Science.gov

Sample records for adjacent cell types

  1. Interior building details of Building A, dungeon cell adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building A, dungeon cell adjacent to northwest cell: granite and brick threshold, poured concrete floors, plastered finished walls, vaulted veiling; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  2. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding.

    PubMed

    Fykerud, Tone A; Knudsen, Lars M; Totland, Max Z; Sørensen, Vigdis; Dahal-Koirala, Shiva; Lothe, Ragnhild A; Brech, Andreas; Leithe, Edward

    2016-11-01

    In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed "mitotic nanotubes," were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding.

  3. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding

    PubMed Central

    Fykerud, Tone A.; Knudsen, Lars M.; Totland, Max Z.; Dahal-Koirala, Shiva; Lothe, Ragnhild A.; Brech, Andreas; Leithe, Edward

    2016-01-01

    ABSTRACT In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed “mitotic nanotubes,” were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding. PMID:27625181

  4. Light scattering by adjacent red blood cells: a mathematical model

    NASA Astrophysics Data System (ADS)

    Uzunoglou, Nikolaos K.; Stamatakos, Georgios; Koutsouris, Dimitrios; Yova-Loukas, Dido M.

    1995-01-01

    Simple approximate scattering theories such as the Rayleigh-Gans theory are not generally applicable to the case of light scattering by red blood cell (RBC) aggregates, including thrombus. This is mainly due to the extremely short distance separating erythrocytes in the aggregates (of the order of 25 nm) as well as to the substantial size of the aggregates. Therefore, in this paper a new mathematical model predicting the electromagnetic field produced by the scattering of a plane electromagnetic wave by a system of two adjacent RBCs is presented. Each RBC is modeled as a homogeneous dielectric ellipsoid of complex index of refraction surrounded by transparent plasma. The relative position and orientation of the ellipsoids are arbitrary. Scattering is formulated in terms of an integral equation which, however, contains two singular kernels. The singular equation is transformed into a pair of nonsingular integral equations for the Fourier transform of the internal field of each RBC. The latter equations are solved by reducing them by quadrature into a matrix equation. The resulting solutions are used to estimate the scattering amplitude. Convergence aspects concerning the numerical calculation of the matrix elements originating from the interaction between the RBCs are also presented.

  5. Types of Stem Cells

    MedlinePlus

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  6. Acceleration of Multidimensional Discrete Ordinates Methods Via Adjacent-Cell Preconditioners

    SciTech Connect

    Azmy, Y.Y.

    2000-10-15

    The adjacent-cell preconditioner (AP) formalism originally derived in slab geometry is extended to multidimensional Cartesian geometry for generic fixed-weight, weighted diamond difference neutron transport methods. This is accomplished for the thick-cell regime (KAP) and thin-cell regime (NAP). A spectral analysis of the resulting acceleration schemes demonstrates their excellent spectral properties for model problem configurations, characterized by a uniform mesh of infinite extent and homogeneous material composition, each in its own cell-size regime. Thus, the spectral radius of KAP vanishes as the computational cell size approaches infinity, but it exceeds unity for very thin cells, thereby implying instability. In contrast, NAP is stable and robust for all cell sizes, but its spectral radius vanishes more slowly as the cell size increases. For this reason, and to avoid potential complication in the case of cells that are thin in one dimension and thick in another, NAP is adopted in the remainder of this work. The most important feature of AP for practical implementation in production level codes is that it is cell centered, reducing the size of the algebraic system comprising the acceleration stage compared to face-centered schemes. Boundary conditions for finite extent problems and a mixing formula across material and cell-size discontinuity are derived and used to implement NAP in a test code, AHOT, and a production code, TORT. Numerical testing for algebraically linear iterative schemes for the cases embodied in Burre's Suite of Test Problems demonstrates the high efficiency of the new method in reducing the number of iterations required to achieve convergence, especially for optically thick cells where acceleration is most needed. Also, for algebraically nonlinear (adaptive) methods, AP generally performs better than the partial current rebalance method in TORT and the diffusion synthetic acceleration method in TWODANT. Finally, application of the AP

  7. Molecular heterogeneity in adjacent cells in triple-negative breast cancer

    PubMed Central

    Huebschman, Michael L; Lane, Nancy L; Liu, Huaying; Sarode, Venetia R; Devlin, Judith L; Frenkel, Eugene P

    2015-01-01

    Purpose This study interrogates the molecular status of individual cells in patients with triple-negative breast cancers and explores the molecular identification and characterization of these tumors to consider the exploitation of a potential-targeted therapeutic approach. Patients and methods Hyperspectral immunologic cell by cell analysis was applied to touch imprint smears obtained from fresh tumors of breast cancer patients. Results Cell by cell analysis confirms significant intratumoral molecular heterogeneity in cancer markers with differences from polymerase chain reaction marker reporting. The individual cell heterogeneity was recognized in adjacent cells examined with panels of ten molecular markers in each single cell and included some markers that are considered to express “stem-cell” character. In addition, heterogeneity did not relate either to the size or stage of the primary tumor or to the site from within the cancer. Conclusion There is a very significant molecular heterogeneity when “adjacent cells” are examined in triple-negative breast cancer, thereby making a successful targeted approach unlikely. In addition, it is not reasonable to consider that these changes will provide an answer to tumor dormancy. PMID:26316815

  8. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, Richard M.

    1995-01-01

    A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.

  9. Iterative convergence acceleration of neutral particle transport methods via adjacent-cell preconditioners

    SciTech Connect

    Azmy, Y.Y.

    1999-06-10

    The author proposes preconditioning as a viable acceleration scheme for the inner iterations of transport calculations in slab geometry. In particular he develops Adjacent-Cell Preconditioners (AP) that have the same coupling stencil as cell-centered diffusion schemes. For lowest order methods, e.g., Diamond Difference, Step, and 0-order Nodal Integral Method (ONIM), cast in a Weighted Diamond Difference (WDD) form, he derives AP for thick (KAP) and thin (NAP) cells that for model problems are unconditionally stable and efficient. For the First-Order Nodal Integral Method (INIM) he derives a NAP that possesses similarly excellent spectral properties for model problems. The two most attractive features of the new technique are:(1) its cell-centered coupling stencil, which makes it more adequate for extension to multidimensional, higher order situations than the standard edge-centered or point-centered Diffusion Synthetic Acceleration (DSA) methods; and (2) its decreasing spectral radius with increasing cell thickness to the extent that immediate pointwise convergence, i.e., in one iteration, can be achieved for problems with sufficiently thick cells. He implemented these methods, augmented with appropriate boundary conditions and mixing formulas for material heterogeneities, in the test code APID that he uses to successfully verify the analytical spectral properties for homogeneous problems. Furthermore, he conducts numerical tests to demonstrate the robustness of the KAP and NAP in the presence of sharp mesh or material discontinuities. He shows that the AP for WDD is highly resilient to such discontinuities, but for INIM a few cases occur in which the scheme does not converge; however, when it converges, AP greatly reduces the number of iterations required to achieve convergence.

  10. Cell types, circuits, computation.

    PubMed

    Azeredo da Silveira, Rava; Roska, Botond

    2011-10-01

    How does the connectivity of a neuronal circuit, together with the individual properties of the cell types that take part in it, result in a given computation? We examine this question in the context of retinal circuits. We suggest that the retina can be viewed as a parallel assemblage of many small computational devices, highly stereotypical and task-specific circuits afferent to a given ganglion cell type, and we discuss some rules that govern computation in these devices. Multi-device processing in retina poses conceptual problems when it is contrasted with cortical processing. We lay out open questions both on processing in retinal circuits and on implications for cortical processing of retinal inputs.

  11. Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells

    PubMed Central

    Wang, Han Chin; Lin, Chun-Chieh; Cheung, Rocky; Zhang-Hooks, YingXin; Agarwal, Amit; Ellis-Davies, Graham; Rock, Jason; Bergles, Dwight E.

    2015-01-01

    Summary Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl− efflux and osmotic cell shrinkage by opening TMEM16A Ca2+-activated Cl− channels. Release of Cl− from ISCs also forces K+ efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea, and prevents ATP-dependent shrinkage of supporting cells. These results indicate that support cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells. PMID:26627734

  12. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  13. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.

    PubMed

    Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E

    2017-04-07

    Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties of sparse and confluent cells, we found that normal MCF10A cells are stiffer and have a lower fluidity when at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium.

  14. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, R.M.

    1995-08-01

    A new pattern for cellular core material used in sandwich type structural materials is disclosed. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes. 3 figs.

  15. Concordant p53 and mdm-2 protein expression in vulvar squamous cell carcinoma and adjacent lichen sclerosus.

    PubMed

    Carlson, J A; Amin, S; Malfetano, J; Tien, A T; Selkin, B; Hou, J; Goncharuk, V; Wilson, V L; Rohwedder, A; Ambros, R; Ross, J S

    2001-06-01

    To determine if carcinogenic events in vulvar skin precede the onset of morphologic atypia, the authors investigated for derangements in DNA content, cell proliferation, and cell death in vulvar carcinomas and surrounding skin in 140 samples of tumor and surrounding skin collected from 35 consecutive vulvectomy specimen for squamous cell carcinoma (SCC) or vulvar intraepithelial neoplasia (VIN) 3. Vulvar non-cancer excisions were used as controls. Investigations consisted of histologic classification and measurement of 9 variables--epidermal thickness (acanthosis and rete ridge length), immunolabeling index (LI) for 3 proteins (p53 protein, Ki-67, and mdm-2), pattern of p53 expression (dispersed vs. compact), DNA content index, and presence of aneuploidy by image analysis and apoptotic rate by Apotag labeling. Significant positive correlations were found for all nine variables studied versus increasing histologic severity in two proposed histologic stepwise models of vulvar carcinogenesis (lichen sclerosus (LS) and VIN 3 undifferentiated associated SCC groups). High p53 LI (>25) and the compact pattern of p53 expression (suspected oncoprotein) significantly correlated with LS and its associated vulvar samples compared with samples not associated with LS (P < or = 0.001). Furthermore, p53 LI, mdm-2 LI, and pattern of p53 expression were concordant between patient matched samples of LS and SCC. In addition, mdm-2 LI significantly correlated with dispersed pattern p53 LI suggesting a response to wild-type p53 protein accumulation. These findings support the hypothesis that neoplastic transformation occurs in sequential steps and compromises proteins involved in the cell cycle control. Concordance of p53 and mdm-2 protein expression in LS and adjacent SCC provides evidence that LS can act as a precursor lesion in the absence of morphologic atypia. Overexpression of mdm-2 with stabilization and inactivation of p53 protein may provide an alternate pathway for vulvar

  16. Concatemeric intermediates of equine herpesvirus type 1 DNA replication contain frequent inversions of adjacent long segments of the viral genome.

    PubMed

    Slobedman, B; Simmons, A

    1997-03-17

    In common with other alpha-herpesviruses, the genome of equine herpesvirus type-1 (EHV-1) comprises covalently linked long and short unique sequences of DNA, each flanked by inverted repeats. Equimolar amounts of two genomic isomers, generated by free inversion of the short segment, relative to the long segment, are packaged into EHV-1 virions. In contrast with herpes simplex virus (HSV), inversion of genomic long segments has not been described. In the current work, the structures of high molecular weight intermediates of EHV-1 DNA replication were studied by field inversion gel electrophoresis. It is shown that adjacent long segments of the viral genome are frequently inverted in concatemeric intermediates of EHV-1 DNA replication. Further, like HSV concatemers, high molecular weight intermediates of EHV-1 replication are flanked exclusively by the long segment of the viral genome. Hence, despite the fact that only two, rather than four, isomers of EHV-1 DNA are packaged into virions, the intermediates of EHV-1 DNA replication closely resemble those of herpes simplex virus type 1 in structure. These data have implications relating to the mechanisms involved in packaging of alpha-herpesvirus DNA.

  17. Clustering and synchronization of lightning flashes in adjacent thunderstorm cells from lightning location networks data

    NASA Astrophysics Data System (ADS)

    Yair, Yoav Y.; Aviv, Reuven; Ravid, Gilad

    2009-05-01

    We analyzed sequences of lightning flashes in several thunderstorms on the basis of data from various ground-based lightning location systems. We identified patterns of clustering and synchronicity of flashes in separate thunderstorm cells, distanced by tens to hundreds of kilometers from each other. This is in-line with our early findings of lightning synchronicity based on space shuttle images (Yair et al., 2006), hinting at a possible mutual electromagnetic coupling of remote thunderstorms. We developed a theoretical model that is based on the leaky integrate-and-fire concept commonly used in models of neural activity, in order to simulate the flashing behavior of a coupled network of thunderstorm cells. In this type of network, the intensity of the electric field Ei within a specific region of thunderstorm (i) grows with time until it reaches the critical breakdown value and generates a lightning flash while its electric field drops to zero, simultaneously adding a delta E to the intensity of the internal electric field in all thundercloud cells (Ej,k,l…) that are linked to it. The value of ΔE is inversely proportional to the distance between the "firing" cell i and its neighbors j, k, l; we assumed that thunderstorm cells are not identical and occupy a grid with random spacing and organization. Several topologies of the thunderstorm network were tested with varying degrees of coupling, assuming a predetermined probability of links between active cells. The results suggest that when the group coupling in the network is higher than a certain threshold value, all thunderstorm cells will flash in a synchronized manner.

  18. Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren's disease and adjacent palmar fascia cells

    SciTech Connect

    Vi, Linda; Feng, Lucy; Zhu, Rebecca D.; Wu, Yan; Satish, Latha; Gan, Bing Siang; O'Gorman, David B.

    2009-12-10

    Dupuytren's disease, (DD), is a fibroproliferative condition of the palmar fascia in the hand, typically resulting in permanent contracture of one or more fingers. This fibromatosis is similar to scarring and other fibroses in displaying excess collagen secretion and contractile myofibroblast differentiation. In this report we expand on previous data demonstrating that POSTN mRNA, which encodes the extra-cellular matrix protein periostin, is up-regulated in Dupuytren's disease cord tissue relative to phenotypically normal palmar fascia. We demonstrate that the protein product of POSTN, periostin, is abundant in Dupuytren's disease cord tissue while little or no periostin immunoreactivity is evident in patient-matched control tissues. The relevance of periostin up-regulation in DD was assessed in primary cultures of cells derived from diseased and phenotypically unaffected palmar fascia from the same patients. These cells were grown in type-1 collagen-enriched culture conditions with or without periostin addition to more closely replicate the in vivo environment. Periostin was found to differentially regulate the apoptosis, proliferation, {alpha} smooth muscle actin expression and stressed Fibroblast Populated Collagen Lattice contraction of these cell types. We hypothesize that periostin, secreted by disease cord myofibroblasts into the extra-cellular matrix, promotes the transition of resident fibroblasts in the palmar fascia toward a myofibroblast phenotype, thereby promoting disease progression.

  19. Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC.

    PubMed

    Rao, S G; Williams, G V; Goldman-Rakic, P S

    1999-04-01

    Studies on the cellular mechanisms of working memory demonstrated that neurons in dorsolateral prefrontal cortex (dPFC) exhibit directionally tuned activity during an oculomotor delayed response. To determine the particular contributions of pyramidal cells and interneurons to spatial tuning in dPFC, we examined both individually and in pairs the tuning properties of regular-spiking (RS) and fast-spiking (FS) units that represent putative pyramidal cells and interneurons, respectively. Our main finding is that FS units possess spatially tuned sensory, motor, and delay activity (i. e., "memory fields") similar to those found in RS units. Furthermore, when recorded simultaneously at the same site, the majority of neighboring neurons, whether FS or RS, displayed isodirectional tuning, i.e., they shared very similar tuning angles for the sensory and delay phases of the task. As the trial entered the response phase of the task, many FS units shifted their direction of tuning and became cross-directional to adjacent RS units by the end of the trial. These results establish that a large part of inhibition in prefrontal cortex is spatially oriented rather than being untuned and simply regulating the threshold response of pyramidal cell output. Moreover, the isodirectional tuning between adjacent neurons supports a functional microcolumnar organization in dPFC for spatial memory fields similar to that found in other areas of cortex for sensory receptive fields.

  20. Immunohistochemical quantification of the cobalamin transport protein, cell surface receptor and Ki-67 in naturally occurring canine and feline malignant tumors and in adjacent normal tissues

    PubMed Central

    Sysel, Annette M.; Valli, Victor E.; Bauer, Joseph A.

    2015-01-01

    Cancer cells have an obligate need for cobalamin (vitamin B12) to enable DNA synthesis necessary for cellular replication. This study quantified the immunohistochemical expression of the cobalamin transport protein (transcobalamin II; TCII), cell surface receptor (transcobalamin II-R; TCII-R) and proliferation protein (Ki-67) in naturally occurring canine and feline malignant tumors, and compared these results to expression in corresponding adjacent normal tissues. All malignant tumor tissues stained positively for TCII, TCII-R and Ki-67 proteins; expression varied both within and between tumor types. Expression of TCII, TCII-R and Ki-67 was significantly higher in malignant tumor tissues than in corresponding adjacent normal tissues in both species. There was a strong correlation between TCII and TCII-R expression, and a modest correlation between TCII-R and Ki-67 expression in both species; a modest association between TCII and Ki-67 expression was present in canine tissues only. These results demonstrate a quantifiable, synchronous up-regulation of TCII and TCII-R expression by proliferating canine and feline malignant tumors. The potential to utilize these proteins as biomarkers to identify neoplastic tissues, streamline therapeutic options, evaluate response to anti-tumor therapy and monitor for recurrent disease has important implications in the advancement of cancer management for both human and companion animal patients. PMID:25633912

  1. Distinguishing cell type using epigenotype

    NASA Astrophysics Data System (ADS)

    Wytock, Thomas; Motter, Adilson E.

    Recently, researchers have proposed that unique cell types are attractors of their epigenetic dynamics including gene expression and chromatin conformation patterns. Traditionally, cell types have been classified by their function, morphology, cytochemistry, and other macroscopically observable properties. Because these properties are the result of many proteins working together, it should be possible to predict cell types from gene expression or chromatin conformation profiles. In this talk, I present a maximum entropy approach to identify and distinguish cell type attractors on the basis of correlations within these profiles. I will demonstrate the flexibility of this method through its separate application to gene expression and chromatin conformation datasets. I show that our method out-performs other machine-learning techniques and uncorrelated benchmarks. We adapt our method to predict growth rate from gene expression in E. coli and S. cerevisiae and compare our predictions with those from metabolic models. In addition, our method identifies a nearly convex region of state-space associated with each cell type attractor basin. Estimates of the growth rate and attractor basin make it possible to rationally control gene regulatory networks independent of a model. This research was supported by NSF-GRFP, NSF-GK12, GAANN, and Northwestern's NIH-NIGMS Molecular Biophysics Training Grant.

  2. Progenitor/Stem Cell Markers in Brain Adjacent to Glioblastoma: GD3 Ganglioside and NG2 Proteoglycan Expression.

    PubMed

    Lama, Gina; Mangiola, Annunziato; Proietti, Gabriella; Colabianchi, Anna; Angelucci, Cristiana; D' Alessio, Alessio; De Bonis, Pasquale; Geloso, Maria Concetta; Lauriola, Libero; Binda, Elena; Biamonte, Filippo; Giuffrida, Maria Grazia; Vescovi, Angelo; Sica, Gigliola

    2016-02-01

    Characterization of tissue surrounding glioblastoma (GBM) is a focus for translational research because tumor recurrence invariably occurs in this area. We investigated the expression of the progenitor/stem cell markers GD3 ganglioside and NG2 proteoglycan in GBM, peritumor tissue (brain adjacent to tumor, BAT) and cancer stem-like cells (CSCs) isolated from GBM (GCSCs) and BAT (PCSCs). GD3 and NG2 immunohistochemistry was performed in paired GBM and BAT specimens from 40 patients. Double-immunofluorescence was carried out to characterize NG2-positive cells of vessel walls. GD3 and NG2 expression was investigated in GCSCs and PCSCs whose tumorigenicity was also evaluated in Scid/bg mice. GD3 and NG2 expression was higher in tumor tissue than in BAT. NG2 decreased as the distance from tumor margin increased, regardless of the tumor cell presence, whereas GD3 correlated with neoplastic infiltration. In BAT, NG2 was coexpressed with a-smooth muscle actin (a-SMA) in pericytes and with nestin in the endothelium. Higher levels of NG2 mRNA and protein were found in GCSCs while GD3 synthase was expressed at similar levels in the 2 CSC populations. PCSCs had lower tumorigenicity than GCSCs. These data suggest the possible involvement of GD3 and NG2 in pre/pro-tumorigenic events occurring in the complex microenvironment of the tissue surrounding GBM.

  3. Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’olorectal carcinomas

    PubMed Central

    Shimada, S; Shiomori, K; Tashima, S; Tsuruta, J; Ogawa, M

    2001-01-01

    ‘de novo’ carcinogenesis has been advocated besides ‘adenoma carcinoma sequence’ as another dominant pathway leading to colorectal carcinoma. Our recent study has demonstrated that the distribution of brain (fetal)-type glycogen phosphorylase (BGP) positive foci (BGP foci) has a close relationship with the location of ‘de novo’ carcinoma. The aims of the present study are to investigate genetic alteration in the BGP foci and to characterize them in the ‘de novo’ carcinogenesis. 17 colorectal carcinomas without any adenoma component expressing both immunoreactive p53 and BGP protein were selected from 96 resected specimens from our previous study. Further investigations to examine the proliferating cell nuclear antigen (PCNA)-labelling index, and the p53 and the codon 12 of K-ras mutation using the polymerase chain reaction-single strand conformation polymorphism were performed in the BGP foci, BGP negative mucosa and carcinoma. The BGP foci were observed sporadically in the transitional mucosa adjacent to the carcinoma in all cases. The PCNA labelling index in the BGP foci was significantly higher than that in the BGP negative mucosa (P< 0.001). p53 mutations were observed in 8 carcinomas, but no K-ras mutation was detected. Interestingly, although none of the overexpressions of p53 protein was detected immunohistochemically in the BGP positive foci, the p53 gene frequently (41.2% of the BGP foci tested) mutated in spite of no K-ras mutation. The present study demonstrates potentially premalignant foci in the colorectal transitional mucosa with frequent p53 gene mutation. It is suggested that BGP foci are promising candidates for the further investigation of ‘de novo’ colorectal carcinogenesis. © 2001Cancer Research Campaign http://www.bjcancer.com PMID:11384100

  4. A pool-adjacent-violators type algorithm for non-parametric estimation of current status data with dependent censoring.

    PubMed

    Titman, Andrew C

    2014-07-01

    A likelihood based approach to obtaining non-parametric estimates of the failure time distribution is developed for the copula based model of Wang et al. (Lifetime Data Anal 18:434-445, 2012) for current status data under dependent observation. Maximization of the likelihood involves a generalized pool-adjacent violators algorithm. The estimator coincides with the standard non-parametric maximum likelihood estimate under an independence model. Confidence intervals for the estimator are constructed based on a smoothed bootstrap. It is also shown that the non-parametric failure distribution is only identifiable if the copula linking the observation and failure time distributions is fully-specified. The method is illustrated on a previously analyzed tumorigenicity dataset.

  5. Breast Field Cancerization: Isolation and Comparison of Telomerase-Expressing Cells in Tumor and Tumor Adjacent, Histologically Normal Breast Tissue

    PubMed Central

    Trujillo, Kristina A.; Hines, William C.; Vargas, Keith M.; Jones, Anna C.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K.

    2011-01-01

    Telomerase stabilizes chromosomes by maintaining telomere length, immortalizes mammalian cells, and is expressed in more than 90% of human tumors. However, the expression of human telomerase reverse transcriptase (hTERT) is not restricted to tumor cells. We have previously shown that a subpopulation of human mammary epithelial cells (HMEC) in tumor-adjacent, histologically normal (TAHN) breast tissues expresses hTERT mRNA at levels comparable with levels in breast tumors. In the current study, we first validated a reporter for measuring levels of hTERT promoter activity in early-passage HMECs and then used this reporter to compare hTERT promoter activity in HMECs derived from tumor and paired TAHN tissues 1, 3, and 5 cm from the tumor (TAHN-1, TAHN-3, and TAHN-5, respectively). Cell sorting, quantitative real-time PCR, and microarray analyses showed that the 10% of HMECs with the highest hTERT promoter activity in both tumor and TAHN-1 tissues contain more than 95% of hTERT mRNA and overexpress many genes involved in cell cycle and mitosis. The percentage of HMECs within this subpopulation showing high hTERT promoter activity was significantly reduced or absent in TAHN-3 and TAHN-5 tissues. We conclude that the field of normal tissue proximal to the breast tumors contains a population of HMECs similar in hTERT expression levels and in gene expression to the HMECs within the tumor mass and that this population is significantly reduced in tissues more distal to the tumor. PMID:21775421

  6. Syncytial-Type Cell Plates

    PubMed Central

    Otegui, Marisa; Staehelin, L. Andrew

    2000-01-01

    Cell wall formation in the syncytial endosperm of Arabidopsis was studied by using high-pressure-frozen/freeze-substituted developing seeds and immunocytochemical techniques. The endosperm cellularization process begins at the late globular embryo stage with the synchronous organization of small clusters of oppositely oriented microtubules (∼10 microtubules in each set) into phragmoplast-like structures termed mini-phragmoplasts between both sister and nonsister nuclei. These mini-phragmoplasts produce a novel kind of cell plate, the syncytial-type cell plate, from Golgi-derived vesicles ∼63 nm in diameter, which fuse by way of hourglass-shaped intermediates into wide (∼45 nm in diameter) tubules. These wide tubules quickly become coated and surrounded by a ribosome-excluding matrix; as they grow, they branch and fuse with each other to form wide tubular networks. The mini-phragmoplasts formed between a given pair of nuclei produce aligned tubular networks that grow centrifugally until they merge into a coherent wide tubular network with the mini-phragmoplasts positioned along the network margins. The individual wide tubular networks expand laterally until they meet and eventually fuse with each other at the sites of the future cell corners. Transformation of the wide tubular networks into noncoated, thin (∼27 nm in diameter) tubular networks begins at multiple sites and coincides with the appearance of clathrin-coated budding structures. After fusion with the syncytial cell wall, the thin tubular networks are converted into fenestrated sheets and cell walls. Immunolabeling experiments show that the cell plates and cell walls of the endosperm differ from those of the embryo and maternal tissue in two features: their xyloglucans lack terminal fucose residues on the side chain, and callose persists in the cell walls after the cell plates fuse with the parental plasma membrane. The lack of terminal fucose residues on xyloglucans suggests that these cell wall

  7. The origin and evolution of cell types.

    PubMed

    Arendt, Detlev; Musser, Jacob M; Baker, Clare V H; Bergman, Aviv; Cepko, Connie; Erwin, Douglas H; Pavlicev, Mihaela; Schlosser, Gerhard; Widder, Stefanie; Laubichler, Manfred D; Wagner, Günter P

    2016-12-01

    Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.

  8. [Cell therapy for type I diabete].

    PubMed

    Sokolova, I B

    2009-01-01

    Cell therapy is a modern and promising approach to type I diabetes mellitus treatment. Nowadays a wide range of cells is used in laboratory experiments and clinical studies, including allogeneic and xenogeneic cells of Langergance islets, bone marrow cells, haematopoietic stem cells, mesenchymal stem cells, and cord blood stem cells. Any type of the cells named could correct the status of the patients to a certain extent. However, full recovery after cell therapy has not been achieved yet.

  9. Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells.

    PubMed

    Sotgia, Federica; Whitaker-Menezes, Diana; Martinez-Outschoorn, Ubaldo E; Salem, Ahmed F; Tsirigos, Aristotelis; Lamb, Rebecca; Sneddon, Sharon; Hulit, James; Howell, Anthony; Lisanti, Michael P

    2012-12-01

    Here, we present new genetic and morphological evidence that human tumors consist of two distinct metabolic compartments. First, re-analysis of genome-wide transcriptional profiling data revealed that > 95 gene transcripts associated with mitochondrial biogenesis and/or mitochondrial translation were significantly elevated in human breast cancer cells, as compared with adjacent stromal tissue. Remarkably, nearly 40 of these upregulated gene transcripts were mitochondrial ribosomal proteins (MRPs), functionally associated with mitochondrial translation of protein components of the OXPHOS complex. Second, during validation by immunohistochemistry, we observed that antibodies directed against 15 markers of mitochondrial biogenesis and/or mitochondrial translation (AKAP1, GOLPH3, GOLPH3L, MCT1, MRPL40, MRPS7, MRPS15, MRPS22, NRF1, NRF2, PGC1-α, POLRMT, TFAM, TIMM9 and TOMM70A) selectively labeled epithelial breast cancer cells. These same mitochondrial markers were largely absent or excluded from adjacent tumor stromal cells. Finally, markers of mitochondrial lipid synthesis (GOLPH3) and mitochondrial translation (POLRMT) were associated with poor clinical outcome in human breast cancer patients. Thus, we conclude that human breast cancers contain two distinct metabolic compartments-a glycolytic tumor stroma, which surrounds oxidative epithelial cancer cells-that are mitochondria-rich. The co-existence of these two compartments is indicative of metabolic symbiosis between epithelial cancer cells and their surrounding stroma. As such, epithelial breast cancer cells should be viewed as predatory metabolic "parasites," which undergo anabolic reprogramming to amplify their mitochondrial "power." This notion is consistent with the observation that the anti-malarial agent chloroquine may be an effective anticancer agent. New anticancer therapies should be developed to target mitochondrial biogenesis and/or mitochondrial translation in human cancer cells.

  10. Mitochondria “fuel” breast cancer metabolism: Fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells

    PubMed Central

    Sotgia, Federica; Whitaker-Menezes, Diana; Martinez-Outschoorn, Ubaldo E.; Salem, Ahmed F.; Tsirigos, Aristotelis; Lamb, Rebecca; Sneddon, Sharon; Hulit, James; Howell, Anthony; Lisanti, Michael P.

    2012-01-01

    Here, we present new genetic and morphological evidence that human tumors consist of two distinct metabolic compartments. First, re-analysis of genome-wide transcriptional profiling data revealed that > 95 gene transcripts associated with mitochondrial biogenesis and/or mitochondrial translation were significantly elevated in human breast cancer cells, as compared with adjacent stromal tissue. Remarkably, nearly 40 of these upregulated gene transcripts were mitochondrial ribosomal proteins (MRPs), functionally associated with mitochondrial translation of protein components of the OXPHOS complex. Second, during validation by immunohistochemistry, we observed that antibodies directed against 15 markers of mitochondrial biogenesis and/or mitochondrial translation (AKAP1, GOLPH3, GOLPH3L, MCT1, MRPL40, MRPS7, MRPS15, MRPS22, NRF1, NRF2, PGC1-α, POLRMT, TFAM, TIMM9 and TOMM70A) selectively labeled epithelial breast cancer cells. These same mitochondrial markers were largely absent or excluded from adjacent tumor stromal cells. Finally, markers of mitochondrial lipid synthesis (GOLPH3) and mitochondrial translation (POLRMT) were associated with poor clinical outcome in human breast cancer patients. Thus, we conclude that human breast cancers contain two distinct metabolic compartments—a glycolytic tumor stroma, which surrounds oxidative epithelial cancer cells—that are mitochondria-rich. The co-existence of these two compartments is indicative of metabolic symbiosis between epithelial cancer cells and their surrounding stroma. As such, epithelial breast cancer cells should be viewed as predatory metabolic “parasites,” which undergo anabolic reprogramming to amplify their mitochondrial “power.” This notion is consistent with the observation that the anti-malarial agent chloroquine may be an effective anticancer agent. New anticancer therapies should be developed to target mitochondrial biogenesis and/or mitochondrial translation in human cancer cells. PMID

  11. Expression of TAK1/TAB1 expression in non-small cell lung carcinoma and adjacent normal tissues and their clinical significance.

    PubMed

    Zhu, Jiang; Li, Qiang; He, Jin-Tao; Liu, Guang-Yuan

    2015-01-01

    The purpose of this study was to investigate the expression of transforming growth factor beta-activated kinase 1 (TAK1) and its activation ligand, TAK1-binding protein 1 (TAB1), in non-small cell lung carcinoma (NSCLC) and adjacent normal tissues and to analyze the relevance between TAK1 and TAB1 protein expression and the pathological features of NSCLC patients. Surgical resection NSCLC specimens were collected from 74 patients undergoing surgery in our hospital from September 2003 to July 2008; tumor-adjacent normal tissue specimens were collected as controls. All cases were pathologically confirmed after surgery, and pathological data were complete for all patients. The expression of TAK1/TAB1 proteins in NSCLC and adjacent cancer tissues was detected by immunohistochemical analysis. The correlation between TAK1/TAB1 protein expression and the clinicopathological features and outcome of NSCLC was assessed. The positive expression ratio of TAK1 in NSCLC tissue was 63.5%, which was significantly higher than that in tumor-adjacent normal tissue (31.1%). The positive expression ratio of TAB1 in NSCLC tissue was 51.4%, which was significantly higher than that in tumor-adjacent normal tissue (24.3%). Further analysis showed that positive protein expression of TAK1 and TAB1 was unrelated to patient gender, age, tumor size, degree of differentiation, and history of smoking (P>0.05) but was significantly related to clinical stage and lymph node metastasis (P<0.05). Additionally, the expression of TAK1 as well as TAB1 was negatively related to NSCLC patient prognosis, and patients with positive protein expression had a significantly lower 5-year survival rate than those with negative protein expression (P<0.05). TAK1/TAB1 expression in NSCLC tissue is significantly increased and closely associated with patient clinical prognosis. These two proteins are likely to become new therapeutic targets for the treatment of NSCLC.

  12. Evolution of eyes and photoreceptor cell types.

    PubMed

    Arendt, Detlev

    2003-01-01

    The evolution of the eye is a matter of debate ever since Darwin's Origin of Species. While morphological comparisons of eye anatomy and photoreceptor cell types led to the view that animal eyes evolved multiple times independently, the molecular conservation of the pax6 eye-specifying cascade has indicated the contrary - that animal eyes evolved from a common, simple precursor, the proto-eye. Morphological and molecular comparative approaches are combined here in a novel Evo-Devo approach, the molecular comparison of cell types ("comparative molecular cell biology"). In the eye, the various types of photoreceptor cells, as well as pigment and lens cells, each require distinct combinations of specifying transcription factors that control their particular differentiation programmes, such as opsin expression in photoreceptors, specific neurotransmitter metabolism, or axonal outgrowth. Comparing the molecular combinatorial codes of cell types of animal extant eyes, their evolutionary histories can be reconstructed. This is exemplified here on the evolution of ciliary and rhabdomeric photoreceptor cells in bilaterian eyes and on the evolution of cell type diversity in the vertebrate retina. I propose that the retinal ganglion, amacrine and horizontal cells are evolutionary sister cell types that evolved from a common rhabdomeric photoreceptor cell precursor.

  13. Identification of reliable reference genes for quantitative gene expression studies in oral squamous cell carcinomas compared to adjacent normal tissues in the F344 rat model.

    PubMed

    Peng, Xinjian; McCormick, David L

    2016-08-01

    Oral squamous cell carcinomas (OSCCs) induced in F344 rats by 4-nitroquinoline-1-oxide (4-NQO) demonstrate considerable phenotypic similarity to human oral cancers and the model has been widely used for carcinogenesis and chemoprevention studies. Molecular characterization of this model needs reliable reference genes (RGs) to avoid false- positive and -negative results for proper interpretation of gene expression data between tumor and adjacent normal tissues. Microarray analysis of 11 pairs of OSCC and site-matched phenotypically normal oral tissues from 4-NQO-treated rats identified 10 stably expressed genes in OSCC compared to adjacent normal tissues (p>0.5, CV<15%) that could serve as potential RGs in this model. The commonly used 27 RGs in the rat were also analyzed based on microarray data and most of them were found unsuitable for RGs in this model. Traditional RGs such as ACTB and GAPDH were significantly altered in OSCC compared to adjacent normal tissues (p<0.01, n=11); however, the Hsp90ab1 was ranked as the best RG candidate and the combination of Hsp90ab1 and HPRT1 was identified by NormFinder to be a superior reference for gene normalization among the commonly used RGs. This result was also validated by RT-PCR based on the selected top RG candidate pool. These data suggest that there are no common RGs suitable for different models and RG(s) should be identified before gene expression analysis. We successfully identified Hsp90ab1 as a stable RG in 4-NQO-induced OSCC compared to adjacent normal tissues in F344 rats. The combination of two stably expressed genes may be a better option for gene normalization in tissue samples.

  14. A Cell-type-resolved Liver Proteome*

    PubMed Central

    Ding, Chen; Li, Yanyan; Guo, Feifei; Jiang, Ying; Ying, Wantao; Li, Dong; Yang, Dong; Xia, Xia; Liu, Wanlin; Zhao, Yan; He, Yangzhige; Li, Xianyu; Sun, Wei; Liu, Qiongming; Song, Lei; Zhen, Bei; Zhang, Pumin; Qian, Xiaohong; Qin, Jun; He, Fuchu

    2016-01-01

    Parenchymatous organs consist of multiple cell types, primarily defined as parenchymal cells (PCs) and nonparenchymal cells (NPCs). The cellular characteristics of these organs are not well understood. Proteomic studies facilitate the resolution of the molecular details of different cell types in organs. These studies have significantly extended our knowledge about organogenesis and organ cellular composition. Here, we present an atlas of the cell-type-resolved liver proteome. In-depth proteomics identified 6000 to 8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This data set revealed features of the cellular composition of the liver: (1) hepatocytes (PCs) express the least GPs, have a unique but highly homogenous proteome pattern, and execute fundamental liver functions; (2) the division of labor among PCs and NPCs follows a model in which PCs make the main components of pathways, but NPCs trigger the pathways; and (3) crosstalk among NPCs and PCs maintains the PC phenotype. This study presents the liver proteome at cell resolution, serving as a research model for dissecting the cell type constitution and organ features at the molecular level. PMID:27562671

  15. Non-free ionic transport of sodium, magnesium, and calcium in streams of two adjacent headwater catchments with different vegetation types in Japan

    NASA Astrophysics Data System (ADS)

    Terajima, Tomomi; Moriizumi, Mihoko; Nakamura, Tomohiro

    2017-01-01

    Sodium (Na), magnesium (Mg), calcium (Ca) are usually believed to occur mostly as free ions in the fresh water and consequently little is known about their chemical species. To understand the importance of non-free ionic fractions (NIF) of major metals in freshwater streams, Na, Mg, Ca, silicon (Si), and fulvic acid-like materials (FAM) were measured in streams of mountainous adjacent headwater catchments dominated by different vegetation types (planted evergreen coniferous forest and natural deciduous broadleaf forest). During both no rainfall periods and rainstorms, the proportion of NIF relative to total elements was lower in the coniferous catchment than in the deciduous catchment, although it sometimes accounted for half or more of the total concentrations of Na, Mg, and Ca in both catchments. The solubility of metal compounds was higher than the measured maximum concentrations of Na+, Mg2+, and Ca2+ to the extent that inorganic bonding was hardly possible. During no rainfall periods when FAM was slightly produced into the streams, the fluxes of NIF and Si were highly correlated (r > 0.92, p < 0.0001, n = 30) in both catchments. During a small rainstorm, the flux of NIF correlated weakly with that of Si but did not correlate with that of FAM in both catchments. In contrast, during a heavy rainstorm, the flux of NIF correlated strongly (r ⩾ 0.83, p < 0.0001, n = 26) with that of FAM in the deciduous catchment where relatively deep soil water compared to near-surface water was the predominant component of stream water. However, during the heavy rainstorm in the coniferous catchment, only the flux of NIF originated in the quick-flow component (i.e., surface or near-surface water) in stream water (ΔNIF) correlated strongly (r ⩾ 0.81, p < 0.0001, n = 22) with that of FAM. These findings imply that heavy rainstorms may enhance the bonding of the major metals with humic substances mainly in the deciduous catchment; and also exhibit that, in the headwater

  16. Monolithic cascade-type solar cells

    NASA Technical Reports Server (NTRS)

    Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

    1985-01-01

    Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

  17. Promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients

    PubMed Central

    Spitzwieser, Melanie; Pirker, Christine; Koblmüller, Bettina; Pfeiler, Georg; Hacker, Stefan; Berger, Walter; Heffeter, Petra; Cichna-Markl, Margit

    2016-01-01

    Overexpression of ABCB1, ABCC1 and ABCG2 in tumor tissues is considered a major cause of limited efficacy of anticancer drugs. Gene expression of ABC transporters is regulated by multiple mechanisms, including changes in the DNA methylation status. Most of the studies published so far only report promoter methylation levels for either ABCB1 or ABCG2, and data on the methylation status for ABCC1 are scarce. Thus, we determined the promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in 19 human cancer cell lines. In order to contribute to the elucidation of the role of DNA methylation changes in acquisition of a multidrug resistant (MDR) phenotype, we also analyzed the promoter methylation patterns in drug-resistant sublines of the cancer cell lines GLC-4, SW1573, KB-3-1 and HL-60. In addition, we investigated if aberrant promoter methylation levels of ABCB1, ABCC1 and ABCG2 occur in tumor and tumor-surrounding tissues from breast cancer patients. Our data indicates that hypomethylation of the ABCC1 promoter is not cancer type-specific but occurs in cancer cell lines of different origins. Promoter methylation was found to be an important mechanism in gene regulation of ABCB1 in parental cancer cell lines and their drug-resistant sublines. Overexpression of ABCC1 in MDR cell models turned out to be mediated by gene amplification, not by changes in the promoter methylation status of ABCC1. In contrast to the promoters of ABCC1 and ABCG2, the promoter of ABCB1 was significantly higher methylated in tumor tissues than in tumor-adjacent and tumor-distant tissues from breast cancer patients. PMID:27689338

  18. Diffraction pattern study for cell type identification.

    PubMed

    Mihailescu, M; Costescu, J

    2012-01-16

    This paper presents our study regarding diffracted intensity distribution in Fresnel and Fraunhofer approximation from different cell types. Starting from experimental information obtained through digital holographic microscopy, we modeled the cell shapes as oblate spheroids and built their phase-only transmission functions. In Fresnel approximation, the experimental and numerical diffraction patterns from mature and immature red blood cells have complementary central intensity values at different distances. The Fraunhofer diffraction patterns of deformed red blood cells were processed in the reciprocal space where, the isoamplitude curves were formed independently for each degree of cell deformation present within every sample; the values on each separate isoamplitude curve are proportional with the percentage of the respective cell type within the sample.

  19. Genomic Typing of Red Cell Antigens

    DTIC Science & Technology

    2011-09-01

    Antigen‐Matched  Red  Cells   for  Sickle   Cell   Anemia  Patients  Using  Molecular Typing to Augment Testing: Meghan Delaney, Prashant Gaur, Askale...H, Constans J, Quilici JC, Lefevre‐Witier P, Sevin J, Stevens M: Study of red blood  cell  and serum enzymes in  five  Pyrenean communities and in a...Antigen‐Matched Red  Cells  for  Sickle   Cell  Anemia Patients  Using Molecular Typing to Augment Testing: AABB (poster) 2009.  Background: Patients with  sickle

  20. Immunocytochemical localization of taurine in different muscle cell types of the dog and rat.

    PubMed

    Lobo, M V; Alonso, F J; Martin del Rio, R

    2000-01-01

    The presence and distribution of the amino acid taurine in different muscle cell types of the dog and rat was examined by immunocytochemical methods. The light microscope study revealed that smooth muscle cells were similarly immunoreactive for taurine, whereas skeletal muscle fibres showed wide differences in taurine immunoreactivity among individual cells. Some skeletal fibres were strongly immunoreactive whereas others did not display immunolabelling. Mononucleated satellite cells, found adjacent to skeletal fibres in a quiescent stage, were also immunostained. Other myoid cells, such as testicular peritubular cells showed a cytoplasmic and a nuclear pool of taurine. By means of electron microscope immunolabelling, the subcellular localization of taurine was studied in vascular and visceral smooth muscle cells. Taurine was present in most subcellular compartments and frequently appeared randomly distributed. Taurine was localized on myofilaments, dense bodies, mitochondria, the plasma membrane and the cell nucleus. Moreover, the labelling density within individual smooth muscle cells was variable and depended on the state of contraction of each single fibre. Contracted cells showed a higher density of gold particles than relaxed cells. Unmyelinated nerve fibres, found adjacent to smooth muscle cells from the muscularis mucosae and the lamina propria of the stomach, were unstained or poorly stained.

  1. Immunohistochemical Expression of CD105 and TGF-β1 in Oral Squamous Cell Carcinoma and Adjacent Apparently Normal Oral Mucosa and its Correlation With Clinicopathologic Features.

    PubMed

    Nair, Sindhu; Nayak, Ramakant; Bhat, Kishore; Kotrashetti, Vijayalakshmi S; Babji, Deepa

    2016-01-01

    Angiogenesis in oral squamous cell carcinomas (OSCC) is essential for its growth, invasion, and metastasis. This entails a shift in the balance between proangiogenic and antiangiogenic factors. CD105 and TGF-β1 are 2 such proangiogenic factors wherein CD105 exerts its angiogenic effect by binding to and modulating the TGF-β1 pathway. A total of 50 resected specimens of OSCC were considered. One tissue specimen was taken from tumor proper and another specimen from adjacent apparently normal mucosa (AANM). Both tissues were immunohistochemically stained using CD105 and TGF-β1 antibodies. The expression of each antibody was individually assessed and then compared. Pearson χ test was used for statistical comparison of expression. CD105 was significantly expressed in OSCC as compared with AANM and also correlated with increasing TNM stage. The mean microvessel density was higher in OSCC. TGF-β1 was significantly expressed in epithelium of OSCC as compared with AANM. On comparing expression of TGF-β1 and CD105, 79.54% of endothelial cells expressed positivity for both molecules. Both CD105 and TGF-β1 were increased in OSCC, although based on our results CD105 alone can be used as a prognostic marker. On the basis of immunohistochemical expression of CD105 and TGF-β1 in endothelial cells, our results demonstrate that CD105 acts as one of the receptors of TGF-β1 on endothelial cells and induces the angiogenic pathway in OSCC.

  2. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids

    PubMed Central

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J.; Wilkinson, Trevor C. I.

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these “undesirable” residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  3. Fuel cells - Fundamentals and types: Unique features

    NASA Astrophysics Data System (ADS)

    Selman, J. R.

    An overview of the working principles, thermodynamic efficiencies, types, and engineering aspects of fuel cells is presented. It is noted that fuel cells are distinguished from other direct energy conversion devices by the existence of charge separation at the electrodes involving ions in an electrolyte. The electrical energy produced by a fuel cell is shown to be equal to the change in the free energy of the reactants, and thermodynamic balances of reactions in different fuel cells are provided. The production of electricity in the discharge mode involves a spontaneous reaction of overproduction of electrons at the anode and consumption of the electrons at the cathode, with the total ionic current being equal to the electronic current in the external circuit. Attention is given to the operations and problems of acid, alkaline, molten carbonate, and solid oxide fuel cells, in addition to applications of electro-organic fuel cells.

  4. In vivo liberation of gold ions from gold implants. Autometallographic tracing of gold in cells adjacent to metallic gold.

    PubMed

    Danscher, Gorm

    2002-05-01

    For some years, the implantation of small pieces of gold has been used as an unauthorised remedy for osteoarthritis and pain. The aim of the present study was to evaluate whether gold ions are released from gold implants. Pieces of pure gold were placed in the connective tissue of skin, bone and brains of anaesthetised animals. Ten days to several months later the animals were anaesthetised and killed by transcardial perfusion. Tissue blocks containing the gold pieces were cut, and the sections were silver-enhanced by autometallography. It was found that gold ions are released from the implanted gold and diffuse out into the surrounding tissue. The gold-containing cells in connective tissues were macrophages, mast cells and fibroblasts. In the brain, gold accumulated in astrocytes and neurons. Proton-induced X-ray emission spectroscopy analysis of the tissue surrounding gold implants confirmed that gold ions are liberated. The findings suggest that the gold implant technique, on a local scale, mimics systemic treatment with a gold-containing drug.

  5. RNA cell typing and DNA profiling of mixed samples: can cell types and donors be associated?

    PubMed

    Harteveld, Joyce; Lindenbergh, Alexander; Sijen, Titia

    2013-09-01

    Forensic samples regularly involve mixtures, which are readily recognised in forensic analyses. Combined DNA and mRNA profiling is an upcoming forensic practice to examine donors and cell types from the exact same sample. From DNA profiles individual genotypes may be deconvoluted, but to date no studies have established whether the cell types identified in corresponding RNA profiles can be associated with individual donors. Although RNA expression levels hold many variables from which an association may not be expected, proof of concept is important to forensic experts who may be cross examined about this possible correlation in court settings. Clearly, the gender-specificity of certain body fluids (semen, vaginal mucosa, menstrual secretion) can be instructive. However, when donors of the same gender or gender-neutral cell types are involved, alternatives are needed. Here we analyse basic two-component mixtures (two cell types provided by different donors) composed of six different cell types, and assess whether the heights of DNA and RNA peaks may guide association of donor and cell type. Divergent results were obtained; for some mixtures RNA peak heights followed the DNA results, but for others the major DNA component did not present higher RNA peaks. Also, variation in mixture ratios was observed for RNA profiling replicates and when different donor couples gave the same two body fluids. As sample degradation may affect the two nucleic acids and/or distinct cell types differently (and thus influence donor and cell type association), mixtures were subjected to elevated temperature or UV-light. Variation in DNA and RNA stability was observed both between and within cell types and depended on the method inducing degradation. Taken together, we discourage to associate cell types and donors from peak heights when performing RNA and DNA profiling.

  6. Versatile UHV compatible Knudsen type effusion cell

    SciTech Connect

    Shukla, A.K.; Banik, S.; Dhaka, R.S.; Biswas, C.; Barman, S.R.; Haak, H.

    2004-11-01

    A versatile Knudsen type effusion cell has been fabricated for growing nanostructures and epitaxial layers of metals and semiconductors. The cell provides excellent vacuum compatibility (10{sup -10} mbar range during operation), efficient water cooling, uniform heating, and moderate input power consumption (100 W at 1000 deg. C). The thermal properties of the cell have been determined. The performance of the cell has been assessed by x-ray photoemission spectroscopy (XPS) for Mn adlayer growth on Al(111). We find that this Knudsen cell has a stable deposition rate of 0.17 monolayer per minute at 550 deg. C. From the XPS spectra, we show that the Mn adlayers are completely clean, i.e., devoid of any surface contamination.

  7. Stem cell treatment for type 1 diabetes

    PubMed Central

    Li, Ming; Ikehara, Susumu

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is a common chronic disease in children, characterized by a loss of β cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy, and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion from normal β cells, which keeps blood glucose levels within the normal range all the time. Islet and pancreas transplantation achieves better glucose control, but there is a lack of organ donors. Cell based therapies have also been attempted to treat T1DM. Stem cells such as embryonic stem cells, induced pluripotent stem cells and tissue stem cells (TSCs) such as bone marrow-, adipose tissue-, and cord blood-derived stem cells, have been shown to generate insulin-producing cells. In this review, we summarize the most-recently available information about T1DM and the use of TSCs to treat T1DM. PMID:25364717

  8. Recurrence of squamous cell lung carcinoma is associated with the co-presence of reactive lesions in tumor-adjacent bronchial epithelium.

    PubMed

    Pankova, Olga V; Denisov, Evgeny V; Ponomaryova, Anastasia A; Gerashchenko, Tatiana S; Tuzikov, Sergey A; Perelmuter, Vladimir M

    2016-03-01

    Recurrences occur in 30 % of lung cancer patients after radical therapy; however, known prognostic factors are not always effective. In this study, we investigated whether the frequency of squamous non-small cell lung cancer (NSCLC) recurrence depends on the presence of reactive lesions in tumor-adjacent bronchial epithelium. Specimens of adjacent lung tissue from 104 patients with squamous NSCLC were used for the determination of basal cell hyperplasia (BCH) and squamous metaplasia (SM) and for the analysis of the expression of Ki-67, p53, Bcl-2, and CD138. We found that recurrence was observed in 36.7 % of patients with BCH combined with SM (BCH + SM+) in the same bronchus, compared with 1.8 % in patients with isolated BCH (BCH + SM-; odds ratio (OR) 31.26, 95 % confidence interval (CI) 3.77-258.60; p = 0.00002). The percentage of Ki-67-positive cells was significantly higher in BCH + SM+ than in BCH + SM- (34.9 vs. 18.3 %; effect size 2.86, 95 % CI 2.23-3.47; p = 0.003). P53 expression was also more significant in BCH + SM+ than in BCH + SM- (14.4 vs. 9.6 %; effect size 1.22, 95 % CI 0.69-1.76; p = 0.0008). In contrast, CD138 expression was lower in BCH + SM+ than in BCH + SM- (21.8 vs. 38.5 %; effect size -6.26, 95 % CI -7.31 to -5.22; p = 0.003). Based on our results, we concluded that the co-presence of reactive bronchial lesions is associated with the development of recurrent squamous NSCLC and may be a negative prognostic indicator. In addition, significant differences in Ki-67, p53, and CD138 expression exist between isolated BCH and BCH combined with SM that probably reflect part of biological differences, which could relate to the mechanism of lung cancer recurrence.

  9. Functionally deficient mesenchymal stem cells reside in the bone marrow niche with M2-macrophages and amyloid-β protein adjacent to loose total joint implants.

    PubMed

    Margulies, Bryan S; DeBoyace, Sean D; Parsons, Adrienne M; Policastro, Connor G; Ee, Jessica S S; Damron, Timothy S

    2015-05-01

    We sought to demonstrate whether there is a difference in the local mesenchymal stem cells (MSC) niche obtained from patients undergoing their first total joint replacement surgery versus those patients undergoing a revision surgery for an failing total joint implant. Bone marrow aspirates collected from patients undergoing revision total joint arthroplasty were observed to be less clonal and the expression of PDGFRα, CD51, ALCAM, endoglin, CXCL12, nestin, and nucleostemin were decreased. Revision MSC were also less able to commit to an osteoblast-lineage or an adipocyte-lineage. Further, in revision MSC, OPG, and IL6 expression were increased. Monocytes, derived from revision whole marrow aspirates, were less capable of differentiating into osteoclasts, the cells implicated in the pathologic degradation of bone. Osteoclasts were also not observed in tissue samples collected adjacent to the implants of revision patients; however, the alternatatively activated M2-macrophage phenotype was observed in parallel with pathologic accumulations of amyloid-β, τ-protien and 3-nitrotyrosine. Despite the limited numbers of patients examined, our data suggest that nucleostemin may be a useful functional marker for MSC while the observation of M2-macrophage infiltration around the implant lays the foundation for future investigation into a novel mechanism that we propose is associated with loose total joint implants.

  10. Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment.

    PubMed

    Skene, Nathan G; Grant, Seth G N

    2016-01-01

    The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE) method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer's disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer's and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesized that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer's disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  11. Exploring the spatial dimension of estrogen and progesterone signaling: detection of nuclear labeling in lobular epithelial cells in normal mammary glands adjacent to breast cancer

    PubMed Central

    2014-01-01

    Background Comprehensive spatial assessment of hormone receptor immunohistochemistry staining in digital whole slide images of breast cancer requires accurate detection of positive nuclei within biologically relevant regions of interest. Herein, we propose a combination of automated region labeling at low resolution and subsequent detailed tissue evaluation of subcellular structures in lobular structures adjacent to breast cancer, as a proof of concept for the approach to analyze estrogen and progesterone receptor expression in the spatial context of surrounding tissue. Methods Routinely processed paraffin sections of hormone receptor-negative ductal invasive breast cancer were stained for estrogen and progesterone receptor by immunohistochemistry. Digital whole slides were analyzed using commercially available image analysis software for advanced object-based analysis, applying textural, relational, and geometrical features. Mammary gland lobules were targeted as regions of interest for analysis at subcellular level in relation to their distance from coherent tumor as neighboring relevant tissue compartment. Lobule detection quality was evaluated visually by a pathologist. Results After rule set optimization in an estrogen receptor-stained training set, independent test sets (progesterone and estrogen receptor) showed acceptable detection quality in 33% of cases. Presence of disrupted lobular structures, either by brisk inflammatory infiltrate, or diffuse tumor infiltration, was common in cases with lower detection accuracy. Hormone receptor detection tended towards higher percentage of positively stained nuclei in lobules distant from the tumor border as compared to areas adjacent to the tumor. After adaptations of image analysis, corresponding evaluations were also feasible in hormone receptor positive breast cancer, with some limitations of automated separation of mammary epithelial cells from hormone receptor-positive tumor cells. Conclusions As a proof of

  12. Differences in the ectoparasite fauna between micromammals captured in natural and adjacent residential areas are better explained by sex and season than by type of habitat.

    PubMed

    Cevidanes, Aitor; Proboste, Tatiana; Chirife, Andrea D; Millán, Javier

    2016-06-01

    We compared the ectoparasite fauna in 608 micromammals (chiefly 472 wood mice Apodemus sylvaticus, 63 Algerian mice Mus spretus, and 51 greater white-toothed shrews Crocidura russula) captured in natural and adjacent residential areas in spring and autumn during three consecutive years in four areas in periurban Barcelona (NE Spain). We found little support for an association of urbanization with differences in infestation by ectoparasites. Prevalence of Rhipicephalus sp. tick in wood mice and shrews was significantly higher in residential than in natural habitats, and the opposite was found for the flea Ctenophtalmus andorrensis catalanensis in shrews. Marked differences in the prevalence of the flea Leptopsylla taschenbergi amitina in wood mice between seasons were observed in natural but not in residential habitats, probably due to enhanced flea survival probabilities in the latter. However, as a rule, males were more frequently and heavily infested than females, and the prevalence was higher in autumn than in spring. Our results suggest that the ectoparasite fauna of periurban micromammals is shaped more by other factors than by habitat modification. People living in residential areas are at risk of contact with the arthropods borne by non-commensal micromammals and the pathogens transmitted by them.

  13. Enteropathy-type T-cell lymphoma.

    PubMed

    Zettl, Andreas; deLeeuw, Ron; Haralambieva, Eugenia; Mueller-Hermelink, Hans-Konrad

    2007-05-01

    Session 7 of the Society for Hematopathology/European Association for Haematopathology Workshop was devoted to case presentations and discussion of enteropathy-type T-cell lymphoma (ETL) and other T-cell lymphomas involving the gastrointestinal tract. ETL is a rare type of T-cell lymphoma, often associated with a history of celiac disease, that usually arises in the jejunum but can involve other gastrointestinal tract sites (eg, stomach and colon). As the cases submitted illustrate, there are 2 histologic groups of ETL that correlate with clinical and immunophenotypic features. Pleomorphic-anaplastic ETL is usually associated with a history of celiac disease and histologic evidence of enteropathy and is most often CD56-. Monomorphic ETL often occurs without a history of celiac disease, has variable histologic evidence of enteropathy, and is usually CD56+. Comparative genomic hybridization has shown recurrent chromosomal gains and losses that are characteristic of ETL and uncommon in other T-cell lymphomas, providing useful ancillary data for the diagnosis of ETL.

  14. Differential gene expression profiling in aggressive bladder transitional cell carcinoma compared to the adjacent microscopically normal urothelium by microdissection-SMART cDNA PCR-SSH.

    PubMed

    Wang, H T; Ma, F L; Ma, X B; Han, R F; Zhang, Y B; Chang, J W

    2006-01-01

    Identifying novel and known genes that are differentially expressed in aggressive bladder transitional cell carcinoma (BTCC) has important implications in understanding the biology of bladder tumorigenesis and developing new diagnostic and therapeutic agents. In this study we identified the differential gene expression profiles comparing tumor to the adjacent microscopically normal mucosa by manual microdissection on frozen sections. The RNAs extracted from microdissected tissues were amplified by SMART cDNA PCR technology to generate forward subtractive cDNA library by suppressive subtractive hybridization (SSH). We obtained 376 positive clones, one hundred clones of aggressive BTCC subtracted cDNA library were selected at random and inserts were reamplified by PCR. After differential screening by reverse dot blotting, 73 positive clones, that contend inserts putatively upregulated in aggressive BTCC, were further analysed by DNA sequencing, GenBank and EST database searching. Sequencing results showed that 66 clones stand for 23 known genes and 7 clones for three new EST (Genbank number: DN236875, DN236874 and DN236873). In conclusion, microdissection-SMART cDNA PCR-SSH allowed for an efficient way to identify aggressive BTCC-specific differential expressed genes that may potentially be involved in the carcinogenesis and/or progression of aggressive BTCC. These differentially expressed genes may be of potential utility as therapeutic and diagnostic targets for aggressive BTCC.

  15. Plant single-cell and single-cell-type metabolomics.

    PubMed

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants.

  16. Defining cell types and states with single-cell genomics

    PubMed Central

    Trapnell, Cole

    2015-01-01

    A revolution in cellular measurement technology is under way: For the first time, we have the ability to monitor global gene regulation in thousands of individual cells in a single experiment. Such experiments will allow us to discover new cell types and states and trace their developmental origins. They overcome fundamental limitations inherent in measurements of bulk cell population that have frustrated efforts to resolve cellular states. Single-cell genomics and proteomics enable not only precise characterization of cell state, but also provide a stunningly high-resolution view of transitions between states. These measurements may finally make explicit the metaphor that C.H. Waddington posed nearly 60 years ago to explain cellular plasticity: Cells are residents of a vast “landscape” of possible states, over which they travel during development and in disease. Single-cell technology helps not only locate cells on this landscape, but illuminates the molecular mechanisms that shape the landscape itself. However, single-cell genomics is a field in its infancy, with many experimental and computational advances needed to fully realize its full potential. PMID:26430159

  17. Bovine herpesvirus type 1 induces cell death by a cell-type-dependent fashion.

    PubMed

    Geiser, Vicki; Rose, Suzanne; Jones, Clinton

    2008-06-01

    Bovine herpesvirus 1 (BHV-1), a member of the alpha-herpesvirinae sub-family, causes significant losses to the cattle industry. BHV-1 establishes latency in trigeminal ganglionic sensory neurons, but periodically reactivates from latency. Previous studies suggested that infection with BHV-1-induced novel morphological changes in rabbit skin (RS) cells versus bovine kidney cells (MDBK). Consequently, we hypothesized that viral infection led to a novel form of cell death in RS cells compared to MDBK cells. To test this hypothesis, we examined the levels of apoptosis in these cell types following infection with BHV-1. Infection of RS, but not MDBK, cells leads to high levels of apoptosis compared to mock-infected cells. Previous studies indicated that a BHV-1 recombinant virus that does not express the bICP0 protein grows poorly in permissive cells and induces a persistent-like infection. This suggested that bICP0 played an important role in regulating cell death following infection. To test this hypothesis, we compared the levels of apoptosis in cells infected with the bICP0 null mutant versus viral strains that expressed bICP0. The bICP0 null mutant induces low levels of apoptosis in RS or MDBK cells. When MDBK cells are treated with UV light prior to infection, bICP0 expressing viral strains, but not the bICP0 null mutant, inhibited UV-induced apoptosis. Infection of MDBK cells with the bICP0 null mutant, leads to an accumulation of autophagosomes that are not detected following infection with bICP0 expressing viruses. These studies suggest that the bICP0 null mutant induces autophagy in MDBK cells, and bICP0 protein expression mediates cell-type specific cytotoxicity.

  18. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA.

    PubMed

    Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S

    2017-02-10

    The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.

  19. Patterns of Distribution of Macro-fauna in Different Types of Estuarine, Soft Sediment Habitats Adjacent to Urban and Non-urban Areas

    NASA Astrophysics Data System (ADS)

    Lindegarth, M.; Hoskin, M.

    2001-02-01

    Urban development typically creates a large number of potentially interacting disturbances that may cause impacts on assemblages of animals and plans in estuarine habitats. We tested predictions from the general model that intertidal areas exposed to different types of disturbances have different types of assemblages of benthic macrofauna. Different parts of the Port Hacking Estuary (New South Wales, Australia) are exposed to varying degrees of disturbance by human activities. We predicted that the average structure of assemblages of intertidal animals, and patterns of variability would differ between urban and non-urban areas of Port Hacking. Consistent with previous observations from the literature, there were differences in average structure between urban and non-urban sandy areas. Qualitative differences between abundances of individual taxa in urban and non-urban areas were generally not consistent with previous observations. Differences between assemblages in urban and non-urban areas were not observed in muddy sediments, nor in sediments among mangroves and seagrass. No significant differences in variability was observed between urban and non-urban areas. Two general models may be proposed to explain the observed differences in response to urbanization in different habitats: (1) animals are exposed to different levels or combinations of disturbances in different habitats; or (2) assemblages of animals differ in sensitivity to disturbances among habitats.

  20. Mutagenesis of 8-oxoguanine adjacent to an abasic site in simian kidney cells: tandem mutations and enhancement of G-->T transversions.

    PubMed

    Kalam, M Abul; Basu, Ashis K

    2005-08-01

    Clustered DNA damages are well-established characteristics of ionizing radiation. As a model clustered lesion in the same strand of DNA, we have evaluated the mutagenic potential of 8-oxoguanine (8-oxoG) adjacent to a uracil in simian kidney cells using a phagemid vector. The uracil residue would be excised by the enzyme uracil DNA glycosylase in vivo generating an abasic site (AP site). A solitary uracil in either GUGTC or GTGUC sequence context provided >60% progeny containing GTGTC indicating that dAMP incorporation opposite the AP site or uracil occurred, but a >30% population showed replacement of U by A, C, or G, which suggests that dTMP, dGMP, or dCMP incorporation also occurred, respectively, opposite the AP site. While the preference for targeted base substitutions at the GUG site was T > C > A > G, the same at the GUC site was T > A > C > G. We conclude that base incorporation opposite an AP site is sequence-dependent. For 8-oxoG, as compared to 23-24% G-->T mutants from a single 8-oxoG in a TG(8-oxo)T sequence context, the tandem lesions UG(8-oxo)T and TG(8-oxo)U generated approximately 60 and >85% progeny, respectively, that did not contain the TGT sequence. A significant fraction of tandem mutations were detected when uracil was adjacent to 8-oxoG. What we found most interesting is that the total targeted G(8-oxo)-->T transversions that included both single and tandem mutations at the TG(8-oxo)U site was nearly 60% relative to about 30% at the UG(8-oxo)T site. A higher mutational frequency at the TG(8-oxo)U sequence may arise from a change in DNA polymerase that is more error prone. Thermal melting experiments showed that the Tm for the 8-oxoG:C pair in the TG(8-oxo)(AP*) sequence in a 12-mer was lower than the same in a (AP*)G(8-oxo)T 12-mer with deltadeltaG 0.8 kcal/mol (where AP* represents tetrahydrofuran, the model abasic site). When the 8-oxoG:C pair in each sequence was compared with a 8-oxoG:A pair, the former was found to be more stable than

  1. Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction.

    PubMed

    De Vos, R; Desmet, V

    1992-06-01

    Previous immunohistochemical studies on human liver biopsies with chronic ductular reaction revealed the presence of "small cells" with bile-duct type cytokeratin profile in the periportal area. This study identified similar cells by electron microscopy. The authors studied 13 human liver specimens with various liver diseases, but all characterized by chronic ductular reaction. In all specimens, variable numbers of "small cells" with common epithelial characteristics were identified in the periportal area. They could be classified into three types. Type I cells showed an oval cell shape and oval nucleus, early or established formation of junctional complexes with adjacent cells, a full assortment of cytoplasmic organelles, and bundles of tonofilaments. Type II cells showed features of bile-duct cell differentiation, including lateral interdigitations, apical microvilli, basal pinocytotic vacuoles, and basement membrane formation. In contrast, type III cells displayed additional features indicating hepatocellular differentiation, such as a more prominent nucleus, formation of a hemicanaliculus, and glycogen rosettes. It is concluded that these small cells of epithelial nature display variable differentiation characteristics of either bile-duct type cells or hepatocytes. These findings support the existence of bipotential progenitor epithelial cells in human liver. They may have implications for liver regeneration and carcinogenesis.

  2. Activation of Type II Cells into Regenerative Stem Cell Antigen-1+ Cells during Alveolar Repair

    PubMed Central

    Kumar, Varsha Suresh; Zhang, Wei; Rehman, Jalees; Malik, Asrar B.

    2015-01-01

    The alveolar epithelium is composed of two cell types: type I cells comprise 95% of the gas exchange surface area, whereas type II cells secrete surfactant, while retaining the ability to convert into type I cells to induce alveolar repair. Using lineage-tracing analyses in the mouse model of Pseudomonas aeruginosa–induced lung injury, we identified a population of stem cell antigen (Sca)-1–expressing type II cells with progenitor cell properties that mediate alveolar repair. These cells were shown to be distinct from previously reported Sca-1–expressing bronchioalveolar stem cells. Microarray and Wnt reporter studies showed that surfactant protein (Sp)-C+Sca-1+ cells expressed Wnt signaling pathway genes, and inhibiting Wnt/β-catenin signaling prevented the regenerative function of Sp-C+Sca-1+ cells in vitro. Thus, P. aeruginosa–mediated lung injury induces the generation of a Sca-1+ subset of type II cells. The progenitor phenotype of the Sp-C+Sca-1+ cells that mediates alveolar epithelial repair might involve Wnt signaling. PMID:25474582

  3. A web-server of cell type discrimination system.

    PubMed

    Wang, Anyou; Zhong, Yan; Wang, Yanhua; He, Qianchuan

    2014-01-01

    Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  4. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  5. The Transcriptomes of Two Heritable Cell Types Illuminate the Circuit Governing Their Differentiation

    PubMed Central

    Homann, Oliver R.; Hernday, Aaron D.; Monighetti, Cinna K.; De La Vega, Francisco M.; Johnson, Alexander D.

    2010-01-01

    The differentiation of cells into distinct cell types, each of which is heritable for many generations, underlies many biological phenomena. White and opaque cells of the fungal pathogen Candida albicans are two such heritable cell types, each thought to be adapted to unique niches within their human host. To systematically investigate their differences, we performed strand-specific, massively-parallel sequencing of RNA from C. albicans white and opaque cells. With these data we first annotated the C. albicans transcriptome, finding hundreds of novel differentially-expressed transcripts. Using the new annotation, we compared differences in transcript abundance between the two cell types with the genomic regions bound by a master regulator of the white-opaque switch (Wor1). We found that the revised transcriptional landscape considerably alters our understanding of the circuit governing differentiation. In particular, we can now resolve the poor concordance between binding of a master regulator and the differential expression of adjacent genes, a discrepancy observed in several other studies of cell differentiation. More than one third of the Wor1-bound differentially-expressed transcripts were previously unannotated, which explains the formerly puzzling presence of Wor1 at these positions along the genome. Many of these newly identified Wor1-regulated genes are non-coding and transcribed antisense to coding transcripts. We also find that 5′ and 3′ UTRs of mRNAs in the circuit are unusually long and that 5′ UTRs often differ in length between cell-types, suggesting UTRs encode important regulatory information and that use of alternative promoters is widespread. Further analysis revealed that the revised Wor1 circuit bears several striking similarities to the Oct4 circuit that specifies the pluripotency of mammalian embryonic stem cells. Additional characteristics shared with the Oct4 circuit suggest a set of general hallmarks characteristic of heritable

  6. The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation.

    PubMed

    Tuch, Brian B; Mitrovich, Quinn M; Homann, Oliver R; Hernday, Aaron D; Monighetti, Cinna K; De La Vega, Francisco M; Johnson, Alexander D

    2010-08-19

    The differentiation of cells into distinct cell types, each of which is heritable for many generations, underlies many biological phenomena. White and opaque cells of the fungal pathogen Candida albicans are two such heritable cell types, each thought to be adapted to unique niches within their human host. To systematically investigate their differences, we performed strand-specific, massively-parallel sequencing of RNA from C. albicans white and opaque cells. With these data we first annotated the C. albicans transcriptome, finding hundreds of novel differentially-expressed transcripts. Using the new annotation, we compared differences in transcript abundance between the two cell types with the genomic regions bound by a master regulator of the white-opaque switch (Wor1). We found that the revised transcriptional landscape considerably alters our understanding of the circuit governing differentiation. In particular, we can now resolve the poor concordance between binding of a master regulator and the differential expression of adjacent genes, a discrepancy observed in several other studies of cell differentiation. More than one third of the Wor1-bound differentially-expressed transcripts were previously unannotated, which explains the formerly puzzling presence of Wor1 at these positions along the genome. Many of these newly identified Wor1-regulated genes are non-coding and transcribed antisense to coding transcripts. We also find that 5' and 3' UTRs of mRNAs in the circuit are unusually long and that 5' UTRs often differ in length between cell-types, suggesting UTRs encode important regulatory information and that use of alternative promoters is widespread. Further analysis revealed that the revised Wor1 circuit bears several striking similarities to the Oct4 circuit that specifies the pluripotency of mammalian embryonic stem cells. Additional characteristics shared with the Oct4 circuit suggest a set of general hallmarks characteristic of heritable

  7. Transmission and Scanning Electron Microscopy of the Accessory Cells and Chorion During Development of Ciona intestinalis Type B Embryos and the Impact of Their Removal on Cell Morphology.

    PubMed

    Thompson, Helen; Shimeld, Sebastian M

    2015-06-01

    Spawned ascidian oocytes are surrounded by a membrane called the chorion (or vitelline coat) and associated with two populations of maternally-supplied cells. Outside the chorion are follicle cells, which may affect the buoyancy of eggs. Inside the chorion are test cells, which during oogenesis provision the egg and which after fertilisation contribute to the larval tunic. The structure of maternal cells may vary between species. The model ascidian Ciona intestinalis has been recently split into two species, currently named type A and type B. The ultrastructure of extraembryonic cells and structures from type A embryos has been reported. Here we describe the ultrastructure of follicle and test cells from C. intestinalis type B embryos. Test cells are about 5 µm in diameter and line the inside of the chorion of developing embryos in a dense sheet. Follicle cells are large (> 100 µm long) and spike-shaped, with many large vesicles. Terminal electron dense granules are found towards the tips of spikes, adjacent to cytoplasm containing numerous small electron dense bodies connected by filaments. These are probably vesicles containing material for the terminal granules. Removal of maternal structures and cells just after fertilisation, as commonly used in many experiments manipulating C. intestinalis development, has been reported to affect embryonic patterning. We examined the impact of this on embryonic ectoderm cells by scanning electron microscopy. Cells of embryos that developed without maternal structures still developed cilia, but had indistinct cell boundaries and a more flattened appearance than those that developed within the chorion.

  8. Dimensional changes in stone models simulating full crown preparations with adjacent teeth resulting from long-term immersion of medium-viscosity addition-type silicone rubber impressions in disinfectant solutions.

    PubMed

    Hiraguchi, Hisako; Iwasaki, Yukiko; Iwasaki, Eriko; Kikuchi, Hisaji; Hirose, Hideharu; Yoneyama, Takayuki

    2015-01-01

    If impression materials could be immersed in disinfectant solutions for a longer period, then this form of disinfection would be easier to incorporate into dental preparation procedures. This study investigated the dimensional changes in stone models resulting from immersion of medium-viscosity hydrophilic addition-type silicone rubber impression material in disinfectant solutions for 30 min and 24 h. Impressions of a master die designed to simulate a full crown preparation with adjacent teeth were immersed in 2% glutaraldehyde and 0.55% ortho-phthalaldehyde solutions. The dimensional changes in the mesiodistal and buccolingual dimensions in the stone models were then measured using a three-dimensional coordinate system. It was found that the dimensional changes in the stone models caused by immersion of the impression materials were less than 15 μm. Immersion in 2% glutaraldehyde or 0.55% ortho-phthalaldehyde for 24 h was as clinically acceptable for medium-viscosity hydrophilic addition-type silicone rubber impressions as immersion for 30 min.

  9. Functional identification of islet cell types by electrophysiological fingerprinting

    PubMed Central

    Zhang, Quan; Vergari, Elisa; Kellard, Joely A.; Rodriguez, Blanca; Ashcroft, Frances M.; Rorsman, Patrik

    2017-01-01

    The α-, β- and δ-cells of the pancreatic islet exhibit different electrophysiological features. We used a large dataset of whole-cell patch-clamp recordings from cells in intact mouse islets (N = 288 recordings) to investigate whether it is possible to reliably identify cell type (α, β or δ) based on their electrophysiological characteristics. We quantified 15 electrophysiological variables in each recorded cell. Individually, none of the variables could reliably distinguish the cell types. We therefore constructed a logistic regression model that included all quantified variables, to determine whether they could together identify cell type. The model identified cell type with 94% accuracy. This model was applied to a dataset of cells recorded from hyperglycaemic βV59M mice; it correctly identified cell type in all cells and was able to distinguish cells that co-expressed insulin and glucagon. Based on this revised functional identification, we were able to improve conductance-based models of the electrical activity in α-cells and generate a model of δ-cell electrical activity. These new models could faithfully emulate α- and δ-cell electrical activity recorded experimentally. PMID:28275121

  10. GABAergic cell types in the lizard hippocampus.

    PubMed

    Guirado, S; Dávila, J C

    1999-04-01

    The neurochemical classification of GABAergic cells in the lizard hippocampus resulted in a further division into four major, non-overlapping subtypes. Each GABAergic cell subtype displays specific targets on the principal hippocampal neurons. The synaptic targets of the GABA/neuropeptide subtype are the distal apical dendrites of principal neurons. Calretinin- and parvalbumin-containing GABAergic cells synapse on the cell body and proximal dendrites of principal cells. Calbindin is expressed in a distinct group of interneurons, the synapses of which are directed to the dendrites of principal neurons. Finally, another subtype displays NADPH-diaphorase activity, but its synaptic target has not been established.

  11. Alveolar type II cell-fibroblast interactions, synthesis and secretion of surfactant and type I collagen.

    PubMed

    Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T

    1993-06-01

    During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium

  12. Tabu search approaches for the multi-level warehouse layout problem with adjacency constraints

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; Lai, K. K.

    2010-08-01

    A new multi-level warehouse layout problem, the multi-level warehouse layout problem with adjacency constraints (MLWLPAC), is investigated. The same item type is required to be located in adjacent cells, and horizontal and vertical unit travel costs are product dependent. An integer programming model is proposed to formulate the problem, which is NP hard. Along with a cube-per-order index policy based heuristic, the standard tabu search (TS), greedy TS, and dynamic neighbourhood based TS are presented to solve the problem. The computational results show that the proposed approaches can reduce the transportation cost significantly.

  13. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  14. Improved fuel-cell-type hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Rudek, F. P.; Rutkowski, M. D.

    1968-01-01

    Modified hydrogen sensor replaces oxygen cathode with a cathode consisting of a sealed paste of gold hydroxide and a pure gold current collector. The net reaction which occurs during cell operation is the reduction of the gold hydroxide to gold and water, with a half-cell potential of 1.4 volts.

  15. Mitochondria single nucleotide variation across six blood cell types.

    PubMed

    Zhang, Pan; Samuels, David C; Wang, Jing; Zhao, Shilin; Shyr, Yu; Guo, Yan

    2016-05-01

    It has been shown that heteroplasmic mitochondrial DNA variants can be tissue specific. However, whether mitochondrial DNA variants are specific by blood cell types has not been investigated. Motivated by this question and using mitochondria sequences extracted from RNAseq data from six distinct blood cell types (neutrophil, monocyte, myeloid dendritic, natural killer, T and B), we thoroughly compared SNPs and heteroplasmies among these cell types. Each cell type from each subject was sequenced at four time points used as biological replicates. We found that mitochondria content is low in neutrophil compared to the other five blood cell types. Subsequent analysis on the other five blood cell types showed that at the SNP level, there was no discrepancy. At the heteroplasmy level, we observed good concordances among all blood cell types. However, the allele frequencies of the heteroplasmy differed between blood cell types for certain heteroplasmic sites. Furthermore, we identified five tri-allelic sites (1610, 2617, 8303, 12146, 13710) that are likely caused by RNA editing. Three out of these five sites are located at the ninth position of tRNA genes, and are likely resulting from post-transcriptional methylation.

  16. Epidermal cells adhere preferentially to type IV (basement membrane) collagen

    PubMed Central

    1979-01-01

    Epidermal cells from adult guinea pig skin attach and differentiate preferentially on substrates of type IV (basement membrane) collagen, compared to those of types I--III collagen. In contrast, guinea pig dermal fibroblasts attach equally well to all four collagen substrates. Fibronectin mediates the attachment of fibroblasts but not of epidermal cells to collagen. PMID:422650

  17. Myosin types in cultured muscle cells

    PubMed Central

    1980-01-01

    Fluorescent antibodies against fast skeletal, slow skeletal, and ventricular myosins were applied to muscle cultures from embryonic pectoralis and ventricular myocadium of the chicken. A number of spindle-shaped mononucleated cells, presumably myoblasts, and all myotubes present in skeletal muscle cultures were labeled by all three antimyosin antisera. In contrast, in cultures from ventricular myocardium all muscle cells were labeled by anti-ventricular myosin, whereas only part of them were stained by anti-slow skeletal myosin and rare cells reacted with anti-fast skeletal myosin. The findings indicate that myosin(s) present in cultured embryonic skeletal muscle cells contains antigenic determinants similar to those present in adult fast skeletal, slow skeletal, and ventricular myosins. PMID:6156177

  18. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    SciTech Connect

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  19. DNA methylation of cord blood cell types: Applications for mixed cell birth studies.

    PubMed

    Bakulski, Kelly M; Feinberg, Jason I; Andrews, Shan V; Yang, Jack; Brown, Shannon; L McKenney, Stephanie; Witter, Frank; Walston, Jeremy; Feinberg, Andrew P; Fallin, M Daniele

    2016-05-03

    Epigenome-wide association studies of disease widely use DNA methylation measured in blood as a surrogate tissue. Cell proportions can vary between people and confound associations of exposure or outcome. An adequate reference panel for estimating cell proportions from adult whole blood for DNA methylation studies is available, but an analogous cord blood cell reference panel is not yet available. Cord blood has unique cell types and the epigenetic signatures of standard cell types may not be consistent throughout the life course. Using magnetic bead sorting, we isolated cord blood cell types (nucleated red blood cells, granulocytes, monocytes, natural killer cells, B cells, CD4(+)T cells, and CD8(+)T cells) from 17 live births at Johns Hopkins Hospital. We confirmed enrichment of the cell types using fluorescence assisted cell sorting and ran DNA from the separated cell types on the Illumina Infinium HumanMethylation450 BeadChip array. After filtering, the final analysis was on 104 samples at 429,794 probes. We compared cell type specific signatures in cord to each other and methylation at 49.2% of CpG sites on the array differed by cell type (F-test P < 10(-8)). Differences between nucleated red blood cells and the remainder of the cell types were most pronounced (36.9% of CpG sites at P < 10(-8)) and 99.5% of these sites were hypomethylated relative to the other cell types. We also compared the mean-centered sorted cord profiles to the available adult reference panel and observed high correlation between the overlapping cell types for granulocytes and monocytes (both r=0.74), and poor correlation for CD8(+)T cells and NK cells (both r=0.08). We further provide an algorithm for estimating cell proportions in cord blood using the newly developed cord reference panel, which estimates biologically plausible cell proportions in whole cord blood samples.

  20. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  1. Intracellular SERS Nanoprobes For Distinction Of Different Neuronal Cell Types

    PubMed Central

    2013-01-01

    Distinction between closely related and morphologically similar cells is difficult by conventional methods especially without labeling. Using nuclear-targeted gold nanoparticles (AuNPs) as intracellular probes we demonstrate the ability to distinguish between progenitor and differentiated cell types in a human neuroblastoma cell line using surface-enhanced Raman spectroscopy (SERS). SERS spectra from the whole cell area as well as only the nucleus were analyzed using principal component analysis that allowed unambiguous distinction of the different cell types. SERS spectra from the nuclear region showed the developments during cellular differentiation by identifying an increase in DNA/RNA ratio and proteins transcribed. Our approach using nuclear-targeted AuNPs and SERS imaging provides label-free and noninvasive characterization that can play a vital role in identifying cell types in biomedical stem cell research. PMID:23638825

  2. Type II alveolar epithelial cell in vitro culture in aerobiosis.

    PubMed

    Aerts, C; Voisin, C; Wallaert, B

    1988-08-01

    A method of Type II alveolar epithelial cell culture in aerobiosis has been developed. Isolation of Type II cells was performed by digesting guinea-pig lung tissue with crude trypsin and elastase and using discontinuous Percoll density gradients. The Type II cells, as identified by light and electron microscopy, were cultured in aerobiosis for up to six days, in direct contact with the atmosphere in conditions mimicking those present in the lower respiratory tract. Significant activities of cellular superoxide dismutase (SOD), manganese dependent superoxide dismutase (Mn-SOD), catalase and glutathione peroxidase (GSH-Px) were found at the time of isolation. In contrast, cell glutathione content varied widely from one experiment to another. Changes of antioxidant enzymes were evaluated during cell culture in aerobiosis. SOD, Mn-SOD and catalase were significantly decreased after three days but were not significantly different between a three day and six day culture. Antioxidant changes did not influence the cell culture. In marked contrast, decrease in cell glutathione was associated with rapid cell death, whereas good cell survival was obtained at high levels of cell glutathione. Cell culture in aerobiosis will permit a precise evaluation of the effects of gases, particularly oxidant gases, on a primary culture of Type II alveolar epithelial cells.

  3. Therapeutic application of cardiac stem cells and other cell types.

    PubMed

    Hayashi, Emiko; Hosoda, Toru

    2013-01-01

    Various researches on regenerative medicine were carried out experimentally, and selected modalities have been introduced to the clinical arena. Meanwhile, the presence of resident stem cells in the heart and their role in physiological cell turnover were demonstrated. So far skeletal myoblasts, bone marrow-derived cells, mesenchymal stromal cells, and resident cardiac cells have been applied for therapeutic myocardial regeneration. Among them, autologous transplantation of c-kit-positive cardiac stem cells in congestive heart failure patients resulted in an outstanding outcome, with long-lasting beneficial effects without major adverse events. By reviewing these clinical trials, an endeavor was made to seek for an ideal cellular therapy for cardiovascular diseases.

  4. Type I Interferons and Natural Killer Cell Regulation in Cancer

    PubMed Central

    Müller, Lena; Aigner, Petra; Stoiber, Dagmar

    2017-01-01

    Type I interferons (IFNs) are known to mediate antitumor effects against several tumor types and have therefore been commonly used in clinical anticancer treatment. However, how IFN signaling exerts its beneficial effects is only partially understood. The clinically relevant activity of type I IFNs has been mainly attributed to their role in tumor immune surveillance. Different mechanisms have been postulated to explain how type I IFNs stimulate the immune system. On the one hand, they modulate innate immune cell subsets such as natural killer (NK) cells. On the other hand, type I IFNs also influence adaptive immune responses. Here, we review evidence for the impact of type I IFNs on immune surveillance against cancer and highlight the role of NK cells therein.

  5. Induction of Wnt5a-expressing mesenchymal cells adjacent to the cloacal plate is an essential process for its proximodistal elongation and subsequent anorectal development.

    PubMed

    Nakata, Mitsuyuki; Takada, Yuki; Hishiki, Tomoro; Saito, Takeshi; Terui, Keita; Sato, Yoshiharu; Koseki, Haruhiko; Yoshida, Hideo

    2009-08-01

    Anorectal malformations encompass a broad spectrum of congenital defects and are related to the development of the genital tubercle, including the cloacal plate and urorectal septum. To explore the cellular and molecular basis of anorectal malformations, we analyzed the pathogenetic process using two mouse models: Danforth's short tail (Sd) and all-trans retinoic acid (ATRA)-treated mice. Embryologically, the cloacal plate may be divided into distal and proximal parts, with the distal part subdivided into ventral and dorsal parts. In the two mouse models, anorectal malformations occur due to improper development of the proximal part of the cloacal plate. At 10.5 days postcoitus (dpc), in Sd homozygotes, there was a lack of Shh expression only in the cloacal plate and the endoderm around the cloacal plate. In addition, Wnt5a was not expressed in the mesoderm adjacent to the cloacal plate in the two mouse models, and Axin2, which is regulated by Wnt signaling, was not expressed in the dorsal part of the cloacal plate at 12.5 dpc. Based on these results, we suggest that Wnt5a, which is downstream of Shh signaling, and Axin2 affect the development of the proximal part of the cloacal plate.

  6. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells.

    PubMed

    Wu, Jhong-Sian; Cheng, Sheng-Wen; Cheng, Yen-Ju; Hsu, Chain-Shu

    2015-03-07

    Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [6,6]-phenyl-C61 or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the p-type conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular π-π interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semi-ladder copolymers with sufficient solution-processability for solar cell applications.

  7. Barrier Epithelial Cells and the Control of Type 2 Immunity.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N

    2015-07-21

    Type-2-cell-mediated immunity, rich in eosinophils, basophils, mast cells, CD4(+) T helper 2 (Th2) cells, and type 2 innate lymphoid cells (ILC2s), protects the host from helminth infection but also drives chronic allergic diseases like asthma and atopic dermatitis. Barrier epithelial cells (ECs) represent the very first line of defense and express pattern recognition receptors to recognize type-2-cell-mediated immune insults like proteolytic allergens or helminths. These ECs mount a prototypical response made up of chemokines, innate cytokines such as interleukin-1 (IL-1), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), as well as the alarmins uric acid, ATP, HMGB1, and S100 proteins. These signals program dendritic cells (DCs) to mount Th2-cell-mediated immunity and in so doing boost ILC2, basophil, and mast cell function. Here we review the general mechanisms of how different stimuli trigger type-2-cell-mediated immunity at mucosal barriers and how this leads to protection or disease.

  8. Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo.

    PubMed

    Yang, J; Sanderson, N S R; Wawrowsky, K; Puntel, M; Castro, M G; Lowenstein, P R

    2010-03-09

    To analyze the in vivo structure of antigen-specific immunological synapses during an effective immune response, we established brain tumors expressing the surrogate tumor antigen ovalbumin and labeled antigen-specific anti-glioma T cells using specific tetramers. Using these techniques, we determined that a significant number of antigen-specific T cells were localized to the brain tumor and surrounding brain tissue and a large percentage could be induced to express IFNgamma when exposed to the specific ovalbumin-derived peptide epitope SIINFEKL. Detailed morphological analysis of T cells immunoreactive for tetramers in direct physical contact with tumor cells expressing ovalbumin indicated that the interface between T cells and target tumor cells displayed various morphologies, including Kupfer-type immunological synapses. Quantitative analysis of adjacent confocal optical sections was performed to determine if the higher frequency of antigen-specific antiglioma T cells present in animals that developed an effective antitumor immune response could be correlated with a specific immunological synaptic morphology. Detailed in vivo quantitative analysis failed to detect an increased proportion of immunological synapses displaying the characteristic Kupfer-type morphology in animals mounting a strong and effective antitumor immune response as compared with those experiencing a clinically ineffective response. We conclude that an effective cytolytic immune response is not dependent on an increased frequency of Kupfer-type immunological synapses between T cells and tumor cells.

  9. Human laryngeal ganglia contain both sympathetic and parasympathetic cell types.

    PubMed

    Ibanez, Marta; Valderrama-Canales, Francisco J; Maranillo, Eva; Vazquez, Teresa; Pascual-Font, Arán; McHanwell, Stephen; Sanudo, Jose

    2010-09-01

    The presence of ganglia associated with the laryngeal nerves is well documented. In man, these ganglia have been less well studied than in other species and, in particular, the cell types within these ganglia are less well characterized. Using a panel of antibodies to a variety of markers found in the paraganglion cells of other species, we were able to show the existence of at least two populations of cells within human laryngeal paraganglia. One population contained chromogranin and tyrosine hydroxylase representing a neurosecretory population possibly secreting dopamine. A second population of choline acetyltransferase positive cells would appear to have a putative parasympathetic function. Further work is needed to characterize these cell populations more fully before it will be possible to assign functions to these cell types but our results are consistent with the postulated functions of these ganglia as chemoreceptors, neurosecretory cells, and regulators of laryngeal mucus secretion.

  10. The Rho pathway mediates transition to an alveolar type I cell phenotype during static stretch of alveolar type II cells

    PubMed Central

    Foster, Cherie D; Varghese, Linda S; Gonzales, Linda W.; Margulies, Susan S.; Guttentag, Susan H.

    2011-01-01

    Stretch is an essential mechanism for lung growth and development. Animal models in which fetal lungs have been chronically over- or under-distended demonstrate a disrupted mix of type II and type I cells, with static overdistention typically promoting a type I cell phenotype. The Rho GTPase family, key regulators of cytoskeletal signaling, are known to mediate cellular differentiation in response to stretch in other organs. Using a well-described model of alveolar epithelial cell differentiation and a validated stretch device, we investigated the effects of supraphysiologic stretch on human fetal lung (HFL) alveolar epithelial cell phenotype. Static stretch applied to epithelial cells suppressed type II cell markers (SP-B and Pepsinogen C, PGC), and induced type I cell markers (Caveolin-1, Claudin 7 and Plasminogen Activator Inhibitor-1, PAI-1) as predicted. Static stretch was also associated with Rho A activation. Furthermore, the Rho kinase (ROCK) inhibitor Y27632 decreased Rho A activation, and blunted the stretch-induced changes in alveolar epithelial cell marker expression. Together these data provide further evidence that mechanical stimulation of the cytoskeleton and Rho activation are key upstream events in mechanotransduction-associated alveolar epithelial cell differentiation. PMID:20220547

  11. Partial characterization of cell-type X collagen interactions.

    PubMed Central

    Luckman, Steven P; Rees, Elaine; Kwan, Alvin P L

    2003-01-01

    Type X collagen is a short-chain non-fibrillar collagen that is deposited exclusively at sites of new bone formation. Although this collagen has been implicated in chondrocyte hypertrophy and endochondral ossification, its precise function remains unclear. One possible function could be to regulate the processes of chondrocyte hypertrophy through direct cell-type X collagen interactions. Adhesions of embryonic chick chondrocytes, and cell lines with known expression of collagen-binding integrins (MG63 and HOS), were assayed on chick type X collagen substrates, including the native, heat-denatured and pepsin-digested collagen, and the isolated C-terminal non-collagenous (NC1) domain. Type X collagen supported the greatest level of adhesion for all cell types tested. The involvement of the alpha2beta1 integrin in type X collagen-cell interaction was demonstrated by adhesion studies in the presence of Mg(2+) and Ca(2+) ions and integrin-function-blocking antibodies. Cells expressing alpha2beta1 integrin (chick chondrocytes and MG63 cells) also adhered to heat-denatured type X collagen and the isolated NC1 domain; however, removal of the non-collagenous domains by limited pepsinization of type X collagen resulted in very low levels of adhesion. Both focal contacts and actin stress-fibre formation were apparent in cells plated on type X collagen. The presence of alpha2 and beta1 integrin subunits in isolated chondrocytes and epiphyseal cartilage was also confirmed by immunolocalization. Our results demonstrate, for the first time, that type X collagen is capable of interacting directly with chondrocytes and other cells, primarily via alpha2beta1 integrin. These findings are atypical from the fibrillar collagen-cell interactions via collagen binding integrins in that: (1) the triple-helical conformation is not strictly required for cell adhesion; (2) the NC1 domain is also involved in the adhesion of alpha2beta1-expressing cells. These data form the basis for further

  12. FACS purification of immunolabeled cell types from adult rat brain.

    PubMed

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2012-01-15

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience.

  13. Murine Coronavirus Cell Type Dependent Interaction with the Type I Interferon Response

    PubMed Central

    Rose, Kristine M.; Weiss, Susan R.

    2009-01-01

    Coronaviruses infect many species of animal including humans, causing acute and chronic diseases of many organ systems. Murine coronavirus, mouse hepatitis virus (MHV) infection of the mouse, provides animal models for the study of central nervous system disease, including encephalitis and demyelinating diseases such as Multiple Sclerosis and for hepatitis. While there are many studies of the adaptive immune response to MHV, there has until recently been scant information on the type I interferon (IFN) response to MHV. The relationship between MHV and the IFN-α/β response is paradoxical. While the type I IFN response is a crucial aspect of host defense against MHV in its natural host, there is little if any induction of IFN following infection of mouse fibroblast cell lines in vitro. Furthermore, MHV is relatively resistant to the antiviral effects of IFN-α/β in mouse fibroblast cell lines and in human 293T cells. MHV can, under some circumstances, compromise the antiviral effects of IFN signaling. The nucleocapsid protein as well as the nsp1 and nsp3 proteins of MHV has been reported to have IFN antagonist activity. However, in primary cell types such as plasmacytoid dendritic cells (pDC) and macrophages, IFN is induced by MHV infection and an antiviral state is established. Other primary cell types such as neurons, astrocytes and hepatocytes fail to produce IFN following infection and, in vivo, likely depend on IFN produced by pDCs and macrophages for protection from MHV. Thus MHV induction of IFN-α/β and the ability to induce an antiviral state in response to interferon is extremely cell type dependent. IFN induced protection from MHV pathogenesis likely requires the orchestrated activities of several cell types, however, the cell types involved in limiting MHV replication may be different in the liver and in the immune privileged CNS. PMID:20221421

  14. Colorectal cancer cell-derived microRNA200 modulates the resistance of adjacent blood endothelial barriers in vitro.

    PubMed

    Holzner, Silvio; Senfter, Daniel; Stadler, Serena; Staribacher, Anna; Nguyen, Chi Huu; Gaggl, Anna; Geleff, Silvana; Huttary, Nicole; Krieger, Sigurd; Jäger, Walter; Dolznig, Helmut; Mader, Robert M; Krupitza, Georg

    2016-11-01

    Since cancer cells, when grown as spheroids, display drug sensitivity and radiation resistance patterns such as seen in vivo we recently established a three‑dimensional (3D) in vitro model recapitulating colorectal cancer (CRC)-triggered lymphatic endothelial cell (LEC)‑barrier breaching to study mechanisms of intra‑/extravasation. CRC metastasizes not only through lymphatics but also through blood vessels and here we extend the 3D model to the interaction of blood endothelial cells (BECs) with naïve and 5‑fluorouracil (5‑FU)‑resistant CRC CCL227 cells. The 3D model enabled quantifying effects of tumour‑derived microRNA200 (miR200) miR200a, miR200b, miR200c, miR141 and miR429 regarding the induction of so-called 'circular chemorepellent‑induced defects' (CCIDs) within the BEC‑barrier, which resemble gates for tumour transmigration. For this, miR200 precursors were individually transfected and furthermore, the modulation of ZEB family expression was analysed by western blotting. miR200c, miR141 and miR429, which are contained in exosomes from naïve CCL227 cells, downregulated the expression of ZEB2, SNAI and TWIST in BECs. The exosomes of 5‑FU‑resistant CCL227‑RH cells, which are devoid of miR200, accelerated CCID formation in BEC monolayers as compared to exosomes from naïve CCL227 cells. This confirmed the reported role of ZEB2 and SNAI in CRC metastasis and highlighted the active contribution of the stroma in the metastatic process. CCL227 spheroids affected the integrity of BEC and LEC barriers alike, which was in agreement with the observation that CRC metastasizes via blood stream (into the liver) as well as via lymphatics (into lymph nodes and lungs). This further validated the CRC/LEC and CRC/BEC in vitro model to study mechanisms of CRC spreading through vascular systems. Treatment of CCL227‑RH cells with the HDAC inhibitors mocetinostat and sulforaphane reduced CCID formation to the level triggered by naïve CCL227

  15. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  16. Cell Based Therapeutics in Type 1 Diabetes Mellitus.

    PubMed

    Zamboni, Fernanda; Collins, Maurice N

    2017-02-24

    This review focuses on Type 1 diabetes mellitus (T1DM) and the role of bioengineering, nanotechnology and cell therapy in its treatment. T1DM is discussed in terms of its prevalence as well as the role of the extra cellular matrix (ECM) of the pancreas in its development and mode of action. Surface engineering strategies and the chemistries behind important cell encapsulation techniques, which are emerging from recent research in immunosuppression, are described. Key enabling technologies such as therapeutic agent immobilisation on cells, oxygen releasing systems, gene delivery and bio imaging are assessed with respect to T1DM. These latest cell surface technologies provide unlimited possibilities for control of cell/cell and cell/ECM interactions, allowing the ability to confer "immune camouflage". Finally, we provide an outlook to the future of cell-based technologies for T1DM treatment and their likely deployment in clinical trials.

  17. Mast Cells in Lung Homeostasis: Beyond Type I Hypersensitivity.

    PubMed

    Campillo-Navarro, Marcia; Chávez-Blanco, Alma D; Wong-Baeza, Isabel; Serafín-López, Jeanet; Flores-Mejía, Raúl; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel

    2014-06-01

    Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases.

  18. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  19. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots

    PubMed Central

    Zhu, Yingde; Li, Hui; Bhatti, Sarabjit; Zhou, Suping; Yang, Yong; Fish, Tara; Thannhauser, Theodore W

    2016-01-01

    Single-cell-type proteomics provides the capability to revealing the genomic and proteomics information at cell-level resolution. However, the methodology for this type of research has not been well-developed. This paper reports developing a workflow of laser capture microdissection (LCM) followed by gel-liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)-based proteomics analysis for the identification of proteomes contained in individual cell layers of tomato roots. Thin-sections (~10-μm thick, 10 sections per root tip) were prepared for root tips of tomato germinating seedlings. Epidermal and cortical cells (5000–7000 cells per tissue type) were isolated under a LCM microscope. Proteins were isolated and then separated by SDS–polyacrylamide gel electrophoresis followed by in-gel-tryptic digestion. The MS and MS/MS spectra generated using nanoLC-MS/MS analysis of the tryptic peptides were searched against ITAG2.4 tomato protein database to identify proteins contained in each single-cell-type sample. Based on the biological functions, proteins with proven functions in root hair development were identified in epidermal cells but not in the cortical cells. Several of these proteins were found in Al-treated roots only. The results demonstrated that the cell-type-specific proteome is relevant for tissue-specific functions in tomato roots. Increasing the coverage of proteomes and reducing the inevitable cross-contamination from adjacent cell layers, in both vertical and cross directions when cells are isolated from slides prepared using intact root tips, are the major challenges using the technology in proteomics analysis of plant roots. PMID:27280026

  20. Generation of diverse neural cell types through direct conversion

    PubMed Central

    Petersen, Gayle F; Strappe, Padraig M

    2016-01-01

    A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications. PMID:26981169

  1. Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Valencia, V.; Garzón, A.; Montes, C.; Ojeda, G.; Ruiz, J.; Weber, M.

    2010-10-01

    The Late Paleozoic to Triassic tectonics of northwestern South America have major implications for the understanding of Laurentia-Gondwana interactions that formed Pangea, and the origin of several tectonostratigraphic terranes dispersed by the break-up of this supercontinent during the formation of the Caribbean. Two mylonitic and orthogneissic granitoid suites have been recognized in the northeastern segment of the Sierra Nevada de Santa Marta, the lower Magdalena basin and the Guajira Serranias, within the Caribbean region of Colombia. For the Santa Marta region U/Pb LAM-ICP-MS analysis yielded zircon crystallization ages of 288.1 ± 4.5 Ma, 276.5 ± 5,1 Ma and 264.9 ± 4.0 Ma, related to the magmatic intrusion. Geochemical and modal variations show a compositional spectrum between diorite and granite, whereas LREE enrichment, Ti and Nb anomalies and geochemical discrimination suggest that this granitoid suite was formed within a magmatic arc setting. Inherited zircons suggest that this Early Permian plutonism was formed with the participation of Neoproterozoic and Grenvillian basement proximal to the South American continent. Evidence of a superimposed Early Triassic (ca. 250 Ma) deformational event in Santa Marta, together with a well defined S-type magmatism in the basement rocks from the adjacent lower Magdalena Valley and Guajira Peninsula regions are related to a major shift in the regional tectonic evolution. It's envisioned that this event records either terrane accretion or strong plate coupling during the final stages of Pangea agglutination. Connections with the main Alleghanian-Ouachitan Pangean orogen are precluded due to their timing differences. The plutons temporally and compositionally correlate with an arc found in the northern Andes and Mexican Gondwana terranes, and represent a broader magmatic event formed at the proto-Pacific margin, outside the nucleus of the Laurentia-Gondwana Alleghanian-Oachitan orogens. Evidence of lower temperature

  2. Modelling epigenetic regulation of gene expression in 12 human cell types reveals combinatorial patterns of cell-type-specific genes.

    PubMed

    Lu, Yiming; Qu, Wubin; Min, Bo; Liu, Zheyan; Chen, Changsheng; Zhang, Chenggang

    2014-06-01

    The maintenance of the diverse cell types in a multicellular organism is one of the fundamental mysteries of biology. Modelling the dynamic regulatory relationships between the histone modifications and the gene expression across the diverse cell types is essential for the authors to understand the mechanisms of the epigenetic regulation. Here, the authors thoroughly assessed the histone modification enrichment profiles at the promoters and constructed quantitative models between the histone modification abundances and the gene expression in 12 human cell types. The author's results showed that the histone modifications at the promoters exhibited remarkably cell-type-dependent variability in the cell-type-specific (CTS) genes. They demonstrated that the variable profiles of the modifications are highly predictive for the dynamic changes of the gene expression across all the cell types. Their findings revealed the close relationship between the combinatorial patterns of the histone modifications and the CTS gene expression. They anticipate that the findings and the methods they used in this study could provide useful information for the future studies of the regulatory roles of the histone modifications in the CTS genes.

  3. Infection of nonlymphoid cells by human immunodeficiency virus type 1 or type 2.

    PubMed Central

    Ikeuchi, K; Kim, S; Byrn, R A; Goldring, S R; Groopman, J E

    1990-01-01

    Human epithelial cells (L132) derived from embryonic lung and human lung fibroblasts (MRC5) were infected by human immunodeficiency virus type 1 (HIV-1) or type 2 (HIV-2). Surface CD4 protein was detected on these cells, and recombinant soluble CD4 (sCD4) blocked infection, indicating that HIV infection was mediated by the cell surface CD4 protein. In contrast, infection of human primary chondrocyte cells (C23), synovial cells (HSA), and foreskin fibroblasts (F13) was apparently independent of cell CD4-mediated mechanisms. Surface CD4 protein could not be detected on these cells, and sCD4 did not block the infection. F13 cells could be infected only by HIV-2, not by HIV-1, under our experimental conditions. In cells of mesenchymal orgin, viral production could be detected only after cocultivation with the human T-lymphoid H9 cells but not by conventional viral assays, including reverse transcriptase and p24 antigen assays in cell culture supernatant and immunofluorescence of host cells. Our DNA transfection studies indicated that this lack of detectable viral production was not due to the inefficient use of the HIV long terminal repeat or the Tat protein in these cells. These mesenchymal and epithelial cells were susceptible to HIV infection but differed in mechanism of virus entry compared with hematopoietic cells such as T lymphocytes. These observations may provide insights into clinical syndromes such as lung dysfunction in HIV-infected newborns and connective tissue disorders in HIV-infected adults. Images PMID:2384919

  4. The development and plasticity of alveolar type 1 cells

    PubMed Central

    Yang, Jun; Hernandez, Belinda J.; Martinez Alanis, Denise; Narvaez del Pilar, Odemaris; Vila-Ellis, Lisandra; Akiyama, Haruhiko; Evans, Scott E.; Ostrin, Edwin J.; Chen, Jichao

    2016-01-01

    Alveolar type 1 (AT1) cells cover >95% of the gas exchange surface and are extremely thin to facilitate passive gas diffusion. The development of these highly specialized cells and its coordination with the formation of the honeycomb-like alveolar structure are poorly understood. Using new marker-based stereology and single-cell imaging methods, we show that AT1 cells in the mouse lung form expansive thin cellular extensions via a non-proliferative two-step process while retaining cellular plasticity. In the flattening step, AT1 cells undergo molecular specification and remodel cell junctions while remaining connected to their epithelial neighbors. In the folding step, AT1 cells increase in size by more than 10-fold and undergo cellular morphogenesis that matches capillary and secondary septa formation, resulting in a single AT1 cell spanning multiple alveoli. Furthermore, AT1 cells are an unexpected source of VEGFA and their normal development is required for alveolar angiogenesis. Notably, a majority of AT1 cells proliferate upon ectopic SOX2 expression and undergo stage-dependent cell fate reprogramming. These results provide evidence that AT1 cells have both structural and signaling roles in alveolar maturation and can exit their terminally differentiated non-proliferative state. Our findings suggest that AT1 cells might be a new target in the pathogenesis and treatment of lung diseases associated with premature birth. PMID:26586225

  5. PIXE analysis of elements in gastric cancer and adjacent mucosa

    NASA Astrophysics Data System (ADS)

    Liu, Qixin; Zhong, Ming; Zhang, Xiaofeng; Yan, Lingnuo; Xu, Yongling; Ye, Simao

    1990-04-01

    The elemental regional distributions in 20 resected human stomach tissues were obtained using PIXE analysis. The samples were pathologically divided into four types: normal, adjacent mucosa A, adjacent mucosa B and cancer. The targets for PIXE analysis were prepared by wet digestion with a pressure bomb system. P, K, Fe, Cu, Zn and Se were measured and statistically analysed. We found significantly higher concentrations of P, K, Cu, Zn and a higher ratio of Cu compared to Zn in cancer tissue as compared with normal tissue, but statistically no significant difference between adjacent mucosa and cancer tissue was found.

  6. Cardiac stem cell therapy: Have we put too much hype in which cell type to use?

    PubMed

    Ye, Jianqin; Yeghiazarians, Yerem

    2015-09-01

    Injection of various stem cells has been tested with the hopes of improving cardiac function after a myocardial infarction (MI). However, there is continued controversy as to which cell type is best for repair. Due to technical differences in cell isolation, processing, delivery, and cardiac functional assessment by various investigators, it has been difficult to directly compare the results of different cells. Using same techniques to evaluate the efficacy of different cell types, we have separately delivered bone marrow cells (BMCs), cardiospheres (CSs), CS-derived Sca-1(+)/CD45(-) cells, human embryonic stem cell-derived cardiomyocytes, and BMC extract into infarcted murine myocardium and found that all of these treatments reduce infarct size and improve cardiac function post-MI similarly without one regimen being superior to another. The beneficial effects appear to be via paracrine influences. Different progenitors lead to improved cardiac function post-MI, but it is premature to hype any specific cell type at this time.

  7. Connectivity between the OFF bipolar type DB3a and six types of ganglion cell in the marmoset retina.

    PubMed

    Masri, Rania A; Percival, Kumiko A; Koizumi, Amane; Martin, Paul R; Grünert, Ulrike

    2016-06-15

    Parallel visual pathways originate at the first synapse in the retina, where cones make connections with cone bipolar cells that in turn contact ganglion cells. There are more ganglion cell types than bipolar types, suggesting that there must be divergence from bipolar to ganglion cells. Here we analyze the contacts between an OFF bipolar type (DB3a) and six ganglion cell types in the retina of the marmoset monkey (Callithrix jacchus). Ganglion cells were transfected via particle-mediated gene transfer of an expression plasmid for the postsynaptic density 95-green fluorescent protein (PSD95-GFP), and DB3a cells were labeled via immunohistochemistry. Ganglion cell types that fully or partially costratified with DB3a cells included OFF parasol, OFF midget, broad thorny, recursive bistratified, small bistratified, and large bistratified cells. On average, the number of DB3a contacts to parasol cells (18 contacts per axon terminal) is higher than that to other ganglion cell types (between four and seven contacts). We estimate that the DB3a output to OFF parasol cells accounts for at least 30% of the total DB3a output. Furthermore, we found that OFF parasol cells receive approximately 20% of their total bipolar input from DB3a cells, suggesting that other diffuse bipolar types also provide input to OFF parasol cells. We conclude that DB3a cells preferentially contact OFF parasol cells but also provide input to other ganglion cell types.

  8. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?

    PubMed

    Kahraman, Sevim; Okawa, Erin R; Kulkarni, Rohit N

    2016-08-01

    Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases.

  9. Varied interactions between proviruses and adjacent host chromatin.

    PubMed Central

    Conklin, K F; Groudine, M

    1986-01-01

    Retroviruses integrated at unique locations in the host genome can be expressed at different levels. We have analyzed the preintegration sites of three transcriptionally competent avian endogenous proviruses (evs) to determine whether the various levels of provirus expression correlate with their location in active or inactive regions of chromatin. Our results show that in three of four cell types, the chromatin conformation (as defined by relative nuclease sensitivity) of virus preintegration sites correlates with the level of expression of the resident provirus in ev+ cells: two inactive proviruses (ev-1 and ev-2) reside in nuclease-resistant chromatin domains and one active provirus (ev-3) resides in a nuclease-sensitive domain. Nuclear runoff transcription assays reveal that the preintegration sites of the active and inactive viruses are not transcribed. However, in erythrocytes of 15-day-old chicken embryos (15d RBCs), the structure and activity of the ev-3 provirus is independent of the conformation of its preintegration site. In this cell type, the ev-3 preintegration site is organized in a nuclease-resistant conformation, while the ev-3 provirus is in a nuclease-sensitive conformation and is transcribed. In addition, the nuclease sensitivity of host sequences adjacent to ev-3 is altered in ev-3+ 15d RBCs relative to that found in 15d RBCs that lack ev-3. These data suggest that the relationship between preintegration site structure and retrovirus expression is more complex than previously described. Images PMID:3025623

  10. Single-cell messenger RNA sequencing reveals rare intestinal cell types.

    PubMed

    Grün, Dominic; Lyubimova, Anna; Kester, Lennart; Wiebrands, Kay; Basak, Onur; Sasaki, Nobuo; Clevers, Hans; van Oudenaarden, Alexander

    2015-09-10

    Understanding the development and function of an organ requires the characterization of all of its cell types. Traditional methods for visualizing and isolating subpopulations of cells are based on messenger RNA or protein expression of only a few known marker genes. The unequivocal identification of a specific marker gene, however, poses a major challenge, particularly if this cell type is rare. Identifying rare cell types, such as stem cells, short-lived progenitors, cancer stem cells, or circulating tumour cells, is crucial to acquire a better understanding of normal or diseased tissue biology. To address this challenge we first sequenced the transcriptome of hundreds of randomly selected cells from mouse intestinal organoids, cultured self-organizing epithelial structures that contain all cell lineages of the mammalian intestine. Organoid buds, like intestinal crypts, harbour stem cells that continuously differentiate into a variety of cell types, occurring at widely different abundances. Since available computational methods can only resolve more abundant cell types, we developed RaceID, an algorithm for rare cell type identification in complex populations of single cells. We demonstrate that this algorithm can resolve cell types represented by only a single cell in a population of randomly sampled organoid cells. We use this algorithm to identify Reg4 as a novel marker for enteroendocrine cells, a rare population of hormone-producing intestinal cells. Next, we use Reg4 expression to enrich for these rare cells and investigate the heterogeneity within this population. RaceID confirmed the existence of known enteroendocrine lineages, and moreover discovered novel subtypes, which we subsequently validated in vivo. Having validated RaceID we then applied the algorithm to ex vivo-isolated Lgr5-positive stem cells and their direct progeny. We find that Lgr5-positive cells represent a homogenous abundant population of stem cells mixed with a rare population of Lgr5

  11. Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types

    PubMed Central

    Ferreira, Lauren; Macaulay, Iain C.; Stubbington, Michael J.T.

    2017-01-01

    The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell–specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates. PMID:28087841

  12. Type-2 innate lymphoid cells in asthma and allergy.

    PubMed

    McKenzie, Andrew N J

    2014-12-01

    Type-2 innate lymphoid cells (ILC2) belong to an expanding family of innate lymphocytes that provide a potent source of immune effector cytokines at the initiation of immune responses. ILC2 arise, under the control of the transcription factors RORα and GATA3, from lymphoid progenitors in the bone marrow, to secrete type-2 cytokines including IL-5 and IL-13. Using experimental models, ILC2 have been implicated in allergic diseases, such as asthma and atopic dermatitis, but also in metabolic homeostasis. Furthermore, recent reports have indicated that ILC2 not only play roles at the initiation of type-2 immunity but can also contribute to chronic pathology, such as fibrosis, and can impact on the priming of the adaptive T-cell response. The identification of ILC2 in patients with allergic dermatitis and allergic rhinitis indicates that these cells may represent new therapeutic targets.

  13. Cell-Type Specific Four-Component Hydrogel

    PubMed Central

    Aberle, Timo; Franke, Katrin; Rist, Elke; Benz, Karin; Schlosshauer, Burkhard

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering. PMID:24475174

  14. Targeting memory T cells in type 1 diabetes.

    PubMed

    Ehlers, Mario R; Rigby, Mark R

    2015-11-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to progressive destruction of pancreatic beta cells. Compared to healthy controls, a characteristic feature of patients with T1D is the presence of self-reactive T cells with a memory phenotype. These autoreactive memory T cells in both the CD4(+) and CD8(+) compartments are likely to be long-lived, strongly responsive to antigenic stimulation with less dependence on costimulation for activation and clonal expansion, and comparatively resistant to suppression by regulatory T cells (Tregs) or downregulation by immune-modulating agents. Persistence of autoreactive memory T cells likely contributes to the difficulty in preventing disease progression in new-onset T1D and maintaining allogeneic islet transplants by regular immunosuppressive regimens. The majority of immune interventions that have demonstrated some success in preserving beta cell function in the new-onset period have been shown to deplete or modulate memory T cells. Based on these and other considerations, preservation of residual beta cells early after diagnosis or restoration of beta cell mass by use of stem cell or transplantation technology will require a successful strategy to control the autoreactive memory T cell compartment, which could include depletion, inhibition of homeostatic cytokines, induction of hyporesponsiveness, or a combination of these approaches.

  15. Silicification in Grasses: Variation between Different Cell Types

    PubMed Central

    Kumar, Santosh; Soukup, Milan; Elbaum, Rivka

    2017-01-01

    Plants take up silicon as mono-silicic acid, which is released to soil by the weathering of silicate minerals. Silicic acid can be taken up by plant roots passively or actively, and later it is deposited in its polymerized form as amorphous hydrated silica. Major silica depositions in grasses occur in root endodermis, leaf epidermal cells, and outer epidermal cells of inflorescence bracts. Debates are rife about the mechanism of silica deposition, and two contrasting scenarios are often proposed to explain it. According to the passive mode of silicification, silica deposition is a result of silicic acid condensation due to dehydration, such as during transpirational loss of water from the aboveground organs. In general, silicification and transpiration are positively correlated, and continued silicification is sometimes observed after cell and tissue maturity. The other mode of silicification proposes the involvement of some biological factors, and is based on observations that silicification is not necessarily coupled with transpiration. Here, we review evidence for both mechanisms of silicification, and propose that the deposition mechanism is specific to the cell type. Considering all the cell types together, our conclusion is that grass silica deposition can be divided into three modes: spontaneous cell wall silicification, directed cell wall silicification, and directed paramural silicification in silica cells.

  16. The Enhancer of Split Complex and Adjacent Genes in the 96f Region of Drosophila Melanogaster Are Required for Segregation of Neural and Epidermal Progenitor Cells

    PubMed Central

    Schrons, H.; Knust, E.; Campos-Ortega, J. A.

    1992-01-01

    The Enhancer of split complex [E(spl)-C] of Drosophila melanogaster is located in the 96F region of the third chromosome and comprises at least seven structurally related genes, HLH-mδ, HLH-mγ, HLH-mβ, HLH-m3, HLH-m5, HLH-m7 and E(spl). The functions of these genes are required during early neurogenesis to give neuroectodermal cells access to the epidermal pathway of development. Another gene in the 96F region, namely groucho, is also required for this process. However, groucho is not structurally related to, and appears to act independently of, the genes of the E(spl)-C; the possibility is discussed that groucho acts upstream to the E(spl)-C genes. Indirect evidence suggests that a neighboring transcription unit (m4) may also take part in the process. Of all these genes, only gro is essential; m4 is a dispensable gene, the deletion of which does not produce detectable morphogenetic abnormalities, and the genes of the E(spl)-C are to some extent redundant and can partially substitute for each other. This redundancy is probably due to the fact that the seven genes of the E(spl)-C encode highly conserved putative DNA-binding proteins of the bHLH family. The genes of the complex are interspersed among other genes which appear to be unrelated to the neuroepidermal lineage dichotomy. PMID:1427039

  17. Cell type specific DNA methylation in cord blood: A 450K-reference data set and cell count-based validation of estimated cell type composition.

    PubMed

    Gervin, Kristina; Page, Christian Magnus; Aass, Hans Christian D; Jansen, Michelle A; Fjeldstad, Heidi Elisabeth; Andreassen, Bettina Kulle; Duijts, Liesbeth; van Meurs, Joyce B; van Zelm, Menno C; Jaddoe, Vincent W; Nordeng, Hedvig; Knudsen, Gunn Peggy; Magnus, Per; Nystad, Wenche; Staff, Anne Cathrine; Felix, Janine F; Lyle, Robert

    2016-09-01

    Epigenome-wide association studies of prenatal exposure to different environmental factors are becoming increasingly common. These studies are usually performed in umbilical cord blood. Since blood comprises multiple cell types with specific DNA methylation patterns, confounding caused by cellular heterogeneity is a major concern. This can be adjusted for using reference data consisting of DNA methylation signatures in cell types isolated from blood. However, the most commonly used reference data set is based on blood samples from adult males and is not representative of the cell type composition in neonatal cord blood. The aim of this study was to generate a reference data set from cord blood to enable correct adjustment of the cell type composition in samples collected at birth. The purity of the isolated cell types was very high for all samples (>97.1%), and clustering analyses showed distinct grouping of the cell types according to hematopoietic lineage. We explored whether this cord blood and the adult peripheral blood reference data sets impact the estimation of cell type composition in cord blood samples from an independent birth cohort (MoBa, n = 1092). This revealed significant differences for all cell types. Importantly, comparison of the cell type estimates against matched cell counts both in the cord blood reference samples (n = 11) and in another independent birth cohort (Generation R, n = 195), demonstrated moderate to high correlation of the data. This is the first cord blood reference data set with a comprehensive examination of the downstream application of the data through validation of estimated cell types against matched cell counts.

  18. Cell proliferation in type C gastritis affecting the intact stomach

    PubMed Central

    Mac, D; Willis, P; Prescott, R; Lamonby, S; Lynch, D

    2000-01-01

    Aims—Type C gastritis caused by bile reflux has a characteristic appearance, similar to that seen in other forms of chemical gastritis, such as those associated with NSAIDs or alcohol. An increase in mucosal cell proliferation increases the likelihood of a neoplastic clone of epithelial cells emerging, particularly where there is chronic epithelial injury associated with bile reflux. It has been shown previously that type C gastritis is associated with increased cell proliferation in the postsurgical stomach. The aim of this study was to determine cell proliferation in type C gastritis caused by bile reflux affecting the intact stomach. Methods—Specimens from 15 patients with a histological diagnosis of type C gastritis on antral biopsy were obtained from the pathology archives between 1994 and 1997. A control group of nine normal antral biopsies was also selected and all underwent MIB-1 immunostaining. The gastric glands were divided into three zones (zone 1, gastric pit; zone 2, isthmus; and zone 3, gland base) and the numbers of positively staining nuclei for 500 epithelial cell nuclei were counted in each zone to determine the percentage labelling index (LI%). Results—Cell proliferation was significantly higher in all three zones of the gastric glands with type C gastritis compared with controls as follows: zone 1, median LI% in type C gastritis 64.7 (range, 7.8–99.2), controls 4.7 (range, 2.0–11.3); zone 2, median LI% in type C gastritis 94.7 (range, 28.8–98.7), controls 40.2 (range, 23.1–70.3); and zone 3, median LI% in type C gastritis 20.0 (range, 1.3–96.0), controls 2.6 (range, 0.9–8.7). Conclusions—Bile reflux is thought to act as a promoter of gastric carcinogenesis in the postsurgical stomach. The same may be true in the intact stomach. Key Words: cell proliferation • epithelial kinetics • chemical gastritis PMID:11064674

  19. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide.

    PubMed

    Madera, Sharline; Rapp, Moritz; Firth, Matthew A; Beilke, Joshua N; Lanier, Lewis L; Sun, Joseph C

    2016-02-08

    Type I interferon (IFN) is crucial in host antiviral defense. Previous studies have described the pleiotropic role of type I IFNs on innate and adaptive immune cells during viral infection. Here, we demonstrate that natural killer (NK) cells from mice lacking the type I IFN-α receptor (Ifnar(-/-)) or STAT1 (which signals downstream of IFNAR) are defective in expansion and memory cell formation after mouse cytomegalovirus (MCMV) infection. Despite comparable proliferation, Ifnar(-/-) NK cells showed diminished protection against MCMV infection and exhibited more apoptosis compared with wild-type NK cells. Furthermore, we show that Ifnar(-/-) NK cells express increased levels of NK group 2 member D (NKG2D) ligands during viral infection and are susceptible to NK cell-mediated fratricide in a perforin- and NKG2D-dependent manner. Adoptive transfer of Ifnar(-/-) NK cells into NK cell-deficient mice reverses the defect in survival and expansion. Our study reveals a novel type I IFN-dependent mechanism by which NK cells evade mechanisms of cell death after viral infection.

  20. Twelve chromatically opponent ganglion cell types in turtle retina.

    PubMed

    Rocha, F A F; Saito, C A; Silveira, L C L; de Souza, J M; Ventura, D F

    2008-01-01

    The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has an ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working in the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.

  1. Cation Type Specific Cell Remodeling Regulates Attachment Strength

    PubMed Central

    Fuhrmann, Alexander; Li, Julie; Chien, Shu; Engler, Adam J.

    2014-01-01

    Single-molecule experiments indicate that integrin affinity is cation-type-dependent, but in spread cells integrins are engaged in complex focal adhesions (FAs), which can also regulate affinity. To better understand cation-type-dependent adhesion in fully spread cells, we investigated attachment strength by application of external shear. While cell attachment strength is indeed modulated by cations, the regulation of integrin-mediated adhesion is also exceedingly complex, cell specific, and niche dependent. In the presence of magnesium only, fibroblasts and fibrosarcoma cells remodel their cytoskeleton to align in the direction of applied shear in an α5-integrin/fibronectin-dependent manner, which allows them to withstand higher shear. In the presence of calcium or on collagen in modest shear, fibroblasts undergo piecewise detachment but fibrosarcoma cells exhibit increased attachment strength. These data augment the current understanding of force-mediated detachment by suggesting a dynamic interplay in situ between cell adhesion and integrins depending on local niche cation conditions. PMID:25014042

  2. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  3. Common pathways regulate Type III TGFβ receptor-dependent cell invasion in epicardial and endocardial cells.

    PubMed

    Clark, Cynthia R; Robinson, Jamille Y; Sanchez, Nora S; Townsend, Todd A; Arrieta, Julian A; Merryman, W David; Trykall, David Z; Olivey, Harold E; Hong, Charles C; Barnett, Joey V

    2016-06-01

    Epithelial-Mesenchymal Transformation (EMT) and the subsequent invasion of epicardial and endocardial cells during cardiac development is critical to the development of the coronary vessels and heart valves. The transformed cells give rise to cardiac fibroblasts and vascular smooth muscle cells or valvular interstitial cells, respectively. The Type III Transforming Growth Factor β (TGFβR3) receptor regulates EMT and cell invasion in both cell types, but the signaling mechanisms downstream of TGFβR3 are not well understood. Here we use epicardial and endocardial cells in in vitro cell invasion assays to identify common mechanisms downstream of TGFβR3 that regulate cell invasion. Inhibition of NF-κB activity blocked cell invasion in epicardial and endocardial cells. NF-κB signaling was found to be dysregulated in Tgfbr3(-/-) epicardial cells which also show impaired cell invasion in response to ligand. TGFβR3-dependent cell invasion is also dependent upon Activin Receptor-Like Kinase (ALK) 2, ALK3, and ALK5 activity. A TGFβR3 mutant that contains a threonine to alanine substitution at residue 841 (TGFβR3-T841A) induces ligand-independent cell invasion in both epicardial and endocardial cells in vitro. These findings reveal a role for NF-κB signaling in the regulation of epicardial and endocardial cell invasion and identify a mutation in TGFβR3 which stimulates ligand-independent signaling.

  4. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors.

    PubMed

    Liu, Yong-Jun

    2005-01-01

    Type 1 interferon-(alpha, beta, omega)-producing cells (IPCs), also known as plasmacytoid dendritic cell precursors (pDCs), represent 0.2%-0.8% of peripheral blood mononuclear cells in both humans and mice. IPCs display plasma cell morphology, selectively express Toll-like receptor (TLR)-7 and TLR9, and are specialized in rapidly secreting massive amounts of type 1 interferon following viral stimulation. IPCs can promote the function of natural killer cells, B cells, T cells, and myeloid DCs through type 1 interferons during an antiviral immune response. At a later stage of viral infection, IPCs differentiate into a unique type of mature dendritic cell, which directly regulates the function of T cells and thus links innate and adaptive immune responses. After more than two decades of effort by researchers, IPCs finally claim their place in the hematopoietic chart as the most important cell type in antiviral innate immunity. Understanding IPC biology holds future promise for developing cures for infectious diseases, cancer, and autoimmune diseases.

  5. Fourier Transform Infrared spectroscopy discloses different types of cell death in flow cytometrically sorted cells.

    PubMed

    Le Roux, K; Prinsloo, L C; Meyer, D

    2015-10-01

    Fourier Transform Infrared (FTIR) spectroscopy is a label free methodology showing promise in characterizing different types of cell death. Cervical adenocarcinoma (HeLa) and African monkey kidney (Vero) cells were treated with a necrosis inducer (methanol), novel apoptotic inducers (diphenylphosphino gold (I) complexes) and positive control, auranofin. Following treatment, cells stained with annexin-V and propidium iodide were sorted using a Fluorescence Activated Cell Sorter (FACS Aria) to obtain populations consisting of either viable, necrotic or apoptotic cells. Transmission Electron Microscopy confirmed successful sorting of all three populations. Four bands were identified which could discriminate between viable and necrotic cells namely 989 cm(-1), 2852 cm(-1), 2875 cm(-1) and 2923 cm(-1). In HeLa cells viable and induced apoptosis could be distinguished by 1294 cm(-1), while four bands were different in Vero cells namely; 1626 cm(-1), 1741 cm(-1), 2852 cm(-1) 2923 cm(-1). Principal Component Analysis showed separation between the different types of cell death and the loadings plots indicated an increase in an additional band at 1623 cm(-1) in dead cells. FTIR spectroscopy can be developed into an invaluable tool for the assessment of specific types of chemically induced cell death with notably different molecular signatures depending on whether the cells are cancerous and mechanism of cell death.

  6. Glial cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence

    PubMed Central

    Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M.; Bartow-McKenney, Casey; Larson, Denise M.; Pavan, William J.; Eberl, Gérard; Grice, Elizabeth A.; Veiga-Fernandes, Henrique

    2016-01-01

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers1. ILC3 development has been considered to be programmed1. Nevertheless, how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 sense their environment and control gut defence as part of a novel glial-ILC3-epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate II22, downstream of p38 MAPK/ERK-AKT cascade and STAT3 activation. Strikingly, ILC3 were adjacent to neurotrophic factor expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88 dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired ILC3-derived IL-22 and pronounced propensity to gut inflammation and infection. Our work sheds light into a novel multi-tissue defence unit, revealing glial cells as central hubs of neuron and innate immune regulation via neurotrophic factor signals. PMID:27409807

  7. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    PubMed

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals.

  8. Identifying Cell Types from Spatially Referenced Single-Cell Expression Datasets

    PubMed Central

    Achim, Kaia; Richardson, Sylvia; Azizi, Lamiae; Marioni, John

    2014-01-01

    Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene expression. The ability to study this heterogeneity has been revolutionised by advances in experimental technology, such as Wholemount in Situ Hybridizations (WiSH) and single-cell RNA-sequencing. Consequently, it is now possible to study gene expression levels in thousands of cells from the same tissue type. After generating such data one of the key goals is to cluster the cells into groups that correspond to both known and putatively novel cell types. Whilst many clustering algorithms exist, they are typically unable to incorporate information about the spatial dependence between cells within the tissue under study. When such information exists it provides important insights that should be directly included in the clustering scheme. To this end we have developed a clustering method that uses a Hidden Markov Random Field (HMRF) model to exploit both quantitative measures of expression and spatial information. To accurately reflect the underlying biology, we extend current HMRF approaches by allowing the degree of spatial coherency to differ between clusters. We demonstrate the utility of our method using simulated data before applying it to cluster single cell gene expression data generated by applying WiSH to study expression patterns in the brain of the marine annelid Platynereis dumereilii. Our approach allows known cell types to be identified as well as revealing new, previously unexplored cell types within the brain of this important model system. PMID:25254363

  9. Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types

    PubMed Central

    Chen, Ying-Jiun J.; Friedman, Brad A.; Ha, Connie; Durinck, Steffen; Liu, Jinfeng; Rubenstein, John L.; Seshagiri, Somasekar; Modrusan, Zora

    2017-01-01

    Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified. PMID:28361918

  10. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  11. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  12. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  13. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  14. Type I interferon promotes cell-to-cell spread of Listeria monocytogenes.

    PubMed

    Osborne, Suzanne E; Sit, Brandon; Shaker, Andrew; Currie, Elissa; Tan, Joël M J; van Rijn, Jorik; Higgins, Darren E; Brumell, John H

    2017-03-01

    Type I interferons (IFNs) play a critical role in antiviral immune responses, but can be deleterious to the host during some bacterial infections. Listeria monocytogenes (Lm) induces a type I IFN response by activating cytosolic antiviral surveillance pathways. This is beneficial to the bacteria as mice lacking the type I IFN receptor (IFNAR1(-/-) ) are resistant to systemic infection by Lm. The mechanisms by which type I IFNs promote Lm infection are unclear. Here, we show that IFNAR1 is required for dissemination of Lm within infection foci in livers of infected mice and for efficient cell-to-cell spread in vitro in macrophages. IFNAR1 promotes ActA polarization and actin-based motility in the cytosol of host cells. Our studies suggest type I IFNs directly impact the intracellular life cycle of Lm and provide new insight into the mechanisms used by bacterial pathogens to exploit the type I IFN response.

  15. Inducible human immunodeficiency virus type 1 packaging cell lines.

    PubMed Central

    Yu, H; Rabson, A B; Kaul, M; Ron, Y; Dougherty, J P

    1996-01-01

    Packaging cell lines are important tools for transferring genes into eukaryotic cells. Human immunodeficiency virus type 1 (HIV-1)-based packaging cell lines are difficult to obtain, in part owing to the problem that some HIV-1 proteins are cytotoxic in a variety of cells. To overcome this, we have developed an HIV-1-based packaging cell line which has an inducible expression system. The tetracycline-inducible expression system was utilized to control the expression of the Rev regulatory protein, which in turn controls the expression of the late proteins including Gag, Pol, and Env. Western blotting (immunoblotting) demonstrated that the expression of p24gag and gp120env from the packaging cells peaked on days 6 and 7 postinduction. Reverse transcriptase activity could be detected by day 4 after induction and also peaked on days 6 and 7. Defective vector virus could be propagated, yielding titers as high as 7 x 10(3) CFU/ml, while replication-competent virus was not detectable at any time. Thus, the cell line should enable the transfer of specific genes into CD4+ cells and should be a useful tool for studying the biology of HIV-1. We have also established an inducible HIV-1 Env-expressing cell line which could be used to propagate HIV-1 vectors that require only Env in trans. The env-minus vector virus titer produced from the Env-expressing cells reached 2 x 10(4) CFU/ml. The inducible HIV-1 Env-expressing cell line should be a useful tool for the study of HIV-1 Env as well. PMID:8676479

  16. Inferring cell type innovations by phylogenetic methods-concepts, methods, and limitations.

    PubMed

    Kin, Koryu

    2015-12-01

    Multicellular organisms are composed of distinct cell types that have specific roles in the body. Each cell type is a product of two kinds of historical processes-development and evolution. Although the concept of a cell type is difficult to define, the cell type concept based on the idea of the core regulatory network (CRN), a gene regulatory network that determines the identity of a cell type, illustrates the essential aspects of the cell type concept. The first step toward elucidating cell type evolution is to reconstruct the evolutionary relationships of cell types, or the cell type tree. The sister cell type model assumes that a new cell type evolves through divergence from a multifunctional ancestral cell type, creating tree-like evolutionary relationships between cell types. The process of generating a cell type tree can also be understood as the sequential addition of a new branching point on an ancestral cell differentiation hierarchy in evolution. A cell type tree thus represents an intertwined history of cell type evolution and development. Cell type trees can be reconstructed from high-throughput sequencing data, and the reconstruction of a cell type tree leads to the discovery of genes that are functionally important for a cell type. Although many issues including the lack of cross-species comparisons and the lack of a proper model for cell type evolution remain, the study of the origin of a new cell type using phylogenetic methods offers a promising new research avenue in developmental evolution. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 653-661, 2015. © 2015 Wiley Periodicals, Inc.

  17. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

    PubMed Central

    Paul, Dirk S.; Teschendorff, Andrew E.; Dang, Mary A.N.; Lowe, Robert; Hawa, Mohammed I.; Ecker, Simone; Beyan, Huriya; Cunningham, Stephanie; Fouts, Alexandra R.; Ramelius, Anita; Burden, Frances; Farrow, Samantha; Rowlston, Sophia; Rehnstrom, Karola; Frontini, Mattia; Downes, Kate; Busche, Stephan; Cheung, Warren A.; Ge, Bing; Simon, Marie-Michelle; Bujold, David; Kwan, Tony; Bourque, Guillaume; Datta, Avik; Lowy, Ernesto; Clarke, Laura; Flicek, Paul; Libertini, Emanuele; Heath, Simon; Gut, Marta; Gut, Ivo G; Ouwehand, Willem H.; Pastinen, Tomi; Soranzo, Nicole; Hofer, Sabine E.; Karges, Beate; Meissner, Thomas; Boehm, Bernhard O.; Cilio, Corrado; Elding Larsson, Helena; Lernmark, Åke; Steck, Andrea K.; Rakyan, Vardhman K.; Beck, Stephan; Leslie, R. David

    2016-01-01

    The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D. PMID:27898055

  18. The statistical geometry of transcriptome divergence in cell-type evolution and cancer.

    PubMed

    Liang, Cong; Forrest, Alistair R R; Wagner, Günter P

    2015-01-14

    In evolution, body plan complexity increases due to an increase in the number of individualized cell types. Yet, there is very little understanding of the mechanisms that produce this form of organismal complexity. One model for the origin of novel cell types is the sister cell-type model. According to this model, each cell type arises together with a sister cell type through specialization from an ancestral cell type. A key prediction of the sister cell-type model is that gene expression profiles of cell types exhibit tree structure. Here we present a statistical model for detecting tree structure in transcriptomic data and apply it to transcriptomes from ENCODE and FANTOM5. We show that transcriptomes of normal cells harbour substantial amounts of hierarchical structure. In contrast, cancer cell lines have less tree structure, suggesting that the emergence of cancer cells follows different principles from that of evolutionary cell-type origination.

  19. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  20. Human mast cells decrease SLPI levels in type II – like alveolar cell model, in vitro

    PubMed Central

    Hollander, Camilla; Nyström, Max; Janciauskiene, Sabina; Westin, Ulla

    2003-01-01

    Background Mast cells are known to accumulate at sites of inflammation and upon activation to release their granule content, e.g. histamine, cytokines and proteases. The secretory leukocyte protease inhibitor (SLPI) is produced in the respiratory mucous and plays a role in regulating the activity of the proteases. Result We have used the HMC-1 cell line as a model for human mast cells to investigate their effect on SLPI expression and its levels in cell co-culture experiments, in vitro. In comparison with controls, we found a significant reduction in SLPI levels (by 2.35-fold, p < 0.01) in a SLPI-producing, type II-like alveolar cell line, (A549) when co-cultured with HMC-1 cells, but not in an HMC-1-conditioned medium, for 96 hours. By contrast, increased SLPI mRNA expression (by 1.58-fold, p < 0.05) was found under the same experimental conditions. Immunohistochemical analysis revealed mast cell transmigration in co-culture with SLPI-producing A549 cells for 72 and 96 hours. Conclusion These results indicate that SLPI-producing cells may assist mast cell migration and that the regulation of SLPI release and/or consumption by mast cells requires interaction between these cell types. Therefore, a "local relationship" between mast cells and airway epithelial cells might be an important step in the inflammatory response. PMID:12952550

  1. Mesenchymal stem cell-based therapy for type 1 diabetes.

    PubMed

    Wu, Hao; Mahato, Ram I

    2014-03-01

    Diabetes has increasingly become a worldwide health problem, causing huge burden on healthcare system and economy. Type 1 diabetes (T1D), traditionally termed "juvenile diabetes" because of an early onset age, is affecting 5-10% of total diabetic population. Insulin injection, the predominant treatment for T1D, is effective to ameliorate the hyperglycemia but incompetent to relieve the autoimmunity and to regenerate lost islets. Islet transplantation, an experimental treatment for T1D, also suffers from limited supply of human islets and poor immunosuppression. The recent progress in regenerative medicine, especially stem cell therapy, has suggested several novel and potential cures for T1D. Mesenchymal stem cell (MSC) based cell therapy is among one of them. MSCs are a type of adult stem cells residing in bone marrow, adipose tissue, umbilical cord blood, and many other tissues. MSCs, with self-renewal potential and transdifferentiation capability, can be expanded in vitro and directed to various cell lineages with relatively less efforts. MSCs have well-characterized hypoimmunogenicity and immunomodulatory effect. All these features make MSCs attractive for treating T1D. Here, we review the properties of MSCs and some of the recent progress using MSCs as a new therapeutic in the treatment of T1D. We also discuss the strength and limitations of using MSC therapy in human trials.

  2. Studies on microperoxisomes. VII. Pigment epithelial cells and other cell types in the retina of rodents

    PubMed Central

    1975-01-01

    The pigment epithelial cell of the retina actively participates in two aspects of lipid metabolism: (a) the fatty acid esterification of vitamin A and its storage and transport to the photoreceptors, and (b) the phagocytosis and degradation of the lipoprotein membrane disks shed from the photoreceptor cells. Study of the pigment epithelial cells of adult albino and pigmented rodents has revealed the abundance of an organelle, microperoxisomes, not previously known to exist in this cell type. The metabolism, transport, and storage of lipids are major functions of other cell types which possess large numbers of microperoxisomes associated with a highly developed smooth endoplasmic reticulum. Microperoxisomes were encountered, but relatively rarely, in Muller cells and vascular endothelial cells. A tubular system in photoreceptor terminals is reactive in the cytochemical procedure used to visualize microperoxisomes. PMID:1168648

  3. [Enteropathy type T-cell lymphomas: pathology and pathogenesis].

    PubMed

    Zettl, A; Rüdiger, T; Müller-Hermelink, H K

    2007-02-01

    Enteropathy type T-cell lymphomas (ETL) are the most frequent T-cell lymphomas arising in the gastrointestinal tract. Commonly, the neoplasm is clinically associated with symptoms of malabsorption, and it frequently manifests as a spontaneous bowel perforation. Among ETL, two types can be distinguished by morphology, immunophenotype and, possibly, by pathogenesis. A total of 80% of ETL are characterized by a close association with celiac disease, pleomorphic cytomorphology and the rare expression of CD8 and CD56. In contrast, 20% of ETL show a monomorphic small to medium size cytomorphology and frequent expression of CD8 and CD56, an association with celiac disease is rare in the latter cases. Genetically, ETL is characterized by frequent and recurrent chromosomal gains of 9q33-q34.

  4. Automatic discovery of cell types and microcircuitry from neural connectomics

    PubMed Central

    Jonas, Eric; Kording, Konrad

    2015-01-01

    Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity, better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets. DOI: http://dx.doi.org/10.7554/eLife.04250.001 PMID:25928186

  5. Different types of cell death induced by enterotoxins.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Huang, Wei-Ching; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Hong, Ming-Yuan

    2010-08-01

    The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins) are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  6. Interleukin 18 stimulates HIV type 1 in monocytic cells

    PubMed Central

    Shapiro, Leland; Puren, Adrian J.; Barton, Hazel A.; Novick, Daniela; Peskind, Robert L.; Shenkar, Robert; Gu, Yong; Su, Michael S.-S.; Dinarello, Charles A.

    1998-01-01

    The cytokine interleukin (IL) 18 (formerly interferon γ-inducing factor) induces the T helper type 1 response. In the present studies, IL-18 increased HIV type 1 (HIV-1) production from 5- to 30-fold in the chronically infected U1 monocytic cell line. Inhibition of tumor necrosis factor (TNF) activity by the addition of TNF-binding protein reduced IL-18-stimulated HIV-1 production by 48%. In the same cultures, IL-18-induced IL-8 was inhibited by 96%. Also, a neutralizing anti-IL-6 mAb reduced IL-18-induced HIV-1 by 63%. Stimulation of U1 cells with IL-18 resulted in increased production of IL-6, and exogenous IL-6 added to U1 cells increased HIV-1 production 4-fold over control. A specific inhibitor of the p38 mitogen-activated protein kinase reduced IL-18-induced HIV-1 by 73%, and a 50% inhibition was observed at 0.05 μM. In the same cultures, IL-8 was inhibited by 87%. By gel-shift and supershift analyses, increased binding activity of the transcription factor NF-κB was measured in nuclear extracts from U1 cells 1 h after exposure to IL-18. These results demonstrate induction of HIV-1 by IL-18 in a monocyte target associated with an intermediate role for TNF and IL-6, activation of p38 mitogen-activated protein kinase, and nuclear translocation of NF-κB. PMID:9770523

  7. Interleukin 18 stimulates HIV type 1 in monocytic cells.

    PubMed

    Shapiro, L; Puren, A J; Barton, H A; Novick, D; Peskind, R L; Shenkar, R; Gu, Y; Su, M S; Dinarello, C A

    1998-10-13

    The cytokine interleukin (IL) 18 (formerly interferon gamma-inducing factor) induces the T helper type 1 response. In the present studies, IL-18 increased HIV type 1 (HIV-1) production from 5- to 30-fold in the chronically infected U1 monocytic cell line. Inhibition of tumor necrosis factor (TNF) activity by the addition of TNF-binding protein reduced IL-18-stimulated HIV-1 production by 48%. In the same cultures, IL-18-induced IL-8 was inhibited by 96%. Also, a neutralizing anti-IL-6 mAb reduced IL-18-induced HIV-1 by 63%. Stimulation of U1 cells with IL-18 resulted in increased production of IL-6, and exogenous IL-6 added to U1 cells increased HIV-1 production 4-fold over control. A specific inhibitor of the p38 mitogen-activated protein kinase reduced IL-18-induced HIV-1 by 73%, and a 50% inhibition was observed at 0.05 microM. In the same cultures, IL-8 was inhibited by 87%. By gel-shift and supershift analyses, increased binding activity of the transcription factor NF-kappaB was measured in nuclear extracts from U1 cells 1 h after exposure to IL-18. These results demonstrate induction of HIV-1 by IL-18 in a monocyte target associated with an intermediate role for TNF and IL-6, activation of p38 mitogen-activated protein kinase, and nuclear translocation of NF-kappaB.

  8. Development and Testing of Shingle-type Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1979-01-01

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.

  9. Induction of Human Squamous Cell-Type Carcinomas by Arsenic

    PubMed Central

    Martinez, Victor D.; Becker-Santos, Daiana D.; Vucic, Emily A.; Lam, Stephen; Lam, Wan L.

    2011-01-01

    Arsenic is a potent human carcinogen. Around one hundred million people worldwide have potentially been exposed to this metalloid at concentrations considered unsafe. Exposure occurs generally through drinking water from natural geological sources, making it difficult to control this contamination. Arsenic biotransformation is suspected to have a role in arsenic-related health effects ranging from acute toxicities to development of malignancies associated with chronic exposure. It has been demonstrated that arsenic exhibits preference for induction of squamous cell carcinomas in the human, especially skin and lung cancer. Interestingly, keratins emerge as a relevant factor in this arsenic-related squamous cell-type preference. Additionally, both genomic and epigenomic alterations have been associated with arsenic-driven neoplastic process. Some of these aberrations, as well as changes in other factors such as keratins, could explain the association between arsenic and squamous cell carcinomas in humans. PMID:22175027

  10. β-Cell function in type 2 diabetes.

    PubMed

    Ferrannini, Ele; Mari, Andrea

    2014-10-01

    Different in vivo tests explore different aspects of β-cell function. Because intercorrelation of insulin secretion indices is modest, no single in vivo test allows β-cell function to be assessed with accuracy and specificity comparable to insulin sensitivity. Physiologically-based mathematical modeling is necessary to interpret insulin secretory responses in terms of relevant parameters of β-cell function. Models can be used to analyze intravenous glucose tests, but secretory responses to intravenous glucose may be paradoxical in subjects with diabetes. Use of oral glucose (or mixed meal) data may be preferable not only for simplicity but also for physiological interpretation. While the disposition index focuses on the relationship between insulin secretion and insulin resistance, secretion parameters reflecting the dynamic response to changing glucose levels over a time frame of minutes or hours--such as β-cell glucose sensitivity--are key to explain changes in glucose tolerance and are largely independent of insulin sensitivity. Pathognomonic of the β-cell defect of type 2 diabetes is a reduced glucose sensitivity, which is accompanied by normal or raised absolute insulin secretion rates--compensatory to the attendant insulin resistance--and impaired incretin-induced potentiation. As β-cell mass is frequently within the range of nondiabetic individuals, these defects are predominantly functional and potentially reversible. Any intervention, on lifestyle or with drugs, that improves glucose tolerance does so primarily through increased β-cell glucose sensitivity. So far, however, no intervention has proven unequivocally capable of modifying the natural course of β-cell dysfunction.

  11. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting

    PubMed Central

    Atkin-Smith, Georgia K.; Paone, Stephanie; Zanker, Damien J.; Duan, Mubing; Phan, Than K.; Chen, Weisan; Hulett, Mark D.; Poon, Ivan K. H.

    2017-01-01

    Apoptotic bodies (ApoBDs) are membrane-bound extracellular vesicles that can mediate intercellular communication in physiological and pathological settings. By combining recently developed analytical strategies with fluorescence-activated cell sorting (FACS), we have developed a method that enables the isolation of ApoBDs from cultured cells to 99% purity. In addition, this approach also enables the identification and isolation of cell type-specific ApoBDs from tissue, bodily fluid and blood-derived samples. PMID:28057919

  12. Activated Type 2 Innate Lymphoid Cells regulate Beige Fat Biogenesis

    PubMed Central

    Lee, Min-Woo; Odegaard, Justin I.; Mukundan, Lata; Qiu, Yifu; Molofsky, Ari B.; Nussbaum, Jesse C.; Yun, Karen; Locksley, Richard M.; Chawla, Ajay

    2014-01-01

    SUMMARY Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2-and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα+ APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PMID:25543153

  13. 3-D Reconstruction of Macular Type II Cell Innervation Patterns in Space-Flight and Control Rats

    NASA Technical Reports Server (NTRS)

    Ross, Muriel Dorothy; Montgomery, K.; Linton, S.; Cheng, R.; Tomko, David L. (Technical Monitor)

    1995-01-01

    A semiautomated method for reconstructing objects from serial thin sections has been developed in the Biocomputation Center. The method is being used to completely, for the first time, type II hair cells and their innervations. The purposes are to learn more about the fundamental circuitry of the macula on Earth and to determine whether changes in connectivities occur under space flight conditions. Data captured directly from a transmission electron microscope via a video camera are sent to a graphics workstation. There, the digitized micrographs are mosaicked into sections and contours are traced, registered and displayed by semiautomated methods. Current reconstructions are of type II cells from the medial part of rat maculas collected in-flight on the Space Life Sciences-2 mission, 4.5 hrs post-flight, and from a ground control. Results show that typical type II cells receive processes from tip to six nearby calyces or afferents. Nearly all processes are elongated and have bouton-like enlargements; some have numerous vesicles. Multiple (2 to 4) processes from a single calyx to a type II cell are common, and approximately 1/3 of the processes innervale 2 or 3 type II cells or a neighboring cluster. From 2% to 6% of the cells resemble type I cells morphologically but have demi-calyces. Thus far, increments in synaptic number in type II cells of flight rats are prominent along processes that supply two hair cells. It is clear that reconstruction methods provide insights into details of macular circuitry not obtainable by other techniques. The results demonstrate a morphological basis for interactions between adjacent receptive fields through feed back-feed forward connections, and for dynamic alterations in receptive field range and activity during preprocessing of linear acceleratory information by the maculas. The reconstruction method we have developed will find further applications in the study of the details of neuronal architecture of more complex systems, to

  14. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.

    PubMed

    Onoyovwe, Akpevwe; Hagel, Jillian M; Chen, Xue; Khan, Morgan F; Schriemer, David C; Facchini, Peter J

    2013-10-01

    Immunofluorescence labeling and shotgun proteomics were used to establish the cell type-specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.

  15. Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation

    PubMed Central

    Leão, Richardson N.; Edwards, Steven J.

    2017-01-01

    Martinotti cells are the most prominent distal dendrite–targeting interneurons in the cortex, but their role in controlling pyramidal cell (PC) activity is largely unknown. Here, we show that the nicotinic acetylcholine receptor α2 subunit (Chrna2) specifically marks layer 5 (L5) Martinotti cells projecting to layer 1. Furthermore, we confirm that Chrna2-expressing Martinotti cells selectively target L5 thick-tufted type A PCs but not thin-tufted type B PCs. Using optogenetic activation and inhibition, we demonstrate how Chrna2-Martinotti cells robustly reset and synchronize type A PCs via slow rhythmic burst activity and rebound excitation. Moreover, using optical feedback inhibition, in which PC spikes controlled the firing of surrounding Chrna2-Martinotti cells, we found that neighboring PC spike trains became synchronized by Martinotti cell inhibition. Together, our results show that L5 Martinotti cells participate in defined cortical circuits and can synchronize PCs in a frequency-dependent manner. These findings suggest that Martinotti cells are pivotal for coordinated PC activity, which is involved in cortical information processing and cognitive control. PMID:28182735

  16. Type 1 diabetes immunotherapy using polyclonal regulatory T cells

    PubMed Central

    Bluestone, Jeffrey A.; Buckner, Jane H.; Fitch, Mark; Gitelman, Stephen E.; Gupta, Shipra; Hellerstein, Marc K.; Herold, Kevan C.; Lares, Angela; Lee, Michael R.; Li, Kevin; Liu, Weihong; Long, S. Alice; Masiello, Lisa M.; Nguyen, Vinh; Putnam, Amy L.; Rieck, Mary; Sayre, Peter; Tang, Qizhi

    2016-01-01

    Type 1 diabetes (T1D) is an autoimmune disease that occurs in genetically susceptible individuals. Regulatory T cells (Tregs) have been shown to be defective in the autoimmune disease setting. Thus, efforts to repair or replace Tregs in T1D may reverse autoimmunity and protect the remaining insulin-producing β cells. On the basis of this premise, a robust technique has been developed to isolate and expand Tregs from patients with T1D. The expanded Tregs retained their T cell receptor diversity and demonstrated enhanced functional activity. We report on a phase 1 trial to assess safety of Treg adoptive immunotherapy in T1D. Fourteen adult subjects with T1D, in four dosing cohorts, received ex vivo–expanded autologous CD4+CD127lo/−CD25+ polyclonal Tregs (0.05 × 108 to 26 × 108 cells). A subset of the adoptively transferred Tregs was long-lived, with up to 25% of the peak level remaining in the circulation at 1 year after transfer. Immune studies showed transient increases in Tregs in recipients and retained a broad Treg FOXP3+CD4+CD25hiCD127lo phenotype long-term. There were no infusion reactions or cell therapy–related high-grade adverse events. C-peptide levels persisted out to 2+ years after transfer in several individuals. These results support the development of a phase 2 trial to test efficacy of the Treg therapy. PMID:26606968

  17. Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds.

    PubMed

    Xu, Kedi; Cantu, David Antonio; Fu, Yao; Kim, Jaehyup; Zheng, Xiaoxiang; Hematti, Peiman; Kao, W John

    2013-11-01

    Mesenchymal stromal/stem cells (MSCs) are considered promising cellular therapeutics in the fields of tissue engineering and regenerative medicine. MSCs secrete high concentrations of immunomodulatory cytokines and growth factors, which exert paracrine effects on infiltrating immune and resident cells in the wound microenvironment that could favorably promote healing after acute injury. However, better spatial delivery and improved retention at the site of injury are two factors that could improve the clinical application of MSCs. In this study, we utilized thiol-ene Michael-type addition for rapid encapsulation of MSCs within a gelatin/poly(ethylene glycol) biomatrix. This biomatrix was also applied as a provisional dressing to full thickness wounds in Sprague-Dawley rats. The three-way interaction of MSCs, gelatin/poly(ethylene glycol) biomatrices, and host immune cells and adjacent resident cells in the wound microenvironment favorably modulated wound progression and host response. In this model we observed attenuated immune cell infiltration, lack of foreign giant cell (FBGC) formation, accelerated wound closure and re-epithelialization, as well as enhanced neovascularization and granulation tissue formation by 7 days. The MSC entrapped in the gelatin/poly(ethylene glycol) biomatrix localized cell presentation adjacent to the wound microenvironment and thus mediated the early resolution of inflammatory events and facilitated the proliferative phases in wound healing.

  18. Global methylation profiles in DNA from different blood cell types.

    PubMed

    Wu, Hui-Chen; Delgado-Cruzata, Lissette; Flom, Julie D; Kappil, Maya; Ferris, Jennifer S; Liao, Yuyan; Santella, Regina M; Terry, Mary Beth

    2011-01-01

    DNA methylation measured in white blood cell DNA is increasingly being used as in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran), and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources (WBC, Gran, mononuclear (MN), and lymphoblastoid cell lines (LCL)), we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA), and [(3)H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LBC, MN, or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [(3)H]-methyl acceptance, LINE1, and Alu assays. Methylation in MN was correlated with methylation in WBC for the [(3)H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant positive correlations ranging from 0.3-0.7 for each cell type with one exception (Sat2 and Alu in MN). Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39-0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18-0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.

  19. 8. Exterior view, showing tank and associated piping adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Exterior view, showing tank and associated piping adjacent to Test Cell 6, Systems Integration Laboratory Building (T-28), looking south. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. Cell Type-Specific Differences in Spike Timing and Spike Shape in the Rat Parasubiculum and Superficial Medial Entorhinal Cortex.

    PubMed

    Ebbesen, Christian Laut; Reifenstein, Eric Torsten; Tang, Qiusong; Burgalossi, Andrea; Ray, Saikat; Schreiber, Susanne; Kempter, Richard; Brecht, Michael

    2016-07-26

    The medial entorhinal cortex (MEC) and the adjacent parasubiculum are known for their elaborate spatial discharges (grid cells, border cells, etc.) and the precessing of spikes relative to the local field potential. We know little, however, about how spatio-temporal firing patterns map onto cell types. We find that cell type is a major determinant of spatio-temporal discharge properties. Parasubicular neurons and MEC layer 2 (L2) pyramids have shorter spikes, discharge spikes in bursts, and are theta-modulated (rhythmic, locking, skipping), but spikes phase-precess only weakly. MEC L2 stellates and layer 3 (L3) neurons have longer spikes, do not discharge in bursts, and are weakly theta-modulated (non-rhythmic, weakly locking, rarely skipping), but spikes steeply phase-precess. The similarities between MEC L3 neurons and MEC L2 stellates on one hand and parasubicular neurons and MEC L2 pyramids on the other hand suggest two distinct streams of temporal coding in the parahippocampal cortex.

  1. Single-Cell mRNA Profiling Reveals Cell-Type Specific Expression of Neurexin Isoforms

    PubMed Central

    Fuccillo, Marc V.; Földy, Csaba; Gökce, Özgün; Rothwell, Patrick E.; Sun, Gordon L.; Malenka, Robert C.; Südhof, Thomas C.

    2016-01-01

    Summary Neurexins are considered central organizers of synapse architecture that are implicated in neuropsychiatric disorders. Expression of neurexins in hundreds of alternatively spliced isoforms suggested that individual neurons might exhibit a cell type-specific neurexin expression pattern (a neurexin code). To test this hypothesis, we quantified the single-cell levels of neurexin isoforms and other trans-synaptic cell-adhesion molecules by microfluidics-based RT-PCR. We show that the neurexin repertoire displays pronounced cell-type specificity that is remarkably consistent within each type of neuron. Furthermore, we uncovered region-specific regulation of neurexin transcription and splice-site usage. Finally, we demonstrate that the transcriptional profiles of neurexins can be altered in an experience-dependent fashion by exposure to a drug of abuse. Our data provide evidence of cell type-specific expression patterns of multiple neurexins at the single-cell level, and suggest that expression of synaptic cell-adhesion molecules overlaps with other key features of cellular identity and diversity. PMID:26182417

  2. PAX6 maintains β cell identity by repressing genes of alternative islet cell types

    PubMed Central

    Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H.; Glaser, Benjamin; Ashery-Padan, Ruth

    2016-01-01

    Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes. PMID:27941241

  3. Concise review: alchemy of biology: generating desired cell types from abundant and accessible cells.

    PubMed

    Pournasr, Behshad; Khaloughi, Keynoush; Salekdeh, Ghasem Hosseini; Totonchi, Mehdi; Shahbazi, Ebrahim; Baharvand, Hossein

    2011-12-01

    A major goal of regenerative medicine is to produce cells to participate in the generation, maintenance, and repair of tissues that are damaged by disease, aging, or trauma, such that function is restored. The establishment of induced pluripotent stem cells, followed by directed differentiation, offers a powerful strategy for producing patient-specific therapies. Given how laborious and lengthy this process can be, the conversion of somatic cells into lineage-specific stem/progenitor cells in one step, without going back to, or through, a pluripotent stage, has opened up tremendous opportunities for regenerative medicine. However, there are a number of obstacles to overcome before these cells can be widely considered for clinical applications. Here, we focus on induced transdifferentiation strategies to convert mature somatic cells to other mature cell types or progenitors, and we summarize the challenges that need to be met if the potential applications of transdifferentiation technology are to be achieved.

  4. Development and characterization of a Mantle Cell Lymphoma Cell Bank in the American Type Culture Collection.

    PubMed

    Fogli, Laura K; Williams, Michael E; Connors, Joseph M; Reid, Yvonne; Brown, Kathleen; O'Connor, Owen A

    2015-07-01

    Mantle cell lymphoma (MCL) is a rare B-cell malignancy that carries a relatively poor prognosis compared to other forms of non-Hodgkin lymphoma. Standardized preclinical tools are desperately required to hasten the discovery and translation of promising new treatments for MCL. Via an initiative organized through the Mantle Cell Lymphoma Consortium and the Lymphoma Research Foundation, we gathered MCL cell lines from laboratories around the world to create a characterized MCL Cell Bank at the American Type Culture Collection (ATCC). Initiated in 2006, this collection now contains eight cell lines, all of which have been rigorously characterized and are now stored and available for distribution to the general scientific community. We believe the awareness and use of these standardized cell lines will decrease variability between investigators, harmonize international research efforts, improve our understanding of the pathogenesis of the disease and hasten the development of novel treatment strategies.

  5. Optically characterizing collagen gels made with different cell types

    NASA Astrophysics Data System (ADS)

    Levitz, David; Choudhury, Niloy; Vartanian, Keri; Hinds, Monica T.; Hanson, Stephen R.; Jacques, Steven L.

    2009-02-01

    The ability of optical imaging techniques such as optical coherence tomography (OCT) to non-destructively characterize tissue-engineered constructs has generated enormous interest recently. Collagen gels are 3D structures that represent a simple common model of many engineered tissues that contain 2 primary scatterers: collagen and cells. We are testing the ability of OCT data to characterize the remodeling of such collagen-based constructs by 3 different types of cells: vascular smooth muscle cells (SMCs), endothelial cells (ECs), and osteoblasts (OBs). Collagen gels were prepared with SMCs, ECs, and OBs with a seeding density of 1×106 cells/ml; additionally, acellular controls were also prepared. The disk-shaped constructs were allowed to remodel in the incubator for 5 days, with OCT imaging occurring on days 1 and 5. From the OCT data, the attenuation and reflectivity were evaluated by fitting the data to a theoretical model that relates the tissue optical properties (scattering coefficient and anisotropy factor) and imaging conditions to the OCT signal. The degree of gel compaction was determined from the volume of the culture medium that feeds the constructs. We found that gel compaction (relative to the acellular control) occurred in the SMC constructs, but not in the OB or EC constructs. The optical property data showed that at day 5 the SMC constructs had an overall higher reflectivity (lower g) relative to day 1, whereas there was no obvious change in reflectivity of the EC, OB constructs and acellular controls relative to day 1. Moreover, there was a difference in the attenuation of the OB constructs on day 5 relative to day 1, but not in the other constructs. The apparent decrease in anisotropy observed in the SMC constructs, but not in the OB and EC constructs and acellular controls, suggests that OCT is sensitive to the remodeling of the collagen matrix that accompanies gel compaction, and can offer highly localized information on the construct

  6. Clear cell renal cell carcinoma with a syncytial-type multinucleated giant tumor cell component: implications for differential diagnosis.

    PubMed

    Williamson, Sean R; Kum, Jennifer B; Goheen, Michael P; Cheng, Liang; Grignon, David J; Idrees, Muhammad T

    2014-04-01

    A component of syncytial-type multinucleated tumor giant cells is uncommon in clear cell renal cell carcinoma, and the histogenesis, incidence, and clinical implications of this finding are not well understood. We retrieved 13 such tumors from our pathology archives in patients with a median age of 60years, comprising 1.5% of clear cell renal cell carcinomas. Stage was typically pT4 or pT3 (each 38%). Microscopically, all tumors included a component of low-grade clear cell renal cell carcinoma with usual features. Syncytial-type giant tumor cells possessed voluminous cytoplasm, usually granular and eosinophilic, and numerous nuclei similar to those of the mononuclear tumor cells. Transition between areas of mononuclear and multinucleated cells was sometimes abrupt. Other findings included necrosis (77%), hyaline globules (46%), emperipolesis (46%), and intranuclear cytoplasmic invaginations (23%). Immunohistochemical staining typically revealed both mononuclear and multinucleated cells to be positive for carbonic anhydrase IX, CD10, epithelial membrane antigen, vimentin, and cytokeratin AE1/AE3 and negative for β human chorionic gonadotropin, TFE3, cathepsin K, cytokeratin 7, cytokeratin 20, HMB45, CD68, smooth muscle actin, and S100. Most patients with available information (7/9) were alive with metastatic disease at the most recent follow-up. Syncytial-type giant cells are an uncommon finding associated with aggressive clear cell renal cell carcinomas. Despite the unusual appearance of this tumor component, its immunoprofile supports an epithelial lineage and argues against trophoblastic, osteoclast-like, or histiocytic differentiation. Reactivity for typical clear cell renal cell carcinoma antigens facilitates discrimination from giant cells of epithelioid angiomyolipoma or other tumors, particularly in a biopsy specimen or a metastatic tumor.

  7. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    PubMed

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ.

  8. Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism

    PubMed Central

    Mroz, Pawel; Pawlak, Anna; Satti, Minahil; Lee, Haeryeon; Wharton, Tim; Gali, Hariprasad; Sarna, Tadeusz; Hamblin, Michael R.

    2007-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) and harmless visible light to generate reactive oxygen species (ROS) and kill cells. Most clinically studied PS are based on the tetrapyrrole structure of porphyrins, chlorins and related molecules, but new non-tetrapyrrole PS are being sought. Fullerenes are soccer-ball shaped molecules composed of sixty or seventy carbon atoms and have attracted interest in connection with the search for biomedical applications of nanotechnology. Fullerenes are biologically inert unless derivatized with functional groups, whereupon they become soluble and can act as PS. We have compared the photodynamic activity of six functionalized fullerenes with 1, 2, or 3 hydrophilic or 1, 2, or 3 cationic groups. The octanol-water partition coefficients were determined and the relative contributions of Type I photochemistry (photogeneration of superoxide in the presence of NADH) and Type II photochemistry (photogeneration of singlet oxygen) were studied by measurement of oxygen consumption, 1270-nm luminescence and EPR spin-trapping of the superoxide product. We studied three mouse cancer cell lines: (J774, LLC and CT26) incubated for 24 h with fullerenes and illuminated with white light. The order of effectiveness as PS was inversely proportional to the degree of substitution of the fullerene nucleus for both the neutral and cationic series. The mono-pyrrolidinium fullerene was the most active PS against all cell lines and induced apoptosis 4–6 hours after illumination. It produced diffuse intracellular fluorescence when dichlorodihydrofluorescein was added as an ROS probe suggesting a Type I mechanism for phototoxicity. We conclude that certain functionalized fullerenes have potential as novel PDT agents and phototoxicity may be mediated both by superoxide and by singlet oxygen. PMID:17664135

  9. Isolation of Highly Pure Primary Mouse Alveolar Epithelial Type II Cells by Flow Cytometric Cell Sorting

    PubMed Central

    Lowell, Clifford A.

    2017-01-01

    In this protocol, we describe the method for isolating highly pure primary alveolar epithelial type II (ATII) cells from lungs of naïve mice. The method combines negative selection for a variety of lineage markers along with positive selection for EpCAM, a pan-epithelial cell marker. This method yields 2-3 × 106 ATII cells per mouse lung. The cell preps are highly pure and viable and can be used for genomic or proteomic analyses or cultured ex vivo to understand their roles in various biological processes. PMID:28180137

  10. Transdifferentiation between Luminal- and Basal-Type Cancer Cells

    DTIC Science & Technology

    2013-12-01

    mesenchymal transition (EMT) by inhibitory phosphorylation of transcription factor Snail , a master switch of EMT. Supported by this award, we have... Snail -wild type (WT), Snail -S11E and –S11V. Snail , a well-known transcription repressor of the key epithelial adherens junction protein E-cadherin...CD24hiCD44lo phenotype (Fig 1A). The resulting cell lines MCF7/ Snail -WT and Snail -S11E (mimics constant phosphorylation) did not display a significant

  11. Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*

    PubMed Central

    Dai, Shaojun; Chen, Sixue

    2012-01-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375

  12. Single-cell-type proteomics: toward a holistic understanding of plant function.

    PubMed

    Dai, Shaojun; Chen, Sixue

    2012-12-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.

  13. Circulating Osteogenic Precursor Cells in Type 2 Diabetes Mellitus

    PubMed Central

    Manavalan, J. S.; Cremers, S.; Dempster, D. W.; Zhou, H.; Dworakowski, E.; Kode, A.; Kousteni, S.

    2012-01-01

    Context: Type 2 diabetes mellitus (T2D) is associated with an increased risk of fractures and low bone formation. However, the mechanism for the low bone formation is not well understood. Recently, circulating osteogenic precursor (COP) cells, which contribute to bone formation, have been characterized in the peripheral circulation. Objective: Our objective was to characterize the number and maturity of COP cells in T2D. Patients, Design, and Setting: Eighteen postmenopausal women with T2D and 27 controls participated in this cross-sectional study at a clinical research center. Main Outcome Measures: COP cells were characterized using flow cytometry and antibodies against osteocalcin (OCN) and early stem cell markers. Histomorphometric (n = 9) and molecular (n=14) indices of bone turnover and oxidative stress were also measured. Results: The percentage of OCN+ cells in peripheral blood mononuclear cells was lower in T2D (0.8 ± 0.2 vs. 1.6 ± 0.4%; P < 0.0001), whereas the percentage of OCN+ cells coexpressing the early marker CD146 was increased (OCN+/CD146+: 33.3 ± 7 vs. 12.0 ± 4%; P < 0.0001). Reduced histomorphometric indices of bone formation were observed in T2D subjects, including mineralizing surface (2.65 ± 1.9 vs. 7.58 ± 2.4%, P = 0.02), bone formation rate (0.01 ± 0.1 vs. 0.05 ±0.2 μm3/um2 · d, P = 0.02), and osteoblast surface (1.23 ±0.9 vs. 4.60 ± 2.5%, P = 0.03). T2D subjects also had reduced molecular expression of the osteoblast regulator gene Runx2 but increased expression of the oxidative stress markers p66Shc and SOD2. Conclusions: Circulating OCN+ cells were decreased in T2D, whereas OCN+/CD146+ cells were increased. Histomorphometric indices of bone formation were decreased in T2D, as was molecular expression of osteoblastic activity. Stimulation of bone formation may have beneficial therapeutic skeletal consequences in T2D. PMID:22740707

  14. Islet transplantation versus stem cells for the cell therapy of type 1 diabetes mellitus.

    PubMed

    Basta, G; Montanucci, P; Calafiore, R

    2015-12-01

    Pancreatic islet cell transplantation has represented the mainstay of cell therapy for the potential, final cure of type 1 diabetes mellitus (T1D), along the past two decades. Unfortunately, the restricted availability of cadaveric human donor pancreases coupled with heavy side effects of the recipient's general immunosuppression, have severely crippled progress of this approach into clinical trials. Only a few excellence centers, worldwide, have thus far accrued still quite marginal clinical success. In an attempt to overcome the limits of islet transplantation new technologies for use of several stem cell lineages are being under investigation, with initial experimental evidence of success. Essentially, the actual lines of research involve attempts to either activate native endogenous stem cells that replace diseased/dead cells, by a cell regeneration process, or condition other stem cells to acquire the functional properties of the targeted cells to be substituted (i.e., beta-cell-like elements associated with insulin secretory competence). A wide array of stem cells may fulfill this task, from embryonic (whose use still faces strong ethical barriers), to adult, to induced pluripotent stem cells. Mesenchymal adult stem cells, retrievable from many different sites, including adipose tissue, bone marrow and post-partum umbilical cord Wharton Jelly, seem to couple plastic to immunoregulatory properties that might greatly help progress for the disease cure.

  15. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  16. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  17. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  18. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  19. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  20. Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes

    SciTech Connect

    Bhati, Mugdha; Lee, Christopher; Nancarrow, Amy L.; Lee, Mihwa; Craig, Vanessa J.; Bach, Ingolf; Guss, J. Mitchell; Mackay, Joel P.; Matthews, Jacqueline M.

    2008-09-03

    LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1{sub LBD}). Although the LIM interaction domain of Ldb1 (Ldb1{sub LID}) and Isl1{sub LBD} share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1{sub LBD} mimics Ldb1{sub LID}. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.

  1. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  2. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  3. T regulatory cells distinguish two types of primary hypophysitis.

    PubMed

    Mirocha, S; Elagin, R B; Salamat, S; Jaume, J C

    2009-03-01

    Numerous cases of primary hypophysitis have been described over the past 25 years with, however, little insight into the cause(s) of this disease. In order to guide treatment, a better understanding of the pathogenesis is needed. We studied the pathogenesis of primary hypophysitis by analysing systematically the immune response at the pituitary tissue level of consecutive cases of 'lymphocytic' hypophysitis who underwent pituitary biopsy. In order to investigate further the pathogenesis of their diseases we characterized two cases at clinical, cellular and molecular levels. We show here, for the first time, that lymphocytic hypophysitis probably encompasses at least two separate entities. One entity, in agreement with the classical description of lymphocytic hypophysitis, demonstrates an autoimmune process with T helper 17 cell dominance and lack of T regulatory cells. The other entity represents a process in which T regulatory cells seem to control the immune response, which may not be self- but foreign-targeted. Our data suggest that it may be necessary to biopsy suspected primary hypophysitis and to analyse pituitary tissue with immune markers to guide treatment. Based on our results, hypophysitis driven by an immune homeostatic process should not be treated with immunosuppression, while autoimmune-defined hypophysitis may benefit from it. We show here for the first time two different pathogenic processes classified under one disease type and how to distinguish them. Because of our findings, changes in current diagnostic and therapeutic approaches may need to be considered.

  4. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types.

    PubMed

    Jaitin, Diego Adhemar; Kenigsberg, Ephraim; Keren-Shaul, Hadas; Elefant, Naama; Paul, Franziska; Zaretsky, Irina; Mildner, Alexander; Cohen, Nadav; Jung, Steffen; Tanay, Amos; Amit, Ido

    2014-02-14

    In multicellular organisms, biological function emerges when heterogeneous cell types form complex organs. Nevertheless, dissection of tissues into mixtures of cellular subpopulations is currently challenging. We introduce an automated massively parallel single-cell RNA sequencing (RNA-seq) approach for analyzing in vivo transcriptional states in thousands of single cells. Combined with unsupervised classification algorithms, this facilitates ab initio cell-type characterization of splenic tissues. Modeling single-cell transcriptional states in dendritic cells and additional hematopoietic cell types uncovers rich cell-type heterogeneity and gene-modules activity in steady state and after pathogen activation. Cellular diversity is thereby approached through inference of variable and dynamic pathway activity rather than a fixed preprogrammed cell-type hierarchy. These data demonstrate single-cell RNA-seq as an effective tool for comprehensive cellular decomposition of complex tissues.

  5. β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells

    PubMed Central

    Corritore, Elisa; Lee, Yong-Syu; Sokal, Etienne M.; Lysy, Philippe A.

    2016-01-01

    Thorough research on the capacity of human islet transplantation to cure type 1 diabetes led to the achievement of 3- to 5-year-long insulin independence in nearly half of transplanted patients. Yet, translation of this technique to clinical routine is limited by organ shortage and the need for long-term immunosuppression, restricting its use to adults with unstable disease. The production of new bona fide β cells in vitro was thus investigated and finally achieved with human pluripotent stem cells (PSCs). Besides ethical concerns about the use of human embryos, studies are now evaluating the possibility of circumventing the spontaneous tumor formation associated with transplantation of PSCs. These issues fueled the search for cell candidates for β-cell engineering with safe profiles for clinical translation. In vivo studies revealed the regeneration capacity of the exocrine pancreas after injury that depends at least partially on facultative progenitors in the ductal compartment. These stimulated subpopulations of pancreatic ductal cells (PDCs) underwent β-cell transdifferentiation through reactivation of embryonic signaling pathways. In vitro models for expansion and differentiation of purified PDCs toward insulin-producing cells were described using cocktails of growth factors, extracellular-matrix proteins and transcription factor overexpression. In this review, we will describe the latest findings in pancreatic β-cell mass regeneration due to adult ductal progenitor cells. We will further describe recent advances in human PDC transdifferentiation to insulin-producing cells with potential for clinical translational studies. PMID:27540464

  6. Extranodal natural killer/T-cell lymphoma, nasal-type.

    PubMed

    Chorianopoulos, Dimitrios; Samitas, Konstantinos; Vittorakis, Stylianos; Kiriazi, Vasiliki; Rondoyianni, Dimitra; Tsaousis, Georgios; Skoutelis, Athanasios

    2010-01-01

    expressed the cytotoxic proteins T-cell intracellular antigen and granzyme B (Figure 3) They lacked TdT, CD34, CD7, CD8, TCL-1, and CD123. Findings from an in situ hybridization study for Epstein-Barr virus were negative. Give this result, molecular analysis ofT-cell receptor (TCR) gene rearrangements was performed using polymerase chain reaction-based TCR-gamma gene, wit negative results. The morphology and the immunophenotype were consistent with natural killer/T-cell lymphoma, nasal-type. Nasal involvement must be first excluded to proceed to the diagnosis of nasal-type natural killer-cell lymphoma. Indeed, histologic examination of the nasal mass revealed its polypoid nature. Thus, the authors were led to the diagnosis of extranodal extranasal natural killer/T-cell lymphoma, nasal-type, CD56-positive, Ep stein-Barr virus-negative, TCR-negative. The patient received combination chemotherapy and completed 4 cycles of cyclophosphamide, doxorubicin vincristine, and prednisone every 14 days for 2 months. Skin lesions improved, and there was no fever soon after the initiation of therapy. Reevaluatio after the fourth cycle, however, disclosed pulmonary infiltrations as well as leukemic infiltration of the central nervous system. The patient had receive systemic salvage chemotherapy and intrathecal infusions of methotrexate. Although the lung lesions had diminished at that time, the patient develope paraplegia, his clinical course rapidly deteriorated, and he eventually died.

  7. Stem cell approaches for the treatment of type 1 diabetes mellitus.

    PubMed

    Wagner, Ryan T; Lewis, Jennifer; Cooney, Austin; Chan, Lawrence

    2010-09-01

    Type 1 diabetes is characterized by near total absence of pancreatic b cells. Current treatments consisting of insulin injections and islet transplantation are clinically unsatisfactory. In order to develop a cure for type 1 diabetes, we must find a way to reverse autoimmunity, which underlies b cell destruction, as well as an effective strategy to generate new b cells. This article reviews the different approaches that are being taken to produce new b cells. Much emphasis has been placed on selecting the right non-b cell population, either in vivo or in vitro, as the starting material. Different cell types, including adult stem cells, other types of progenitor cells in situ, and even differentiated cell populations, as well as embryonic stem cells and induced pluripotent stem cells, will require different methods for islet and b cell induction. We discussed the pros and cons of the different strategies that are being used to re-invent the pancreatic b cell.

  8. LagC is required for cell-cell interactions that are essential for cell-type differentiation in Dictyostelium.

    PubMed

    Dynes, J L; Clark, A M; Shaulsky, G; Kuspa, A; Loomis, W F; Firtel, R A

    1994-04-15

    Strain AK127 is a developmental mutant of Dictyostelium discoideum that was isolated by restriction enzyme-mediated integration (REMI). Mutant cells aggregate normally but are unable to proceed past the loose aggregate stage. The cloned gene, lagC (loose aggregate C), encodes a novel protein of 98 kD that contains an amino-terminal signal sequence and a putative carboxy-terminal transmembrane domain. The mutant strain AK127 shows no detectable lagC transcript upon Northern analysis, indicating that the observed phenotype is that of a null allele. Expression of the lagC cDNA in AK127 cells complements the arrest at the loose aggregate stage, indicating that the mutant phenotype results from disruption of the lagC gene. In wild-type cells, lagC mRNA is induced at the loose aggregate stage and is expressed through the remainder of development. lagC- null cells aggregate but then disaggregate and reaggregate to form small granular mounds. Mature spores are produced at an extremely low efficiency (< 0.1% of wild type), appearing only after approximately 72 hr, whereas wild-type strains produce mature spores by 26 hr. lagC- null cells accumulate reduced levels of transcripts for the prestalk-enriched genes rasD and CP2 and do not express the DIF-induced prestalk-specific gene ecmA or the cAMP-induced prespore-specific gene SP60 to significant levels. In chimeric organisms resulting from the coaggregation of lagC- null and wild-type cells, cell-type-specific gene expression is rescued in the lagC- null cells; however, lagC- prespore cells are localized to the posterior of the prespore region and do not form mature spores, suggesting that LagC protein has both no cell-autonomous and cell-autonomous functions. Overexpression of lagC from an actin promoter in both wild-type and lagC- cells causes a delay at the tight aggregate stage, the first stage requiring LagC activity. These results suggest that the LagC protein functions as a nondiffusible cell-cell signaling molecule

  9. Demonstration of different modes of cell death upon herpes simplex virus 1 infection in different types of oral cells.

    PubMed

    Huang, C R; Lin, S S; Chou, M Y; Ho, C C; Wang, L; Lee, Y L; Chen, C S; Yang, C C

    2005-01-01

    The effects of Herpes simplex virus 1 (HSV-1) infection on five different types of oral cancerous cells (neck metastasis of gingival carcinoma (GNM) cells and tongue squamous cells of carcinoma (TSCCa) and non-cancerous cells (buccal mucosal fibroblasts (BF), gingival fibroblasts (GF), oral submucosal fibrosis cells (OSF)) and one type of non-oral cancerous cells (KB cells) were investigated. In HSV-1-infected cells the cell viability, CPE, viral antigens accumulation, caspase-3 activity, annexin V binding and DNA fragmentation were estimated. Three different forms or pathways of cell death were considered: apoptosis (the presence or rise of caspase-3 activity, DNA fragmentation and annexin V binding), slow cell death (the presence or rise of DNA fragmentation, the absence or decline of caspase-3 activity and annexin V binding), and necrosis (the absence of decline of caspase-3 activity, DNA fragmentation and annexin V binding). The viability of all cell types, except for KB cells, was reduced by the infection. CPE and viral antigens data demonstrated that all six types of cells could be infected with HSV-1. Upon HSV-1 infection there occurred (i) a classical apoptosis in GF cells, (ii) apoptosis in the early phase of infection and necrosis in the late phase of infection in GNM and TSCCa cells, (iii) slow cell death followed by necrosis in BF and OSF cells (however, these cells showed a different type of CPE), (iv) a classical slow cell death in KB cells. It is hypothesized that HSV-1 infection has a potential to induce several distinct pathways leading to cell death or several forms of cell death. Moreover, more than one pathway may be involved in the death of particular cell type. As HSV-1 was demonstrated to infect different oral and non-oral cells and cause different pathways or forms of cell death, the safety of using HSV-1 as a vector for gene therapy should be re-considered.

  10. Fluorescence-Activated Cell Sorting for Analysis of Cell Type-Specific Responses to Salinity Stress in Arabidopsis and Rice

    PubMed Central

    Evrard, Aurelie; Bargmann, Bastiaan O.R.; Birnbaum, Kenneth D.; Tester, Mark; Baumann, Ute; Johnson, Alexander A.T.

    2014-01-01

    Fluorescence-activated cell sorting (FACS) provides a rapid means of isolating large numbers of fluorescently tagged cells from a heterogeneous mixture of cells. Collections of transgenic plants with cell type-specific expression of fluorescent marker genes such as green fluorescent protein (GFP) are ideally suited for FACS-assisted studies of individual cell types. Here we describe the use of Arabidopsis and rice enhancer trap lines with tissue-specific GFP expression patterns in the root to isolate specific cell types of root tissues using FACS. Additionally, protocols are provided to impose a ramped salinity stress for 48 h prior to cell sorting. PMID:22895766

  11. Metal-sulfur type cell having improved positive electrode

    NASA Astrophysics Data System (ADS)

    Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.

    1988-03-01

    A novel metal-sulfur type cell operable at a temperature of 200 C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S) sub y) n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  12. Thermal stability of porcine circovirus type 2 in cell culture.

    PubMed

    O'Dea, Mark A; Hughes, Andrew P; Davies, Linda J; Muhling, Jillian; Buddle, Ross; Wilcox, G E

    2008-01-01

    International trade in pig meat has resulted in some countries placing restrictions on the importation of pig meat, with requirements for cooking of imported meat to destroy viral agents. This study investigated the in vitro resistance of an Australian strain of porcine circovirus type 2 (PCV2), the causative agent of post-weaning multisystemic wasting syndrome (PMWS), to heat treatment. The viability of the virus in cell cultures was determined by a combination of reverse transcriptase polymerase chain reaction (RT-PCR) to detect viral transcripts, and immunohistochemistry (IHC) to visualize viral capsid antigen. PCV2 retained infectivity when heated at 75 degrees C for 15 min but was inactivated by heating at 80 degrees C and above for 15 min. The results provide important information on the thermal tolerance of PCV2, which can be taken into account in risk assessments for trade in pig meat and porcine-derived biological products.

  13. Cell-type homologies and the origins of the neocortex

    PubMed Central

    Dugas-Ford, Jennifer; Rowell, Joanna J.; Ragsdale, Clifton W.

    2012-01-01

    The six-layered neocortex is a uniquely mammalian structure with evolutionary origins that remain in dispute. One long-standing hypothesis, based on similarities in neuronal connectivity, proposes that homologs of the layer 4 input and layer 5 output neurons of neocortex are present in the avian forebrain, where they contribute to specific nuclei rather than to layers. We devised a molecular test of this hypothesis based on layer-specific gene expression that is shared across rodent and carnivore neocortex. Our findings establish that the layer 4 input and the layer 5 output cell types are conserved across the amniotes, but are organized into very different architectures, forming nuclei in birds, cortical areas in reptiles, and cortical layers in mammals. PMID:23027930

  14. Metal-sulfur type cell having improved positive electrode

    DOEpatents

    DeJonghe, L.C.; Visco, S.J.; Mailhe, C.C.; Armand, M.B.

    1988-03-31

    A novel metal-sulfur type cell operable at a temperature of 200/degree/C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S)/sub y/)n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon. 4 figs.

  15. Metal-sulfur type cell having improved positive electrode

    DOEpatents

    Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.

    1989-01-01

    An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  16. In vitro endothelial cell susceptibility to xenobiotics: comparison of three cell types.

    PubMed

    L'Azou, B; Fernandez, P; Bareille, R; Beneteau, M; Bourget, C; Cambar, J; Bordenave, L

    2005-03-01

    In three different endothelial cell (EC) cultures (primary human umbilical cord vein, so-called HUVEC; and immortalized cell lines HBMEC and EA-hy-926), the effects of different xenobiotics were studied in order to standardize vascular EC models for in vitro pharmacotoxicological studies. Cell characteristics were first investigated by the production and the mRNA levels of known endothelial markers in the three EC culture models. EC secretory products, tissue plasminogen activator (tPA) and von Willebrand factor (vWF), were present in the supernatant of the immortalized cell lines. The mRNA levels of vWF, tPA, platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), and beta -integrin subunit, which are involved in the control of platelet function, coagulation, and fibrinolysis as well as in cell-matrix interactions, were investigated in all EC types. For at least three parameters, cultured cells provided marked characteristics of EC phenotype, in HUVEC and in immortalized cell lines, regardless of their origin from the macro- or microcirculation. Toxicity experiments were assessed after 24 h exposure to cadmium, cyclosporin A and cisplatin by MTT assay. These experiments show nonsignificant difference in susceptibility to cyclosporin A and cadmium on HUVEC, HBMEC, and EA-hy-926. However, HBMEC, seems to be highly susceptible to cisplatin compared to HUVEC, the latter being more sensitive than EA-hy-926. For experiments conducted with cyclosporin and cadmium, cell lines could constitute an alternative material for routine cytotoxicity studies.

  17. Type of cell death induced by seven metals in cultured mouse osteoblastic cells.

    PubMed

    Contreras, René García; Vilchis, José Rogelio Scougall; Sakagami, Hiroshi; Nakamura, Yuko; Nakamura, Yukio; Hibino, Yasushi; Nakajima, Hiroshi; Shimada, Jun

    2010-01-01

    The use of dental metal alloys in the daily clinic makes it necessary to evaluate the cytotoxicity of eluted metal components against oral cells. However, the cytotoxic mechanism and the type of cell death induced by dental metals in osteoblasts have not been well characterized. This study investigated the cytotoxicity of seven metals against the mouse osteoblastic cell line MC3T3-E1. alpha-MEM was used as a culture medium, since this medium provided much superior proliferation of MC3T3-E1 cells over DMEM. Ag (NH(3))(2)F was the most cytotoxic, followed by CuCl>CuCl(2) >CoCl(2), NiCl(2)>FeCl(3) and FeCl(2) (least toxic). None of the metals showed any apparent growth stimulating effect (so-called 'hormesis') at lower concentrations. A time course study demonstrated that two hours of contact between oral cells and Ag (NH(3))(2)F, CuCl, CoCl(2) or NiCl(2) induced irreversible cell death. Contact with these metals induced a smear pattern of DNA fragmentation without activation of caspase-3. Preincubation of MC3T3-E1 cells with either a caspase inhibitor (Z-VAD-FMK) or autophagy inhibitors (3-methyladenine, bafilomycin) failed to rescue them from metal cytotoxicity. These data suggest the induction of necrotic cell death rather than apoptosis and autophagy by metals in this osteoblastic cell line.

  18. Transcription of Two Adjacent Carbohydrate Utilization Gene Clusters in Bifidobacterium breve UCC2003 Is Controlled by LacI- and Repressor Open Reading Frame Kinase (ROK)-Type Regulators

    PubMed Central

    O'Connell, Kerry Joan; O'Connell Motherway, Mary; Liedtke, Andrea; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; Zomer, Aldert

    2014-01-01

    Members of the genus Bifidobacterium are commonly found in the gastrointestinal tracts of mammals, including humans, where their growth is presumed to be dependent on various diet- and/or host-derived carbohydrates. To understand transcriptional control of bifidobacterial carbohydrate metabolism, we investigated two genetic carbohydrate utilization clusters dedicated to the metabolism of raffinose-type sugars and melezitose. Transcriptomic and gene inactivation approaches revealed that the raffinose utilization system is positively regulated by an activator protein, designated RafR. The gene cluster associated with melezitose metabolism was shown to be subject to direct negative control by a LacI-type transcriptional regulator, designated MelR1, in addition to apparent indirect negative control by means of a second LacI-type regulator, MelR2. In silico analysis, DNA-protein interaction, and primer extension studies revealed the MelR1 and MelR2 operator sequences, each of which is positioned just upstream of or overlapping the correspondingly regulated promoter sequences. Similar analyses identified the RafR binding operator sequence located upstream of the rafB promoter. This study indicates that transcriptional control of gene clusters involved in carbohydrate metabolism in bifidobacteria is subject to conserved regulatory systems, representing either positive or negative control. PMID:24705323

  19. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    PubMed Central

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Martina; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248

  20. Crosstalk on cell behavior in interactive cocultures of hMSCs with various oral cell types.

    PubMed

    Proksch, Susanne; Steinberg, Thorsten; Stampf, Susanne; Schwarz, Ulrich; Hellwig, Elmar; Tomakidi, Pascal

    2012-12-01

    When prospectively applied for regenerative therapies, human bone-marrow-derived mesenchymal stem cells (hMSCs) interact with the locally residing host cells. With respect to the developmentally particular origin of oral cells, little is known about the putatively discriminative behavioral responses of hMSCs in interaction with various oral cell types, including human alveolar bone osteoblasts (hOAs), periodontal ligament fibroblasts (hPDLs), and gingival fibroblasts (hGFs). To assess the crosstalk between hMSCs and oral cells, interactive cocultures were established by combining well-characterized hMSCs with hOAs, hPDLs, or hGFs, and the behavioral hMSC aspects, that is, proliferation and gene expression, were measured by employing a 5-bromo-2'-deoxyuridine assay and real-time polymerase chain reaction, while apoptosis was quantified by in situ cell death detection kit. hMSCs expressed the typical antigen spectrum lacking CD34, CD45, CD14, CD19, and HLA-DR, while expressing CD73, CD90, and CD105, and could successfully be transformed into adipocytes, osteocytes, and chondrocytes. Monocultured control hMSCs proliferated readily, whereas a general reduction of BrdU-labeled cells was observed in cocultures. Globally, upon extending time periods, interactive coculture combinations of hMSCs with hOAs reduced both osteogenic gene and stem cell marker transcription in hMSCs, a phenomenon appearing less pronounced by combining hMSCs with hPDLs, such that the observed effects in terms of proliferation and gene expression followed the same ranking: hOAs>hGFs>hPDLs. Vice versa, in interactive hMSC cocultures, the cell survival rate was significantly increased, irrespective from the combined coculture cell counterpart. Our results show for the first time that behavior of hMSCs reflected by proliferation and gene expression was governed by interaction with various oral cells in a cell-type-discriminative manner. In addition, hMSC coculture restrains apoptosis, such that

  1. Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells.

    PubMed

    Alvarez, Clara V; Garcia-Lavandeira, Montserrat; Garcia-Rendueles, Maria E R; Diaz-Rodriguez, Esther; Garcia-Rendueles, Angela R; Perez-Romero, Sihara; Vila, Tania Vila; Rodrigues, Joana S; Lear, Pamela V; Bravo, Susana B

    2012-10-01

    Embryonic, adult, artificially reprogrammed, and cancer…- there are various types of cells associated with stemness. Do they have something fundamental in common? Are we applying a common name to very different entities? In this review, we will revisit the characteristics that define 'pluripotency', the main property of stem cells (SCs). For each main type of physiological (embryonic and adult) or synthetic (induced pluripotent) SCs, markers and functional behavior in vitro and in vivo will be described. We will review the pioneering work that has led to obtaining human SC lines, together with the problems that have arisen, both in a biological context (DNA alterations, heterogeneity, tumors, and immunogenicity) and with regard to ethical concerns. Such problems have led to proposals for new operative procedures for growing human SCs of sufficiently high quality for use as models of disease and in human therapy. Finally, we will review the data from the first clinical trials to use various types of SCs.

  2. Comparison of elastic properties of open-cell metallic biomaterials with different unit cell types.

    PubMed

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi-Aghdam, Mohammad; Hosseini-Toudeshky, Hossein

    2017-02-06

    Additive manufacturing techniques have made it possible to create open-cell porous structures with arbitrary micro-geometrical characteristics. Since a wide range of micro-geometrical features is available for making an implant, having a comprehensive knowledge of the mechanical response of cellular structures is very useful. In this study, finite element simulations have been carried out to investigate the effect of structure unit cell type (cube, rhombic dodecahedron, Kelvin, Weaire-Phelan, and diamond), cross-section type (circular, square, and triangular), strut length, and relative density on the Young's modulus, shear modulus, yield stress, shear yield stress, and Poisson's ratio of open-cell tessellated cellular structures. It was desired to see whether or not and to what extent each of the aforementioned parameters affect the mechanical properties of a porous structure. It was seen that the strut cross-section type does not have a considerable effect on the structure Young's modulus while its effect on the structure yield stress is significant. The strut length was not effective on the mechanical properties if the relative density was kept constant. It was also observed that the structure unit cell type and relative density have a considerable effect on the elastic properties. The highest and the lowest stiffness and strength belonged to the cube and diamond unit cell types, respectively. The rhombic dodecahedron structure with circular cross-section had a high yielding strength (second among all the cases) while its Young's modulus was relatively low. Therefore, it is the best choice for applications with low stiffness requirements, such as biomedical implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  3. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  4. Relationship between asbestos exposure and lung cancer cell type

    SciTech Connect

    Stewart, W.F.

    1984-01-01

    A nested case-control study was undertaken to investigate the relationship between asbestos exposure and lung cancer cell type. Cases were former employees of two Virginia shipyards, and were identified from the Virginia Tumor Registry. All cases were diagnosed with lung cancer between 1975-82. A stratified random sample of controls was selected from among former shipyard workers from the same two yards as the cases. Job histories were abstracted from shipyard personnel records on all cases and controls and were the primary source of data used to derive measures of asbestos exposure. Analyses were conducted using the conditional maximum likelihood estimate of the odds ratio an logistic regression. The results from the analysis showed that adenocarcinoma had the strongest association with asbestos exposure and the only case group to be associated with a multiplicative interaction effect between asbestos exposure and smoking. The most significant associations were found for adenocarcinoma cases employed before 1950. Strikingly negative dose-response relationships were found for the other three case groups. The results suggest indirectly that squamous and small cell cancer may have shorter latency from exposure to diagnosis and that proportionately more of these cases were not captured in this study. Problems which are related to a calendar time criteria for case ascertainment, i.e., diagnosis between 1975-82, limit the conclusiveness of these findings.

  5. Boron implanted emitter for n-type silicon solar cell

    NASA Astrophysics Data System (ADS)

    Liang, Peng; Han, Pei-De; Fan, Yu-Jie; Xing, Yu-Peng

    2015-03-01

    The effects of ion doses on the properties of boron implanted Si for n-type solar cell application were investigated with doses ranging from 5× 1014 cm- 2 to 2× 1015 cm- 2 and a subsequent two-step annealing process in a tube furnace. With the help of the TCAD process simulation tool, knowledge on diffusion kinetics of dopants and damage evolution was obtained by fitting SIMS measured boron profiles. Due to insufficient elimination of the residual damage, the implanted emitter was found to have a higher saturation current density (J0e) and a poorer crystallographic quality. Consistent with this observation, Voc, Jsc, and the efficiency of the all-implanted p+-n-n+ solar cells followed a decreasing trend with an increase of the implantation dose. The obtained maximum efficiency was 19.59% at a low dose of 5× 1014 cm- 2. The main efficiency loss under high doses came not only from increased recombination of carriers in the space charge region revealed by double-diode parameters of dark I-V curves, but also from the degraded minority carrier diffusion length in the emitter and base evidenced by IQE data. These experimental results indicated that clusters and dislocation loops had appeared at high implantation doses, which acted as effective recombination centers for photogenerated carriers. Project supported by the National Natural Science Foundation of China (Grant Nos. 61275040, 60976046, and 61021003) and the National Basic Research Program of China (Grant No. 2012CB934200).

  6. Cell-type specific posttranslational processing of peptides by different pituitary cell lines.

    PubMed

    Dickerson, I M; Mains, R E

    1990-07-01

    In order to compare prohormone processing in two distinct pituitary cell types, somatomammotrope cells (GH3) and corticotrope cells (AtT-20) were stably transfected with vectors encoding preproneuropeptide Y (preproNPY) containing four different pairs of basic amino acids at the single endoproteolytic cleavage site: wildtype or KR (lysine-arginine), RR, RK, and KK. The GH-NPY cell lines cleaved proNPY to a similar extent, regardless of the sequence of the basic amino acids at the cleavage site (KR = RR = RK = KK). AtT-20-NPY cells are known to exhibit a strong hierarchy of cleavage site preference when processing wildtype and mutated proNPY forms (KR = RR greater than RK much greater than KK). All four types of GH-NPY and AtT-NPY cells faithfully produced NPY (1-36) NH2 from proNPY (1-69), regardless of the amino acid sequence at the cleavage site. All four types of GH-NPY cells produced some of the expected proNPY-COOH-terminal peptide with Ser40 at its NH2-terminal [proNPY (40-69)]. GH3 cells expressing the RR, RK, and KK forms of proNPY yielded in addition some proNPY-COOH-terminal peptide retaining the amino terminals Lys39 or Arg39 residue. In contrast, AtT-NPY-RK cells produced only the Lys39 form of proNPY-COOH-terminal peptide while the other three AtT-NPY lines (KR, RR, and KK) produced only the Ser40 form of proNPY-COOH-terminal peptide. The residence time of proNPY and NPY in GH3 cells was dramatically increased by treatment with insulin, estradiol, and epidermal growth factor, in concert with the expected increase in PRL synthesis and decrease in GH synthesis; increased residence time in the cells did not result in an increase in the extent of cleavage of proNPY to NPY. AtT-20 cells did not respond to the somatomammotrope-specific set of hormones. Thus, there are several important differences in the posttranslational processing and storage of peptide hormones in corticotropes and somatomammotropes.

  7. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    PubMed

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  8. An Efficient Antipodal Cell Isolation Method for Screening of Cell Type-Specific Genes in Arabidopsis thaliana

    PubMed Central

    Sun, Meng-xiang

    2016-01-01

    In flowering plants, the mature embryo sac consists of seven cells, namely two synergid cells and an egg cell at the micropylar end, one central cell, and three antipodal cells at the chalazal end. Excluding the antipodal cell, as a model for the study of cell fate determination and cell type specification, the roles of these embryo sac component cells in fertilization and seed formation have been widely investigated. At this time, little is known regarding the function of antipodal cells and their cell type-specific gene expression patterns. One reason for this is difficulties related to the observation and isolation of cells for detailed functional analyses. Here, we report a method for antipodal cell isolation and transcriptome analysis. We identified antipodal cell-specific marker line K44-1, and based on this marker line, established a procedure allowing us to isolate antipodal cells with both high quality and quantity. PCR validation of antipodal-specific genes from antipodal cell cDNA showed that the isolated cells are qualified and can be used for transcriptome analysis and screening of cell type-specific marker genes. The isolated cells could keep viable for a week in culture condition. This method can be used to efficiently isolate antipodal cells of high quality and will promote the functional investigation of antipodal cells in Arabidopsis thaliana. This increases our understanding of the molecular regulatory mechanism of antipodal cell specification. PMID:27875553

  9. When is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine.

    PubMed

    Beers, Michael F; Moodley, Yuben

    2017-03-22

    Generating mature, differentiated, adult lung cells from pluripotent cells such as induced pluripotent cells (iPS) and embryonic stem cells (ES) offers the hope of both generating disease specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung regenerative medicine, several groups have developed and reported on protocols utilizing either defined media, co-culture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared to their primary counterparts coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable but yet to emerge 2nd and higher generation techniques to create such assets, we were prompted to pose the question: "What makes a lung epithelial cell a lung epithelial cell?" and more specifically for this Perspective "What are the minimum features that constitute an alveolar type II epithelial cell (AT2)". In addressing this, we summarize a body of work spanning nearly five decades amassed by a series of "lung epithelial cell biology pioneers" which carefully describes well characterized molecular, functional, and morphological features critical for discriminate assessment of an AT2 phenotype. Armed with this we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiating protocol are indeed mature and functional AT2 epithelial cells.

  10. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    NASA Astrophysics Data System (ADS)

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Marta; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S. P.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-06-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.Inhaled nanoparticles have a high deposition rate in

  11. Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties

    NASA Astrophysics Data System (ADS)

    Busch, Wibke; Bastian, Susanne; Trahorsch, Ulrike; Iwe, Maria; Kühnel, Dana; Meißner, Tobias; Springer, Armin; Gelinsky, Michael; Richter, Volkmar; Ikonomidou, Chrysanthy; Potthoff, Annegret; Lehmann, Irina; Schirmer, Kristin

    2011-01-01

    Cellular internalisation of industrial engineered nanoparticles is undesired and a reason for concern. Here we investigated and compared the ability of seven different mammalian cell cultures in vitro to incorporate six kinds of engineered nanoparticles, focussing on the role of cell type and particle properties in particle uptake. Uptake was examined using light and electron microscopy coupled with energy dispersive X-ray spectroscopy (EDX) for particle element identification. Flow cytometry was applied for semi-quantitative analyses of particle uptake and for exploring the influence on uptake by the phagocytosis inhibitor Cytochalasin D (CytoD). All particles studied were found to enter each kind of cultured cells. Yet, particles were never found within cell nuclei. The presence of the respective particles within the cells was confirmed by EDX. Live-cell imaging revealed the time-dependent process of internalisation of technical nanoparticles, which was exemplified by tungsten carbide particle uptake into the human skin cells, HaCaT. Particles were found to co-localise with lysosomal structures within the cells. The incorporated nanoparticles changed the cellular granularity, as measured by flow cytometry, already after 3 h of exposure in a particle specific manner. By correlating particle properties with flow cytometry data, only the primary particle size was found to be a weakly influential property for particle uptake. CytoD, an inhibitor of actin filaments and therewith of phagocytosis, significantly inhibited the internalisation of particle uptake in only two of the seven investigated cell cultures. Our study, therefore, supports the notion that nanoparticles can enter mammalian cells quickly and easily, irrespective of the phagocytic ability of the cells.

  12. Phospholipid-transfer activities in cytosols from lung, isolated alveolar type II cells and alveolar type II cell-derived adenomas.

    PubMed Central

    Pool, G L; Bubacz, D G; Lumb, R H; Mason, R J

    1983-01-01

    We have examined phospholipid-transfer activities in cytosols from rat and mouse whole lung, isolated rat alveolar type II cells and alveolar type II cell-derived mouse pulmonary adenomas. We report an enrichment in phosphatidylcholine and phosphatidylglycerol (but not phosphatidylinositol) protein-catalysed transfer in the type II cell and adenoma cytosols compared with the whole-lung cytosols. The activities from these cytosols were resolved using column chromatofocusing, which clearly demonstrated the presence of a phosphatidylcholine-specific transfer protein in each of the four tissues. In addition, two proteins (rat) or three proteins (mouse) catalysing both phosphatidylcholine and phosphatidylglycerol transfer were resolved from whole lung, whereas in both the rat isolated alveolar type II cells and the mouse type II cell-derived adenomas one of these less specific proteins is not present. PMID:6661189

  13. Cell-cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes.

    PubMed

    Hadjivasiliou, Zena; Iwasa, Yoh; Pomiankowski, Andrew

    2015-08-06

    While sex requires two parents, there is no obvious need for them to be differentiated into distinct mating types or sexes. Yet this is the predominate state of nature. Here, we argue that mating types could play a decisive role because they prevent the apparent inevitability of self-stimulation during sexual signalling. We rigorously assess this hypothesis by developing a model for signaller-detector dynamics based on chemical diffusion, chemotaxis and cell movement. Our model examines the conditions under which chemotaxis improves partner finding. Varying parameter values within ranges typical of protists and their environments, we show that simultaneous secretion and detection of a single chemoattractant can cause a multifold movement impediment and severely hinder mate finding. Mutually exclusive roles result in faster pair formation, even when cells conferring the same roles cannot pair up. This arrangement also allows the separate mating types to optimize their signalling or detecting roles, which is effectively impossible for cells that are both secretors and detectors. Our findings suggest that asymmetric roles in sexual chemotaxis (and possibly other forms of sexual signalling) are crucial, even without morphological differences, and may underlie the evolution of gametic differentiation among both mating types and sexes.

  14. Using fluorescence activated cell sorting to examine cell-type-specific gene expression in rat brain tissue.

    PubMed

    Schwarz, Jaclyn M

    2015-05-28

    The brain is comprised of four primary cell types including neurons, astrocytes, microglia and oligodendrocytes. Though they are not the most abundant cell type in the brain, neurons are the most widely studied of these cell types given their direct role in impacting behaviors. Other cell types in the brain also impact neuronal function and behavior via the signaling molecules they produce. Neuroscientists must understand the interactions between the cell types in the brain to better understand how these interactions impact neural function and disease. To date, the most common method of analyzing protein or gene expression utilizes the homogenization of whole tissue samples, usually with blood, and without regard for cell type. This approach is an informative approach for examining general changes in gene or protein expression that may influence neural function and behavior; however, this method of analysis does not lend itself to a greater understanding of cell-type-specific gene expression and the effect of cell-to-cell communication on neural function. Analysis of behavioral epigenetics has been an area of growing focus which examines how modifications of the deoxyribonucleic acid (DNA) structure impact long-term gene expression and behavior; however, this information may only be relevant if analyzed in a cell-type-specific manner given the differential lineage and thus epigenetic markers that may be present on certain genes of individual neural cell types. The Fluorescence Activated Cell Sorting (FACS) technique described below provides a simple and effective way to isolate individual neural cells for the subsequent analysis of gene expression, protein expression, or epigenetic modifications of DNA. This technique can also be modified to isolate more specific neural cell types in the brain for subsequent cell-type-specific analysis.

  15. HCMM imagery for the discrimination of rock types, the detection of geothermal energy sources and the assessment of soil moisture content in western Queensland and adjacent parts of New South Wales and South Australia

    NASA Technical Reports Server (NTRS)

    Cole, M. M. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Day-visible and day-IR imagery of northwest Queensland show that large scale geological features like the Mitakoodi anticlinorium, which involves rocks of contrasting lithological type, can be delineated. North of Cloncurry, the contrasting lithological units of the Knapdale quartzite and bedded argillaceous limestones within the Proterozoic Corella sequence are clearly delineated in the area of the Dugald River Lode. Major structural features in the Mount Isa area are revealed on the day-visible cover. Which provides similar but less detailed information than the LANDSAT imagery. The day-IR cover provides less additional information for areas of outcropping bedrock than had been expected. Initial studies of the day-IR and night-IR cover for parts of South Australia suggest that they contain additional information on geology compared with day-visible cover.

  16. Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.

    PubMed

    Latil, Mathilde; Nassar, Dany; Beck, Benjamin; Boumahdi, Soufiane; Wang, Li; Brisebarre, Audrey; Dubois, Christine; Nkusi, Erwin; Lenglez, Sandrine; Checinska, Agnieszka; Vercauteren Drubbel, Alizée; Devos, Michael; Declercq, Wim; Yi, Rui; Blanpain, Cédric

    2017-02-02

    Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness, and resistance to therapy. Some tumors undergo EMT while others do not, which may reflect intrinsic properties of their cell of origin. However, this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show that cell-type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from interfollicular epidermis (IFE) are generally well differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed that IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.

  17. Aberrant Methylation Inactivates Somatostatin and Somatostatin Receptor Type 1 in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Misawa, Kiyoshi; Misawa, Yuki; Kondo, Haruki; Mochizuki, Daiki; Imai, Atsushi; Fukushima, Hirofumi; Uehara, Takayuki; Kanazawa, Takeharu; Mineta, Hiroyuki

    2015-01-01

    Purpose The aim of this study was to define somatostatin (SST) and somatostatin receptor type 1 (SSTR1) methylation profiles for head and neck squamous cell carcinoma (HNSCC) tumors at diagnosis and follow up and to evaluate their prognostic significance and value as a biomarker. Methods Gene expression was measured by quantitative RT-PCR. Promoter methylation status was determined by quantitative methylation-specific PCR (Q-MSP) in HNSCC. Results Methylation was associated with transcription inhibition. SST methylation in 81% of HNSCC tumor specimens significantly correlated with tumor size (P = 0.043), stage (P = 0.008), galanin receptor type 2 (GALR2) methylation (P = 0.041), and tachykinin-1 (TAC1) (P = 0.040). SSTR1 hypermethylation in 64% of cases was correlated with tumor size (P = 0.037), stage (P = 0.037), SST methylation (P < 0.001), and expression of galanin (P = 0.03), GALR2 (P = 0.014), TAC1 (P = 0.023), and tachykinin receptor type 1 (TACR1) (P = 0.003). SST and SSTR1 promoter hypermethylation showed highly discriminating receiver operator characteristic curve profiles, which clearly distinguished HNSCC from adjacent normal mucosal tissues. Concurrent hypermethylation of galanin and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.0001). Among patients with oral cavity and oropharynx cancer, methylation of both SST and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.028). In multivariate logistic-regression analysis, concomitant methylation of galanin and SSTR1 was associated with an odds ratio for recurrence of 12.53 (95% CI, 2.62 to 59.8; P = 0.002). Conclusions CpG hypermethylation is a likely mechanism of SST and SSTR1 gene inactivation, supporting the hypothesis that SST and SSTR1 play a role in the tumorigenesis of HNSCC and that this hypermethylation may serve as an important biomarker. PMID:25734919

  18. 20. Interior view of fuel storage pit or vault adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Interior view of fuel storage pit or vault adjacent to Test Cell 9 in Component Test Laboratory (T-27), looking west. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    PubMed Central

    2016-01-01

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hair cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. In this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses. PMID:27088086

  20. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    SciTech Connect

    Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hair cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.

  1. Transcription Factors CTCF and Pax6 Are Segregated to Different Cell Types During Retinal Cell Differentiation

    PubMed Central

    Canto-Soler, M. Valeria; Huang, Hu; Romero, M. Soledad; Adler, Ruben

    2008-01-01

    We have hypothesized that the transcription factor CTCF may influence retinal cell differentiation by controlling Pax6 expression, because (1) CTCF has been shown to repress Pax6 expression in some tissues, and (2) Pax6 blocks the differentiation of retinal progenitor cells as photoreceptors and promotes their differentiation as nonphotoreceptor neurons. Our results show that, as predicted by this hypothesis, CTCF and Pax6 become segregated to different retinal cell types. The factors are initially coexpressed in the undifferentiated neuroepithelium, but already at that time they show complementary periphery-to-fundus gradients of distribution. As the retina laminates, Pax6 becomes restricted to ganglion and amacrine cells, and CTCF to the bipolar/Muller cell layer and the outer nuclear layer. Polymerase chain reaction analysis of laser capture microdissection samples and dissociated cells showed that both immature and differentiated photoreceptors are CTCF (+)/Pax6 (−). Functional studies are now under way to further analyze the role of CTCF in retinal cell differentiation. PMID:18224715

  2. Cell types and structures involved in tench, Tinca tinca (L.), defence mechanisms against a systemic digenean infection.

    PubMed

    Dezfuli, B S; Lui, A; Pironi, F; Manera, M; Shinn, A P; Lorenzoni, M

    2013-06-01

    Histopathological and ultrastructural investigations were conducted on 36 tench, Tinca tinca (L.), from Lake Trasimeno (Italy). The gills, intestine, liver, spleen, kidney and heart of 21 individuals were found to harbour an extensive infection of larvae of an unidentified digenean trematode. The eyes, gonads, swim bladder and muscles were uninfected. The parasites in each tissue type were embedded in a granulomatous proliferation of tissue, forming a reactive fibroconnective capsule around each larva. Most of the encysted larvae were metacercariae, in a degenerative state, but on occasion some cercariae were found. Many of the granulomas were either necrotic or had a calcified core. Within the granuloma of each, the occurrence of granulocytes, macrophages, rodlet cells and pigment-bearing macrophage aggregates was observed. Hearts bore the highest parasitic infection. Whilst the presence of metacercariae within the intestine was found positioned between the submucosa and muscle layers, metacercariae in the liver were commonly found encysted on its surface where the hepatocytes in close contact with the granuloma were observed to have electron-lucent vesicles within their cytoplasm. Metacercariae encysting adjacent to the cartilaginous rods of gill filaments were seen to elicit a proliferation of the cartilage from the perichondrium. Rodlet cells, neutrophils and mast cells were frequently observed in close proximity to, and within, infected gill capillaries. Given the degenerated state of most granulomas, a morphology-based identification of the enclosed digeneans was not possible.

  3. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.

    PubMed

    Zeisel, Amit; Muñoz-Manchado, Ana B; Codeluppi, Simone; Lönnerberg, Peter; La Manno, Gioele; Juréus, Anna; Marques, Sueli; Munguba, Hermany; He, Liqun; Betsholtz, Christer; Rolny, Charlotte; Castelo-Branco, Gonçalo; Hjerling-Leffler, Jens; Linnarsson, Sten

    2015-03-06

    The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration, memory, and social behaviors. Normal brain function relies on a diverse set of differentiated cell types, including neurons, glia, and vasculature. Here, we have used large-scale single-cell RNA sequencing (RNA-seq) to classify cells in the mouse somatosensory cortex and hippocampal CA1 region. We found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex. We identified numerous marker genes, which allowed alignment with known cell types, morphology, and location. We found a layer I interneuron expressing Pax6 and a distinct postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types, transcription factors formed a complex, layered regulatory code, suggesting a mechanism for the maintenance of adult cell type identity.

  4. Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation.

    PubMed

    Yang, Feikun; Hao, Ru; Kessler, Barbara; Brem, Gottfried; Wolf, Eckhard; Zakhartchenko, Valeri

    2007-01-01

    The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned

  5. Effects of abnormal cell-to-cell interference on p-type floating gate and control gate NAND flash memory

    NASA Astrophysics Data System (ADS)

    Kim, Yong Jun; Kang, Jun Geun; Lee, Byungin; Cho, Gyu-Seog; Park, Sung-Kye; Choi, Woo Young

    2014-01-01

    Abnormal cell-to-cell interference occurring in NAND flash memory has been investigated. In the case of extremely downscaled NAND flash memory, cell-to-cell interference increases abnormally. The abnormal cell-to-cell interference has been observed in a p-type floating gate (FG)/control gate (CG) cells for the first time. It has been found that the depletion region variation leads to the abnormal cell-to-cell interference. The depletion region variation of FG and CG is determined by state of neighbor cells. The depletion region variation affects CG-to-FG coupling capacitance and threshold voltage variation (ΔVT). Finally, it is observed that there is a symmetrical relationship between n- and p-type FG/CG NAND flash memory in terms of cell-to-cell interference.

  6. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics.

    PubMed

    Charoenviriyakul, Chonlada; Takahashi, Yuki; Morishita, Masaki; Matsumoto, Akihiro; Nishikawa, Makiya; Takakura, Yoshinobu

    2017-01-01

    Exosomes are small membrane vesicles secreted from cells and are expected to be used as drug delivery systems. Important characteristics of exosomes, such as yield, physicochemical properties, and pharmacokinetics, may be different among different cell types. However, there is limited information about the effect of cell type on these characteristics. In the present study, we evaluated these characteristics of exosomes derived from five different types of mouse cell lines: B16BL6 murine melanoma cells, C2C12 murine myoblast cells, NIH3T3 murine fibroblasts cells, MAEC murine aortic endothelial cells, and RAW264.7 murine macrophage-like cells. Exosomes were collected using a differential ultracentrifugation method. The exosomes collected from all the cell types were negatively charged globular vesicles with a diameter of approximately 100nm. C2C12 and RAW264.7 cells produced more exosomes than the other types of cells. The exosomes were labeled with a fusion protein of Gaussia luciferase and lactadherin to evaluate their pharmacokinetics. After intravenous injection into mice, all the exosomes rapidly disappeared from the systemic circulation and mainly distributed to the liver. In conclusion, the exosome yield was significantly different among the cell types, and all the exosomes evaluated in this study showed comparable physicochemical and pharmacokinetic properties.

  7. Types of HLA in the bladder transitional cell carcinoma (TCC).

    PubMed

    Yılmaz, Erkan; Uğur Özalp, Ali; Cekmen, Arman; Eren, Bülent; Onal, Bülent; Akkuş, Emre; Erdoğan, Ergun

    2013-02-01

    HLA plays a complementary role in the interaction between tumor and body immunology. The aim of this study was to determine the existence of the association between the HLA system and transitional cell carcinoma (TCC). Using standard micro-lymphocytotoxic method of Terasaki, HLA-A, B, DR and DQ antigen types of 30 patients with TCC of the bladder were compared with the control group (30 healthy people). In the TCC patient group, HLA -DQ6(1) and HLA -DQ7(3) antigens were detected with a significantly higher frequency than in the control group (p=0.018 and p=0.038, respectively), whereas HLA-A10, B4, DR53 and DQ1 antigens were detected with significantly higher frequency in the control group (p less 0.05 in all). It suggests that patients who had the antigens detected were at higher risk of TCC, and the ones who had the antigens displaying protective features as were detected in the control group, were at lesser risk.

  8. Steviol glycosides modulate glucose transport in different cell types.

    PubMed

    Rizzo, Benedetta; Zambonin, Laura; Angeloni, Cristina; Leoncini, Emanuela; Dalla Sega, Francesco Vieceli; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway.

  9. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    PubMed Central

    Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825

  10. Clostridium botulinum type A progenitor toxin binds to Intestine-407 cells via N-acetyllactosamine moiety.

    PubMed

    Kojima, Shoudou; Eguchi, Hironobu; Ookawara, Tomomi; Fujiwara, Noriko; Yasuda, Jun; Nakagawa, Kazuhiko; Yamamura, Takehira; Suzuki, Keiichiro

    2005-06-03

    Botulism is a highly fatal disease caused by the botulinum progenitor toxin. In this study, the role of oligosaccharides for the binding of botulinum type A progenitor toxin (type A PTX) to human intestinal cells was investigated. The binding of type A PTX to Intestine-407 cells was inhibited by the addition of N-acetyllactosamine, lactose, and galactose. Treatment of Intestine-407 cells with neuraminidase led to a significant increase in the binding of type A PTX, while further digestion of cell surface oligosaccharides by beta-galactosidase and beta-N-acetylhexosaminidase decreased the binding. These results indicate that the N-acetyllactosamine moiety is responsible for the binding of type A PTX. These findings were further confirmed by a binding assay using synthesized oligosaccharides. Interestingly, sialylation or fucosylation of oligosaccharides inhibited the binding of type A PTX. These data suggest that the type A PTX binds to intestinal cells via cell surface N-acetyllactosamine moiety.

  11. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection

    PubMed Central

    Chung, Chee Yeun; Seo, Hyemyung; Sonntag, Kai Christian; Brooks, Andrew; Lin, Ling; Isacson, Ole

    2008-01-01

    Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson’s disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [>2-fold; false discovery rate (FDR) <1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both α-synuclein overexpressing PC12 (PC12-αSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-αSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-αSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD. PMID:15888489

  12. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    PubMed Central

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis. PMID:28212332

  13. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis.

    PubMed

    Størling, Joachim; Pociot, Flemming

    2017-02-16

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis.

  14. Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells

    PubMed Central

    Hibaoui, Youssef; Feki, Anis

    2015-01-01

    Down syndrome (DS, trisomy 21), is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming. PMID:26239351

  15. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  16. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  17. Differential diagnosis of ovarian tumors based primarily on their patterns and cell types.

    PubMed

    Young, R H; Scully, R E

    2001-08-01

    The differential diagnosis of ovarian tumors is reviewed based on their patterns and cell types. This approach, which differs from the standard textbook discussion of each neoplasm as an entity, has practical value as differential diagnosis depends largely on the pattern or patterns and cell type or types of tumors. Awareness of the broad range of lesions that may exhibit particular patterns or contain one or more cell types is crucial in formulating a differential diagnosis. The following patterns are considered: moderate-to-large-glandular and hollow-tubular; solid tubular and pseudotubular; cords and ribbons; insular; trabecular; slit-like and reticular spaces; microglandular and microfollicular; macrofollicular and pseudomacrofollicular; papillary; diffuse; fibromatous-thecomatous; and biphasic and pseudobiphasic. The following cell types are considered: small round cells; spindle cells; mucinous cells, comprising columnar, goblet cell and signet ring cell subtypes; clear cells; hobnail cells; oxyphil cells; and transitional cells. The morphologic diversity of ovarian tumors poses many challenges; knowledge of the occurrence and frequency of these patterns and cell types in various tumors and tumor-like lesions is of paramount diagnostic importance. A specific diagnosis can usually be made by evaluating routinely stained slides, but much less often, special staining, immunohistochemical staining or, very rarely, ultrastructural examination is also required. Finally, clinical data, operative findings, and gross features of the lesions may provide important, and at times decisive diagnostic clues.

  18. Amide-type local anesthetics and human mesenchymal stem cells: clinical implications for stem cell therapy.

    PubMed

    Dregalla, Ryan C; Lyons, Nicolette F; Reischling, Patrick D; Centeno, Christopher J

    2014-03-01

    In the realm of regenerative medicine, human mesenchymal stem cells (hMSCs) are gaining attention as a cell source for the repair and regeneration of tissues spanning an array of medical disciplines. In orthopedics, hMSCs are often delivered in a site-specific manner at the area of interest and may require the concurrent application of local anesthetics (LAs). To address the implications of using hMSCs in combination with anesthetics for intra-articular applications, we investigated the effect that clinically relevant doses of amide-type LAs have on the viability of bone marrow-derived hMSCs and began to characterize the mechanism of LA-induced hMSC death. In our study, culture-expanded hMSCs from three donors were exposed to the amide-type LAs ropivacaine, lidocaine, bupivacaine, and mepivacaine. To replicate the physiological dilution of LAs once injected into the synovial capsule, each anesthetic was reduced to 12.5%, 25%, and 50% of the stock solution and incubated with each hMSC line for 40 minutes, 120 minutes, 360 minutes, and 24 hours. At each time point, cell viability assays were performed. We found that extended treatment with LAs for 24 hours had a significant impact on both hMSC viability and adhesion. In addition, hMSC treatment with three of the four anesthetics resulted in cell death via apoptosis following brief exposures. Ultimately, we concluded that amide-type LAs induce hMSC apoptosis in a time- and dose-dependent manner that may threaten clinical outcomes, following a similar trend that has been established between these particular anesthetics and articular chondrocytes both in vitro and in vivo.

  19. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases.

  20. Surgical treatment of complex axis fractures with adjacent segment instability.

    PubMed

    Wang, Lei; Xia, Tian; Dong, Shuanghai; Zhao, Qinghua; Tian, Jiwei

    2012-03-01

    This study investigates the clinical and radiographic characteristics of complex axis fractures with adjacent segment instability and describes the outcome of surgical treatment. Twenty-one patients (14 male, seven female; mean age=34 years) with complex axis fractures and adjacent segment instability who were treated between August 2003 and June 2009 were retrospectively reviewed. Treatment selection was based on fracture type and stability of the upper cervical segments. All patients were immobilized with a hard collar for three months after surgery. The mean follow-up period was 12 months (range=6-36 months). No intraoperative surgery-related complications were observed and fusion was achieved in all patients. The outcome was excellent for 17 patients, good for two patients, fair for one patient, and poor for one patient. The upper cervical segments that can become unstable due to complex axis fractures include the atlantoaxial and C2-3 joints. Recommended surgical treatments produce good results.

  1. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.

    PubMed

    Aparicio-Domingo, Patricia; Romera-Hernandez, Monica; Karrich, Julien J; Cornelissen, Ferry; Papazian, Natalie; Lindenbergh-Kortleve, Dicky J; Butler, James A; Boon, Louis; Coles, Mark C; Samsom, Janneke N; Cupedo, Tom

    2015-10-19

    Disruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence of this high mitotic activity, mucosal surfaces are frequently targeted by anticancer therapies, leading to dose-limiting side effects. The cellular mechanisms that control tissue protection and mucosal healing in response to intestinal damage remain poorly understood. Type 3 innate lymphoid cells (ILC3s) are regulators of homeostasis and tissue responses to infection at mucosal surfaces. We now demonstrate that ILC3s are required for epithelial activation and proliferation in response to small intestinal tissue damage induced by the chemotherapeutic agent methotrexate. Multiple subsets of ILC3s are activated after intestinal tissue damage, and in the absence of ILC3s, epithelial activation is lost, correlating with increased pathology and severe damage to the intestinal crypts. Using ILC3-deficient Lgr5 reporter mice, we show that maintenance of intestinal stem cells after damage is severely impaired in the absence of ILC3s or the ILC3 signature cytokine IL-22. These data unveil a novel function of ILC3s in limiting tissue damage by preserving tissue-specific stem cells.

  2. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    PubMed Central

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  3. An indirect role for NK cells in a CD4(+) T-cell-dependent mouse model of type I diabetes.

    PubMed

    Angstetra, Eveline; Graham, Kate L; Zhao, Yuxing; Irvin, Allison E; Elkerbout, Lorraine; Santamaria, Pere; Slattery, Robyn M; Kay, Thomas W; Thomas, Helen E

    2012-02-01

    CD8(+) T cells kill pancreatic β-cells in a cell-cell contact-dependent mechanism in the non-obese diabetic mouse. CD4(+) T lymphocytes are also able to kill pancreatic β-cells, but they do not directly contact β-cells and may use another cell type as the actual cytotoxic cell. Natural killer (NK) cells could have this role but it is uncertain whether they are cytotoxic towards β-cells. Therefore, the requirement for NK cells in β-cell destruction in the CD4-dependent T-cell antigen receptor transgenic NOD4.1 mice was examined. NK cells failed to kill β-cells in vitro, even in the absence of major histocompatibility complex class I. We observed only 9.7±1.1% of islet infiltrating NK cells from NOD4.1 mice expressing the degranulation marker CD107a. Diabetogenic CD4(+) T cells transferred disease to NODscid.IL2Rγ(-/-) mice lacking NK cells, indicating that NK cells do not contribute to β-cell death in vitro or in vivo. However, depletion of NK cells reduced diabetes incidence in NOD4.1 mice, suggesting that NK cells may help to maintain the right environment for cytotoxicity of effector cells.

  4. Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors

    PubMed Central

    Graves, Austin R; Moore, Shannon J; Bloss, Erik B; Mensh, Brett D; Kath, William L; Spruston, Nelson

    2012-01-01

    Summary Relating the function of neuronal cell types to information processing and behavior is a central goal of neuroscience. In the hippocampus, pyramidal cells in CA1 and the subiculum process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information, which they transmit throughout the brain. Do these cells constitute a single class, or are there multiple cell types with specialized functions? Using unbiased cluster analysis, we show that there are two morphologically and electrophysiologically distinct principal cell types that carry hippocampal output. We show further that these two cell types are inversely modulated by the synergistic action of glutamate and acetylcholine acting on metabotropic receptors that are central to hippocampal function. Combined with prior connectivity studies, our results support a model of hippocampal processing in which the two pyramidal cell types are predominantly segregated into two parallel pathways that process distinct modalities of information. PMID:23177962

  5. N-type and L-type calcium channels mediate glycinergic synaptic inputs to retinal ganglion cells of tiger salamanders.

    PubMed

    Bieda, Mark C; Copenhagen, David R

    2004-01-01

    Synaptically localized calcium channels shape the timecourse of synaptic release, are a prominent site for neuromodulation, and have been implicated in genetic disease. In retina, it is well established that L-type calcium channels play a major role in mediating release of glutamate from the photoreceptors and bipolar cells. However, little is known about which calcium channels are coupled to synaptic exocytosis of glycine, which is primarily released by amacrine cells. A recent report indicates that glycine release from spiking AII amacrine cells relies exclusively upon L-type calcium channels. To identify calcium channel types controlling neurotransmitter release from the population of glycinergic neurons that drive retinal ganglion cells, we recorded electrical and potassium evoked inhibitory synaptic currents (IPSCs) from these postsynaptic neurons in retinal slices from tiger salamanders. The L-channel antagonist nifedipine strongly inhibited release and FPL64176, an L-channel agonist, greatly enhanced it, indicating a significant role for L-channels. omega-Conotoxin MVIIC, an N/P/Q-channel antagonist, strongly inhibited release, indicating an important role for non-L channels. While the P/Q-channel blocker omega-Aga IVA produced only small effects, the N-channel blocker omega-conotoxin GVIA strongly inhibited release. Hence, N-type and L-type calcium channels appear to play major roles, overall, in mediating synaptic release of glycine onto retinal ganglion cells.

  6. Estimation of Cell-Type Composition Including T and B Cell Subtypes for Whole Blood Methylation Microarray Data.

    PubMed

    Waite, Lindsay L; Weaver, Benjamin; Day, Kenneth; Li, Xinrui; Roberts, Kevin; Gibson, Andrew W; Edberg, Jeffrey C; Kimberly, Robert P; Absher, Devin M; Tiwari, Hemant K

    2016-01-01

    DNA methylation levels vary markedly by cell-type makeup of a sample. Understanding these differences and estimating the cell-type makeup of a sample is an important aspect of studying DNA methylation. DNA from leukocytes in whole blood is simple to obtain and pervasive in research. However, leukocytes contain many distinct cell types and subtypes. We propose a two-stage model that estimates the proportions of six main cell types in whole blood (CD4+ T cells, CD8+ T cells, monocytes, B cells, granulocytes, and natural killer cells) as well as subtypes of T and B cells. Unlike previous methods that only estimate overall proportions of CD4+ T cell, CD8+ T cells, and B cells, our model is able to estimate proportions of naïve, memory, and regulatory CD4+ T cells as well as naïve and memory CD8+ T cells and naïve and memory B cells. Using real and simulated data, we are able to demonstrate that our model is able to reliably estimate proportions of these cell types and subtypes. In studies with DNA methylation data from Illumina's HumanMethylation450k arrays, our estimates will be useful both for testing for associations of cell type and subtype composition with phenotypes of interest as well as for adjustment purposes to prevent confounding in epigenetic association studies. Additionally, our method can be easily adapted for use with whole genome bisulfite sequencing (WGBS) data or any other genome-wide methylation data platform.

  7. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    PubMed

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-07-19

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.

  8. IDENTIFICATION OF A NOVEL CELL TYPE IN PERIPHERAL LYMPHOID ORGANS OF MICE

    PubMed Central

    Steinman, Ralph M.; Cohn, Zanvil A.

    1973-01-01

    A novel cell type has been identified in adherent cell populations prepared from mouse peripheral lymphoid organs (spleen, lymph node, Peyer's patch). Though present in small numbers (0.1–1.6% of the total nucleated cells) the cells have distinct morphological features. The nucleus is large, retractile, contorted in shape, and contains small nucleoli (usually two). The abundant cytoplasm is arranged in processes of varying length and width and contains many large spherical mitochondria. In the living state, the cells undergo characteristic movements, and unlike macrophages, do not appear to engage in active endocytosis. The term, dendritic cell, is proposed for this novel cell type. PMID:4573839

  9. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  10. Cell-Type-Specific Genome-wide Expression Profiling after Laser Capture Microdissection of Living Tissue

    SciTech Connect

    Marchetti, F; Manohar, C F

    2005-02-09

    The purpose of this technical feasibility study was to develop and evaluate robust microgenomic tools for investigations of genome-wide expression of very small numbers of cells isolated from whole tissue sections. Tissues contain large numbers of cell-types that play varied roles in organ function and responses to endogenous and exogenous toxicants whether bacterial, viral, chemical or radiation. Expression studies of whole tissue biopsy are severely limited because heterogeneous cell-types result in an averaging of molecular signals masking subtle but important changes in gene expression in any one cell type(s) or group of cells. Accurate gene expression analysis requires the study of specific cell types in their tissue environment but without contamination from surrounding cells. Laser capture microdissection (LCM) is a new technology to isolate morphologically distinct cells from tissue sections. Alternative methods are available for isolating single cells but not yet for their reliable genome-wide expression analyses. The tasks of this feasibility project were to: (1) Develop efficient protocols for laser capture microdissection of cells from tissues identified by antibody label, or morphological stain. (2) Develop reproducible gene-transcript analyses techniques for single cell-types and determine the numbers of cells needed for reliable genome-wide analyses. (3) Validate the technology for epithelial and endothelial cells isolated from the gastrointestinal tract of mice.

  11. Different GATA factors dictate CCR3 transcription in allergic inflammatory cells in a cell type-specific manner.

    PubMed

    Kong, Su-Kang; Kim, Byung Soo; Uhm, Tae Gi; Lee, Wonyong; Lee, Gap Ryol; Park, Choon-Sik; Lee, Chul-Hoon; Chung, Il Yup

    2013-06-01

    The chemokine receptor CCR3 is expressed in prominent allergic inflammatory cells, including eosinophils, mast cells, and Th2 cells. We previously identified a functional GATA element within exon 1 of the CCR3 gene that is responsible for GATA-1-mediated CCR3 transcription. Because allergic inflammatory cells exhibit distinct expression patterns of different GATA factors, we investigated whether different GATA factors dictate CCR3 transcription in a cell type-specific manner. GATA-2 was expressed in EoL-1 eosinophilic cells, GATA-1 and GATA-2 were expressed in HMC-1 mast cells, and GATA-3 was preferentially expressed in Jurkat cells. Unlike a wild-type CCR3 reporter, reporters lacking the functional GATA element were not active in any of the three cell types, implying the involvement of different GATA factors in CCR3 transcription. RNA interference assays showed that small interfering RNAs specific for different GATA factors reduced CCR3 reporter activity in a cell type-specific fashion. Consistent with these findings, chromatin immunoprecipitation and EMSA analyses demonstrated cell type-specific binding of GATA factors to the functional GATA site. More importantly, specific inhibition of the CCR3 reporter activity by different GATA small interfering RNAs was well preserved in respective cell types differentiated from cord blood; in particular, GATA-3 was entirely responsible for reporter activity in Th2 cells and replaced the role predominantly played by GATA-1 and GATA-2. These results highlight a mechanistic role of GATA factors in which cell type-specific expression is the primary determinant of transcription of the CCR3 gene in major allergic inflammatory cells.

  12. Chondrocytes expressing intracellular collagen type II enter the cell cycle and co-express collagen type I in monolayer culture.

    PubMed

    Tekari, Adel; Luginbuehl, Reto; Hofstetter, Willy; Egli, Rainer J

    2014-11-01

    For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to <0.1%, whereas transcript levels encoding COL1 increased 370-fold as compared to primary chondrocytes. Flow cytometry for intracellular proteins revealed that chondrocytes acquired a COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to <2% in primary chondrocytes to passage six cells, the fraction of COL1 positive cells increased from <1% to >95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue.

  13. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    SciTech Connect

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  14. Ki-67 and PCNA Expression in Canine Mammary Tumors and Adjacent Nonneoplastic Mammary Glands: Prognostic Impact by a Multivariate Survival Analysis.

    PubMed

    Carvalho, M I; Pires, I; Prada, J; Lobo, L; Queiroga, F L

    2016-11-01

    The assessment of tumor proliferation has been considered a determining prognostic factor in canine mammary tumors (CMTs). However, no studies have assessed the prognostic importance of proliferation in adjacent nonneoplastic mammary glands. We included 64 CMTs (21 benign and 43 malignant) and studied the proliferation index (PI) of Ki-67 and proliferating cell nuclear antigen (PCNA) together with several clinicopathological characteristics. A positive and statistically significant correlation between the PI of Ki-67 and PCNA in tumors and adjacent nonneoplastic mammary glands was observed in benign and malignant tumors. Tumor size, skin ulceration, histological type, mitotic index, nuclear grade, differentiation grade, histological grade of malignancy, lymph node metastasis, Ki-67, and PCNA expression in tumors and adjacent nonneoplastic mammary glands were statistically associated with overall survival by univariate analysis in malignant cases (n = 43). Histological grade of malignancy and high intratumoral PCNA retained their significance by multivariate analysis arising as independent predictors of overall survival. Interestingly, the PI of Ki-67 and PCNA of adjacent nontumoral mammary glands were associated with clinicopathological features of tumor aggressiveness and shorter overall survival, demonstrating the need to better explore this adjacent non-neoplastic tissue.

  15. Simple and biocompatible micropatterning of multiple cell types on a polymer substrate by using ion implantation.

    PubMed

    Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Nho, Young-Chang

    2010-12-07

    A noncytotoxic procedure for the spatial organization of multiple cell types remains as a major challenge in tissue engineering. In this study, a simple and biocompatible micropatterning method of multiple cell types on a polymer surface is developed by using ion implantation. The cell-resistant Pluronic surface can be converted into a cell-adhesive one by ion implantation. In addition, cells show different behaviors on the ion-implanted Pluronic surface. Thus this process enables the micropatterning of two different cell types on a polymer substrate. The micropatterns of the Pluronic were formed on a polystyrene surface. Primary cells adhered to the spaces of the bare polystyrene regions separated by the implanted Pluronic patterns. Secondary cells then adhered onto the implanted Pluronic patterns, resulting in micropatterns of two different cells on the polystyrene surface.

  16. Adenovirus type 2 expresses fiber in monkey-human hybrids and reconstructed cells

    SciTech Connect

    Zorn, G.A.; Anderson, C.W.

    1981-02-01

    Adenovirus type 2 protein expression was measured by indirect immunofluorescence in monkey-human hybrids and in cells reconstructed from monkey and human cell karyoplasts and cytoplasts. Monkey-human hybrid clones infected with adenovirus type 2 expressed fiber protein, whereas infected monkey cells alone did not. Hybrids constructed after the parental monkey cells were infected with adenovirus type 2 demonstrated that fiber synthesis in these cells could be rescued by fusion to uninfected human cells. Thus, human cells contain a dominant factor that acts in trans and overcomes the inability of monkey cells to synthesize fiber. These results are consistent with the hypothesis that the block to adenovirus replication in monkey cells involves a nuclear event that prevents the formation of functional mRNA for some late viral proteins including fiber polypeptide.

  17. Development of a shingle-type solar cell module

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.; Sanchez, L. E.

    1978-01-01

    The development of a solar cell module, which is suitable for use in place of shingles on the sloping roofs of residental or commercial buildings, is reported. The design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. The shingle solar cell module consists of two basic functional parts: an exposed rigid portion which contains the solar cell assembly, and a semi-flexible portion which is overlapped by the higher courses of the roof installation. Consideration is given to the semi-flexible substrate configuration and solar cell and module-to-module interconnectors. The results of an electrical performance analysis are given and it is noted that high specific power output can be attributed to the efficient packing of the circular cells within the hexagon shape. The shingle should function for at least 15 years, with a specific power output of 98 W/sq w.

  18. Addition of a single E2 binding site to the human papillomavirus (HPV) type 16 long control region enhances killing of HPV positive cells via HPV E2 protein-regulated herpes simplex virus type 1 thymidine kinase-mediated suicide gene therapy.

    PubMed

    Sharma, Rachna; Palefsky, Joel M

    2010-07-01

    Human papillomavirus type 16 (HPV16) is associated with the development of anogenital cancers and their precursor lesions, intraepithelial neoplasia. Treatment strategies against HPV-induced intraepithelial neoplasia are not HPV specific and mostly consist of physical removal or ablation of lesions. We had previously designed an HPV-specific approach to kill HPV-infected cells by the herpes simplex virus type 1 thymidine kinase (TK) gene driven by HPV E2 binding to E2-binding sites (E2BS) in the native HPV16 long control region. E2-induced TK expression renders the cells sensitive to the prodrug ganciclovir. To optimize this therapeutic approach, we modified the native long control region by adding variable numbers of E2BS adjacent to E2BS4, resulting in greatly increased cell death in HPV-positive cell lines with variable levels of E2 protein expression and no reduction in HPV specificity. Our results showed maximum increase in TK expression and cell killing when one additional E2BS was added adjacent to E2BS. As HPV-infected patients also exhibit variable E2 expression across lesions and within a lesion, this approach may potentiate the clinical utility of the herpes simplex virus type 1 TK/ganciclovir therapeutic approach.

  19. Effect of donor cell type on nuclear remodelling in rabbit somatic cell nuclear transfer embryos.

    PubMed

    Tian, J; Song, J; Li, H; Yang, D; Li, X; Ouyang, H; Lai, L

    2012-08-01

    Cloned rabbits have been produced for many years by somatic cell nuclear transfer (SCNT). The efficiency of cloning by SCNT, however, has remained extremely low. Most cloned embryos degenerate in utero, and the few that develop to term show a high incidence of post-natal death and abnormalities. The cell type used for donor nuclei is an important factor in nuclear transfer (NT). As reported previously, NT embryos reconstructed with fresh cumulus cells (CC-embryos) have better developmental potential than those reconstructed with foetal fibroblasts (FF-embryos) in vivo and in vitro. The reason for this disparity in developmental capacity is still unknown. In this study, we compared active demethylation levels and morphological changes between the nuclei of CC-embryos and FF-embryos shortly after activation. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized and cloned rabbit embryos revealed that there was no detectable active demethylation in rabbit zygotes or NT-embryos derived from either fibroblasts or CC. In the process of nuclear remodelling, however, the proportion of nuclei with abnormal appearance in FF-embryos was significantly higher than that in CC-embryos during the first cell cycle. Our study demonstrates that the nuclear remodelling abnormality of cloned rabbit embryos may be one important factor for the disparity in developmental success between CC-embryos and FF-embryos.

  20. Action Potentials and Ion Conductances in Wild-type and CALHM1-knockout Type II Taste Cells.

    PubMed

    Ma, Zhongming; Saung, Wint Thu; Foskett, J Kevin

    2017-02-15

    Taste bud type II cells fire action potentials in response to tastants, triggering non-vesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. Here, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1-knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1-KO mice, and their associated non-selective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1-KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na(+) currents either estimated from action potentials or recorded from steady-state voltage-pulses, or action potential threshold, overshoot peak, after-hyperpolarization and firing frequency. However, Calhm1-deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials.

  1. Cell type-specific affinity purification of nuclei for chromatin profiling in whole animals.

    PubMed

    Steiner, Florian A; Henikoff, Steven

    2015-01-01

    Analyzing cell differentiation during development in a complex organism requires the analysis of expression and chromatin profiles in individual cell types. Our laboratory has developed a simple and generally applicable strategy to purify specific cell types from whole organisms for simultaneous analysis of chromatin and expression. The method, termed INTACT for Isolation of Nuclei TAgged in specific Cell Types, depends on the expression of an affinity-tagged nuclear envelope protein in the cell type of interest. These nuclei can be affinity-purified from the total pool of nuclei and used as a source for RNA and chromatin. The method serves as a simple and scalable alternative to FACS sorting or laser capture microscopy to circumvent the need for expensive equipment and specialized skills. This chapter provides detailed protocols for the cell-type specific purification of nuclei from Caenorhabditis elegans.

  2. Organotypic culture of fetal lung type II alveolar epithelial cells: applications to pulmonary toxicology.

    PubMed Central

    Shami, S G; Aghajanian, J D; Sanders, R L

    1984-01-01

    Techniques for isolation and culture of fetal Type II alveolar epithelial cells, as well as the morphologic and biochemical characteristics of these histotypic cultures, are described. Type II alveolar epithelial cells can be isolated from fetal rat lungs and grown in an organotypic culture system as described in this review. The fetal Type II cells resemble differentiated rat Type II cells in morphology, biochemistry, and karyotype as they grow in culture for up to 5 weeks. The cells of the mature organotypic cultures form alveolarlike structures while growing on a gelatin sponge matrix. The Type II cells also synthesize and secrete pulmonary surfactant similar in biochemical composition to that produced in vivo. This system has been used to study the effects of hormones on surfactant production and composition. The organotypic model has many potential applications to the study of pulmonary toxicology. Images FIGURE 1. FIGURE 2. PMID:6548184

  3. Extranodal NK/T-cell lymphoma, nasal type, arising in association with saline breast implant: expanding the spectrum of breast implant-associated lymphomas.

    PubMed

    Aladily, Tariq N; Nathwani, Bharat N; Miranda, Roberto N; Kansal, Rina; Yin, C Cameron; Protzel, Richard; Takowsky, Gary S; Medeiros, L Jeffrey

    2012-11-01

    Extranodal NK/T-cell lymphoma, nasal type, is a rare type of non-Hodgkin lymphoma that is most common in Asia and is driven by Epstein-Barr virus infection. These tumors usually arise in the nasal region; in rare cases they can involve extranasal sites, most often skin, with involvement of the breast being rare. Lymphomas arising adjacent to breast implants are rare, and most cases reported to date have been anaplastic lymphoma kinase (ALK)-negative anaplastic large cell lymphoma. Here we report a 41-year-old white woman with bilateral saline breast implants placed for cosmetic reasons who almost 9 years later developed painful swelling at the right-breast implant site. Excisional biopsy revealed lymphoma composed of monomorphic large cells associated with necrosis and angioinvasion. Immunohistochemical analysis showed an aberrant, NK/T-cell immunophenotype with the lymphoma cells being CD2+, CD3+, CD56+, partial CD30+, granzyme B, TIA-1+, CD4+, CD5+, CD7+, and CD8+. In situ hybridization analysis showed Epstein-Barr virus-encoded RNA within the neoplastic cells. Polymerase chain reaction analysis showed monoclonal T-cell receptor-γ chain gene rearrangement. These findings support the diagnosis of extranodal NK/T-cell lymphoma, nasal type. On the basis of our review of the literature, this case is unique. In addition, we believe this case is important to report, because it expands the spectrum of T-cell lymphomas that can be associated with breast implants and may be a forerunner of additional cases to follow.

  4. Cell-type specific gene expression profiles of leukocytes in human peripheral blood

    PubMed Central

    Palmer, Chana; Diehn, Maximilian; Alizadeh, Ash A; Brown, Patrick O

    2006-01-01

    Background Blood is a complex tissue comprising numerous cell types with distinct functions and corresponding gene expression profiles. We attempted to define the cell type specific gene expression patterns for the major constituent cells of blood, including B-cells, CD4+ T-cells, CD8+ T-cells, lymphocytes and granulocytes. We did this by comparing the global gene expression profiles of purified B-cells, CD4+ T-cells, CD8+ T-cells, granulocytes, and lymphocytes using cDNA microarrays. Results Unsupervised clustering analysis showed that similar cell populations from different donors share common gene expression profiles. Supervised analyses identified gene expression signatures for B-cells (427 genes), T-cells (222 genes), CD8+ T-cells (23 genes), granulocytes (411 genes), and lymphocytes (67 genes). No statistically significant gene expression signature was identified for CD4+ cells. Genes encoding cell surface proteins were disproportionately represented among the genes that distinguished among the lymphocyte subpopulations. Lymphocytes were distinguishable from granulocytes based on their higher levels of expression of genes encoding ribosomal proteins, while granulocytes exhibited characteristic expression of various cell surface and inflammatory proteins. Conclusion The genes comprising the cell-type specific signatures encompassed many of the genes already known to be involved in cell-type specific processes, and provided clues that may prove useful in discovering the functions of many still unannotated genes. The most prominent feature of the cell type signature genes was the enrichment of genes encoding cell surface proteins, perhaps reflecting the importance of specialized systems for sensing the environment to the physiology of resting leukocytes. PMID:16704732

  5. Cell type-dependent regulation of free ISG15 levels and ISGylation.

    PubMed

    Tecalco Cruz, Angeles C; Mejía-Barreto, Karen

    2017-03-11

    Interferon-stimulated gene 15 (ISG15) is an ubiquitin-like protein, which can either be found as a free protein or covalently-bound to target proteins via ISGylation. The functions of free and conjugated ISG15 are ambiguous in tumorigenesis owing to its roles as an oncogene and a tumour suppressor gene. This dual role for ISG15 could be a result of the cancer cell type and the cellular context. Here, we report that ISG15 expression is upregulated in different cancer cells compared to normal cells. Furthermore, we found higher endogenous, free ISG15 protein levels in MCF7 breast cancer cells than in other cells, suggesting that non-conjugated ISG15 levels are cell type-specific. Additionally, we demonstrated that interferon gamma (IFN-Ɣ) increased both free and conjugated levels of ISG15 in MCF7 cells. Interestingly, endogenous conjugated and free ISG15 levels were differentially regulated by IFN-Ɣ in several cell lines. On characterisation of the subcellular distribution of ISG15 in several cell types, our results indicated that free ISG15 was mainly localised to the cytoplasm of MCF7 cells, whereas ISGylation marks were also found in the cytoplasm, but mainly in the nucleus, with a specific distribution pattern in each cell type. Thus, free and conjugated ISG15 protein levels and their subcellular distribution are cell type-dependent, whereas IFN-Ɣ signalling may differentially control the abundance of both ISG15 forms in transformed and normal cells.

  6. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression

    PubMed Central

    Bengsch, F; Buck, A; Günther, SC; Seiz, JR; Tacke, M; Pfeifer, D; von Elverfeldt, D; Sevenich, L; Hillebrand, LE; Kern, U; Sameni, M; Peters, C; Sloane, BF; Reinheckel, T

    2014-01-01

    The cysteine protease cathepsin B (CTSB) is frequently overexpressed in human breast cancer and correlated with a poor prognosis. Genetic deficiency or pharmacological inhibition of CTSB attenuates tumor growth, invasion and metastasis in mouse models of human cancers. CTSB is expressed in both cancer cells and cells of the tumor stroma, in particular in tumor-associated macrophages (TAM). In order to evaluate the impact of tumor- or stromal cell-derived CTSB on Polyoma Middle T (PyMT)-induced breast cancer progression, we used in vivo and in vitro approaches to induce human CTSB overexpression in PyMT cancer cells or stromal cells alone or in combination. Orthotopic transplantation experiments revealed that CTSB overexpression in cancer cells rather than in the stroma affects PyMT tumor progression. In 3D cultures, primary PyMT tumor cells showed higher extracellular matrix proteolysis and enhanced collective cell invasion when CTSB was overexpressed and proteolytically active. Coculture of PyMT cells with bone marrow-derived macrophages induced a TAM-like macrophage phenotype in vitro, and the presence of such M2-polarized macrophages in 3D cultures enhanced sprouting of tumor spheroids. We employed a doxycycline (DOX)-inducible CTSB expression system to selectively overexpress human CTSB either in cancer cells or in macrophages in 3D cocultures. Tumor spheroid invasiveness was only enhanced when CTSB was overexpressed in cancer cells, whereas CTSB expression in macrophages alone did not further promote invasiveness of tumor spheroids. We conclude that CTSB overexpression in the PyMT mouse model promotes tumor progression not by a stromal effect, but by a direct, cancer cell-inherent mode of action: CTSB overexpression renders the PyMT cancers more invasive by increasing proteolytic extracellular matrix protein degradation fostering collective cell invasion into adjacent tissue. PMID:24077280

  7. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells.

    PubMed

    Shen, Yu J; Le Bert, Nina; Chitre, Anuja A; Koo, Christine Xing'Er; Nga, Xing H; Ho, Samantha S W; Khatoo, Muznah; Tan, Nikki Y; Ishii, Ken J; Gasser, Stephan

    2015-04-21

    The DNA damage response (DDR) induces the expression of type I interferons (IFNs), but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  8. A mathematical model of the colon crypt capturing compositional dynamic interactions between cell types

    PubMed Central

    Smallbone, Kieran; Corfe, Bernard M

    2014-01-01

    Models of the development and early progression of colorectal cancer are based upon understanding the cycle of stem cell turnover, proliferation, differentiation and death. Existing crypt compartmental models feature a linear pathway of cell types, with little regulatory mechanism. Previous work has shown that there are perturbations in the enteroendocrine cell population of macroscopically normal crypts, a compartment not included in existing models. We show that existing models do not adequately recapitulate the dynamics of cell fate pathways in the crypt. We report the progressive development, iterative testing and fitting of a developed compartmental model with additional cell types, and which includes feedback mechanisms and cross-regulatory mechanisms between cell types. The fitting of the model to existing data sets suggests a need to invoke cross-talk between cell types as a feature of colon crypt cycle models. PMID:24354351

  9. Vertical flow array chips reliably identify cell types from single-cell mRNA sequencing experiments

    PubMed Central

    Shirai, Masataka; Arikawa, Koji; Taniguchi, Kiyomi; Tanabe, Maiko; Sakai, Tomoyuki

    2016-01-01

    Single-cell mRNA sequencing offers an unbiased approach to dissecting cell types as functional units in multicellular tissues. However, highly reliable cell typing based on single-cell gene expression analysis remains challenging because of the lack of methods for efficient sample preparation for high-throughput sequencing and evaluating the statistical reliability of the acquired cell types. Here, we present a highly efficient nucleic reaction chip (a vertical flow array chip (VFAC)) that uses porous materials to reduce measurement noise and improve throughput without a substantial increase in reagent. We also present a probabilistic evaluation method for cell typing depending on the amount of measurement noise. Applying the VFACs to 2580 monocytes provides 1967 single-cell expressions for 47 genes, including low-expression genes such as transcription factors. The statistical method can distinguish two cell types with probabilistic quality values, with the measurement noise level being considered for the first time. This approach enables the identification of various sub-types of cells in tissues and provides a foundation for subsequent analyses. PMID:27876759

  10. Matrix metalloproteinases are involved in both type I (apoptosis) and type II (autophagy) cell death induced by sodium phenylacetate in MDA-MB-231 breast tumour cells.

    PubMed

    Augustin, Sébastien; Berard, Madeleine; Kellaf, Sabine; Peyri, Nicole; Fauvel-Lafève, Françoise; Legrand, Chantal; He, Lu; Crépin, Michel

    2009-04-01

    The effects of sodium phenylacetate (NaPa), an antitumoral molecule, on cell death and matrix metalloproteinase (MMP) activities and synthesis were investigated in two metastatic breast tumour cell lines, MDA-MB-231 and MDA-MB-435, cultured on three-dimensional type I collagen gels (3-D cultures). In both cell lines, NaPa inhibited cell proliferation and induced apoptotic cell death as measured by TUNEL assay, with an IC(30) of 20 mM and 10 mM for MDA-MB-231 and MDA-MB-435 cells, respectively. In MDA-MB-231 cells, NaPa also induced (i) an autophagic process evidenced by the appearance of autophagic vacuoles and an increased phosphatase acid activity, (ii) the formation of pseudopodia and (iii) an increase in MMP-1 and MMP-9 secretion without affecting MT1-MMP. In NaPa-treated MDA-MB-435 cells, no autophagic vacuoles were formed but F-actin depolymerisation was observed. MMP-1, MMP-9 and MT1-MMP levels were strongly enhanced in these cells but MMPs were not secreted and accumulated intracellularly. When breast cancer cells were treated with NaPa in the presence of an MMP inhibitor (GM6001), apoptotic cell death decreased and the induction of autophagic vacuoles in MDA-MB-231 cells was inhibited. Taken together, these data suggest that MMPs are involved in the autophagic cell death and/or apoptosis of breast tumour cells.

  11. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites.

    PubMed

    Gerbe, François; Sidot, Emmanuelle; Smyth, Danielle J; Ohmoto, Makoto; Matsumoto, Ichiro; Dardalhon, Valérie; Cesses, Pierre; Garnier, Laure; Pouzolles, Marie; Brulin, Bénédicte; Bruschi, Marco; Harcus, Yvonne; Zimmermann, Valérie S; Taylor, Naomi; Maizels, Rick M; Jay, Philippe

    2016-01-14

    Helminth parasitic infections are a major global health and social burden. The host defence against helminths such as Nippostrongylus brasiliensis is orchestrated by type 2 cell-mediated immunity. Induction of type 2 cytokines, including interleukins (IL) IL-4 and IL-13, induce goblet cell hyperplasia with mucus production, ultimately resulting in worm expulsion. However, the mechanisms underlying the initiation of type 2 responses remain incompletely understood. Here we show that tuft cells, a rare epithelial cell type in the steady-state intestinal epithelium, are responsible for initiating type 2 responses to parasites by a cytokine-mediated cellular relay. Tuft cells have a Th2-related gene expression signature and we demonstrate that they undergo a rapid and extensive IL-4Rα-dependent amplification following infection with helminth parasites, owing to direct differentiation of epithelial crypt progenitor cells. We find that the Pou2f3 gene is essential for tuft cell specification. Pou2f3(-/-) mice lack intestinal tuft cells and have defective mucosal type 2 responses to helminth infection; goblet cell hyperplasia is abrogated and worm expulsion is compromised. Notably, IL-4Rα signalling is sufficient to induce expansion of the tuft cell lineage, and ectopic stimulation of this signalling cascade obviates the need for tuft cells in the epithelial cell remodelling of the intestine. Moreover, tuft cells secrete IL-25, thereby regulating type 2 immune responses. Our data reveal a novel function of intestinal epithelial tuft cells and demonstrate a cellular relay required for initiating mucosal type 2 immunity to helminth infection.

  12. Isolation and properties of type II alveolar cells from rat lung.

    PubMed

    Mason, R J; Williams, M C; Greenleaf, R D; Clements, J A

    1977-06-01

    Type II alveolar cells can be isolated and partially purified from adult rat lung by a series of steps that includes enzymatic digestion of the lung with trypsin and separation of cells on a discontinuous albumin density gradient. The yield of the isolated type II cells depends on the supplier and the housing of the rats used to prepare the cells. With specific pathogen-free rats housed in a laminar flow hood, the yield was 20.3 x 10(6) cells per rat, of which 50 per cent were type II cells. With rats from 2 other suppliers and no special housing, the yields were 8.8 and 8.3 x 10(6) cells per rat, of which 67 and 65 per cent were type II cells. The ultrastructural appearance of the isolated cells was similar to that of cells from intact lung, except for some dilatation of the endoplasmic reticulum and the perinuclear space. Most cells (92 +/- 5 per cent) excluded the vital dye, trypan blue. The cells consumed O2 at the rate of 76 +/- 12 nmole per 10(6) cells per hour and released only 5.7 +/- 2.0 per cent of their lactate dehydrogenase, a cytoplasmic enzyme, into the medium after 1 hour of incubation. The isolated type II cells contained disaturated phosphatidylcholine, a major component of purified surface-active material. The cells, however, had a low glucose utilization compared to their O2 consumption, which may indicate an abnormality in the metabolism of glucose. This population of cells could be further purified to 89 per cent type II cells by unit gravity velocity sedimentation.

  13. Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes

    PubMed Central

    Cinti, Francesca; Bouchi, Ryotaro; Kim-Muller, Ja Young; Ohmura, Yoshiaki; Sandoval, P. R.; Masini, Matilde; Marselli, Lorella; Suleiman, Mara; Ratner, Lloyd E.; Marchetti, Piero

    2016-01-01

    Context: Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types. Objective: To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors. Design: We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3. Results: By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects. Conclusions: The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-“like” cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction. PMID:26713822

  14. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens.

    PubMed

    Aoyama, Tsuyoshi; Hiwatashi, Yuji; Shigyo, Mikao; Kofuji, Rumiko; Kubo, Minoru; Ito, Motomi; Hasebe, Mitsuyasu

    2012-09-01

    Stem cells are formed at particular times and positions during the development of multicellular organisms. Whereas flowering plants form stem cells only in the sporophyte generation, non-seed plants form stem cells in both the sporophyte and gametophyte generations. Although the molecular mechanisms underlying stem cell formation in the sporophyte generation have been extensively studied, only a few transcription factors involved in the regulation of gametophyte stem cell formation have been reported. The moss Physcomitrella patens forms a hypha-like body (protonema) and a shoot-like body (gametophore) from a protonema apical cell and a gametophore apical cell, respectively. These apical cells have stem cell characteristics and are formed as side branches of differentiated protonema cells. Here, we show that four AP2-type transcription factors orthologous to Arabidopsis thaliana AINTEGUMENTA, PLETHORA and BABY BOOM (APB) are indispensable for the formation of gametophore apical cells from protonema cells. Quadruple disruption of all APB genes blocked gametophore formation, even in the presence of cytokinin, which enhances gametophore apical cell formation in the wild type. All APB genes were expressed in emerging gametophore apical cells, but not in protonema apical cells. Heat-shock induction of an APB4 transgene driven by a heat-shock promoter increased the number of gametophores. Expression of all APB genes was induced by auxin but not by cytokinin. Thus, the APB genes function synergistically with cytokinin signaling to determine the identity of the two types of stem cells.

  15. Cell types differ in global coordination of splicing and proportion of highly expressed genes

    PubMed Central

    Trakhtenberg, Ephraim F.; Pho, Nam; Holton, Kristina M.; Chittenden, Thomas W.; Goldberg, Jeffrey L.; Dong, Lingsheng

    2016-01-01

    Balance in the transcriptome is regulated by coordinated synthesis and degradation of RNA molecules. Here we investigated whether mammalian cell types intrinsically differ in global coordination of gene splicing and expression levels. We analyzed RNA-seq transcriptome profiles of 8 different purified mouse cell types. We found that different cell types vary in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, and that the cell types that express more variants of alternatively spliced transcripts per gene are those that have higher proportion of highly expressed genes. Cell types segregated into two clusters based on high or low proportion of highly expressed genes. Biological functions involved in negative regulation of gene expression were enriched in the group of cell types with low proportion of highly expressed genes, and biological functions involved in regulation of transcription and RNA splicing were enriched in the group of cell types with high proportion of highly expressed genes. Our findings show that cell types differ in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, which represent distinct properties of the transcriptome and may reflect intrinsic differences in global coordination of synthesis, splicing, and degradation of RNA molecules. PMID:27577089

  16. Role of type I interferons in the activation of autoreactive B cells

    PubMed Central

    Kiefer, Kerstin; Oropallo, Michael A; Cancro, Michael P; Marshak-Rothstein, Ann

    2013-01-01

    Type I interferons (IFNs) are a family of cytokines involved in the defense against viral infections that play a key role in the activation of both the innate and adaptive immune system. IFNs both directly and indirectly enhance the capacity of B lymphocytes to respond to viral challenge and produce cytotoxic and neutralizing antibodies. However, prolonged type I IFN exposure is not always beneficial to the host. If not regulated properly IFN can drive autoantibody production as well as other parameters of systemic autoimmune disease. Type I IFNs impact B-cell function through a variety of mechanisms, including effects on receptor engagement, Toll-like receptor expression, cell migration, antigen presentation, cytokine responsiveness, cytokine production, survival, differentiation and class-switch recombination. Type I IFNs are also cytotoxic for a variety of cell types and thereby contribute to the accumulation of cell debris that serves as a potential source for autoantigens. Type I IFN engagement of a variety of accessory cells further promotes B-cell survival and activation, as exemplified by the capacity of type I IFNs to increase the level of B-cell survival factors, such as B lymphocyte stimulator, produced by dendritic cells. Therefore, it is not surprising that the loss of expression of the type I IFN receptor can have dramatic effects on the production of autoantibodies and on the clinical features of systemic autoimmune diseases such as systemic lupus erythematosus. PMID:22430248

  17. Influence of conditioning regimens and stem cell sources on donor-type chimerism early after stem cell transplantation.

    PubMed

    Sugita, Junichi; Tanaka, Junji; Hashimoto, Aya; Shiratori, Souichi; Yasumoto, Atsushi; Wakasa, Kentaro; Kikuchi, Misato; Shigematsu, Akio; Miura, Yoko; Tsutsumi, Yutaka; Kondo, Takeshi; Asaka, Masahiro; Imamura, Masahiro

    2008-12-01

    We retrospectively analyzed very early chimerism before and ongoing neutrophil engraftment (days 7, 14, 21, 28) and investigated the influence of conditioning regimens and stem cell sources on donor-type chimerism in 59 Japanese patients who had received allogeneic hematopoietic stem cell transplantation. The percentage of donor-type chimerism increased before engraftment in all patients who achieved engraftment. The average percentage of donor-type chimerism in patients who had received reduced-intensity stem cell transplantation (RIST) with total body irradiation (TBI) was significantly higher than that in patients who had received RIST without TBI (98.8% vs 87.5% on day 21, P<0.01; 99.3% vs 84.3% on day 28, P<0.01). The average percentage of donor-type chimerism after peripheral blood stem cell transplantation was significantly higher than that after bone marrow transplantation on day 7 (81.5% vs 43.1%, P<0.01), and the average percentage of donor-type chimerism after cord blood transplantation was significantly lower on day 14 (55.8% vs 84.8%, P<0.05). Compared with the average percentage of donor-type chimerism in patients who achieved engraftment with each stem cell source, a notable decrease in donor-type chimerism was observed in patients who failed to achieve engraftment. This study suggests that differences in conditioning regimens and stem cell sources should be taken into account when considering donor-type chimerism.

  18. Separation of spermatogenic cell types using STA-PUT velocity sedimentation.

    PubMed

    Bryant, Jessica M; Meyer-Ficca, Mirella L; Dang, Vanessa M; Berger, Shelley L; Meyer, Ralph G

    2013-10-09

    Mammalian spermatogenesis is a complex differentiation process that occurs in several stages in the seminiferous tubules of the testes. Currently, there is no reliable cell culture system allowing for spermatogenic differentiation in vitro, and most biological studies of spermatogenic cells require tissue harvest from animal models like the mouse and rat. Because the testis contains numerous cell types--both non-spermatogenic (Leydig, Sertoli, myeloid, and epithelial cells) and spermatogenic (spermatogonia, spermatocytes, round spermatids, condensing spermatids and spermatozoa)--studies of the biological mechanisms involved in spermatogenesis require the isolation and enrichment of these different cell types. The STA-PUT method allows for the separation of a heterogeneous population of cells--in this case, from the testes--through a linear BSA gradient. Individual cell types sediment with different sedimentation velocity according to cell size, and fractions enriched for different cell types can be collected and utilized in further analyses. While the STA-PUT method does not result in highly pure fractions of cell types, e.g. as can be obtained with certain cell sorting methods, it does provide a much higher yield of total cells in each fraction (~1 x 10(8) cells/spermatogenic cell type from a starting population of 7-8 x 10(8) cells). This high yield method requires only specialized glassware and can be performed in any cold room or large refrigerator, making it an ideal method for labs that have limited access to specialized equipment like a fluorescence activated cell sorter (FACS) or elutriator.

  19. Secondary prevention of type 1 diabetes mellitus: stopping immune destruction and promoting beta-cell regeneration.

    PubMed

    Couri, C E B; Foss, M C; Voltarelli, J C

    2006-10-01

    Type 1 diabetes mellitus results from a cell-mediated autoimmune attack against pancreatic beta-cells. Traditional treatments involve numerous daily insulin dosages/injections and rigorous glucose control. Many efforts toward the identification of beta-cell precursors have been made not only with the aim of understanding the physiology of islet regeneration, but also as an alternative way to produce beta-cells to be used in protocols of islet transplantation. In this review, we summarize the most recent studies related to precursor cells implicated in the regeneration process. These include embryonic stem cells, pancreas-derived multipotent precursors, pancreatic ductal cells, hematopoietic stem cells, mesenchymal stem cells, hepatic oval cells, and mature beta-cells. There is controversial evidence of the potential of these cell sources to regenerate beta-cell mass in diabetic patients. However, clinical trials using embryonic stem cells, umbilical cord blood or adult bone marrow stem cells are under way. The results of various immunosuppressive regimens aiming at blocking autoimmunity against pancreatic beta-cells and promoting beta-cell preservation are also analyzed. Most of these regimens provide transient and partial effect on insulin requirements, but new regimens are beginning to be tested. Our own clinical trial combines a high dose immunosuppression with mobilized peripheral blood hematopoietic stem cell transplantation in early-onset type 1 diabetes mellitus.

  20. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    PubMed

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  1. Type 2 innate lymphoid cells-new members of the "type 2 franchise" that mediate allergic airway inflammation.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2012-05-01

    Type 2 innate lymphoid cells (ILC2s) are members of an ILC family, which contains NK cells and Rorγt(+) ILCs, the latter including lymphoid tissue inducer (LTi) cells and ILCs producing IL-17 and IL-22. ILC2s are dedicated to the production of IL-5 and IL-13 and, as such, ILC2s provide an early and important source of type 2 cytokines critical for helminth expulsion in the gut. Several studies have also demonstrated a role for ILC2s in airway inflammation. In this issue of the European Journal of Immunology, Klein Wolterink et al. [Eur. J. Immunol. 2012. 42: 1106-1116] show that ILC2s are instrumental in several models of experimental asthma where they significantly contribute to production of IL-5 and IL-13, key cytokines in airway inflammation. This study sheds light over the relative contribution of ILC2s versus T helper type 2 cells (Th2) in type 2 mediated allergen-specific inflammation in the airways as discussed in this commentary.

  2. Biomimetic Yeast Cell Typing-Application of QCMs.

    PubMed

    Seidler, Karin; Polreichová, Miroslava; Lieberzeit, Peter A; Dickert, Franz L

    2009-01-01

    Artificial antibodies represent a key factor in the generation of sensing systems for the selective detection of bioanalytes of variable sizes. With biomimetic surfaces, the important model organism Saccharomyces cerevisiae and several of its growth stages may be detected. Quartz crystal microbalances (QCM) with 10 MHz fundamental frequency and coated with polymers imprinted with synchronized yeast cells are presented, which are able to detect duplex cells with high selectivity. Furthermore, a multichannel quartz crystal microbalance (MQCM) was designed and optimized for the measurement in liquids. This one-chip system based on four-electrode geometry allows the simultaneous detection of four analytes and, thus, provides a monitoring system for biotechnology and process control. For further standardization of the method, synthetic stamps containing plastic yeast cells in different growth stages were produced and utilized for imprinting. Mass-sensitive measurements with such MIPs resulted in the same sensor characteristics as obtained for those imprinted with native yeast cells.

  3. Factors predisposing to adjacent 2 and 3:1 disjunctions: study of 161 human reciprocal translocations.

    PubMed Central

    Jalbert, P; Sele, B

    1979-01-01

    Reciprocal translocations produce imbalances by three types of disjunction which are, in decreasing frequency, adjacent 1, 3:1, and adjacent 2. Adjacent 1 disjunction produces duplication deficiencies of inverse topography to those of adjacent 2. The imbalanced chromosome segments in one of these types are balanced in the other. The disjunction 3:1 produces pure trisomies and monosomies. The following situations predispose to adjacent 2 disjunction: translocations between the long arms of two acrocentric chromosomes or between one of these and that of a No 9 chromosome; centric segments, either short or carrying a heterochromatic zone (9qh); a balanced translocation in the mother. The factors predisposing to the disjunction adjacent 2 operate by selection, or directly on the meiotic configuration. Some of them (shortness of the interstitial segment, shortness of the short arms of translocation chromosomes) act in both these ways. Their influence is probably responsible for the repetitive and exclusive character of this disjunction. The conditions for the occurrence of the 3:1 disjunctions seem less strict than those for adjacent 2, although they should be of the same nature (involvement of acrocentrics or a chromosome 9 in the translocation, maternal origin). Images PMID:395305

  4. DESIGN OF HYDROGEN-OXYGEN CAPILLARY TYPE FUEL CELL.

    DTIC Science & Technology

    started during the last quarter was delayed for this reason also. The work performed in volved the following: Automatic start-up of the fuel cell package...continued calibration and testing of absolute pressure regulators, testing of solenoid valves and the check out and instal lation of a fuel cell package in a KC 135 air craft for a zero-G flight test. (Author)

  5. [Red Blood Cells Raman Spectroscopy Comparison of Type Two Diabetes Patients and Rats].

    PubMed

    Wang, Lei; Liu, Gui-dong; Mu, Xin; Xiao, Hong-bin; Qi, Chao; Zhang, Si-qi; Niu Wen-ying; Jiang, Guang-kun; Feng, Yue-nan; Bian, Jing-qi

    2015-10-01

    By using confocal Raman spectroscopy, Raman spectra were measured in normal rat red blood cells, normal human red blood cells, STZ induced diabetetic rats red blood cells, Alloxan induced diabetetic rats red blood cells and human type 2 diabetes red blood cells. Then principal component analysis (PCA) with support vector machine (SVM) classifier was used for data analysis, and then the distance between classes was used to judge the degree of close to two kinds of rat model with type 2 diabetes. The results found significant differences in the Raman spectra of red blood cell in diabetic and normal red blood cells. To diabetic red blood cells, the peak in the amide VI C=O deformation vibration band is obvious, and amide V N-H deformation vibration band spectral lines appear deviation. Belong to phospholipid fatty acyl C-C skeleton, the 1 130 cm(-1) spectral line is enhanced and the 1 088 cm(-1) spectral line is abated, which show diabetes red cell membrane permeability increased. Raman spectra of PCA combined with SVM can well separate 5 types of red blood cells. Classifier test results show that the classification accuracy is up to 100%. Through the class distance between the two induced method and human type 2 diabetes, it is found that STZ induced model is more close to human type 2 diabetes. In conclusion, Raman spectroscopy can be used for diagnosis of diabetes and rats STZ induced diabetes method is closer to human type 2 diabetes.

  6. Cancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types

    PubMed Central

    Park, Solip; Lehner, Ben

    2015-01-01

    Cancers, like many diseases, are normally caused by combinations of genetic alterations rather than by changes affecting single genes. It is well established that the genetic alterations that drive cancer often interact epistatically, having greater or weaker consequences in combination than expected from their individual effects. In a stringent statistical analysis of data from > 3,000 tumors, we find that the co-occurrence and mutual exclusivity relationships between cancer driver alterations change quite extensively in different types of cancer. This cannot be accounted for by variation in tumor heterogeneity or unrecognized cancer subtypes. Rather, it suggests that how genomic alterations interact cooperatively or partially redundantly to driver cancer changes in different types of cancers. This re-wiring of epistasis across cell types is likely to be a basic feature of genetic architecture, with important implications for understanding the evolution of multicellularity and human genetic diseases. In addition, if this plasticity of epistasis across cell types is also true for synthetic lethal interactions, a synthetic lethal strategy to kill cancer cells may frequently work in one type of cancer but prove ineffective in another. PMID:26227665

  7. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.

    PubMed

    Kofuji, Rumiko; Hasebe, Mitsuyasu

    2014-02-01

    Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation. A single stem cell would have been maintained in the ancestral gametophyte meristem, as occurs in extant basal land plants. During land plant evolution, stem cells diverged in the gametophyte generation to form different types of body parts, including the protonema and rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia formed in moss. A simplex meristem with a single stem cell was acquired in the sporophyte generation early in land plant evolution. Subsequently, sporophyte stem cells became multiple in the meristem and were elaborated further in seed plant lineages, although the evolutionary origin of niche cells, which maintain stem cells is unknown. Comparisons of gene regulatory networks are expected to give insights into the general mechanisms of stem cell formation and maintenance in land plants and provide information about their evolution. P. patens develops at least seven types of simplex meristem in the gametophyte and at least one type in the sporophyte generation and is a good material for regulatory network comparisons. In this review, we summarize recently revealed molecular mechanisms of stem cell initiation and maintenance in the moss.

  8. The Extracellular Microenvironment Explains Variations in Passive Drug Transport across Different Airway Epithelial Cell Types

    PubMed Central

    Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A.; Yu, Jing-yu; Lim, Dong Hyun; Rosania, Gus R.

    2013-01-01

    Purpose We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Methods Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Results Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Conclusion Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types. PMID:23708857

  9. The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells).

    PubMed

    Funayama, Noriko

    2013-03-01

    Major questions about stem cell systems include what type(s) of stem cells are involved (unipotent/totipotent/pluripotent/multipotent stem cells) and how the self-renewal and differentiation of stem cells are regulated. Sponges, the sister group of all other animals and probably the earliest branching multicellular lineage of extant animals, are thought to possess totipotent stem cells. This review introduces what is known about the stem cells in sponges based on histological studies and also on recent molecular biological studies that have started to reveal the molecular and cellular mechanisms of the stem cell system in sponges (mainly in demosponges). The currently proposed model of the stem cell system in demosponges is described, and the possible applicability of this model to other classes of sponges is discussed. Finally, a possible scenario of the evolution of stem cells, including how migrating stem cells arose in the urmetazoan (the last common ancestor of metazoans) and the evolutionary origin of germ line cells in the urbilaterian (the last common ancestor of bilaterians), are discussed.

  10. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    PubMed Central

    Sharivkin, Revital; Walker, Michael D.; Soen, Yoav

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+), glucagon-producing alpha cells (CD9- /CD56+) and trypsin-producing acinar cells (CD9- /CD56-). This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples. PMID:25706282

  11. Planarians maintain a constant ratio of different cell types during changes in body size by using the stem cell system.

    PubMed

    Takeda, Hiroyuki; Nishimura, Kaneyasu; Agata, Kiyokazu

    2009-12-01

    Planarians change in body size depending upon whether they are in feeding or starving conditions. To investigate how planarians regulate this flexible system, the numbers of total cells and specific cell types were counted and compared among worms 2 mm to 9 mm in body length. The total cell number increased linearly with increasing body length, but the ratio of cell numbers between the head and the trunk portion was constant (1:3). Interestingly, counting the numbers of specific neurons in the eye and brain after immunostaining using cell type-specific antibodies revealed that the ratio between different neuron types was constant regardless of the brain and body size. These results suggest that planarians can maintain proportionality while changing their body size by maintaining a constant ratio of different cell types. To understand this system and reveal how planarians restore the original ratio during eye and brain regeneration, the numbers of specialized cells were Investigated during regeneration. The results further substantiate the existence of some form of "counting mechanism" that has the ability to regulate both the absolute and relative numbers of different cell types in complex organs such as the brain during cell turnover, starvation, and regeneration.

  12. Listeria monocytogenes infection differentially affects expression of ligands for NK cells and NK cell responses, depending on the cell type infected.

    PubMed

    Shegarfi, Hamid; Rolstad, Bent; Kane, Kevin P; Nestvold, Janne

    2016-04-22

    The pivotal role of NK cells in viral infection is extensively studied, whereas the role of NK cells in bacterial infection has been poorly investigated. Here, we have examined how Listeria monocytogenes (LM) affects expression of ligands for NK cell receptors and subsequent NK cell responses, depending on the type of cell infected. LM infected rat cell lines derived from different tissues were coincubated with splenic NK cells, and NK cell proliferation and IFN-γ production were measured. In addition, expression of ligands for the NK cell receptors Ly49 and NK cell receptor protein 1 (NKR-P1), MHC class I and C-type lectin-related molecules, respectively, was assessed. Infected pleural R2 cells, but not epithelium-derived colon carcinoma cell line CC531 cells, induced proliferation of NK cells. Reporter cells expressing the inhibitory NKR-P1G receptor or the activating NKR-P1F receptor were less stimulated under incubation with infected CC531 cells versus uninfected CC531 controls, suggesting that the ligand(s) in question were down-regulated by infection. Conversely, LM infection of R2 cells did not affect reporter cell stimulation compared with uninfected R2 controls. We characterized a rat monocyte cell line, termed RmW cells. In contrast to LM infected R2 cells that up-regulate MHC class I molecules, RmW cells displayed unchanged MHC class I expression following infection. In line with MHC class I expression, more NK cells produced a higher amount of IFN-γ against infected R2 cells compared with RmW cells. Together, L. monocytogenes infection may variously regulate cellular ligands for NK cells, depending on the cell type infected, affecting the outcome of NK cell responses.

  13. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  14. Proteolysis of synaptobrevin, syntaxin, and SNAP-25 in alveolar epithelial type II cells.

    PubMed

    Zimmerman, U J; Malek, S K; Liu, L; Li, H L

    1999-10-01

    Synaptobrevin-2, syntaxin-1, and SNAP-25 were identified in rat alveolar epithelial type II cells by Western blot analysis. Synaptobrevin-2 was localized in the lamellar bodies, and syntaxin-1 and SNAP-25 were found in 0.4% Nonidet P40-soluble and -insoluble fractions, respectively, of the type II cells. When the isolated type II cells were stimulated for secretion with calcium ionophore A23187 or with phorbol 12-myristate 13-acetate, these proteins were found to have been proteolyzed. Preincubation of cells with calpain inhibitor II (N-acetylleucylleucylmethionine), however, prevented the proteolysis. Treatment of the cell lysate with exogenous calpain resulted in a time-dependent decrease of these proteins. The data suggest that synaptobrevin, syntaxin, and SNAP-25 are subject to proteolytic modification by activated calpain in intact type II cells stimulated for secretion.

  15. Output of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex

    PubMed Central

    Oláh, Szabolcs; Komlósi, Gergely; Szabadics, János; Varga, Csaba; Tóth, Éva; Barzó, Pál; Tamás, Gábor

    2007-01-01

    Neurogliaform cells in the rat elicit combined GABAA and GABAB receptor-mediated postsynaptic responses on cortical pyramidal cells and establish electrical synapses with various interneuron types. However, the involvement of GABAB receptors in postsynaptic effects of neurogliaform cells on other GABAergic interneurons is not clear. We measured the postsynaptic effects of neurogliaform cells in vitro applying simultaneous whole-cell recordings in human and rat cortex. Single action potentials of human neurogliaform cells evoked unitary IPSPs composed of GABAA and GABAB receptor-mediated components in various types of inteneuron and in pyramidal cells. Slow IPSPs were combined with homologous and heterologous electrical coupling between neurogliaform cells and several human interneuron types. In the rat, single action potentials in neurogliaform cells elicited GABAB receptor-mediated component in responses of neurogliaform, regular spiking, and fast spiking interneurons following the GABAA receptor-mediated component in postsynaptic responses. In conclusion, human and rat neurogliaform cells elicit slow IPSPs and reach GABAA and GABAB receptors on several interneuron types with a connection-specific involvement of GABAB receptors. The electrical synapses recorded between human neurogliaform cells and various interneuron types represent the first electrical synapses recorded in the human cortex. PMID:18946546

  16. Isolation (from a basal cell carcinoma) of a functionally distinct fibroblast-like cell type that overexpresses Ptch.

    PubMed

    Dicker, Anthony J; Serewko, Magdalena M; Russell, Terry; Rothnagel, Joseph A; Strutton, Geoff M; Dahler, Alison L; Saunders, Nicholas A

    2002-05-01

    In this study we report on the isolation and characterization of a nonepithelial, nontumorigenic cell type (BCC1) derived from a basal cell carcinoma from a patient. The BCC1 cells share many characteristics with dermal fibroblasts, such as the expression of vimentin, lack of expression of cytokeratins, and insensitivity to agents that cause growth inhibition and differentiation of epithelial cells; however, significant differences between BCC1 cells and fibroblasts also exist. For example, BCC1 cells are stimulated to undergo DNA synthesis in response to interferon-gamma, whereas dermal fibroblasts are not. More over, BCC1 cells overexpress the basal cell carcinoma-specific genes ptch and ptch2. These data indicate that basal cell carcinomas are associated with a functionally distinct population of fibroblast-like cells that overexpress known tumor-specific markers (ptch and ptch2).

  17. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers

    PubMed Central

    Min, Kyoung Ah; Rosania, Gus R.; Kim, Chong-Kook; Shin, Meong Cheol

    2016-01-01

    To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies. PMID:26746641

  18. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes

    PubMed Central

    Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina

    2017-01-01

    Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352

  19. eTumorType, An Algorithm of Discriminating Cancer Types for Circulating Tumor Cells or Cell-free DNAs in Blood.

    PubMed

    Zou, Jinfeng; Wang, Edwin

    2017-04-04

    With the technology development on detecting circulating tumor cells (CTCs) and cell-free DNAs (cfDNAs) in blood, serum, and plasma, non-invasive diagnosis of cancer becomes promising. A few studies reported good correlations between signals from tumor tissues and CTCs or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm, eTumorType, to identify cancer types based on copy number variations (CNVs) of the cancer founding clone. eTumorType integrates cancer hallmark concepts and a few computational techniques such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been trained and validated on a large dataset including 18 common cancer types and 5327 tumor samples. eTumorType produced high accuracies (0.86-0.96) and high recall rates (0.79-0.92) for predicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78-0.92) and recall rates (0.58-0.95) have also been achieved for predicting ovarian, breast luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results suggest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on CNVs of CTCs and cfDNAs.

  20. Topographical Control of Ocular Cell Types for Tissue Engineering

    PubMed Central

    McHugh, Kevin J.; Saint-Geniez, Magali; Tao, Sarah L.

    2014-01-01

    Visual impairment affects over 285 million people worldwide and has a major impact on an individual’s quality of life. Tissue engineering has the potential to increase quality of life for many of these patients by preventing vision loss or restoring vision using cell-based therapies. However, these strategies will require an understanding of the microenvironmental factors that influence cell behavior. The eye is a well-organized organ whose structural complexity is essential for proper function. Interactions between ocular cells and their highly ordered extracellular matrix are necessary for maintaining key tissue properties including corneal transparency and retinal lamination. Therefore, it is not surprising that culturing these cells in vitro on traditional flat substrates result in irregular morphology. Instead, topographically patterned biomaterials better mimic native extracellular matrix and have been shown to elicit in vivo-like morphology and gene expression which is essential for tissue engineering. Herein we review multiple methods for producing well-controlled topography and discuss optimal biomaterial scaffold design for cells of the cornea, retina, and lens. PMID:23744715

  1. Mast cells control insulitis and increase Treg cells to confer protection against STZ-induced type 1 diabetes in mice.

    PubMed

    Carlos, Daniela; Yaochite, Juliana N U; Rocha, Fernanda A; Toso, Vanina D; Malmegrim, Kelen C R; Ramos, Simone G; Jamur, Maria C; Oliver, Constance; Camara, Niels O; Andrade, Marcus V M; Cunha, Fernando Q; Silva, João S

    2015-10-01

    Quantitative alterations in mast cell numbers in pancreatic lymph nodes (PLNs) have been reported to be associated with type 1 diabetes (T1D) progression, but their potential role during T1D remains unclear. In this study, we evaluated the role of mast cells in T1D induced by multiple low-dose streptozotocin (MLD-STZ) treatments, using two strains of mast cell-deficient mice (W/W(v) or Wsh/Wsh) and the adoptive transfer of mast cells. Mast cell deficient mice developed severe insulitis and accelerated hyperglycemia, with 100% of mice becoming diabetic compared to their littermates. In parallel, these diabetic mice had decreased numbers of T regulatory (Treg) cells in the PLNs. Additionally, mast cell deficiency caused a significant reduction in IL-10, TGF-β, and IL-6 expression in the pancreatic tissue. Interestingly, IL-6-deficient mice are more susceptible to T1D associated with reduced Treg-cell numbers in the PLNs, but mast cell transfer from wild-type mice induced protection to T1D in these mice. Finally, mast cell adoptive transfer prior to MLD-STZ administration conferred resistance to T1D, promoted increased Treg cells, and decreased IL-17-producing T cells in the PLNs. Taken together, our results indicate that mast cells are implicated in resistance to STZ-induced T1D via an immunological tolerance mechanism mediated by Treg cells.

  2. Genetic studies of cell fusion induced by herpes simplex virus type 1

    SciTech Connect

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was a significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.

  3. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer

    PubMed Central

    Marrero, Idania; Ware, Randle; Kumar, Vipin

    2015-01-01

    Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer. PMID:26136748

  4. Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary.

    PubMed

    Ma, Xing; Wang, Su; Do, Trieu; Song, Xiaoqing; Inaba, Mayu; Nishimoto, Yoshiya; Liu, Lu-ping; Gao, Yuan; Mao, Ying; Li, Hui; McDowell, William; Park, Jungeun; Malanowski, Kate; Peak, Allison; Perera, Anoja; Li, Hua; Gaudenz, Karin; Haug, Jeff; Yamashita, Yukiko; Lin, Haifan; Ni, Jian-quan; Xie, Ting

    2014-01-01

    The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary.

  5. The types of endocrine cells in the pancreas of Sunda porcupine (Hystrix javanica)

    PubMed Central

    Budipitojo, Teguh; Fibrianto, Yuda Heru; Mulyani, Guntari Titik

    2016-01-01

    Aim: To identify the types of endocrine cells in the pancreas of the Sunda porcupine (Hystrix javanica) and its immunolocalization. Materials and Methods: Five adult H. javanica were used without sexual distinction. The presences of endocrine cells (glucagon, insulin, somatostatin, and pancreatic polypeptide [PP]) in pancreatic tissues were detected using the avidin-biotin-peroxidase complex method. Results: The fusiform, round, and oval form endocrine cells were detected in the islets of Langerhans and exocrine parts. Most of the insulin cells were found in the central area, glucagon cells were identified in the central and peripheral areas, and somatostatin and PP cells were detected in the mantle area of the islets of Langerhans. Glucagon and somatostatin cells were also detected in smaller numbers of peripheral parts of the islet. In all of the islet parts, glucagon endocrine cells were most prevalent cell type and then, somatostatin, insulin, and PP. In the exocrine parts, PP, somatostatin, glucagon, and insulin endocrine cells were found in the inter-acinus part with moderate, moderate, a few and rare numbers, in that order. In the pancreatic duct, glucagon and somatostatin cells were found between epithelial cells in rare numbers. Conclusion: The pancreas of Sunda porcupine (H. javanica) contains four types of major pancreatic endocrine cells with approximately similar distribution patterns to the other rodents, except for abundant glucagon cells in the peripheral area of the islets of Langerhans. PMID:27397977

  6. Neurosecretory Cell Types and Distribution in Unfed Female Hyalomma Dromedari (Acari: Ixodoidea: Ixodidae) Synganglion

    DTIC Science & Technology

    1987-01-01

    of the cell in subtype VIh (Fig. 2). Type IX : In these oval celo, 2 subtypes are distinguished according to cell size and NSG distribution. The NSG...1977) : Neurosecretion in Ornithodoros savignyi (Audouin) (Ixodoidea : Arga- sidae ). The distribution of neurosecretory cells in the brain. J. Vet. Res

  7. List of gene variants developed for cancer cells from nine tissue types

    Cancer.gov

    NCI scientists have developed a comprehensive list of genetic variants for each of the types of cells that comprise what is known as the NCI-60 cell line collection. This new list adds depth to the most frequently studied human tumor cell lines in cancer

  8. Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri

    PubMed Central

    Nematollahi, Ghazaleh; Kianianmomeni, Arash; Hallmann, Armin

    2006-01-01

    Background The multicellular alga Volvox carteri possesses only two cell types: mortal, motile somatic cells and potentially immortal, immotile reproductive cells. It is therefore an attractive model system for studying how cell-autonomous cytodifferentiation is programmed within a genome. Moreover, there are ongoing genome projects both in Volvox carteri and in the closely related unicellular alga Chlamydomonas reinhardtii. However, gene sequencing is only the beginning. To identify cell-type specific expression and to determine relative expression rates, we evaluate the potential of real-time RT-PCR for quantifying gene transcript levels. Results Here we analyze a diversified pool of 39 target genes by real-time RT-PCR for each cell type. This gene pool contains previously known genes with unknown localization of cellular expression, 28 novel genes which are described in this study for the first time, and a few known, cell-type specific genes as a control. The respective gene products are, for instance, part of photosynthesis, cellular regulation, stress response, or transport processes. We provide expression data for all these genes. Conclusion The results show that quantitative real-time RT-PCR is a favorable approach to analyze cell-type specific gene expression in Volvox, which can be extended to a much larger number of genes or to developmental or metabolic mutants. Our expression data also provide a basis for a detailed analysis of individual, previously unknown, cell-type specifically expressed genes. PMID:17184518

  9. T-cell lymphomas, a challenging disease: types, treatments, and future.

    PubMed

    Ma, Helen; Abdul-Hay, Maher

    2017-02-01

    T-cell lymphomas are rare and aggressive malignancies associated with poor outcome, often because of the development of resistance in the lymphoma against chemotherapy as well as intolerance in patients to the established and toxic chemotherapy regimens. In this review article, we discuss the epidemiology, pathophysiology, current standard of care, and future treatments of common types of T-cell lymphomas, including adult T-cell leukemia/lymphoma, angioimmunoblastic T-cell lymphoma, anaplastic large-cell lymphoma, aggressive NK/T-cell lymphoma, and cutaneous T-cell lymphoma.

  10. Hematologically and genetically distinct forms of sickle cell anemia in Africa. The Senegal type and the Benin type.

    PubMed

    Nagel, R L; Fabry, M E; Pagnier, J; Zohoun, I; Wajcman, H; Baudin, V; Labie, D

    1985-04-04

    Patients with sickle cell anemia vary in the hematologic and clinical features of their disease, in part because of variability in the presence of linked and unlinked genes that modify the expression of the disease. The hemoglobin S gene is strongly linked to three different haplotypes of polymorphic endonuclease-restriction sites of the beta-like gene cluster (genes in the vicinity of the beta-globin gene)--one prevalent in Atlantic West Africa, another in central West Africa, and yet another in Bantu-speaking Africa (equatorial, East, and southern Africa). We have studied the differences in the hematologic characteristics of patients with sickle cell anemia from the first two geographical areas. We find that the Senegalese (Atlantic West Africa) patients have higher levels of hemoglobin F, a preponderance of G gamma chains in hemoglobin F, a lower proportion of very dense red cells, and a lower percentage of irreversibly sickled cells than those from Benin (central West Africa). We interpret these data to mean that the gamma-chain composition and the hemoglobin F level are haplotype linked and that the decrease in the percentage of dense cells and irreversibly sickled cells is secondary to the elevation in the hemoglobin F level. Patients with sickle cell anemia in the New World probably correspond to various combinations of these types, in addition to the still hematologically undefined haplotype associated with sickle cell anemia in the Bantu-speaking areas of Africa.

  11. Boric acid solution concentration influencing p-type emitter formation in n-type crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-09-01

    Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.

  12. Human papillomavirus type 16 DNA in periungual squamous cell carcinomas

    SciTech Connect

    Moy, R.L.; Eliezri, Y.D.; Bennett, R.G. ); Nuovo, G.J.; Siverstein, S. Columbia Univ., New York, NY ); Zitelli, J.A. )

    1989-05-12

    Ten squamous cell carcinomas (in situ or invasive) of the fingernail region were analyzed for the presence of DNA sequences homologous to human papilloma-virus (HPV) by dot blot hybridization. In most patients, the lesions were verrucae of long-term duration that were refractory to conventional treatment methods. Eight of the lesions contained HPV DNA sequences, and in six of these the sequences were related to HPV 16 as deduced from low-stringency nucleic acid hybridization followed by low- and high-stringency washes. Furthermore, the restriction endonuclease digestion pattern of DNA isolated from four of these lesions was diagnostic of episomal HPV 16. The high-frequency association of HPV 16 with periungual squamous cell carcinoma is similar to that reported for HPV 16 with squamous cell carcinomas on mucous membranes at other sites, notably the genital tract. The findings suggest that HPV 16 may play an important role in the development of squamous cell carcinomas of the finger, most notably those lesions that are chronic and located in the periungual area.

  13. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  14. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  15. Adenovirus type 2 expresses fiber in monkey-human hybrids and reconstructed cells.

    PubMed Central

    Zorn, G A; Anderson, C W

    1981-01-01

    Adenovirus type 2 protein expression was measured by indirect immunofluorescence in monkey-human hybrids and in cells reconstructed from monkey and human cell karyoplasts and cytoplasts. Monkey-human hybrid clones infected with adenovirus type 2 expressed fiber protein, whereas infected monkey cells alone did not. Hybrids constructed after the parental monkey cells were infected with adenovirus type 2 demonstrated that fiber synthesis in these cells could be rescued by fusion to uninfected human cells. Thus, human cells contain a dominant factor that acts in trans and overcomes the inability of monkey cells to synthesize fiber. Cells reconstructed from infected human karyoplasts and monkey cytoplasts expressed fiber, whereas cells reconstructed from infected monkey karyoplasts and human cytoplasts did not. These results are consistent with the hypothesis that the block to adenovirus replication in monkey cells involves a nuclear event that prevents the formation of functional mRNA for some late viral proteins including fiber polypeptide. Furthermore, they suggest that the translational apparatus of monkey cells is competent to translate functional fiber mRNA synthesized in human cells. Images PMID:7218436

  16. Mouse ovarian granulosa cells produce urokinase-type plasminogen activator, whereas the corresponding rat cells produce tissue-type plasminogen activator

    PubMed Central

    1987-01-01

    It is well established that rat ovarian granulosa cells produce tissue plasminogen activator (tPA). The synthesis and secretion of the enzyme are induced by gonadotropins, and correlate well with the time of follicular rupture in vivo. We have found that in contrast, mouse granulosa cells produce a different form of plasminogen activator, the urokinase-type (uPA). As with tPA synthesis in the rat, uPA production by mouse granulosa cells is induced by gonadotropins, dibutyryl cAMP, and prostaglandin E2. However, dexamethasone, a drug which has no effect on tPA synthesis in rat cells inhibits uPA synthesis in the mouse. Results of these determinations made in cell culture were corroborated by examining follicular fluid, which is secreted in vivo predominantly by granulosa cells, from stimulated rat and mouse ovarian follicles. Rat follicular fluid contained only tPA, and mouse follicular fluid only uPA, indicating that in vivo, granulosa cells from the two species are secreting different enzymes. The difference in the type of plasminogen activator produced by the rat and mouse granulosa cells was confirmed at the messenger RNA level. After hormone stimulation, only tPA mRNA was present in rat cells, whereas only uPA mRNA was found in mouse cells. Furthermore, the regulation of uPA levels in mouse cells occurs via transient modulation of steady-state levels of mRNA, a pattern similar to that seen with tPA in rat cells. PMID:3040774

  17. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira

    2016-01-01

    An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.

  18. Large-scale in silico modeling of metabolic interactions between cell types in the human brain.

    PubMed

    Lewis, Nathan E; Schramm, Gunnar; Bordbar, Aarash; Schellenberger, Jan; Andersen, Michael P; Cheng, Jeffrey K; Patel, Nilam; Yee, Alex; Lewis, Randall A; Eils, Roland; König, Rainer; Palsson, Bernhard Ø

    2010-12-01

    Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types relevant to Alzheimer's disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis.

  19. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    PubMed

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  20. Principles of connectivity among morphologically defined cell types in adult neocortex.

    PubMed

    Jiang, Xiaolong; Shen, Shan; Cadwell, Cathryn R; Berens, Philipp; Sinz, Fabian; Ecker, Alexander S; Patel, Saumil; Tolias, Andreas S

    2015-11-27

    Since the work of Ramón y Cajal in the late 19th and early 20th centuries, neuroscientists have speculated that a complete understanding of neuronal cell types and their connections is key to explaining complex brain functions. However, a complete census of the constituent cell types and their wiring diagram in mature neocortex remains elusive. By combining octuple whole-cell recordings with an optimized avidin-biotin-peroxidase staining technique, we carried out a morphological and electrophysiological census of neuronal types in layers 1, 2/3, and 5 of mature neocortex and mapped the connectivity between more than 11,000 pairs of identified neurons. We categorized 15 types of interneurons, and each exhibited a characteristic pattern of connectivity with other interneuron types and pyramidal cells. The essential connectivity structure of the neocortical microcircuit could be captured by only a few connectivity motifs.

  1. Distal Regions of the Human IFNG Locus Direct Cell Type-Specific Expression

    PubMed Central

    Collins, Patrick L.; Chang, Shaojing; Henderson, Melodie; Soutto, Mohammed; Davis, Georgia M.; McLoed, Allyson G.; Townsend, Michael J.; Glimcher, Laurie H.; Mortlock, Douglas P.; Aune, Thomas M.

    2010-01-01

    Genes, such as IFNG, which are expressed in multiple cell lineages of the immune system, may employ a common set of regulatory elements to direct transcription in multiple cell types or individual regulatory elements to direct expression in individual cell lineages. By employing a bacterial artificial chromosome transgenic system, we demonstrate that IFNG employs unique regulatory elements to achieve lineage-specific transcriptional control. Specifically, a one 1-kb element 30 kb upstream of IFNG activates transcription in T cells and NKT cells but not in NK cells. This distal regulatory element is a Runx3 binding site in Th1 cells and is needed for RNA polymerase II recruitment to IFNG, but it is not absolutely required for histone acetylation of the IFNG locus. These results support a model whereby IFNG utilizes cis-regulatory elements with cell type-restricted function. PMID:20574006

  2. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties.

    PubMed

    Liu, Tongyu; Jin, Xingjian; Prasad, Rahul M; Sari, Youssef; Nauli, Surya M

    2014-09-01

    Ependymal cells are multiciliated epithelial cells that line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia has been associated with various neurological deficits. For the first time, we report three distinct ependymal cell types, I, II, and III, based on their unique ciliary beating frequency and beating angle. These ependymal cells have specific localizations within the third ventricle of the mouse brain. Furthermore, neither ependymal cell types nor their localizations are altered by aging. Our high-speed fluorescence imaging analysis reveals that these ependymal cells have an intracellular pacing calcium oscillation property. Our study further shows that alcohol can significantly repress the amplitude of calcium oscillation and the frequency of ciliary beating, resulting in an overall decrease in volume replacement by the cilia. Furthermore, the pharmacological agent cilostazol could differentially increase cilia beating frequency in type II, but not in type I or type III, ependymal cells. In summary, we provide the first evidence of three distinct types of ependymal cells with calcium oscillation properties.

  3. Terminal sialic acid linkages determine different cell infectivities of human parainfluenza virus type 1 and type 3.

    PubMed

    Fukushima, Keijo; Takahashi, Tadanobu; Ito, Seigo; Takaguchi, Masahiro; Takano, Maiko; Kurebayashi, Yuuki; Oishi, Kenta; Minami, Akira; Kato, Tatsuya; Park, Enoch Y; Nishimura, Hidekazu; Takimoto, Toru; Suzuki, Takashi

    2014-09-01

    Human parainfluenza virus type 1 (hPIV1) and type 3 (hPIV3) initiate infection by sialic acid binding. Here, we investigated sialic acid linkage specificities for binding and infection of hPIV1 and hPIV3 by using sialic acid linkage-modified cells treated with sialidases or sialyltransferases. The hPIV1 is bound to only α2,3-linked sialic acid residues, whereas hPIV3 is bound to α2,6-linked sialic acid residues in addition to α2,3-linked sialic acid residues in human red blood cells. α2,3 linkage-specific sialidase treatment of LLC-MK2 cells and A549 cells decreased the infectivity of hPIV1 but not that of hPIV3. Treatment of A549 cells with α2,3 linkage-specific sialyltransferase increased infectivities of both hPIV1 and hPIV3, whereas α2,6 linkage-specific sialyltransferase treatment increased only hPIV3 infectivity. Clinical isolates also showed similar sialic acid linkage specificities. We concluded that hPIV1 utilizes only α2,3 sialic acid linkages and that hPIV3 makes use of α2,6 sialic acid linkages in addition to α2,3 sialic acid linkages as viral receptors.

  4. Solid oxide fuel cell stacks using extruded honeycomb type elements

    NASA Astrophysics Data System (ADS)

    Wetzko, M.; Belzner, A.; Rohr, F. J.; Harbach, F.

    A solid oxide fuel cell (SOFC) stack concept is described which comprises "condensed-tubes" like extruded honeycomb sections of ceramic electrolyte (ZrO 2-based) and interconnectors of nickel sheet as key elements. According to this concept, well known and extensively tested construction principles can be realised in a low-cost production. The cells are self-supported with in-plane conduction. A demonstrator model stack of five honeycomb elements and six nickel sheet seals/interconnectors was built and operated for 860 h at 1000°C. Volumetric power densities of 160 kW/m 3 were obtained with H 2 vs. air, of close to 200 kW/m 3 with H 2 vs. O 2.

  5. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence

    PubMed Central

    Cunningham, Cameron R.; Champhekar, Ameya; Tullius, Michael V.; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M.; Wilson, Elizabeth B.; de la Torre, Juan Carlos; Kitchen, Scott G.; Horwitz, Marcus A.; Bensinger, Steven J.; Smale, Stephen T.; Brooks, David G.

    2016-01-01

    Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. PMID:26808628

  6. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence.

    PubMed

    Cunningham, Cameron R; Champhekar, Ameya; Tullius, Michael V; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M; Wilson, Elizabeth B; de la Torre, Juan Carlos; Kitchen, Scott G; Horwitz, Marcus A; Bensinger, Steven J; Smale, Stephen T; Brooks, David G

    2016-01-01

    Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.

  7. Dendritic web-type solar cell mini-modules

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1985-01-01

    Twenty-five minimodules composed of dendritic web solar cells with nominal glass size of 12 by 40 cm were provided for study. The modules were identical with respect to design, materials, and manufacturing and assembly processes to full scale modules. The modules were also electrically functional. These minimodules were fabricated to provide test vehicle for environmental testing and to assess reliability of process and design procedures. The module design and performance are outlined.

  8. Development and testing of shingle-type solar cell molecules

    NASA Technical Reports Server (NTRS)

    Shepard, N. F.

    1978-01-01

    The details of a shingle module design which produces in excess of 97 watts/sq m of module area at 1 kW/sq m insolation and at 60 C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract.

  9. Transdifferentiation between Luminal- and Basal-Type Cancer Cells

    DTIC Science & Technology

    2013-04-01

    PKD1 can repress epithelial to mesenchymal transition (EMT) by inhibitory phosphorylation of transcription factor Snail , a master switch of EMT...S11E (mimic serine- 11 phosphorylation), S11V (non-phosphorylation) mutant of Snai, a known EMT inducer [2, 3]. PKD1 can phosphorylate Snail at serine...11 and inhibit Snail transcription activity [4]. (B) MCF7 stable cell lines that express shPKD1 (from Open Biosystems. Two individual sequences were

  10. Genetic control of immune cell types in fungal disease.

    PubMed

    Mayfield, Jacob A; Fontana, Mary F; Rine, Jasper

    2010-12-21

    Millions of people harbor latent infections of the fungus Histoplasma capsulatum. Such persistent infections represent a stalemate between mechanisms of virulence and the immune response. The differing responses of inbred mouse strains to the same pathogen reflect variation in the genes that control the outcome of infection. Here we show that a 250-fold difference in H. capsulatum susceptibility between inbred mouse strains is attributable to the genotype at the MHC H2 locus. Gene expression analysis of strains varying only at the H2 locus identified genotype-specific and genotype-independent expression signatures, including infection-induced genes such as the fungal pattern recognition receptor Clec7a. Surprisingly, B-cell-specific gene expression was negatively correlated with fungal burden, whereas neutrophil-specific genes were correlated with superior disease outcome. Indeed, disease outcome improved when B cells were eliminated and neutrophils were more active, a previously unknown aspect of the host response. These data refine the understanding of genetic influences on histoplasmosis, reveal how shifts in the composition of immune cell populations compel different disease outcomes, and uncover how innate immunity modulation alters histoplasmosis.

  11. Regulation of expression driven by human immunodeficiency virus type 1 and human T-cell leukemia virus type I long terminal repeats in pluripotential human embryonic cells

    SciTech Connect

    Maio, J.; Brown, F.L. )

    1988-04-01

    Human pluripotential embryonic teratocarcinoma cells differentially expressed gene activity controlled by the human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) long terminal repeats (LTRs) when differentiation was induced by the morphogen all-trans retinoic acid. The alterations occurred after commitment and before the appearance of the multiple cell types characteristic of these pluripotential cells. After commitment, gene activity controlled by the HIV-1 LTR markedly increased, whereas that controlled by the HTLV-I LTR decreased. Steady-state mRNA levels and nuclear run-on transcription indicated that the increased HIV-1-directed activity during differentiation occurred posttranscriptionally, whereas the decreased HTLV-I activity was at the transcriptional level. Phorbol esters did not cause commitment but strongly enhanced expression by both viral LTRs at the transcriptional level. Differentiating cells gradually lost the ability to respond to phorbol ester stimulation. Experiments with a deletion mutant of the HIV-1 LTR suggested that this was due to imposition of negative regulation during differentiation that was not reversed by phorbol ester induction. Cycloheximide, with or without phorbol ester, slightly stimulated HIV-1-directed activity at the transcriptional level and massively increased the amounts of steady-state mRNA by posttranscriptional superinduction. It appeared, however, that new nuclear protein synthesis was required for maximal transcriptional stimulation by phorbol esters. Thus, changing cellular regulatory mechanisms influenced human retrovirus expression during human embryonic cell differentiation.

  12. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    DOE PAGES

    Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less

  13. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals

    PubMed Central

    Zhao, Ying-Tao; Fasolino, Maria; Zhou, Zhaolan

    2016-01-01

    BACKGROUND Epigenomic reconfiguration, including changes in DNA methylation and histone modifications, is crucial for the differentiation of embryonic stem cells (ESCs) into somatic cells. However, the extent to which the epigenome is reconfigured and the interplay between components of the epigenome during cellular differentiation remain poorly defined. METHODS We systematically analyzed and compared DNA methylation, various histone modification, and transcriptome profiles in ESCs with those of two distinct types of somatic cells from human and mouse. RESULTS We found that global DNA methylation levels are lower in somatic cells compared to ESCs in both species. We also found that 80% of regions with histone modification occupancy differ between human ESCs and the two human somatic cell types. Approximately 70% of the reconfigurations in DNA methylation and histone modifications are locus- and cell type-specific. Intriguingly, the loss of DNA methylation is accompanied by the gain of different histone modifications in a locus- and cell type-specific manner. Further examination of transcriptional changes associated with epigenetic reconfiguration at promoter regions revealed an epigenetic switching for gene regulation—a transition from stable gene silencing mediated by DNA methylation in ESCs to flexible gene repression facilitated by repressive histone modifications in somatic cells. CONCLUSIONS Our findings demonstrate that the epigenome is reconfigured in a locus- and cell type-specific manner and epigenetic switching is common during cellular differentiation in both human and mouse. PMID:28261266

  14. Mouse Adenovirus Type 1 Infection of Natural Killer Cell-Deficient Mice

    PubMed Central

    Welton, Amanda R.; Gralinski, Lisa E.; Spindler, Katherine R.

    2008-01-01

    Natural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8-20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice. PMID:18155121

  15. The morphological differences of stereocilia and cuticular plates between type-I and type-II hair cells of human vestibular sensory epithelia.

    PubMed

    Morita, I; Komatsuzaki, A; Tatsuoka, H

    1997-01-01

    The sensory epithelia of macula utriculi were examined by conventional and intermediate voltage transmission electron microscopy. The specimens were obtained from three cases of acoustic neurinoma who were operated on using the translabyrinthine approach. The mean diameter of the vestibular hair cell stereocilia was obtained and the cuticular plates of type-I and type-II hair cells were reconstructed three-dimensionally from the consecutive 0.5-micron-thick sections. The mean diameter of stereocilia of type-I hair cells was 488 +/- 59 nm (n = 13) and that of stereocilia of type-II hair cells was 373 +/- 21 nm (n = 14). Stereocilia of type-I hair cells numbered about 70 and those of type-II hair cells about 50. The cuticular plates of type-I hair cells were several times as thick as those of type-II hair cells. The cuticular plate of the type-I hair cell appeared to be an inverse cone and that of the type-II hair cell seemed to be a flat disc.

  16. Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells.

    PubMed

    Motegi, Hiroaki; Kamoshima, Yuuta; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Houkin, Kiyohiro

    2014-08-01

    Cancer stem cells are thought to be closely related to tumor progression and recurrence, making them attractive therapeutic targets. Stem cells of various tissues exist within niches maintaining their stemness. Glioblastoma stem cells (GSCs) are located at tumor capillaries and the perivascular niche, which are considered to have an important role in maintaining GSCs. There were some extracellular matrices (ECM) on the perivascular connective tissue, including type 1 collagen. We here evaluated whether type 1 collagen has a potential niche for GSCs. Imunohistochemical staining of type 1 collagen and CD133, one of the GSCs markers, on glioblastoma (GBM) tissues showed CD133-positive cells were located in immediate proximity to type 1 collagen around tumor vessels. We cultured human GBM cell lines, U87MG and GBM cells obtained from fresh surgical tissues, T472 and T555, with serum-containing medium (SCM) or serum-free medium with some growth factors (SFM) and in non-coated (Non-coat) or type 1 collagen-coated plates (Col). The RNA expression levels of CD133 and Nestin as stem cell markers in each condition were examined. The Col condition not only with SFM but SCM made GBM cells more enhanced in RNA expression of CD133, compared to Non-coat/SCM. Semi-quantitative measurement of CD133-positive cells by immunocytochemistry showed a statistically significant increase of CD133-positive cells in Col/SFM. In addition, T472 cell line cultured in the Col/SFM had capabilities of sphere formation and tumorigenesis. Type 1 collagen was found in the perivascular area and showed a possibility to maintain GSCs. These findings suggest that type 1 collagen could be one important niche component for CD133-positive GSCs and maintain GSCs in adherent culture.

  17. Cell Type Preference of a Novel Human Derived Cell-Permeable Peptide dNP2 and TAT in Murine Splenic Immune Cells

    PubMed Central

    Koo, Ja-Hyun; Kang, Tae Gun; Ha, Sang-Jun; Choi, Je-Min

    2016-01-01

    Cell-permeable peptides (CPPs) have been widely studied as an attractive drug delivery system to deliver therapeutic macromolecules such as DNA, RNA, and protein into cells. However, its clinical application is still limited and controversial due to the lack of a complete understanding of delivery efficiency in target cells. Previously we identified and characterized the novel and superior CPP, named dNP2, and here we comparatively analyzed intracellular delivery efficiency of dNP2 and TAT in various immune cells of mouse spleen to demonstrate their cell type preference. dNP2- or TAT-conjugated fluorescent proteins were most efficiently taken up by phagocytic cells such as dendritic cells and macrophages while little protein uptake was seen by lymphocytes including T cells, B cells, and NK cells. Interestingly CD8+ lymphoid dendritic cells and CD62LloCD44hi memory like T cell subsets showed significantly better uptake efficiency in vitro and in vivo relative to other dendritic cells or T cells, respectively. In addition, activated macrophages, T cells, and B cells took up the proteins more efficiently relative to when in the resting state. Importantly, only dNP2, not TAT, shows significant intracellular protein delivery efficiency in vivo. Collectively, this study provides important information regarding heterogeneous intracellular delivery efficiency of CPPs such as dNP2 and TAT with cell type preference in the spleen needed for its application in phagocytic cells or activated immune cells. PMID:27186978

  18. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium

    PubMed Central

    Gerbe, François; van Es, Johan H.; Makrini, Leila; Brulin, Bénédicte; Mellitzer, Georg; Robine, Sylvie; Romagnolo, Béatrice; Shroyer, Noah F.; Bourgaux, Jean-François; Pignodel, Christine; Clevers, Hans

    2011-01-01

    The unique morphology of tuft cells was first revealed by electron microscopy analyses in several endoderm-derived epithelia. Here, we explore the relationship of these cells with the other cell types of the intestinal epithelium and describe the first marker signature allowing their unambiguous identification. We demonstrate that although mature tuft cells express DCLK1, a putative marker of quiescent stem cells, they are post-mitotic, short lived, derive from Lgr5-expressing epithelial stem cells, and are found in mouse and human tumors. We show that whereas the ATOH1/MATH1 transcription factor is essential for their differentiation, Neurog3, SOX9, GFI1, and SPDEF are dispensable, which distinguishes these cells from enteroendocrine, Paneth, and goblet cells, and raises from three to four the number of secretory cell types in the intestinal epithelium. Moreover, we show that tuft cells are the main source of endogenous intestinal opioids and are the only epithelial cells that express cyclooxygenase enzymes, suggesting important roles for these cells in the intestinal epithelium physiopathology. PMID:21383077

  19. Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells.

    PubMed

    Zhao, Xiwu; Stafford, Ben K; Godin, Ashley L; King, W Michael; Wong, Kwoon Y

    2014-04-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate non-image-forming visual responses, including pupillary constriction, circadian photoentrainment and suppression of pineal melatonin secretion. Five morphological types of ipRGCs, M1-M5, have been identified in mice. In order to understand their functions better, we studied the photoresponses of all five cell types, by whole-cell recording from fluorescently labelled ipRGCs visualized using multiphoton microscopy. All ipRGC types generated melanopsin-based ('intrinsic') as well as synaptically driven ('extrinsic') light responses. The intrinsic photoresponses of M1 cells were lower threshold, higher amplitude and faster than those of M2-M5. The peak amplitudes of extrinsic light responses differed among the ipRGC types; however, the responses of all cell types had comparable thresholds, kinetics and waveforms, and all cells received rod input. While all five types exhibited inhibitory amacrine-cell and excitatory bipolar-cell inputs from the 'on' channel, M1 and M3 received additional 'off'-channel inhibition, possibly through their 'off'-sublamina dendrites. The M2-M5 ipRGCs had centre-surround-organized receptive fields, implicating a capacity to detect spatial contrast. In contrast, the receptive fields of M1 cells lacked surround antagonism, which might be caused by the surround of the inhibitory input nullifying the surround of the excitatory input. All ipRGCs responded robustly to a wide range of motion speeds, and M1-M4 cells appeared tuned to different speeds, suggesting that they might analyse the speed of motion. Retrograde labelling revealed that M1-M4 cells project to the superior colliculus, suggesting that the contrast and motion information signalled by these cells could be used by this sensorimotor area to detect novel objects and motion in the visual field.

  20. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  1. Adenovirus Vectors Targeting Distinct Cell Types in the Retina

    PubMed Central

    Sweigard, J. Harry; Cashman, Siobhan M.

    2010-01-01

    Purpose. Gene therapy for a number of retinal diseases necessitates efficient transduction of photoreceptor cells. Whereas adenovirus (Ad) serotype 5 (Ad5) does not transduce photoreceptors efficiently, previous studies have demonstrated improved photoreceptor transduction by Ad5 pseudotyped with Ad35 (Ad5/F35) or Ad37 (Ad5/F37) fiber or by the deletion of the RGD domain in the Ad5 penton base (Ad5ΔRGD). However, each of these constructs contained a different transgene cassette, preventing the evaluation of the relative performance of these vectors, an important consideration before the use of these vectors in the clinic. The aim of this study was to evaluate these vectors in the retina and to attempt photoreceptor-specific transgene expression. Methods. Three Ad5-based vectors containing the same expression cassette were generated and injected into the subretinal space of adult mice. Eyes were analyzed for green fluorescence protein expression in flat-mounts, cross-sections, quantitative RT-PCR, and a modified stereological technique. A 257-bp fragment derived from the mouse opsin promoter was analyzed in the context of photoreceptor-specific transgene expression. Results. Each virus tested efficiently transduced the retinal pigment epithelium. The authors found no evidence that Ad5/F35 or Ad5/F37 transduced photoreceptors. Instead, they found that Ad5/F37 transduced Müller cells. Robust photoreceptor transduction by Ad5ΔRGD was detected. Photoreceptor-specific transgene expression from the 257-bp mouse opsin promoter in the context of Ad5ΔRGD vectors was found. Conclusions. Adenovirus vectors may be designed with tropism to distinct cell populations. Robust photoreceptor-specific transgene expression can be achieved in the context of Ad5ΔRGD vectors. PMID:19892875

  2. Adjacent-level arthroplasty following cervical fusion.

    PubMed

    Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Konar, Subhas; Sharma, Ankit

    2017-02-01

    OBJECTIVE Adjacent-level disc degeneration following cervical fusion has been well reported. This condition poses a major treatment dilemma when it becomes symptomatic. The potential application of cervical arthroplasty to preserve motion in the affected segment is not well documented, with few studies in the literature. The authors present their initial experience of analyzing clinical and radiological results in such patients who were treated with arthroplasty for new or persistent arm and/or neck symptoms related to neural compression due to adjacent-segment disease after anterior cervical discectomy and fusion (ACDF). METHODS During a 5-year period, 11 patients who had undergone ACDF anterior cervical discectomy and fusion (ACDF) and subsequently developed recurrent neck or arm pain related to adjacent-level cervical disc disease were treated with cervical arthroplasty at the authors' institution. A total of 15 devices were implanted (range of treated levels per patient: 1-3). Clinical evaluation was performed both before and after surgery, using a visual analog scale (VAS) for pain and the Neck Disability Index (NDI). Radiological outcomes were analyzed using pre- and postoperative flexion/extension lateral radiographs measuring Cobb angle (overall C2-7 sagittal alignment), functional spinal unit (FSU) angle, and range of motion (ROM). RESULTS There were no major perioperative complications or device-related failures. Statistically significant results, obtained in all cases, were reflected by an improvement in VAS scores for neck/arm pain and NDI scores for neck pain. Radiologically, statistically significant increases in the overall lordosis (as measured by Cobb angle) and ROM at the treated disc level were observed. Three patients were lost to follow-up within the first year after arthroplasty. In the remaining 8 cases, the duration of follow-up ranged from 1 to 3 years. None of these 8 patients required surgery for the same vertebral level during the follow

  3. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    PubMed Central

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  4. Electrical filtering in gerbil isolated type I semicircular canal hair cells

    NASA Technical Reports Server (NTRS)

    Rennie, K. J.; Ricci, A. J.; Correia, M. J.

    1996-01-01

    1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200 to 750 pA) produced only small-amplitude, pulse-like changes in membrane potential. 2. Injecting constant current to hyperpolarize the membrane to around -100 mV resulted in a approximately 10-fold increase in membrane resistance. Current pulses superimposed on this constant hyperpolarization produced larger and more complex membrane potential changes. Depolarizing currents > or = 200 pA caused a rapid transient peak voltage before a plateau. 3. Membrane voltage was able to faithfully follow sine-wave current injections around Vz over the range 1-1,000 Hz with < 25% attenuation at 1 kHz. A previously described K conductance, IKI, which is active at Vz, produces the low input resistance and frequency response. This was confirmed by pharmacologically blocking IKI. This conductance, present in type I cells but not type II hair cells, would appear to confer on type I cells a lower gain, but a much broader bandwidth at Vz, than seen in type II cells.

  5. Type I interferon is selectively required by dendritic cells for immune rejection of tumors.

    PubMed

    Diamond, Mark S; Kinder, Michelle; Matsushita, Hirokazu; Mashayekhi, Mona; Dunn, Gavin P; Archambault, Jessica M; Lee, Hsiaoju; Arthur, Cora D; White, J Michael; Kalinke, Ulrich; Murphy, Kenneth M; Schreiber, Robert D

    2011-09-26

    Cancer immunoediting is the process whereby the immune system suppresses neoplastic growth and shapes tumor immunogenicity. We previously reported that type I interferon (IFN-α/β) plays a central role in this process and that hematopoietic cells represent critical targets of type I IFN's actions. However, the specific cells affected by IFN-α/β and the functional processes that type I IFN induces remain undefined. Herein, we show that type I IFN is required to initiate the antitumor response and that its actions are temporally distinct from IFN-γ during cancer immunoediting. Using mixed bone marrow chimeric mice, we demonstrate that type I IFN sensitivity selectively within the innate immune compartment is essential for tumor-specific T cell priming and tumor elimination. We further show that mice lacking IFNAR1 (IFN-α/β receptor 1) in dendritic cells (DCs; Itgax-Cre(+)Ifnar1(f/f) mice) cannot reject highly immunogenic tumor cells and that CD8α(+) DCs from these mice display defects in antigen cross-presentation to CD8(+) T cells. In contrast, mice depleted of NK cells or mice that lack IFNAR1 in granulocytes and macrophage populations reject these tumors normally. Thus, DCs and specifically CD8α(+) DCs are functionally relevant targets of endogenous type I IFN during lymphocyte-mediated tumor rejection.

  6. Cells that emerge from embryonic explants produce fibers of type IV collagen

    PubMed Central

    1985-01-01

    Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane. PMID:3900085

  7. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  8. Cell type- and isotype-specific expression and regulation of β-tubulins in primary olfactory ensheathing cells and Schwann cells in vitro.

    PubMed

    Omar, Mohamed; Hansmann, Florian; Kreutzer, Robert; Kreutzer, Mihaela; Brandes, Gudrun; Wewetzer, Konstantin

    2013-05-01

    Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are closely-related cell types with regeneration-promoting properties. Comparative gene expression analysis is particularly relevant since it may explain cell type-specific effects and guide the use of each cell type into special clinical applications. In the present study, we focused on β-tubulin isotype expression in primary adult canine glia as a translational large animal model. β-tubulins so far have been studied mainly in non-neuronal tumors and implied in tumorigenic growth. We show here that primary OECs and SCs expressed βII-V isotype mRNA. Interestingly, βIII-tubulin mRNA and protein expression was high in OECs and low in SCs, while fibroblast growth factor-2 (FGF-2) induced its down-regulation in both cell types to the same extent. This was in contrast to βV-tubulin mRNA which was similarly expressed in both cell types and unaltered by FGF-2. Immunocytochemical analysis revealed that OEC cultures contained a higher percentage of βIII-tubulin-positive cells compared to SC cultures. Addition of FGF-2 reduced the number of βIII-tubulin-positive cells in both cultures and significantly increased the percentage of cells with a multipolar morphology. Taken together, we demonstrate cell type-specific expression (βIII) and isotype-specific regulation (βIII, βV) of β-tubulin isotypes in OECs and SCs. While differential expression of βIII-tubulin in primary glial cell types with identical proliferative behaviour argues for novel functions unrelated to tumorigenic growth, strong βIII-tubulin expression in OECs may help to explain the specific properties of this glial cell type.

  9. Cell Type-Specific Modulation of Respiratory Chain Supercomplex Organization

    PubMed Central

    Sun, Dayan; Li, Bin; Qiu, Ruyi; Fang, Hezhi; Lyu, Jianxin

    2016-01-01

    Respiratory chain complexes are organized into large supercomplexes among which supercomplex In + IIIn + IVn is the only one that can directly transfer electrons from NADH to oxygen. Recently, it was reported that the formation of supercomplex In + IIIn + IVn in mice largely depends on their genetic background. However, in this study, we showed that the composition of supercomplex In + IIIn + IVn is well conserved in various mouse and human cell lines. Strikingly, we found that a minimal supercomplex In + IIIn, termed “lowest supercomplex” (LSC) in this study because of its migration at the lowest position close to complex V dimers in blue native polyacrylamide gel electrophoresis, was associated with complex IV to form a supercomplex In + IIIn + IVn in some, but not all of the human and mouse cells. In addition, we observed that the 3697G>A mutation in mitochondrial-encoded NADH dehydrogenase 1 (ND1) in one patient with Leigh’s disease specifically affected the assembly of supercomplex In + IIIn + IVn containing LSC, leading to decreased cellular respiration and ATP generation. In conclusion, we showed the existence of LSC In + IIIn + IVn and impairment of this supercomplex causes disease. PMID:27338358

  10. Genetic control of immune cell types in fungal disease

    PubMed Central

    Mayfield, Jacob A.; Fontana, Mary F.; Rine, Jasper

    2010-01-01

    Millions of people harbor latent infections of the fungus Histoplasma capsulatum. Such persistent infections represent a stalemate between mechanisms of virulence and the immune response. The differing responses of inbred mouse strains to the same pathogen reflect variation in the genes that control the outcome of infection. Here we show that a 250-fold difference in H. capsulatum susceptibility between inbred mouse strains is attributable to the genotype at the MHC H2 locus. Gene expression analysis of strains varying only at the H2 locus identified genotype-specific and genotype-independent expression signatures, including infection-induced genes such as the fungal pattern recognition receptor Clec7a. Surprisingly, B-cell–specific gene expression was negatively correlated with fungal burden, whereas neutrophil-specific genes were correlated with superior disease outcome. Indeed, disease outcome improved when B cells were eliminated and neutrophils were more active, a previously unknown aspect of the host response. These data refine the understanding of genetic influences on histoplasmosis, reveal how shifts in the composition of immune cell populations compel different disease outcomes, and uncover how innate immunity modulation alters histoplasmosis. PMID:21135228

  11. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells.

    PubMed

    Gong, Xuemin; Sun, Zhaorui; Cui, Di; Xu, Xiaomeng; Zhu, Huiming; Wang, Lihui; Qian, Weiping; Han, Xiaodong

    2014-04-01

    Controversies and risks continue to be reported about exogenous mesenchymal stem cell-based therapies. In contrast with employing exogenous stem cells, making use of lung resident mesenchymal stem cells (LR-MSCs) could be advantageous. Our study sought to isolate the LR-MSCs and explore their potential to differentiate into alveolar epithelial type II cells (ATII cells). Total lung cells were first precultured, from which the Sca-1(+) CD45(-) CD31(-) population was purified using fluorescence activated cell sorting (FACS). By these methods, it would seem that the Sca-1(+) CD45(-) CD31(-) cells were LR-MSCs. Similar to bone marrow derived mesenchymal stem cells (BM-MSCs), these cells express Sca-1, CD29, CD90, CD44 and CD106, but not CD31 or CD45. They share the same gene expression file with the BM-MSCs and have a similar DNA content during long-term culturing. Furthermore, they could be serially passaged with all these properties being sustained. Above all, LR-MSCs could differentiate into ATII cells when co-cultured with ATII cells in a trans-well system. These findings demonstrated that the Sca-1(+) CD45(-) CD31(-) cells appear to be LR-MSCs that can differentiate into ATII cells. This approach may hold promise for their use in the treatment of lung disease.

  12. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    SciTech Connect

    Kennedy, K.A.; Snyder, J.M.; Stenzel, W.; Saito, K.; Warshaw, J.B. )

    1990-11-01

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis.

  13. A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians.

    PubMed

    Wurtzel, Omri; Cote, Lauren E; Poirier, Amber; Satija, Rahul; Regev, Aviv; Reddien, Peter W

    2015-12-07

    Regeneration starts with injury. Yet how injuries affect gene expression in different cell types and how distinct injuries differ in gene expression remain unclear. We defined the transcriptomes of major cell types of planarians--flatworms that regenerate from nearly any injury--and identified 1,214 tissue-specific markers across 13 cell types. RNA sequencing on 619 single cells revealed that wound-induced genes were expressed either in nearly all cell types or specifically in one of three cell types (stem cells, muscle, or epidermis). Time course experiments following different injuries indicated that a generic wound response is activated with any injury regardless of the regenerative outcome. Only one gene, notum, was differentially expressed early between anterior- and posterior-facing wounds. Injury-specific transcriptional responses emerged 30 hr after injury, involving context-dependent patterning and stem-cell-specialization genes. The regenerative requirement of every injury is different; however, our work demonstrates that all injuries start with a common transcriptional response.

  14. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types.

    PubMed

    Mélida, Hugo; Sandoval-Sierra, Jose V; Diéguez-Uribeondo, Javier; Bulone, Vincent

    2013-02-01

    Some of the most devastating plant and animal pathogens belong to the oomycete class. The cell walls of these microorganisms represent an excellent target for disease control, but their carbohydrate composition is elusive. We have undertaken a detailed cell wall analysis in 10 species from 2 major oomycete orders, the Peronosporales and the Saprolegniales, thereby unveiling the existence of 3 clearly different cell wall types: type I is devoid of N-acetylglucosamine (GlcNAc) but contains glucuronic acid and mannose; type II contains up to 5% GlcNAc and residues indicative of cross-links between cellulose and 1,3-β-glucans; type III is characterized by the highest GlcNAc content (>5%) and the occurrence of unusual carbohydrates that consist of 1,6-linked GlcNAc residues. These 3 cell wall types are also distinguishable by their cellulose content and the fine structure of their 1,3-β-glucans. We propose a cell wall paradigm for oomycetes that can serve as a basis for the establishment of cell wall architectural models and the further identification of cell wall subtypes. This paradigm is complementary to morphological and molecular criteria for taxonomic grouping and provides useful information for unraveling poorly understood cell wall carbohydrate biosynthetic pathways through the identification and characterization of the corresponding enzymes.

  15. Analyses of Extracellular Carbohydrates in Oomycetes Unveil the Existence of Three Different Cell Wall Types

    PubMed Central

    Mélida, Hugo; Sandoval-Sierra, Jose V.; Diéguez-Uribeondo, Javier

    2013-01-01

    Some of the most devastating plant and animal pathogens belong to the oomycete class. The cell walls of these microorganisms represent an excellent target for disease control, but their carbohydrate composition is elusive. We have undertaken a detailed cell wall analysis in 10 species from 2 major oomycete orders, the Peronosporales and the Saprolegniales, thereby unveiling the existence of 3 clearly different cell wall types: type I is devoid of N-acetylglucosamine (GlcNAc) but contains glucuronic acid and mannose; type II contains up to 5% GlcNAc and residues indicative of cross-links between cellulose and 1,3-β-glucans; type III is characterized by the highest GlcNAc content (>5%) and the occurrence of unusual carbohydrates that consist of 1,6-linked GlcNAc residues. These 3 cell wall types are also distinguishable by their cellulose content and the fine structure of their 1,3-β-glucans. We propose a cell wall paradigm for oomycetes that can serve as a basis for the establishment of cell wall architectural models and the further identification of cell wall subtypes. This paradigm is complementary to morphological and molecular criteria for taxonomic grouping and provides useful information for unraveling poorly understood cell wall carbohydrate biosynthetic pathways through the identification and characterization of the corresponding enzymes. PMID:23204192

  16. Neuronal merlin influences ERBB2 receptor expression on Schwann cells through neuregulin 1 type III signalling

    PubMed Central

    Schulz, Alexander; Kyselyova, Anna; Baader, Stephan L.; Jung, Marie Juliane; Zoch, Ansgar; Mautner, Victor-Felix

    2014-01-01

    Axonal surface proteins encompass a group of heterogeneous molecules, which exert a variety of different functions in the highly interdependent relationship between axons and Schwann cells. We recently revealed that the tumour suppressor protein merlin, mutated in the hereditary tumour syndrome neurofibromatosis type 2, impacts significantly on axon structure maintenance in the peripheral nervous system. We now report on a role of neuronal merlin in the regulation of the axonal surface protein neuregulin 1 important for modulating Schwann cell differentiation and myelination. Specifically, neuregulin 1 type III expression is reduced in sciatic nerve tissue of neuron-specific knockout animals as well as in biopsies from seven patients with neurofibromatosis type 2. In vitro experiments performed on both the P19 neuronal cell line and primary dorsal root ganglion cells demonstrate the influence of merlin on neuregulin 1 type III expression. Moreover, expression of ERBB2, a Schwann cell receptor for neuregulin 1 ligands is increased in nerve tissue of both neuron-specific merlin knockout animals and patients with neurofibromatosis type 2, demonstrating for the first time that axonal merlin indirectly regulates Schwann cell behaviour. Collectively, we have identified that neuronally expressed merlin can influence Schwann cell activity in a cell-extrinsic manner. PMID:24309211

  17. Methylated DNA-binding protein is present in various mammalian cell types

    SciTech Connect

    Supakar, P.C.; Weist, D.; Zhang, D.; Inamdar, N.; Zhang, Xianyang; Khan, R.; Ehrlich, M. ); Ehrlich, K.C. )

    1988-08-25

    A DNA-binding protein from human placenta, methylated DNA-binding protein (MDBP), binds to certain DNA sequences only when they contain 5-methylcytosine (m{sup 5}C) residues at specific positions. The authors found a very similar DNA-binding activity in nuclear extracts of rat tissues, calf thymus, human embryonal carcinoma cells, HeLa cells, and mouse LTK cells. Like human placental MDBP, the analogous DNA-binding proteins from the above mammalian cell lines formed a number of different low-electrophoretic-mobility complexes with a 14-bp MDBP-specific oligonucleotide duplex. All of these complexes exhibited the same DNA methylation specificity and DNA sequence specificity. Although MDBP activity was found in various mammalian cell types, it was not detected in extracts of cultured mosquito cells and so may be associated only with cells with vertebrate-type DNA methylation.

  18. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer

    PubMed Central

    Stuart, Robert O.; Wachsman, William; Berry, Charles C.; Wang-Rodriguez, Jessica; Wasserman, Linda; Klacansky, Igor; Masys, Dan; Arden, Karen; Goodison, Steven; McClelland, Michael; Wang, Yipeng; Sawyers, Anne; Kalcheva, Iveta; Tarin, David; Mercola, Dan

    2004-01-01

    Prostate tumors are complex entities composed of malignant cells mixed and interacting with nonmalignant cells. However, molecular analyses by standard gene expression profiling are limited because spatial information and nontumor cell types are lost in sample preparation. We scored 88 prostate specimens for relative content of tumor, benign hyperplastic epithelium, stroma, and dilated cystic glands. The proportions of these cell types were then linked in silico to gene expression levels determined by microarray analysis, revealing unique cell-specific profiles. Gene expression differences for malignant and nonmalignant epithelial cells (tumor versus benign hyperplastic epithelium) could be identified without being confounded by contributions from stroma that dominate many samples or sacrificing possible paracrine influences. Cell-specific expression of selected genes was validated by immunohistochemistry and quantitative PCR. The results provide patterns of gene expression for these three lineages with relevance to pathogenetic, diagnostic, and therapeutic considerations. PMID:14722351

  19. Micropatterning different cell types with microarray amplification of natural directional persistence.

    PubMed

    Mun, Kyu-Shik; Kumar, Girish; Co, Carlos C; Ho, Chia-Chi

    2013-02-01

    In vivo, different cell types assemble in specific patterns to form functional tissues. Reproducing this process in vitro by designing scaffold materials to direct cells precisely to the right locations at the right time is important for the next generation of biomaterials. Here, using microarray amplification of natural directional persistence (MANDIP), simultaneous assembly of fibroblasts and endothelial cells is demonstrated by directing their long-range migration. Amplification of the directional persistence occurs through morphology-induced polarity and the asymmetric positioning of individual microsized adhesive islands that restrict lamellipodia attachment, and thus migration, to one preset direction. Quantitative analysis of cell migration on different MANDIP designs yields insight to the relative importance of the asymmetric island shapes and their arrangement. The approach enables spatial patterning of different cell types with micrometer-scale precision over large areas for investigation of cell-cell interactions within complex tissue architectures.

  20. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes

    PubMed Central

    West, William W.; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    Breast cancer is classified into different subtypes that are associated with different patient survival outcomes, underscoring the importance of understanding the role of precursor cell and genetic alterations in determining tumor subtypes. In this study, we evaluated the oncogenic phenotype of two distinct mammary stem/progenitor cell types designated as K5+/K19− or K5+/K19+ upon introduction of identical combinations of oncogenes-mutant H-Ras (mRas) and mutant p53 (mp53), together with either wild-type ErbB2(wtErbB2) or wild-type EGFR (wtEGFR). We examined their tumor forming and metastasis potential, using both in-vitro and in-vivo assays. Both the combinations efficiently transformed K5+/K19− or K5+/K19+ cells. Xenograft tumors formed by these cells were histologically heterogeneous, with variable proportions of luminal, basal-like and claudin-low type components depending on the cell types and oncogene combinations. Notably, K5+/K19− cells transformed with mRas/mp53/wtEGFR combination had a significantly longer latency for primary tumor development than other cell lines but more lung metastasis incidence than same cells expressing mRas/mp53/wtErbB2. K5+/K19+ cells exhibit shorter overall tumor latency, and high metastatic potential than K5+/K19− cells, suggesting that these K19+ progenitors are more susceptible to oncogenesis and metastasis. Our results suggest that both genetic alterations and cell type of origin contribute to oncogenic phenotype of breast tumors. PMID:25940703

  1. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes.

    PubMed

    Bhagirath, Divya; Zhao, Xiangshan; West, William W; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-04-20

    Breast cancer is classified into different subtypes that are associated with different patient survival outcomes, underscoring the importance of understanding the role of precursor cell and genetic alterations in determining tumor subtypes. In this study, we evaluated the oncogenic phenotype of two distinct mammary stem/progenitor cell types designated as K5+/K19- or K5+/K19+ upon introduction of identical combinations of oncogenes-mutant H-Ras (mRas) and mutant p53 (mp53), together with either wild-type ErbB2(wtErbB2) or wild-type EGFR (wtEGFR). We examined their tumor forming and metastasis potential, using both in-vitro and in-vivo assays. Both the combinations efficiently transformed K5+/K19- or K5+/K19+ cells. Xenograft tumors formed by these cells were histologically heterogeneous, with variable proportions of luminal, basal-like and claudin-low type components depending on the cell types and oncogene combinations. Notably, K5+/K19- cells transformed with mRas/mp53/wtEGFR combination had a significantly longer latency for primary tumor development than other cell lines but more lung metastasis incidence than same cells expressing mRas/mp53/wtErbB2. K5+/K19+ cells exhibit shorter overall tumor latency, and high metastatic potential than K5+/K19- cells, suggesting that these K19+ progenitors are more susceptible to oncogenesis and metastasis. Our results suggest that both genetic alterations and cell type of origin contribute to oncogenic phenotype of breast tumors.

  2. A Novel Cell Type Enables B. subtilis to Escape from Unsuccessful Sporulation in Minimal Medium

    PubMed Central

    Defeu Soufo, Hervé Joël

    2016-01-01

    Sporulation is the most enduring survival strategy developed by several bacterial species. However, spore development of the model organism Bacillus subtilis has mainly been studied by means of media or conditions optimized for the induction of sporogenesis. Here, I show that during prolonged growth during stationary phase in minimal medium, B. subtilis undergoes an asymmetric cell division that produces small and round-shaped, DNA containing cells. In contrast to wild-type cells, mutants harboring spo0A or spoIIIE/sftA double mutations neither sporulate nor produce this special cell type, providing evidence that the small round cells emerge from the abortion of endospore formation. In most cases observed, the small round cells arise in the presence of sigma H but absence of sigma F activity, different from cases of abortive sporulation described for rich media. These data suggest that in minimal media, many cells are able to initiate but fail to complete spore development, and therefore return to normal growth as rods. This work reveals that the continuation of asymmetric cell division, which results in the formation of the small round cells, is a way for cells to delay or escape from—unsuccessful—sporulation. Based on these findings, I suggest to name the here described cell type as “dwarf cells” to distinguish them from the well-known minicells observed in mutants defective in septum placement or proper chromosome partitioning. PMID:27891124

  3. C-type lectins do not act as functional receptors for filovirus entry into cells

    SciTech Connect

    Matsuno, Keita; Nakayama, Eri; Noyori, Osamu; Marzi, Andrea; Ebihara, Hideki; Irimura, Tatsuro; Feldmann, Heinz; Takada, Ayato

    2010-12-03

    Research highlights: {yields} Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. {yields} Mutant GPs mediated virus entry less efficiently than wild-type GP. {yields} Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. {yields} C-type lectins do not independently mediate filovirus entry into cells. {yields} Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.

  4. Adjusting for Cell Type Composition in DNA Methylation Data Using a Regression-Based Approach.

    PubMed

    Jones, Meaghan J; Islam, Sumaiya A; Edgar, Rachel D; Kobor, Michael S

    2017-01-01

    Analysis of DNA methylation in a population context has the potential to uncover novel gene and environment interactions as well as markers of health and disease. In order to find such associations it is important to control for factors which may mask or alter DNA methylation signatures. Since tissue of origin and coinciding cell type composition are major contributors to DNA methylation patterns, and can easily confound important findings, it is vital to adjust DNA methylation data for such differences across individuals. Here we describe the use of a regression method to adjust for cell type composition in DNA methylation data. We specifically discuss what information is required to adjust for cell type composition and then provide detailed instructions on how to perform cell type adjustment on high dimensional DNA methylation data. This method has been applied mainly to Illumina 450K data, but can also be adapted to pyrosequencing or genome-wide bisulfite sequencing data.

  5. A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types

    PubMed Central

    Shima, Yasuyuki; Sugino, Ken; Hempel, Chris Martin; Shima, Masami; Taneja, Praveen; Bullis, James B; Mehta, Sonam; Lois, Carlos; Nelson, Sacha B

    2016-01-01

    There is a continuing need for driver strains to enable cell-type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However, since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu). DOI: http://dx.doi.org/10.7554/eLife.13503.001 PMID:26999799

  6. Fuel cell separator plate with bellows-type sealing flanges

    SciTech Connect

    Louis, George A.

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  7. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, G.A.

    1984-05-29

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  8. Cold plasma selectivity in the interaction with various types of the cells

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael

    2011-10-01

    Present research in the area of cold atmospheric plasma (CAP) demonstrates great potential in various areas including medicine and biology. Depending on their configuration they can be used for wound healing, sterilization, targeted cell/tissue removal, and cancer treatments. Here we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. The migration studies are focused on the CAP interaction with fibroblasts and corneal epithelial cells. Data show that various types of cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration which is around ~30-40%. Studies to assess the impact of CAP treatment on the activation state of integrins and focal adhesion size by immunofluorescence showed more active b1 integrin on the cell surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. Also responses of the various types of the cells to the cold plasma treatment on the example of the epithelial keratinocytes, papilloma and carcinoma cells are studied. Cell cycle, migration and cell vitality analysis were performed. The goal of this study is to understand the mechanism by which the CAP jet alters cell migration, influences adhesion and cell survival.

  9. Type I interferons regulate eomesodermin expression and the development of unconventional memory CD8(+) T cells.

    PubMed

    Martinet, Valérie; Tonon, Sandrine; Torres, David; Azouz, Abdulkader; Nguyen, Muriel; Kohler, Arnaud; Flamand, Véronique; Mao, Chai-An; Klein, William H; Leo, Oberdan; Goriely, Stanislas

    2015-05-08

    CD8(+) T-cell memory phenotype and function are acquired after antigen-driven activation. Memory-like cells may also arise in absence of antigenic exposure in the thymus or in the periphery. Eomesodermin (Eomes) is a key transcription factor for the development of these unconventional memory cells. Herein, we show that type I interferon signalling in CD8(+) T cells directly activates Eomes gene expression. Consistent with this observation, the phenotype, function and age-dependent expansion of 'virtual memory' CD8(+) T cells are strongly affected in absence of type I interferon signalling. In addition, type I interferons induce a sustained expansion of 'virtual memory' CD8(+) T cells in an Eomes-dependent fashion. We further show that the development of 'innate thymic' CD8(+) T cells is dependent on the same pathway. In conclusion, we demonstrate that type I interferon signalling in CD8(+) T cells drives Eomes expression and thereby regulates the function and homeostasis of memory-like CD8(+) T cells.

  10. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci

    PubMed Central

    Coetzee, Simon G.; Shen, Howard C.; Hazelett, Dennis J.; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K.; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J.; Couch, Fergus J.; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N.A.; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A.; Pharoah, Paul D.P.; Noushmehr, Houtan; Gayther, Simon A.

    2015-01-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10−30), OSECs (P = 2.4 × 10−23) and HMECs (P = 6.7 × 10−15) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. PMID:25804953

  11. Aeromonas hydrophila typing scheme based on patterns of agglutination with erythrocytes and yeast cells.

    PubMed Central

    Adams, D; Atkinson, H M; Woods, W H

    1983-01-01

    An agglutination typing scheme has been developed for strains of Aeromonas hydrophila. Primary agglutination typing is based on testing agar-grown A. hydrophila cells with human, horse, rat, and guinea pig erythrocytes and Saccharomyces cerevisiae cells. Further subdivision of primary groups is based firstly on whether yeast cell agglutination is inhibited by a D-mannose polymer, yeast mannan, and secondly on patterns of inhibition of hemagglutination by yeast mannan and the monomeric sugars L-fucose, D-galactose, and D-mannose. A total of 320 isolates were tested, and these were divisible into 39 distinct types on the basis of this scheme. Application of this typing scheme in the future to isolates of A. hydrophila known to be associated with human infection may enable correlations to be made between particular agglutination types and human pathogenicity. PMID:6841579

  12. A qPCR method to characterize the sex type of the cell strains from rats.

    PubMed

    Xiang, Junbei; Li, Zhilin; Wan, Qian; Chen, Qiang; Liu, Mianxue; Jiang, Xiaohui; Xie, Linfeng

    2016-10-01

    A simple and fast method was established to identify the sex types of the rat-derived cell strains. The single copy X-chromosome-linked gene AR and the single copy Y-chromosome-linked gene Sry were both detected with qPCR for the rat genomic DNA sample and the AR/Sry ratio was calculated. According to the law of the AR/Sry ratio, a new method to identify the sex types of the rat-derived cell strains was developed. The new assay was proved effective. The new assay showed advantages over the traditional sex type identification PCR methods, which detected only the Sry gene. Moreover, the new method was used to identify the sex types of two rat-derived cell strains unknown for the sex types and the results were confirmed with the in situ hybridization. Finally, the problem of the cross contamination between the female and the male samples was addressed and discussed extensively.

  13. Accumulation of human immunodeficiency virus type 1 DNA in T cells: results of multiple infection events.

    PubMed Central

    Robinson, H L; Zinkus, D M

    1990-01-01

    Human immunodeficiency virus type 1 DNA synthesis was followed in a CD4+ line of T cells (C8166) grown in the presence or absence of a monoclonal antibody to CD4 that blocks infection By 48 h after infection, cultures grown in the presence of the antibody contained approximately 4 copies of human immunodeficiency virus type 1 DNA per cell, whereas those grown in the absence of the antibody contained approximately 80 copies of viral DNA per cell. Most of the viral DNA in cultures grown in the absence of the antibody was present in a broad smear of apparently incomplete viral sequences. In cultures grown in the presence or absence of the antibody, the 9.6-kilobase linear duplex of viral DNA appeared to undergo integration within 24 h of its appearance. These results demonstrate that T cells accumulate unintegrated human immunodeficiency virus type 1 DNA as a result of multiple virions entering cells. Images PMID:2398529

  14. Studies on quantitative analysis and automatic recognition of cell types of lung cancer.

    PubMed

    Chen, Yi-Chen; Hu, Kuang-Hu; Li, Fang-Zhen; Li, Shu-Yu; Su, Wan-Fang; Huang, Zhi-Ying; Hu, Ying-Xiong

    2006-01-01

    Recognition of lung cancer cells is very important to the clinical diagnosis of lung cancer. In this paper we present a novel method to extract the structure characteristics of lung cancer cells and automatically recognize their types. Firstly soft mathematical morphology methods are used to enhance the grayscale image, to improve the definition of images, and to eliminate most of disturbance, noise and information of subordinate images, so the contour of target lung cancer cell and biological shape characteristic parameters can be extracted accurately. Then the minimum distance classifier is introduced to realize the automatic recognition of different types of lung cancer cells. A software system named "CANCER.LUNG" is established to demonstrate the efficiency of this method. The clinical experiments show that this method can accurately and objectively recognize the type of lung cancer cells, which can significantly improve the pathology research on the pathological changes of lung cancer and clinical assistant diagnoses.

  15. Cell internalization and traffic pathway of Clostridium botulinum type C neurotoxin in HT-29 cells.

    PubMed

    Uotsu, Nobuo; Nishikawa, Atsushi; Watanabe, Toshihiro; Ohyama, Tohru; Tonozuka, Takashi; Sakano, Yoshiyuki; Oguma, Keiji

    2006-01-01

    The bacterium Clostridium botulinum type C produces a progenitor toxin (C16S toxin) that binds to O-linked sugar chains terminating with sialic acid on the surface of HT-29 cells prior to internalization [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, Biochem. Biophys. Res. Commun. 319 (2004) 327-333] [21]. Based on this, it was hypothesized that the C16S toxin is internalized via clathrin-coated pits. To examine this possibility, the internalized toxin was observed with a fluorescent antibody using confocal laser-scanning microscopy. The confocal images clearly indicated that the C16S toxin was internalized mainly via clathrin-coated pits and localized in early endosomes. The toxin was colocalized with caveolin-1 which is one of the components of caveolae, however, implying the toxin was also internalized via caveolae. The confocal images also showed that the neurotoxin transported to the endosome was transferred to the Golgi apparatus. However, the non-toxic components were not merged with the Golgi marker protein, TGN38, implying the neurotoxin was dissociated from progenitor toxin in endosomes. These results suggested that the C16S toxin was separated to the neurotoxin and other proteins in endosome and the neurotoxin was further transferred to the Golgi apparatus which is the center for protein sorting.

  16. Integration of human papillomavirus type 16 in cervical cancer cells

    PubMed Central

    Kanopiene, Daiva; Stumbryte, Ausra; Bausyte, Raminta; Kirvelaitis, Edgaras; Simanaviciene, Vaida; Zvirbliene, Aurelija

    2015-01-01

    Cervical cancer remains an important cause of women morbidity and mortality. The progression of cervical pathology correlates with the HPV integration into the host genome. However, the data on the viral integration status in cervical dysplasias are controversial. The aim of the current study was to evaluate the status of HPV integration in two types of cervical pathology – invasive and non invasive cervical cancer (e.g. carcinoma in situ). 156 women were included in the study: 66 women were diagnosed with invasive cervical cancer (CC) and 90 with non invasive cervical cancer (carcinoma in situ, CIS). 74.2% [95% PI: 63.64÷84.76] of specimens collected from women with diagnosed CC and 85.6% [95% PI: 85.53÷92.85] of CIS specimens were positive for HPV. The most prevalent HPV genotype in both groups was HPV16. To evaluate HPV integration, three selected HPV16 E2 gene fragments were analyzed by PCR. In the majority of CC and CIS specimens the amplification of all three HPV16 E2 gene fragments was observed. The episomal HPV16 form was detected in the majority of CC and CIS specimens. The deletion of all three HPV16 E2 gene fragments was detected in 9.4% of CC specimens and 2.2% of CIS specimens. Finally, integration status could not be used as diagnostical additional test to distinguish between invasive and non invasive cervical cancer. PMID:28352670

  17. Cell penetrable-mouse forkhead box P3 suppresses type 1 T helper cell-mediated immunity in a murine model of delayed-type hypersensitivity

    PubMed Central

    Liu, Xia; Wang, Jun; Wang, Hui; Zhou, Chen; Yu, Qihong; Yin, Lei; Wu, Weijiang; Xia, Sheng; Shao, Qixiang

    2017-01-01

    Forkhead box P3 (FOXP3), which is a transcription factor, has a primary role in the development and function of regulatory T cells, and thus contributes to homeostasis of the immune system. A previous study generated a cell-permeable fusion protein of mouse FOXP3 conjugated to a protein transduction domain (PTD-mFOXP3) that successfully blocked differentiation of type 17 T helper cells in vitro and alleviated experimental arthritis in mice. In the present study, the role of PTD-mFOXP3 in type 1 T helper (Th1) cell-mediated immunity was investigated and the possible mechanisms for its effects were explored. Under Th1 polarization conditions, cluster of differentiation 4+ T cells were treated with PTD-mFOXP3 and analyzed by flow cytometry in vitro, which revealed that PTD-mFOXP3 blocked Th1 differentiation in vitro. Mice models of delayed type hypersensitivity (DTH) reactions were generated by subcutaneous sensitization and challenge with ovalbumin (OVA) to the ears of mice. PTD-mFOXP3, which was administered via local subcutaneous injection, significantly reduced DTH-induced inflammation, including ear swelling (ear swelling, P<0.001; pinnae weight, P<0.05 or P<0.01 with 0.25 and 1.25 mg/kg PTD-mFOXP3, respectively), infiltration of T cells, and expression of interferon-γ at local inflammatory sites (mRNA level P<0.05) compared with the DTH group. The results of the present study demonstrated that PTD-mFOXP3 may attenuate DTH reactions by suppressing the infiltration and activity of Th1 cells.

  18. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.

    PubMed

    Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang

    2014-10-01

    Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.

  19. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels

    PubMed Central

    Shin, Yoojin; Han, Sewoon; Jeon, Jessie S.; Yamamoto, Kyoko; Zervantonakis, Ioannis K.; Sudo, Ryo; Kamm, Roger D.; Chung, Seok

    2014-01-01

    This protocol describes a simple but robust microfluidic assay combining three-dimensional (3D) and two-dimensional (2D) cell culture. The microfluidic platform comprises hydrogel incorporating chambers between surface-accessible microchannels. Using this platform, well-defined biochemical and biophysical stimuli can be applied to multiple cell types interacting over distances of <1mm, thereby replicating many aspects of the in vivo microenvironment. Capabilities exist for time-dependent manipulation of flows and concentration gradients as well as high-resolution real-time imaging for observing spatial-temporal single cell behavior, cell-cell communication, cell-matrix interactions and cell population dynamics. These heterotypic cell type assays can be used to study cell survival, proliferation, migration, morphogenesis and differentiation under controlled conditions. Applications include the study of previously unexplored cellular interactions, and have already provided new insights into how biochemical and biophysical factors regulate interactions between populations of different cell types. It takes 3 days to fabricate the system and experiments can run for up to several weeks. PMID:22678430

  20. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis.

    PubMed

    Marquès-Bueno, Maria Mar; Morao, Ana K; Cayrel, Anne; Platre, Matthieu P; Barberon, Marie; Caillieux, Erwann; Colot, Vincent; Jaillais, Yvon; Roudier, François; Vert, Grégory

    2016-01-01

    Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis.

  1. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis

    PubMed Central

    Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent

    2016-01-01

    Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936

  2. Discovering cell types in flow cytometry data with random matrix theory

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Nussenblatt, Robert; Losert, Wolfgang

    Flow cytometry is a widely used experimental technique in immunology research. During the experiments, peripheral blood mononuclear cells (PBMC) from a single patient, labeled with multiple fluorescent stains that bind to different proteins, are illuminated by a laser. The intensity of each stain on a single cell is recorded and reflects the amount of protein expressed by that cell. The data analysis focuses on identifying specific cell types related to a disease. Different cell types can be identified by the type and amount of protein they express. To date, this has most often been done manually by labelling a protein as expressed or not while ignoring the amount of expression. Using a cross correlation matrix of stain intensities, which contains both information on the proteins expressed and their amount, has been largely ignored by researchers as it suffers from measurement noise. Here we present an algorithm to identify cell types in flow cytometry data which uses random matrix theory (RMT) to reduce noise in a cross correlation matrix. We demonstrate our method using a published flow cytometry data set. Compared with previous analysis techniques, we were able to rediscover relevant cell types in an automatic way. Department of Physics, University of Maryland, College Park, MD 20742.

  3. Cell type-dependent expression of tubulins in Physarum

    PubMed Central

    1983-01-01

    Three alpha-tubulins and two beta-tubulins have been resolved by two- dimensional gel electrophoresis of whole cell lysates of Physarum myxamoebae or plasmodia. Criteria used to identify the tubulins included migration on two-dimensional gels with myxamoebal tubulins purified by self-assembly into microtubules in vitro, peptide mapping with Staphylococcus V8 protease and with chymotrypsin, immunoprecipitation with a monoclonal antibody specific for beta- tubulin, and, finally, hybrid selection of specific mRNA by cloned tubulin DNA sequences, followed by translation in vitro. Differential expression of the Physarum tubulins was observed. The alpha 1- and beta 1-tubulins were detected in both myxamoebae and plasmodia; alpha 2 and beta 2 were detected only in plasmodia, alpha 3 was detected only in the myxamoebal phase, and may be specific to the flagellate. Observation of more tubulin species in plasmodia than in myxamoebae was remarkable; the only microtubules detected in plasmodia are those of the mitotoic spindle, whereas myxamoebae display cytoplasmic, centriolar, flagellar, and mitotic-spindle microtubules. In vitro translation of myxamoebal and plasmodial RNAs indicated that there are distinct mRNAs, and therefore probably separate genes, for the alpha 1- , alpha 2-, beta 1-, and beta 2-tubulins. Thus, the different patterns of tubulin expression in myxamoebae and plasmodia reflect differential expression of tubulin genes. PMID:6196370

  4. Hepatocytes: a key cell type for innate immunity

    PubMed Central

    Zhou, Zhou; Xu, Ming-Jiang; Gao, Bin

    2016-01-01

    Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis. PMID:26685902

  5. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus.

    PubMed

    Lim, Daniel Say Liang; Yawata, Nobuyo; Selva, Kevin John; Li, Na; Tsai, Chen Yu; Yeong, Lai Han; Liong, Ka Hang; Ooi, Eng Eong; Chong, Mun Keat; Ng, Mah Lee; Leo, Yee Sin; Yawata, Makoto; Wong, Soon Boon Justin

    2014-11-15

    Clinical studies have suggested the importance of the NK cell response against dengue virus (DenV), an arboviral infection that afflicts >50 million individuals each year. However, a comprehensive understanding of the NK cell response against dengue-infected cells is lacking. To characterize cell-contact mechanisms and soluble factors that contribute to the antidengue response, primary human NK cells were cocultured with autologous DenV-infected monocyte-derived dendritic cells (DC). NK cells responded by cytokine production and the lysis of target cells. Notably, in the absence of significant monokine production by DenV-infected DC, it was the combination of type I IFNs and TNF-α produced by DenV-infected DC that was important for stimulating the IFN-γ and cytotoxic responses of NK cells. Cell-bound factors enhanced NK cell IFN-γ production. In particular, reduced HLA class I expression was observed on DenV-infected DC, and IFN-γ production was enhanced in licensed/educated NK cell subsets. NK-DC cell contact was also identified as a requirement for a cytotoxic response, and there was evidence for both perforin/granzyme as well as Fas/Fas ligand-dependent pathways of killing by NK cells. In summary, our results have uncovered a previously unappreciated role for the combined effect of type I IFNs, TNF-α, and cell surface receptor-ligand interactions in triggering the antidengue response of primary human NK cells.

  6. Regulatory T cells in B-cell-deficient and wild-type mice differ functionally and in expression of cell surface markers

    PubMed Central

    Ellis, Jason S; Braley-Mullen, Helen

    2015-01-01

    NOD.H-2h4 mice develop spontaneous autoimmune thyroiditis (SAT) with chronic inflammation of thyroids by T and B cells. B-cell deficient (B–/–) mice are resistant to SAT but develop SAT if regulatory T (Treg) cells are transiently depleted. We established a transfer model using splenocytes from CD28–/– B–/– mice (effector cells and antigen-presenting cells) cultured with or without sorted Treg cells from Foxp3-GFP wild-type (WT) or B–/– mice. After transfer to mice lacking T cells, mice given Treg cells from B–/– mice had significantly lower SAT severity scores than mice given Treg cells from WT mice, indicating that Treg cells in B–/– mice are more effective suppressors of SAT than Treg cells in WT mice. Treg cells from B–/– mice differ from WT Treg cells in expression of CD27, tumour necrosis factor receptor (TNFR) II p75, and glucocorticoid-induced TNFR-related protein (GITR). After transient depletion using anti-CD25 or diphtheria toxin, the repopulating Treg cells in B–/– mice lack suppressor function, and expression of CD27, GITR and p75 is like that of WT Treg cells. If B–/– Treg cells develop with B cells in bone marrow chimeras, their phenotype is like that of WT Treg cells. Addition of B cells to cultures of B–/– Treg and T effector cells abrogates their suppressive function and their phenotype is like that of WT Treg cells. These results establish for the first time that Treg cells in WT and B–/– mice differ both functionally and in expression of particular cell surface markers. Both properties are altered after transient depletion and repopulation of B–/– Treg cells, and by the presence of B cells during Treg cell development or during interaction with effector T cells. PMID:25318356

  7. Type 2 innate lymphoid cells: friends or foes-role in airway allergic inflammation and asthma.

    PubMed

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 "immune franchise." Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma.

  8. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    PubMed

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  9. Peptidal Sex Hormones Inducing Conjugation Tube Formation in Compatible Mating-Type Cells of Tremella mesenterica.

    PubMed

    Sakagami, Y; Yoshida, M; Isogai, A; Suzuki, A

    1981-06-26

    The pair of peptidal sex hormones (tremerogen A-10 and tremerogen a-13) that induce conjugation tube formation in compatible type cells (A and a types) of Tremella mesenterica were isolated. Tremerogen A-10 is a dodecapeptide and tremerogen a-13, a tridecapeptide. In both peptides, the sulfiydryl group of the cysteines at the carboxyl terminus was blocked by farnesyl moieties.

  10. Cell types of the endocrine pancreas in the shark Scyliorhinus stellaris as revealed by correlative light and electron microscopy.

    PubMed

    Kobayashi, K; Syed Ali, S

    1981-01-01

    In the pancreas of Scyliorhinus stellaris large islets are usually found around small ducts, the inner surface of which is covered by elongated epithelial cells; thus the endocrine cells are never exposed directly to the lumen of the duct. Sometimes, single islet cells or small groups of endocrine elements are also incorporated into acini. Using correlative light and electron microscopy, eight islet cell types were identified: Only B-cells (type I) display a positive reaction with pseudoisocyanin and aldehyde-fuchsin staining. This cell type contains numerous small secretory granules (diameter 280 nm). Type II- and III-cells possess large granules stainable with orange G and azocarmine and show strong luminescence with dark-field microscopy. Type II-cells have spherical (diameter 700 nm), type III-cells spherical to elongated granules (diameter 450 x 750 nm). Type II-cells are possibly analogous to A-cells, while type III-cells resemble mammalian enterochromaffin cells. Type IV-cells contain granules (diameter 540 nm) of high electron density showing a positive reaction to the Hellman-Hellerström silver impregnation and a negative reaction to Grimelius' silver impregnation; they are most probably analogous to D-cells of other species. Type V-cells exhibit smaller granules (diameter 250 x 500 nm), oval to elongated in shape. Type VI-cells contain small spherical granules (diameter 310 nm). Type VII-cells possess two kinds of large granules interspersed in the cytoplasm; one type is spherical and electron dense (diameter 650 nm), the other spherical and less electron dense (diameter 900 nm). Type VIII-cells have small granules curved in shape and show moderate electron density (diameter 100 nm). Grimelius-positive secretory granules were not only found in cell types II and III, but also in types V, VI, and VII. B-cells (type I) and the cell types II to IV were the most frequent cells; types V to VII occurred occasionally, whereas type VIII-cells were very rare.

  11. Analysis of multiple types of human cells subsequent to bioprinting with electrospraying technology

    PubMed Central

    Xin, Yu; Chai, Gang; Zhang, Ting; Wang, Xiangsheng; Qu, Miao; Tan, Andy; Bogari, Melia; Zhu, Ming; Lin, Li; Hu, Qingxi; Liu, Yuanyuan; Zhang, Yan

    2016-01-01

    The aim of the present study was to investigate bioprinting with electrospraying technology using multiple types of human cell suspensions as bio-ink, in order to lay the initial foundations for the application of the bioprinting technology in tissue engineering. In the current study, six types of human cells were selected and cultured, including human fibroblasts, human adipose-derived stem cells (hADSCs), human periodontal ligament cells (HPDLCs), adult human retinal pigment epithelial cells (ARPE-19), human umbilical vascular endothelial cells (HUVECs) and human gastric epithelial cell line (GES-1). Each cell type was divided into two groups, the experimental and control group. All the experimental group cells were electrosprayed using an electrospraying printer (voltage, 15 kV; flow rate, 150 µl/min) and collected in a petri dish placed 15 cm away from the needle (needle diameter, 0.5 mm). Subsequently, cell viability was detected by flow cytometry with a Live/Dead Viability kit. In addition, the cell morphological characteristics were observed with a phase-contrast microscope after 6 h of culturing in order to obtain adherent cells, while cell proliferation was analyzed using a Cell Counting Kit-8 assay. The control groups, without printing, were subjected to the same procedures as the experimental groups. The results of the cell viability and proliferation assays indicated a statistically significant difference after printing between the experiments and control groups only for the hADSCs (P<0.05); by contrast, no significant difference was observed in cell viability and proliferation for the other five cell types (P>0.05). In addition, there were no observable differences between all experimental and the control groups at any examined time point in the terms of cell morphological characteristics. In conclusion, bioprinting based on electrospraying technology demonstrated no distinct negative effect on cell vitality, proliferation and morphology in the

  12. The Cellular and Molecular Mechanisms of Immuno-Suppression by Human Type 1 Regulatory T Cells

    PubMed Central

    Gregori, Silvia; Goudy, Kevin S.; Roncarolo, Maria Grazia

    2011-01-01

    The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1) cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation. PMID:22566914

  13. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors

    PubMed Central

    Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

    2014-01-01

    Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

  14. Alkaline phosphatase determines polyphosphate-induced mineralization in a cell-type independent manner.

    PubMed

    Mikami, Yoshikazu; Tsuda, Hiromasa; Akiyama, Yuko; Honda, Masaki; Shimizu, Noriyoshi; Suzuki, Naoto; Komiyama, Kazuo

    2016-11-01

    Polyphosphate [Poly(P)] has positive effects on osteoblast mineralization; however, the underlying mechanism remains unclear. In addition, it is unknown whether Poly(P) promotes mineralization in soft tissues. We investigated this by using various cells. Poly(P) concentrations of 1 and 0.5 mg/mL yielded high levels of mineralization in ROS17/2.8 osteoblast cells. Similarly, Poly(P) induced mineralization in cell types expressing alkaline phosphatase (ALP), namely, ATDC5 and MC3T3-E1, but not in CHO, C3H10T1/2, C2C12, and 3T3-L1 cells. Furthermore, forced expression of ALP caused Poly(P)-induced mineralization in CHO cells. These results suggest that ALP determines Poly(P)-induced mineralization in a cell-type independent manner.

  15. Developing an in vitro model of T cell type of large granular lymphocyte leukemia.

    PubMed

    Ren, Tong; Yang, Jun; Broeg, Katie; Liu, Xin; Loughran, Thomas P; Cheng, Hua

    2013-12-01

    We developed a strategy that can prolong in vitro growth of T cell type of large granular lymphocyte (T-LGL) leukemia cells. Primary CD8+ lymphocytes from T-LGL leukemia patients were stably transduced with the retroviral tax gene derived from human T cell leukemia virus type 2. Expression of Tax overrode replicative senescence and promoted clonal expansion of the leukemic CD8+ T cells. These cells exhibit features characteristic of leukemic LGL, including resistance to FasL-mediated apoptosis, sensitivity to the inhibitors of sphingosine-1-phosphate receptor and IκB kinases as well as expression of cytotoxic gene products such as granzyme B, perforin and IFNγ. Collectively, these results indicate that this leukemia cell model can duplicate the main phenotype and pathophysiological characteristics of the clinical isolates of T-LGL leukemia. This model should be useful for investigating molecular pathogenesis of the disease and for developing new therapeutics targeting T-LGL leukemia.

  16. A predictive computational framework for direct reprogramming between human cell types.

    PubMed

    Rackham, Owen J L; Firas, Jaber; Fang, Hai; Oates, Matt E; Holmes, Melissa L; Knaupp, Anja S; Suzuki, Harukazu; Nefzger, Christian M; Daub, Carsten O; Shin, Jay W; Petretto, Enrico; Forrest, Alistair R R; Hayashizaki, Yoshihide; Polo, Jose M; Gough, Julian

    2016-03-01

    Transdifferentiation, the process of converting from one cell type to another without going through a pluripotent state, has great promise for regenerative medicine. The identification of key transcription factors for reprogramming is currently limited by the cost of exhaustive experimental testing of plausible sets of factors, an approach that is inefficient and unscalable. Here we present a predictive system (Mogrify) that combines gene expression data with regulatory network information to predict the reprogramming factors necessary to induce cell conversion. We have applied Mogrify to 173 human cell types and 134 tissues, defining an atlas of cellular reprogramming. Mogrify correctly predicts the transcription factors used in known transdifferentiations. Furthermore, we validated two new transdifferentiations predicted by Mogrify. We provide a practical and efficient mechanism for systematically implementing novel cell conversions, facilitating the generalization of reprogramming of human cells. Predictions are made available to help rapidly further the field of cell conversion.

  17. Th17 Cells in Type 1 Diabetes: Role in the Pathogenesis and Regulation by Gut Microbiome.

    PubMed

    Li, Yangyang; Liu, Yu; Chu, Cong-Qiu

    2015-01-01

    Type 1 diabetes (T1D) is an autoimmune disease which is characterized by progressive destruction of insulin producing pancreatic islet β cells. The risk of developing T1D is determined by both genetic and environmental factors. A growing body of evidence supports an important role of T helper type 17 (Th17) cells along with impaired T regulatory (Treg) cells in the development of T1D in animal models and humans. Alteration of gut microbiota has been implicated to be responsible for the imbalance between Th17 and Treg cells. However, there is controversy concerning a pathogenic versus protective role of Th17 cells in murine models of diabetes in the context of influence of gut microbiota. In this review we will summarize current knowledge about Th17 cells and gut microbiota involved in T1D and propose Th17 targeted therapy in children with islet autoimmunity to prevent progression to overt diabetes.

  18. How do we use molecular red blood cell antigen typing to supplement pretransfusion testing?

    PubMed

    Sapatnekar, Suneeti; Figueroa, Priscilla I

    2014-06-01

    The molecular basis of many blood group antigens is known, and it provides a means for predicting the red blood cell phenotype. Molecular typing methods are useful when serologic typing cannot be performed, due to sample or reagent limitations. We discuss the implementation of a commercial molecular typing assay at our Transfusion Service, the indications for testing, and the advantages and drawbacks of the assay. We also present our algorithm for selecting candidates for testing.

  19. Different types of ganglion cell in the cardiac plexus of guinea-pigs.

    PubMed Central

    Edwards, F R; Hirst, G D; Klemm, M F; Steele, P A

    1995-01-01

    1. Intracellular recordings were made from the parasympathetic ganglion cells that lie in the epicardium of the left atrium of guinea-pig heart near the interatrial septum. 2. Three distinct types of neurone were identified on the basis of their electrophysiological properties. In one group of neurones, S cells, somatic action potentials were followed by brief after-hyperpolarizations. In the other two sets of neurones, somatic action potentials were followed by prolonged after-hyperpolarizations. The neurones with prominent after-hyperpolarization were further subdivided: one group of neurones, P cells, showed inward rectification at membrane potentials near the resting membrane potential whilst neurones in the other group, SAH cells, did so only at more negative potentials. 3. In the group of neurones that displayed inward rectification at potentials near rest, rectification resulted from the activation of an inward current, which resembled the hyperpolarization-activated inward current present in cardiac muscle pacemaker cells. 4. The three different types of neurone received different patterns of synaptic input. Each SAH cell received a synaptic excitatory connection from the vagus which in most cells released sufficient transmitter to initiate an action potential in that cell; several SAH cells also received a separate connection, which could be activated by local stimulation. Although most S cells failed to receive a synaptic input from the vagus, all of those tested received an excitatory synaptic input which could be activated by local stimulation. Virtually all P cells failed to receive a synaptic input from the vagus; in addition, local stimulation failed to initiate synaptic potentials in P cells. 5. When the structure of cardiac ganglion cells was determined, by loading the cells with either biocytin or neurobiotin, it was found that most cells lacked extensive dendritic processes. S cells were invariably monopolar, most P cells were dipolar or

  20. Induction of type I IFN is required for overcoming tumor-specific T-cell tolerance after stem cell transplantation

    PubMed Central

    Horkheimer, Ian; Quigley, Michael; Zhu, Jiangao; Huang, Xiaopei; Chao, Nelson J.

    2009-01-01

    Tumor-specific T-cell tolerance represents one major mechanism of tumor-induced immune evasion. Myeloablative chemotherapy with stem cell transplantation may offer the best chance of achieving a state of minimal residual disease and, thus, minimize tumor-induced immune evasion. However, studies have shown that tumor-specific T-cell tolerance persists after transplantation. Here, we showed that CD4+CD25+ regulatory T (TReg) cells play a critical role in tumor-specific CD8+ T-cell tolerance after transplantation. Removal of TReg cells from the donor lymphocyte graft did not overcome this tolerance because of rapid conversion of donor CD4+CD25− T cells into CD4+CD25+Foxp3+ TReg cells in recipients after transplantation, and depletion of TReg cells in recipients was necessary for the reversal of tumor-specific tolerance. These results suggest that strategies capable of overcoming T-cell tolerance in recipients are required to promote antitumor immunity after transplantation. Toward this goal, we showed that dendritic cell (DC) vaccines coadministered with the TLR9 ligand, CpG could effectively overcome tumor-specific tolerance, leading to significant prolongation of tumor-free survival after transplantation. We further showed that CpG-induced type I interferon was critical for the reversal of tumor-specific tolerance in vivo. Collectively, these results may suggest effective immunotherapeutic strategies for treating cancer after stem cell transplantation. PMID:19279333

  1. Induction of type I IFN is required for overcoming tumor-specific T-cell tolerance after stem cell transplantation.

    PubMed

    Horkheimer, Ian; Quigley, Michael; Zhu, Jiangao; Huang, Xiaopei; Chao, Nelson J; Yang, Yiping

    2009-05-21

    Tumor-specific T-cell tolerance represents one major mechanism of tumor-induced immune evasion. Myeloablative chemotherapy with stem cell transplantation may offer the best chance of achieving a state of minimal residual disease and, thus, minimize tumor-induced immune evasion. However, studies have shown that tumor-specific T-cell tolerance persists after transplantation. Here, we showed that CD4(+)CD25(+) regulatory T (T(Reg)) cells play a critical role in tumor-specific CD8(+) T-cell tolerance after transplantation. Removal of T(Reg) cells from the donor lymphocyte graft did not overcome this tolerance because of rapid conversion of donor CD4(+)CD25(-) T cells into CD4(+)CD25(+)Foxp3(+) T(Reg) cells in recipients after transplantation, and depletion of T(Reg) cells in recipients was necessary for the reversal of tumor-specific tolerance. These results suggest that strategies capable of overcoming T-cell tolerance in recipients are required to promote antitumor immunity after transplantation. Toward this goal, we showed that dendritic cell (DC) vaccines coadministered with the TLR9 ligand, CpG could effectively overcome tumor-specific tolerance, leading to significant prolongation of tumor-free survival after transplantation. We further showed that CpG-induced type I interferon was critical for the reversal of tumor-specific tolerance in vivo. Collectively, these results may suggest effective immunotherapeutic strategies for treating cancer after stem cell transplantation.

  2. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    PubMed

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  3. Transcription factor co-localization patterns affect human cell type-specific gene expression

    PubMed Central

    2012-01-01

    Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-value< 0.001), which are closely related to K562. That is, cell type specific binding patterns are crucial for choosing the correct transcription factors for the model. Comparison of predictors obtained from binding sites in the GM12878 cell line with those from K562 shows that the amount of difference between binding patterns is directly related to the quality of the prediction. By identifying individual genes whose expression is predicted accurately by the binding sites, we are able to link transcription factors FOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation. PMID:22721266

  4. Design, fabrication and characteristics of new types of back surface field cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.; Scudder, L. R.

    1973-01-01

    Several new types of back surface field (BSF) cells were designed and fabricated. These include boron and phosphorus diffused BSF cells, single crystal epitaxially grown BSF cells and chemically vapor deposited (CVD) polycrystalline BSF cells. Boron diffusion yielded 10 ohm-cm BSF cells with 0.6 volt open-circuit voltages and collection efficiencies equal to those previously reported for aluminum alloying. The epitaxially grown cells also exhibited high open-circuit voltages and collection efficiencies and may be more radiation damage resistant. The polycrystalline cells had very high internal series resistance. No direct relationship was found to exist between collection efficiency and open-circuit voltage, V sub oc in BSF cells. Results indicate that the V sub oc effect is not caused simply by the mechanism of blocking of minority carriers.

  5. The vicious cycle of apoptotic beta-cell death in type 1 diabetes.

    PubMed

    Kaminitz, Ayelet; Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir

    2007-01-01

    Autoimmune insulitis, the cause of type 1 diabetes, evolves through several discrete stages that culminate in beta-cell death. In the first stage, antigenic epitopes of B-cell-specific peptides are processed by antigen presenting cells in local lymph nodes, and auto-reactive lymphocyte clones are propagated. Subsequently, cell-mediated and direct cytokine-mediated reactions are generated against the beta-cells, and the beta-cells are sensitized to apoptosis. Ironically, the beta-cells themselves contribute some of the cytokines and chemokines that provoke the immune reaction within the islets. Once this vicious cycle of autoimmunity is fully developed, the fate of the beta-cells in the islets is sealed, and clinical diabetes inevitably ensues. Differences in various aspects of these concurrent events appear to underlie the significant discrepancies in experimental data observed in experimental models that simulate autoimmune insulitis.

  6. 30 CFR 56.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  7. 30 CFR 57.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  8. 49 CFR 236.404 - Signals at adjacent control points.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.404 Signals at adjacent control points. Signals at adjacent controlled... 49 Transportation 4 2011-10-01 2011-10-01 false Signals at adjacent control points....

  9. 49 CFR 236.404 - Signals at adjacent control points.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.404 Signals at adjacent control points. Signals at adjacent controlled... 49 Transportation 4 2010-10-01 2010-10-01 false Signals at adjacent control points....

  10. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  11. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  12. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  13. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  14. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  15. Goblet cell types in intestine of tiger barb and black tetra (Cyprinidae, Characidae: Teleostei).

    PubMed

    Leknes, I L

    2014-10-01

    Histochemical properties of goblet cells in intestine of a stomach-less teleost, tiger barb (Puntius tetrazona), and a stomach-containing teleost, black tetra (Gymnocorymbus ternetzi), are described and compared. The intestine goblet cells were mostly wide in both species, but in tiger barb, some of them were markedly thinner. In black tetra, all the intestine goblet cells displayed magenta colour after PAS, whereas in the tiger barb, only the thinner goblet cells displayed such affinity. The latter cell type was coloured strongly magenta when the tissue was treated with alcian blue (pH 2.5) followed by PAS, whereas the wide goblet cells in tiger barb and all goblet cells in black tetra displayed mainly a blue colour after such treatment. Further, the goblet cells in both species were coloured cleanly blue after high iron diamine followed by alcian blue (pH 2.5). The intestine goblet cells in both species displayed a moderate affinity to WGA and concanavalin A lectins and no affinity to DBA. Most of the goblet cells displayed no affinity to PNA, but some of them in the tiger barb displayed a moderate or strong affinity to this lectin. The affinity to WGA was somewhat strengthened after pre-treatment with neuraminidase. These results suggest that tiger barb contains two types or variants of intestinal goblet cells: high numbers of wide cells filled by acidic, non-sulphated mucin and some thinner cells filled by neutral mucin. The intestine goblet cells in black tetra were filled by variable amounts of neutral and acidic mucin, but the total number of such cells is much less than in tiger barb. The present lectin and neuraminidase results suggest that the intestinal mucins in both species contain significant amounts of N-acetylglucosamine, sialic acid and glucose/mannose, but seem to lack N-acetylgalactosamine. However, some of these cells in tiger barb contain moderate to large amounts of galactose. Together, these results suggest significant species

  16. Seismicity in Azerbaijan and Adjacent Caspian Sea

    SciTech Connect

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

  17. Increased susceptibility of peripheral blood mononuclear cells to equine herpes virus type 1 infection upon mitogen stimulation: a role of the cell cycle and of cell-to-cell transmission of the virus.

    PubMed

    van der Meulen, Karen M; Nauwynck, Hans J; Pensaert, Maurice B

    2002-04-22

    Equine herpesvirus-1 (EHV-1) is an important pathogen of horses, causing abortion and nervous system disorders, even in vaccinated animals. During the cell-associated viremia, EHV-1 is carried by peripheral blood mononuclear cells (PBMC), mainly lymphocytes. In vitro, monocytes are the most important fraction of PBMC in which EHV-1 replicates, however, mitogen stimulation prior to EHV-1 infection increases the percentage of infected lymphocytes. The role of the cell cycle in viral replication and the role of cluster formation in cell-to-cell transmission of the virus were examined in mitogen-stimulated PBMC. Involvement of the cell cycle was examined by stimulating PBMC with ionomycin/phorbol dibutyrate (IONO/PDB) during 0, 12, 24 and 36 h prior to inoculation. Cell cycle distribution at the moment of inoculation and the percentage of EHV-1 antigen-positive PBMC at 0, 12 and 24 hours post inoculation (hpi) were determined by flow cytometry and immunofluorescence microscopy, respectively. The role of clusters was examined by immunofluorescence staining within clusters of stimulated PBMC using antibodies against EHV-1. Significant correlations were found between the increase of cells in the S- or G2/M-phase after a certain time interval of prestimulation and the increase of EHV-1 antigen-positive cells. The percentage of clusters with adjacent infected cells significantly increased from 3.3% at 8 hpi to 23.7% at 24 hpi and the maximal number of adjacent infected cells increased from 2 to 7. Addition of anti-EHV-1 hyperimmune serum did not significantly alter these percentages. Mitogen stimulation favours EHV-1 infection in PBMC by: (i) initiating cell proliferation and (ii) inducing formation of clusters, thereby facilitating direct cell-associated transmission of virus.

  18. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    PubMed Central

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  19. Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread1[W

    PubMed Central

    Hogekamp, Claudia; Arndt, Damaris; Pereira, Patrícia A.; Becker, Jörg D.; Hohnjec, Natalija; Küster, Helge

    2011-01-01

    Arbuscular mycorrhizae (AM) are the most widespread symbioses on Earth, promoting nutrient supply of most terrestrial plant species. To unravel gene expression in defined stages of Medicago truncatula root colonization by AM fungi, we here combined genome-wide transcriptome profiling based on whole mycorrhizal roots with real-time reverse transcription-PCR experiments that relied on characteristic cell types obtained via laser microdissection. Our genome-wide approach delivered a core set of 512 genes significantly activated by the two mycorrhizal fungi Glomus intraradices and Glomus mossae. Focusing on 62 of these genes being related to membrane transport, signaling, and transcriptional regulation, we distinguished whether they are activated in arbuscule-containing or the neighboring cortical cells harboring fungal hyphae. In addition, cortical cells from nonmycorrhizal roots served as a reference for gene expression under noncolonized conditions. Our analysis identified 25 novel arbuscule-specific genes and 37 genes expressed both in the arbuscule-containing and the adjacent cortical cells colonized by fungal hyphae. Among the AM-induced genes specifying transcriptional regulators were two members encoding CAAT-box binding transcription factors (CBFs), designated MtCbf1 and MtCbf2. Promoter analyses demonstrated that both genes were already activated by the first physical contact between the symbionts. Subsequently, and corresponding to our cell-type expression patterns, they were progressively up-regulated in those cortical areas colonized by fungal hyphae, including the arbuscule-containing cells. The encoded CBFs thus represent excellent candidates for regulators that mediate a sequential reprogramming of root tissues during the establishment of an AM symbiosis. PMID:22034628

  20. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread.

    PubMed

    Hogekamp, Claudia; Arndt, Damaris; Pereira, Patrícia A; Becker, Jörg D; Hohnjec, Natalija; Küster, Helge

    2011-12-01

    Arbuscular mycorrhizae (AM) are the most widespread symbioses on Earth, promoting nutrient supply of most terrestrial plant species. To unravel gene expression in defined stages of Medicago truncatula root colonization by AM fungi, we here combined genome-wide transcriptome profiling based on whole mycorrhizal roots with real-time reverse transcription-PCR experiments that relied on characteristic cell types obtained via laser microdissection. Our genome-wide approach delivered a core set of 512 genes significantly activated by the two mycorrhizal fungi Glomus intraradices and Glomus mossae. Focusing on 62 of these genes being related to membrane transport, signaling, and transcriptional regulation, we distinguished whether they are activated in arbuscule-containing or the neighboring cortical cells harboring fungal hyphae. In addition, cortical cells from nonmycorrhizal roots served as a reference for gene expression under noncolonized conditions. Our analysis identified 25 novel arbuscule-specific genes and 37 genes expressed both in the arbuscule-containing and the adjacent cortical cells colonized by fungal hyphae. Among the AM-induced genes specifying transcriptional regulators were two members encoding CAAT-box binding transcription factors (CBFs), designated MtCbf1 and MtCbf2. Promoter analyses demonstrated that both genes were already activated by the first physical contact between the symbionts. Subsequently, and corresponding to our cell-type expression patterns, they were progressively up-regulated in those cortical areas colonized by fungal hyphae, including the arbuscule-containing cells. The encoded CBFs thus represent excellent candidates for regulators that mediate a sequential reprogramming of root tissues during the establishment of an AM symbiosis.

  1. Recovery of Saccharomyces cerevisiae mating-type a cells from G1 arrest by alpha factor.

    PubMed Central

    Chan, R K

    1977-01-01

    Mating-type a cells of the yeast Saccharomyces cerevisiae that had been specifically arrested in the G1 phase of the cell cycle by alpha factor, an oligopeptide pheromone made by alpha cells, recovered and resumed cell division after a period of inhibition which was dependent on the concentration of alpha factor used. These treated a cells were more resistant to alpha factor than untreated a cells, but lost their resistance upon further cell division. However, cells arrested for 6 h were no more resistant to alpha factor than cells arrested for only 2.5 h. Mating-type a strains could inactivate or remove alpha factor from the culture fluid, but two a sterile (nonmating) mutants and an a/alpha diploid strain could not. These results suggest that a cells have a mechanism, which may involve uptake or inactivation of alpha factor, for recovering from alpha factor arrest. However, the results do not distinguish between a recovery mechanism which is constitutive and one which is induced by alpha factor. The loss of alpha factor activity during recovery appeared to be primarily cell contact mediated, although an extracellular, diffusible inhibitor of alpha factor that is labile or that functions stoichiometrically could not be ruled out. PMID:400792

  2. Nuclear factor I and epithelial cell-specific transcription of human papillomavirus type 16.

    PubMed Central

    Apt, D; Chong, T; Liu, Y; Bernard, H U

    1993-01-01

    The transcription of human papillomavirus type 16 (HPV-16) is mediated by the viral enhancer. Epithelial cell-specific activation is achieved by the cooperative interaction of apparently ubiquitous transcriptional factors. One of them, nuclear factor I (NFI), binds seven sites within the HPV-16 enhancer. Point mutations on enhancer fragments, which retain epithelial cell specificity, verify the functional contribution of NFI. In band shift experiments, the epithelial cell-derived NFI proteins CTF-1, CTF-2, and CTF-3 form a characteristic pattern of heterodimeric complexes which are observed in all epithelial cells tested. Divergence from this pattern in fibroblasts, liver cells, and lymphoid cells correlates with the lack of HPV-16 enhancer activation. The HPV-16 enhancer can be activated by CTF-1 in SL-2 cells, which lack NFI-like proteins. However, exogenous CTF-1 fails to overcome the inactivity of the viral enhancer in fibroblasts. Western immunoblot and supershift analysis shows that exogenously introduced CTF-1 proteins form different heterodimer complexes with the given subset of endogenous NFI proteins in epithelial or fibroblast cells. Polymerase chain reaction analysis and cDNA library screens identified the endogenous fibroblast type NFI as NFI-X, an NFI family member originally cloned from hamster liver cells. The strict correlation between the activation or lack of activation of the HPV-16 enhancer and cell-specific subsets of NFI proteins argues for the pivotal role of NFI binding sites in the epithelial cell-specific function of the viral enhancer. Images PMID:8392590

  3. Identification and developmental analysis of endothelin receptor type-A expressing cells in the mouse kidney.

    PubMed

    Kitazawa, Taro; Sato, Takahiro; Nishiyama, Koichi; Asai, Rieko; Arima, Yuichiro; Uchijima, Yasunobu; Kurihara, Yukiko; Kurihara, Hiroki

    2011-10-01

    The endothelin (Edn) system plays pleiotropic roles in renal function and various disease processes through two distinct G protein-coupled receptors, Edn receptors type-A (Ednra) and type-B (Ednrb). However, difficulties in the accurate identification of receptor-expressing cells in situ have made it difficult to dissect their diverse action in renal (patho)physiology. We have recently established mouse lines in which lacZ and EGFP are 'knocked-in' to the Ednra locus to faithfully mark Ednra-expressing cells. Here we analyzed these mice for their expression in the kidney to characterize Ednra-expressing cells. Ednra expression was first observed in undifferentiated mesenchymal cells around the ureteric bud at E12.5. Thereafter, Ednra expression was widely observed in vascular smooth muscle cells, JG cells and mesenchymal cells in the interstitium. After growth, the expression became confined to vascular smooth muscle cells, pericytes and renin-producing JG cells. By contrast, most cells in the nephron and vascular endothelial cells did not express Ednra. These results indicate that Ednra expression may be linked with non-epithelial fate determination and differentiation of metanephric mesenchyme. Ednra-lacZ/EGFP knock-in mice may serve as a useful tool in studies on renal function and pathophysiology of various renal diseases.

  4. Identification of cell-type-specific mutations in nodal T-cell lymphomas

    PubMed Central

    Nguyen, T B; Sakata-Yanagimoto, M; Asabe, Y; Matsubara, D; Kano, J; Yoshida, K; Shiraishi, Y; Chiba, K; Tanaka, H; Miyano, S; Izutsu, K; Nakamura, N; Takeuchi, K; Miyoshi, H; Ohshima, K; Minowa, T; Ogawa, S; Noguchi, M; Chiba, S

    2017-01-01

    Recent genetic analysis has identified frequent mutations in ten-eleven translocation 2 (TET2), DNA methyltransferase 3A (DNMT3A), isocitrate dehydrogenase 2 (IDH2) and ras homolog family member A (RHOA) in nodal T-cell lymphomas, including angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified. We examined the distribution of mutations in these subtypes of mature T-/natural killer cell neoplasms to determine their clonal architecture. Targeted sequencing was performed for 71 genes in tumor-derived DNA of 87 cases. The mutations were then analyzed in a programmed death-1 (PD1)-positive population enriched with tumor cells and CD20-positive B cells purified by laser microdissection from 19 cases. TET2 and DNMT3A mutations were identified in both the PD1+ cells and the CD20+ cells in 15/16 and 4/7 cases, respectively. All the RHOA and IDH2 mutations were confined to the PD1+ cells, indicating that some, including RHOA and IDH2 mutations, being specific events in tumor cells. Notably, we found that all NOTCH1 mutations were detected only in the CD20+ cells. In conclusion, we identified both B- as well as T-cell-specific mutations, and mutations common to both T and B cells. These findings indicate the expansion of a clone after multistep and multilineal acquisition of gene mutations. PMID:28157189

  5. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling

    PubMed Central

    Müller, Anke; Stellmacher, Anne; Freitag, Christine E.; Landgraf, Peter; Dieterich, Daniela C.

    2015-01-01

    The ability of the nervous system to undergo long-term plasticity is based on changes in cellular and synaptic proteomes. While many studies have explored dynamic alterations in neuronal proteomes during plasticity, there has been less attention paid to the astrocytic counterpart. Indeed, progress in identifying cell type-specific proteomes is limited owing to technical difficulties. Here, we present a cell type-specific metabolic tagging technique for a mammalian coculture model based on the bioorthogonal amino acid azidonorleucine and the mutated Mus musculus methionyl-tRNA synthetaseL274G enabling azidonorleucine introduction into de novo synthesized proteins. Azidonorleucine incorporation resulted in cell type-specific protein labeling and retained neuronal or astrocytic cell viability. Furthermore, we were able to label astrocytic de novo synthesized proteins and identified both Connexin-43 and 60S ribosomal protein L10a upregulated upon treatment with Brain-derived neurotrophic factor in astrocytes of a neuron-glia coculture. Taken together, we demonstrate the successful dissociation of astrocytic from neuronal proteomes by cell type-specific metabolic labeling offering new possibilities for the analyses of cell type-specific proteome dynamics. PMID:26690742

  6. Surfactant treatment effects on lung structure and type II cells of preterm ventilated lambs.

    PubMed

    Pinkerton, K E; Ikegami, M; Dillard, L M; Jobe, A H

    2000-05-01

    We evaluated surfactant treatment effects on lung morphology and alveolar type II cells of preterm ventilated lambs. Lambs were ventilated for 10 h following treatment of the right lung with natural surfactant. Lung parenchyma from the surfactant-treated right and the untreated left lung was compared morphometrically. Mechanical ventilation without surfactant resulted in distention of alveolar ducts accompanied by shallowing and loss of well-defined alveoli without disruption of collagen or elastin fibers. Surfactant treatment almost completely prevented these changes. The percent of normal parenchyma was 82 +/- 7% in surfactant-treated lobes and 26 +/- 5% in the nontreated lobes (p < 0.05). Type II cells became flatter in lungs ventilated without surfactant, and cell shape was preserved by surfactant treatment. The volume densities of lamellar bodies and multivesicular bodies in alveolar type II cells were not changed by surfactant treatment. With or without surfactant treatment, mechanical ventilation was associated with a shift in lamellar body distribution to a smaller size and a decrease in glycogen content of type II cells. Surfactant treatment of the preterm lung prevents alveolar distortion and atelectasis, but does not result in changes in subcellular organelles in immature type II cells.

  7. Dendritic stratification differs among retinal OFF bipolar cell types in the absence of rod photoreceptors

    PubMed Central

    Puller, Christian; Arbogast, Patrick; Keeley, Patrick W.; Reese, Benjamin E.; Haverkamp, Silke

    2017-01-01

    Retinal OFF bipolar cells show distinct connectivity patterns with photoreceptors in the wild-type mouse retina. Some types are cone-specific while others penetrate further through the outer plexiform layer (OPL) to contact rods in addition to cones. To explore dendritic stratification of OFF bipolar cells in the absence of rods, we made use of the ‘cone-full’ Nrl-/- mouse retina in which all photoreceptor precursor cells commit to a cone fate including those which would have become rods in wild-type retinas. The dendritic distribution of OFF bipolar cell types was investigated by confocal and electron microscopic imaging of immunolabeled tissue sections. The cells’ dendrites formed basal contacts with cone terminals and expressed the corresponding glutamate receptor subunits at those sites, indicating putative synapses. All of the four analyzed cell populations showed distinctive patterns of vertical dendritic invasion through the OPL. This disparate behavior of dendritic extension in an environment containing only cone terminals demonstrates type-dependent specificity for dendritic outgrowth in OFF bipolar cells: rod terminals are not required for inducing dendritic extension into distal areas of the OPL. PMID:28257490

  8. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan

    2016-02-01

    Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  9. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution.

    PubMed

    Ryan, Joseph F; Pang, Kevin; Schnitzler, Christine E; Nguyen, Anh-Dao; Moreland, R Travis; Simmons, David K; Koch, Bernard J; Francis, Warren R; Havlak, Paul; Smith, Stephen A; Putnam, Nicholas H; Haddock, Steven H D; Dunn, Casey W; Wolfsberg, Tyra G; Mullikin, James C; Martindale, Mark Q; Baxevanis, Andreas D

    2013-12-13

    An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.

  10. Type 2 Diabetes: The Pathologic Basis of Reversible β-Cell Dysfunction.

    PubMed

    White, Michael G; Shaw, James A M; Taylor, Roy

    2016-11-01

    The reversible nature of early type 2 diabetes has been demonstrated in in vivo human studies. Recent in vivo and in vitro studies of β-cell biology have established that the β-cell loses differentiated characteristics, including glucose-mediated insulin secretion, under metabolic stress. Critically, the β-cell dedifferentiation produced by long-term excess nutrient supply is reversible. Weight loss in humans permits restoration of first-phase insulin secretion associated with the return to normal of the elevated intrapancreatic triglyceride content. However, in type 2 diabetes of duration greater than 10 years, the cellular changes appear to pass a point of no return. This review summarizes the evidence that early type 2 diabetes can be regarded as a reversible β-cell response to chronic positive calorie balance.

  11. Do the Purkinje cells have a special type of oligodendrocyte as satellites?

    PubMed Central

    Monteiro, R A

    1983-01-01

    Two types of oligodendrocytes considered to be a constant feature in the cerebellar cortex of the rat are described. One cell type (I) exhibits rounded or elliptical nuclei, whereas the other type (II) presents more irregular nuclear and cellular contours and wider perinuclear cisternae. The latter cell type shows a more electron-dense cytoplasm with more heavily clumped heterochromatin, contrasting strongly with the euchromatin; also long and parallel cisternae of rough endoplasmic reticulum are more frequent. The percentages of both types of oligodendrocytes in relation to the total population of common glial cell types were calculated in the cortical layers and at several levels in these layers. The distribution of oligodendrocytes in the associated white matter was also carried out for purposes of comparison. The results provide evidence the the Purkinje cells may have a special kind of oligodendrocyte (Type II) as satellites. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:6630036

  12. Protective effect of catechin in type I Gaucher disease cells by reducing endoplasmic reticulum stress

    SciTech Connect

    Lee, Yea-Jin; Kim, Sung-Jo; Heo, Tae-Hwe

    2011-09-23

    Highlights: {yields} Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. {yields} Catechin induces the proliferation rate of GD cells similar levels to normal cells. {yields} Catechin improves wound healing activity. {yields} Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. {yields} We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.

  13. Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin.

    PubMed

    Shah, Nirav R; Sunderland, Amanda; Grdzelishvili, Valery Z

    2010-06-22

    Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.

  14. Cell Type Mediated Resistance of Vesicular Stomatitis Virus and Sendai Virus to Ribavirin

    PubMed Central

    Shah, Nirav R.; Sunderland, Amanda; Grdzelishvili, Valery Z.

    2010-01-01

    Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro. PMID:20582319

  15. Cell type-dependent Erk-Akt pathway crosstalk regulates the proliferation of fetal neural progenitor cells

    PubMed Central

    Rhim, Ji heon; Luo, Xiangjian; Gao, Dongbing; Xu, Xiaoyun; Zhou, Tieling; Li, Fuhai; Wang, Ping; Wong, Stephen T. C.; Xia, Xiaofeng

    2016-01-01

    Neural progenitor (NP) cells are the multipotent cells that produce neurons and glia in the central nervous system. Compounds regulating their proliferation are key to both understanding brain development and unlocking their potential in regenerative repair. We discuss a chemical screen that unexpectedly identified inhibitors of Erk signaling potently promoting the self-renewing divisions of fetal NP cells. This occurred through crosstalk between Erk and Akt signaling cascades. The crosstalk mechanism is cell type-specific, and is not detected in adult NP cells as well as brain tumor cells. The mechanism was also shown to be independent from the GSK-3 signaling pathway, which has been reported to be a major regulator of NP cell homeostasis and inhibitors to which were also identified in the screen. In vitro Erk inhibition led to the prolonged rapid expansion of fetal NP cells while retaining their multipotency. In vivo inhibitor administration significantly inhibited the neuronal differentiation, and resulted in increased proliferative progenitor cells in the ventricular/subventricular zone (VZ/SVZ) of the embryonic cortex. Our results uncovered a novel regulating pathway for NP cell proliferation in the developing brain. The discovery provides a pharmacological basis for in vitro expansion and in vivo manipulation of NP cells. PMID:27211495

  16. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells

    PubMed Central

    Troegeler, Anthony; Mercier, Ingrid; Cougoule, Céline; Pietretti, Danilo; Colom, André; Duval, Carine; Vu Manh, Thien-Phong; Capilla, Florence; Poincloux, Renaud; Pingris, Karine; Nigou, Jérôme; Rademann, Jörg; Dalod, Marc; Verreck, Frank A. W.; Al Saati, Talal; Lugo-Villarino, Geanncarlo; Lepenies, Bernd; Hudrisier, Denis; Neyrolles, Olivier

    2017-01-01

    Immune response against pathogens is a tightly regulated process that must ensure microbial control while preserving integrity of the infected organs. Tuberculosis (TB) is a paramount example of a chronic infection in which antimicrobial immunity is protective in the vast majority of infected individuals but can become detrimental if not finely tuned. Here, we report that C-type lectin dendritic cell (DC) immunoreceptor (DCIR), a key component in DC homeostasis, is required to modulate lung inflammation and bacterial burden in TB. DCIR is abundantly expressed in pulmonary lesions in Mycobacterium tuberculosis-infected nonhuman primates during both latent and active disease. In mice, we found that DCIR deficiency impairs STAT1-mediated type I IFN signaling in DCs, leading to increased production of IL-12 and increased differentiation of T lymphocytes toward Th1 during infection. As a consequence, DCIR-deficient mice control M. tuberculosis better than WT animals but also develop more inflammation characterized by an increased production of TNF and inducible NOS (iNOS) in the lungs. Altogether, our results reveal a pathway by which a C-type lectin modulates the equilibrium between infection-driven inflammation and pathogen’s control through sustaining type I IFN signaling in DCs. PMID:28069953

  17. Insulitis and β-Cell Mass in the Natural History of Type 1 Diabetes

    PubMed Central

    Fu, Ann; Kaddis, John S.; Wasserfall, Clive; Schatz, Desmond A.; Pugliese, Alberto; Atkinson, Mark A.

    2016-01-01

    Descriptions of insulitis in human islets throughout the natural history of type 1 diabetes are limited. We determined insulitis frequency (the percent of islets displaying insulitis to total islets), infiltrating leukocyte subtypes, and β-cell and α-cell mass in pancreata recovered from organ donors with type 1 diabetes (n = 80), as well as from donors without diabetes, both with islet autoantibodies (AAb+, n = 18) and without islet autoantibodies (AAb−, n = 61). Insulitis was observed in four of four donors (100%) with type 1 diabetes duration of ≤1 year and two AAb+ donors (2 of 18 donors, 11%). Insulitis frequency showed a significant but limited inverse correlation with diabetes duration (r = −0.58, P = 0.01) but not with age at disease onset. Residual β-cells were observed in all type 1 diabetes donors with insulitis, while β-cell area and mass were significantly higher in type 1 diabetes donors with insulitis compared with those without insulitis. Insulitis affected 33% of insulin+ islets compared with 2% of insulin− islets in donors with type 1 diabetes. A significant correlation was observed between insulitis frequency and CD45+, CD3+, CD4+, CD8+, and CD20+ cell numbers within the insulitis (r = 0.53–0.73, P = 0.004–0.04), but not CD68+ or CD11c+ cells. The presence of β-cells as well as insulitis several years after diagnosis in children and young adults suggests that the chronicity of islet autoimmunity extends well into the postdiagnosis period. This information should aid considerations of therapeutic strategies seeking type 1 diabetes prevention and reversal. PMID:26581594

  18. Insulitis and β-Cell Mass in the Natural History of Type 1 Diabetes.

    PubMed

    Campbell-Thompson, Martha; Fu, Ann; Kaddis, John S; Wasserfall, Clive; Schatz, Desmond A; Pugliese, Alberto; Atkinson, Mark A

    2016-03-01

    Descriptions of insulitis in human islets throughout the natural history of type 1 diabetes are limited. We determined insulitis frequency (the percent of islets displaying insulitis to total islets), infiltrating leukocyte subtypes, and β-cell and α-cell mass in pancreata recovered from organ donors with type 1 diabetes (n = 80), as well as from donors without diabetes, both with islet autoantibodies (AAb(+), n = 18) and without islet autoantibodies (AAb(-), n = 61). Insulitis was observed in four of four donors (100%) with type 1 diabetes duration of ≤1 year and two AAb(+) donors (2 of 18 donors, 11%). Insulitis frequency showed a significant but limited inverse correlation with diabetes duration (r = -0.58, P = 0.01) but not with age at disease onset. Residual β-cells were observed in all type 1 diabetes donors with insulitis, while β-cell area and mass were significantly higher in type 1 diabetes donors with insulitis compared with those without insulitis. Insulitis affected 33% of insulin(+) islets compared with 2% of insulin(-) islets in donors with type 1 diabetes. A significant correlation was observed between insulitis frequency and CD45(+), CD3(+), CD4(+), CD8(+), and CD20(+) cell numbers within the insulitis (r = 0.53-0.73, P = 0.004-0.04), but not CD68(+) or CD11c(+) cells. The presence of β-cells as well as insulitis several years after diagnosis in children and young adults suggests that the chronicity of islet autoimmunity extends well into the postdiagnosis period. This information should aid considerations of therapeutic strategies seeking type 1 diabetes prevention and reversal.

  19. GROUP 2 INNATE LYMPHOID CELLS AND CD4+ T CELLS COOPERATE TO MEDIATE TYPE 2 IMMUNE RESPONSE IN MICE

    PubMed Central

    Drake, Li Yin; Iijima, Koji; Kita, Hirohito

    2014-01-01

    Background Innate lymphoid cells (ILCs) play important roles in innate immunity and tissue remodeling via production of various cytokines and growth factors. Group 2 ILCs (ILC2s) were recently shown to mediate the immune pathology of asthma even without adaptive immunity. However, little is known about possible interactions between ILC2s and other immune cells. We sought to investigate the capacity of ILC2s to regulate effector functions of T cells. Methods We isolated ILC2s from the lungs of naïve mice. We cultured CD4+ T cells with ILC2s in vitro and examined the functions of these cell types. The mechanisms were investigated by using blocking antibodies and cells isolated from cytokine-deficient mice. For the in vivo study, we adoptively transferred ILC2s and CD4+ T cells into Il7ra−/− mice and subsequently exposed the mice to ovalbumin and a cysteine protease. Results Lung ILC2s enhanced CD4+ T cell proliferation and promoted production of type 2 cytokines in vitro. The interaction between ILC2s and CD4+ T cells involved costimulatory molecule OX40L and cytokine IL-4, which was mainly derived from ILC2s. Adoptive transfer of both ILC2 and CD4+ T cell populations, but not each population alone, into Il7ra−/− mice resulted in induction of a robust antigen-specific type 2 cytokine response and airway inflammation. Conclusion Lung ILC2s function to promote adaptive immunity in addition to their established roles in innate immunity. This novel function of ILC2s needs to be taken into account when considering the pathophysiology of asthma and other allergic airway diseases. PMID:24939388

  20. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions.

    PubMed

    Katz, Matthew L; Viney, Tim J; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information ("Quadratic Mutual Information"). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells' response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types.

  1. Novel middle-type Kenyon cells in the honeybee brain revealed by area-preferential gene expression analysis.

    PubMed

    Kaneko, Kumi; Ikeda, Tsubomi; Nagai, Mirai; Hori, Sayaka; Umatani, Chie; Tadano, Hiroto; Ugajin, Atsushi; Nakaoka, Takayoshi; Paul, Rajib Kumar; Fujiyuki, Tomoko; Shirai, Kenichi; Kunieda, Takekazu; Takeuchi, Hideaki; Kubo, Takeo

    2013-01-01

    The mushroom bodies (a higher center) of the honeybee (Apis mellifera L) brain were considered to comprise three types of intrinsic neurons, including large- and small-type Kenyon cells that have distinct gene expression profiles. Although previous neural activity mapping using the immediate early gene kakusei suggested that small-type Kenyon cells are mainly active in forager brains, the precise Kenyon cell types that are active in the forager brain remain to be elucidated. We searched for novel gene(s) that are expressed in an area-preferential manner in the honeybee brain. By identifying and analyzing expression of a gene that we termed mKast (middle-type Kenyon cell-preferential arrestin-related protein), we discovered novel 'middle-type Kenyon cells' that are sandwiched between large- and small-type Kenyon cells and have a gene expression profile almost complementary to those of large- and small-type Kenyon cells. Expression analysis of kakusei revealed that both small-type Kenyon cells and some middle-type Kenyon cells are active in the forager brains, suggesting their possible involvement in information processing during the foraging flight. mKast expression began after the differentiation of small- and large-type Kenyon cells during metamorphosis, suggesting that middle-type Kenyon cells differentiate by modifying some characteristics of large- and/or small-type Kenyon cells. Interestingly, CaMKII and mKast, marker genes for large- and middle-type Kenyon cells, respectively, were preferentially expressed in a distinct set of optic lobe (a visual center) neurons. Our findings suggested that it is not simply the Kenyon cell-preferential gene expression profiles, rather, a 'clustering' of neurons with similar gene expression profiles as particular Kenyon cell types that characterize the honeybee mushroom body structure.

  2. Differential mechanisms of memory CD8 T cell maintenance by individual myeloid cell types

    PubMed Central

    Frasca, Loredana; Stonier, Spencer W.; Overwijk, Willem W.; Schluns, Kimberly S.

    2010-01-01

    This study tested the hypothesis that individual myeloid subsets have a differential ability to maintain memory CD8 T cells via IL-15. Although DCs support IL-15-mediated homeostasis of memory CD8 T cells in vivo, whether various DC subsets and other myeloid cells similarly mediate homeostasis is unknown. Therefore, we studied the ability of different myeloid cells to maintain memory CD8 T cells in vitro. Using an in vitro cocoulture system that recapitulated known roles of DCs and IL-15 on memory CD8 T cells, all in vitro-derived or ex vivo-isolated DCs maintained CD8 T cells better than rIL-15 alone, and FLT-3L-DCs are the most efficient compared with GM-DCs, BM-derived macrophages, or freshly isolated DCs. Although FLT-3L-DCs were the least effective at inducing CD8 T cell proliferation, FLT-3L-DCs promoted better CD8 T cell survival and increased Bcl-2 and MCL-2 expression in CD8 T cells. T cell maintenance correlated only partially with DC expression of IL-15Rα and IL-15, suggesting that DCs provided additional support signals. Indeed, in the absence of IL-15 signals, CD70/CD27 further supported CD8 T cell maintenance. IFN-α enhanced CD70 expression by DCs, resulting in increased proliferation of CD8 T cells. Overall, this study supports our hypothesis by demonstrating that specific DC subtypes had a greater capacity to support memory CD8 T cell maintenance and did so through different mechanisms. Furthermore, this study shows that IL-15 trans-presentation can work in conjunction with other signals, such as CD70/CD27 interactions, to mediate CD8 T cell homeostasis efficiently. PMID:20354106

  3. Cell-Cell Fusion Induced by Measles Virus Amplifies the Type I Interferon Response▿ †

    PubMed Central

    Herschke, F.; Plumet, S.; Duhen, T.; Azocar, O.; Druelle, J.; Laine, D.; Wild, T. F.; Rabourdin-Combe, C.; Gerlier, D.; Valentin, H.

    2007-01-01

    Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response. PMID:17898060

  4. Emergence and patterning of the five cell types of the Zea mays anther locule

    PubMed Central

    Kelliher, Timothy; Walbot, Virginia

    2011-01-01

    One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis, however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium the somatic tissues consist of four concentric cell layers which surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. Howev