to be a promising cell source for extensive use in regenerative medicine and tissue engineering. In this review, we summarize the current achievements and obstacles in stem cell-based craniofacial bone regeneration and subsequently we address the characteristics of various types of perinatal stem cells and their novel application in tissue engineering of craniofacial bone. We propose the promising feasibility and scope of perinatal stem cell-based craniofacial bone tissue engineering for future clinical application. PMID:25621114

  1. In situ strategy for bone repair by facilitated endogenous tissue engineering.

    PubMed

    Chen, Jingdi; Zhang, Yujue; Pan, Panpan; Fan, Tiantang; Chen, Mingmao; Zhang, Qiqing

    2015-11-01

    Traditional tissue engineering procedures are expensive and time consuming. Facilitated endogenous tissue engineering (FETE) provides a solution that can avoid the ex vivo culture of autologous cells and initiate in situ reparative endogenous repair processes in vivo. This method involves fabricating a porous scaffold that mimics the environment present during the bone formation process, consisting of components that provide biomimetic interfacial interactions to cells. After the scaffold is implanted, progenitor cells provided by autologous bone marrow and surrounding tissues then differentiate to bone cells under the direction of the in situ scaffold. This paper reports a biomimetic method to prepare a hierarchically structured hybrid scaffold. Bone-like nano hydroxyapatite (HA) was crystallized from a collagen and chitosan (CC) matrix to form a porous scaffold. The in vivo study demonstrates that this nanohybrid scaffold supports excellent bone repair. This means that the FETE approach, in which the cell culture portion of traditional tissue engineering takes place in vivo, can promote the intrinsic regenerative potential of endogenous tissues. PMID:26320569

  2. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering.

    PubMed

    Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran

    2011-11-01

    Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. PMID:21855129

  3. Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone.

    PubMed

    Jaecques, S V N; Van Oosterwyck, H; Muraru, L; Van Cleynenbreugel, T; De Smet, E; Wevers, M; Naert, I; Vander Sloten, J

    2004-04-01

    Load-bearing tissues, like bone, can be replaced by engineered tissues or tissue constructs. For the success of this treatment, a profound understanding is needed of the mechanical properties of both the native bone tissue and the construct. Also, the interaction between mechanical loading and bone regeneration and adaptation should be well understood. This paper demonstrates that microfocus computer tomography (microCT) based finite element modelling (FEM) can have an important contribution to the field of functional bone engineering as a biomechanical analysis tool to quantify the stress and strain state in native bone tissue and in tissue constructs. Its value is illustrated by two cases: (1) in vivo microCT-based FEM for the analysis of peri-implant bone adaptation and (2) design of biomechanically optimised bone scaffolds. The first case involves a combined animal experimental and numerical study, in which the peri-implant bone adaptive response is monitored by means of in vivo microCT scanning. In the second case microCT-based finite element models were created of native trabecular bone and bone scaffolds and a mechanical analysis of both structures was performed. Procedures to optimise the mechanical properties of bone scaffolds, in relation to those of native trabecular bone are discussed. PMID:14697870

  4. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.

    PubMed

    Jin, Yashi; Kundu, Banani; Cai, Yurong; Kundu, Subhas C; Yao, Juming

    2015-10-01

    To fabricate hard tissue implants with bone-like structure using a biomimetic mineralization method is drawing much more attentions in bone tissue engineering. The present work focuses in designing 3D silk fibroin hydrogel to modulate the nucleation and growth of hydroxyapatite crystals via a simple ion diffusion method. The study indicates that Ca(2+) incorporation within the hydrogel provides the nucleation sites for hydroxyapatite crystals and subsequently regulates their oriented growth. The mineralization process is regulated in a Ca(2+) concentration- and minerlization time-dependent way. Further, the compressive strength of the mineralized hydrogels is directly proportional with the mineral content in hydrogel. The orchestrated organic/inorganic composite supports well the viability and proliferation of human osteoblast cells; improved cyto-compatibility with increased mineral content. Together, the present investigation reports a simple and biomimetic process to fabricate 3D bone-like biomaterial with desired efficacy to repair bone defects. PMID:26209967

  5. Development of a complex bone tissue culture system based on cellulose nanowhisker mechanical strain.

    PubMed

    Kim, Dae Seung; Jung, Sang-Myung; Yoon, Gwang Heum; Lee, Hoo Cheol; Shin, Hwa Sung

    2014-11-01

    In bone tissue engineering, scaffolds have been investigated for their ability to support osteoblast growth and differentiation for recovery of damaged bones. Tunicate cellulose nanowhisker (CNW) film and mechanical strain were assessed for their suitability for osteoblasts. In this study, sulfuric acid hydrolysis extraction of tunicates integuments was conducted to obtain CNWs, which were found to be acceptable for adhering, growing, and differentiating osteoblasts without cytotoxicity. Mechanical stress enhanced osteoblast differentiation, and cell survival rate was recovered at around day 3, although there was a slight increase in cell death at day 1 after stimulation. We also found that intracellular flux of calcium ion was related to increased differentiation of CNWs under mechanical stress. Overall, we demonstrated the suitability of tunicate CNWs as a scaffold for bone tissue engineering and developed a complex system based on CNW for osteoblast growth and differentiation that will be useful for bone substitute fabrication. PMID:25454753

  6. Genetic and tissue level muscle-bone interactions during unloading and reambulation.

    PubMed

    Judex, S; Zhang, W; Donahue, L R; Ozcivici, E

    2016-01-01

    Little is known about interactions between muscle and bone during the removal and application of mechanical signals. Here, we applied 3wk of hindlimb unloading followed by 3wk of reambulation to a genetically heterogeneous population of 352 adult mice and tested the hypothesis that changes in muscle are associated with changes in bone at the level of the tissue and the genome. During unloading and relative to normally ambulating control mice, most mice lost muscle and cortical bone with large variability across the population. During reambulation, individual mice regained bone and muscle at different rates. Across mice, changes in muscle and trabecular/cortical bone were not correlated to each other during unloading or reambulation. For unloading, we found one significant quantitative trait locus (QTL) for muscle area and five QTLs for cortical bone without overlap between mechano-sensitive muscle and cortical bone QTLs (but some overlap between muscle and trabecular QTLs). The low correlations between morphological changes in muscle and bone, together with the largely distinct genetic regulation of the response indicate that the premise of a muscle-bone unit that co-adjusts its size during (un)loading may need to be reassessed. PMID:27609032

  7. Calcium Phosphonate Frameworks for Treating Bone Tissue Disorders.

    PubMed

    Shi, Fa-Nian; Almeida, José C; Helguero, Luisa A; Fernandes, Maria H V; Knowles, Jonathan C; Rocha, João

    2015-10-19

    Two new examples of uncommon three-dimensional Ca-bearing metal organic frameworks, [Ca(H2O)3(HPXBP)] (CaP1) and [Ca2(H2O)2(HPXBP)1.5] (CaP2) (PXBP: p-xylylenebisphosphonate), were prepared and their structures characterized by single crystal X-ray diffraction. CaP1 crystallizes in the monoclinic C2/c space group, with three water molecules occupying a half coordination sphere on one side of the Ca atom, while CaP2 crystallizes in the triclinic P1̅ space group, with two crystallographic unique Ca atoms, each coordinated by a single water molecule. In contrast with CaP2, which exhibits very low bioactivity, CaP1 readily precipitates bone-precursor phases (octacalcium phosphate, OCP, and hydroxyapatite) in SBF solutions. Moreover, studies with MG63 osteoblast-like cells indicate that CaP1 is not toxic and stimulates bone mineralization and, thus, holds considerable potential for treating bone diseases, such as osteoporosis. PMID:26407209

  8. The evaluation of a synthetic long bone structure as a substitute for human tissue in gunshot experiments.

    PubMed

    Kneubuehl, B P; Thali, M J

    2003-12-17

    Our goal was to compare experimental gunshot wounds in our non-biological bone model with similarly created wounds in swine bones, and evaluate the results. The design of the synthetic (polyurethane) bone was patterned after human bone structure, with a compact outer layer covering a porous inner layer. Ordnance gelatin, as substitute bone marrow, was injected into the bone's hollow core. To simulate the periostium, the bone was covered with a layer of latex. Then the bone was embedded in gelatin used to simulate surrounding soft tissue. For comparison, fresh swine bones were also embedded in gelatin, and fired upon under the same guidelines. All gunshots were high-speed filmed. In our experimental study, gunshot wounds to swine bones, and to our synthetic, non-biological bones were compared. The results (the comparison between the biological swine bones and the non-biological model bones) in regard to the following points are absolutely equal: the loss of velocity and energy after striking bone, bone fragmentation, bullet deformation, and the penetrating wound channel. Continuing studies with our synthetic bone model will bring about an even greater understanding of the mechanisms of "bullet-bone interaction". For this reason, we have extended our variety of bone models to include other skeletal structures such as skull, spine, pelvis and flat bones for further gunshot experiments. PMID:14642718

  9. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    PubMed

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-01-01

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment. PMID:26400336

  10. Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells

    PubMed Central

    Mattar, Philipp; Bieback, Karen

    2015-01-01

    Mesenchymal stromal cells (MSC) have gained immense attraction in regenerative medicine, tissue engineering, and immunotherapy. This is based on their differentiation potential and the supply of pro-regenerative and immunomodulatory signals. MSC can be isolated from a multitude of tissue sources, but mainly bone marrow, adipose tissue, and birth-associated tissues (e.g., umbilical cord, cord blood, placenta) appear to be relevant for clinical translation in immune-mediated disorders. However, only a few studies directly compared the immunomodulatory potency of MSC from different tissue sources. This review compiles the current literature regarding the similarities and differences between these three sources for MSCs with a special focus on their immunomodulatory effects on T-lymphocyte subsets and monocytes, macrophages, and dendritic cells. PMID:26579133

  11. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  12. [Relationships of hormones of adipose tissue and ghrelin to bone metabolism].

    PubMed

    Zofková, I

    2009-06-01

    Body adipose tissue influences bone metabolism through mechanical load, as well as via hormones released into circulation. Such hormones are adipocytokines--leptin, adiponectin, TNF-alpha, IL-6, resistin and visfatin. Some of them exert an osteoanabolic effect, while the others activate bone resorption. An increasingly discussed adipocytokine is leptin, which fundamental role is regulation of food intake ensuring survival of the organism during starvation. Leptin also stimulates osteoblasts and activates bone formation. The direct osteotropic effect of leptin is modulated by interaction with hypothalamic centers and neurohormones. Apparently, the most important leptin sensitive pathway involved in bone regulation is the beta-adrenergic system. While activation of beta-1-adrenergic receptors by leptin enhances bone formation, activation of beta-2-adrenergic receptors in hypothalamus and in the skeleton increases bone resorption. In humans, an anabolic effect on the skeleton prevails. In pubertal girls, leptin extensively released into circulation at the moment when adipose tissue reaches a critical volume, stimulates synthesis of GnRH and induces puberty, which is followed by striking increases in bone mass. Low leptin levels in anorexia nervosa are associated with amenorrhoea, which slows down increase of bone mass and may induce osteopenia. Important adipocytokine with an unambiguous negative effect on bone is adiponectin. Decreased production of this hormone explains in part the lower prevalence of osteoporosis in obese persons. In this article, the osteotropic importance ofleptin-sensitive neurohormonal mechanisms and other hormones related to adipose tissue are discussed. Clinical importance of the above mentioned hormones to integrity of the skeleton has not yet been verified. PMID:19662887

  13. Age related changes in the bone tissue under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Podrushnyak, E. P.; Suslov, E. I.

    1980-01-01

    Microroentgenography of nine young people, aged 24-29, before and after hypokinesia (16-37 days strict bed rest), showed that the heel bone density of those with initially high bone density generally decreased and that of those with initially low bone density generally increased. X-ray structural analysis of the femurs of 25 corpses of accidentally killed healthy people, aged 18-70, data are presented and discussed, with the conclusion that the bone hydroxyapatite crystal structure stabilizes by ages 20 to 25, is stable from ages 25 to 60 and decreases in density after age 60. It is concluded that bone tissue structure changes, both with age, and in a comparatively short time in hypokinesia.

  14. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    PubMed

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown. PMID:27263108

  15. Experimental and numerical analysis of Izod impact test of cortical bone tissue

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, A. A.; Silberschmidt, V. V.

    2012-05-01

    Bones can only sustain loads until a certain limit, beyond which they fail. Usually, the reasons for bone fracture are traumatic falls, sports injuries, and engagement in transport or industrial accidents. A proper treatment of bones and prevention of their fracture can be supported by in-depth understanding of deformation and fracture behavior of this tissue in such dynamic events. In this paper, a combination of experimental and numerical analysis was carried out in order to comprehend the fracture behavior of cortical bone tissue. Experimental tests were performed to study the transient dynamic behavior of cortical bone tissue under impact bending loading. The variability of absorbed energy for different cortex positions and notch depths was studied using Izod impact tests. Also, Extended Finite-Element Method implemented into the commercial finite-element software Abaqus was used to simulate the crack initiation and growth processes in a cantilever beam of cortical bone exposed to impact loading using the Izod loading scheme. The simulation results show a good agreement with the experimental data.

  16. [Research progress on application of carbon nanotubes in bone tissue engineering scaffold].

    PubMed

    Yao, Mengzhu; Sheng, Xiaoxia; Lin, Jun; Gao, Jianqing

    2016-03-01

    Carbon nanotubes possess excellent mechanical and electrical properties and demonstrate broad application prospects in medical fields. Carbon nanotubes are composed of inorganic materials, natural biodegradable polymer or synthetic biodegradable polymer. The composite bone tissue engineering scaffolds are constructed by particle-hole method, lyophilization, microsphere aggregation method, electrostatic spinning or three-dimensional printing. Composite scaffolds overcome the shortcomings of single material and have good biocompatibility, osteoconduction and osteoinduction. With the study of surface chemistry, toxicology, and biocompatibility, a degradable "human-friendly" carbon nanotubes composite bone tissue scaffold will be available; and under the drive of new fabrication techniques, the clinical application of carbon nanotubes composite bone tissue engineering scaffolds will be better developed. PMID:27273990

  17. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering.

    PubMed

    Lee, K Y; Alsberg, E; Mooney, D J

    2001-08-01

    Degradable and injectable hydrogels may be ideal for bone-tissue engineering, especially in the craniofacial region because of the ease of access for injection. Alginate hydrogels potentially could be used as injectable cell delivery vehicles, but they exhibit a limited range of mechanical properties and uncontrollable disintegration time. Therefore we synthesized new hydrogels, composed of poly(aldehyde guluronate) (PAG) and adipic acid dihydrazide, that have a wide range of mechanical stiffness and controllable degradation rate. MC3T3-E1 cells adhered and multiplied on PAG hydrogels in vitro. When primary rat calvarial osteoblasts were mixed with PAG hydrogels and subcutaneously injected into the backs of mice, mineralized bone tissues were formed 9 weeks following implantation. These hydrogels may find wide utility as an injectable delivery system for bone precursor cells as well as for other applications in tissue engineering. PMID:11340593

  18. Guidelines for managing data and processes in bone and cartilage tissue engineering

    PubMed Central

    2014-01-01

    Background In the last decades, a wide number of researchers/clinicians involved in tissue engineering field published several works about the possibility to induce a tissue regeneration guided by the use of biomaterials. To this aim, different scaffolds have been proposed, and their effectiveness tested through in vitro and/or in vivo experiments. In this context, integration and meta-analysis approaches are gaining importance for analyses and reuse of data as, for example, those concerning the bone and cartilage biomarkers, the biomolecular factors intervening in cell differentiation and growth, the morphology and the biomechanical performance of a neo-formed tissue, and, in general, the scaffolds' ability to promote tissue regeneration. Therefore standards and ontologies are becoming crucial, to provide a unifying knowledge framework for annotating data and supporting the semantic integration and the unambiguous interpretation of novel experimental results. Results In this paper a conceptual framework has been designed for bone/cartilage tissue engineering domain, by now completely lacking standardized methods. A set of guidelines has been provided, defining the minimum information set necessary for describing an experimental study involved in bone and cartilage regenerative medicine field. In addition, a Bone/Cartilage Tissue Engineering Ontology (BCTEO) has been developed to provide a representation of the domain's concepts, specifically oriented to cells, and chemical composition, morphology, physical characterization of biomaterials involved in bone/cartilage tissue engineering research. Conclusions Considering that tissue engineering is a discipline that traverses different semantic fields and employs many data types, the proposed instruments represent a first attempt to standardize the domain knowledge and can provide a suitable means to integrate data across the field. PMID:24564199

  19. Biomechanical considerations of animal models used in tissue engineering of bone.

    PubMed

    Liebschner, Michael A K

    2004-04-01

    Tissue engineering combines the aspects of cell biology, engineering, material science, and surgery to generate new functional tissue, and provides an important approach to the repair of segmental defects and in restoring biomechanical function. The development of tissue-engineering strategies into clinical therapeutic protocols requires extensive, preclinical experimentation in appropriate animal models. The ultimate success of any treatment strategy must be established in these animal models before clinical application. It is clear that the demands of the biological and mechanical environment in the clinical repair of critical size defects with tissue-engineered materials is significantly different from those existing in experimental animals. The major considerations facing any tissue-engineering testing logic include the choice of the defect, the animal, the age of the animal, the anatomic site, the size of the lesion, and most importantly, the micro-mechanical environment. With respect to biomechanical considerations when selecting animals for tissue- engineering of bone, it is evident that no common criteria have been reported. While in smaller animals due to size constraint only structural properties of whole bones can be measured, in larger animals and humans both material properties and structural properties are of interest. Based on reported results, comparison between the tissue-engineered bone across species may be of importance in establishing better model selection criteria. It has already been found that the deformation of long bones is fairly constant across species, and that stress levels during gait are dependent on the weight of the animal and the material properties of the bone tissue. Future research should therefore be geared towards developing better biomechanical testing systems and then finding the right animal model for the existing equipment. PMID:14697871

  20. Concise Review: Cell-Based Strategies in Bone Tissue Engineering and Regenerative Medicine

    PubMed Central

    Ma, Jinling; Both, Sanne K.; Yang, Fang; Cui, Fu-Zhai; Pan, Juli; Meijer, Gert J.; Jansen, John A.

    2014-01-01

    Cellular strategies play an important role in bone tissue engineering and regenerative medicine (BTE/RM). Variability in cell culture procedures (e.g., cell types, cell isolation and expansion, cell seeding methods, and preculture conditions before in vivo implantation) may influence experimental outcome. Meanwhile, outcomes from initial clinical trials are far behind those of animal studies, which is suggested to be related to insufficient nutrient and oxygen supply inside the BTE/RM constructs as some complex clinical implementations require bone regeneration in too large a quantity. Coculture strategies, in which angiogenic cells are introduced into osteogenic cell cultures, might provide a solution for improving vascularization and hence increasing bone formation for cell-based constructs. So far, preclinical studies have demonstrated that cell-based tissue-engineered constructs generally induce more bone formation compared with acellular constructs. Further, cocultures have been shown to enhance vascularization and bone formation compared with monocultures. However, translational efficacy from animal studies to clinical use requires improvement, and the role implanted cells play in clinical bone regeneration needs to be further elucidated. In view of this, the present review provides an overview of the critical procedures during in vitro and in vivo phases for cell-based strategies (both monoculture and coculture) in BTE/RM to achieve more standardized culture conditions for future studies, and hence enhance bone formation. PMID:24300556

  1. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells

    PubMed Central

    Wang, Ping; Zhao, Liang; Liu, Jason; Weir, Michael D; Zhou, Xuedong; Xu, Hockin H K

    2014-01-01

    Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CaP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments. PMID:26273526

  2. A Novel Local Autologous Bone Graft Donor Site After Scalp Tissue Expansion in Aplasia Cutis Congenita.

    PubMed

    Hadad, Ivan; Meara, John G; Rogers-Vizena, Carolyn R

    2016-06-01

    Aplasia cutis congenita (ACC) is a rare condition often presenting as an absent area of cutaneous scalp. The calvarium and dura may also be affected. Scalp reconstruction with tissue expansion is often needed for large defects. Patients involving deficient calvarial bone present a dilemma for the reconstructive surgeon, because bone graft donor sites are limited in young children.A thick, bony rim has been noted to form around the periphery of scalp tissue expanders. The authors present a series of 3 patients with ACC for whom this bony hyperostosis was used as donor particulate bone graft at the time of scalp tissue expansion. There was 85 to 100% graft ossification on postoperative computed tomography scan. There were no bone graft-related complications.In conclusion, the hyperostotic rim that forms after scalp tissue expansion can be successfully used as particulate bone graft, decreasing the number of procedures needed for patient with ACC and obviating the need for other donor sites. PMID:27192637

  3. Use of osteoplastic material to guide bone tissue regeneration deffect.

    PubMed

    Machavariani, A; Mazmishvili, K; Grdzelidze, T; Menabde, G; Amiranashvili, I

    2011-12-01

    The goal of research was study of restoration processes in jaw-teeth bone defects by application of osteoplastic materials in the experiment. The experiment was performed over 32 white (6-12 month old) rats; the animals were divided into 2 groups; 16 animals were enrolled in the first group; the section was performed in the edge of lower jaw; the lower jaw body was revealed. Under the effect of the dental drilling machine and the # 1 cooling mean by the fissure bohrium (distilled water) the defect of the dimension of 2x2 mm was created; the defect was washed by 0/9% saline to remove the bone sawdust; the wound was sutured tightly, in layers. The second group of the experiment was staffed with 16 animals (main group); the similar bone defect of the size 2 x 2mm was created on the rat's jaw's body. After washing of modeled defect we inserted osteopathic materials PORESORB-TCP crystals with the size of 0,6-1.0 mm the wound was sutured tightly, in layers. After the 3-rd, 15-th, 30-th and 90-th days from the date of operation there was performed X-ray and morphological examination over the animals in the control as well as the main group. The analysis of the examination performed over the experimental materials showed that in the control group in samples taken at 90th day the defects were not completely restored. In the test group in samples taken at 90th day reparative regeneration is confirmed. This is stimulated by the factor that within the main group's animals the defect regeneration process is supported with the osteoplastic material PORESORB-TCP. PMID:22306506

  4. Comparison of Bone Tissue Elements Between Normal and Osteoarthritic Pelvic Bones in Dogs.

    PubMed

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L

    2016-06-01

    Physiochemical analysis of bones affected with osteoarthritis (OA) can be used to better understand the etiology of this disease. We investigated the percentage of chemical elements in canine pelvic bone affected with varying degrees of OA using a handheld X-ray fluorescence (XRF) analyzer that discriminates magnesium (Mg(12)) through bismuth (Bi(83)). A total of 45 pelvic bones, including both ilium and subchondral acetabular bone plates, were categorized as normal (n = 20), mild grade OA (n = 5), moderate grade OA (n = 15), and severe grade OA (n = 5). In normal pelvic, seven elements (P, Ca, Mn, Ag, Cd, Sn, and Sb) differed (p < 0.005) in percentage between ilium and acetabulum. Comparisons among the four OA groups found Mn and Fe to be highest in severe grades (p < 0.05) in both ilium and acetabulum. Three heavy metals (Ag, Sn, and Sb) were detected in high percentages (p < 0.05) in the severe OA group in the acetabulum, but in ilium only Sn was high (p < 0.05) in severe OA. In conclusion, the percentages of several elements differed between pelvic types in dogs, and also with increasing severity of OA. The finding of high Mn and Fe in severe grade OA bone suggests these two elements may be useful in future studies of the etiology and pathophysiology of OA. PMID:26537116

  5. Ultrastructural elastic deformation of cortical bone tissue probed by NIR Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Finney, William F.; Morris, Michael D.; Wallace, Joseph M.; Kohn, David H.

    2004-07-01

    Raman spectroscopy is used as a probe of ultrastructural (molecular) changes in both the mineral and matrix (protein and glycoprotein, predominantly type I collagen) components of murine cortical bone as it responds to loading in the elastic regime. At the ultrastructural level, crystal structure and protein secondary structure distort as the tissue is loaded. These structural changes are followed as perturbations to tissue spectra. We load tissue in a custom-made dynamic mechanical tester that fits on the stage of a Raman microprobe and can accept hydrated tissue specimens. As the specimen is loaded in tension and/or compression, the shifts in mineral P-O4 v1 and relative band heights in the Amide III band envelope are followed with the microprobe. Average load is measured using a load cell while the tissue is loaded under displacement control. Changes occur in both the mineral and matrix components of bone as a response to elastic deformation. We propose that the mineral apatitic crystal lattice is deformed by movement of calcium and other ions. The matrix is proposed to respond by deformation of the collagen backbone. Raman microspectroscopy shows that bone mineral is not a passive contributor to tissue strength. The mineral active response to loading may function as a local energy storage and dissipation mechanism, thus helping to protect tissue from catastrophic damage.

  6. Can Bone Tissue Engineering Contribute to Therapy Concepts after Resection of Musculoskeletal Sarcoma?

    PubMed Central

    Holzapfel, Boris Michael; Chhaya, Mohit Prashant; Melchels, Ferry Petrus Wilhelmus; Holzapfel, Nina Pauline; Prodinger, Peter Michael; von Eisenhart-Rothe, Ruediger; van Griensven, Martijn; Schantz, Jan-Thorsten; Rudert, Maximilian; Hutmacher, Dietmar Werner

    2013-01-01

    Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology. PMID:23509421

  7. Relationships between tissue composition and viscoelastic properties in human trabecular bone.

    PubMed

    Ojanen, X; Isaksson, H; Töyräs, J; Turunen, M J; Malo, M K H; Halvari, A; Jurvelin, J S

    2015-01-21

    Trabecular bone is a metabolically active tissue with a high surface to volume ratio. It exhibits viscoelastic properties that may change during aging. Changes in bone properties due to altered metabolism are sensitively revealed in trabecular bone. However, the relationships between material composition and viscoelastic properties of bone, and their changes during aging have not yet been elucidated. In this study, trabecular bone samples from the femoral neck of male cadavers (n=21) aged 17-82 years were collected and the tissue level composition and its associations with the tissue viscoelastic properties were evaluated by using Raman microspectroscopy and nanoindentation, respectively. For composition, collagen content, mineralization, carbonate substitution and mineral crystallinity were evaluated. The calculated mechanical properties included reduced modulus (Er), hardness (H) and the creep parameters (E1, E2, η1and η2), as obtained by fitting the experimental data to the Burgers model. The results indicated that the creep parameters, E1, E2, η1and η2, were linearly correlated with mineral crystallinity (r=0.769-0.924, p<0.001). Creep time constant (η2/E2) tended to increase with crystallinity (r=0.422, p=0.057). With age, the mineralization decreased (r=-0.587, p=0.005) while the carbonate substitution increased (r=0.728, p<0.001). Age showed no significant associations with nanoindentation parameters. The present findings suggest that, at the tissue-level, the viscoelastic properties of trabecular bone are related to the changes in characteristics of bone mineral. This association may be independent of human age. PMID:25498367

  8. Bone-demineralization diagnosis in a bone-tissue-skin matrix using the pulsed-chirped photothermal radar

    NASA Astrophysics Data System (ADS)

    Kaiplavil, Sreekumar; Mandelis, Andreas

    2012-02-01

    A chirped pulsed photothermal radiometric radar is introduced for the diagnosis of biological samples, especially bones with tissue and skin overlayers. The constraints imposed by the laser safety (maximum permissible exposure, MPE) ceiling on pump laser energy and the strong attenuation of thermal-wave signals in tissues significantly limit the photothermally active depth in most biological specimens to a level which is normally insufficient for practical applications (approx. 1 mm below the skin surface). A theoretical approach for improvement of signal-to-noise ratio (SNR), minimizing the static (dc) component of the photothermal signal and making use of the photothermal radiometric nonlinearity has been introduced and verified by comparing the SNR of four distinct excitation wave forms (sine-wave, square-wave, constant- width and constant duty-cycle pulses) for chirping the pump laser, under constant exposure energy. At low frequencies fixed-pulsewidth chirps of large peak power were found to be superior to all other equal-energy modalities, with an SNR improvement up to two orders of magnitude. Distinct thickness-dependent characteristic delay times in a goat bone were obtained, establishing an active depth resolution range of ca. 2.8 mm in a layered skin-fat- bone structure, a favorable result compared to the maximum reported pulsed photothermal radiometric depth resolution < 1 mm in turbid biological media. Compared to radar peak delay and amplitude, the long-delayed radar output amplitude is found to be more sensitive to subsurface conditions. Two-dimensional spatial plots of this parameter depicting the back surface conditions of bones with and without fat-tissue overlayers are presented.

  9. Ultrashort pulse laser interactions with cortical bone tissue for applications in orthopaedic surgery

    NASA Astrophysics Data System (ADS)

    Ashforth, Simon A.; Simpson, M. C.; Bodley, Owen; Oosterbeek, Reece

    2015-03-01

    Using a femtosecond pulsed laser system (pulse width = 100fs, repetition rate = 1kHz, λ = 800nm), ablation threshold studies of freshly culled bovine and ovine cortical bone samples were identified using the diameter regression technique. Using the D2 technique, the ablation threshold was found to lie within a range of 0.83 - 0.96 Jcm-2 and 0.89 - 0.95 Jcm-2 for ovine and bovine cortical bone respectively indicating that laser ablation of bone is irrespective of target species. The relationship between cortical bone tissue removal and the number of applied pulses was explored. By altering the laser spot translation rate, we varied the number of pulses at each point along scribed linear cuts. Optical Coherence Tomography (OCT) and PDMS casting indicates that cut depth is linearly dependent on the number of pulses applied to the tissue, irrespective of donor species. For single pulse ablation of ovine and bovine cortical bone, we determined that the ablation rates were 0.41 - 0.75 μm per pulse and 0.28 - 0.90 μm per pulse when pulses of fluences in the range 0.52 - 2.63 Jcm-2 were applied to ovine and bovine cortical bone tissue, respectively. Structural analysis of the ablation features using environmental scanning electron microscopy and optical microscopy were utilized to assess the ablation features and identify signs of damage to surrounding tissue. We observed no structural indications of thermal shockwave cracking, molten debris deposition or charring of the tissue whilst leaving hydroxyapatite crystal structure intact.

  10. Change in temperature of subjacent bone during soft tissue laser ablation.

    PubMed

    Spencer, P; Cobb, C M; Wieliczka, D M; Glaros, A G; Morris, P J

    1998-11-01

    In tissues that closely approximate bone, sufficient heat may be transferred to the bone during laser surgery to cause damage and/or necrosis. To date, there have been few studies examining the temperatures elicited at the bone surface as a result of laser application to the overlying soft tissues. The purpose of this investigation was to determine, under in vitro conditions, temperature changes at the bone/soft tissue interface during laser ablation with CO2 and Nd:YAG lasers used with and without (w/wo) air/water coolant. Experimental specimens consisted of 5 mandibles from freshly sacrificed hogs; laser treatment sites were the buccal and lingual attached gingiva of the molars and the lingual keratinized mucosa of the incisor region. CO2 and Nd:YAG lasers were used w/wo coolant at power settings of 4 to 8 W and 5 to 9 W, respectively. Temperature changes were measured with a copper constant thermocouple contained within a 21 gauge hypodermic needle. In comparing the lasers at comparable energy densities w/wo coolant, temperature increases at the bone/soft tissue interface ranged from 8.0 to 11.1 degrees C with the Nd:YAG and 1.4 to 2.1 degrees C with the CO2. Similarly, in comparing the times required for the interface to return to baseline temperature following removal of the laser, values ranged from approximately 143 to 205 and approximately 119 to 139 seconds for the Nd:YAG and CO2, respectively. Results from this study suggest that, at energy densities equal or above those reported here, the increase in temperature at the bone surface as a result of periodontal soft tissue surgery with the Nd:YAG laser could be damaging, especially if the exposure is prolonged. PMID:9848538

  11. [The transplantability of bone marrow and spleen cells after filtration through silon tissue].

    PubMed

    Fiala, J

    1976-01-01

    Investigations were carried out on the separation of haematopoietic stem cells from suspensions of the bone-marrow and spleen by means of filtration with silon tissue. The presence of stem cells in the filtrates was determined by the spleen colony test according to the method of Till and McCulloch in irradiated mice. The investigations revealed that a selective separation of haematopoietic stem cells could not be achieved when proceeding in this way. From the results of further test series, in which suspensions were also used which had been gained from haematopoietic tissues of hypersplenic mice, the conclusion could be drawn that the haematopoietic stem cells obtained by filtrating the bone-marrow will have another affinity to the spleen tissue of irradiated mice than the haematopoietic stem cells gained by filtrating the spleen tissue. PMID:64407

  12. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    PubMed

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. PMID:27524030

  13. Microfibril Orientation Dominates the Microelastic Properties of Human Bone Tissue at the Lamellar Length Scale

    PubMed Central

    Rupin, Fabienne; Raum, Kay; Peyrin, Françoise; Burghammer, Manfred; Saïed, Amena; Laugier, Pascal

    2013-01-01

    The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies. PMID:23472132

  14. Bone and soft tissue sarcomas during pregnancy: A narrative review of the literature.

    PubMed

    Zarkavelis, George; Petrakis, Dimitrios; Fotopoulos, George; Mitrou, Sotirios; Pavlidis, Nicholas

    2016-07-01

    Bone or soft tissue sarcomas are rarely diagnosed during pregnancy. Until today 137 well documented cases have been reported in the English literature between 1963 and 2014. Thirty-eight pregnant mothers were diagnosed with osteosarcoma, Ewing's sarcoma or chondrosarcoma, whereas 95 other cases of soft tissue sarcomas of various types have been documented. We present the clinical picture and therapeutic management of this coexistence. PMID:27408761

  15. Risk factors for hematological toxicity of chemotherapy for bone and soft tissue sarcoma.

    PubMed

    Ouyang, Zhengxiao; Peng, Dan; Dhakal, Dibya Purush

    2013-05-01

    The aim of this study was to assess chemotherapy treatment characteristics, neutropenic event occurrence and related risk factors in bone and soft tissue sarcoma patients in China. Knowledge of such risk factors aids healthcare providers in focusing resources on those who are at most risk and targeting prophylactic colony-stimulating factors (CSFs) for those patients. The study included 113 children and adults with different types of sarcoma who had been treated with neoadjuvant chemotherapy for bone and soft tissue sarcoma in order to identify risk factors for hematological toxicity of chemotherapy for bone and soft tissue sarcoma. Risk factors were determined using multivariate logistic regression analysis. Factors such as age <20 years, Karnofsky Performance Status Scale (KPS) score <60, malnutrition, number of previous chemotherapies >3 and combination therapy with >3 drugs were significantly associated with occurrence of grade III/IV neutropenia, suggestive of severe bone marrow suppression. Patients with such characteristics are at most risk of severe bone marrow suppression, and preventing discontinuation of treatment would be valuable for treating patients more effectively. PMID:23760066

  16. Mechanisms of fluid-flow-induced matrix production in bone tissue engineering.

    PubMed

    Morris, H L; Reed, C I; Haycock, J W; Reilly, G C

    2010-12-01

    Matrix production by tissue-engineered bone is enhanced when the growing tissue is subjected to mechanical forces and/or fluid flow in bioreactor culture. Cells deposit collagen and mineral, depending upon the mechanical loading that they receive. However, the molecular mechanisms of flow-induced signal transduction in bone are poorly understood. The hyaluronan (HA) glycocalyx has been proposed as a potential mediator of mechanical forces in bone. Using a parallel-plate flow chamber the effects of removal of HA on flow-induced collagen production and NF-kappaB activation in MLO-A5 osteoid osteocytes were investigated. Short periods of fluid flow significantly increased collagen production and induced translocation of the NF-kappaB subunit p65 to the cell's nuclei in 65 per cent of the cell population. Enzymatic removal of the HA coat and antibody blocking of CD44 (a transmembrane protein that binds to HA) eliminated the fluid-flow-induced increase in collagen production but had no effect on the translocation of p65. HA and CD44 appear to play roles in transducing the flow signals that modulate collagen production over long-term culture but not in the short-term flow-induced activation of NF-kappaB, implying that multiple signalling events are initiated from the commencement of flow. Understanding the mechanotransduction events that enable fluid flow to stimulate bone matrix production will allow the optimization of bioreactor design and flow profiles for bone tissue engineering. PMID:21287834

  17. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration.

    PubMed

    Serra, I R; Fradique, R; Vallejo, M C S; Correia, T R; Miguel, S P; Correia, I J

    2015-10-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. PMID:26117793

  18. Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis

    PubMed Central

    Stüssi, Edgar; Müller, Ralph

    2015-01-01

    Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r = 0.65–0.94). Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters. PMID:25695083

  19. Poly(caprolactone) based magnetic scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Bañobre-López, M.; Piñeiro-Redondo, Y.; De Santis, R.; Gloria, A.; Ambrosio, L.; Tampieri, A.; Dediu, V.; Rivas, J.

    2011-04-01

    Synthetic scaffolds for tissue engineering coupled to stem cells represent a promising approach aiming to promote the regeneration of large defects of damaged tissues or organs. Magnetic nanocomposites formed by a biodegradable poly(caprolactone) (PCL) matrix and superparamagnetic iron doped hydroxyapatite (FeHA) nanoparticles at different PCL/FeHA compositions have been successfully prototyped, layer on layer, through 3D bioplotting. Magnetic measurements, mechanical testing, and imaging were carried out to calibrate both model and technological processing in the magnetized scaffold prototyping. An amount of 10% w/w of magnetic FeHA nanoparticles represents a reinforcement for PCL matrix, however, a reduction of strain at failure is also observed. Energy loss (absorption) measurements under a radio-frequency applied magnetic field were performed in the resulting magnetic scaffolds and very promising heating properties were observed, making them very useful for potential biomedical applications.

  20. Metal debris concentrations in soft tissues adjacent to loosened femoral stems is higher in uncemented than cemented implants

    PubMed Central

    2014-01-01

    Background There are still many questions related to aseptic femoral stem loosening. Systemic and local immune responses to the implanted “foreign body” is one of the reasons for loosening. The purpose of the study was to measure metal ion concentration (Ti, Co, Cr, Mo, Ni, Al) around loosened femoral stems and compare their levels around uncemented and cemented implants. Methods This paper reports 50 hips operated for isolated stem loosening, in 50 patients at the mean age of 57 years (from 21 to 87). There were 25 cemented (Co,Cr29,Mo,Ni) and 25 uncemented (Ti, Al) stems. The mean follow-up from primary hip replacement to revision was 10.1 years (from 0.5 to 17). During the procedure, scar tissue around the stem was taken for analysis of metal ions. Results The concentrations of titanium and aluminium in soft tissues around uncemented loosened stems were higher than cemented ones (p < 0.001, p < 0.001 respectively). However, no statistically significant differences were observed between both types of stems in terms of ions of the metal of which cemented implants had been made of (Co, Cr, Mo, Ni). Conclusions In soft tissue around a loosened stem, the concentrations of metal ions from implants are much higher in case of uncemented stems than of cemented ones. Metal ions from vitalium femoral heads were found around uncemented stems in similar values to cemented streams. PMID:25098913

  1. [Experimental study of dental implants with nanostructured non-resorbable coating integration into bone tissue].

    PubMed

    Grigor'ian, A S; Khamraev, T K; Toporkova, A K; Amirov, A R

    2010-01-01

    In 2 dogs on both sides of mandible premolars were removed. In 3 months after dental alveolus healing intraosseous screwdriver dental implants (Konmet, Russia) were installed in the place of the removed teeth. Analogous operation was done on the contralateral side: the same type of implants were installed but with new nanostructured multifunctional biocompatible non-resorbable coating (MBNC) of the Ti-Ca-P-C-O-N composition. The animals were taken out of the experiment in 4 months after implants installation and implant-bone blocks were studied by SEM-method. According to the SEM-data in the region of the contact of implant-bone without new MBNC only fibrous connective tissue was formed. In case when MBNC was used the close welding of bone tissue with implant surface was observed that was considered as sign of osteointegration. PMID:21186642

  2. Morpho-functional adaptations in the bone tissue under the space flight conditions.

    PubMed

    Rodionova, N V; Oganov, V S

    2001-07-01

    Microgravity in space flight--situation of a maximum deficit of supporting loading on the skeleton and good model for finding-out of osteopenia and osteoporosis development laws, which are wide-spreading now and are "civilization diseases". Most typical for bones in conditions of a microgravitation by changes are: a decrease of intensity growth and osteoplastic processes, osteopenia and osteoporosis, decreasing of a mechanical strength and the risk of breaches arising (Oganov V.S., Schneider V. (1996)). Cytological mechanisms of gravity-dependent reactions in a bone tissue remain in many respects not-clear. By the purpose of our work was the analysis of some ultrastructural changes in bone tissue cells of the monkeys (Macaca mulatta), staying during two weeks onboard the biosatellite BION -11. PMID:12650186

  3. Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering

    PubMed Central

    Gu, Zhen; Jamal, Syed; Detamore, Michael S.

    2013-01-01

    Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275

  4. A review of chitosan and its derivatives in bone tissue engineering.

    PubMed

    LogithKumar, R; KeshavNarayan, A; Dhivya, S; Chawla, A; Saravanan, S; Selvamurugan, N

    2016-10-20

    Critical-sized bone defects treated with biomaterials offer an efficient alternative to traditional methods involving surgical reconstruction, allografts, and metal implants. Chitosan, a natural biopolymer is widely studied for bone regeneration applications owing to its tunable chemical and biological properties. However, the potential of chitosan to repair bone defects is limited due to its water insolubility, faster in vivo depolymerization, hemo-incompatibility, and weak antimicrobial property. Functionalization of chitosan structure through various chemical modifications provides a solution to these limitations. In this review, current trends of using chitosan as a composite with other polymers and ceramics, and its modifications such as quaternization, carboxyalkylation, hydroxylation, phosphorylation, sulfation and copolymerization in bone tissue engineering are elaborated. PMID:27474556

  5. In vitro osteoinductive potential of porous monetite for bone tissue engineering

    PubMed Central

    Idowu, Bernadine; Cama, Giuseppe; Deb, Sanjukta

    2014-01-01

    Tissue engineering–based bone grafts are emerging as a viable alternative treatment modality to repair and regenerate tissues damaged as a result of disease or injury. The choice of the biomaterial component is a critical determinant of the success of the graft or scaffold; essentially, it must induce and allow native tissue integration, and most importantly mimic the hierarchical structure of the native bone. Calcium phosphate bioceramics are widely used in orthopaedics and dentistry applications due to their similarity to bone mineral and their ability to induce a favourable biological response. One such material is monetite, which is biocompatible, osteoconductive and has the ability to be resorbed under physiological conditions. The osteoinductive properties of monetite in vivo are known; however, little is known of the direct effect on osteoinduction of human mesenchymal stem cells in vitro. In this study, we evaluated the potential of monetite to induce and sustain human mesenchymal stem cells towards osteogenic differentiation. Human mesenchymal stem cells were seeded on the monetite scaffold in the absence of differentiating factors for up to 28 days. The gene expression profile of bone-specific markers in cells on monetite scaffold was compared to the control material hydroxyapatite. At day 14, we observed a marked increase in alkaline phosphatase, osteocalcin and osteonectin expressions. This study provides evidence of a suitable material that has potential properties to be used as a tissue engineering scaffold. PMID:24904727

  6. Adipose mesenchymal stem cells in the field of bone tissue engineering

    PubMed Central

    Romagnoli, Cecilia; Brandi, Maria Luisa

    2014-01-01

    Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians. Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility, biodegradability and osteoinductivity. Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells (MSCs). In particular, a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue. These adipose stem cells (ASCs) can be obtained in large quantities with little donor site morbidity or patient discomfort, in contrast to the invasive and painful isolation of bone marrow MSCs. The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models, with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients. Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration, the lack of standardization in applied techniques makes the comparison between studies difficult. Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns, which must be resolved to permit application in regenerative medicine. PMID:24772241

  7. Conception on the cell mechanisms of bone tissue loss under spase flight conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Oganov, Victor; Kabitskaya, Olga

    Basing on the analysis of available literature and the results of our own electron microscopic and radioautographic researches the data are presented about the morpho-functional peculiarities and succession of cellular interactions in adaptive remodeling of bone structures under normal conditions and after exposure of animals (rats, monkeys, mice) to microgravity (SLS-2, Bion-11, BionM-1). The probable cellular mechanisms of the development of osteopenia and osteoporosis are considered. Our conception on remodeling proposes the following sequence in the development of cellular interactions after decrease of the mechanical loading: a primary response of osteocytes (mechanosensory cells) to the mechanical stimulus; osteocytic remodeling (osteolysis); transmission of the mechanical signals through a system of canals and processes to functionally active osteoblasts and surface osteocytes as well as to the bone-marrow stromal cells and to those lying on bone surfaces. As a response to the mechanical stimulus (microgravity) the system of stromal cell-preosteoblast-osteoblast shows a delay in proliferation, differentiation and specific functioning of the osteogenetic cells, some of the osteoblasts undergo apoptosis. Then the osteoclastic reaction occurs (attraction of monocytes and formation of osteoclasts and bone matrix resorption in the loci of apoptosis of osteoblasts and osteocytes). The macrophagal reaction is followed by osteoblastogenesis, which appears to be a rehabilitating process. However, during prolonged absence of mechanical stimuli (microgravity, long-time immobilization) the adaptive activization of osteoblastogenesis doesn’t occur (as it is the case during the physiological remodeling of bone tissue) or it occurs to a smaller degree. The loading deficit leads to an adaptive differentiation of stromal cells to fibroblastic cells and adipocytes in these remodeling loci. These cell reactions are considered as adaptive-compensatory, but they don’t result

  8. Bone Tissue Engineering with Multilayered Scaffolds-Part II: Combining Vascularization with Bone Formation in Critical-Sized Bone Defect.

    PubMed

    Sathy, Binulal Nelson; Watson, Brendan M; Kinard, Lucas A; Spicer, Patrick P; Dahlin, Rebecca L; Mikos, Antonios G; Nair, Shantikumar

    2015-10-01

    Our previous in vivo study showed that multilayered scaffolds made of an angiogenic layer embedded between an osteogenic layer and an osteoconductive layer, with layer thickness in the 100-400 μm range, resulted in through-the-thickness vascularization of the construct even in the absence of exogenous endothelial cells. The angiogenic layer was a collagen-fibronectin gel, and the osteogenic layer was made from nanofibrous polycaprolactone while the osteoconductive layer was made either from microporous hydroxyapatite or microfibrous polycaprolactone. In this follow-up study, we implanted these acellular and cellular multilayered constructs in critical-sized rat calvarial defects and evaluated their vascularization and bone formation potential. Vascularization and bone formation at the defect were evaluated and quantified using microcomputed tomography (microCT) followed by perfusion of the animals with the radio opaque contrast agent, MICROFIL. The extent of bony bridging and union within the critical-sized defect was evaluated using a previously established scoring system from the microCT data set. Similarly the new bone formation in the defect was quantified from the microCT data set as previously reported. Histological evaluation at 4 and 12 weeks validated the microCT findings. Our experimental results showed that acellular multilayered scaffolds with microscale-thick nanofibers and porous ceramic discs with angiogenic zone at their interface can regenerate functional vasculature and bone similar to that of cellular constructs in critical-sized calvarial defects. This result suggests that suitably bioengineered acellular multilayered constructs can be an improved and more translational approach in functional in vivo bone regeneration. PMID:26262560

  9. Effect of microstructure on micromechanical performance of dry cortical bone tissues

    SciTech Connect

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2009-12-15

    The mechanical properties of bone depend on composition and structure. Previous studies have focused on macroscopic fracture behavior of bone. In the present study, we performed microindentation studies to understand the deformation properties and microcrack-microstructure interactions of dry cortical bone. Dry cortical bone tissues from lamb femurs were tested using Vickers indentation with loads of 0.245-9.8 N. We examined the effect of bone microstructure on deformation and crack propagation using scanning electron microscopy (SEM). The results showed the significant effect of cortical bone microstructure on indentation deformation and microcrack propagation. The indentation deformation of the dry cortical bone was basically plastic at any applied load with a pronounced viscoelastic recovery, in particular at lower loads. More microcracks up to a length of approximately 20 {mu}m occurred when the applied load was increased. At loads of 4.9 N and higher, most microcracks were found to develop from the boundaries of haversian canals, osteocyte lacunae and canaliculi. Some microcracks propagated from the parallel direction of the longitudinal interstitial lamellae. At loads 0.45 N and lower, no visible microcracks were observed.

  10. Biomimetic coatings for bone tissue engineering of critical-sized defects

    PubMed Central

    Liu, Yuelian; Wu, Gang; de Groot, Klaas

    2010-01-01

    The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing attention. Bone-inducing agents have been locally injected to stimulate the native bone-formation activity, but without much success. The reason is that these drugs must be delivered slowly and at a low concentration to be effective. This then mimics the natural method of cytokine release. For this purpose, a suitable vehicle was developed, the so-called biomimetic coating, which can be deposited on metal implants as well as on biomaterials. Materials that are currently used to fill bony defects cannot by themselves trigger bone formation. Therefore, biological functionalization of such materials by the biomimetic method resulted in a novel biomimetic coating onto different biomaterials. Bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic coating can be a solution for a large bone defect repair in the fields of dental implantology, maxillofacial surgery and orthopaedics. Here, we review the performance of the biomimetic coating both in vitro and in vivo. PMID:20484228

  11. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering

    PubMed Central

    Gao, Xiang; Zhang, Xiaohong; Song, Jinlin; Xu, Xiao; Xu, Anxiu; Wang, Mengke; Xie, Bingwu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2015-01-01

    The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering. PMID:26604759

  12. Distinct Tissue Mineral Density in Plate- and Rod-like Trabeculae of Human Trabecular Bone.

    PubMed

    Wang, Ji; Kazakia, Galateia J; Zhou, Bin; Shi, X Tony; Guo, X Edward

    2015-09-01

    Trabecular bone quality includes both microstructural and intrinsic tissue mineralization properties. However, the tissue mineralization in individual trabeculae of different trabecular types and orientations has not yet been investigated. The aim of this study was to develop an individual trabecula mineralization (ITM) analysis technique to determine tissue mineral density (TMD) distributions in plate- and rod-like trabeculae, respectively, and to compare the TMD of trabeculae along various orientations in micro-computed tomography (μCT) images of trabecular bone samples from the femoral neck, greater trochanter, and proximal tibia. ITM analyses indicated that trabecular plates, on average, had significantly higher TMD than trabecular rods. In addition, the distribution of TMD in trabecular plates depended on trabecular orientation with the lowest TMD in longitudinal plates and the highest TMD in transverse plates. Conversely, there was a relatively uniform distribution of TMD among trabecular rods, with respect to trabecular orientation. Further analyses of TMD distribution revealed that trabecular plates had higher mean and peak TMD, whereas trabecular rods had a wider TMD distribution and a larger portion of low mineralized trabeculae. Comparison of apparent Young's moduli derived from micro-finite element models with and without heterogeneous TMD demonstrated that heterogeneous TMD in trabecular plates had a significant influence on the elastic mechanical property of trabecular bone. In conclusion, this study revealed differences in TMD between plate- and rod-like trabeculae and among various trabecular orientations. The observation of less mineralized longitudinal trabecular plates suggests interesting implications of these load-bearing plates in bone remodeling. The newly developed ITM analysis can be a valuable technique to assess the influence of metabolic bone diseases and their pharmaceutical treatments on not only microstructure of trabecular bone but

  13. Microindentation for in vivo measurement of bone tissue mechanical properties in humans.

    PubMed

    Diez-Perez, Adolfo; Güerri, Roberto; Nogues, Xavier; Cáceres, Enric; Peña, Maria Jesus; Mellibovsky, Leonardo; Randall, Connor; Bridges, Daniel; Weaver, James C; Proctor, Alexander; Brimer, Davis; Koester, Kurt J; Ritchie, Robert O; Hansma, Paul K

    2010-08-01

    Bone tissue mechanical properties are deemed a key component of bone strength, but their assessment requires invasive procedures. Here we validate a new instrument, a reference point indentation (RPI) instrument, for measuring these tissue properties in vivo. The RPI instrument performs bone microindentation testing (BMT) by inserting a probe assembly through the skin covering the tibia and, after displacing periosteum, applying 20 indentation cycles at 2 Hz each with a maximum force of 11 N. We assessed 27 women with osteoporosis-related fractures and 8 controls of comparable ages. Measured total indentation distance (46.0 +/- 14 versus 31.7 +/- 3.3 microm, p = .008) and indentation distance increase (18.1 +/- 5.6 versus 12.3 +/- 2.9 microm, p = .008) were significantly greater in fracture patients than in controls. Areas under the receiver operating characteristic (ROC) curve for the two measurements were 93.1% (95% confidence interval [CI] 83.1-100) and 90.3% (95% CI 73.2-100), respectively. Interobserver coefficient of variation ranged from 8.7% to 15.5%, and the procedure was well tolerated. In a separate study of cadaveric human bone samples (n = 5), crack growth toughness and indentation distance increase correlated (r = -0.9036, p = .018), and scanning electron microscope images of cracks induced by indentation and by experimental fractures were similar. We conclude that BMT, by inducing microscopic fractures, directly measures bone mechanical properties at the tissue level. The technique is feasible for use in clinics with good reproducibility. It discriminates precisely between patients with and without fragility fracture and may provide clinicians and researchers with a direct in vivo measurement of bone tissue resistance to fracture. PMID:20200991

  14. A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies

    PubMed Central

    Parikh, Mukti R.; Belch, Andrew R.; Pilarski, Linda M; Kirshner, Julia

    2014-01-01

    Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions

  15. ECM-Aware Cell-Graph Mining for Bone Tissue Modeling and Classification.

    PubMed

    Bilgin, Cemal Cagatay; Bullough, Peter; Plopper, George E; Yener, Bülent

    2009-10-21

    Pathological examination of a biopsy is the most reliable and widely used technique to diagnose bone cancer. However, it suffers from both inter- and intra- observer subjectivity. Techniques for automated tissue modeling and classification can reduce this subjectivity and increases the accuracy of bone cancer diagnosis. This paper presents a graph theoretical method, called extracellular matrix (ECM)-aware cell-graph mining, that combines the ECM formation with the distribution of cells in hematoxylin and eosin (H&E) stained histopathological images of bone tissues samples. This method can identify different types of cells that coexist in the same tissue as a result of its functional state. Thus, it models the structure-function relationships more precisely and classifies bone tissue samples accurately for cancer diagnosis. The tissue images are segmented, using the eigenvalues of the Hessian matrix, to compute spatial coordinates of cell nuclei as the nodes of corresponding cell-graph. Upon segmentation a color code is assigned to each node based on the composition of its surrounding ECM. An edge is hypothesized (and established) between a pair of nodes if the corresponding cell membranes are in physical contact and if they share the same color. Hence, multiple colored-cell-graphs coexist in a tissue each modeling a different cell-type organization. Both topological and spectral features of ECM-aware cell-graphs are computed to quantify the structural properties of tissue samples and classify their different functional states as healthy, fractured, or cancerous using support vector machines. Classification accuracy comparison to related work shows that ECM-aware cell-graph approach yields 90.0% whereas Delaunay triangulation and simple cell-graph approach achieves 75.0% and 81.1% accuracy, respectively. PMID:20543911

  16. Quantitative analysis of the reconstruction errors of the currently popular algorithm of magnetic resonance electrical property tomography at the interfaces of adjacent tissues.

    PubMed

    Duan, Song; Xu, Chao; Deng, Guanhua; Wang, Jiajia; Liu, Feng; Xin, Sherman Xuegang

    2016-06-01

    This work quantitatively analyzed the reconstruction errors (REs) of electrical property (EP) images using a currently popular algorithm of magnetic resonance electrical property tomography (MREPT), which occurred along the tissue interfaces. Transmitted magnetic fields B1+ were acquired at 3 T using a birdcage coil loaded with a phantom consisting of various adjacent tissues. Homogeneous Helmholtz was employed to calculate the EP maps by Laplacian computation of central differences. The maps of absolute REs (aREs) and relative REs (rREs) were calculated. The maximum and mean rREs, in addition to rRE distributions at the interfaces, were presented. Reconstructed EP maps showed various REs along different interface boundaries. Among all the investigated tissue interfaces, the kidney-fat interface presented the maximum mean rREs for both conductivity and relative permittivity. The minimum mean rRE of conductivity was observed at the spleen-muscle interface, and the minimum mean rRE of relative permittivity was detected along the lung-heart interface. The mean rREs ranged from 0.3986 to 36.11 for conductivity and 0.2218 to 11.96 for relative permittivity. Overall, this research indicates that different REs occur at various tissue boundaries, as shown by the currently popular algorithm of MREPT. Thus, REs should be considered when applying MREPT to reconstruct the EP distributions inside the human body. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27037715

  17. The effects of corrosive substances on human bone, teeth, hair, nails, and soft tissue.

    PubMed

    Hartnett, Kristen M; Fulginiti, Laura C; Di Modica, Frank

    2011-07-01

    This research investigates the effects of household chemicals on human tissues. Five different human tissues (bone, tooth, hair, fingernails, and skin/muscle/fat) were immersed into six different corrosive agents. These agents consisted of hydrochloric acid, sulfuric acid, lye, bleach, organic septic cleaner, and Coca-Cola(®) soda. Tap water was used as a control. Tissue samples were cut to consistent sizes and submerged in the corrosive liquids. Over time, the appearance, consistency, and weight were documented. Hydrochloric acid was the most destructive agent in this study, consuming most tissues within 24 h. Sulfuric acid was the second most destructive agent in this study. Bleach, lye, and cola had no structural effects on the hard tissues of the body, but did alter the appearance or integrity of the hair, nails, or flesh in some way. The organic septic cleaner and tap water had no effect on any of the human tissue tested during the timeframe of the study. PMID:21447075

  18. The effect of movement on the holding power of screws in bone.

    PubMed

    Schatzker, J; Horne, J G; Sumner-Smith, G

    1975-09-01

    Movement between screw threads and bone inhibits bone formation, revascularization and remodeling of dead bone. Movement causes the screw to become enveloped by fibrous tissue in response to necrosis and resorption of adjacent dead cortical bone. This results in a radiologically discernible radiolucent "halo" about the screw, a certain sign of screw loosening. PMID:1157420

  19. Value and limits of μ-CT for nondemineralized bone tissue processing.

    PubMed

    Draenert, Miriam Esther; Draenert, Alice Irène; Forriol, Francisco; Cerler, Michael; Kunzelmann, Karl-Heinz; Hickel, Reinhard; Draenert, Klaus

    2012-04-01

    An experimental approach was performed on 20 giant rabbits to establish the possibilities and limitations of μ-CT for routine processing of nondemineralized bone tissue. Hydroxyapatite (HA) or β-tricalciumphosphate (β-TCP) bead implants or a melange of both, microchambered and solid, were implanted into a standardized and precise defect in the patellar groove. The bone-healing phase was chosen for the histology considering 1 or 2 days, and 2, 3, and 6 weeks. Normal X-ray and μ-CT were applied on all specimens; five specimens in the 6-week stage were additionally processed according to the full range of conventional nondemineralized bone processing methods. μ-CT increased the possibilities of nondemineralized histology with respect to bone morphometry and a complete sequence of sections, thus providing a complete analysis of the bone response. μ-CT was limited in differentiating bone quality, cell analyses, and mineralization stages. The investigation based on normal X-rays is limited to defining integration and excluding the fibrous and bony encapsulation of loose implants. μ-CT allows a 3D evaluation of newly formed bone which is clearly marked against the ceramic implant. It does not allow, however, for the differentiation between woven and lamellar bone, the presentation of the canalicular lacunar system, or on the cell level, revealing canaliculi or details of the mineralization process which can be documented by high-resolution microradiography. Titer dynamics of bone formation remains the domain of polychromatic sequential labeling. The complete sequence of μ-CT slices enhances the possibilities for routine histology, tremendously allowing to the focus on detail histology to topographically well-defined cuts, thus providing more precise conclusions which take into consideration the whole implant. PMID:22553825

  20. The relationship between the mechanical anisotropy of human cortical bone tissue and its microstructure

    NASA Astrophysics Data System (ADS)

    Espinoza Orias, Alejandro A.

    Orthopedics research has made significant advances in the areas of biomechanics, bone implants and bone substitute materials. However, to date there is no definitive model to explain the structure-property relationships in bone as a material to enable better implant designs or to develop a true biomechanical analog of bone. The objective of this investigation was to establish a relationship between the elastic anisotropy of cortical bone tissue and its microstructure. Ultrasonic wave propagation was used to measure stiffness coefficients for specimens sectioned along the length of a human femur. The elastic constants were orthotropic and varied with anatomical location. Stiffness coefficients were generally largest at the midshaft and stiffness anisotropy ratios were largest at the distal and proximal ends. These tests were run on four additional human femurs to assess the influence of phenotypic variation, and in most cases, it was found that phenotypes do not exert a significant effect. Stiffness coefficients were shown to be correlated as a power law relation to apparent density, but anisotropy ratios were not. Texture analysis was performed on selected samples to measure the orientation distribution of the bone mineral crystals. Inverse pole figures showed that bone mineral crystals had a preferred crystallographic orientation, coincident with the long axis of the femur, which is its principal loading direction. The degree of preferred orientation was represented in Multiples of a Random Distribution (MRD), and correlated to the anisotropy ratios. Variation in elastic anisotropy was shown to be primarily due to the bone mineral orientation. The results found in this work can be used to incorporate anisotropy into structural analysis for bone as a material.

  1. Mechanical evaluation of nHAp scaffold coated with poly-3-hydroxybutyrate for bone tissue engineering.

    PubMed

    Foroughi, Mohammad Reza; Karbasi, Saeed; Ebrahimi-Kahrizsangi, Reza

    2013-02-01

    Regeneration of bone, cartilage and osteochondral tissues by tissue engineering has attracted intense attention due to its potential advantages over the traditional replacement of tissues with synthetic implants. Nevertheless, there is still a dearth of ideal or suitable scaffolds based on porous biomaterials, and the present study was undertaken to develop and evaluate a useful porous composite scaffold system. In this study, nano hydroxyapatite (nHAp) powder made (about 35-45 nm) by heating at temperature of 900 degrees C and porous hydroxyapatite (40, 50 and 60 wt% solution) for making scaffold, by using Polyurethane sponge replication method. In order to increase the scaffolds mechanical properties, they coated with 2, 4 and 6 wt% Poly-3-hydroxybutyrate (P3HB) for 30 sec and 60 sec, respectively; after the scaffold coated by Polymer and survey results, this scaffold is nHAp/P3HB composite. Based on these results, this scaffold is an optimized one among three tested above mentioned composition and can be utilized in bone tissue engineering. In the result, the best of scaffold is with 50 wt% HAp and 6 wt% P3HB and porosity of present is between 80-90% with compressive strength and modulus 1.51 MPa and 22.73 MPa, respectively, that it can be application in bone tissue engineering. PMID:23646681

  2. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Cao, Xianshuo; Wang, Jun; Liu, Min; Chen, Yong; Cao, Yang; Yu, Xiaolong

    2015-12-01

    A novel composite scaffold based on chitosan-collagen/organomontmorillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

  3. Design and optimization of a tissue-engineered bone graft substitute

    NASA Astrophysics Data System (ADS)

    Shimko, Daniel Andrew

    2004-12-01

    In 2000, 3.1 million surgical procedures on the musculoskeletal system were reported in the United States. For many of these cases, bone grafting was essential for successful fracture stabilization. Current techniques use intact bone obtained either from the patient (autograft) or a cadaver (allograft) to repair large defects, however, neither source is optimal. Allografts suffer integration problems, and for autografts, the tissue supply is limited. Because of these shortcomings, and the high demand for graft tissues, alternatives are being explored. To successfully engineer a bone graft replacement, one must employ a three pronged research approach, addressing (1) the cells that will inhabit the new tissue, (2) the culture environment that these cells will be exposed to, and (3) the scaffold in which these cells will reside. The work herein examines each of these three aspects in great detail. Both adult and embryonic stem cells (ESCs) were considered for the tissue-engineered bone graft. Both exhibited desirable qualities, however, neither were optimal in all categories examined. In the end, the possibility of teratoma formation and ethical issues surrounding ESCs, made the use of adult marrow-derived stem cells in the remaining experiments obligatory. In subsequent experiments, the adult stem cells' ability to form bone was optimized. Basic fibroblast growth factor, fetal bovine serum, and extracellular calcium supplementation studies were all performed. Ultimately, adult stem cells cultured in alpha-MEM supplemented with 10% fetal bovine serum, 10mM beta-glycerophosphate, 10nM dexamethasone, 50mug/ml ascorbic acid, 1%(v/v) antibiotic/antimycotic, and 10.4mM CaCl2 performed the best, producing nearly four times more mineral than any other medium formulation. Several scaffolds were then investigated including those fabricated from poly(alpha-hydroxy esters), tantalum, and poly-methylmethacrylate. In the final study, the most appealing cell type, medium

  4. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    SciTech Connect

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.; Sadove, A.M.; Heuvelman, D.; Feder, J. )

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically in all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.

  5. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants

    PubMed Central

    Ballo, Ahmed M.; Xia, Wei; Palmquist, Anders; Lindahl, Carl; Emanuelsson, Lena; Lausmaa, Jukka; Engqvist, Håkan; Thomsen, Peter

    2012-01-01

    The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone–implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation. PMID:22279159

  6. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review

    PubMed Central

    Bose, Susmita; Tarafder, Solaiman

    2012-01-01

    Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. PMID:22127225

  7. Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids

    NASA Astrophysics Data System (ADS)

    Andreaus, Ugo; Giorgio, Ivan; Madeo, Angela

    2015-02-01

    In this paper, a continuum mixture model with evolving mass densities and porosity is proposed to describe the process of bone remodeling in the presence of bio-resorbable materials as driven by externally applied loads. From a mechanical point of view, both bone tissue and biomaterial are modeled as linear elastic media with voids in the sense of Cowin and Nunziato (J Elast 13:125-147, 1983). In the proposed continuum model, the change of volume fraction related to the void volume is directly accounted for by considering porosity as an independent kinematical field. The bio-mechanical coupling is ensured by the introduction of a suitable stimulus which allows for discriminating between resorption (of both bone and biomaterial) and synthesis (of the sole natural bone) depending on the level of externally applied loads. The presence of a `lazy zone' associated with intermediate deformation levels is also considered in which neither resorption nor synthesis occur. Some numerical solutions of the integro-differential equations associated with the proposed model are provided for the two-dimensional case. Ranges of values of the parameters for which different percentages of biomaterial substitution occur are proposed, namely parameters characterizing initial and maximum values of mass densities of bone tissue and of the bio-resorbable material.

  8. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering

    PubMed Central

    Kamath, Manjunath Srinivas; Ahmed, Shiek SSJ; Dhanasekaran, M; Santosh, S Winkins

    2014-01-01

    Biomaterials-based three-dimensional scaffolds are being extensively investigated in bone tissue engineering. A potential scaffold should be osteoconductive, osteoinductive, and osteogenic for enhanced bone formation. In this study, a three-dimensional porous polycapro-lactone (PCL) scaffold was engineered for prolonged release of resveratrol. Resveratrol-loaded albumin nanoparticles (RNP) were synthesized and entrapped into a PCL scaffold to form PCL-RNP by a solvent casting and leaching method. An X-ray diffraction study of RNP and PCL-RNP showed that resveratrol underwent amorphization, which is highly desired in drug delivery. Furthermore, Fourier transform infrared spectroscopy indicates that resveratrol was not chemically modified during the entrapment process. Release of resveratrol from PCL-RNP was sustained, with a cumulative release of 64% at the end of day 12. The scaffold was evaluated for its bone-forming potential in vitro using human bone marrow-derived mesenchymal stem cells for 16 days. Alkaline phosphatase activity assayed on days 8 and 12 showed a significant increase in activity (1.6-fold and 1.4-fold, respectively) induced by PCL-RNP compared with the PCL scaffold (the positive control). Moreover, von Kossa staining for calcium deposits on day 16 showed increased mineralization in PCL-RNP. These results suggest PCL-RNP significantly improves mineralization due to its controlled and prolonged release of resveratrol, thereby increasing the therapeutic potential in bone tissue engineering. PMID:24399875

  9. CONSTITUTIVE RELATIONSHIP OF TISSUE BEHAVIOR WITH DAMAGE ACCUMULATION OF HUMAN CORTICAL BONE

    PubMed Central

    Luo, Qing; Leng, Huijie; Acuna, Rae; Dong, Xuanliang; Rong, Qiguo; Wang, Xiaodu

    2010-01-01

    Microdamage accumulation has been identified as a major conduit for bone tissues to absorb fracture energy. Due to the poor understanding of its underlying mechanism, however, an adequate constitutive relationship between damage accumulation and the mechanical behavior of bone has not yet been established. In this study, the constitutive relationship between the damage accumulation induced by overload and the evolution of mechanical properties of bone with incremental deformation was established based on the experimental results obtained from a novel progressive loading protocol developed in our laboratory. First, a decayed exponential model was proposed to capture the damage accumulation (modulus loss) with increasing applied strain. Next, a power law function was proposed to represent the progression of plastic deformation with damage accumulation. Finally, a linear combination of the Kohlrausch-Williams-Watts (KWW) function and Debye function was used to depict the viscoelastic behavior of bone associated with damage accumulation. The results of this study may help develop a constitutive model for predicting the mechanical behavior of cortical bone tissues. PMID:20472239

  10. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.

    PubMed

    Salguero, Laura; Saadat, Fatemeh; Sevostianov, Igor

    2014-10-17

    The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes - produced by age, microgravity, or some diseases - on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone's microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined. PMID:25234350

  11. Polarization control of Raman spectroscopy optimizes the assessment of bone tissue

    PubMed Central

    Makowski, Alexander J.; Patil, Chetan A.; Mahadevan-Jansen, Anita

    2013-01-01

    Abstract. There is potential for Raman spectroscopy (RS) to complement tools for bone diagnosis due to its ability to assess compositional and organizational characteristics of both collagen and mineral. To aid this potential, the present study assessed specificity of RS peaks to the composition of bone, a birefringent material, for different degrees of instrument polarization. Specifically, relative changes in peaks were quantified as the incident light rotated relative to the orientation of osteonal and interstitial tissue, acquired from cadaveric femurs. In a highly polarized instrument (106∶1 extinction ratio), the most prominent mineral peak (ν1 Phosphate at 961  cm−1) displayed phase similarity with the Proline peak at 856  cm−1. This sensitivity to relative orientation between bone and light observed in the highly polarized regime persisted for certain sensitive peaks (e.g., Amide I at 1666  cm−1) in unaltered instrumentation (200∶1 extinction ratio). Though Proline intensity changed with bone rotation, the phase of Proline matched that of ν1 Phosphate. Moreover, when mapping ν1 Phosphate/Proline across osteonal-interstitial borders, the mineralization difference between the tissue types was evident whether using a 20x or 50x objectives. Thus, the polarization bias inherent in commercial RS systems does not preclude the assessment of bone composition when using phase-matched peaks. PMID:23708192

  12. The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors.

    PubMed

    Vetsch, Jolanda Rita; Müller, Ralph; Hofmann, Sandra

    2015-08-01

    Bone tissue engineering aims to overcome the drawbacks of current bone regeneration techniques in orthopaedics. Bioreactors are widely used in the field of bone tissue engineering, as they help support efficient nutrition of cultured cells with the possible combination of applying mechanical stimuli. Beneficial influencing parameters of in vitro cultures are difficult to find and are mostly determined by trial and error, which is associated with significant time and money spent. Mathematical simulations can support the finding of optimal parameters. Simulations have evolved over the last 20 years from simple analytical models to complex and detailed computational models. They allow researchers to simulate the mechanical as well as the biological environment experienced by cells seeded on scaffolds in a bioreactor. Based on the simulation results, it is possible to give recommendations about specific parameters for bone bioreactor cultures, such as scaffold geometries, scaffold mechanical properties, the level of applied mechanical loading or nutrient concentrations. This article reviews the evolution in simulating various aspects of dynamic bone culture in bioreactors and reveals future research directions. PMID:23625691

  13. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.

    PubMed

    Salgado, Christiane Laranjo; Grenho, Liliana; Fernandes, Maria Helena; Colaço, Bruno Jorge; Monteiro, Fernando Jorge

    2016-01-01

    Designing biomimetic biomaterials inspired by the natural complex structure of bone and other hard tissues is still a challenge nowadays. The control of the biomineralization process onto biomaterials should be evaluated before clinical application. Aiming at bone regeneration applications, this work evaluated the in vitro biodegradation and interaction between human bone marrow stromal cells (HBMSC) cultured on different collagen/nanohydroxyapatite cryogels. Cell proliferation, differentiation, morphology, and metabolic activity were assessed through different protocols. All the biocomposite materials allowed physiologic apatite deposition after incubation in simulated body fluid and the cryogel with the highest nanoHA content showed to have the highest mechanical strength (DMA). The study clearly showed that the highest concentration of nanoHA granules on the cryogels were able to support cell type's survival, proliferation, and individual functionality in a monoculture system, for 21 days. In fact, the biocomposites were also able to differentiate HBMSCs into osteoblastic phenotype. The composites behavior was also assessed in vivo through subcutaneous and bone implantation in rats to evaluate its tissue-forming ability and degradation rate. The cryogels Coll/nanoHA (30 : 70) promoted tissue regeneration and adverse reactions were not observed on subcutaneous and bone implants. The results achieved suggest that scaffolds of Coll/nanoHA (30 : 70) should be considered promising implants for bone defects that present a grotto like appearance with a relatively small access but a wider hollow inside. This material could adjust to small dimensions and when entering into the defect, it could expand inside and remain in close contact with the defect walls, thus ensuring adequate osteoconductivity. PMID:26179958

  14. Development of bone and cartilage in tissue-engineered human middle phalanx models.

    PubMed

    Wada, Yoshitaka; Enjo, Mitsuhiro; Isogai, Noritaka; Jacquet, Robin; Lowder, Elizabeth; Landis, William J

    2009-12-01

    Human middle phalanges were tissue-engineered with midshaft scaffolds of poly(L-lactide-epsilon-caprolactone) [P(LA-CL)], hydroxyapatite-P(LA-CL), or beta-tricalcium phosphate-P(LA-CL) and end plate scaffolds of bovine chondrocyte-seeded polyglycolic acid. Midshafts were either wrapped with bovine periosteum or left uncovered. Constructs implanted in nude mice for up to 20 weeks were examined for cartilage and bone development as well as gene expression and protein secretion, which are important in extracellular matrix (ECM) formation and mineralization. Harvested 10- and 20-week constructs without periosteum maintained end plate cartilage but no growth plate formation. They also consisted of chondrocytes secreting type II collagen and proteoglycan, and they were composed of midshaft regions devoid of bone. In all periosteum-wrapped constructs at like times, end plate scaffolds held chondrocytes elaborating type II collagen and proteoglycan and cartilage growth plates resembling normal tissue. Chondrocyte gene expression of type II collagen, aggrecan, and bone sialoprotein varied depending on midshaft composition, presence of periosteum, and length of implantation time. Periosteum produced additional cells, ECM, and mineral formation within the different midshaft scaffolds. Periosteum thus induces midshaft development and mediates chondrocyte gene expression and growth plate formation in cartilage regions of phalanges. This work is important for understanding developmental principles of tissue-engineered phalanges and by extension those of normal growth plate cartilage and bone. PMID:19527181

  15. Development of Bone and Cartilage in Tissue-Engineered Human Middle Phalanx Models

    PubMed Central

    Wada, Yoshitaka; Enjo, Mitsuhiro; Isogai, Noritaka; Jacquet, Robin; Lowder, Elizabeth

    2009-01-01

    Human middle phalanges were tissue-engineered with midshaft scaffolds of poly(L-lactide-ɛ-caprolactone) [P(LA-CL)], hydroxyapatite-P(LA-CL), or β-tricalcium phosphate-P(LA-CL) and end plate scaffolds of bovine chondrocyte-seeded polyglycolic acid. Midshafts were either wrapped with bovine periosteum or left uncovered. Constructs implanted in nude mice for up to 20 weeks were examined for cartilage and bone development as well as gene expression and protein secretion, which are important in extracellular matrix (ECM) formation and mineralization. Harvested 10- and 20-week constructs without periosteum maintained end plate cartilage but no growth plate formation. They also consisted of chondrocytes secreting type II collagen and proteoglycan, and they were composed of midshaft regions devoid of bone. In all periosteum-wrapped constructs at like times, end plate scaffolds held chondrocytes elaborating type II collagen and proteoglycan and cartilage growth plates resembling normal tissue. Chondrocyte gene expression of type II collagen, aggrecan, and bone sialoprotein varied depending on midshaft composition, presence of periosteum, and length of implantation time. Periosteum produced additional cells, ECM, and mineral formation within the different midshaft scaffolds. Periosteum thus induces midshaft development and mediates chondrocyte gene expression and growth plate formation in cartilage regions of phalanges. This work is important for understanding developmental principles of tissue-engineered phalanges and by extension those of normal growth plate cartilage and bone. PMID:19527181

  16. Bisphosphonate-Based Strategies for Bone Tissue Engineering and Orthopedic Implants

    PubMed Central

    Cattalini, Juan Pablo; Boccaccini, Aldo R.; Lucangioli, Silvia

    2012-01-01

    Bisphosphonates (BPs) are a group of well-established drugs that are applied in the development of metabolic bone disorder-related therapies. There is increasing interest also in the application of BPs in the context of bone tissue engineering, which is the topic of this review, in which an extensive overview of published studies on the development and applications of BPs-based strategies for bone regeneration is provided with special focus on the rationale for the use of different BPs in three-dimensional (3D) bone tissue scaffolds. The different alternatives that are investigated to address the delivery and sustained release of these therapeutic drugs in the nearby tissues are comprehensively discussed, and the most significant published approaches on bisphosphonate-conjugated drugs in multifunctional 3D scaffolds as well as the role of BPs within coatings for the improved fixation of orthopedic implants are presented and critically evaluated. Finally, the authors' views regarding the remaining challenges in the fields and directions for future research efforts are highlighted. PMID:22440082

  17. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.

    PubMed

    Lastra, M Laura; Molinuevo, M Silvina; Giussi, Juan M; Allegretti, Patricia E; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, M Susana

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field. PMID:25842133

  18. In silico evolution of functional morphology: a test on bone tissue biomechanics

    PubMed Central

    de Margerie, Emmanuel; Tafforeau, Paul; Rakotomanana, Lalaonirina

    2006-01-01

    Evolutionary algorithms (EAs) use Darwinian principles—selection among random variation and heredity—to find solutions to complex problems. Mostly used in engineering, EAs gain growing interest in ecology and genetics. Here, we assess their usefulness in functional morphology, introducing finite element modelling (FEM) as a simulated mechanical environment for evaluating the ‘fitness’ of randomly varying structures. We used this method to identify biomechanical adaptations in bone tissue, a long-lasting problem in skeletal morphology. The algorithm started with a bone tissue model containing randomly distributed vascular spaces. The EA randomly mutated the distribution of vascular spaces, and selected the new structure if its mechanical resistance was increased. After some thousands of generations, organized phenotypes emerged, containing vascular canals and sinuses, mimicking real bone tissue organizations. This supported the hypothesis that natural bone microstructures can result from biomechanical adaptation. Despite its limited faithfulness to reality, we discuss the ability of the EA+FEM method to assess adaptation in a dynamic evolutionary framework, which is not possible in the real world because of the generation times of macro-organisms. We also point out the interesting potential of EAs to simulate not only adaptation, but also concurrent evolutionary phenomenons such as historical contingency. PMID:16971336

  19. A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds

    PubMed Central

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Lamberti, Luciano; Monno, Giuseppe

    2016-01-01

    Complexity of scaffold geometries and biological mechanisms involved in the bone generation process make the design of scaffolds a quite challenging task. The most common approaches utilized in bone tissue engineering require costly protocols and time-consuming experiments. In this study we present an algorithm that, combining parametric finite element models of scaffolds with numerical optimization methods and a computational mechano-regulation model, is able to predict the optimal scaffold microstructure. The scaffold geometrical parameters are perturbed until the best geometry that allows the largest amounts of bone to be generated, is reached. We study the effects of the following factors: (1) the shape of the pores; (2) their spatial distribution; (3) the number of pores per unit area. The optimal dimensions of the pores have been determined for different values of scaffold Young's modulus and compression loading acting on the scaffold upper surface. Pores with rectangular section were predicted to lead to the formation of larger amounts of bone compared to square section pores; similarly, elliptic pores were predicted to allow the generation of greater amounts of bone compared to circular pores. The number of pores per unit area appears to have rather negligible effects on the bone regeneration process. Finally, the algorithm predicts that for increasing loads, increasing values of the scaffold Young's modulus are preferable. The results shown in the article represent a proof-of-principle demonstration of the possibility to optimize the scaffold microstructure geometry based on mechanobiological criteria. PMID:26722213

  20. Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair

    PubMed Central

    Herrmann, Marietta; Verrier, Sophie; Alini, Mauro

    2015-01-01

    The gold standard for the treatment of critical-size bone defects is autologous or allogenic bone graft. This has several limitations including donor site morbidity and the restricted supply of graft material. Cell-based tissue engineering strategies represent an alternative approach. Mesenchymal stem cells (MSCs) have been considered as a source of osteoprogenitor cells. More recently, focus has been placed on the use of endothelial progenitor cells (EPCs), since vascularization is a critical step in bone healing. Although many of these approaches have demonstrated effectiveness for bone regeneration, cell-based therapies require time consuming and cost-expensive in vitro cell expansion procedures. Accordingly, research is becoming increasingly focused on the homing and stimulation of native cells. The stromal cell-derived factor-1 (SDF-1) – CXCR4 axis has been shown to be critical for the recruitment of MSCs and EPCs. Vascular endothelial growth factor (VEGF) is a key factor in angiogenesis and has been targeted in many studies. Here, we present an overview of the different approaches for delivering homing factors to the defect site by absorption or incorporation to biomaterials, gene therapy, or via genetically manipulated cells. We further review strategies focusing on the stimulation of endogenous cells to support bone repair. Finally, we discuss the major challenges in the treatment of critical-size bone defects and fracture non-unions. PMID:26082926

  1. Multiple soft tissue aneurysmal cysts: An occurrence after resection of primary aneurysmal bone cyst of fibula

    PubMed Central

    Karkuzhali, P; Bhattacharyya, Mahuya; Sumitha, P

    2007-01-01

    We report a case of multiple extraosseous aneurysmal cysts occurring in the muscle and subcutaneous plane of postero-lateral aspects of the upper right leg. They appeared about 15 months after resection of aneurysmal bone cyst of the upper end of the fibula. They varied in size from 2 cm to 5 cm. Radiologically they were well-defined lesions with central septate areas surrounded by a rim of calcification. Histologically they showed central cystic spaces separated by septa consisting of fibroblasts, osteoclast type of giant cells and reactive woven bone. Thus they showed histological similarity with aneurysmal bone cysts, but did not show any connection with the bone. Only very few examples of aneurysmal cysts of soft tissue had been described in the past one decade and they were reported in various locations including rare sites such as arterial wall and larynx. Recent cytogenetic analyses have shown abnormalities involving 17p11-13 and/or 16q22 in both osseous and extraosseous aneurysmal cysts indicating its probable neoplastic nature. Our case had unique features like multiplicity and occurrence after resection of primary aneurysmal bone cyst of the underlying bone. PMID:21139755

  2. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives

    PubMed Central

    Fu, Qiang; Saiz, Eduardo; Rahaman, Mohamed N.; Tomsia, Antoni P.

    2011-01-01

    The repair and regeneration of large bone defects resulting from disease or trauma remains a significant clinical challenge. Bioactive glass has appealing characteristics as a scaffold material for bone tissue engineering, but the application of glass scaffolds for the repair of load-bearing bone defects is often limited by their low mechanical strength and fracture toughness. This paper provides an overview of recent developments in the fabrication and mechanical properties of bioactive glass scaffolds. The review reveals the fact that mechanical strength is not a real limiting factor in the use of bioactive glass scaffolds for bone repair, an observation not often recognized by most researchers and clinicians. Scaffolds with compressive strengths comparable to those of trabecular and cortical bones have been produced by a variety of methods. The current limitations of bioactive glass scaffolds include their low fracture toughness (low resistance to fracture) and limited mechanical reliability, which have so far received little attention. Future research directions should include the development of strong and tough bioactive glass scaffolds, and their evaluation in unloaded and load-bearing bone defects in animal models. PMID:21912447

  3. A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds.

    PubMed

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Lamberti, Luciano; Monno, Giuseppe

    2016-01-01

    Complexity of scaffold geometries and biological mechanisms involved in the bone generation process make the design of scaffolds a quite challenging task. The most common approaches utilized in bone tissue engineering require costly protocols and time-consuming experiments. In this study we present an algorithm that, combining parametric finite element models of scaffolds with numerical optimization methods and a computational mechano-regulation model, is able to predict the optimal scaffold microstructure. The scaffold geometrical parameters are perturbed until the best geometry that allows the largest amounts of bone to be generated, is reached. We study the effects of the following factors: (1) the shape of the pores; (2) their spatial distribution; (3) the number of pores per unit area. The optimal dimensions of the pores have been determined for different values of scaffold Young's modulus and compression loading acting on the scaffold upper surface. Pores with rectangular section were predicted to lead to the formation of larger amounts of bone compared to square section pores; similarly, elliptic pores were predicted to allow the generation of greater amounts of bone compared to circular pores. The number of pores per unit area appears to have rather negligible effects on the bone regeneration process. Finally, the algorithm predicts that for increasing loads, increasing values of the scaffold Young's modulus are preferable. The results shown in the article represent a proof-of-principle demonstration of the possibility to optimize the scaffold microstructure geometry based on mechanobiological criteria. PMID:26722213

  4. Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue

    PubMed Central

    Carnelli, Davide; Vena, Pasquale; Dao, Ming; Ortiz, Christine; Contro, Roberto

    2013-01-01

    Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation. Tests were performed on the same osteonal structure in the axial (along the long bone axis) and transverse (normal to the long bone axis) directions along arrays going radially out from the Haversian canal at four different maximum depths on three secondary osteons. Results clearly show a periodic pattern of stiffness with spatial distance across the osteon. The effect of length scale on lamellar bone anisotropy and the critical length at which homogenization of the mechanical properties occurs were determined. Further, a laminate-composite-based analytical model was applied to the stiffness trends obtained at the highest spatial resolution to evaluate the elastic constants for a sub-layer of mineralized collagen fibrils within an osteonal lamella on the basis of the spatial arrangement of the fibrils. The hierarchical arrangement of lamellar bone is found to be a major determinant for modulation of mechanical properties and anisotropic mechanical behaviour of the tissue. PMID:23389895

  5. Design of an Osteoinductive Extracellular Fibronectin Matrix Protein for Bone Tissue Engineering

    PubMed Central

    Lee, Sujin; Lee, Dong-Sung; Choi, Ilsan; Pham, Le B. Hang; Jang, Jun-Hyeog

    2015-01-01

    Integrin-mediated cell-matrix interactions play an important role in osteogenesis. Here, we constructed a novel osteoinductive fibronectin matrix protein (oFN) for bone tissue engineering, designed to combine the integrin-binding modules from fibronectin (iFN) and a strong osteoinductive growth factor, bone morphogenetic protein-2. Compared with iFN, the purified oFN matrix protein caused a significant increase in cell adhesion and osteogenic differentiation of pre-osteoblast MC3T3-E1 cells (p < 0.05). PMID:25853265

  6. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect

    Lepel, E.A.; Laul, J.C.

    1984-03-01

    Instrumental and radiochemical neutron activation analysis (INAA and RNAA) were employed to measure about 37 major, minor, and trace elements in two standard reference materials: oyster tissue (SRM 1566) supplied by the National Bureau of Standards (NBS) and animal bone (H-5) supplied by the International Atomic Energy Agency (IAEA). Wherever the comparison exists, our data show excellent agreement with accepted values for each SRM. These SRM's are useful as reference standards for the analysis of biological materials. Additionally, the chondritic normalized rare earth element pattern of animal bone behaves as a smooth function of the ionic radii, as previously observed for biological materials.

  7. Design and application of chitosan/biphasic calcium phosphate porous scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sendemir-Urkmez, Aylin

    For the restoration of maxillofacial bone tissue, design of novel tissue engineering scaffolds capable of inducing bone remodeling through the delivery of mesenchymal stem cells (MSCs) and an angiogenic growth factor, directly at the site of the defect was investigated in order to replace autogenous cancellous bone grafts with synthetic materials. Porous, three dimensional scaffolds were fabricated by a freeze drying method. In culture media, biphasic calcium phosphate particles within chitosan produced a surface reprecipitate of a composition similar to natural apatite that led to a uniform distribution of cells and mineralized ECM through chemotaxis. Further, the reprecipitation regulated the differentiation pathway and phenotype commitment of stem cells by altering the initial cell attachment morphology and actin cytoskeleton organization. In order to induce neovascularization after implantation, constructs were designed to be loaded with gelatin microspheres that delivered basic fibroblast growth factor (bFGF), a potent angiogenic factor. In vitro proliferation tests performed on fibroblastic cells showed no detectible loss of bFGF activity when delivered through enzymatic degradation of gelatin. Laser scanning confocal microscopy was used to demonstrate that gelatin microspheres can be injected evenly into cell-scaffold constructs owing to the spongy characteristics of the scaffold. To examine the binding interactions of bFGF with surface bound gelatin, a label free biosensor system, Biomolecular INteraction Detection sensor (BIND) was used. Results confirm that the principal interaction that takes place between bFGF and gelatin is electrostatic. Cell loaded tissue engineered constructs were produced in vitro at clinically relevant sizes and implanted with and without bFGF into a porcine mandibular defect model. Tissue engineered constructs facilitated the healing of mandibular defects only if combined with delivery of bFGF via gelatin microspheres. b

  8. Local delivery of nitric oxide: targeted delivery of therapeutics to bone and connective tissues

    PubMed Central

    Nichols, Scott P.; Storm, Wesley L.; Koh, Ahyeon; Schoenfisch, Mark H.

    2012-01-01

    Non-invasive treatment of injuries and disorders affecting bones and connective tissue is a significant challenge facing the medical community. A treatment route that has recently been proposed is nitric oxide (NO) therapy. Nitric oxide plays several roles in physiology with many conditions lacking adequate levels of NO. As NO is a radical, localized delivery via NO donors is essential to promoting biological activity. Herein, we review current literature related to therapeutic NO delivery in the treatment of bone, skin and tendon repair. PMID:22433782

  9. Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Thein-Han, W. W.; Misra, R. D. K.

    2009-09-01

    We describe the structure of biodegradable chitosan-nanohydroxyapatite (nHA) composites scaffolds and their interaction with pre-osteoblasts for bone tissue engineering. The scaffolds were fabricated via freezing and lyophilization. The nanocomposite scaffolds were characterized by a highly porous structure and pore size of ˜50-125 μm, irrespective of nHA content. The observed significant enhancement in the biological response of pre-osteoblast on nanocomposite scaffolds expressed in terms of cell attachment, proliferation, and widespread morphology in relation to pure chitosan points toward their potential use as scaffold material for bone regeneration.

  10. Spectroscopic characterization of bone tissue of experimental animals after glucocorticoid treatment and recovery period

    NASA Astrophysics Data System (ADS)

    Mitić, Žarko J.; Najman, Stevo J.; Cakić, Milorad D.; Ajduković, Zorica R.; Ignjatović, Nenad L.; Nikolić, Ružica S.; Nikolić, Goran M.; Stojanović, Sanja T.; Vukelić, Marija Đ.; Trajanović, Miroslav D.

    2014-09-01

    The influence of glucocorticoids on the composition and mineral/organic content of the mandible in tested animals after recovery and healing phase was investigated in this work. The results of FTIR analysis demonstrated that bone tissue composition was changed after glucocorticoid treatment. The increase of calcium, magnesium, phosphorus content and mineral part of bones was statistically significant in recovery phase and in treatment phase that included calcitonin and thymus extract. Some changes also happened in the organic part of the matrix, as indicated by intensity changes for already present IR bands and the appearance of new IR bands in the region 3500-1300 cm-1.

  11. Wound healing after irradiation of bone tissues by Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Watanabe, Hisashi; Yoshino, Toshiaki; Aoki, Akira; Ishikawa, Isao

    1997-05-01

    Clinical applications of Er:YAG laser are now developing in periodontics and restorative dentistry. To date, there have been few studies indicating safety criteria for intraoral usage of the Er:YAG laser. The present study examined the effects of the Er:YAG laser on bone tissues, supposing mis- irradiation in the oral cavity during dental application, especially periodontal surgery. The experiments were performed using the newly-developed Er:YAG laser apparatus equipped with a contact probe. In experiment 1, 10 pulses of laser irradiation were administered to the parietal bone of a rat at 50, 150 and 300 mJ/pulse with and without water irrigation, changing the irradiation distance to 0, 5, 10 and 20 mm, respectively. As a control, electric knife was employed. Macroscopic and SEM observations of the wound surface were performed. In experiment 2, laser irradiation in a straight line was performed at 150 mJ/pulse, 1- pps and 0,5, 10 mm irradiation distance without water irrigation. Wound healing was observed histologically at 0, 3, 7, 14 and 28 days after laser irradiation and compared with that of the control. Non-contact irradiation by Er:YAG laser did not cause severe damage to the parietal bone tissue under water irrigation. Contact irradiation induced a limited wound, however, new bone formation was observed 28 days after laser irradiation, while osseous defect with thermal degenerative tissue remained at the control site. In conclusion, irradiation with an Er:YAG laser would not cause severe damage to surrounding bone tissues in the oral cavity when used within the usual power settings for dental treatment. Furthermore, this laser may be applicable for osseous surgery because of its high ablation efficiency and good wound healing after irradiation.

  12. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.

    PubMed

    Costa-Pinto, Ana R; Correlo, Vitor M; Sol, Paula C; Bhattacharya, Mrinal; Charbord, Pierre; Delorme, Bruno; Reis, Rui L; Neves, Nuno M

    2009-08-10

    The purpose of this study was to evaluate the growth patterns and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) when seeded onto new biodegradable chitosan/polyester scaffolds. Scaffolds were obtained by melt blending chitosan with poly(butylene succinate) in a proportion of 50% (wt) each and further used to produce a fiber mesh scaffold. hBMSCs were seeded on those structures and cultured for 3 weeks under osteogenic conditions. Cells were able to reduce MTS and demonstrated increasing metabolic rates over time. SEM observations showed cell colonization at the surface as well as within the scaffolds. The presence of mineralized extracellular matrix (ECM) was successfully demonstrated by peaks corresponding to calcium and phosphorus elements detected in the EDS analysis. A further confirmation was obtained when carbonate and phosphate group peaks were identified in Fourier Transformed Infrared (FTIR) spectra. Moreover, by reverse transcriptase (RT)-PCR analysis, it was observed the expression of osteogenic gene markers, namely, Runt related transcription factor 2 (Runx2), type 1 collagen, bone sialoprotein (BSP), and osteocalcin. Chitosan-PBS (Ch-PBS) biodegradable scaffolds support the proliferation and osteogenic differentiation of hBMSCs cultured at their surface in vitro, enabling future in vivo testing for the development of bone tissue engineering therapies. PMID:19621927

  13. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches

    PubMed Central

    Hempel, Ute; Müller, Katrin; Preissler, Carolin; Noack, Carolin; Boxberger, Sabine; Dieter, Peter; Bornhäuser, Martin; Wobus, Manja

    2016-01-01

    Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the “aspect plastic adherence” without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts. PMID:27293446

  14. Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors

    PubMed Central

    de Peppo, Giuseppe Maria; Vunjak-Novakovic, Gordana; Marolt, Darja

    2014-01-01

    Human pluripotent stem cells represent an unlimited source of skeletal tissue progenitors for studies of bone biology, pathogenesis, and the development of new approaches for bone reconstruction and therapies. In order to construct in vitro models of bone tissue development and to grow functional, clinical-size bone substitutes for transplantation, cell cultivation in three-dimensional environments composed of porous osteoconductive scaffolds and dynamic culture systems—bioreactors—has been studied. Here, we describe a stepwise procedure for the induction of human embryonic and induced pluripotent stem cells (collectively termed PSCs) into mesenchymal-like progenitors, and their subsequent cultivation on decellularized bovine bone scaffolds in perfusion bioreactors, to support the development of viable, stable bone-like tissue in defined geometries. PMID:24281874

  15. Comparison of heavy metal concentrations in tissues of red foxes from adjacent urban, suburban, and rural areas.

    PubMed

    Dip, R; Stieger, C; Deplazes, P; Hegglin, D; Müller, U; Dafflon, O; Koch, H; Naegeli, H

    2001-05-01

    The red fox (Vulpes vulpes) is a representative of the canid family with wide distribution in the Northern Hemisphere and Australia. The increasing utilization of urbanized habitats by red foxes prompted us to test whether this species may be used to monitor the presence of anthropogenic pollutants in cities or suburbs. For that purpose, we compared the concentrations of heavy metals (Cd, Pb, Cu, Zn) in foxes from urban, suburban, and rural areas within the municipality of Zürich (Switzerland). The kidney and liver of suburban and rural foxes contained the highest Cd concentrations, whereas urban foxes contained the highest Pb levels. In the kidney of suburban foxes, Cd concentrations increased from a median value of 0.73 mg/kg in juvenile animals to 1.82 mg/kg in adults. Similarly, the liver of suburban foxes contained increasing Cd levels from a median of 0.21 mg/kg in juvenile animals to 0.94 mg/kg in adults. An age-dependent storage of Cd was also found in foxes from the rural surroundings, but no such accumulation occurred in urban foxes from the city center, where even adult animals contained very low Cd levels. Conversely, foxes from the urban center were characterized by elevated Pb concentrations during the first 2 years of life, but this transient Pb accumulation was absent in suburban or rural animals. The liver of juvenile foxes contained a median Pb concentration of 0.99 mg/kg in the city compared to only 0.47 and 0.37 mg/kg in the suburban and rural area, respectively. Thus, we found that animals from separate environmental compartments contain different patterns of tissue residues, implying that red foxes may serve as a bioindicator species to detect certain toxic hazards in urbanized habitats. PMID:11525499

  16. Human lung and bladder carcinoma tumors as compared to their adjacent normal tissue have elevated AP-1 activity associated with the retinoblastoma gene promoter.

    PubMed

    Linardopoulos, S; Papadakis, E; Delakas, D; Theodosiou, V; Cranidis, A; Spandidos, D A

    1993-01-01

    Examination of the nucleotide sequence of the retinoblastoma (Rb) promoter revealed the presence of a DNA region highly homologous to the recognition site for the cellular transcription factor AP-1. A pair of complementary oligonucleotides containing the AP-1 site was synthesized and used in gel retardation assays to determine the role of the AP-1 protein in the regulation of the Rb gene expression. Using nuclear extracts from Hela cells as well as from lung and bladder tumors, we found specific binding of the AP-1 protein to this oligonucleotide. This binding is elevated in Hela cells, in 10/13 lung and 3/8 bladder tumors as compared to adjacent normal tissue. These results suggest that AP-1 could be implicated in Rb gene transcriptional regulation through its interaction with the AP-1 binding site of the Rb gene promoter. PMID:8476221

  17. Fourth near-infrared optical window for assessment of bone and other tissues

    NASA Astrophysics Data System (ADS)

    Sordillo, Diana C.; Sordillo, Laura A.; Sordillo, Peter P.; Alfano, Robert R.

    2016-02-01

    Recently, additional near-infrared (NIR) optical windows beyond the conventional first therapeutic window have been utilized for deep tissue imaging through scattering media. Biomedical applications using a second optical window (1100 to 1300 nm) and a third (1600 to 1870 nm) are emerging. A fourth window (2100 to 2300 nm) has been largely ignored due to high water absorption and a lack of high sensitivity imaging detectors and ultrafast laser sources. In this study, optical properties of bone in this fourth NIR optical window, were investigated. Results were compared to those seen at the first, second and third windows, and are consistent with our previous work on malignant and benign breast and prostate tissues. Bone and malignant tissues showed highest uptake in the third and fourth windows. As collagen is a major chromophore with prominent spectral peaks between 2100 and 2300 nm, it may be that the fourth optical window is particularly useful for studying tissues with a higher collagen content, such as bone or malignant tumors.

  18. Effects of overlying soft tissue on X-ray fluorescence bone lead measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Ahmed, Naseer; Fleming, David E. B.; Wilkie, David; O'Meara, Joanne M.

    2006-01-01

    The effects of overlying soft tissue on the measurement uncertainty of the in vivo 109Cd K-shell X-ray fluorescence (XRF) technique were investigated, as applied to the tibia bone site. Experimental measurements were performed on a set of nine leg phantoms of different soft tissue thickness, intended to model the lower leg at mid-tibia. A standard bone phantom made from plaster-of-Paris and having a nominal lead concentration of 25.6 μg Pb per gram was used in all trials. Monte Carlo simulations of the experimental set-up were also performed. Results indicate a strong relation between measurement uncertainty and overlying tissue thickness (OTT) for the XRF bone lead method. In increasing the OTT from 3.2 to 14.6 mm, an increase in average measurement uncertainty by a factor of 2.40 was observed experimentally. Monte Carlo simulations indicated an increase in minimum detectable limit (MDL) by a factor of 2.46 over the same interval. Experimental and Monte Carlo results were generally in strong agreement. For subject screening purposes, direct measurement of soft tissue overlying the tibia is recommended whenever practical.

  19. The role of membrane ERα signaling in bone and other major estrogen responsive tissues.

    PubMed

    Gustafsson, K L; Farman, H; Henning, P; Lionikaite, V; Movérare-Skrtic, S; Wu, J; Ryberg, H; Koskela, A; Gustafsson, J-Å; Tuukkanen, J; Levin, E R; Ohlsson, C; Lagerquist, M K

    2016-01-01

    Estrogen receptor α (ERα) signaling leads to cellular responses in several tissues and in addition to nuclear ERα-mediated effects, membrane ERα (mERα) signaling may be of importance. To elucidate the significance, in vivo, of mERα signaling in multiple estrogen-responsive tissues, we have used female mice lacking the ability to localize ERα to the membrane due to a point mutation in the palmitoylation site (C451A), so called Nuclear-Only-ER (NOER) mice. Interestingly, the role of mERα signaling for the estrogen response was highly tissue-dependent, with trabecular bone in the axial skeleton being strongly dependent (>80% reduction in estrogen response in NOER mice), cortical and trabecular bone in long bones, as well as uterus and thymus being partly dependent (40-70% reduction in estrogen response in NOER mice) and effects on liver weight and total body fat mass being essentially independent of mERα (<35% reduction in estrogen response in NOER mice). In conclusion, mERα signaling is important for the estrogenic response in female mice in a tissue-dependent manner. Increased knowledge regarding membrane initiated ERα actions may provide means to develop new selective estrogen receptor modulators with improved profiles. PMID:27388455

  20. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering

    PubMed Central

    Yang, Mingying; Zhou, Guanshan; Castano-Izquierdo, Harold; Zhu, Ye; Mao, Chuanbin

    2015-01-01

    Small intestinal submucosa (SIS) membranes as a decellularized tissue are known to be a natural nanofibrous biomaterial mainly made of type I collagen fibers and containing some growth factors (fibroblast growth factor 2 and transforming growth factor β) desired in tissue engineering. Here we show that the SIS membranes can promote the formation of bone mineral hydroxylapatite (HAP) crystals along the collagen fibers constituting the membranes from a HAP-supersaturated solution. The resultant biomineralized HAP-SIS scaffolds were found to promote the attachment, growth and osteogenic differentiation of mesenchymal stem cells (MSCs) in both basal and osteogenic media by the evaluation of osteogenic marker formation. More importantly, the HAP-SIS scaffolds could induce the osteogenic differentiation in the basal media without osteogenic supplements due to the presence of HAP crystals in the scaffolds. Histological characterization of the MSC-seeded scaffolds showed that HAP-SIS scaffolds are biocompatible and promote the formation of new tissue in vitro. The biomineralized SIS membranes mimic some aspects of natural bone in terms of the composition and nanostructures and can find potential use in bone tissue engineering. PMID:25883539

  1. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering.

    PubMed

    Yang, Mingying; Zhou, Guanshan; Castano-Izquierdo, Harold; Zhu, Ye; Mao, Chuanbin

    2015-03-01

    Small intestinal submucosa (SIS) membranes as a decellularized tissue are known to be a natural nanofibrous biomaterial mainly made of type I collagen fibers and containing some growth factors (fibroblast growth factor 2 and transforming growth factor β) desired in tissue engineering. Here we show that the SIS membranes can promote the formation of bone mineral hydroxylapatite (HAP) crystals along the collagen fibers constituting the membranes from a HAP-supersaturated solution. The resultant biomineralized HAP-SIS scaffolds were found to promote the attachment, growth and osteogenic differentiation of mesenchymal stem cells (MSCs) in both basal and osteogenic media by the evaluation of osteogenic marker formation. More importantly, the HAP-SIS scaffolds could induce the osteogenic differentiation in the basal media without osteogenic supplements due to the presence of HAP crystals in the scaffolds. Histological characterization of the MSC-seeded scaffolds showed that HAP-SIS scaffolds are biocompatible and promote the formation of new tissue in vitro. The biomineralized SIS membranes mimic some aspects of natural bone in terms of the composition and nanostructures and can find potential use in bone tissue engineering. PMID:25883539

  2. The role of membrane ERα signaling in bone and other major estrogen responsive tissues

    PubMed Central

    Gustafsson, K. L.; Farman, H.; Henning, P.; Lionikaite, V.; Movérare-Skrtic, S.; Wu, J.; Ryberg, H.; Koskela, A.; Gustafsson, J.-Å.; Tuukkanen, J.; Levin, E. R.; Ohlsson, C.; Lagerquist, M. K.

    2016-01-01

    Estrogen receptor α (ERα) signaling leads to cellular responses in several tissues and in addition to nuclear ERα-mediated effects, membrane ERα (mERα) signaling may be of importance. To elucidate the significance, in vivo, of mERα signaling in multiple estrogen-responsive tissues, we have used female mice lacking the ability to localize ERα to the membrane due to a point mutation in the palmitoylation site (C451A), so called Nuclear-Only-ER (NOER) mice. Interestingly, the role of mERα signaling for the estrogen response was highly tissue-dependent, with trabecular bone in the axial skeleton being strongly dependent (>80% reduction in estrogen response in NOER mice), cortical and trabecular bone in long bones, as well as uterus and thymus being partly dependent (40–70% reduction in estrogen response in NOER mice) and effects on liver weight and total body fat mass being essentially independent of mERα (<35% reduction in estrogen response in NOER mice). In conclusion, mERα signaling is important for the estrogenic response in female mice in a tissue-dependent manner. Increased knowledge regarding membrane initiated ERα actions may provide means to develop new selective estrogen receptor modulators with improved profiles. PMID:27388455

  3. The relation of microdamage to fracture and material property degradation in human cortical bone tissue

    NASA Astrophysics Data System (ADS)

    Akkus, Ozan

    This dissertation investigates the relation of microdamage to fracture and material property degradation of human cortical bone tissue. Fracture resistance and fatigue crack growth of microcracks were examined experimentally and material property degradation was examined through theoretical modeling. To investigate the contribution of microdamage to static fracture resistance, fracture toughness tests were conducted in the transverse and longitudinal directions to the osteonal orientation of normal bone tissue. Damage accumulation was monitored by acoustic emission during testing and was spatially observed by histological observation following testing. The results suggested that the propagation of the main crack involved weakening of the tissue by diffuse damage at the fracture plane and by formation of linear microcracks away from the fracture plane for the transverse specimens. For the longitudinal specimens, growth of the main crack occurred in the form of separations at lamellar interfaces. Acoustic emission results supported the histological observations. To investigate the contribution of ultrastructure to static fracture resistance, fracture toughness tests were conducted after altering the collagen phase of the bone tissue by gamma radiation. A significant decrease in the fracture toughness, Work-to-Fracture and the amount damage was observed due to irradiation in both crack growth directions. For cortical bone irradiated at 27.5kGy, fracture toughness is reduced due to the inhibition of damage formation at and near the crack tip. Microcrack fatigue crack growth and arrest were investigated through observations of surface cracks during cyclic loading. At the applied cyclic stresses, the microcracks propagated and arrested in less than 10,000 cycles. In addition, the microcracks were observed not to grow beyond a length of 150mum and a DeltaK of 0.5MNm-3/2, supporting a microstructural barrier concept. Finally, the contribution of linear microcracks to

  4. Self-assembling peptide nanofibers coupled with neuropeptide substance P for bone tissue engineering.

    PubMed

    Kim, Su Hee; Hur, Woojune; Kim, Ji Eun; Min, Hye Jeong; Kim, Sukwha; Min, Hye Sook; Kim, Byeung Kyu; Kim, Soo Hyun; Choi, Tae Hyun; Jung, Youngmee

    2015-04-01

    The number of patients requiring flat bone transplantation continues to increase worldwide. Cell transplantation has been successfully applied clinically; however, it causes another defect site and the time requirements to harvest cells and expand them are considerable. In this study, KLD12/KLD12-SP (KLD12+KLD12-substance P [SP]) was designed to mimic endogenous tissue-healing processes. The structures of KLD12, KLD12-SP, and KLD12/KLD12-SP were observed by transmission electron microscopy and circular dichroism spectra. KLD12/KLD12-SP nanofibers (5-10 nm) were created under physiological conditions by formation of a β-sheet structure. The ability of mesenchymal stem cells (MSCs) to recruit KLD12/KLD12-SP was observed by using an in vivo fluorescence imaging system. Labeled human bone marrow stromal cells supplied via an intravenous injection were recruited to the scaffold containing KLD12/KLD12-SP. Polylactic acid/beta-tricalcium phosphate (PLA/β-TCP) scaffolds filled with KLD12/KLD12-SP were applied to repair calvarial defects. The composite constructs (groups: defect, PLA/β-TCP, PLA/β-TCP/KLD12, and PLA/β-TCP/KLD12/KLD12-SP) were implanted into rat defect sites. Bone tissue regeneration was evaluated by observing gross morphology by hematoxylin and eosin and Masson's trichrome staining at 12 and 24 weeks after surgery. Gross morphology showed that the defect site was filled with new tissue that was integrated with host tissue in the KLD12/KLD12-SP group. In addition, from the staining data, cells were recruited to the defect site and lacunae structures formed in the KLD12/KLD12-SP group. From these results, the PLA/β-TCP+KLD12/KLD12-SP composite construct was considered for enhancement of bone tissue regeneration without cell transplantation. PMID:25411965

  5. Peripharyngeal tissue deformation, stress distributions, and hyoid bone movement in response to mandibular advancement.

    PubMed

    Amatoury, Jason; Kairaitis, Kristina; Wheatley, John R; Bilston, Lynne E; Amis, Terence C

    2015-02-01

    Mandibular advancement (MA) increases upper airway (UA) patency and decreases collapsibility. Furthermore, MA displaces the hyoid bone in a cranial-anterior direction, which may contribute to MA-associated UA improvements via redistribution of peripharyngeal tissue stresses (extraluminal tissue pressure, ETP). In the present study, we examined effects of MA on ETP distributions, deformation of the peripharyngeal tissue surface (UA geometry), and hyoid bone position. We studied 13 supine, anesthetized, tracheostomized, spontaneously breathing adult male New Zealand White rabbits. Graded MA was applied from 0 to ∼4.5 mm. ETP was measured at six locations distributed throughout three UA regions: tongue, hyoid, and epiglottis. Axial computed tomography images of the UA (nasal choanae to glottis) were acquired and used to measure lumen geometry (UA length; regional cross-sectional area) and hyoid displacement. MA resulted in nonuniform decreases in ETP (greatest at tongue region), ranging from -0.11 (-0.15 to -0.06) to -0.82 (-1.09 to -0.54) cmH2O/mm MA [linear mixed-effects model slope (95% confidence interval)], across all sites. UA length decreased by -0.5 (-0.8 to -0.2) %/mm accompanied by nonuniform increases in cross-sectional area (greatest at hyoid region) ranging from 7.5 (3.6-11.4) to 18.7 (14.9-22.5) %/mm. The hyoid bone was displaced in a cranial-anterior direction by 0.42 (0.36-0.44) mm/mm MA. In summary, MA results in nonuniform changes in peripharyngeal tissue pressure distributions and lumen geometry. Displacement of the hyoid bone with MA may play a pivotal role in redistributing applied MA loads, thus modifying tissue stress/deformation distributions and determining resultant UA geometry outcomes. PMID:25505028

  6. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone

    PubMed Central

    Raghavan, Mekhala; Sahar, Nadder D.; Kohn, David H.; Morris, Michael D.

    2012-01-01

    There is growing evidence that bone composition and tissue-level mechanical properties are significant determinants of skeletal integrity. In the current study, Raman spectroscopy and nanoindentation testing were co-localized to analyze tissue-level compositional and mechanical properties in skeletally mature young (4 or 5 months) and old (19 months) murine femora at similar spatial scales. Standard multivariate linear regression analysis revealed age-dependent patterns in the relationships between mechanical and compositional properties at the tissue scale. However, changes in bone material properties with age are often complex and nonlinear, and can be missed with linear regression and correlation-based methods. A retrospective data mining approach was implemented using non-linear multidimensional visualization and classification to identify spectroscopic and nanoindentation metrics that best discriminated bone specimens of different age-classes. The ability to classify the specimens into the correct age group increased by using combinations of Raman and nanoindentation variables (86–96% accuracy) as compared to using individual measures (59–79% accuracy). Metrics that best classified 4 or 5 month and 19 month specimens (2-age classes) were mineral to matrix ratio, crystallinity, modulus and plasticity index. Metrics that best distinguished between 4, 5 and 19 month specimens (3-age classes) were mineral to matrix ratio, crystallinity, modulus, hardness, cross-linking, carbonate to phosphate ratio, creep displacement and creep viscosity. These findings attest to the complexity of mechanisms underlying bone tissue properties and draw attention to the importance of considering non-linear interactions between tissue-level composition and mechanics that may work together to influence material properties with age. The results demonstrate that a few non-linearly combined compositional and mechanical metrics provide better discriminatory information than a single

  7. [Color Doppler controlled needle biopsy in diagnosis of soft tissue and bone tumors].

    PubMed

    Schulte, M; Heymer, B; Sarkar, M R; Negri, G; von Baer, A; Hartwig, E

    1998-10-01

    In a prospective study we investigated 168 patients with musculoskeletal tumors, including 71 sarcomas, by core needle biopsy using the high-speed device Autovac. Monitoring with colour-coded duplex sonography allowed a well-aimed puncture of smaller or deeply localized lesions and also permitted the discrimination of necrotic and viable parts of the tumor. Adequate material for histologic diagnosis including grading and determination of tumor subtype was obtained from soft tissue sarcomas, soft tissue metastases, malignant lymphomas, plasmacytomas, and osteolytic skeletal secondaries. In contrast, in benign soft tissue and bone tumors the diagnosis could be established in only 66% of cases. Although skeletal sarcomas were identified as malignant mesenchymal lesions, a complete histologic classification of tumor subtype frequently was not possible due to an insufficient tissue specimen. With an accuracy of 97% for the diagnosis of malignancy and of 94% for the diagnosis of soft tissue sarcoma the results of core needle biopsies were comparable to those of incisional biopsies, the reference standard in the diagnosis of musculoskeletal tumors. Regarding the known disadvantages and the oncological risks of incisional biopsies, needle biopsy should replace the open procedure as the primary means of diagnosis in soft tissue and osteolytic bone tumors. PMID:9833186

  8. Differentiation potentials of perivascular cells in the bone tissue remodeling zones under microgravity

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Katkova, Olena

    Adaptive remodeling processes in the skeleton bones occur in the close topographical interconnection with blood capillaries followed by perivascular cells. Radioautographic studies with 3Н- thymidine (Kimmel D.B., Fee W.S., 1980; Rodionova N.V., 1989, 2006) has shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic ones. Using electron microscopy and cytochemistry we studied perivsacular cells in metaphysis of the rats femoral bones under conditions of modeling microgravity (28 days duration) and in femoral bonеs metaphyses of rats flown on board of the space laboratory (Spacelab - 2) It was revealed that population of the perivascular cells is not homogeneous in adaptive zones of the remodeling in both control and test groups (lowering support loading). This population comprises adjacent to endothelium little differentiated forms and isolated cells with differentiation features (specific volume of rough endoplasmic reticulum in cytoplasm is increased). Majority of the perivascular cells in the control group reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In little differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of animals under microgravitaty reaction to the alkaline phosphatase is registered not for all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. There is also visible trend of individual alkaline phosphatase containing perivascular cells amounts decrease (i.e. osteogenic cells-precursors). Under microgravity some little differentiated perivascular cells reveal destruction signs. Found decrease trend of the alkaline phosphatase containing cells (i.e. osteogenic cells) number in

  9. Metals in Bone Tissue of Antillean Manatees from the Gulf of Mexico and Chetumal Bay, Mexico.

    PubMed

    Romero-Calderón, Ana G; Morales-Vela, Benjamin; Rosíles-Martínez, René; Olivera-Gómez, León D; Delgado-Estrella, Alberto

    2016-01-01

    Concentrations of seven metals (As, Cd, Cr, Cu, Pb, Ni, and Zn) were analyzed in 33 bone tissue samples of Antillean manatees (Trichechus manatus manatus) found dead in lagoons and rivers of Tabasco and Campeche in the Gulf of Mexico and Chetumal Bay in the Caribbean region. The concentrations of Cr, Cu, Pb, and Zn were significantly different between regions, with greater levels found in the Gulf of Mexico group than in the Mexican Caribbean group (p < 0.05). Pb concentrations differed significantly between adults and calves. No differences were observed between sexes. Metal concentrations detected in the manatee bones were higher than most of those reported for bones in other marine mammals around the world. Future studies are necessary to establish whether the metal concentrations represent a risk to the health of the species. PMID:26519079

  10. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering.

    PubMed

    Liu, Yuchun; Lim, Jing; Teoh, Swee-Hin

    2013-01-01

    Clinical translation of scaffold-based bone tissue engineering (BTE) therapy still faces many challenges despite intense investigations and advancement over the years. To address these clinical barriers, it is important to analyse the current technical challenges in constructing a clinically relevant scaffold and subsequent clinical issues relating to bone repair. This review highlights the key challenges hampering widespread clinical translation of scaffold-based vascularised BTE, with a focus on the repair of large non-union defects. The main limitations of current scaffolds include the lack of sufficient vascularisation, insufficient mechanical strength as well as issues relating to the osseointegration of the bioresorbable scaffold and bone infection management. Critical insights on the current trends of scaffold technologies and future directions for advancing next-generation BTE scaffolds into the clinical realm are discussed. Considerations concerning regulatory approval and the route towards commercialisation of the scaffolds for widespread clinical utility will also be introduced. PMID:23142624

  11. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration.

    PubMed

    Bayer, E A; Gottardi, R; Fedorchak, M V; Little, S R

    2015-12-10

    Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed. PMID:26264834

  12. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K.

    PubMed

    Muthukumar, Thangavelu; Aravinthan, Adithan; Sharmila, Judith; Kim, Nam Soo; Kim, Jong-Hoon

    2016-11-01

    In this study, suitable scaffold materials for bone tissue engineering were successfully prepared using fish scale collagen, hydroxyapatite, chitosan, and beta-tricalcium phosphate. Porous composite scaffolds were prepared by freeze drying method. The Korean traditional medicinal ginseng compound K, a therapeutic agent for the treatment of osteoporosis that reduces inflammation and enhances production of bone morphogenetic protein-2, was incorporated into the composite scaffold. The scaffold was characterized for pore size, swelling, density, degradation, mineralization, cell viability and attachment, and its morphological features were examined using scanning electron microscopy. This characterization and in vitro analysis showed that the prepared scaffold was biocompatible and supported the growth of MG-63 cells, and therefore has potential as an alternative approach for bone regeneration. PMID:27516305

  13. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    PubMed

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion. PMID:25333855

  14. The Use of Total Human Bone Marrow Fraction in a Direct Three-Dimensional Expansion Approach for Bone Tissue Engineering Applications: Focus on Angiogenesis and Osteogenesis

    PubMed Central

    Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-01-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion. PMID:25333855

  15. Use of microfocus computerized tomography as a new technique for characterizing bone tissue around oral implants.

    PubMed

    Van Oossterwyck, H; Duyck, J; Vander Sloten, J; Van der Perre, G; Jansen, J; Wevers, M; Naert, I

    2000-01-01

    Qualitative and quantitative analysis of peri-implant tissues around retrieved oral implants is typically done by means of light microscopy on thin histological sections containing the metal surface and the undecalcified bone. It remains, however, a labor-intensive and thus time-consuming job. Moreover, it is a destructive technique that allows tissue quantification in only a limited number of two-dimensional sections. As an alternative, we evaluated the bone structure around screw-shaped titanium implants by means of microfocus computerized tomography (micro-CT) because it presents a number of advantages compared to conventional sectioning techniques: micro-CT is nondestructive, fast, and allows a fully three-dimensional characterization of the bone structure around the implant. Images can be reconstructed in an arbitrary plane, and three-dimensional reconstructions are also possible. Because of its high resolution, individual trabeculae can be visualized. The accuracy of micro-CT was qualitatively evaluated by comparing histological sections with the corresponding CT slices for the same specimen. The overall trabecular structure is very similar according to both techniques. Even very close to the interface, the titanium implant does not seem to produce significant artifacts. Furthermore, because the complete digital data on the trabecular bone structure around the implant is available, it is possible to create finite-element models of the bone-implant system that model the trabeculae in detail so that mechanical stress transfer at the interface can be studied at the level of individual trabeculae. Therefore, micro-CT seems to be very promising for the in vitro assessment of the three-dimensional bone structure around oral implants. Further research will be needed to evaluate its accuracy in a more quantitative way. PMID:11831302

  16. Achieving Interconnected Pore Architecture in Injectable PolyHIPEs for Bone Tissue Engineering

    PubMed Central

    Robinson, Jennifer L.; Moglia, Robert S.; Stuebben, Melissa C.; McEnery, Madison A.P.

    2014-01-01

    Template polymerization of a high internal phase emulsion (polyHIPE) is a relatively new method to produce tunable high-porosity scaffolds for tissue regeneration. This study focuses on the development of biodegradable injectable polyHIPEs with interconnected porosity that have the potential to fill bone defects and enhance healing. Our laboratory previously fabricated biodegradable polyHIPEs that cure in situ upon injection; however, these scaffolds possessed a closed-pore morphology, which could limit bone ingrowth. To address this issue, HIPEs were fabricated with a radical initiator dissolved in the organic phase rather than the aqueous phase of the emulsion. Organic-phase initiation resulted in macromer densification forces that facilitated pore opening during cure. Compressive modulus and strength of the polyHIPEs were found to increase over 2 weeks to 43±12 MPa and 3±0.2 MPa, respectively, properties comparable to cancellous bone. The viscosity of the HIPE before cure (11.0±2.3 Pa·s) allowed for injection and filling of the bone defect, retention at the defect site during cure under water, and microscale integration of the graft with the bone. Precuring the materials before injection allowed for tuning of the work and set times. Furthermore, storage of the HIPEs before cure for 1 week at 4°C had a negligible effect on pore architecture after injection and cure. These findings indicate the potential of these emulsions to be stored at reduced temperatures and thawed in the surgical suite before injection. Overall, this work highlights the potential of interconnected propylene fumarate dimethacrylate polyHIPEs as injectable scaffolds for bone tissue engineering. PMID:24124758

  17. The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters.

    PubMed

    Zheng, Xuelian; Deng, Wei; Luo, Keming; Duan, Hui; Chen, Yongqin; McAvoy, Richard; Song, Shuiqing; Pei, Yan; Li, Yi

    2007-08-01

    Here we report the effect of the 35S promoter sequence on activities of the tissue- and organ-specific gene promoters in tobacco plants. In the absence of the 35S promoter sequence the AAP2 promoter is active only in vascular tissues as indicated by expression of the AAP2:GUS gene. With the 35S promoter sequence in the same T-plasmid, transgenic plants exhibit twofold to fivefold increase in AAP2 promoter activity and the promoter becomes active in all tissue types. Transgenic plants hosting the ovary-specific AGL5:iaaM gene (iaaM coding an auxin biosynthetic gene) showed a wild-type phenotype except production of seedless fruits, whereas plants hosting the AGL5:iaaM gene along with the 35S promoter sequence showed drastic morphological alterations. RT-PCR analysis confirms that the phenotype was caused by activation of the AGL5:iaaM gene in non-ovary organs including roots, stems and flowers. When the pollen-, ovule- and early embryo-specific PAB5:barnase gene (barnase coding a RNase gene) was transformed, the presence of 35S promoter sequence drastically reduced transformation efficiencies. However, the transformation efficiencies were restored in the absence of 35S promoter, indicating that the 35S promoter might activate the expression of PAB5:barnase in non-reproductive organs such as calli and shoot primordia. Furthermore, if the 35S promoter sequence was replaced with the NOS promoter sequence, no alteration in AAP2, AGL5 or PAB5 promoter activities was observed. Our results demonstrate that the 35S promoter sequence can convert an adjacent tissue- and organ-specific gene promoter into a globally active promoter. PMID:17340093

  18. On the influence of soft tissue coverage in the determination of bone kinematics using skin markers.

    PubMed

    Taylor, William R; Ehrig, Rainald M; Duda, Georg N; Schell, Hanna; Seebeck, Petra; Heller, Markus O

    2005-07-01

    Accurate measurement of underlying bone positions is important for the understanding of normal movement and function, as well as for addressing clinical musculoskeletal or post-injury problems. Non-invasive measurement techniques are limited by the analysis technique and movement of peripheral soft tissues that can introduce significant measurement errors in reproducing the kinematics of the underlying bones when using external skin markers. Reflective markers, skeletally mounted to the right hind limb of three Merino-mix sheep were measured simultaneously with markers attached to the skin of each segment, during repetitions of gait trials. The movement of the skin markers relative to the underlying bone positions was then assessed using the Point Cluster Technique (PCT), raw averaging and the Optimal Common Shape Technique (OCST), a new approach presented in this manuscript. Errors in the position of the proximal joint centre, predicted from the corresponding skin markers, were shown to be phasic and strongly associated with the amount soft tissue coverage, averaging 8.5 mm for the femur, 2.8 for the tibia and 2.0 for the metatarsus. Although the results show a better prediction of bone kinematics associated with the Optimal Common Shape Technique, these errors were large for all three assessment techniques and much greater than the differences between the various techniques. Whilst individual markers moved up to 4 mm from the optimal marker set configuration, average peak errors of up to 16, 5 and 3 mm (hip, knee and tibio-metatarsal joints respectively) were observed, suggesting that a large amount of kinematic noise is produced from the synchronous shifting of marker sets, potentially as a result of underlying muscle firing and the inertial effects of heel impact. Current techniques are therefore limited in their ability to determine the kinematics of underlying bones based on skin markers, particularly in segments with more pronounced soft tissue coverage

  19. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.

    PubMed

    Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum

    2016-07-01

    Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. PMID:26999521

  20. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue.

    PubMed

    Maciejewska, Karina; Drzazga, Zofia; Kaszuba, Michał

    2014-01-01

    Osteoporosis is one of the most common debilitating disease around the world and it is more and more established among young people. There are well known recommendations for nutrition of newborns and children concerning adequate calcium and vitamin D intake in order to maintain proper bone density. Nevertheless, important role in structure and function of a healthy bone tissue is played by an integration between all constituents including elements other than Ca, like trace elements, which control vital processes in bone tissue. It is important from scientific point of view as well as prevention of bone diseases, to monitor the mineralization process considering changes of the concentration of minerals during first stage of bone formation. This work presents studies of trace element (zinc, strontium, and iron) concentration in bones and teeth of Wistar rats at the age of 7, 14, and 28 days. Energy dispersive X-ray fluorescence (EDXRF) was used to examine mandibles, skulls, femurs, tibiae, and incisors. The quantitative analysis was performed using fundamental parameters method (FP). Zn and Sr concentrations were highest for the youngest individuals and decreased with age of rats, while Fe content was stable in bone matrix for most studied bones. Our results reveal the necessity of monitoring concentration of not only major, but also minor elements, because the trace elements play special role in the first period of bone development. PMID:24615876

  1. Utilizing Core–Shell Fibrous Collagen-Alginate Hydrogel Cell Delivery System for Bone Tissue Engineering

    PubMed Central

    Perez, Roman A.; Kim, Meeju; Kim, Tae-Hyun; Kim, Joong-Hyun; Lee, Jae Ho; Park, Jeong-Hui; Knowles, Jonathan C.

    2014-01-01

    Three-dimensional matrices that encapsulate and deliver stem cells with defect-tuned formulations are promising for bone tissue engineering. In this study, we designed a novel stem cell delivery system composed of collagen and alginate as the core and shell, respectively. Mesenchymal stem cells (MSCs) were loaded into the collagen solution and then deposited directly into a fibrous structure while simultaneously sheathing with alginate using a newly designed core–shell nozzle. Alginate encapsulation was achieved by the crosslinking within an adjusted calcium-containing solution that effectively preserved the continuous fibrous structure of the inner cell-collagen part. The constructed hydrogel carriers showed a continuous fiber with a diameter of ∼700–1000 μm for the core and 200–500 μm for the shell area, which was largely dependent on the alginate concentration (2%–5%) as well as the injection rate (20–80 mL/h). The water uptake capacity of the core–shell carriers was as high as 98%, which could act as a pore channel to supply nutrients and oxygen to the cells. Degradation of the scaffolds showed a weight loss of ∼22% at 7 days and ∼43% at 14 days, suggesting a possible role as a degradable tissue-engineered construct. The MSCs encapsulated within the collagen core showed excellent viability, exhibiting significant cellular proliferation up to 21 days with levels comparable to those observed in the pure collagen gel matrix used as a control. A live/dead cell assay also confirmed similar percentages of live cells within the core–shell carrier compared to those in the pure collagen gel, suggesting the carrier was cell compatible and was effective for maintaining a cell population. Cells allowed to differentiate under osteogenic conditions expressed high levels of bone-related genes, including osteocalcin, bone sialoprotein, and osteopontin. Further, when the core–shell fibrous carriers were implanted in a rat calvarium defect, the bone

  2. Potential effect of angiotensin II receptor blockade in adipose tissue and bone.

    PubMed

    Nakagami, Hironori; Osako, Mariana Kiomy; Morishita, Ryuichi

    2013-01-01

    Recent evidence demonstrated that dysregulation of adipocytokine functions seen in abdominal obesity may be involved in the pathogenesis of the metabolic syndrome. Angiotensinogen, the precursor of angiotensin (Ang) II, is produced primarily in the liver, and also in adipose tissue, where it is up-regulated during the development of obesity and involved in blood pressure regulation and adipose tissue growth. Blockade of renin-angiotensin system (RAS) attenuates weight gain and adiposity by enhanced energy expenditure, and the favorable metabolic effects of telmisartan have been related to its Ang II receptor blockade and action as a partial agonist of peroxisome proliferators activated receptor (PPAR)-γ. PPARγ plays an important role in regulating carbohydrate and lipid metabolism, and ligands for PPARγ can improve insulin sensitivity and reduce triglyceride levels. Similarly, bone metabolism is closely regulated by hormones and cytokines, which have effects on both bone resorption and deposition. It is known that the receptors of Ang II are expressed in culture osteoclasts and osteoblasts, and Ang II is postulated to be able to act upon the cells involved in bone metabolism. In in vitro system, Ang II induced the differentiation and activation of osteoclasts responsible for bone resorption. Importantly, it was demonstrated by the sub-analysis of a recent clinical study that the fracture risk was significantly reduced by the usage of angiotensin-converting enzyme inhibitors. To treat the subgroups of hypertensive patients with osteoporosis RAS can be considered a novel target. PMID:23176218

  3. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    PubMed

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications. PMID:25370308

  4. Mitogen-activated protein kinase phosphatase-1: function and regulation in bone and related tissues.

    PubMed

    Broome, David T; Datta, Nabanita S

    2016-05-01

    In this review, we have highlighted work that has clearly demonstrated that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), a negative regulator of MAPKs, is an important signaling mediator in bone, muscle, and fat tissue homeostasis and differentiation. Further, we examined recent studies with particular focus on MKP-1 overexpression or deletion and its impact on tissues connected to bone. We also summarized regulation of MKP-1 by known skeletal regulators like parathyroid hormone (PTH)/PTH-related peptide (PTHrP) and bone morphogenic proteins. MKP-1's integration into the pathophysiological state of osteoporosis, osteoarthritis, rheumatoid arthritis, obesity, and muscular dystrophy are examined to emphasize possible involvement of MKP-1 both at the molecular level and in disease complications such as sarcopenia- or diabetes-related osteoporosis. We predict that understanding the mechanism of MKP-1-mediated signaling in bone-muscle-fat crosstalk will be a key in coordinating their activities and developing therapeutics to improve clinical outcomes for diseases associated with advanced age. PMID:27031422

  5. Icariin: does it have an osteoinductive potential for bone tissue engineering?

    PubMed

    Zhang, Xin; Liu, Tie; Huang, Yuanliang; Wismeijer, Daniel; Liu, Yuelian

    2014-04-01

    Traditional Chinese medicines have been recommended for bone regeneration and repair for thousands of years. Currently, the Herba Epimedii and its multi-component formulation are the attractive native herbs for the treatment of osteoporosis. Icariin, a typical flavonol glycoside, is considered to be the main active ingredient of the Herba Epimedii from which icariin has been successfully extracted. Most interestingly, it has been reported that icariin can be delivered locally by biomaterials and that it has an osteoinductive potential for bone tissue engineering. This review focuses on the performance of icariin in bone tissue engineering and on blending the information from icariin with the current knowledge relevant to molecular mechanisms and signal pathways. The osteoinductive potential of icariin could be attributed to its multiple functions in the musculoskeletal system which is involved in the regulation of multiple signaling pathways in anti-osteoporosis, osteogenesis, anti-osteoclastogenesis, chondrogenesis, angiogenesis, and anti-inflammation. The osteoinductive potential and the low price of icariin make it a very attractive candidate as a substitute of osteoinductive protein-bone morphogenetic proteins (BMPs), or as a promoter for enhancing the therapeutic effects of BMPs. However, the effectiveness of the local delivery of icariin needs to be investigated further. PMID:23824956

  6. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect

    Lepel, E.A.; Laul, J.C.

    1983-10-01

    Data have been presented for 35 elements determined by INAA for NBS oyster tissue (SRM 1566) and for 38 elements determined by INAA and RNAA for IAEA animal bone (H-5). The experimental data showed excellent agreement with published values wherever the comparison exists. Additional trace-element data in the ppb range have been presented for the elements Sc, Sb, Cs, La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Yb, Lu, Hf, Ta, W and Th in NBS oyster tissue. Also, additional trace-element data for IAEA animal bone (H-5) in the ppb range for the elements Al, Sc, Co, Rb, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, lu, Hf, Ta and Th have been presented.

  7. Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Liu, Changsheng; O'Neill, Brian; Wei, Jie; Ngothai, Yung

    2012-07-01

    In this study, porous scaffolds made of magnesium phosphate (MP)/polycaprolactone (PCL) biocomposite were developed for bone tissue engineering applications. The composite scaffolds were fabricated by the particulate leaching method using sodium chloride particles as porogen. The obtained scaffold with porosity around 73% presents a porous structure with interconnected open pores. Hydrophilicity of the scaffolds was enhanced by the incorporation of MP component as demonstrated by the water contact angle measurement. The results of the in vitro degradation study show that the MP/PCL composite scaffolds degraded faster than PCL scaffolds in phosphate buffered saline (PBS). In addition, the degradation rate of the scaffolds could be tuned by adjusting the content of MP component in the composite. The results indicate that the MP/PCL composite scaffold has a potential application in bone tissue engineering.

  8. Design of injectable organic-inorganic hybrid for bone tissue repair.

    PubMed

    Dessì, Mariagemiliana; Raucci, Maria Grazia; Zeppetelli, Stefania; Ambrosio, Luigi

    2012-08-01

    Injectable bone substitutes are rapidly gained success in tissue engineering applications for their less invasive surgical aspect. Here, the design and the characterization of a novel degradable paste of PCL reinforced with nanocrystals of hydroxyapatite have been presented aiming to mimic natural tissue. Nanohydroxyapatite has been successfully synthesized via sol-gel technique. Dynamic and steady state viscoelastic properties of the solutions and paste were investigated to control the kinetic of phase transition. Correspondingly, the morphology and composition were characterized via TEM, EDAX, and thermal analysis. Injection test underlines the completely ability of the paste of being injected without altering its features. Preliminary biological study showed that the composite paste is not cytotoxic. The synergistic rheological and biological properties, combined with the positive effect of chemical synthesis method indicate that the composite paste is very suitable as local bone substitute in low-load areas. PMID:22581691

  9. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    PubMed Central

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  10. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    PubMed Central

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2015-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26798448

  11. [Effects of alfacalcidol on mineral density of bone tissue in patients with rheumatoid arthritis].

    PubMed

    Gukasian, D A; Nasonov, E L; Balabanova, R M; Smirnov, A V; Vlasova, I S

    2001-01-01

    The analysis of antiosteoporotic efficacy of alphacalcidol was made in 50 patients with rheumatoid arthritis (RA). 30 RA patients received alphacalcidol in a dose 0.75-1.0 mcg/day for 12 months. 20 control RA patients did not receive the drug. Mineral density of the bone tissue (MD) of the proximal femur and low back spine was studied using double x-ray absorptiometry at the start of the treatment and 12 months after it. It was established that alphacalcidol stabilizes MD of the neck of the femur and low spine. A significant MD increase was observed in those areas of the proximal femur where cortical bone tissue prevails. PMID:11641938

  12. Measuring Differences in Compositional Properties of Bone Tissue by Confocal Raman Spectroscopy

    PubMed Central

    Nyman, Jeffry S.; Makowski, Alexander J.; Patil, Chetan A.; Masui, T. Philip; O'Quinn, Elizabeth C.; Bi, Xiaohong; Guelcher, Scott A.; Nicollela, Daniel P.; Mahadevan-Jansen, Anita

    2015-01-01

    The full range of fracture risk determinants arise from each hierarchical level comprising the organization of bone. Raman spectroscopy is one tool capable of characterizing the collagen and mineral phases at a near sub-micron length scale, but the ability of Raman spectra to distinguish compositional differences of bone is not well defined. Therefore, we analyzed multiple Raman peak intensities and peak ratios to characterize their ability to distinguish between the typically less mineralized osteonal tissue and the more mineralized interstitial tissue in intra-cortical human bone. To further assess origins of variance, we collected Raman spectra from embedded specimens and for 2 orientations of cut. Per specimen, Raman peak intensities or ratios were averaged among multiple sites within 5 osteons and 5 neighboring interstitial tissue. The peak ratios of ν1 phosphate (PO4) to Proline or Amide III detected the highest increases of 15.4% or 12.5%, respectively, in composition from osteonal to interstitial tissue. The coefficient of variance (COV) was less than 5% for each as opposed to a COV of ∼8% for the traditional ν1PO4/Amide I, a peak ratio that varied the most between transverse and longitudinal cuts for each tissue type. Although embedding affected Raman peaks, it did not obscure differences in most peak ratios related to mineralization between the 2 tissue types. In studies with limited sample size but sufficient number of Raman spectra per specimen for spatial averaging, ν1PO4/Amide III or ν1PO4/Proline is the Raman property that is most likely to detect a compositional difference between experimental groups. PMID:21597909

  13. Modeling of an optimized electrostimulative hip revision system under consideration of uncertainty in the conductivity of bone tissue.

    PubMed

    Schmidt, Christian; Zimmermann, Ulf; van Rienen, Ursula

    2015-07-01

    Since several years, the number of total hip arthroplasty revision surgeries is substantially growing. One of the main reasons for this procedure to become necessary is the loosening or damage of the prothesis, which is facilitated by bone necrosis at the implant-bone interface. Electrostimulation is one promising technique, which can accelerate the growth of bone cells and, therefore, enhance the anchorage of the implant to the bone. We present computational models of an electrostimulative total hip revision system to enhance bone regeneration. In this study, the influence of uncertainty in the conductivity of bone tissue on the electric field strength and the beneficial stimulation volume for an optimized electrode geometry and arrangement is investigated. The generalized polynomial chaos technique is used to quantify the uncertainty in the stimulation volumes with respect to the uncertain conductivity of cancellous bone, bone marrow, and bone substitute, which is used to fill defective areas. The results suggest that the overall beneficial stimulation areas are only slightly sensitive to the uncertainty in conductivity of bone tissue. However, in the proximity of tissue boundaries, larger uncertainties, especially in the transition between beneficial and understimulation areas, can be expected. PMID:25898285

  14. Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering.

    PubMed

    Martins, Albino; Pinho, Elisabete D; Correlo, Vítor M; Faria, Susana; Marques, Alexandra P; Reis, Rui L; Neves, Nuno M

    2010-12-01

    Native bone extracellular matrix (ECM) is a complex hierarchical fibrous composite structure, resulting from the assembling of collagen fibrils at several length scales, ranging from the macro to the nanoscale. The combination of nanofibers within microfibers after conventional reinforcement methodologies seems to be a feasible solution to the rational design of highly functional synthetic ECM substitutes. The present work aims at the development of bone ECM inspired structures, conjugating electrospun chitosan (Cht) nanofibers within biodegradable polymeric microfibers [poly(butylene succinate)-PBS and PBS/Cht], assembled in a fiber mesh structure. The nanofibers-reinforced composite fiber mesh scaffolds were seeded with human bone marrow mesenchymal stem cells (hBMSCs) and cultured under osteogenic differentiation conditions. These nanofibers-reinforced composite scaffolds sustained ECM deposition and mineralization, mainly in the PBS/Cht-based fiber meshes, as depicted by the increased amount of calcium phosphates produced by the osteogenic differentiated hBMSCs. The osteogenic genotype of the cultured hBMSCs was confirmed by the expression of osteoblastic genes, namely Alkaline Phosphatase, Osteopontin, Bone Sialoprotein and Osteocalcin, and the transcription factors Runx2 and Osterix, all involved in different stages of the osteogenesis. These data represent the first report on the biological functionality of nanofibers-reinforced composite scaffolds, envisaging the applicability of the developed structures for bone tissue engineering. PMID:20666612

  15. Bone Pose Estimation in the Presence of Soft Tissue Artifact Using Triangular Cosserat Point Elements.

    PubMed

    Solav, Dana; Rubin, M B; Cereatti, Andrea; Camomilla, Valentina; Wolf, Alon

    2016-04-01

    Accurate estimation of the position and orientation (pose) of a bone from a cluster of skin markers is limited mostly by the relative motion between the bone and the markers, which is known as the soft tissue artifact (STA). This work presents a method, based on continuum mechanics, to describe the kinematics of a cluster affected by STA. The cluster is characterized by triangular cosserat point elements (TCPEs) defined by all combinations of three markers. The effects of the STA on the TCPEs are quantified using three parameters describing the strain in each TCPE and the relative rotation and translation between TCPEs. The method was evaluated using previously collected ex vivo kinematic data. Femur pose was estimated from 12 skin markers on the thigh, while its reference pose was measured using bone pins. Analysis revealed that instantaneous subsets of TCPEs exist which estimate bone position and orientation more accurately than the Procrustes Superimposition applied to the cluster of all markers. It has been shown that some of these parameters correlate well with femur pose errors, which suggests that they can be used to select, at each instant, subsets of TCPEs leading an improved estimation of the underlying bone pose. PMID:26194039

  16. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.

    PubMed

    Torres, A L; Gaspar, V M; Serra, I R; Diogo, G S; Fradique, R; Silva, A P; Correia, I J

    2013-10-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric-bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. PMID:23910366

  17. Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering

    SciTech Connect

    Yizhi, M.; Yi-Xian, Q; DiMasi, E; Xiaolan, B; Rafailovich, M; Pernodet, N

    2009-01-01

    Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro.

  18. Hybrid Matrix Grafts to Favor Tissue Regeneration in Rabbit Femur Bone Lesions

    PubMed Central

    Goy, Dante Pascual; Gorosito, Emmanuel; Costa, Hermes S; Mortarino, Pablo; Pedemonte, Noelia Acosta; Toledo, Javier; Mansur, Herman S; Pereira, Marivalda M; Battaglino, Ricardo; Feldman, Sara

    2012-01-01

    At present, typical approaches employed to repair fractures and other bone lesions tend to use matrix grafts to promote tissue regeneration. These grafts act as templates, which promote cellular adhesion, growth and proliferation, osteoconduction, and even osteoinduction, which commonly results in de novo osteogenesis. The present work aimed to study the bone-repairing ability of hybrid matrixes (HM) prepared with polyvinyl alcohol (PVA) and bioactive glass in an experimental rabbit model. The HM were prepared by combining 30% bioactive glass (nominal composition of 58% SiO2 -33 % CaO - 9% P2O5) and 70% PVA. New Zealand rabbits were randomly divided into the control group (C group) and two groups with bone lesions, in which one received a matrix implant HM (Implant group), while the other did not (no Implant group). Clinical monitoring showed no altered parameters from either the Implant or the no Implant groups as compared to the control group, for the variables of diet grades, day and night temperatures and hemograms. In the Implant group, radiologic and tomographic studies showed implanted areas with clean edges in femoral non-articular direction, and radio-dense images that suggest incipient integration. Minimum signs of phlogosis could be observed, whereas no signs of rejection at this imaging level could be identified. Histological analysis showed evidence of osteo-integration, with the formation of a trabecular bone within the implant. Together, these results show that implants of hybrid matrixes of bioactive glass are capable of promoting bone regeneration. PMID:22848334

  19. N-acetyl muramyl dipeptide stimulation of bone resorption in tissue culture.

    PubMed Central

    Dewhirst, F E

    1982-01-01

    N-Acetyl-muramyl-L-alanyl-D-isoglutamine (MDP), a structurally defined fragment of bacterial peptidoglycan, stimulated significant release of previously incorporated 45Ca from fetal rat bones in tissue culture over the concentration range of 0.1 to 10.0 micrograms/ml. MDP-Stimulated bone resorption was not inhibited by the addition of the prostaglandin synthetase inhibitor indomethacin to the culture medium. MDP was neither mitogenic for nor stimulated the release of osteoclast-activating factor from cultured human peripheral blood mononuclear cells. Thus, MDP-stimulated bone resorption in vitro is mediated by a mechanism which is not dependent upon prostaglandins or osteoclast-activating factor. 6-O-Stearoyl-N-acetyl-muramyl-L-alanyl-D-isoglutamine, a lipophilic analog of MDP, was slightly more potent than MDP. Two diastereomers of MDP, N-acetyl-muramyl-L-alanyl-L-isoglutamine and N-acetyl-muramyl-D-alanyl-D-isoglutamine, which are inactive as adjuvants, were at least 1,000 times less active than MDP in stimulating bone resorption. The stereochemical specificity for bone-resorptive activity paralleled that required for adjuvant activity, macrophage activation, and activation of the reticuloendothelial system. PMID:7054120

  20. Retrospective study on bone-level and soft-tissue-level cylindrical implants.

    PubMed

    Lopez, M A; Andreasi Bassi, M; Confalone, L; Gaudio, R M; Lombardo, L; Lauritano, D

    2016-01-01

    The purpose of this prospective clinical study was to evaluate the survival rate (SVR - i.e. fixtures still in place at the end of the observation period) and success rate (SCR - i.e. bone resorption around implant neck) of two cylindrical implant systems. Both systems were equipped with a tapered connection, one requiring a bone-level (BL) placement, while the other a soft-tissue-level (STL) placement. In the period between January 1996 and October 2011, a total of 150 implants (76 in females and 74 in males, mean age 60±11 years) were inserted. The mean post-surgical follow-up was 84±47 months. Several parameters were evaluated as potential outcome conditioners: age, gender, diabetes, smoking, periodontitis, type of edentulism, replaced tooth, jaw location (i.e. maxilla or mandible), bone graft, immediate loading, post-extractive, type of prosthesis, implant diameter and length. An SPSS program was used for statistical analysis. Only two fixtures were lost, therefore SVR was 98.7%. SCR, expressed through the mean marginal bone loss, was 92%. The mean peri-implant bone loss was 0.121.47 mm for BL implants and 0.041.3 mm for STL implants. None of the studied variables had a statistical significant impact on SVR or SCR. Cylindrical implants are reliable for oral rehabilitation. PMID:27469547

  1. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.

    PubMed

    Dhand, Chetna; Ong, Seow Theng; Dwivedi, Neeraj; Diaz, Silvia Marrero; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Fazil, Mobashar H U T; Liu, Shouping; Seitz, Vera; Wintermantel, Erich; Beuerman, Roger W; Ramakrishna, Seeram; Verma, Navin K; Lakshminarayanan, Rajamani

    2016-10-01

    Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3. The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries. PMID:27475728

  2. [The application progress of human urine derived stem cells in bone tissue engineering].

    PubMed

    Gao, Peng; Jiang, Dapeng; Li, Zhaozhu

    2016-04-01

    The research of bone tissue engineering bases on three basic directions of seed cells, scaffold materials and growth information. Stem cells have been widely studied as seed cells. Human urine-derived stem cell (hUSC) is extracted from urine and described to be adhesion growth, cloning, expression of the majority of mesenchymal stem cell markers and peripheral cell markers, multi-potential and no tumor but stable karyotype with passaging many times. Some researches proposed that hUSC might be a new source of seed cells in tissue engineering because of their invasive and convenient obtention, stable culture and multiple differentiation potential. PMID:27029208

  3. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. PMID:25766036

  4. Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter

    2012-10-01

    During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.

  5. Maintenance of soft tissue closure following guided bone regeneration: technical considerations and report of 723 cases.

    PubMed

    Fugazzotto, P A

    1999-09-01

    The purpose of this paper is to present simple clinical techniques which have been utilized in a significant number of consecutive cases to maintain primary closure throughout the course of regeneration. The maintenance of soft tissue primary closure following guided bone regeneration (GBR) therapy, while considered a considerable challenge, is recognized as contributing to the maximization of therapeutic results. A retrospective analysis of the maintenance of such soft tissue primary closure following the utilization of specific mucoperiosteal flap designs during GBR surgery in 723 consecutively treated cases was carried out. Soft tissue closure was maintained over the membranes for the course of regeneration (a minimum of 6 months) in 695 cases (96.1%). The maintenance of soft tissue primary closure following GBR therapy may be predictably attained through proper surgical planning, technical care, and appropriate postoperative management. PMID:10505812

  6. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering.

    PubMed

    Ganesh, Nitya; Jayakumar, Rangasamy; Koyakutty, Manzoor; Mony, Ullas; Nair, Shantikumar V

    2012-09-01

    Poly(caprolactone) (PCL) has been frequently considered for bone tissue engineering because of its excellent biocompatibility. A drawback, however, of PCL is its inadequate mechanical strength for bone tissue engineering and its inadequate bioactivity to promote bone tissue regeneration from mesenchymal stem cells. To correct this deficiency, this work investigates the addition of nanoparticles of silica (nSiO(2)) to the scaffold to take advantage of the known bioactivity of silica as an osteogenic material and also to improve the mechanical properties through nanoscale reinforcement of the PCL fibers. The nanocomposite scaffolds and the pristine PCL scaffolds were evaluated physicochemically, mechanically, and biologically in the presence of human mesenchymal stem cells (hMSCs). The results indicated that, when the nanoparticles of size approximately 10 nm (concentrations of 0.5% and 1% w/v) were embedded within, or attached to, the PCL nanofibers, there was a substantial increase in scaffold strength, protein adsorption, and osteogenic differentiation of hMSCs. These nSiO(2) nanoparticles, when directly added to the cells evidently pointed to ingestion of these particles by the cells followed by cell death. The polymer nanofibers appeared to protect the cells by preventing ingestion of the silica nanoparticles, while at the same time adequately exposing them on fiber surfaces for their desired bioactivity. PMID:22725098

  7. Soft tissue aneurysmal bone cyst: a rare case in a middle aged patient

    PubMed Central

    Baker, Kevin S; Gould, Elaine S; Patel, Hiten B; Hwang, Sonya J

    2015-01-01

    Soft tissue aneurysmal bone cyst is a rare entity, with about 20 cases reported in literature, only 3 of which are in patients over 40 years of age. We present a case of a 41 year old Latin American female who presented for evaluation of atraumatic chest pain with radiation to the left shoulder. Her initial workup was negative, including radiographic imaging of the chest and left shoulder. 4 months later, she presented to her orthopedic surgeon with a palpable mass and mild left shoulder pain. Radiographs acquired at that time demonstrated a 7.0 × 5.5 × 6.7 cm mass with rim calcification in the region of the upper triceps muscle. Subsequent CT imaging showed central areas of hypodensity and thin septations, a few of which were calcified. MR evaluation showed hemorrhagic cystic spaces with multiple fluid-fluid levels and enhancing septations. Surgical biopsy was performed and pathology was preliminarily interpreted as cystic myositis ossificans, however on final review the diagnosis of soft tissue aneurysmal bone cyst was made. The lesion was then surgically excised and no evidence of recurrence was seen on a 3 year post-op radiograph. Following description of our case, we conduct a literature review of the imaging characteristics, diagnosis, and treatment of soft tissue aneurysmal bone cyst. PMID:25926918

  8. The ablation threshold of Er;Cr:YSGG laser radiation in bone tissue

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Zezell, Denise Maria

    2015-06-01

    In laser cut clinical applications, the use of energy densities lower than the ablation threshold causes increase of temperature of the irradiated tissue, which might result in an irreversible thermal damage. Hence, knowing the ablation threshold is crucial for insuring the safety of these procedures. The aim of this study was to determine the ablation threshold of the Er,Cr:YSGG laser in bone tissue. Bone pieces from jaws of New Zealand rabbits were cut as blocks of 5 mm × 8 mm and polished with sandpaper. The Er,Cr:YSGG laser used in this study had wavelength of 2780 nm, 20 Hz of frequency, and the irradiation condition was chosen so as to simulate the irradiation during a surgical procedure. The laser irradiation was performed with 12 different values of laser energy densities, between 3 J/cm2 and 42 J/cm2, during 3 seconds, resulting in the overlap of 60 pulses. This process was repeated in each sample, for all laser energy densities. After irradiation, the samples were analyzed by scanning electron microscope (SEM), and it was measured the crater diameter for each energy density. By fitting a curve that related the ablation threshold with the energy density and the corresponding diameter of ablation crater, it was possible to determine the ablation threshold. The results showed that the ablation threshold of the Er,Cr:YSGG in bone tissue was 1.95+/-0.42 J/cm2.

  9. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing.

    PubMed

    Fedorovich, Natalja E; De Wijn, Joost R; Verbout, Abraham J; Alblas, Jacqueline; Dhert, Wouter J A

    2008-01-01

    Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive the extrusion and that their subsequent viability was not different from that of unprinted cells. The applied extrusion conditions did not affect cell survival, and BMSCs could subsequently differentiate along the osteoblast lineage. Furthermore, we were able to combine two distinct cell populations within a single scaffold by exchanging the printing syringe during deposition, indicating that this 3D fiber deposition system is suited for the development of bone grafts containing multiple cell types. PMID:18333811

  10. Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration.

    PubMed

    Lee, Hyeongjin; Yeo, Myunggu; Ahn, SeungHyun; Kang, Dong-Oan; Jang, Chul Ho; Lee, Haengnam; Park, Gil-Moon; Kim, Geun Hyung

    2011-05-01

    Biomedical scaffolds used in bone tissue engineering should have various properties including appropriate bioactivity, mechanical strength, and morphologically optimized pore structures. Collagen has been well known as a good biomaterial for various types of tissue regeneration, but its usage has been limited due to its low mechanical property and rapid degradation. In this work, a new hybrid scaffold consisting of polycaprolactone (PCL) and collagen is proposed for bone tissue regeneration. The PCL enhances the mechanical properties of the hybrid scaffold and controls the pore structure. Layered collagen nanofibers were used to enhance the initial cell attachment and proliferation. The results showed that the hybrid scaffold yielded better mechanical properties of pure PCL scaffold as well as enhanced biological activity than the pure PCL scaffold did. The effect of pore size on bone regeneration was investigated using two hybrid scaffolds with pore sizes of 200 ± 20 and 300 ± 27 μm. After post-seeding for 7 days, the cell proliferation with pore size, 200 ± 20 μm, was greater than that with pore size, 300 ± 27 μm, due to the high surface area of the scaffold. PMID:21384546

  11. Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    PubMed

    Zaslansky, Paul; Currey, John D; Fleck, Claudia

    2016-01-01

    The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing. PMID:27615450

  12. Elevated expression levels of androgen receptors and matrix metalloproteinase-2 and -9 in 30 cases of hepatocellular carcinoma compared with adjacent tissues as predictors of cancer invasion and staging

    PubMed Central

    ZHANG, YAN; SHEN, YUCHENG; CAO, BIN; YAN, AITING; JI, HAOMING

    2015-01-01

    The aim of the present study was to investigate the potential roles of the androgen receptor (AR) and matrix metalloproteinase (MMP)-2 and MMP-9 in hepatocellular carcinoma (HCC) tissues and whether their expression could be used as a predictor of the invasion and stage of cancer. The expression levels of AR, MMP-2 and MMP-9 in HCC tissues and tissues adjacent to the tumor were measured by immunohistochemical staining assay. The expression rates of AR, MMP-2 and MMP-9 in the HCC tissue were 76.67, 73.33 and 76.67%, respectively, all of which were significantly higher than those in the tissues adjacent to the tumor. The expression of these proteins represents the local invasion and stage. AR, MMP-2 and MMP-9 expression levels in HCC tissues have the potential to be employed as predictors of the progression of local cancer invasion and the tumor stage. PMID:25667651

  13. Sequential use of radiophosphate and radiogallium imaging in the differential diagnosis of bone, joint and soft tissue infection: quantitative analysis.

    PubMed

    Rosenthall, L; Kloiber, R; Damtew, B; Al-Majid, H

    1982-01-01

    A quantitative analysis of the results obtained by sequential 99mTc methylene diphosphonate (MDP) and 67Ga-citrate (Ga) imaging to disclose and distinguish infections in bone, synovium and adjacent soft tissue is reported. There were 129 patients with proved or probable osteomyelitis, septic arthritis and cellulitis, and 94 patients who were eventually shown to be free of sepsis, but not necessarily free of some other nonseptic affliction. Of the 159 patients referred with a presumptive clinical diagnosis of osteomyelitis 94 were eventually shown to be free of infection. The results of this group by sequential imaging were true positive 0.72, true negative 0.86 and accuracy 0.80 when low-grade Ga uptakes, which were similar in distribution to MDP, were excluded. In 26 patients with septic arthritis, the true-positive fraction for combined MDP and Ga was 0.84. The true-positive fraction for Ga in 38 patients with cellulitis was 0.79. PMID:6215237

  14. Activity vs. rest in the treatment of bone, soft tissue and joint injuries.

    PubMed Central

    Buckwalter, J. A.

    1995-01-01

    One of the most important advances in the treatment of musculoskeletal injuries has come from understanding that controlled early resumption of activity can promote restoration of function, and that treatment of injuries with prolonged rest may delay recovery and adversely affect normal tissues. In the last decade of the nineteenth century two widely respected orthopaedists with extensive clinical experience strongly advocated opposing treatments of musculoskeletal injuries. Hugh Owen Thomas in Liverpool believed that enforced, uninterrupted prolonged rest produced the best results. He noted that movement of injured tissues increased inflammation, and that, "It would indeed be as reasonable to attempt to cure a fever patient by kicking him out of bed, as to benefit joint disease by a wriggling at the articulation." Just Lucas-Championnier in Paris took the opposite position. He argued that early controlled active motion accelerated restoration of function, although he noted that mobility had to be given in limited doses. In general, Thomas' views met with greater acceptance in the early part of this century, but experimental studies of the last several decades generally support Lucas-Championneir. They confirm and help explain the deleterious effects of prolonged rest and the beneficial effects of activity on the musculoskeletal tissues. They have shown that maintenance of normal bone, tendon and ligament, articular cartilage and muscle structure and composition require repetitive use, and that changes in the patterns of tissue loading can strengthen or weaken normal tissues. Although all the musculoskeletal tissues can respond to repetitive loading, they vary in the magnitude and type of response to specific patterns of activity. Furthermore, their responsiveness may decline with increasing age. Skeletal muscle and bone demonstrate the most apparent response to changes in activity in individuals of any age. Cartilage and dense fibrous tissues also can respond to

  15. [Mandibular bone tissue regeneration after the introduction of the implantation system performed on the basis of carbon composite material].

    PubMed

    Chetvertnykh, V A; Loginova, N P; Astashina, N B; Rogozhnikov, G I; Rapekta, S I

    2013-01-01

    The purpose of this study was to investigate the processes of regeneration of bone tissue after the introduction of new implant systems. In the experiment, performed on 10 male pigs of Landras breed aged 50-55 days and weighing 17-18.5 kg, the time course of histological changes was studied in the area of mandibular regeneration after the formation of tissue defect and the introduction of the implant of a proposed construction. Morphological analysis of the experimental results 90, 180 and 270 days after the operation demonstrated the process of reparative regeneration of damaged bone along implant-bone block boundaries. Bone repair proceeded through the stage of formation of the woven bone with its progressive substitution by the lamellar bone, with the maintenance of the shape, size and symmetry of the damaged organ. PMID:23805619

  16. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls

    PubMed Central

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4–10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (P<0.001). Metabolic parameters conferred differential impact by race, such that, a positive association for BMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race. PMID:23951544

  17. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering

    PubMed Central

    Ni, PeiYan; Fu, ShaoZhi; Fan, Min; Guo, Gang; Shi, Shuai; Peng, JinRong; Luo, Feng; Qian, ZhiYong

    2011-01-01

    Polylactide (PLA) electrospun fibers have been reported as a scaffold for bone tissue engineering application, however, the great hydrophobicity limits its broad application. In this study, the hybrid amphiphilic poly(ethylene glycol) (PEG)/hydrophobic PLA fibrous scaffolds exhibited improved morphology with regular and continuous fibers compared to corresponding blank PLA fiber mats. The prepared PEG/PLA fibrous scaffolds favored mesenchymal stem cell (MSC) attachment and proliferation by providing an interconnected porous extracellular environment. Meanwhile, MSCs can penetrate into the fibrous scaffold through the interstitial pores and integrate well with the surrounding fibers, which is very important for favorable application in tissue engineering. More importantly, the electrospun hybrid PEG/PLA fibrous scaffolds can enhance MSCs to differentiate into bone-associated cells by comprehensively evaluating the representative markers of the osteogenic procedure with messenger ribonucleic acid quantitation and protein analysis. MSCs on the PEG/PLA fibrous scaffolds presented better differentiation potential with higher messenger ribonucleic acid expression of the earliest osteogenic marker Cbfa-1 and mid-stage osteogenic marker Col I. The significantly higher alkaline phosphatase activity of the PEG/PLA fibrous scaffolds indicated that these can enhance the differentiation of MSCs into osteoblast-like cells. Furthermore, the higher messenger ribonucleic acid level of the late osteogenic differentiation markers OCN (osteocalcin) and OPN (osteopontin), accompanied by the positive Alizarin red S staining, showed better maturation of osteogenic induction on the PEG/PLA fibrous scaffolds at the mineralization stage of differentiation. After transplantation into the thigh muscle pouches of rats, and evaluating the inflammatory cells surrounding the scaffolds and the physiological characteristics of the surrounding tissues, the PEG/PLA scaffolds presented good

  18. Characterization of an Ovine Bilateral Critical Sized Bone Defect Iliac Wing Model to Examine Treatment Modalities Based on Bone Tissue Engineering

    PubMed Central

    Lansdowne, Jennifer L.; Eberli, Ursula; Emans, Pieter; Welting, Tim J. M.; Odekerken, Jim C. E.; Schiuma, Damiano; Thalhauser, Martin; Bouré, Ludovic

    2014-01-01

    Critical sized bone defect (CSBD) animal models are used to evaluate and confirm efficacy and potency of new treatment modalities based on bone tissue engineering before the latter can be applied in clinical practice. In this study, a bilateral CSBD model in the iliac wings of sheep is described in detail. To demonstrate that this is a large animal CSBD model in sheep, bone healing within the defect left empty (negative control) or filled with autologous corticocancellous bone graft (clinical gold standard, positive control) was assessed using micro-CT, histology, histomorphometric, and fluorochrome analysis. After three months, new bone into the defect site was formed across the whole defect in the positive controls but limited to the edge of the defects in the negative controls. Bone volume in the positive controls was statistically higher than in the negative controls, with the latter having less than 10% new bone growth. There were no intraoperative or postoperative complications. The model described here represents a reliable and reproducible bilateral CSBD in sheep with low morbidity that can be used for in vivo evaluation of new treatment modalities based on bone tissue engineering. PMID:24696845

  19. Bioactive Nano-Fibrous Scaffolds for Bone and Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Feng, Kai

    Scaffolds that can mimic the structural features of natural extracellular matrix and can deliver biomolecules in a controlled fashion may provide cells with a favorable microenvironment to facilitate tissue regeneration. Biodegradable nanofibrous scaffolds with interconnected pore network have previously been developed in our laboratory to mimic collagen matrix and advantageously support both bone and cartilage regeneration. This dissertation project aims to expand both the structural complexity and the biomolecule delivery capacity of such biomimetic scaffolds for tissue engineering. We first developed a nanofibrous scaffold that can release an antibiotic (doxycycline) with a tunable release rate and a tunable dosage, which was demonstrated to be able to inhibit bacterial growth over a prolonged time period. We then developed a nanofibrous tissue-engineciing scaffold that can release basic fibroblast growth factor (bFGF) in a spatially and temporally controlled fashion. In a mouse subcutaneous implantation model, the bFGF-releasing scaffold was shown to enhance cell penetration, tissue ingrowth and angiogenesis. It was also found that both the dose and the release rate of bFGF play roles in the biologic function of the scaffold. After that, we developed a nanofibrous PLLA scaffold that can release both bone morphogenetic protein 7 (BMP-7) and platelet-derived growth factor (PDGF) with distinct dosages and release kinetics. It was demonstrated that BMP-7 and PDGF could synergistically enhance bone regeneration using a mouse ectopic bone formation model and a rat periodontal fenestration defect regeneration model. The regeneration outcome was dependent on the dosage, the ratio and the release kinetics of the two growth factors. Last, we developed an anisotropic composite scaffold with an upper layer mimicking the superficial zone of cartilage and a lower layer mimicking the middle zone of cartilage. The thin superficial layer was fabricated using an electrospinning

  20. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach

    PubMed Central

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Mori, Giorgio; Monno, Giuseppe

    2016-01-01

    Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young’s modulus values. For each combination of these variables, the explicit equation of the porosity distribution law–i.e the law that describes the pore dimensions in function of the spatial coordinates–was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry

  1. A novel tissue-engineered bone in repairing femoral head defect and necrosis

    PubMed Central

    Peng, Wuxun; Wang, Lei; Zhang, Jian; Deng, Jin; Gong, Yuekun; Li, Shihe; Hu, Yunyu

    2015-01-01

    Objective: To evaluate the therapeutic effects of AACB/BMP/bFGF, a novel tissue-engineered bone, in repairing femoral head defect and necrosis in dog models. Methods: Dog models of avascular necrosis of femoral head (ANFH) were established by liquid nitrogen freezing method. Group A was untreated; Groups B, C, and D were implanted with AACB, AACB/BMP, and AACB/BMP/bFGF complex, respectively; Group E was grafted with autologous cancellous bone. Samples were collected at 3 w, 6 w, and 12 w after operation. A series of examinations were carried out to investigate the effects of the materials in repairing femoral head defect, including anatomical observation, X-ray examination, histological analysis, and vascular immunohistochemical staining. Results: Our results indicated that, compared with AACB alone and AACB/BMP, AACB/BMP/bFGF complex could exert the most efficient therapeutic effects in dog ANFH models. X-ray examination further confirmed that AACB/BMP/bFGF complex could effectively repair the injuries in dog ANFH models, almost to a comparable level with cancellous bone autografts. Moreover, histological analysis indicated that AACB/BMP/bFGF complex greatly enhanced the new bone formation, which would contribute to the healing of ANFH. Furthermore, vascular immunohistochemical staining revealed that AACB/BMP/bFGF complex could significantly stimulate the revascularization in defect areas, reflecting the post-injury healing process in these models. Conclusion: AACB/BMP/bFGF complex has great potential in repairing femoral head defect by enhancing osteogenesis and revascularization. The novel tissue-engineered bone would be widely used in clinical applications for ANFH treatment, especially as an alternative for autografts. PMID:25785097

  2. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications.

    PubMed

    Porter, Joshua R; Henson, Andrew; Popat, Ketul C

    2009-02-01

    Critical-sized defects in bone, whether caused by cancer tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold-standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to incite and promote the natural healing process of bone, which does not occur in critical-sized defects. In this work, a solvent-free template synthesis technique was utilized to fabricate uniform arrays of substrate-bound poly(epsilon-caprolactone) (PCL) nanowires. Biodegradation of PCL nanowire surfaces was characterized using scanning electron microscopy (SEM) and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Rat bone marrow-derived mesenchymal stem cells (MSCs) were employed to assess short-term biocompatibility and long-term bioactivity of nanowire surfaces. Short-term cell studies indicated that PCL nanowire surfaces supported enhanced cell adhesion and viability compared with control surfaces. MSCs seeded on nanowire surfaces also displayed increased levels of alkaline phosphatase (ALP) after 1, 2, and 3 weeks in culture. Calcium-phosphate mineralization was substantially accelerated on nanowire surfaces compared to control surfaces as indicated through calcium staining, von Kossa staining, SEM, and electron dispersive spectroscopy (EDS). Increased levels of inter- and extracellular levels of osteocalcin and osteopontin were observed on nanowire surfaces using immunofluorescence techniques after 3 weeks of culture. Considering the simplicity of the presented fabrication technique, capacity for solvent-free encapsulation of bioactive molecules or particles, and enhanced MSC performance on nanowire surfaces, this work presents an excellent foundation for the development of 3-D scaffolds for bone tissue regeneration. PMID:19012962

  3. Poly(Propylene Fumarate) Reinforced Dicalcium Phosphate Dihydrate Cement Composites for Bone Tissue Engineering

    PubMed Central

    Alge, Daniel L.; Bennet, Jeffrey; Treasure, Trevor; Voytik-Harbin, Sherry; Goebel, W. Scott; Chu, Tien-Min Gabriel

    2012-01-01

    Calcium phosphate cements have many desirable properties for bone tissue engineering, including osteoconductivity, resorbability, and amenability to rapid prototyping based methods for scaffold fabrication. In this study, we show that dicalcium phosphate dihydrate (DCPD) cements, which are highly resorbable but also inherently weak and brittle, can be reinforced with poly(propylene fumarate) (PPF) to produce strong composites with mechanical properties suitable for bone tissue engineering. Characterization of DCPD-PPF composites revealed significant improvements in mechanical properties for cements with a 1.0 powder to liquid ratio. Compared to non-reinforced controls, flexural strength improved from 1.80 ± 0.19 MPa to 16.14 ± 1.70 MPa, flexural modulus increased from 1073.01 ± 158.40 MPa to 1303.91 ± 110.41 MPa, maximum displacement during testing increased from 0.11 ± 0.04 mm to 0.51 ± 0.09 mm, and work of fracture improved from 2.74 ± 0.78 J/m2 to 249.21 ± 81.64 J/m2. To demonstrate the utility of our approach for scaffold fabrication, 3D macroporous scaffolds were prepared with rapid prototyping technology. Compressive testing revealed that PPF reinforcement increased scaffold strength from 0.31 ± 0.06 MPa to 7.48 ± 0.77 MPa. Finally, 3D PPF-DCPD scaffolds were implanted into calvarial defects in rabbits for 6 weeks. Although the addition of mesenchymal stem cells to the scaffolds did not significantly improve the extent of regeneration, numerous bone nodules with active osteoblasts were observed within the scaffold pores, especially in the peripheral regions. Overall, the results of this study suggest that PPF-DCPD composites may be promising scaffold materials for bone tissue engineering. PMID:22489012

  4. Kartogenin induces cartilage-like tissue formation in tendon–bone junction

    PubMed Central

    Zhang, Jianying; Wang, James H-C

    2014-01-01

    Tendon–bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs. PMID:25419468

  5. Kartogenin induces cartilage-like tissue formation in tendon-bone junction.

    PubMed

    Zhang, Jianying; Wang, James H-C

    2014-01-01

    Tendon-bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs. PMID:25419468

  6. Bone destruction mechanisms in chronic otitis media with cholesteatoma: specific production by cholesteatoma tissue in culture of bone-resorbing activity attributable to interleukin-1 alpha.

    PubMed

    Kurihara, A; Toshima, M; Yuasa, R; Takasaka, T

    1991-12-01

    To clarify specific mechanisms underlying cholesteatoma-induced bone destruction, surgical specimens of middle ear inflammatory granulation tissue with or without cholesteatoma were maintained in vitro and the bone-resorbing activity in their culture supernatants was analyzed by means of calcium release from mouse calvaria. Almost the same levels of bone-resorbing activity and prostaglandin (PG) E2 were found in the supernatants of both types of tissue. By contrast, aural polyp tissue yielded hardly any such activity or PGE2. Under the influence of indomethacin, however, only tissue with cholesteatoma produced considerable bone resorption activity, whereas PGE2 production was suppressed completely. Such activity in the cholesteatoma culture supernatant was not due to contamination of endotoxin and proved to be blocked by the introduction of anti-interleukin (IL)-1 alpha antibody into the calvarial assay system. Anti-IL-1 beta antibody had no effect on such activity. Interleukin-1 alpha was detected only in cholesteatoma tissue culture supernatants by means of enzyme-linked immunosorbent assay and by bioassay. These data suggest that the bone destruction in otitis media with cholesteatoma may be attributed to IL-1 alpha in addition to PGE2. PMID:1746847

  7. Autologously generated tissue-engineered bone flaps for reconstruction of large mandibular defects in an ovine model.

    PubMed

    Tatara, Alexander M; Kretlow, James D; Spicer, Patrick P; Lu, Steven; Lam, Johnny; Liu, Wei; Cao, Yilin; Liu, Guangpeng; Jackson, John D; Yoo, James J; Atala, Anthony; van den Beucken, Jeroen J J P; Jansen, John A; Kasper, F Kurtis; Ho, Tang; Demian, Nagi; Miller, Michael John; Wong, Mark E; Mikos, Antonios G

    2015-05-01

    The reconstruction of large craniofacial defects remains a significant clinical challenge. The complex geometry of facial bone and the lack of suitable donor tissue often hinders successful repair. One strategy to address both of these difficulties is the development of an in vivo bioreactor, where a tissue flap of suitable geometry can be orthotopically grown within the same patient requiring reconstruction. Our group has previously designed such an approach using tissue chambers filled with morcellized bone autograft as a scaffold to autologously generate tissue with a predefined geometry. However, this approach still required donor tissue for filling the tissue chamber. With the recent advances in biodegradable synthetic bone graft materials, it may be possible to minimize this donor tissue by replacing it with synthetic ceramic particles. In addition, these flaps have not previously been transferred to a mandibular defect. In this study, we demonstrate the feasibility of transferring an autologously generated tissue-engineered vascularized bone flap to a mandibular defect in an ovine model, using either morcellized autograft or synthetic bone graft as scaffold material. PMID:25603924

  8. Autologously Generated Tissue-Engineered Bone Flaps for Reconstruction of Large Mandibular Defects in an Ovine Model

    PubMed Central

    Tatara, Alexander M.; Kretlow, James D.; Spicer, Patrick P.; Lu, Steven; Lam, Johnny; Liu, Wei; Cao, Yilin; Liu, Guangpeng; Jackson, John D.; Yoo, James J.; Atala, Anthony; van den Beucken, Jeroen J.J.P.; Jansen, John A.; Kasper, F. Kurtis; Ho, Tang; Demian, Nagi; Miller, Michael John; Wong, Mark E.

    2015-01-01

    The reconstruction of large craniofacial defects remains a significant clinical challenge. The complex geometry of facial bone and the lack of suitable donor tissue often hinders successful repair. One strategy to address both of these difficulties is the development of an in vivo bioreactor, where a tissue flap of suitable geometry can be orthotopically grown within the same patient requiring reconstruction. Our group has previously designed such an approach using tissue chambers filled with morcellized bone autograft as a scaffold to autologously generate tissue with a predefined geometry. However, this approach still required donor tissue for filling the tissue chamber. With the recent advances in biodegradable synthetic bone graft materials, it may be possible to minimize this donor tissue by replacing it with synthetic ceramic particles. In addition, these flaps have not previously been transferred to a mandibular defect. In this study, we demonstrate the feasibility of transferring an autologously generated tissue-engineered vascularized bone flap to a mandibular defect in an ovine model, using either morcellized autograft or synthetic bone graft as scaffold material. PMID:25603924

  9. Activation of the Canonical Bone Morphogenetic Protein (BMP) Pathway during Lung Morphogenesis and Adult Lung Tissue Repair

    PubMed Central

    Sountoulidis, Alexandros; Stavropoulos, Athanasios; Giaglis, Stavros; Apostolou, Eirini; Monteiro, Rui; Chuva de Sousa Lopes, Susana M.; Chen, Huaiyong; Stripp, Barry R.; Mummery, Christine; Andreakos, Evangelos; Sideras, Paschalis

    2012-01-01

    Signaling by Bone Morphogenetic Proteins (BMP) has been implicated in early lung development, adult lung homeostasis and tissue-injury repair. However, the precise mechanism of action and the spatio-temporal pattern of BMP-signaling during these processes remains inadequately described. To address this, we have utilized a transgenic line harboring a BMP-responsive eGFP-reporter allele (BRE-eGFP) to construct the first detailed spatiotemporal map of canonical BMP-pathway activation during lung development, homeostasis and adult-lung injury repair. We demonstrate that during the pseudoglandular stage, when branching morphogenesis progresses in the developing lung, canonical BMP-pathway is active mainly in the vascular network and the sub-epithelial smooth muscle layer of the proximal airways. Activation of the BMP-pathway becomes evident in epithelial compartments only after embryonic day (E) 14.5 primarily in cells negative for epithelial-lineage markers, located in the proximal portion of the airway-tree, clusters adjacent to neuro-epithelial-bodies (NEBs) and in a substantial portion of alveolar epithelial cells. The pathway becomes activated in isolated E12.5 mesenchyme-free distal epithelial buds cultured in Matrigel suggesting that absence of reporter activity in these regions stems from a dynamic cross-talk between endoderm and mesenchyme. Epithelial cells with activated BMP-pathway are enriched in progenitors capable of forming colonies in three-dimensional Matrigel cultures. As lung morphogenesis approaches completion, eGFP-expression declines and in adult lung its expression is barely detectable. However, upon tissue-injury, either with naphthalene or bleomycin, the canonical BMP-pathways is re-activated, in bronchial or alveolar epithelial cells respectively, in a manner reminiscent to early lung development and in tissue areas where reparatory progenitor cells reside. Our studies illustrate the dynamic activation of canonical BMP-pathway during lung

  10. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.

    PubMed

    Bajaj, Devendra; Geissler, Joseph R; Allen, Matthew R; Burr, David B; Fritton, J C

    2014-07-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0mg/kg/day; alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (p<0.001) and fatigue life (number of cycles to failure) reduced in a stress-life approach by greater than 3-fold with ALN1.0 (p<0.05). While not affecting the number of osteons, ALN treatment reduced other features associated with bone remodeling, such as the size of osteons (-14%; ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×10(3) μm2; p<0.01) and the density of osteocyte lacunae (-20%; ALN1.0: 11.4±3.3, VEH: 14.3±3.6, ×10(2) #/mm2; p<0.05). Furthermore, the osteocyte lacunar density was directly proportional to initial elastic modulus when the groups were pooled (R=0.54, p<0.01). These findings suggest that the structural components normally contributing to healthy cortical bone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. PMID:24704262

  11. Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Alge, Daniel L.

    The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility

  12. The Resistance of Cortical Bone Tissue to Failure under Cyclic Loading is Reduced with Alendronate

    PubMed Central

    Bajaj, Devendra; Geissler, Joseph R.; Allen, Matthew R.; Burr, David B.; Fritton, J. Christopher

    2014-01-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0 mg/kg/day; Alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (p<0.001) and fatigue life (number of cycles to failure) reduced in a stress-life approach by greater than 3-fold with ALN1.0 (p<0.05). While not affecting the number of osteons, ALN treatment reduced other features associated with bone remodeling, such as the size of osteons (−14%, ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×103 µm2; p<0.01) and the density of osteocyte lacunae (−20%; ALN1.0: 11.4±3.3, VEH: 14.3±3.6, ×102 #/mm2; p<0.05). Furthermore, the osteocyte lacunar density was directly proportional to initial elastic modulus when the groups were pooled (R=0.54, p<0.01). These findings suggest that the structural components normally contributing to healthy cortical bone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. PMID:24704262

  13. Pilot Study: Unique Response of Bone Tissue During an Investigation of Radio-Adaptive Effects in Mice

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Iwaniec, U.; Wu, H.

    2011-01-01

    PURPOSE: We obtained bone tissue to evaluate the collateral effects of experiments designed to investigate molecular mechanisms of radio-adaptation in a mouse model. Radio-adaptation describes a process by which the prior exposure to low dose radiation can protect against the toxic effect of a subsequent high dose exposure. In the radio-adaptation experiments, C57Bl/6 mice were exposed to either a Sham or a priming Low Dose (5 cGy) of Cs-137 gamma rays before being exposed to either a Sham or High Dose (6 Gy) 24 hours later. ANALYSIS: Bone tissue were obtained from two experiments where mice were sacrificed at 3 days (n=3/group, 12 total) and at 14 days (n=6/group, 24 total) following high dose exposure. Tissues were analyzed to 1) evaluate a radio-adaptive response in bone tissue and 2) describe cellular and microstructural effects for two skeletal sites with different rates of bone turnover. One tibia and one lumbar vertebrae (LV2), collected at the 3-day time-point, were analyzed by bone histomorphometry and micro-CT to evaluate the cellular response and any evidence of microarchitectural impact. Likewise, tibia and LV2, collected at the 14-day time-point, were analyzed by micro-CT alone to evaluate resulting changes to bone structure and microarchitecture. The data were analyzed by 2-way ANOVA to evaluate the effects of the priming low dose radiation, of the high dose radiation, and of any interaction between the priming low and high doses of radiation. Bone histomorphometry was performed in the cancellous bone (aka trabecular bone) compartments of the proximal tibial metaphysis and of LV2. RESULTS: Cellular Response @ 3 Days The priming Low Dose radiation decreased osteoblast-covered bone perimeter in the proximal tibia and the total cell density in the bone marrow in the LV2. High Dose radiation, regardless of prior exposure to priming dose, dramatically reduced total cell density in bone marrow of both the long bone and vertebra. However, in the proximal

  14. Strontium eluting nanofibers augment stem cell osteogenesis for bone tissue regeneration.

    PubMed

    Meka, Sai Rama Krishna; Jain, Shubham; Chatterjee, Kaushik

    2016-10-01

    Strontium is known to offer a therapeutic benefit to osteoporotic patients by promoting bone formation. Thus, toward engineering scaffolds for bone tissue regeneration we have prepared polymer nanoco