Science.gov

Sample records for adjacent chromosomal dna

  1. Conserved DNA sequences adjacent to chromosome fragmentation and telomere addition sites in Euplotes crassus.

    PubMed

    Klobutcher, L A; Gygax, S E; Podoloff, J D; Vermeesch, J R; Price, C M; Tebeau, C M; Jahn, C L

    1998-09-15

    During the formation of a new macronucleus in the ciliate Euplotes crassus, micronuclear chromosomes are reproducibly broken at approximately 10 000 sites. This chromosome fragmentation process is tightly coupled with de novo telomere synthesis by the telomerase ribonucleoprotein complex, generating short linear macronuclear DNA molecules. In this study, the sequences of 58 macronuclear DNA termini and eight regions of the micronuclear genome containing chromosome fragmentation/telomere addition sites were determined. Through a statistically based analysis of these data, along with previously published sequences, we have defined a 10 bp conserved sequence element (E-Cbs, 5'-HATTGAAaHH-3', H = A, C or T) near chromosome fragmentation sites. The E-Cbs typically resides within the DNA destined to form a macronuclear DNA molecule, but can also reside within flanking micronuclear DNA that is eliminated during macronuclear development. The location of the E-Cbs in macronuclear-destined versus flanking micronuclear DNA leads us to propose a model of chromosome fragmentation that involves a 6 bp staggered cut in the chromosome. The identification of adjacent macronuclear-destined sequences that overlap by 6 bp provides support for the model. Finally, our data provide evidence that telomerase is able to differentiate between newly generated ends that contain partial telomeric repeats and those that do not in vivo.

  2. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  3. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  4. Visualization of yeast chromosomal DNA

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1990-01-01

    The DNA molecule is the most significant life molecule since it codes the blue print for other structural and functional molecules of all living organisms. Agarose gel electrophoresis is now being widely used to separate DNA of virus, bacteria, and lower eukaryotes. The task was undertaken of reviewing the existing methods of DNA fractionation and microscopic visualization of individual chromosonal DNA molecules by gel electrophoresis as a basis for a proposed study to investigate the feasibility of separating DNA molecules in free fluids as an alternative to gel electrophoresis. Various techniques were studied. On the molecular level, agarose gel electrophoresis is being widely used to separate chromosomal DNA according to molecular weight. Carl and Olson separate and characterized the entire karyotype of a lab strain of Saccharomyces cerevisiae. Smith et al. and Schwartz and Koval independently reported the visualization of individual DNA molecules migrating through agarose gel matrix during electrophoresis. The techniques used by these researchers are being reviewed in the lab as a basis for the proposed studies.

  5. Complete DNA sequence of yeast chromosome XI.

    PubMed

    Dujon, B; Alexandraki, D; André, B; Ansorge, W; Baladron, V; Ballesta, J P; Banrevi, A; Bolle, P A; Bolotin-Fukuhara, M; Bossier, P; Bou, G; Boyer, J; Bultrago, M J; Cheret, G; Colleaux, L; Dalgnan-Fornler, B; del Rey, F; Dlon, C; Domdey, H; Düsterhoft, A; Düsterhus, S; Entlan, K D; Erfle, H; Esteban, P F; Feldmann, H; Fernandes, L; Robo, G M; Fritz, C; Fukuhara, H; Gabel, C; Gaillon, L; Carcia-Cantalejo, J M; Garcia-Ramirez, J J; Gent, N E; Ghazvini, M; Goffeau, A; Gonzaléz, A; Grothues, D; Guerreiro, P; Hegemann, J; Hewitt, N; Hilger, F; Hollenberg, C P; Horaitis, O; Indge, K J; Jacquier, A; James, C M; Jauniaux, C; Jimenez, A; Keuchel, H; Kirchrath, L; Kleine, K; Kötter, P; Legrain, P; Liebl, S; Louis, E J; Maia e Silva, A; Marck, C; Monnier, A L; Möstl, D; Müller, S; Obermaier, B; Oliver, S G; Pallier, C; Pascolo, S; Pfeiffer, F; Philippsen, P; Planta, R J; Pohl, F M; Pohl, T M; Pöhlmann, R; Portetelle, D; Purnelle, B; Puzos, V; Ramezani Rad, M; Rasmussen, S W; Remacha, M; Revuelta, J L; Richard, G F; Rieger, M; Rodrigues-Pousada, C; Rose, M; Rupp, T; Santos, M A; Schwager, C; Sensen, C; Skala, J; Soares, H; Sor, F; Stegemann, J; Tettelin, H; Thierry, A; Tzermia, M; Urrestarazu, L A; van Dyck, L; Van Vliet-Reedijk, J C; Valens, M; Vandenbo, M; Vilela, C; Vissers, S; von Wettstein, D; Voss, H; Wiemann, S; Xu, G; Zimmermann, J; Haasemann, M; Becker, I; Mewes, H W

    1994-06-01

    The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.

  6. Chromosome aberrations in decondensed sperm DNA

    SciTech Connect

    Preston, R.J.

    1982-01-01

    Factors that could influence the chromosomal aberration frequency observed at first cleavage following in vivo exposure of germ cells to chemical mutagens are discussed. The techniques of chromosome aberration analysis following sperm DNA condensation by in vitro fertilization or fusion seem to be viable research areas for providing information of human germ cell exposures. However, the potential sensitivity of the assay needs to be better understood, and factors that can influence this sensitivity require a great deal of further study using animal models.

  7. Innate Structure of DNA Foci Restricts the Mixing of DNA from Different Chromosome Territories

    PubMed Central

    Fennessy, Dorota; Jackson, Dean A.

    2011-01-01

    The distribution of chromatin within the mammalian nucleus is constrained by its organization into chromosome territories (CTs). However, recent studies have suggested that promiscuous intra- and inter-chromosomal interactions play fundamental roles in regulating chromatin function and so might define the spatial integrity of CTs. In order to test the extent of DNA mixing between CTs, DNA foci of individual CTs were labeled in living cells following incorporation of Alexa-488 and Cy-3 conjugated replication precursor analogues during consecutive cell cycles. Uniquely labeled chromatin domains, resolved following random mitotic segregation, were visualized as discrete structures with defined borders. At the level of resolution analysed, evidence for mixing of chromatin from adjacent domains was only apparent within the surface volumes where neighboring CTs touched. However, while less than 1% of the nuclear volume represented domains of inter-chromosomal mixing, the dynamic plasticity of DNA foci within individual CTs allows continual transformation of CT structure so that different domains of chromatin mixing evolve over time. Notably, chromatin mixing at the boundaries of adjacent CTs had little impact on the innate structural properties of DNA foci. However, when TSA was used to alter the extent of histone acetylation changes in chromatin correlated with increased chromatin mixing. We propose that DNA foci maintain a structural integrity that restricts widespread mixing of DNA and discuss how the potential to dynamically remodel genome organization might alter during cell differentiation. PMID:22205925

  8. Chromosome-specific DNA Repeat Probes

    SciTech Connect

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  9. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    SciTech Connect

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C. ); Grzeschik, K.H. )

    1988-02-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration.

  10. Chromosome

    MedlinePlus

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  11. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  12. Forces on chromosomal DNA during anaphase.

    PubMed Central

    Jannink, G; Duplantier, B; Sikorav, J L

    1996-01-01

    In the course of anaphase, the chromosomal DNA is submitted to the traction of the spindle. Several physical problems are associated with this action. In particular, the sister chromatids are generally topologically intertwined at the onset of anaphase, and the removal of the intertwinings results from a coupling between the enzymatic action of type II DNA topoisomerases and the force exerted by the spindle. We propose a physical analysis of some of these problems: 1) We compare the maximum force the spindle can produce with the force required to break a DNA molecule, and define the conditions compatible with biological safety during anaphase. 2) We show that the behavior of the sister chromatids in the absence of type II DNA topoisomerases can be described by two distinct models: a chain pullout model accounts for the experimental observations made in the budding yeast, and a model of the mechanical rupture of rubbers accounts for the nondisjunction in standard cases. 3) Using the fluctuation-dissipation theorem, we introduce an effective protein friction associated with the strand-passing activity of type II DNA topoisomerases. We show that this friction can be used to describe the situation in which one chromosome passes entirely through another one. Possible experiments that could test these theoretical analyses are discussed. PMID:8804628

  13. Fluorescence imaging of chromosomal DNA using click chemistry.

    PubMed

    Ishizuka, Takumi; Liu, Hong Shan; Ito, Kenichiro; Xu, Yan

    2016-01-01

    Chromosome visualization is essential for chromosome analysis and genetic diagnostics. Here, we developed a click chemistry approach for multicolor imaging of chromosomal DNA instead of the traditional dye method. We first demonstrated that the commercially available reagents allow for the multicolor staining of chromosomes. We then prepared two pro-fluorophore moieties that served as light-up reporters to stain chromosomal DNA based on click reaction and visualized the clear chromosomes in multicolor. We applied this strategy in fluorescence in situ hybridization (FISH) and identified, with high sensitivity and specificity, telomere DNA at the end of the chromosome. We further extended this approach to observe several basic stages of cell division. We found that the click reaction enables direct visualization of the chromosome behavior in cell division. These results suggest that the technique can be broadly used for imaging chromosomes and may serve as a new approach for chromosome analysis and genetic diagnostics. PMID:27620982

  14. Fluorescence imaging of chromosomal DNA using click chemistry

    PubMed Central

    Ishizuka, Takumi; Liu, Hong Shan; Ito, Kenichiro; Xu, Yan

    2016-01-01

    Chromosome visualization is essential for chromosome analysis and genetic diagnostics. Here, we developed a click chemistry approach for multicolor imaging of chromosomal DNA instead of the traditional dye method. We first demonstrated that the commercially available reagents allow for the multicolor staining of chromosomes. We then prepared two pro-fluorophore moieties that served as light-up reporters to stain chromosomal DNA based on click reaction and visualized the clear chromosomes in multicolor. We applied this strategy in fluorescence in situ hybridization (FISH) and identified, with high sensitivity and specificity, telomere DNA at the end of the chromosome. We further extended this approach to observe several basic stages of cell division. We found that the click reaction enables direct visualization of the chromosome behavior in cell division. These results suggest that the technique can be broadly used for imaging chromosomes and may serve as a new approach for chromosome analysis and genetic diagnostics. PMID:27620982

  15. Analysis of DNA haplotypes suggests a genetic predisposition to trisomy 21 associated with DNA sequences on chromosome 21.

    PubMed Central

    Antonarakis, S E; Kittur, S D; Metaxotou, C; Watkins, P C; Patel, A S

    1985-01-01

    To test the hypothesis that there is a genetic predisposition to nondisjunction and trisomy 21 associated with DNA sequences on chromosome 21, we used DNA polymorphism haplotypes for chromosomes 21 to examine the distribution of different chromosomes 21 in Down syndrome and control families from the same ethnic group. The chromosomes 21 from 20 Greek families with a Down syndrome child and 27 control Greek families have been examined for DNA polymorphism haplotypes by using four common polymorphic sites adjacent to two closely linked single-copy DNA sequences (namely pW228C and pW236B), which map somewhere near the proximal long arm of chromosome 21. Three haplotypes, +, +---, and - with respective frequencies of 43/108, 24/108, and 23/108, account for the majority of chromosomes 21 in the control families. However, haplotype - was found to be much more commonly associated with chromosomes 21 that underwent nondisjunction in the Down syndrome families (frequency of 21/50; X2 for the two distributions is 9.550; P = 0.023; degrees of freedom, 3). The two populations (control and trisomic families) did not differ in the distribution of haplotypes for two DNA polymorphisms on chromosome 17. The data from this initial study suggest that the chromosome 21, which is marked in Greeks with haplotype - for the four above described polymorphic sites, is found more commonly in chromosomes that participate in nondisjunction than in controls. We propose an increased tendency for nondisjunction due to DNA sequences associated with a subset of chromosomes 21 bearing this haplotype. Images PMID:2987923

  16. Chromosomal Allocation of DNA Sequences in Wheat Using Flow-Sorted Chromosomes.

    PubMed

    Cápal, Petr; Vrána, Jan; Kubaláková, Marie; Endo, Takashi R; Doležel, Jaroslav

    2016-01-01

    Flow cytometry enables chromosomes to be sorted into different groups based on their characteristics, such as relative DNA content and the presence of repetitive DNA sequences. Despite the recent progress in the analysis of plant genome organization and chromosome structure, there is a need for easy methods to assign DNA sequences to individual chromosomes. Here, we describe an easy way to allocate genes or DNA sequences to chromosomes in wheat using flow-sorted chromosomes combined with fluorescence in situ hybridization and PCR analyses. PMID:27557693

  17. Chromosomal DNA Replication Pattern in Human Tumour Cells in vitro

    PubMed Central

    Kucheria, Kiran

    1970-01-01

    The present paper deals with the chromosomal DNA replication pattern in human solid tumour cells in vitro. This was studied at the terminal stages of the S-period. All the cell lines of female origin showed a late replicating chromosome in group XX6-12. In cell lines of male origin one of the chromosomes of group 21-22Y was later replicating than the rest of the members of the group. The DNA replication pattern of the autosomes and the sex chromosomes was similar to that of the cultured human leucocytes. The results of the present study show that the DNA replication pattern of the chromosome in neoplastic cells is basically unchanged despite the changes in the chromosome number and morphology. Therefore the abnormal behaviour of the neoplastic cells cannot be related to the changes in the pattern of the chromosomal DNA replication. ImagesFig. 5Fig. 1Fig. 6Fig. 2Fig. 3Fig. 4 PMID:5475754

  18. Biophysics of protein-DNA interactions and chromosome organization

    PubMed Central

    Marko, John F.

    2014-01-01

    The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed. PMID:25419039

  19. Biophysics of protein-DNA interactions and chromosome organization

    NASA Astrophysics Data System (ADS)

    Marko, John F.

    2015-01-01

    The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed.

  20. Intranuclear DNA density affects chromosome condensation in metazoans.

    PubMed

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-08-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or "intranuclear DNA density." Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans.

  1. Intranuclear DNA density affects chromosome condensation in metazoans

    PubMed Central

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-01-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or “intranuclear DNA density.” Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans. PMID:23783035

  2. Process of labeling specific chromosomes using recombinant repetitive DNA

    DOEpatents

    Moyzis, R.K.; Meyne, J.

    1988-02-12

    Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.

  3. DNA base composition of Allium genomes with different chromosome numbers.

    PubMed

    Ricroch, A; Brown, S C

    1997-12-31

    The present report examines whether the presence of an additional chromosome can be detected as modifying the nuclear DNA amount and base composition of the cell, determined here by flow cytometry of interphasic nuclei, using four monosomic additions (chromosomes 3C, 4C, 7C and 8C transmitted from Allium cepa to Allium fistulosum L.). A. cepa differs significantly from A. fistulosum in genome size (2C DNA = 33.2 pg in A. cepa and 23.3 pg in A. fistulosum) as well as in GC content (38.7% and 39.8%, respectively). The presence of an extra chromosome of A. cepa obviously increases the nuclear DNA amount above the A. fistulosum value but also alters the apparent mean GC content. By comparing the monosomic additions and the parental background, the DNA amount and base composition of each of the four single chromosomes were calculated to quantify the GC content per chromosome and therefore to deduce their initial contribution to the A. cepa genome. Taken individually, some chromosomes are atypical in terms of GC content: the single chromosome 3C is AT-rich, having only about only 25% GC. However, the three other chromosomes examined are typical of the A. cepa genome in base composition. Indeed, this biological panel gives access to chromosomal features via a cytometric assay of nuclei. It should facilitate quantification of GC-rich repetitive sequences forming heterochromatic domains located mainly at the telomeres in the monocotyledonous A. cepa genome. PMID:9461399

  4. DNA methylation and histone modification in onion chromosomes.

    PubMed

    Suzuki, Go; Shiomi, Maho; Morihana, Sayuri; Yamamoto, Maki; Mukai, Yasuhiko

    2010-01-01

    Onion, Allium cepa, is a model plant for experimental observation of somatic cell division, whose mitotic chromosome is extremely large, and contains the characteristic terminal heterochromatin. Epigenetic status of the onion chromosome is a matter of deep interest from a molecular cytogenetic point of view, because epigenetic marks regulate chromatin structure and gene expression. Here we examined chromosomal distribution of DNA methylation and histone modification in A. cepa in order to reveal the chromatin structure in detail. Immunodetection of 5-methylcytosine (5mC) and in situ nick-translation analysis showed that onion genomic DNA was highly methylated, and the methylated CG dinucleotides were distributed in entire chromosomes. In addition, distributions of histone methylation codes, which occur in close association with DNA methylation, were similar to those of other large genome species. From these results, a highly heterochromatic and less euchromatic state of large onion chromosomes were demonstrated at an epigenetic level.

  5. Micromechanical study of protein-DNA interactions and chromosomes

    NASA Astrophysics Data System (ADS)

    Marko, John

    I will discuss micromechanics experiments that our group has used to analyze protein-DNA interactions and chromosome organization. In single-DNA experiments we have found that a feature of protein-DNA complexes is that their dissociation rates can depend strikingly on bulk solution concentrations of other proteins and DNA segments; I will describe experiments which demonstrate this effect, which can involve tens-fold changes in off-rates with submicromolar changes in solution concentrations. Second, I will discuss experiments aimed at analyzing large-scale human chromosome structure; we isolate metaphase chromosomes, which in their native form behave as remarkably elastic networks of chromatin. Exposure to DNA-cutting restriction enzymes completely eliminates this elasticity, indicating that there is not a mechanically contiguous protein ''scaffold'' from which the chromosome gains its stability. I will show results of siRNA experiments indicating that depletion of condensin proteins leads to destabilization of chromosome mechanics, indicating condensin's role as the major chromatin ''cross-linker'' in metaphase chromosomes. Finally I will discuss similar experiments on human G1 nuclei, where we use genetic and chemical modifications to separate the contributions of the nuclear lamina and chromatin to the mechanical stiffness of the nucleus as a whole. Supported by the NSF (DMR-1206868, MCB-1022117) and the NIH (GM105847, CA193419).

  6. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    PubMed

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  7. REVIEW ARTICLE: DNA protein interactions and bacterial chromosome architecture

    NASA Astrophysics Data System (ADS)

    Stavans, Joel; Oppenheim, Amos

    2006-12-01

    Bacteria, like eukaryotic organisms, must compact the DNA molecule comprising their genome and form a functional chromosome. Yet, bacteria do it differently. A number of factors contribute to genome compaction and organization in bacteria, including entropic effects, supercoiling and DNA-protein interactions. A gamut of new experimental techniques have allowed new advances in the investigation of these factors, and spurred much interest in the dynamic response of the chromosome to environmental cues, segregation, and architecture, during both exponential and stationary phases. We review these recent developments with emphasis on the multifaceted roles that DNA-protein interactions play.

  8. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.

    PubMed

    Juhas, Mario; Ajioka, James W

    2016-06-01

    Bacillus subtilis is a well-characterized model bacterium frequently used for a number of biotechnology and synthetic biology applications. Novel strategies combining the advantages of B. subtilis with the DNA assembly and editing tools of Escherichia coli are crucial for B. subtilis engineering efforts. We combined Gibson Assembly and λ red recombineering in E. coli with RecA-mediated homologous recombination in B. subtilis for bacterial artificial chromosome-mediated DNA integration into the well-characterized amyE target locus of the B. subtilis chromosome. The engineered integrative bacterial artificial chromosome iBAC(cav) can accept any DNA fragment for integration into B. subtilis chromosome and allows rapid selection of transformants by B. subtilis-specific antibiotic resistance and the yellow fluorescent protein (mVenus) expression. We used the developed iBAC(cav)-mediated system to integrate 10kb DNA fragment from E. coli K12 MG1655 into B. subtilis chromosome. iBAC(cav)-mediated chromosomal integration approach will facilitate rational design of synthetic biology applications in B. subtilis.

  9. Adenovirus type 12 DNA firmly associates with mammalian chromosomes early after virus infection or after DNA transfer by the addition of DNA to the cell culture medium.

    PubMed

    Schröer, J; Hölker, I; Doerfler, W

    1997-10-01

    Human adenovirus type 12 (Ad12) infects human cells productively and leads to viral replication, whereas infection of hamster cells remains abortive, with total blocks in viral DNA replication and late viral gene transcription. The intranuclear fate of Ad12 DNA in productively infected human cells and in abortively infected hamster cells was monitored by using the fluorescent in situ hybridization (FISH) technique. Human HeLa cells, primary human umbilical cord fibroblasts, hamster BHK21 cells, primary embryonal hamster cells, and the Ad12-transformed T637 hamster cell line were studied. As early as 2 h after infection, extensive association of Ad12 DNA with metaphase chromosomes was demonstrated by FISH in all of these cells. Chromosomal association continued until late (24 to 28 h) after infection, when about 100% of the human cell nuclei and 70 to 80% of the hamster cell nuclei showed distinct FISH signals. This chromosomal association of Ad12 DNA in infected cells seemed to be rather firm, since it proved to be resistant to mechanically stretching the chromosomes and to different types of chemical treatment. Moreover, laser scan microscopy of mechanically stretched chromosomes from Ad12-infected HeLa cells and from the Ad12-transformed T637 cell line, with about 20 copies of Ad12 DNA provably integrated, revealed identical FISH patterns. Therefore, it was likely that even in infected cells the chromosomal association of Ad12 DNA was very similar to the integrated state. Late in productively infected cells, large nuclear areas were taken over by viral DNA replication, as visualized by FISH in interphase nuclei. Chromosomal association at many sites was frequently limited to one chromatid, but signals in adjacent positions on both chromatids were also seen. Upon the long-term cultivation and passage of abortively infected BHK21 cells for 96 h after infection, a gradual decrease of viral DNA association with chromosomes was observed. Integration of Ad12 DNA in

  10. Chromosomal characteristics and distribution of rDNA sequences in the brook trout Salvelinus fontinalis (Mitchill, 1814).

    PubMed

    Śliwińska-Jewsiewicka, A; Kuciński, M; Kirtiklis, L; Dobosz, S; Ocalewicz, K; Jankun, Malgorzata

    2015-08-01

    Brook trout Salvelinus fontinalis (Mitchill, 1814) chromosomes have been analyzed using conventional and molecular cytogenetic techniques enabling characteristics and chromosomal location of heterochromatin, nucleolus organizer regions (NORs), ribosomal RNA-encoding genes and telomeric DNA sequences. The C-banding and chromosome digestion with the restriction endonucleases demonstrated distribution and heterogeneity of the heterochromatin in the brook trout genome. DNA sequences of the ribosomal RNA genes, namely the nucleolus-forming 28S (major) and non-nucleolus-forming 5S (minor) rDNAs, were physically mapped using fluorescence in situ hybridization (FISH) and primed in situ labelling. The minor rDNA locus was located on the subtelo-acrocentric chromosome pair No. 9, whereas the major rDNA loci were dispersed on 14 chromosome pairs, showing a considerable inter-individual variation in the number and location. The major and minor rDNA loci were located at different chromosomes. Multichromosomal location (3-6 sites) of the NORs was demonstrated by silver nitrate (AgNO3) impregnation. All Ag-positive i.e. active NORs corresponded to the GC-rich blocks of heterochromatin. FISH with telomeric probe showed the presence of the interstitial telomeric site (ITS) adjacent to the NOR/28S rDNA site on the chromosome 11. This ITS was presumably remnant of the chromosome rearrangement(s) leading to the genomic redistribution of the rDNA sequences. Comparative analysis of the cytogenetic data among several related salmonid species confirmed huge variation in the number and the chromosomal location of rRNA gene clusters in the Salvelinus genome.

  11. The DNA sequence of the human X chromosome

    PubMed Central

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  12. The DNA sequence of the human X chromosome.

    PubMed

    Ross, Mark T; Grafham, Darren V; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R; Burrows, Christine; Bird, Christine P; Frankish, Adam; Lovell, Frances L; Howe, Kevin L; Ashurst, Jennifer L; Fulton, Robert S; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C; Hurles, Matthew E; Andrews, T Daniel; Scott, Carol E; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P; Hunt, Sarah E; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Ainscough, Rachael; Ambrose, Kerrie D; Ansari-Lari, M Ali; Aradhya, Swaroop; Ashwell, Robert I S; Babbage, Anne K; Bagguley, Claire L; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E; Barlow, Karen F; Barrett, Ian P; Bates, Karen N; Beare, David M; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M; Brown, Andrew J; Brown, Mary J; Bonnin, David; Bruford, Elspeth A; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y; Clarke, Graham; Clee, Chris M; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G; Conquer, Jen S; Corby, Nicole; Connor, Richard E; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; Deshazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A; Hawes, Alicia; Heath, Paul D; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J; Huckle, Elizabeth J; Hume, Jennifer; Hunt, Paul J; Hunt, Adrienne R; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J; Joseph, Shirin S; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M; Loulseged, Hermela; Loveland, Jane E; Lovell, Jamieson D; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O'Dell, Christopher N; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V; Pearson, Danita M; Pelan, Sarah E; Perez, Lesette; Porter, Keith M; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A; Schlessinger, David; Schueler, Mary G; Sehra, Harminder K; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M; Shownkeen, Ratna; Skuce, Carl D; Smith, Michelle L; Sotheran, Elizabeth C; Steingruber, Helen E; Steward, Charles A; Storey, Roy; Swann, R Mark; Swarbreck, David; Tabor, Paul E; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C; d'Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L; Whiteley, Mathew N; Wilkinson, Jane E; Willey, David L; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L; Wray, Paul W; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J; Hillier, Ladeana W; Willard, Huntington F; Wilson, Richard K; Waterston, Robert H; Rice, Catherine M; Vaudin, Mark; Coulson, Alan; Nelson, David L; Weinstock, George; Sulston, John E; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A; Beck, Stephan; Rogers, Jane; Bentley, David R

    2005-03-17

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

  13. Cell-free DNA screening and sex chromosome aneuploidies.

    PubMed

    Mennuti, Michael T; Chandrasekaran, Suchitra; Khalek, Nahla; Dugoff, Lorraine

    2015-10-01

    Cell-free DNA (cfDNA) testing is increasingly being used to screen pregnant women for fetal aneuploidies. This technology may also identify fetal sex and can be used to screen for sex chromosome aneuploidies (SCAs). Physicians offering this screening will need to be prepared to offer comprehensive prenatal counseling about these disorders to an increasing number of patients. The purpose of this article is to consider the source of information to use for counseling, factors in parental decision-making, and the performance characteristics of cfDNA testing in screening for SCAs. Discordance between ultrasound examination and cfDNA results regarding fetal sex is also discussed.

  14. DNA Secondary Structure at Chromosomal Fragile Sites in Human Disease

    PubMed Central

    Thys, Ryan G; Lehman, Christine E; Pierce, Levi C. T; Wang, Yuh-Hwa

    2015-01-01

    DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease. PMID:25937814

  15. Analysis of Replicating Yeast Chromosomes by DNA Combing.

    PubMed

    Gallo, David; Wang, Gang; Yip, Christopher M; Brown, Grant W

    2016-02-01

    Molecular combing of DNA fibers is a powerful technique to monitor origin usage and DNA replication fork progression in the budding yeast Saccharomyces cerevisiae. In contrast to traditional flow cytometry, microarray, or sequencing techniques, which provide population-level data, DNA combing provides DNA replication profiles of individual molecules. DNA combing uses yeast strains that express human thymidine kinase, which facilitates the incorporation of thymidine analogs into nascent DNA. First, DNA is isolated and stretched uniformly onto silanized glass coverslips. Following immunodetection with antibodies that recognize the thymidine analog and the DNA, the DNA fibers are imaged using a fluorescence microscope. Finally, the lengths of newly replicated DNA tracks are measured and converted to base pairs, allowing calculations of the speed of the replication fork and of interorigin distances. DNA combing can be applied to monitor replication defects caused by gene mutations or by chemical agents that induce replication stress. Here, we present a methodology for studying replicating yeast chromosomes by molecular DNA combing. We begin with procedures for the preparation of silanized coverslips and for assembly of a DNA combing machine (DCM) and conclude by presenting a detailed protocol for molecular DNA combing in yeast.

  16. Genetic maps of polymorphic DNA loci on rat chromosome 1

    SciTech Connect

    Ding, Yan-Ping; Remmers, E.F.; Longman, R.E.

    1996-09-01

    Genetic linkage maps of loci defined by polymorphic DNA markers on rat chromosome 1 were constructed by genotyping F2 progeny of F344/N x LEW/N, BN/SsN x LEW/N, and DA/Bkl x F344/Hsd inbred rat strains. In total, 43 markers were mapped, of which 3 were restriction fragment length polymorphisms and the others were simple sequence length polymorphisms. Nineteen of these markers were associated with genes. Six markers for five genes, {gamma}-aminobutyric acid receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}1 (Adrb1), carcinoembryonic antigen gene family member 1 (Cgm1), and lipogenic protein S14 (Lpgp), and 20 anonymous loci were not previously reported. Thirteen gene loci (Myl2, Aldoa, Tnt, Igf2, Prkcg, Cgm4, Calm3, Cgm3, Psbp1, Sa, Hbb, Ins1, and Tcp1) were previously mapped. Comparative mapping analysis indicated that the large portion of rat chromosome 1 is homologous to mouse chromosome 7, although the homologous to mouse chromosome 7, although the homologs of two rat genes are located on mouse chromosomes 17 and 19. Homologs of the rat chromosome 1 genes that we mapped are located on human chromosomes 6, 10, 11, 12, 15, 16, and 19. 38 refs., 1 fig., 3 tabs.

  17. Construction of DNA libraries from flow sorted human chromosomes

    SciTech Connect

    Deaven, L.L.; McCormick, M.K.; Grady, D.L.

    1994-09-01

    We have constructed a series of DNA libraries from flow-sorted chromosomes. Small insert, complete digest libraries cloned into the EcoRI insertion site of Charon 21A are available from the American Type Culture Collection, Rockville, MD. Partial digest libraries cloned into cosmid (sCos1) or phage (Charon 40) vectors have been constructed for chromosomes 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, X and Y. Purity estimates by in situ analysis of sorted chromosomes, flow karyotype analysis, and plaque or colony hybridization indicate that most of these libraries are 90-95% pure. Additional cosmid library constructions, 5-10X arrays of libraries into microtiter plates, and high density membrane arrays of libraries are in progress. Recently, we have completed YAC libraries for chromosomes 5, 9, 16, and 21. These libraries are made from complete DNA digests using the rare cutters Clal, SacII, EagI, or NotI/NheI. The average insert size is {similar_to}200 kb, and chimera frequencies are low (1-10%). Libraries have also been constructed using M13 or bluescript vectors (chromosomes 5, 7, 17) to generate STS markers for the selection of chromosome-specific inserts from total genomic AC libraries. Because of the advantages of insert size and stability associated with BAC and PAC cloning systems, we are currently attempting to adapt pBAC108L and pCYPAC1 vectors for use with flow-sorted chromosomal DNA.

  18. Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes.

    PubMed

    Roa, Fernando; Guerra, Marcelo

    2015-01-01

    5S and 45S rDNA sites are the best mapped chromosome regions in eukaryotic chromosomes. In this work, a database was built gathering information about the position and number of 5S rDNA sites in 784 plant species, aiming to identify patterns of distribution along the chromosomes and its correlation with the position of 45S rDNA sites. Data revealed that in most karyotypes (54.5%, including polyploids) two 5S rDNA sites (a single pair) are present, with 58.7% of all sites occurring in the short arm, mainly in the proximal region. In karyotypes of angiosperms with only 1 pair of sites (single sites) they are mostly found in the proximal region (52.0%), whereas in karyotypes with multiple sites the location varies according to the average chromosome size. Karyotypes with multiple sites and small chromosomes (<3 µm) often display proximal sites, while medium-sized (between 3 and 6 µm) and large chromosomes (>6 µm) more commonly show terminal or interstitial sites. In species with holokinetic chromosomes, the modal value of sites per karyotype was also 2, but they were found mainly in a terminal position. Adjacent 5S and 45S rDNA sites were often found in the short arm, reflecting the preferential distribution of both sites in this arm. The high frequency of genera with at least 1 species with adjacent 5S and 45S sites reveals that this association appeared several times during angiosperm evolution, but it has been maintained only rarely as the dominant array in plant genera.

  19. Birefringence and DNA Condensation of Liquid Crystalline Chromosomes

    PubMed Central

    Chow, Man H.; Yan, Kosmo T. H.; Bennett, Michael J.; Wong, Joseph T. Y.

    2010-01-01

    DNA can self-assemble in vitro into several liquid crystalline phases at high concentrations. The largest known genomes are encoded by the cholesteric liquid crystalline chromosomes (LCCs) of the dinoflagellates, a diverse group of protists related to the malarial parasites. Very little is known about how the liquid crystalline packaging strategy is employed to organize these genomes, the largest among living eukaryotes—up to 80 times the size of the human genome. Comparative measurements using a semiautomatic polarizing microscope demonstrated that there is a large variation in the birefringence, an optical property of anisotropic materials, of the chromosomes from different dinoflagellate species, despite their apparently similar ultrastructural patterns of bands and arches. There is a large variation in the chromosomal arrangements in the nuclei and individual karyotypes. Our data suggest that both macroscopic and ultrastructural arrangements affect the apparent birefringence of the liquid crystalline chromosomes. Positive correlations are demonstrated for the first time between the level of absolute retardance and both the DNA content and the observed helical pitch measured from transmission electron microscopy (TEM) photomicrographs. Experiments that induced disassembly of the chromosomes revealed multiple orders of organization in the dinoflagellate chromosomes. With the low protein-to-DNA ratio, we propose that a highly regulated use of entropy-driven force must be involved in the assembly of these LCCs. Knowledge of the mechanism of packaging and arranging these largest known DNAs into different shapes and different formats in the nuclei would be of great value in the use of DNA as nanostructural material. PMID:20400466

  20. Birefringence and DNA condensation of liquid crystalline chromosomes.

    PubMed

    Chow, Man H; Yan, Kosmo T H; Bennett, Michael J; Wong, Joseph T Y

    2010-10-01

    DNA can self-assemble in vitro into several liquid crystalline phases at high concentrations. The largest known genomes are encoded by the cholesteric liquid crystalline chromosomes (LCCs) of the dinoflagellates, a diverse group of protists related to the malarial parasites. Very little is known about how the liquid crystalline packaging strategy is employed to organize these genomes, the largest among living eukaryotes-up to 80 times the size of the human genome. Comparative measurements using a semiautomatic polarizing microscope demonstrated that there is a large variation in the birefringence, an optical property of anisotropic materials, of the chromosomes from different dinoflagellate species, despite their apparently similar ultrastructural patterns of bands and arches. There is a large variation in the chromosomal arrangements in the nuclei and individual karyotypes. Our data suggest that both macroscopic and ultrastructural arrangements affect the apparent birefringence of the liquid crystalline chromosomes. Positive correlations are demonstrated for the first time between the level of absolute retardance and both the DNA content and the observed helical pitch measured from transmission electron microscopy (TEM) photomicrographs. Experiments that induced disassembly of the chromosomes revealed multiple orders of organization in the dinoflagellate chromosomes. With the low protein-to-DNA ratio, we propose that a highly regulated use of entropy-driven force must be involved in the assembly of these LCCs. Knowledge of the mechanism of packaging and arranging these largest known DNAs into different shapes and different formats in the nuclei would be of great value in the use of DNA as nanostructural material.

  1. Extraction of Chromosomal DNA from Schizosaccharomyces pombe.

    PubMed

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-05-02

    Extraction of DNA from Schizosaccharomyces pombe cells is required for various uses, including templating polymerase chain reactions (PCRs), Southern blotting, library construction, and high-throughput sequencing. To purify high-quality DNA, the cell wall is removed by digestion with Zymolyase or Lyticase and the resulting spheroplasts lysed using sodium dodecyl sulfate (SDS). Cell debris, SDS, and SDS-protein complexes are subsequently precipitated by the addition of potassium acetate and removed by centrifugation. Finally, DNA is precipitated using isopropanol. At this stage, purity is usually sufficient for PCR. However, for more sensitive procedures, such as restriction enzyme digestion, additional purification steps, including proteinase K digestion and phenol-chloroform extraction, are recommended. All of these steps are described in detail here.

  2. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes.

    PubMed

    Lohe, A R; Roberts, P A

    1990-06-01

    The X and Y chromosomes of Drosophila melanogaster each contain a cluster of several hundred ribosomal RNA genes (rDNA). A nontranscribed spacer region separates adjacent rRNA genes and contains tandem copies of 240 bp repeats that include the initiation site for RNA polymerase I transcription. We show here that Drosophila simulans, a sibling species of D. melanogaster, contains few, if any, rRNA genes on its Y chromosome but carries instead a large block (3,000 kb or 12,500 copies) of 240 bp nontranscribed spacer repeats. The repeats are located at the tip of the long arm of the simulans Y chromosome, in contrast to their location among rRNA genes on the short arm of the Y chromosome of D. melanogaster. The bobbed mutation in homozygous females of D. melanogaster shortens and thins the bristles, owing to a partial deletion of rRNA genes on the X chromosome. The bristles of bobbed/Y males are normal owing to the presence of a full complement of rRNA genes on the Y chromosome. Peculiarly, in bobbed/Y males of D. simulans the short bristle phenotype does not return to normal but is enhanced by the presence of the Y chromosome. We propose that the 12,500 nontranscribed spacer repeats on the Y chromosome are responsible for this biological effect by competition for a protein factor(s) essential for normal levels of rDNA transcription at the X-linked locus.

  3. Y chromosome and mitochondrial DNA variation in Lithuanians.

    PubMed

    Kasperaviciūte, D; Kucinskas, V; Stoneking, M

    2004-09-01

    The genetic composition of the Lithuanian population was investigated by analysing mitochondrial DNA hypervariable region 1, RFLP polymorphisms and Y chromosomal biallelic and STR markers in six ethnolinguistic groups of Lithuanians, to address questions about the origin and genetic structure of the present day population. There were no significant genetic differences among ethnolinguistic groups, and an analysis of molecular variance confirmed the homogeneity of the Lithuanian population. MtDNA diversity revealed that Lithuanians are close to both Slavic (Indo-European) and Finno-Ugric speaking populations of Northern and Eastern Europe. Y-chromosome SNP haplogroup analysis showed Lithuanians to be closest to Latvians and Estonians. Significant differences between Lithuanian and Estonian Y chromosome STR haplotypes suggested that these populations have had different demographic histories. We suggest that the observed pattern of Y chromosome diversity in Lithuanians may be explained by a population bottleneck associated with Indo-European contact. Different Y chromosome STR distributions in Lithuanians and Estonians might be explained by different origins or, alternatively, be the result of some period of isolation and genetic drift after the population split. PMID:15469421

  4. Directly labeled fluorescent DNA probes for chromosome mapping

    SciTech Connect

    Marrone, B.L.; Deaven, L.L.; Chen, D.J.; Park, Min S.; MacInnes, M.A.; Salzman, G.C.; Yoshida, T.M.

    1995-12-31

    A new strategy is briefly described for employing nucleic acid probes that are directly labeled with fluorochromes in fluorescence in situ hybridization techniques. These probes will permit the detection, quantitation, and high-precision spatial analysis of multiple DNA sequences along a single chromosome using video-enhanced fluorescence microscopy and digital image processing and analysis. Potential advantages of direct labeled DNA probes for fluorescence in situ hybridization far surpass currently available, indirect DNA probe labeling techniques in ease of use, versatility, and increased signal- to-noise ratio.

  5. Chromosome banding and DNA replication patterns in bird karyotypes.

    PubMed

    Schmid, M; Enderle, E; Schindler, D; Schempp, W

    1989-01-01

    The karyotypes of the domestic chicken (Gallus domesticus), Japanese quail (Coturnix coturnix), and griffon vulture (Gyps fulvus) were studied with a variety of banding techniques. The DNA replication patterns of bird chromosomes, analyzed by incorporation of 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT), are presented here for the first time. In particular, the time sequence of replication of the ZZ/ZW sex chromosomes throughout the S-phase was meticulously analyzed. BrdU and dT incorporation are very useful methods to identify homoeologies between karyotypes, as well as rearrangements that occurred in the macroautosomes during speciation. The Z chromosomes of the three birds displayed the same replication patterns, indicating a high degree of evolutionary conservation. In the homogametic male, BrdU and dT incorporation revealed no evidence of asynchronous replication between euchromatic bands in the ZZ pair. The same was true of the three Z chromosomes in a triploid-diploid chimeric chicken embryo. Minor replication asynchronies between the homologous ZZ or ZZZ chromosomes were restricted to heterochromatic C-bands. These results confirm that, in the ZZ male/ZW female sex-determining system of birds, dosage compensation for Z-linked genes does not occur by inactivation of one of the two Z chromosomes in the homogametic male. The heterochromatic W chromosomes of the three species showed bright labeling with distamycin A/mithramycin counterstain-enhanced fluorescence and exhibited significantly delayed DNA replication. The nucleolus organizers of birds, frequently located in microchromosomes, were also distinguished by bright distamycin A/mithramycin fluorescence. PMID:2630186

  6. Capillary electrophoresis: Biotechnology for separation of DNA and chromosomes

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1994-01-01

    Electrophoresis has been used for the separation of particles, ions, and molecules for a number of years. The technology for separation and detection of the results has many applications in the life sciences. One of the major goals of the scientific community is to separate DNA molecules and intact chromosomes based upon their different lengths or number of base pairs. This may be achieved by using some of the commercially available and widely used methods, but these processes require a considerable amount of time. The challenge is to achieve separation of intact chromosomes in a short time, preferably in a matter of minutes.

  7. Horizontal transfer of DNA methylation patterns into bacterial chromosomes

    PubMed Central

    Shin, Jung-Eun; Lin, Chris; Lim, Han N.

    2016-01-01

    Horizontal gene transfer (HGT) is the non-inherited acquisition of novel DNA sequences. HGT is common and important in bacteria because it enables the rapid generation of new phenotypes such as antibiotic resistance. Here we show that in vivo and in vitro DNA methylation patterns can be horizontally transferred into bacterial chromosomes to program cell phenotypes. The experiments were performed using a synthetic system in Escherichia coli where different DNA methylation patterns within the cis-regulatory sequence of the agn43 gene turn on or off a fluorescent reporter (CFP). With this system we demonstrated that DNA methylation patterns not only accompany the horizontal transfer of genes into the bacterial cytoplasm but can be transferred into chromosomes by: (i) bacteriophage P1 transduction; and (ii) transformation of extracellular synthetic DNA. We also modified the experimental system by replacing CFP with the SgrS small RNA, which regulates glucose and methyl α-D-glucoside uptake, and showed that horizontally acquired DNA methylation patterns can increase or decrease cell fitness. That is, horizontally acquired DNA methylation patterns can result in the selection for and against cells that have HGT. Findings from these proof-of-concept experiments have applications in synthetic biology and potentially broad implications for bacterial adaptation and evolution. PMID:27084942

  8. Y-Chromosomal DNA Variation in Pakistan

    PubMed Central

    Qamar, Raheel; Ayub, Qasim; Mohyuddin, Aisha; Helgason, Agnar; Mazhar, Kehkashan; Mansoor, Atika; Zerjal, Tatiana; Tyler-Smith, Chris; Mehdi, S. Qasim

    2002-01-01

    Eighteen binary polymorphisms and 16 multiallelic, short-tandem-repeat (STR) loci from the nonrecombining portion of the human Y chromosome were typed in 718 male subjects belonging to 12 ethnic groups of Pakistan. These identified 11 stable haplogroups and 503 combination binary marker/STR haplotypes. Haplogroup frequencies were generally similar to those in neighboring geographical areas, and the Pakistani populations speaking a language isolate (the Burushos), a Dravidian language (the Brahui), or a Sino-Tibetan language (the Balti) resembled the Indo-European–speaking majority. Nevertheless, median-joining networks of haplotypes revealed considerable substructuring of Y variation within Pakistan, with many populations showing distinct clusters of haplotypes. These patterns can be accounted for by a common pool of Y lineages, with substantial isolation between populations and drift in the smaller ones. Few comparative genetic or historical data are available for most populations, but the results can be compared with oral traditions about origins. The Y data support the well-established origin of the Parsis in Iran, the suggested descent of the Hazaras from Genghis Khan’s army, and the origin of the Negroid Makrani in Africa, but do not support traditions of Tibetan, Syrian, Greek, or Jewish origins for other populations. PMID:11898125

  9. Y-chromosomal DNA variation in Pakistan.

    PubMed

    Qamar, Raheel; Ayub, Qasim; Mohyuddin, Aisha; Helgason, Agnar; Mazhar, Kehkashan; Mansoor, Atika; Zerjal, Tatiana; Tyler-Smith, Chris; Mehdi, S Qasim

    2002-05-01

    Eighteen binary polymorphisms and 16 multiallelic, short-tandem-repeat (STR) loci from the nonrecombining portion of the human Y chromosome were typed in 718 male subjects belonging to 12 ethnic groups of Pakistan. These identified 11 stable haplogroups and 503 combination binary marker/STR haplotypes. Haplogroup frequencies were generally similar to those in neighboring geographical areas, and the Pakistani populations speaking a language isolate (the Burushos), a Dravidian language (the Brahui), or a Sino-Tibetan language (the Balti) resembled the Indo-European-speaking majority. Nevertheless, median-joining networks of haplotypes revealed considerable substructuring of Y variation within Pakistan, with many populations showing distinct clusters of haplotypes. These patterns can be accounted for by a common pool of Y lineages, with substantial isolation between populations and drift in the smaller ones. Few comparative genetic or historical data are available for most populations, but the results can be compared with oral traditions about origins. The Y data support the well-established origin of the Parsis in Iran, the suggested descent of the Hazaras from Genghis Khan's army, and the origin of the Negroid Makrani in Africa, but do not support traditions of Tibetan, Syrian, Greek, or Jewish origins for other populations.

  10. Chromosomal and DNA ploidy characterization of salivary gland neoplasms by combined FISH and flow cytometry.

    PubMed

    El-Naggar, A K; Dinh, M; Tucker, S L; Gillenwater, A; Luna, M A; Batsakis, J G

    1997-08-01

    Concurrent DNA ploidy by flow cytometry and interphase FISH analysis of chromosomes 6 through 12, 17, 18, X, and Y were prospectively performed on 22 salivary gland neoplasms (four benign and 18 malignant) to investigate the diagnostic and biological implications of their alterations in these neoplasms. Our results show that benign neoplasms lack DNA aneuploidy and numerical chromosomal abnormalities. Low-grade malignant neoplasms, except for two lesions, manifested small chromosomal gains and losses and were generally DNA diploid or near-diploid aneuploid, whereas all high-grade tumors showed marked polysomy and were DNA aneuploid. Marked intratumoral and intertumoral chromosomal heterogeneity also were noted in and between individual tumors. Although polysomy was the main finding in DNA aneuploid lesions, monosomy was more noted in DNA diploid neoplasms and was restricted to chromosomes 8, 11, and 17. Significant correlation between the DNA index, chromosomal aneusomy, histological grade, and tumor stage was noted. Our study indicates that (1) benign salivary gland neoplasms lack gross DNA content and numerical chromosomal abnormalities, (2) clonal chromosomal alterations are manifested in most DNA diploid and all DNA aneuploid malignant tumors, (3) chromosomal gain is the most common alteration; chromosomal loss is less frequent and restricted to certain chromosomes, and (4) DNA aneuploidy and chromosomal aneusomy characterize tumors with aggressive features.

  11. Regulated chromosomal DNA replication in the absence of a nucleus.

    PubMed

    Walter, J; Sun, L; Newport, J

    1998-03-01

    Using Xenopus egg extracts, we have developed a completely soluble system for eukaryotic chromosomal DNA replication. In the absence of a nuclear envelope, a single, complete round of ORC-dependent DNA replication is catalyzed by cytosolic and nuclear extracts added sequentially to demembranated sperm chromatin or prokaryotic plasmid DNA. The absence of rereplication is explained by an activity present in the nucleus that prevents the binding of MCM to chromatin. Our results indicate that the role of the nuclear envelope in DNA replication is to concentrate activators and inhibitors of replication inside the nucleus. In addition, they provide direct evidence that metazoans use the same strategy as yeast to activate DNA replication and to restrict it to a single round per cell cycle.

  12. Chromosomal organization of repetitive DNA in Sorubim lima (Teleostei; Pimelodidae).

    PubMed

    Sczepanski, T S; Vicari, M R; de Almeida, M C; Nogaroto, V; Artoni, R F

    2013-01-01

    Interspaced repetitive DNA elements and segmental duplications have been extensively analyzed in fishes through physical chromosome mapping methods, providing a better comprehension of the structure and organization of the genome of this group. In order to contribute to this scenario, a sequence integration study of different classes of repetitive DNA with high resolution physical chromosome mapping was performed in Sorubim lima. Fluorescence in situ hybridization (FISH) and fiber-FISH with probes for 18S and 5S rRNA genes, TTAGGGn sequence and non-LTR retrotransposon family members Rex1, Rex3 and Rex6 showed that non-LTR elements may be dispersed in the chromosome set with relative concentration in heterochromatic regions, as shown by Rex1, or may even intercalate in 45S rDNA and the telomeric sequence, as found for Rex3 and Rex6. These results reinforce the presence of preferential regions of retroelement accumulation and contribute to a better understanding of the genomic organization of some repetitive DNA classes in fishes. PMID:24060610

  13. Osmium complexation of mismatched DNA: effect of the bases adjacent to mismatched 5-methylcytosine.

    PubMed

    Nomura, Akiko; Tainaka, Kazuki; Okamoto, Akimitsu

    2009-03-18

    The efficiency of osmium complex formation at 5-methylcytosine in mismatched DNA duplexes is a key point for the design of sequence-specific detection of DNA methylation. Osmium complexation was not observed in fully matched duplexes, whereas the complexation site and efficiency in mismatched duplexes changed depending on the type of 5'-neighboring base of the 5-methylcytosine forming a mismatched base pair. In particular, when the base adjacent to the 5' side of the mismatched base pair was thymine, a unique "side reaction" was observed. However, the nature of the mismatched base pairs in the reaction site did not influence the selectivity of osmium complex formation with methylated DNA.

  14. Snaps and mends: DNA breaks and chromosomal translocations.

    PubMed

    Javadekar, Saniya M; Raghavan, Sathees C

    2015-07-01

    Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.

  15. The DNA sequence and biology of human chromosome 19

    SciTech Connect

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  16. The DNA sequence and biology of human chromosome 19

    SciTech Connect

    Grimwood, Jane; Gordon, Laurie A.; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A.; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M.; Glavina, Tijana; Gomez, Maria; Gonzales, Eldelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Issac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P.; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S.; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E.; Pennacchio, Len A.; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S.; Myers, Richard M.; Rubin, Edward M.; Lucas, Susan M.

    2003-09-15

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G1C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9 percent of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25 percent of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, a nd segments of coding and non-coding conservation with the distant fish species Takifugu.

  17. Characterization of microsatellite markers adjacent to AP-4 on chromosome 16p13.3.

    PubMed

    Bae, Y; Kim, H; Namgoong, H; Baek, M; Lee, J; Hwang, D; Hwang, Y; Ahn, C; Kang, S

    2001-10-01

    The 1400 kb genomic sequence between the markers D16S406 and D16S423 on chromosome 16p13.3 has been recently sequenced and the interval contains a transcription factor, AP-4, that was identified as a ligand for immunoglobulin-kappa promoter E-box elements,(1)suggesting that AP-4 may be related to immunodeficiency diseases. In addition, chromosome 16p13.3 includes a number of genes including the PKD1 gene,(2,3)the autosomal dominant polycystic kidney disease (ADPKD) gene. ADPKD is characterized by progressive development and enlargement of renal cysts.(4)The size and genomic complexity of the PKD1 gene makes it impractical to detect mutations for prenatal diagnosis. Therefore, pedigree-based linkage analysis remains useful for diagnosis of ADPKD. To increase the number of polymorphic markers in the region around AP-4 gene, we performed database searches of 1400 kb of genomic sequence (from contig NT000677 to NT001573: http://www.ncbi.gov/genome/seq.cgi) across the 16p13.3. A number of dinucleotide or tetranucleotide repeats were found, and 20 microsatellites that contain more than 15 contiguous repeats were chosen for further investigation.

  18. A New Fractal Model of Chromosome and DNA Processes

    NASA Astrophysics Data System (ADS)

    Bouallegue, K.

    Dynamic chromosome structure remains unknown. Can fractals and chaos be used as new tools to model, identify and generate a structure of chromosomes?Fractals and chaos offer a rich environment for exploring and modeling the complexity of nature. In a sense, fractal geometry is used to describe, model, and analyze the complex forms found in nature. Fractals have also been widely not only in biology but also in medicine. To this effect, a fractal is considered an object that displays self-similarity under magnification and can be constructed using a simple motif (an image repeated on ever-reduced scales).It is worth noting that the problem of identifying a chromosome has become a challenge to find out which one of the models it belongs to. Nevertheless, the several different models (a hierarchical coiling, a folded fiber, and radial loop) have been proposed for mitotic chromosome but have not reached a dynamic model yet.This paper is an attempt to solve topological problems involved in the model of chromosome and DNA processes. By combining the fractal Julia process and the numerical dynamical system, we have finally found out four main points. First, we have developed not only a model of chromosome but also a model of mitosis and one of meiosis. Equally important, we have identified the centromere position through the numerical model captured below. More importantly, in this paper, we have discovered the processes of the cell divisions of both mitosis and meiosis. All in all, the results show that this work could have a strong impact on the welfare of humanity and can lead to a cure of genetic diseases.

  19. Human chromosome-specific DNA libraries: construction and availability

    SciTech Connect

    Van Dilla, M.A.; Deaven, L.L.; Albright, K.L.; Allen, N.A.; Aubuchon, M.R.; Bartholdi, M.F.; Brown, N.C.; Campbell, E.W.; Carrano, A.V.; Clark, L.M.; Cram, L.S.

    1986-06-01

    The goal of the National Laboratory Gene Library Project at the Los Alamos and Lawrence Livermore National Laboratories is the production of chromosome-specific human gene libraries and their distribution to the scientific community for studies of the molecular biology of genes and chromosomes, and for the study and diagnosis of genetic disease. The specific aim of Phase I of the project is the production of complete digest (4 kb average insert size) libraries from each of the 24 human chromosomal types purified by flow sorting. The bacteriophage vector is Charon 21A, which has both Eco R1 and Hind III insertion sites accommodating human DNA fragments up to 9.1 kb in size. Each laboratory has undertaken production of a complete set of chromosome-specific libraries, Los Alamos with Eco R1 and Livermore with Hind III; most of this task has now been accomplished. Close to 1200 library aliquots have been sent to about 300 laboratories world-wide through February 1986, at which time repository and distribution functions were transferred to the American Type Culture Collection, Rockville, MD. Following Phase I, libraries will be constructed with large inserts in a more advanced, recently developed bacteriophage vector (about 20 kb inserts) or in a cosmid vector (about 40 kb inserts), and with characteristics better suited to basic studies of gene structure and function.

  20. The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication.

    PubMed

    Oldenburg, Delene J; Bendich, Arnold J

    2016-05-01

    The structure of a chromosomal DNA molecule may influence the way in which it is replicated and inherited. For decades plastid DNA (ptDNA) was believed to be circular, with breakage invoked to explain linear forms found upon extraction from the cell. Recent evidence indicates that ptDNA in vivo consists of linear molecules with discrete termini, although these ends were not characterized. We report the sequences of two terminal regions, End1 and End2, for maize (Zea mays L.) ptDNA. We describe structural features of these terminal regions and similarities found in other plant ptDNAs. The terminal sequences are within inverted repeat regions (leading to four genomic isomers) and adjacent to origins of replication. Conceptually, stem-loop structures may be formed following melting of the double-stranded DNA ends. Exonuclease digestion indicates that the ends in maize are unobstructed, but tobacco (Nicotiana tabacum L.) ends may have a 5'-protein. If the terminal structure of ptDNA molecules influences the retention of ptDNA, the unprotected molecular ends in mature leaves of maize may be more susceptible to degradation in vivo than the protected ends in tobacco. The terminal sequences and cumulative GC skew profiles are nearly identical for maize, wheat (Triticum aestivum L.) and rice (Oryza sativa L.), with less similarity among other plants. The linear structure is now confirmed for maize ptDNA and inferred for other plants and suggests a virus-like recombination-dependent replication mechanism for ptDNA. Plastid transformation vectors containing the terminal sequences may increase the chances of success in generating transplastomic cereals. PMID:26650613

  1. Identification of specific DNA methylation sites on the Y-chromosome as biomarker in prostate cancer.

    PubMed

    Yao, Lushuai; Ren, Shancheng; Zhang, Minjie; Du, Fengxia; Zhu, Yasheng; Yu, Hui; Zhang, Chenyu; Li, Xiaohua; Yang, Caiyun; Liu, Huixian; Wang, Dong; Meng, Hao; Chang, Shuang; Han, Xiao; Sun, Yinghao; Sun, Yingli

    2015-12-01

    As a diagnostic biomarker, prostate special antigen (PSA) tests always generate false positive results and lead to unnecessary and/or repeat biopsies. Therefore, there is an urgent need for developing more sensitive, specific diagnostic biomarkers. We epigenotyped methylated sites in cancer tissues and adjacent normal tissues from 66 patients. In comparison with normal adjacent tissues, we observed that there were 6 aberrant methylation sites in prostate cancer tissues on the Y-chromosome. We further performed pyrosequencing using urine of PCa patients and we identified one methylated site (cg05163709) as a potential biomarker. We evaluated the predictive capacity of the aberrant methylated sites using the area under receiver operating characteristic (ROC) curve (AUC). The ROC analysis showed a higher AUC for cg05163709 (0.915) than prostate-specific antigen (PSA, 0.769). These results indicated that aberrant DNA methylation of cg05163709 on the Y-chromosome could serve as a potential diagnostic biomarker with high sensitivity and specificity.

  2. Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences

    PubMed Central

    2013-01-01

    Background The accumulation of repetitive DNA during sex chromosome differentiation is a common feature of many eukaryotes and becomes more evident after recombination has been restricted or abolished. The accumulated repetitive sequences include multigene families, microsatellites, satellite DNAs and mobile elements, all of which are important for the structural remodeling of heterochromatin. In grasshoppers, derived sex chromosome systems, such as neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X2X2♀, are frequently observed in the Melanoplinae subfamily. However, no studies concerning the evolution of sex chromosomes in Melanoplinae have addressed the role of the repetitive DNA sequences. To further investigate the evolution of sex chromosomes in grasshoppers, we used classical cytogenetic and FISH analyses to examine the repetitive DNA sequences in six phylogenetically related Melanoplinae species with X0♂/XX♀, neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X2X2♀ sex chromosome systems. Results Our data indicate a non-spreading of heterochromatic blocks and pool of repetitive DNAs (C0t-1 DNA) in the sex chromosomes; however, the spreading of multigene families among the neo-sex chromosomes of Eurotettix and Dichromatos was remarkable, particularly for 5S rDNA. In autosomes, FISH mapping of multigene families revealed distinct patterns of chromosomal organization at the intra- and intergenomic levels. Conclusions These results suggest a common origin and subsequent differential accumulation of repetitive DNAs in the sex chromosomes of Dichromatos and an independent origin of the sex chromosomes of the neo-XY and neo-X1X2Y systems. Our data indicate a possible role for repetitive DNAs in the diversification of sex chromosome systems in grasshoppers. PMID:23937327

  3. Analysis of chromosome band 1p36 alterations by chromosomal in situ suppression hybridization with a microclone DNA bank.

    PubMed

    Zink, D; Weith, A; Martinsson, T; Schwab, M

    1991-09-01

    Alterations of the distal portion of chromosome Ip are a recurrent abnormality of several types of human cancer. In this study we show that chromosomal in situ suppression hybridization with a regional 1p36 DNA bank generated by microdissection and microcloning can be employed to detect translocations involving 1p36.

  4. Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia.

    PubMed

    Steflova, P; Hobza, R; Vyskot, B; Kejnovsky, E

    2014-01-01

    Chloroplast DNA (cpDNA) sequences are often found in plant nuclear genomes, but patterns of their chromosomal distribution are not fully understood. The distribution of cpDNA on the sex chromosomes can only be studied in dioecious plant species possessing heteromorphic sex chromosomes. We reconstructed the whole chloroplast genome of Rumex acetosa (sorrel, XY1Y2 system) from next generation sequencing data. We systematically mapped the chromosomal localization of various regions of cpDNA in R. acetosa and in Silene latifolia (white campion, XY system) using fluorescence in situ hybridization. We found that cpDNA was accumulated on the Y chromosomes of both studied species. In R. acetosa, the entire Y chromosome gathered all parts of cpDNA equally. On the contrary, in S. latifolia, the majority of the cpDNA, corresponding to the single copy regions, was localized in the centromere of the Y chromosome, while the inverted repeat region was present also in other loci. We found a stronger accumulation of cpDNA on the more degenerated Y1 and Y2 chromosomes of R. acetosa than in evolutionary younger S. latifolia Y chromosome. Our data stressed the prominent role of the Y chromosome centromere in cpDNA accumulation.

  5. High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera).

    PubMed

    Panzera, Y; Pita, S; Ferreiro, M J; Ferrandis, I; Lages, C; Pérez, R; Silva, A E; Guerra, M; Panzera, F

    2012-01-01

    In this paper, we determine by fluorescent in situ hybridization the variability in the chromosomal location of 45S rDNA clusters in 38 species belonging to 7 genera of the Triatominae subfamily, using a triatomine-specific 18S rDNA probe. Our results show a striking variability at the inter- and intraspecific level, never reported so far in holocentric chromosomes, revealing the extraordinary genomic dynamics that occurred during the evolution in this group of insects. Our results also demonstrate that the chromosomal position of rDNA clusters is an important marker to disclose chromosomal differentiation in species karyotypically homogenous in their chromosome number.

  6. Plantago lagopus B Chromosome Is Enriched in 5S rDNA-Derived Satellite DNA.

    PubMed

    Kumke, Katrin; Macas, Jiří; Fuchs, Jörg; Altschmied, Lothar; Kour, Jasmeet; Dhar, Manoj K; Houben, Andreas

    2016-01-01

    B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Using advanced sequencing technology, we in silico characterized the high-copy DNA composition of Plantago lagopus with and without B chromosomes. The nuclear genome (2.46 pg/2C) was found to be relatively rich in repetitive sequences, with highly and moderately repeated elements making up 68% of the genome. Besides a centromere-specific marker, we identified a B-specific satellite and a repeat enriched in polymorphic A chromosome segments. The B-specific tandem repeat PLsatB originated from sequence amplification including 5S rDNA fragments. PMID:27173804

  7. Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae)

    PubMed Central

    2009-01-01

    The location of 18S and 5S rDNA sites was determined in eight species and populations of the fish genus Triportheus by using fluorescent in situ hybridization (FISH). The males and females of all species had 2n = 52 chromosomes and a ZZ/ZW sex chromosome system. A single 18S rDNA site that was roughly equivalent to an Ag-NOR was detected on the short arms of a submetacentric pair in nearly all species, and up to two additional sites were also observed in some species. In addition, another 18S rDNA cluster was identified in a distal region on the long arms of the W chromosome; this finding corroborated previous evidence that this cluster would be a shared feature amongst Triportheus species. In T. angulatus, a heterozygotic paracentric inversion involving the short arms of one homolog of a metacentric pair was associated with NORs. The 5S rDNA sites were located on the short arms of a single submetacentric chromosomal pair, close to the centromeres, except in T. auritus, which had up to ten 5S rDNA sites. The 18S and 5S rDNA sites were co-localized and adjacent on the short arms of a chromosomal pair in two populations of T. nematurus. Although all Triportheus species have a similar karyotypic macrostructure, the results of this work show that in some species ribosomal genes may serve as species-specific markers when used in conjunction with other putatively synapomorphic features. PMID:21637644

  8. The role of recombination and RAD52 in mutation of chromosomal DNA transformed into yeast.

    PubMed Central

    Larionov, V; Graves, J; Kouprina, N; Resnick, M A

    1994-01-01

    While transformation is a prominent tool for genetic analysis and genome manipulation in many organisms, transforming DNA has often been found to be unstable relative to established molecules. We determined the potential for transformation-associated mutations in a 360 kb yeast chromosome III composed primarily of unique DNA. Wild-type and rad52 Saccharomyces cerevisiae strains were transformed with either a homologous chromosome III or a diverged chromosome III from S. carlsbergensis. The host strain chromosome III had a conditional centromere allowing it to be lost on galactose medium so that recessive mutations in the transformed chromosome could be identified. Following transformation of a RAD+ strain with the homologous chromosome, there were frequent changes in the incoming chromosome, including large deletions and mutations that do not lead to detectable changes in chromosome size. Based on results with the diverged chromosome, interchromosomal recombinational interactions were the source of many of the changes. Even though rad52 exhibits elevated mitotic mutation rates, the percentage of transformed diverged chromosomes incapable of substituting for the resident chromosome was not increased in rad52 compared to the wild-type strain, indicating that the mutator phenotype does not extend to transforming chromosomal DNA. Based on these results and our previous observation that the incidence of large mutations is reduced during the cloning of mammalian DNA into a rad52 as compared to a RAD+ strain, a rad52 host is well-suited for cloning DNA segments in which gene function must be maintained. Images PMID:7937151

  9. Multiple displacement amplification of the DNA from single flow-sorted plant chromosome.

    PubMed

    Cápal, Petr; Blavet, Nicolas; Vrána, Jan; Kubaláková, Marie; Doležel, Jaroslav

    2015-11-01

    A protocol is described for production of micrograms of DNA from single copies of flow-sorted plant chromosomes. Of 183 single copies of wheat chromosome 3B, 118 (64%) were successfully amplified. Sequencing DNA amplification products using an Illumina HiSeq 2000 system to 10× coverage and merging sequences from three separate amplifications resulted in 60% coverage of the chromosome 3B reference, entirely covering 30% of its genes. The merged sequences permitted de novo assembly of 19% of chromosome 3B genes, with 10% of genes contained in a single contig, and 39% of genes covered for at least 80% of their length. The chromosome-derived sequences allowed identification of missing genic sequences in the chromosome 3B reference and short sequences similar to 3B in survey sequences of other wheat chromosomes. These observations indicate that single-chromosome sequencing is suitable to identify genic sequences on particular chromosomes, to develop chromosome-specific DNA markers, to verify assignment of DNA sequence contigs to individual pseudomolecules, and to validate whole-genome assemblies. The protocol expands the potential of chromosome genomics, which may now be applied to any plant species from which chromosome samples suitable for flow cytometry can be prepared, and opens new avenues for studies on chromosome structural heterozygosity and haplotype phasing in plants.

  10. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    SciTech Connect

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas; Munne', Santiago; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.

  11. Chromosomal localization of 5S rDNA in Chinese shrimp ( Fenneropenaeus chinensis): a chromosome-specific marker for chromosome identification

    NASA Astrophysics Data System (ADS)

    Huan, Pin; Zhang, Xiaojun; Li, Fuhua; Zhao, Cui; Zhang, Chengsong; Xiang, Jianhai

    2010-03-01

    Chinese shrimp ( Fenneropenaeus chinensis) is an economically important aquaculture species in China. However, cytogenetic and genomic data is limited in the organism partly because the chromosomes are difficult to isolate and analyze. In this study, fluorescence in-situ hybridization (FISH) was used to identify the chromosomes of F. chinensis. The 5S ribosomal RNA gene (rDNA) of F. chinensis was isolated, cloned and then used as a hybridization probe. The results show that the 5S rDNA was located on one pair of homologous chromosomes in F. chinensis. In addition, triploid shrimp were used to evaluate the feasibility of chromosome identification using FISH and to validate the method. It was confirmed that 5S rDNA can be used as a chromosome-specific probe for chromosome identification in F. chinensis. The successful application of FISH in F. chinensis shows that chromosome-specific probes can be developed and this finding will facilitate further research on the chromosomes of penaeid shrimps.

  12. Chromosome breakages associated with 45S ribosomal DNA sequences in spotted snakehead fish Channa punctatus.

    PubMed

    Singh, Mamta; Barman, Anindya Sundar

    2013-01-01

    It is well known that transcriptionally inactive rRNA genes are correlated with DNA hyper-methylation and histone hypo-methylation and there is clear evidence in humans that DNA and histone modification which alter chromatin structure are related to chromosome fragility. Very little is known about the biological cause of 45S rDNA fragility. In this report we characterized the chromosome breakage or gap associated with 45S rDNA in a fish species Channa punctatus. The rDNA mapping in C. punctatus, showed many chromosome breakages or gap formations, and all occurred exclusively in the 45S rDNA sites in anterior kidney cells. We observed that the number of chromosomes plus chromosome fragments was often more than the expected 32 in most cells. Total 67 % metaphase spread showed the expected or normal 32 chromosomes, while 33 % metaphase spread showed 33 and/or 34 chromosomes and/or chromosome fragments. The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are also discussed in present report.

  13. Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools.

    PubMed

    de Abreu, Isabella Santiago; Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo

    2008-07-01

    The nuclear DNA content of sweet pepper (Capsicum annuum L. var. annuum, 2n = 24) has been measured by flow and image cytometries but the DNA content of each chromosome of this species has not yet been regarded. DNA content of individual chromosomes has been quantified by the flow karyotyping technique, which requires a great quantity of intact metaphasic chromosomes and methods that allow the characterization of individual chromosomes; however, the obtainment of adequate number of metaphases can be difficult in some species like C. annuum. In order to estimate the DNA content of each C. annuum var. annuum cv. "New Mexican" chromosome, flow and image cytometries were associated with the cytogenetic methodology. First, the DNA amount (2C = 6.90 pg) was established by flow cytometry. Integrated optical density (IOD) values were calculated by image cytometry for each Feulgen stained metaphasic chromosome. Then, by distributing the correspondent metaphasic value (4C = 13.80 pg) proportionally to average IOD values, the following chromosomal DNA contents were obtained in pg: 0.74 (chromosome 1), 0.67 (2), 0.61 (3, 4), 0.60 (5), 0.59 (6, 7), 0.58 (8), 0.57 (9), 0.56 (10) and 0.39 (11, 12). This study reports an alternative and reproducible technique that makes quantifying the chromosomal DNA content possible.

  14. Role of Escherichia coli DNA Polymerase I in chromosomal DNA replication fidelity

    PubMed Central

    Makiela-Dzbenska, Karolina; Jaszczur, Malgorzata; Banach-Orlowska, Magdalena; Jonczyk, Piotr; Schaaper, Roel M.; Fijalkowska, Iwona J.

    2009-01-01

    Summary We have investigated the possible role of E. coli DNA polymerase I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3'→5' exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5- to 4-fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favoring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared to other error-producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand. PMID:19843230

  15. Adjacent chromosomal regions can evolve at very different rates: evolution of the Drosophila 68C glue gene cluster.

    PubMed

    Meyerowitz, E M; Martin, C H

    1984-01-01

    The 68C puff is a highly transcribed region of the Drosophila melanogaster salivary gland polytene chromosomes. Three different classes of messenger RNA originate in a 5000-bp region in the puff; each class is translated to one of the salivary gland glue proteins sgs-3, sgs-7, or sgs-8. These messenger RNA classes are coordinately controlled, with each RNA appearing in the third larval instar and disappearing at the time of puparium formation. Their disappearance is initiated by the action of the steroid hormone ecdysterone. In the work reported here, we studied evolution of this hormone-regulated gene cluster in the melanogaster species subgroup of Drosophila. Genome blot hybridization experiments showed that five other species of this subgroup have DNA sequences that hybridize to D. melanogaster 68C sequences, and that these sequences are divided into a highly conserved region, which does not contain the glue genes, and an extraordinarily diverged region, which does. Molecular cloning of this DNA from D. simulans, D. erecta, D. yakuba, and D. teissieri confirmed the division of the region into a slowly and a rapidly evolving portion, and also showed that the rapidly evolving region of each species codes for third instar larval salivary gland RNAs homologous to the D. melanogaster glue mRNAs. The highly conserved region is at least 13,000 bp long, and is not known to code for any RNAs.

  16. Replication initiator DnaA binds at the Caulobacter centromere and enables chromosome segregation

    PubMed Central

    Mera, Paola E.; Kalogeraki, Virginia S.; Shapiro, Lucy

    2014-01-01

    During cell division, multiple processes are highly coordinated to faithfully generate genetically equivalent daughter cells. In bacteria, the mechanisms that underlie the coordination of chromosome replication and segregation are poorly understood. Here, we report that the conserved replication initiator, DnaA, can mediate chromosome segregation independent of replication initiation. It does so by binding directly to the parS centromere region of the chromosome, and mutations that alter this interaction result in cells that display aberrant centromere translocation and cell division. We propose that DnaA serves to coordinate bacterial DNA replication with the onset of chromosome segregation. PMID:25349407

  17. Natural Transformation of Azotobacter vinelandii by Adsorbed Chromosomal DNA: Role of Adsorbed DNA Conformation

    NASA Astrophysics Data System (ADS)

    Lv, N.; Zilles, J.; Nguyen, H.

    2008-12-01

    Recent increases in antibiotic resistance among pathogenic microorganisms and the accompanying public health concerns result both from the widespread use of antibiotics and from the transfer of antibiotic resistance genes among microorganisms. To understand the transfer of antibiotic resistance genes and identify efficient measures to minimize these transfers, an interdisciplinary approach was used to identify physical and chemical factors that control the fate and biological availability of extracellular DNA. Quartz crystal microbalance with dissipation (QCM-D) was used to study extracellular DNA adsorption and the conformation of the adsorbed DNA on silica and natural organic matter (NOM) surfaces. Solution chemistry was varied systematically to investigate the role of adsorbed DNA conformation on transformation. Gene transfer was assessed under the same conditions using natural transformation of chromosomal DNA into the soil bacteria Azotobacter vinelandii. DNA adsorbed to both silica and NOM surfaces has a more compact and rigid conformation in the presence of Ca2+ compared to Na+. Extracellular DNA adsorbed on silica and NOM surfaces transformed A. vinelandii. The transformation efficiency of adsorbed DNA was up to 4 orders of magnitude lower than that of dissolved DNA. Preliminary results suggest that the presence of Ca2+ in groundwater (e.g. hardness) reduces the availability of adsorbed DNA for transformation.

  18. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability

    PubMed Central

    Wang, Guliang; Vasquez, Karen M.

    2009-01-01

    Regions of genomic DNA containing repetitive nucleotide sequences can adopt a number of different structures in addition to the canonical B-DNA form: many of these non-B DNA structures are causative factors in genetic instability and human disease. Although chromosomal DNA replication through such repetitive sequences has been considered a major cause of non-B form DNA structure-induced genetic instability, it is also observed in non-proliferative tissues. In this review, we discuss putative mechanisms responsible for the mutagenesis induced by non-B DNA structures in the absence of chromosomal DNA replication. PMID:19123200

  19. Selection of chromosomal DNA libraries using a multiplex CRISPR system.

    PubMed

    Ryan, Owen W; Skerker, Jeffrey M; Maurer, Matthew J; Li, Xin; Tsai, Jordan C; Poddar, Snigdha; Lee, Michael E; DeLoache, Will; Dueber, John E; Arkin, Adam P; Cate, Jamie H D

    2014-08-19

    The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over 10-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function.

  20. Independent Control of Replication Initiation of the Two Vibrio cholerae Chromosomes by DnaA and RctB

    PubMed Central

    Duigou, Stéphane; Knudsen, Kristine G.; Skovgaard, Ole; Egan, Elizabeth S.; Løbner-Olesen, Anders; Waldor, Matthew K.

    2006-01-01

    Although the two Vibrio cholerae chromosomes initiate replication in a coordinated fashion, we show here that each chromosome appears to have a specific replication initiator. DnaA overproduction promoted overinitiation of chromosome I and not chromosome II. In contrast, overproduction of RctB, a protein that binds to the origin of replication of chromosome II, promoted overinitiation of chromosome II and not chromosome I. PMID:16923911

  1. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila.

    PubMed

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R

    2015-10-15

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.

  2. Delimiting the Origin of a B Chromosome by FISH Mapping, Chromosome Painting and DNA Sequence Analysis in Astyanax paranae (Teleostei, Characiformes)

    PubMed Central

    Silva, Duílio M. Z. de A.; Pansonato-Alves, José Carlos; Utsunomia, Ricardo; Araya-Jaime, Cristian; Ruiz-Ruano, Francisco J.; Daniel, Sandro Natal; Hashimoto, Diogo Teruo; Oliveira, Cláudio; Camacho, Juan Pedro M.; Porto-Foresti, Fábio; Foresti, Fausto

    2014-01-01

    Supernumerary (B) chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH) is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism. PMID:24736529

  3. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains.

    PubMed

    Cotton, Allison M; Chen, Chih-Yu; Lam, Lucia L; Wasserman, Wyeth W; Kobor, Michael S; Brown, Carolyn J

    2014-03-01

    X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853

  4. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains

    PubMed Central

    Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.

    2014-01-01

    X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853

  5. Dynamic chromosome reorganization in the osprey ( Pandion haliaetus , Pandionidae, Falconiformes): relationship between chromosome size and the chromosomal distribution of centromeric repetitive DNA sequences.

    PubMed

    Nishida, C; Ishishita, S; Yamada, K; Griffin, D K; Matsuda, Y

    2014-01-01

    The osprey (Pandion haliaetus) has a diploid number of 74 chromosomes, consisting of a large number of medium-sized macrochromosomes and relatively few microchromosomes; this differs greatly from the typical avian karyotype. Chromosome painting with chicken DNA probes revealed that the karyotype of P. haliaetus differs from the chicken karyotype by at least 14 fission events involving macrochromosomes (chicken chromosomes 1-9 and Z) and at most 15 fusions of microchromosomes, suggesting that considerable karyotype reorganization occurred in P. haliaetus in a similar manner previously reported for Accipitridae. A distinct difference was observed, however, between Accipitridae and Pandionidae with respect to the pattern of chromosome rearrangements that occurred after fissions of macrochromosomes. Metacentric or submetacentric chromosomes 1-5 in P. haliaetus appear to have been formed by centric fusion of chromosome segments derived from macrochromosomal fissions. By contrast, many pairs of bi-armed chromosomes in Accipitridae species seem to result from pericentric inversions that occurred in the fission-derived chromosomes. Two families of repetitive sequences were isolated; the 173-bp PHA-HaeIII sequence occurred on all chromosomes, whereas intense signals from the 742-bp PHA-NsiI sequence were localized to all acrocentric chromosomes, with weak signals on most of the bi-armed chromosomes. Two repetitive sequences cohybridized in the centromeric heterochromatin; however, the sequences differed in unit size, nucleotide sequence and GC content. The results suggest that the 2 sequence families originated from different ancestral sequences and were homogenized independently in centromeres, and that a chromosome size-dependent compartmentalization may have been lost in P. haliaetus. PMID:24513810

  6. The FIS protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli.

    PubMed Central

    Gille, H; Egan, J B; Roth, A; Messer, W

    1991-01-01

    The FIS protein (factor for inversion stimulation) is known to stimulate site-specific recombination processes, such as the inversion of the G segment of bacteriophage Mu, by binding to specific enhancer sequences. It has also been shown to activate transcription from rRNA promoters both in vitro and in vivo. We have identified a specific binding site for FIS in the center of the origin of chromosomal DNA replication, oriC. The DNA bends upon FIS binding. Occupation of the FIS site and binding of DnaA, the initiator protein, to its adjacent binding site (R3) are mutually exclusive. A fis mutant strain can not be efficiently transformed with plasmids which carry and replicate from oriC, suggesting that FIS is required for minichromosome replication. Images PMID:1870971

  7. Cell death caused by excision of centromeric DNA from a chromosome in Saccharomyces cerevisiae.

    PubMed

    Miyamoto, Akihiro; Yanamoto, Toshiaki; Matsumoto, Takehiro; Hatano, Takushi; Matsuzaki, Hiroaki

    2013-01-01

    If genetically modified organisms (GMOs) are spread through the natural environment, it might affect the natural environment. To help prevent the spread of GMOs, we examined whether it is possible to introduce conditional lethality by excising centromeric DNA from a chromosome by site-specific recombination in Saccharomyces cerevisiae as model organism. First, we constructed haploid cells in which excision of the centromeric DNA from chromosome IV can occur due to recombinase induced by galactose. By this excision, cell death can occur. In diploid cells, cell death can also occur by excision from both homologous chromosomes IV. Furthermore, cell death can occur in the case of chromosome V. A small number of surviving cells appeared with excision of centromeric DNA, and the diploid showed greater viability than the haploid in both chromosomes IV and V. The surviving cells appeared mainly due to deletion of a recombination target site (RS) from the chromosome. PMID:24018677

  8. Immunofluorescent characterization of DNA . RNA hybrids on polytene chromosomes of Trichosia pubescens (Diptera, sciaridae).

    PubMed

    Büsen, W; Amabis, J M; Leoncini, O; Stollar, B D; Lara, F J

    1982-01-01

    We have studied the distribution of DNA X RNA hybrids on polytene chromosomes with the aid of a goat antibody against DNA X RNA hybrids using the immunofluorescence technique. Fixed polytene chromosomes of the sciarid Trichosia pubescens (Diptera) show distinct, stage-specific labelling patterns throughout larval development. Controls for the staining procedure - including preincubation with hybrid-specific endoribonuclease H - prove that DNA X RNA hybrids are present on fixed chromosomes. They are revealed only under mild fixation conditions which do not efficiently immobilize all chromosomal proteins, indicating that some proteins have to be removed to make the antigens accessible to antibody. Certain fixation conditions may also cause local denaturation of chromosomal DNA, and some hybrids may possibly form during specimen preparation. After incorporation of radioactive uridine, a combination of phase contrast, fluorescent, and autoradiographic images of one and the same chromosomal preparation demonstrates that hybrid fluorescence is confined to transcriptionally active regions. Two puff classes can be distinguished. The first binds antibody and includes most RNA puffs and all DNA puffs so far studied; the second, comprising some RNA puffs, does not show bright fluorescence in spite of the fact that RNA synthesis is high as revealed by 3H-uridine incorporation. DNA X RNA hybrids are not found at DNA puff sites during the DNA amplification period; these sites contain detectable hybrids only when transcription is taking place. - Combination of the fluorescent technique with its excellent resolution and autoradiography should be helpful in studying detailed topological aspects of transcriptionally active chromosomal regions.

  9. Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus.

    PubMed

    Teranishi, M; Shimada, Y; Hori, T; Nakabayashi, O; Kikuchi, T; Macleod, T; Pym, R; Sheldon, B; Solovei, I; Macgregor, H; Mizuno, S

    2001-01-01

    The male hypermethylated (MHM) region, located near the middle of the short arm of the Z chromosome of chickens, consists of approximately 210 tandem repeats of a BamHI 2.2-kb sequence unit. Cytosines of the CpG dinucleotides of this region are extensively methylated on the two Z chromosomes in the male but much less methylated on the single Z chromosome in the female. The state of methylation of the MHM region is established after fertilization by about the 1-day embryonic stage. The MHM region is transcribed only in the female from the particular strand into heterogeneous, high molecular-mass, non-coding RNA, which is accumulated at the site of transcription, adjacent to the DMRT1 locus, in the nucleus. The transcriptional silence of the MHM region in the male is most likely caused by the CpG methylation, since treatment of the male embryonic fibroblasts with 5-azacytidine results in hypo-methylation and active transcription of this region. In ZZW triploid chickens, MHM regions are hypomethylated and transcribed on the two Z chromosomes, whereas MHM regions are hypermethylated and transcriptionally inactive on the three Z chromosomes in ZZZ triploid chickens, suggesting a possible role of the W chromosome on the state of the MHM region. PMID:11321370

  10. Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes.

    PubMed

    Joshi, Ricky S; Piña, Benjamin; Roca, Joaquim

    2010-02-17

    How DNA helical tension is constrained along the linear chromosomes of eukaryotic cells is poorly understood. In this study, we induced the accumulation of DNA (+) helical tension in Saccharomyces cerevisiae cells and examined how DNA transcription was affected along yeast chromosomes. The results revealed that, whereas the overwinding of DNA produced a general impairment of transcription initiation, genes situated at <100 kb from the chromosomal ends gradually escaped from the transcription stall. This novel positional effect seemed to be a simple function of the gene distance to the telomere: It occurred evenly in all 32 chromosome extremities and was independent of the atypical structure and transcription activity of subtelomeric chromatin. These results suggest that DNA helical tension dissipates at chromosomal ends and, therefore, provides a functional indication that yeast chromosome extremities are topologically open. The gradual escape from the transcription stall along the chromosomal flanks also indicates that friction restrictions to DNA twist diffusion, rather than tight topological boundaries, might suffice to confine DNA helical tension along eukaryotic chromatin.

  11. Acquisition of telomere repeat sequences by transfected DNA integrated at the site of a chromosome break

    SciTech Connect

    Murnane, J.P.; Lohchung Yu )

    1993-02-01

    Rearrangement of the human genome is an important element in both cancer biology and genetic disease. Rearrangements that have been observed include deletions, translocations, chromosome breakage or loss, and gene amplification. Transfection of the DNA into mammalian cells can created instability in the genome. The characterization of DNA rearrangement associated with transfected DNA may provide information about the general mechanisms involved in genomic instability. This genomic instability is an important aspect of tumor cell progression. This research examines chromosome breakage and rearrangement that results in interstitial telomere repeat sequences within the human genome. These sequences could promote genomic instability because short repeat sequences can be recombination hotspots. Also, DNA rearrangements involving telomere repeat sequences can be associated with chromosome breaks. The introduction of telomere repeat sequences at spontaneous or ionizing radiation-induced DNA strand breaks may therefore also be a mechanism of chromosome fragmentation. 52 refs., 7 figs.

  12. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae): emphasis in the organization of repetitive DNA sequences

    PubMed Central

    2012-01-01

    Background To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH) mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE). Results The conventional analysis detected 3 individuals (among 50 analyzed) carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. Conclusions The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens. PMID:23131070

  13. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

    PubMed Central

    Šimková, Hana; Svensson, Jan T; Condamine, Pascal; Hřibová, Eva; Suchánková, Pavla; Bhat, Prasanna R; Bartoš, Jan; Šafář, Jan; Close, Timothy J; Doležel, Jaroslav

    2008-01-01

    Background Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. Results Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA). Overnight amplification in a 20-microlitre reaction produced 3.7 – 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA) for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H – 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. Conclusion The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which considerably expands the potential

  14. [Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species].

    PubMed

    Xu, Yan-Hao; Yang, Fei; Cheng, You-Lin; Ma, Lu; Wang, Jian-Bo; Li, Li-Jia

    2007-05-01

    Fluorescence in situ hybridization (FISH) and double FISH experiments were carried out to ascertain the chromosomal distribution patterns of the 45S and 5S ribosomal DNAs in the three species of Cucurbitaceae. Five pairs of 45S rDNA loci and two pairs of 5S rDNA signals were detected on chromosomes of Cucurbita moschata Duch. Luffa cylindrical Roem. contained five pairs of 45S rDNA loci and one pair of 5S rDNA loci. In Benincasa hispida Cogn., two pairs of 45S rDNA sites and one pair of 5S rDNA site were detected. In this species, 5S rDNA and one pair of the 45S loci were collocated closely in chromosome 7S. 45S rDNA chromosomal distribution patterns were highly conserved among the three species, althoufh their number varied markedly. The 5S rDNA sites on chromosomes among the three species were highly polymorphic. We further discussed differentially evolutionary processes of 45S and 5S rDNA in plant genomes.

  15. DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae.

    PubMed Central

    Budd, M E; Campbell, J L

    1993-01-01

    Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork. PMID:8417347

  16. A model of DNA repeat-assembled mitotic chromosomal skeleton.

    PubMed

    Tang, Shao-Jun

    2011-01-01

    Despite intensive investigation for decades, the principle of higher-order organization of mitotic chromosomes is unclear. Here, I describe a novel model that emphasizes a critical role of interactions of homologous DNA repeats (repetitive elements; repetitive sequences) in mitotic chromosome architecture. According to the model, DNA repeats are assembled, via repeat interactions (pairing), into compact core structures that govern the arrangement of chromatins in mitotic chromosomes. Tandem repeat assemblies form a chromosomal axis to coordinate chromatins in the longitudinal dimension, while dispersed repeat assemblies form chromosomal nodes around the axis to organize chromatins in the halo. The chromosomal axis and nodes constitute a firm skeleton on which non-skeletal chromatins can be anchored, folded, and supercoiled.

  17. Characterization and chromosomal distribution of satellite DNA sequences of the water buffalo (Bubalus bubalis).

    PubMed

    Tanaka, K; Matsuda, Y; Masangkay, J S; Solis, C D; Anunciado, R V; Namikawa, T

    1999-01-01

    Satellite DNA sequences were isolated from the water buffalo (Bubalus bubalis) after digestion with two restriction endonucleases, BamHI and StuI. These satellite DNAs of the water buffalo were classified into two types by sequence analysis: one had an approximately 1,400 bp tandem repeat unit with 79% similarity to the bovine satellite I DNA; the other had an approximately 700 bp tandem repeat unit with 81% similarity to the bovine satellite II DNA. The chromosomal distribution of the satellite DNAs were examined in the river-type and the swamp-type buffaloes with direct R-banding fluorescence in situ hybridization. Both the buffalo satellite DNAs were localized to the centromeric regions of all chromosomes in the two types of buffaloes. The hybridization signals with the buffalo satellite I DNA on the acrocentric autosomes and X chromosome were much stronger than that on the biarmed autosomes and Y chromosome, which corresponded to the distribution of C-band-positive centromeric heterochromatin. This centromere-specific satellite DNA also existed in the interstitial region of the long arm of chromosome 1 of the swamp-type buffalo, which was the junction of the telomere-centromere tandem fusion that divided the karyotype in the two types of buffaloes. The intensity of the hybridization signals with buffalo satellite II DNA was almost the same over all the chromosomes, including the Y chromosome, and no additional hybridization signal was found in noncentromeric sites.

  18. Selection of chromosomal DNA libraries using a multiplex CRISPR system

    PubMed Central

    Ryan, Owen W; Skerker, Jeffrey M; Maurer, Matthew J; Li, Xin; Tsai, Jordan C; Poddar, Snigdha; Lee, Michael E; DeLoache, Will; Dueber, John E; Arkin, Adam P; Cate, Jamie HD

    2014-01-01

    The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over 10-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function. DOI: http://dx.doi.org/10.7554/eLife.03703.001 PMID:25139909

  19. Regions of the polytene chromosomes of Drosophila virilis carrying multiple dispersed p Dv 111 DNA sequences

    SciTech Connect

    Gubenko, I.S.; Evgen'ev, M.B.

    1986-09-01

    The cloned sequences of p Dv 111 DNA hybridized in situ with more than 170 regions of Drosophila virilis salivary gland chromosomes. Comparative autoradiography of in situ hybridization and the nature of pulse /sup 3/H-thymidine and /sup 3/H-deoxycytidine incorporation into the polytene chromosomes of D. virilis at the puparium formation stage showed that the hybridization sites of p Dv 111 are distributed not only in the heterochromatic regions but also in the euchromatic regions of the chromosomes that are not late replicating. Two distinct bands of hybridization of p Dv 111 /sup 3/H-DNA were observed in the region of the heat shock puff 20CD. The regions of the distal end of chromosome 2, in which breaks appeared during radiation-induced chromosomal rearrangements, hybridized with the p Dv 111 DNA.

  20. Isolation and mapping of human chromosome 21 cDNA: Progress in constructing a chromosome 21 expression map

    SciTech Connect

    Jan-Fang Cheng; Boyartchuk, V.; Zhu Y.

    1994-09-01

    We have isolated 175 cDNA clones from a fetal brain library by direct cDNA selection using genomic DNA isolated from pools of human chromosome 21 (HC21) cosmids. DNA sequences have revealed that 16 of these cDNA clones contain overlapping sequences. Of the other 159 cDNA sequences, 10 match previously identified HC21 genes, and 9 match previously determined cDNA sequences, including the Wilms tumor related transcript (QM), the human testican cDNA, the mammalian calponin cDNA, and 6 anonymous expressed sequence tags. All isolated cDNAs were hybridized to their corresponding cosmids, which suggests that they originated from HC21. We have localized 92 cDNA clones to previously reported HC21q YACs. The remaining unmapped cDNAs contain either sequences not included in the isolated HC21q YACs or sequences that hybridize to yeast DNA. The cDNAs not included in the YACs should be useful in isolating new YACs to bridge the gaps. PCR primers were derived from 4 novel cDNA sequences that had been mapped to the YACs in the suspected Down syndrome region and used in RT-PCR analysis. All 4 primer sequences amplified RNA fragments with the expected sizes, suggesting that these sequences could be used for expression analysis. The construction of a chromosome 21 cDNA map not only is important in the refinement of physical maps, but also will identify a set of genes in the disease regions for detailed characterization. 30 refs., 2 figs., 2 tabs.

  1. Cell-Free Fetal DNA and Cell-Free Total DNA Levels in Spontaneous Abortion with Fetal Chromosomal Aneuploidy

    PubMed Central

    Lim, Ji Hyae; Kim, Min Hyoung; Han, You Jung; Lee, Da Eun; Park, So Yeon; Han, Jung Yeol; Kim, Moon Young; Ryu, Hyun Mee

    2013-01-01

    Background Cell-free fetal DNA and cell-free total DNA in maternal circulation have been proposed as potential markers for noninvasive monitoring of the placental condition during the pregnancy. However, the correlation of and change in cell-free fetal DNA and cell-free total DNA in spontaneous abortion (SA) with fetal chromosomal aneuploidy have not yet been reported. Therefore, we investigated cell-free fetal DNA and cell-free total DNA levels in SA women with fetal chromosomal aneuploidy. Methodology/Principal Findings A nested case-control study was conducted with maternal plasma collected from 268 women in their first trimester of pregnancy. Subjects included 41 SA with normal fetal karyotype, 26 SA with fetal chromosomal aneuploidy, and 201 normal controls. The unmethylated PDE9A gene was used to measure the maternal plasma levels of cell-free fetal DNA. The GAPDH gene was used to measure the maternal plasma levels of cell-free total DNA. The diagnostic accuracy was measured using receiver-operating characteristic (ROC) curves. Levels of cell-free fetal DNA and cell-free total DNA were significantly higher in both SA women with normal fetal karyotype and SA women with fetal chromosomal aneuploidy in comparison with the normal controls (P<0.001 in both). The correlation between cell-free fetal DNA and cell-free total DNA levels was stronger in the normal controls (r = 0.843, P<0.001) than in SA women with normal karyotype (r = 0.465, P = 0.002) and SA women with fetal chromosomal aneuploidy (r = 0.412, P = 0.037). The area under the ROC curve for cell-free fetal DNA and cell-free total DNA was 0.898 (95% CI, 0.852–0.945) and 0.939 (95% CI, 0.903–0.975), respectively. Conclusions Significantly high levels of cell-free fetal DNA and cell-free total DNA were found in SA women with fetal chromosomal aneuploidy. Our findings suggest that cell-free fetal DNA and cell-free total DNA may be useful biomarkers for the prediction of SA with fetal

  2. Repetitive DNA Sequences and Evolution of ZZ/ZW Sex Chromosomes in Characidium (Teleostei: Characiformes)

    PubMed Central

    Pansonato-Alves, José Carlos; da Costa Silva, Guilherme José; Vicari, Marcelo Ricardo; Artoni, Roberto Ferreira; Oliveira, Claudio; Foresti, Fausto

    2015-01-01

    Characidium constitutes an interesting model for cytogenetic studies, since a large degree of karyotype variation has been detected in this group, like the presence/absence of sex and supernumerary chromosomes and variable distribution of repetitive sequences in different species/populations. In this study, we performed a comparative cytogenetic analysis in 13 Characidium species collected at different South American river basins in order to investigate the karyotype diversification in this group. Chromosome analyses involved the karyotype characterization, cytogenetic mapping of repetitive DNA sequences and cross-species chromosome painting using a W-specific probe obtained in a previous study from Characidium gomesi. Our results evidenced a conserved diploid chromosome number of 2n = 50, and almost all the species exhibited homeologous ZZ/ZW sex chromosomes in different stages of differentiation, except C. cf. zebra, C. tenue, C. xavante and C. stigmosum. Notably, some ZZ/ZW sex chromosomes showed 5S and/or 18S rDNA clusters, while no U2 snDNA sites could be detected in the sex chromosomes, being restricted to a single chromosome pair in almost all the analyzed species. In addition, the species Characidium sp. aff. C. vidali showed B chromosomes with an inter-individual variation of 1 to 4 supernumerary chromosomes per cell. Notably, these B chromosomes share sequences with the W-specific probe, providing insights about their origin. Results presented here further confirm the extensive karyotype diversity within Characidium in contrast with a conserved diploid chromosome number. Such chromosome differences seem to constitute a significant reproductive barrier, since several sympatric Characidium species had been described during the last few years and no interespecific hybrids were found. PMID:26372604

  3. Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation.

    PubMed

    Niimi, Atsuko; Yamauchi, Motohiro; Limsirichaikul, Siripan; Sekine, Ryota; Oike, Takahiro; Sato, Hiro; Suzuki, Keiji; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2016-08-01

    Chromosomal translocations arise from misrejoining of DNA double strand breaks (DSBs) between loci located on two chromosomes. One current model suggests that spatial proximity of potential chromosomal translocation partners influences translocation probability. Ionizing radiation (IR) is a potent inducer of translocations. Accumulating evidence demonstrates that particle irradiation more frequently causes translocations compared with X-ray irradiation. This observation has led to the hypothesis that the high frequency of translocations after particle irradiation may be due to the formation of DSBs at chromosome boundaries along the particle track, because such DSBs can be misrejoined between distinct chromosomes. In this study, we simultaneously visualized the site of IR-induced DSBs and chromosome position by combining Immunofluorescence and fluorescence in situ hybridization. Importantly, the frequency of γH2AX foci at the chromosome boundary of chromosome 1 after carbon-ion irradiation was >4-fold higher than that after X-ray irradiation. This observation is consistent with the idea that particle irradiation generates DSBs at the boundaries of two chromosomes along the track. Further, we showed that resolution of γH2AX foci at chromosome boundaries is prevented by inhibition of DNA-PKcs activity, indicating that the DSB repair is NHEJ-dependent. Finally, we found that γH2AX foci at chromosome boundaries after carbon-ion irradiation contain DSBs undergoing DNA-end resection, which promotes repair utilizing microhomology mediated end-joining during translocation. Taken together, our study suggests that the frequency of DSB formation at chromosome boundaries is associated with the incidence of chromosomal translocations, supporting the notion that the spatial proximity between breaks is an important factor in translocation formation. © 2016 Wiley Periodicals, Inc.

  4. Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation.

    PubMed

    Niimi, Atsuko; Yamauchi, Motohiro; Limsirichaikul, Siripan; Sekine, Ryota; Oike, Takahiro; Sato, Hiro; Suzuki, Keiji; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2016-08-01

    Chromosomal translocations arise from misrejoining of DNA double strand breaks (DSBs) between loci located on two chromosomes. One current model suggests that spatial proximity of potential chromosomal translocation partners influences translocation probability. Ionizing radiation (IR) is a potent inducer of translocations. Accumulating evidence demonstrates that particle irradiation more frequently causes translocations compared with X-ray irradiation. This observation has led to the hypothesis that the high frequency of translocations after particle irradiation may be due to the formation of DSBs at chromosome boundaries along the particle track, because such DSBs can be misrejoined between distinct chromosomes. In this study, we simultaneously visualized the site of IR-induced DSBs and chromosome position by combining Immunofluorescence and fluorescence in situ hybridization. Importantly, the frequency of γH2AX foci at the chromosome boundary of chromosome 1 after carbon-ion irradiation was >4-fold higher than that after X-ray irradiation. This observation is consistent with the idea that particle irradiation generates DSBs at the boundaries of two chromosomes along the track. Further, we showed that resolution of γH2AX foci at chromosome boundaries is prevented by inhibition of DNA-PKcs activity, indicating that the DSB repair is NHEJ-dependent. Finally, we found that γH2AX foci at chromosome boundaries after carbon-ion irradiation contain DSBs undergoing DNA-end resection, which promotes repair utilizing microhomology mediated end-joining during translocation. Taken together, our study suggests that the frequency of DSB formation at chromosome boundaries is associated with the incidence of chromosomal translocations, supporting the notion that the spatial proximity between breaks is an important factor in translocation formation. © 2016 Wiley Periodicals, Inc. PMID:27113385

  5. The DNA sequence and biological annotation of human chromosome 1.

    PubMed

    Gregory, S G; Barlow, K F; McLay, K E; Kaul, R; Swarbreck, D; Dunham, A; Scott, C E; Howe, K L; Woodfine, K; Spencer, C C A; Jones, M C; Gillson, C; Searle, S; Zhou, Y; Kokocinski, F; McDonald, L; Evans, R; Phillips, K; Atkinson, A; Cooper, R; Jones, C; Hall, R E; Andrews, T D; Lloyd, C; Ainscough, R; Almeida, J P; Ambrose, K D; Anderson, F; Andrew, R W; Ashwell, R I S; Aubin, K; Babbage, A K; Bagguley, C L; Bailey, J; Beasley, H; Bethel, G; Bird, C P; Bray-Allen, S; Brown, J Y; Brown, A J; Buckley, D; Burton, J; Bye, J; Carder, C; Chapman, J C; Clark, S Y; Clarke, G; Clee, C; Cobley, V; Collier, R E; Corby, N; Coville, G J; Davies, J; Deadman, R; Dunn, M; Earthrowl, M; Ellington, A G; Errington, H; Frankish, A; Frankland, J; French, L; Garner, P; Garnett, J; Gay, L; Ghori, M R J; Gibson, R; Gilby, L M; Gillett, W; Glithero, R J; Grafham, D V; Griffiths, C; Griffiths-Jones, S; Grocock, R; Hammond, S; Harrison, E S I; Hart, E; Haugen, E; Heath, P D; Holmes, S; Holt, K; Howden, P J; Hunt, A R; Hunt, S E; Hunter, G; Isherwood, J; James, R; Johnson, C; Johnson, D; Joy, A; Kay, M; Kershaw, J K; Kibukawa, M; Kimberley, A M; King, A; Knights, A J; Lad, H; Laird, G; Lawlor, S; Leongamornlert, D A; Lloyd, D M; Loveland, J; Lovell, J; Lush, M J; Lyne, R; Martin, S; Mashreghi-Mohammadi, M; Matthews, L; Matthews, N S W; McLaren, S; Milne, S; Mistry, S; Moore, M J F; Nickerson, T; O'Dell, C N; Oliver, K; Palmeiri, A; Palmer, S A; Parker, A; Patel, D; Pearce, A V; Peck, A I; Pelan, S; Phelps, K; Phillimore, B J; Plumb, R; Rajan, J; Raymond, C; Rouse, G; Saenphimmachak, C; Sehra, H K; Sheridan, E; Shownkeen, R; Sims, S; Skuce, C D; Smith, M; Steward, C; Subramanian, S; Sycamore, N; Tracey, A; Tromans, A; Van Helmond, Z; Wall, M; Wallis, J M; White, S; Whitehead, S L; Wilkinson, J E; Willey, D L; Williams, H; Wilming, L; Wray, P W; Wu, Z; Coulson, A; Vaudin, M; Sulston, J E; Durbin, R; Hubbard, T; Wooster, R; Dunham, I; Carter, N P; McVean, G; Ross, M T; Harrow, J; Olson, M V; Beck, S; Rogers, J; Bentley, D R; Banerjee, R; Bryant, S P; Burford, D C; Burrill, W D H; Clegg, S M; Dhami, P; Dovey, O; Faulkner, L M; Gribble, S M; Langford, C F; Pandian, R D; Porter, K M; Prigmore, E

    2006-05-18

    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.

  6. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases

    PubMed Central

    Kurth, Isabel; Georgescu, Roxana E.; O’Donnell, Mike

    2013-01-01

    Chromosomal replication machines contain coupled DNA polymerases that simultaneously replicate the leading and lagging strands1. However, coupled replication presents a largely unrecognized topological problem. Since DNA polymerase must travel a helical path during synthesis, the physical connection between leading and lagging strand polymerases causes the daughter strands to entwine, or produces extensive buildup of negative supercoils in the newly synthesized DNA2–4. How DNA polymerases maintain their connection during coupled replication despite these topological challenges is a mystery. Here, we examine the dynamics of the E. coli replisome, by ensemble and single-molecule methods that may solve this topological problem independent of topoisomerases. We find that the lagging strand polymerase frequently releases from an Okazaki fragment before completion, leaving single-strand gaps behind. Dissociation of the polymerase does not result in loss from the replisome due to its contact with the leading-strand polymerase. This behavior, referred to as “signal release”, had been thought to require a protein, possibly primase, to pry polymerase from incompletely extended DNA fragments5–7. However, we observe that signal release is independent of primase and does not appear to require a protein trigger at all. Instead, the lagging-strand polymerase is simply less processive in the context of a replisome. Interestingly, when the lagging-strand polymerase is supplied with primed DNA in trans, uncoupling it from the fork, high processivity is restored. Hence, we propose that coupled polymerases introduce topological changes, possibly by accumulation of superhelical tension in the newly synthesized DNA, that cause lower processivity and transient lagging-strand polymerase dissociation from DNA. PMID:23535600

  7. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    SciTech Connect

    D'Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. ); Antonacci, R. )

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  8. Tapping and contact mode imaging of native chromosomes and extraction of genomic DNA using AFM tips

    NASA Astrophysics Data System (ADS)

    Sun, Yingchun; Arakawa, Hideo; Osada, Toshiya; Ikai, Atsushi

    2002-03-01

    It is very important both in medicine and biology to clarify the chromosomal structure to understand its functions. In a standard cytogenetic procedure, chromosomes are often fixed in a mixture of acetic acid and methanol. This process most likely changes the mechanical property of chromosomes. We adopted a method to prepare native and unfixed chromosomes from mouse 3T3 cells and used tapping and contact mode atomic force microscopy (AFM) to image and manipulate them. Modified AFM tips were used to image chromosomes in contact mode in air, and then the chromosome samples were immobilized on a substrate and placed in a buffer solution to pull out DNA-histone complexes from them after they were optimally treated with trypsin. From the AFM images, we could see several bands and granular structures on chromosomes. We obtained force curves indicating long fiber extensions from native chromosomes both with low (in high concentration of NaCl) and high forces (physiological conditions). The result suggested that the degree of chromosome condensation decreased in high concentration of salt. It agrees with the known fact of histone H1 dissociation in a high concentration of salt. We intend to pull out DNA-histone complexes from chromosomes for later molecular operations on them using an AFM.

  9. EVALUATION OF CHROMOSOME BREAKAGE AND DNA INTEGRITY IN SPERM: AN INVESTIGATION OF REMOTE SEMEN COLLECTION CONDITIONS

    EPA Science Inventory

    Home collection of ejaculated semen would facilitate participation rates and geographic diversity in reproductive epidemiology studies. Our study addressed concerns that home collection and overnight mail return might induce chromosome/DNA damage. We collected semen from 10 hea...

  10. FISH analysis of the arrangement of chromosomes in interphase nuclei using telomeric, centromeric, and DNA painting probes

    NASA Astrophysics Data System (ADS)

    Monajembashi, Shamci; Schmitt, Eberhard; Dittmar, Heike; Greulich, Karl-Otto

    1999-01-01

    Fluorescence in situ hybridization is used to study the arrangement of chromosomes in interphase nuclei of unsynchronized human lymphocytes. DNA probes specific for telomeric DNA, centromeric (alpha) -satellite DNA and whole chromosomes 2, 7, 9 and X are employed. It is demonstrated that the shape of the chromosome territories is variable in cycling cells, for example, close to the metaphase chromosome homologues are arranged pairwise. Furthermore, the relative arrangement of chromosome homologues to each other is not spatially defined. Also, the relative orientation of centromeres and telomeres within a chromosome domain is variable.

  11. Repetitive DNA chromosomal organization in the cricket Cycloptiloides americanus: a case of the unusual X1X 20 sex chromosome system in Orthoptera.

    PubMed

    Palacios-Gimenez, Octavio M; Cabral-de-Mello, Diogo C

    2015-04-01

    A common placement for most sex chromosomes that is involved in their evolutionary histories is the accumulation of distinct classes of repetitive DNAs. Here, with the aim of understanding the poorly studied repetitive DNA organization in crickets and its possible role in sex chromosome differentiation, we characterized the chromosomes of the cricket species Cycloptiloides americanus, a species with the remarkable presence of the unusual sex chromosome system X1X20♂/X1X1X2X2♀. For these proposes, we used C-banding and mapping through the fluorescence in situ hybridization of some repetitive DNAs. The C-banding and distribution of highly and moderately repetitive DNAs (C 0t-1 DNA) varied depending of the chromosome. The greater accumulation of repetitive DNAs in the X2 chromosome was evidenced. The microsatellites were spread along entire chromosomes, but (AG)10 and (TAA)10 were less enriched, mainly in the centromeric areas. Among the multigene families, the 18S rDNA was spread throughout almost all of the chromosomes, except for pair 5 and X2, while the U2 snDNA was placed exclusively in the largest chromosome. Finally, the 5S rDNA was exclusively located in the short arms of the sex chromosomes. The obtained data reinforce the importance of chromosomal dissociation and inversion as a primary evolutionary mechanism to generate neo-sex chromosomes in the species studied, followed by the repetitive DNAs accumulation. Moreover the exclusive placement of 5S rDNA in the sex chromosomes suggests the involvement of this sequence in sex chromosome recognition throughout meiosis and, consequently, their maintenance, in addition to their avoiding degeneration.

  12. Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells†

    PubMed Central

    Benítez, Jaime J.; Topolancik, Juraj; Tian, Harvey C.; Wallin, Christopher B.; Latulippe, David R.; Szeto, Kylan; Murphy, Patrick J.; Cipriany, Benjamin R.; Levy, Stephen L.; Soloway, Paul D.; Craighead, Harold G.

    2014-01-01

    We describe a microfluidic device for the extraction, purification and stretching of human chromosomal DNA from single cells. A two-dimensional array of micropillars in a microfluidic polydimethylsiloxane channel was designed to capture a single human cell. Megabase-long DNA strands released from the cell upon lysis are trapped in the micropillar array and stretched under optimal hydrodynamic flow conditions. Intact chromosomal DNA is entangled in the array, while other cellular components are washed from the channel. To demonstrate the entrapment principle, a single chromosome was hybridized to whole chromosome paints, and imaged by fluorescence microscopy. DNA extracted from a single cell and small cell populations (less than 100) was released from the device by restriction endonuclease digestion under continuous flow and collected for offchip analysis. Quantification of the extracted material reveals that the microdevice efficiently extracts essentially all chromosomal DNA. The device described represents a novel platform to perform a variety of analyses on chromosomal DNA at the single cell level. PMID:23018789

  13. Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells.

    PubMed

    Benítez, Jaime J; Topolancik, Juraj; Tian, Harvey C; Wallin, Christopher B; Latulippe, David R; Szeto, Kylan; Murphy, Patrick J; Cipriany, Benjamin R; Levy, Stephen L; Soloway, Paul D; Craighead, Harold G

    2012-11-21

    We describe a microfluidic device for the extraction, purification and stretching of human chromosomal DNA from single cells. A two-dimensional array of micropillars in a microfluidic polydimethylsiloxane channel was designed to capture a single human cell. Megabase-long DNA strands released from the cell upon lysis are trapped in the micropillar array and stretched under optimal hydrodynamic flow conditions. Intact chromosomal DNA is entangled in the array, while other cellular components are washed from the channel. To demonstrate the entrapment principle, a single chromosome was hybridized to whole chromosome paints, and imaged by fluorescence microscopy. DNA extracted from a single cell and small cell populations (less than 100) was released from the device by restriction endonuclease digestion under continuous flow and collected for off-chip analysis. Quantification of the extracted material reveals that the microdevice efficiently extracts essentially all chromosomal DNA. The device described represents a novel platform to perform a variety of analyses on chromosomal DNA at the single cell level.

  14. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit. PMID:27106499

  15. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.

  16. Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization

    PubMed Central

    Wang, Xiaozhu; Takebayashi, Shin-ichiro; Bernardin, Evans; Gilbert, David M.; Chella, Ravindran

    2012-01-01

    We have developed a novel method for genetic characterization of single cells by integrating microfluidic stretching of chromosomal DNA and fiber fluorescence in situ hybridization (FISH). In this method, individually isolated cell nuclei were immobilized in a microchannel. Chromosomal DNA was released from the nuclei and stretched by a pressure-driven flow. We analyzed and optimized flow conditions to generate a millimeter-long band of stretched DNA from each nucleus. Telomere fiber FISH was successfully performed on the stretched chromosomal DNA. Individual telomere fiber FISH signals from single cells could be resolved and their lengths measured, demonstrating the ability of the method to quantify genetic features at the level of single cells. PMID:22231286

  17. Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes.

    PubMed

    Snowdon, R J; Köhler, W; Köhler, A

    1997-08-01

    Using fluorescence in situ hybridization, we located ribosomal DNA loci on prometaphase chromosomes of the diploid species Brassica rapa and Brassica oleracea and their amphidiploid Brassica napus. Based on comparisons of chromosome morphology and hybridization patterns, we characterized the individual B. napus rDNA loci according to their presumed origins in the Brassica A and C genomes. As reported in other studies, the sum of rDNA loci observed on B. rapa (AA genome) and B. oleracea (CC genome) chromosomes was one greater than the total number of loci seen in their amphidiploid B. napus (AACC). Evidence is presented that this reduction in B. napus rDNA locus number results from the loss of the smallest A genome rDNA site in the amphidiploid.

  18. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  19. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster.

    PubMed Central

    Lyckegaard, E M; Clark, A G

    1989-01-01

    Multigene families on the Y chromosome face an unusual array of evolutionary forces. Both ribosomal DNA and Stellate, the two families examined here, have multiple copies of similar sequences on the X and Y chromosomes. Although the rate of sequence divergence on the Y chromosome depends on rates of mutation, gene conversion and exchange with the X chromosome, as well as purifying selection, the regulation of gene copy number may also depend on other pleiotropic functions, such as maintenance of chromosome pairing. Gene copy numbers were estimated for a series of 34 Y chromosome replacement lines using densitometric measurements of slot blots of genomic DNA from adult Drosophila melanogaster. Scans of autoradiographs of the same blots probed with the cloned alcohol dehydrogenase gene, a single copy gene, served as internal standards. Copy numbers span a 6-fold range for ribosomal DNA and a 3-fold range for Stellate DNA. Despite this magnitude of variation, there was no association between copy number and segregation variation of the sex chromosomes. Images PMID:2494656

  20. DNA Profiling of B Chromosomes from the Yellow-necked Mouse Apodemus flavicollis (Rodentia, Mammalia)

    PubMed Central

    Tanić, Nikola; Dedović, Nasta; Vujos̆ević, Mladen; Dimitrijević, Bogomir

    2000-01-01

    Using AP-PCR-based DNA profiling we examined some structural features of B chromosomes from yellow-necked mice Apodemus flavicollis. Mice harboring one, two, or three or lacking B chromosomes were examined. Chromosomal structure was scanned for variant bands by using a series of arbitrary primers and from these, informative bands were selected. The selection criteria used were the ability to differentiate between individuals of the species, to detect markers common for both A and B chromosomes, and, importantly, to differentiate between A- and B-chromosome sets. In addition to primers, profiling conditions were found to be critical for meeting the selection criteria. Primers and analysis conditions that demonstrated structural characteristics unique to the B-chromosome set are described. These characteristics included variant bands as qualitative parameters and altered electrophoretic band intensities as quantitative distinctions estimated by integration of densitometric profiles of electrophoretograms. B chromosome-specific molecular markers are easy to detect by AP-PCR-based DNA profiling in the presence of a full set of A chromosomes. Models for the origin of yellow-necked mouse B chromosomes are discussed in the context of presented data. PMID:10645950

  1. The finished DNA sequence of human chromosome 12.

    PubMed

    Scherer, Steven E; Muzny, Donna M; Buhay, Christian J; Chen, Rui; Cree, Andrew; Ding, Yan; Dugan-Rocha, Shannon; Gill, Rachel; Gunaratne, Preethi; Harris, R Alan; Hawes, Alicia C; Hernandez, Judith; Hodgson, Anne V; Hume, Jennifer; Jackson, Andrew; Khan, Ziad Mohid; Kovar-Smith, Christie; Lewis, Lora R; Lozado, Ryan J; Metzker, Michael L; Milosavljevic, Aleksandar; Miner, George R; Montgomery, Kate T; Morgan, Margaret B; Nazareth, Lynne V; Scott, Graham; Sodergren, Erica; Song, Xing-Zhi; Steffen, David; Lovering, Ruth C; Wheeler, David A; Worley, Kim C; Yuan, Yi; Zhang, Zhengdong; Adams, Charles Q; Ansari-Lari, M Ali; Ayele, Mulu; Brown, Mary J; Chen, Guan; Chen, Zhijian; Clerc-Blankenburg, Kerstin P; Davis, Clay; Delgado, Oliver; Dinh, Huyen H; Draper, Heather; Gonzalez-Garay, Manuel L; Havlak, Paul; Jackson, Laronda R; Jacob, Leni S; Kelly, Susan H; Li, Li; Li, Zhangwan; Liu, Jing; Liu, Wen; Lu, Jing; Maheshwari, Manjula; Nguyen, Bao-Viet; Okwuonu, Geoffrey O; Pasternak, Shiran; Perez, Lesette M; Plopper, Farah J H; Santibanez, Jireh; Shen, Hua; Tabor, Paul E; Verduzco, Daniel; Waldron, Lenee; Wang, Qiaoyan; Williams, Gabrielle A; Zhang, Jingkun; Zhou, Jianling; Allen, Carlana C; Amin, Anita G; Anyalebechi, Vivian; Bailey, Michael; Barbaria, Joseph A; Bimage, Kesha E; Bryant, Nathaniel P; Burch, Paula E; Burkett, Carrie E; Burrell, Kevin L; Calderon, Eliana; Cardenas, Veronica; Carter, Kelvin; Casias, Kristal; Cavazos, Iracema; Cavazos, Sandra R; Ceasar, Heather; Chacko, Joseph; Chan, Sheryl N; Chavez, Dean; Christopoulos, Constantine; Chu, Joseph; Cockrell, Raynard; Cox, Caroline D; Dang, Michelle; Dathorne, Stephanie R; David, Robert; Davis, Candi Mon'Et; Davy-Carroll, Latarsha; Deshazo, Denise R; Donlin, Jeremy E; D'Souza, Lisa; Eaves, Kristy A; Egan, Amy; Emery-Cohen, Alexandra J; Escotto, Michael; Flagg, Nicole; Forbes, Lisa D; Gabisi, Abdul M; Garza, Melissa; Hamilton, Cerissa; Henderson, Nicholas; Hernandez, Omar; Hines, Sandra; Hogues, Marilyn E; Huang, Mei; Idlebird, DeVincent G; Johnson, Rudy; Jolivet, Angela; Jones, Sally; Kagan, Ryan; King, Laquisha M; Leal, Belita; Lebow, Heather; Lee, Sandra; LeVan, Jaclyn M; Lewis, Lakeshia C; London, Pamela; Lorensuhewa, Lorna M; Loulseged, Hermela; Lovett, Demetria A; Lucier, Alice; Lucier, Raymond L; Ma, Jie; Madu, Renita C; Mapua, Patricia; Martindale, Ashley D; Martinez, Evangelina; Massey, Elizabeth; Mawhiney, Samantha; Meador, Michael G; Mendez, Sylvia; Mercado, Christian; Mercado, Iracema C; Merritt, Christina E; Miner, Zachary L; Minja, Emmanuel; Mitchell, Teresa; Mohabbat, Farida; Mohabbat, Khatera; Montgomery, Baize; Moore, Niki; Morris, Sidney; Munidasa, Mala; Ngo, Robin N; Nguyen, Ngoc B; Nickerson, Elizabeth; Nwaokelemeh, Ogechi O; Nwokenkwo, Stanley; Obregon, Melissa; Oguh, Maryann; Oragunye, Njideka; Oviedo, Rodolfo J; Parish, Bridgette J; Parker, David N; Parrish, Julia; Parks, Kenya L; Paul, Heidie A; Payton, Brett A; Perez, Agapito; Perrin, William; Pickens, Adam; Primus, Eltrick L; Pu, Ling-Ling; Puazo, Maria; Quiles, Miyo M; Quiroz, Juana B; Rabata, Dina; Reeves, Kacy; Ruiz, San Juana; Shao, Hongmei; Sisson, Ida; Sonaike, Titilola; Sorelle, Richard P; Sutton, Angelica E; Svatek, Amanda F; Svetz, Leah Anne; Tamerisa, Kavitha S; Taylor, Tineace R; Teague, Brian; Thomas, Nicole; Thorn, Rachel D; Trejos, Zulma Y; Trevino, Brenda K; Ukegbu, Ogechi N; Urban, Jeremy B; Vasquez, Lydia I; Vera, Virginia A; Villasana, Donna M; Wang, Ling; Ward-Moore, Stephanie; Warren, James T; Wei, Xuehong; White, Flower; Williamson, Angela L; Wleczyk, Regina; Wooden, Hailey S; Wooden, Steven H; Yen, Jennifer; Yoon, Lillienne; Yoon, Vivienne; Zorrilla, Sara E; Nelson, David; Kucherlapati, Raju; Weinstock, George; Gibbs, Richard A

    2006-03-16

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents. PMID:16541075

  2. The finished DNA sequence of human chromosome 12.

    PubMed

    Scherer, Steven E; Muzny, Donna M; Buhay, Christian J; Chen, Rui; Cree, Andrew; Ding, Yan; Dugan-Rocha, Shannon; Gill, Rachel; Gunaratne, Preethi; Harris, R Alan; Hawes, Alicia C; Hernandez, Judith; Hodgson, Anne V; Hume, Jennifer; Jackson, Andrew; Khan, Ziad Mohid; Kovar-Smith, Christie; Lewis, Lora R; Lozado, Ryan J; Metzker, Michael L; Milosavljevic, Aleksandar; Miner, George R; Montgomery, Kate T; Morgan, Margaret B; Nazareth, Lynne V; Scott, Graham; Sodergren, Erica; Song, Xing-Zhi; Steffen, David; Lovering, Ruth C; Wheeler, David A; Worley, Kim C; Yuan, Yi; Zhang, Zhengdong; Adams, Charles Q; Ansari-Lari, M Ali; Ayele, Mulu; Brown, Mary J; Chen, Guan; Chen, Zhijian; Clerc-Blankenburg, Kerstin P; Davis, Clay; Delgado, Oliver; Dinh, Huyen H; Draper, Heather; Gonzalez-Garay, Manuel L; Havlak, Paul; Jackson, Laronda R; Jacob, Leni S; Kelly, Susan H; Li, Li; Li, Zhangwan; Liu, Jing; Liu, Wen; Lu, Jing; Maheshwari, Manjula; Nguyen, Bao-Viet; Okwuonu, Geoffrey O; Pasternak, Shiran; Perez, Lesette M; Plopper, Farah J H; Santibanez, Jireh; Shen, Hua; Tabor, Paul E; Verduzco, Daniel; Waldron, Lenee; Wang, Qiaoyan; Williams, Gabrielle A; Zhang, Jingkun; Zhou, Jianling; Allen, Carlana C; Amin, Anita G; Anyalebechi, Vivian; Bailey, Michael; Barbaria, Joseph A; Bimage, Kesha E; Bryant, Nathaniel P; Burch, Paula E; Burkett, Carrie E; Burrell, Kevin L; Calderon, Eliana; Cardenas, Veronica; Carter, Kelvin; Casias, Kristal; Cavazos, Iracema; Cavazos, Sandra R; Ceasar, Heather; Chacko, Joseph; Chan, Sheryl N; Chavez, Dean; Christopoulos, Constantine; Chu, Joseph; Cockrell, Raynard; Cox, Caroline D; Dang, Michelle; Dathorne, Stephanie R; David, Robert; Davis, Candi Mon'Et; Davy-Carroll, Latarsha; Deshazo, Denise R; Donlin, Jeremy E; D'Souza, Lisa; Eaves, Kristy A; Egan, Amy; Emery-Cohen, Alexandra J; Escotto, Michael; Flagg, Nicole; Forbes, Lisa D; Gabisi, Abdul M; Garza, Melissa; Hamilton, Cerissa; Henderson, Nicholas; Hernandez, Omar; Hines, Sandra; Hogues, Marilyn E; Huang, Mei; Idlebird, DeVincent G; Johnson, Rudy; Jolivet, Angela; Jones, Sally; Kagan, Ryan; King, Laquisha M; Leal, Belita; Lebow, Heather; Lee, Sandra; LeVan, Jaclyn M; Lewis, Lakeshia C; London, Pamela; Lorensuhewa, Lorna M; Loulseged, Hermela; Lovett, Demetria A; Lucier, Alice; Lucier, Raymond L; Ma, Jie; Madu, Renita C; Mapua, Patricia; Martindale, Ashley D; Martinez, Evangelina; Massey, Elizabeth; Mawhiney, Samantha; Meador, Michael G; Mendez, Sylvia; Mercado, Christian; Mercado, Iracema C; Merritt, Christina E; Miner, Zachary L; Minja, Emmanuel; Mitchell, Teresa; Mohabbat, Farida; Mohabbat, Khatera; Montgomery, Baize; Moore, Niki; Morris, Sidney; Munidasa, Mala; Ngo, Robin N; Nguyen, Ngoc B; Nickerson, Elizabeth; Nwaokelemeh, Ogechi O; Nwokenkwo, Stanley; Obregon, Melissa; Oguh, Maryann; Oragunye, Njideka; Oviedo, Rodolfo J; Parish, Bridgette J; Parker, David N; Parrish, Julia; Parks, Kenya L; Paul, Heidie A; Payton, Brett A; Perez, Agapito; Perrin, William; Pickens, Adam; Primus, Eltrick L; Pu, Ling-Ling; Puazo, Maria; Quiles, Miyo M; Quiroz, Juana B; Rabata, Dina; Reeves, Kacy; Ruiz, San Juana; Shao, Hongmei; Sisson, Ida; Sonaike, Titilola; Sorelle, Richard P; Sutton, Angelica E; Svatek, Amanda F; Svetz, Leah Anne; Tamerisa, Kavitha S; Taylor, Tineace R; Teague, Brian; Thomas, Nicole; Thorn, Rachel D; Trejos, Zulma Y; Trevino, Brenda K; Ukegbu, Ogechi N; Urban, Jeremy B; Vasquez, Lydia I; Vera, Virginia A; Villasana, Donna M; Wang, Ling; Ward-Moore, Stephanie; Warren, James T; Wei, Xuehong; White, Flower; Williamson, Angela L; Wleczyk, Regina; Wooden, Hailey S; Wooden, Steven H; Yen, Jennifer; Yoon, Lillienne; Yoon, Vivienne; Zorrilla, Sara E; Nelson, David; Kucherlapati, Raju; Weinstock, George; Gibbs, Richard A

    2006-03-16

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.

  3. The DNA sequence and analysis of human chromosome 14.

    PubMed

    Heilig, Roland; Eckenberg, Ralph; Petit, Jean-Louis; Fonknechten, Núria; Da Silva, Corinne; Cattolico, Laurence; Levy, Michaël; Barbe, Valérie; de Berardinis, Véronique; Ureta-Vidal, Abel; Pelletier, Eric; Vico, Virginie; Anthouard, Véronique; Rowen, Lee; Madan, Anup; Qin, Shizhen; Sun, Hui; Du, Hui; Pepin, Kymberlie; Artiguenave, François; Robert, Catherine; Cruaud, Corinne; Brüls, Thomas; Jaillon, Olivier; Friedlander, Lucie; Samson, Gaelle; Brottier, Philippe; Cure, Susan; Ségurens, Béatrice; Anière, Franck; Samain, Sylvie; Crespeau, Hervé; Abbasi, Nissa; Aiach, Nathalie; Boscus, Didier; Dickhoff, Rachel; Dors, Monica; Dubois, Ivan; Friedman, Cynthia; Gouyvenoux, Michel; James, Rose; Madan, Anuradha; Mairey-Estrada, Barbara; Mangenot, Sophie; Martins, Nathalie; Ménard, Manuela; Oztas, Sophie; Ratcliffe, Amber; Shaffer, Tristan; Trask, Barbara; Vacherie, Benoit; Bellemere, Chadia; Belser, Caroline; Besnard-Gonnet, Marielle; Bartol-Mavel, Delphine; Boutard, Magali; Briez-Silla, Stéphanie; Combette, Stephane; Dufossé-Laurent, Virginie; Ferron, Carolyne; Lechaplais, Christophe; Louesse, Claudine; Muselet, Delphine; Magdelenat, Ghislaine; Pateau, Emilie; Petit, Emmanuelle; Sirvain-Trukniewicz, Peggy; Trybou, Arnaud; Vega-Czarny, Nathalie; Bataille, Elodie; Bluet, Elodie; Bordelais, Isabelle; Dubois, Maria; Dumont, Corinne; Guérin, Thomas; Haffray, Sébastien; Hammadi, Rachid; Muanga, Jacqueline; Pellouin, Virginie; Robert, Dominique; Wunderle, Edith; Gauguet, Gilbert; Roy, Alice; Sainte-Marthe, Laurent; Verdier, Jean; Verdier-Discala, Claude; Hillier, LaDeana; Fulton, Lucinda; McPherson, John; Matsuda, Fumihiko; Wilson, Richard; Scarpelli, Claude; Gyapay, Gábor; Wincker, Patrick; Saurin, William; Quétier, Francis; Waterston, Robert; Hood, Leroy; Weissenbach, Jean

    2003-02-01

    Chromosome 14 is one of five acrocentric chromosomes in the human genome. These chromosomes are characterized by a heterochromatic short arm that contains essentially ribosomal RNA genes, and a euchromatic long arm in which most, if not all, of the protein-coding genes are located. The finished sequence of human chromosome 14 comprises 87,410,661 base pairs, representing 100% of its euchromatic portion, in a single continuous segment covering the entire long arm with no gaps. Two loci of crucial importance for the immune system, as well as more than 60 disease genes, have been localized so far on chromosome 14. We identified 1,050 genes and gene fragments, and 393 pseudogenes. On the basis of comparisons with other vertebrate genomes, we estimate that more than 96% of the chromosome 14 genes have been annotated. From an analysis of the CpG island occurrences, we estimate that 70% of these annotated genes are complete at their 5' end. PMID:12508121

  4. [Loop organization of eukaryotic chromosomes and triple-stranded DNA structures].

    PubMed

    Glazkov, M V

    2011-01-01

    To study possible involvement of polypurine and polypyrimidine DNA tracks potentially capable to form triple-stranded structures (H-form of DNA) in compactization of eukaryotic chromosomes a search in silico for "complementary" polypurine and polypyrimidine tracks within 12 eukaryotic gene nucleotide sequences was carried out. Polypurine and polypyrimidine tracks (10-11 b.p.) potentially capable of interacting with each other with the formation of triplex structures ("structurizing" regions) has been shown to be located in chromosomal locus of genes, predominantly in introns and flanking regions. In the case of in vivo realization of such DNA-DNA interactions the chromosomal gene domains can be folded into several small loops. An involvement of DNA triplexes in the chromosomal gene loci compactization may be associated with the gene functioning. The analogous analysis carried out for nucleotide sequences of long (LINE) and short (SINE) repeats dispersed over the genome as well as of satellite DNA has demonstrated a fundamental identity between mechanisms of chromosomal encoding and non-coding regions' compactization.

  5. Alphoid satellite DNA is tightly associated with centromere antigens in human chromosomes throughout the cell cycle

    SciTech Connect

    Masumoto, Hiroshi; Sugimoto, Kenji; Okazaki, Tuneko )

    1989-03-01

    In this study, the authors have examined a DNA element specific to the centromere domain of human chromosomes. Purified HeLa chromosomes were digested with the restriction enzyme Sau3AI and fractionated by sedimentation through a sucrose gradient. Fractions showing antigenicity to anticentromere (kinetochore) serum obtained from a scleroderma CREST patient were used to construct a DNA library. From this library they found one clone which has specifically hybridized to the centromere domain of metaphase chromosomes using a biotinylated probe DNA and FITC-conjugated avidin. The clone contained a stretch of alphoid DNA dimer. To determine precisely the relative location of the alphoid DNA stretch and the centromere antigen, a method was developed to carry out in situ hybridization of DNA and indirect immunofluorescent staining of antigen on the same cell preparation. Using this method, they have found perfect overlapping of the alphoid DNA sites with the centromere antigen in both metaphase chromosomes and nuclei at various stages in the cell cycle. They have also observed this exact correlation at the attachment sites of artificially extended sister chromatids. These results suggest the possibility that alphoid DNA repeats are a key component of kinetochore structure.

  6. Identification of an origin of bidirectional DNA replication in mammalian chromosomes.

    PubMed

    Burhans, W C; Vassilev, L T; Caddle, M S; Heintz, N H; DePamphilis, M L

    1990-09-01

    Mechanistically, an origin of bidirectional DNA replication (OBR) can be defined by the transition from discontinuous to continuous DNA synthesis that must occur on each template strand at the site where replication forks originate. This results from synthesis of Okazaki fragments predominantly on the retrograde arms of forks. We have identified these transitions at a specific site within a 0.45 kb sequence approximately 17 kb downstream from the 3' end of the dihydrofolate reductase gene in Chinese hamster ovary chromosomes. At least 80% of the replication forks in a 27 kb region emanated from this OBR. Thus, initiation of DNA replication in mammalian chromosomes uses the same replication fork mechanism previously described in a variety of prokaryotic and eukaryotic genomes, suggesting that mammalian chromosomes also utilize specific cis-acting sequences as origins of DNA replication.

  7. Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli

    PubMed Central

    Helgesen, Emily; Fossum-Raunehaug, Solveig

    2016-01-01

    ABSTRACT The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such

  8. Unique and Universal Features of Epsilonproteobacterial Origins of Chromosome Replication and DnaA-DnaA Box Interactions

    PubMed Central

    Jaworski, Pawel; Donczew, Rafal; Mielke, Thorsten; Thiel, Marcel; Oldziej, Stanislaw; Weigel, Christoph; Zawilak-Pawlik, Anna

    2016-01-01

    In bacteria, chromosome replication is initiated by the interaction of the initiator protein DnaA with a defined region of a chromosome at which DNA replication starts (oriC). While DnaA proteins share significant homology regardless of phylogeny, oriC regions exhibit more variable structures. The general architecture of oriCs is universal, i.e., they are composed of a cluster of DnaA binding sites, a DNA-unwinding element, and sequences that bind regulatory proteins. However, detailed structures of oriCs are shared by related species while being significantly different in unrelated bacteria. In this work, we characterized Epsilonproteobacterial oriC regions. Helicobacter pylori was the only species of the class for which oriC was characterized. A few unique features were found such as bipartite oriC structure, not encountered in any other Gram-negative species, and topology-sensitive DnaA-DNA interactions, which have not been found in any other bacterium. These unusual H. pylori oriC features raised questions of whether oriC structure and DnaA-DNA interactions are unique to this bacterium or whether they are common to related species. By in silico and in vitro analyses we identified putative oriCs in three Epsilonproteobacterial species: pathogenic Arcobacter butzleri, symbiotic Wolinella succinogenes, and free-living Sulfurimonas denitrificans. We propose that oriCs typically co-localize with ruvC-dnaA-dnaN in Epsilonproteobacteria, with the exception of Helicobacteriaceae species. The clusters of DnaA boxes localize upstream (oriC1) and downstream (oriC2) of dnaA, and they likely constitute bipartite origins. In all cases, DNA unwinding was shown to occur in oriC2. Unlike the DnaA box pattern, which is not conserved in Epsilonproteobacterial oriCs, the consensus DnaA box sequences and the mode of DnaA-DnaA box interactions are common to the class. We propose that the typical Epsilonproteobacterial DnaA box consists of the core nucleotide sequence 5′-TTCAC-3

  9. Marker chromosomes lacking {alpha}-satellite DNA: A new intriguing class of abnormalities

    SciTech Connect

    Becker, L.A.; Zinn, A.B.; Stallard, J.R.

    1994-09-01

    Recent studies have implicated {alpha}-satellite DNA as an integral part of the centromere and important for the normal segregation of chromosomes. We analyzed four supernumerary marker chromosomes in which fluorescence in situ hybridization (FISH) could detect neither pancentromeric or chromosome specific {alpha}-satellite DNA. Mosaicism of the markers existed, but each was present in the majority of cells indicating that they segregated normally. FISH with chromosome-specific libraries identified the origins of these markers as chromosomes 13 (1 case) and 15 (3 cases). High resolution analysis, combined with hybridization of a series of cosmid probes, revealed that each marker was a symmetrical duplication of the terminal long arm of the parent chromosome. Telomeric sequences were detected by FISH indicating linear structures. Breakpoint heterogeneity, as defined by cosmid probes, was demonstrated in the three cases involving chromosome 15. No pericentromeric satellite III DNA could be detected on three markers. Studies with anti-centromere antibodies are in progress to assay for centromeric antigens on the markers, as expected at functional centromeric sites. Our results demonstrate that the precise structural identification and heterogeneity of these markers can be easily elucidated using FISH with unique sequence cosmid probes. We conclude from our studies and others in the literature: (1) there is a newly defined class of markers lacking {alpha}-satellite DNA and containing duplications of terminal sequences; (2)neither {alpha}-satellite nor satellite III DNA at levels detectable by FISH is necessary for fidelity in the normal segregation of chromosomes; and (3) these markers were most likely formed by recombination of the long arms during meiosis.

  10. Shifts in rDNA levels act as a genome buffer promoting chromosome homeostasis.

    PubMed

    Deregowska, Anna; Adamczyk, Jagoda; Kwiatkowska, Aleksandra; Gurgul, Artur; Skoneczny, Marek; Skoneczna, Adrianna; Szmatola, Tomasz; Jasielczuk, Igor; Magda, Michal; Rawska, Ewa; Pabian, Sylwia; Panek, Anita; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2015-01-01

    The nucleolus is considered to be a stress sensor and rDNA-based regulation of cellular senescence and longevity has been proposed. However, the role of rDNA in the maintenance of genome integrity has not been investigated in detail. Using genomically diverse industrial yeasts as a model and array-based comparative genomic hybridization (aCGH), we show that chromosome level may be balanced during passages and as a response to alcohol stress that may be associated with changes in rDNA pools. Generation- and ethanol-mediated changes in genes responsible for protein and DNA/RNA metabolism were revealed using next-generation sequencing. Links between redox homeostasis, DNA stability, and telomere and nucleolus states were also established. These results suggest that yeast genome is dynamic and chromosome homeostasis may be controlled by rDNA. PMID:26566866

  11. The DNA Sequence And Comparative Analysis Of Human Chromosome5

    SciTech Connect

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, Steve; Gordon, Laurie A.; Scott, Duncan; Xie,Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black,Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan,Yee Man; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner,Kristen; Kimball, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou,Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar,Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Retterer, James; Rodriguez, Alex; Rogers,Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang,Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, SusanM.; Myers, Richard M.; Rubin, Edward M.

    2004-08-01

    Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.

  12. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis

    PubMed Central

    Yelina, Nataliya E.; Lambing, Christophe; Hardcastle, Thomas J.; Zhao, Xiaohui; Santos, Bruno; Henderson, Ian R.

    2015-01-01

    During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes. PMID:26494791

  13. Y chromosomal DNA variation and the peopling of Japan.

    PubMed Central

    Hammer, M F; Horai, S

    1995-01-01

    Four loci mapping to the nonrecombining portion of the Y chromosome were genotyped in Japanese populations from Okinawa, the southernmost island of Japan; Shizuoka and Aomori on the main island of Honshu; and a small sample of Taiwanese. The Y Alu polymorphic (YAP) element is present in 42% of the Japanese and absent in the Taiwanese, confirming the irregular distribution of this polymorphism in Asia. Data from the four loci were used to determine genetic distances among populations, construct Y chromosome haplotypes, and estimate the degree of genetic diversity in each population and on different Y chromosome haplotypes. Evolutionary analysis of Y haplotypes suggests that polymorphisms at the YAP (DYS287) and DXYS5Y loci originated a single time, whereas restriction patterns at the DYS1 locus and microsatellite alleles at the DYS19 locus arose more than once. Genetic distance analysis indicated that the Okinawans are differentiated from Japanese living on Honshu. The data support the hypotheses that modern Japanese populations have resulted from distinctive genetic contributions involving the ancient Jomon people and Yayoi immigrants from Korea or mainland China, with Okinawans experiencing the least amount of admixture with the Yayoi. It is suggested that YAP+ chromosomes migrated to Japan with the Jomon people > 10,000 years ago and that a large infusion of YAP- chromosomes entered Japan with the Yayoi migration starting 2,300 years ago. Different degrees of genetic diversity carried by these two ancient chromosomal lineages may be explained by the different life-styles (hunter-gatherer versus agriculturalist). of the migrant groups, the size of the founding populations, and the antiquities of the founding events. Images Figure 1 PMID:7717406

  14. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA.

    PubMed

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  15. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA.

    PubMed

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites.

  16. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    SciTech Connect

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  17. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya

    PubMed Central

    Zhang, Wenli; Wang, Xiue; Yu, Qingyi; Ming, Ray; Jiang, Jiming

    2008-01-01

    Sex chromosomes evolved from autosomes. Recombination suppression in the sex-determining region and accumulation of deleterious mutations lead to degeneration of the Y chromosomes in many species with heteromorphic X/Y chromosomes. However, how the recombination suppressed domain expands from the sex-determining locus to the entire Y chromosome remains elusive. The Y chromosome of papaya (Carica papaya) diverged from the X chromosome approximately 2–3 million years ago and represents one of the most recently emerged Y chromosomes. Here, we report that the male-specific region of the Y chromosome (MSY) spans ∼13% of the papaya Y chromosome. Interestingly, the centromere of the Y chromosome is embedded in the MSY. The centromeric domain within the MSY has accumulated significantly more DNA than the corresponding X chromosomal domain, which leads to abnormal chromosome pairing. We observed four knob-like heterochromatin structures specific to the MSY. Fluorescence in situ hybridization and immunofluorescence assay revealed that the DNA sequences associated with the heterochromatic knobs are highly divergent and heavily methylated compared with the sequences in the corresponding X chromosomal domains. These results suggest that DNA methylation and heterochromatinization play an important role in the early stage of sex chromosome evolution. PMID:18593814

  18. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya.

    PubMed

    Zhang, Wenli; Wang, Xiue; Yu, Qingyi; Ming, Ray; Jiang, Jiming

    2008-12-01

    Sex chromosomes evolved from autosomes. Recombination suppression in the sex-determining region and accumulation of deleterious mutations lead to degeneration of the Y chromosomes in many species with heteromorphic X/Y chromosomes. However, how the recombination suppressed domain expands from the sex-determining locus to the entire Y chromosome remains elusive. The Y chromosome of papaya (Carica papaya) diverged from the X chromosome approximately 2-3 million years ago and represents one of the most recently emerged Y chromosomes. Here, we report that the male-specific region of the Y chromosome (MSY) spans approximately 13% of the papaya Y chromosome. Interestingly, the centromere of the Y chromosome is embedded in the MSY. The centromeric domain within the MSY has accumulated significantly more DNA than the corresponding X chromosomal domain, which leads to abnormal chromosome pairing. We observed four knob-like heterochromatin structures specific to the MSY. Fluorescence in situ hybridization and immunofluorescence assay revealed that the DNA sequences associated with the heterochromatic knobs are highly divergent and heavily methylated compared with the sequences in the corresponding X chromosomal domains. These results suggest that DNA methylation and heterochromatinization play an important role in the early stage of sex chromosome evolution.

  19. Insertion of host DNA into PVL-encoding phages of the Staphylococcus aureus lineage ST80 by intra-chromosomal recombination.

    PubMed

    Wirtz, Christiane; Witte, Wolfgang; Wolz, Christiane; Goerke, Christiane

    2010-10-25

    Temperate bacteriophages play a critical role in the pathogenicity of the human pathogen Staphylococcus aureus by mediating positive lysogenic conversion for different virulence factors such as Panton-Valentine leukocidin (PVL) or by interrupting chromosomal virulence genes. PVL-encoding phages are integrated in the S. aureus genome within a conserved ORF which is surrounded by a cluster of tandemly repeated genes. Here we demonstrate that in S. aureus clonal complex ST80 strains PVL-phage induction led to the acquisition of host DNA into the phage genome probably due to a homologous recombination event between direct repeats of the two paralogous genes adjacent to the phage integration site. Phage excision was accompanied by an additional chromosomal deletion in this region. This so far unrecognized mechanism of DNA uptake into the phage genome may play an important role in the co-evolution of phages and bacteria. PMID:20708208

  20. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage.

    PubMed

    Ikeuchi, Masayoshi; Fukumoto, Yasunori; Honda, Takuya; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2016-06-02

    An increase in Src activity is commonly observed in epithelial cancers. Aberrant activation of the kinase activity is associated with malignant progression. However, the mechanisms that underlie the Src-induced malignant progression of cancer are not completely understood. We show here that v-Src, an oncogene that was first identified from a Rous sarcoma virus and a mutant variant of c-Src, leads to an increase in the number of anaphase and telophase cells having chromosome bridges. v-Src increases the number of γH2AX foci, and this increase is inhibited by treatment with PP2, a Src kinase inhibitor. v-Src induces the phosphorylation of KAP1 at Ser824, Chk2 at Thr68, and Chk1 at Ser345, suggesting the activation of the ATM/ATR pathway. Caffeine decreases the number of cells having chromosome bridges at a concentration incapable of inhibiting Chk1 phosphorylation at Ser345. These results suggest that v-Src induces chromosome bridges via generation of DNA damage and the subsequent DNA damage response, possibly by homologous recombination. A chromosome bridge gives rise to the accumulation of DNA damage directly through chromosome breakage and indirectly through cytokinesis failure-induced multinucleation. We propose that v-Src-induced chromosome bridge formation is one of the causes of the v-Src-induced malignant progression of cancer cells.

  1. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage.

    PubMed

    Ikeuchi, Masayoshi; Fukumoto, Yasunori; Honda, Takuya; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2016-01-01

    An increase in Src activity is commonly observed in epithelial cancers. Aberrant activation of the kinase activity is associated with malignant progression. However, the mechanisms that underlie the Src-induced malignant progression of cancer are not completely understood. We show here that v-Src, an oncogene that was first identified from a Rous sarcoma virus and a mutant variant of c-Src, leads to an increase in the number of anaphase and telophase cells having chromosome bridges. v-Src increases the number of γH2AX foci, and this increase is inhibited by treatment with PP2, a Src kinase inhibitor. v-Src induces the phosphorylation of KAP1 at Ser824, Chk2 at Thr68, and Chk1 at Ser345, suggesting the activation of the ATM/ATR pathway. Caffeine decreases the number of cells having chromosome bridges at a concentration incapable of inhibiting Chk1 phosphorylation at Ser345. These results suggest that v-Src induces chromosome bridges via generation of DNA damage and the subsequent DNA damage response, possibly by homologous recombination. A chromosome bridge gives rise to the accumulation of DNA damage directly through chromosome breakage and indirectly through cytokinesis failure-induced multinucleation. We propose that v-Src-induced chromosome bridge formation is one of the causes of the v-Src-induced malignant progression of cancer cells. PMID:27271602

  2. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage

    PubMed Central

    Ikeuchi, Masayoshi; Fukumoto, Yasunori; Honda, Takuya; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2016-01-01

    An increase in Src activity is commonly observed in epithelial cancers. Aberrant activation of the kinase activity is associated with malignant progression. However, the mechanisms that underlie the Src-induced malignant progression of cancer are not completely understood. We show here that v-Src, an oncogene that was first identified from a Rous sarcoma virus and a mutant variant of c-Src, leads to an increase in the number of anaphase and telophase cells having chromosome bridges. v-Src increases the number of γH2AX foci, and this increase is inhibited by treatment with PP2, a Src kinase inhibitor. v-Src induces the phosphorylation of KAP1 at Ser824, Chk2 at Thr68, and Chk1 at Ser345, suggesting the activation of the ATM/ATR pathway. Caffeine decreases the number of cells having chromosome bridges at a concentration incapable of inhibiting Chk1 phosphorylation at Ser345. These results suggest that v-Src induces chromosome bridges via generation of DNA damage and the subsequent DNA damage response, possibly by homologous recombination. A chromosome bridge gives rise to the accumulation of DNA damage directly through chromosome breakage and indirectly through cytokinesis failure-induced multinucleation. We propose that v-Src-induced chromosome bridge formation is one of the causes of the v-Src-induced malignant progression of cancer cells. PMID:27271602

  3. Characterization of honeybee (Apis mellifera L.) chromosomes using repetitive DNA probes and fluorescence in situ hybridization.

    PubMed

    Beye, M; Moritz, R F

    1995-01-01

    Two different repetitive DNA probes of Apis mellifera and ribosomal DNA from Drosophila melanogaster were used to characterize the chromosomal set of the honeybee (n = 16). The probes were hybridized to chromosome preparations of haploid testis tissue from drone larvae using fluorescence in situ hybridization (FISH). The honeybee probes hybridized to the telomeric (Alu I family) and centromeric region (Ava I family) of most chromosomes. The rDNA probe labeled two chromosomes only. Combination of the three probes yielded labeled patterns allowing us to identify each chromosome of the honeybee individually. This is the first report of an unambiguous identification of the chromosomal set of the honeybee, since classical banding techniques failed to yield clear patterns for identification. The consensus sequence of the centromeric reiterated probe (Ava I family) has a length of about 550 nucleotides and shows no homology to other known sequences. However, the structural organization of a 130-nucleotides long motif forming the unusually homogeneous 550 nucleotides repeat is similar to those found in mammals' repetitive DNAs.

  4. A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves†

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; García-Fandiño, Rebeca; Vázquez, M. Eugenio; Mascareñas, José L.

    2016-01-01

    We report the rational design of a DNA-binding peptide construct composed of the DNA-contacting regions of two transcription factors (GCN4 and GAGA) linked through an AT-hook DNA anchor. The resulting chimera, which represents a new, non-natural DNA binding motif, binds with high affinity and selectivity to a long composite sequence of 13 base pairs (TCAT-AATT-GAGAG). PMID:27252825

  5. Quantification of Somatic Chromosomal Rearrangements in Circulating Cell-Free DNA from Ovarian Cancers

    PubMed Central

    Harris, Faye R.; Kovtun, Irina V.; Smadbeck, James; Multinu, Francesco; Jatoi, Aminah; Kosari, Farhad; Kalli, Kimberly R.; Murphy, Stephen J.; Halling, Geoffrey C.; Johnson, Sarah H.; Liu, Minetta C.; Mariani, Andrea; Vasmatzis, George

    2016-01-01

    Recently, the use of a liquid biopsy has shown promise in monitoring tumor burden. While point mutations have been extensively studied, chromosomal rearrangements have demonstrated greater tumor specificity. Such rearrangements can be identified in the tumor and subsequently detected in the plasma of patients using quantitative PCR (qPCR). In this study we used a whole-genome mate-pair protocol to characterize a landscape of genomic rearrangements in the primary tumors of ten ovarian cancer patients. Individualized tumor-specific primer panels of aberrant chromosomal junctions were identified for each case and detected by qPCR within the cell-free DNA. Selected chromosomal junctions were detected in pre-surgically drawn blood in eight of the ten patients. Of these eight, three demonstrated the continued presence of circulating tumor DNA (ctDNA) post-surgery, consistent with their documented presence of disease, and in five ctDNA was undetectable in the post-surgical blood collection, consistent with their lack of detectable disease. The ctDNA fraction was calculated using a novel algorithm designed for the unique challenges of quantifying ctDNA using qPCR to allow observations of real-time tumor dynamics. In summary, a panel of individualized junctions derived from tumor DNA could be an effective way to monitor cancer patients for relapse and therapeutic efficacy using cfDNA. PMID:27436510

  6. Tetrasomy 15q: Two marker chromosomes with no detectable alpha-satellite DNA

    SciTech Connect

    Blennow, E.; Telenius, K.; Larsson, C.; Nordenskjoeld, M. ); Vos, D. de; Carter, N.P. ); Henriksson, P.; Johansson, O. )

    1994-05-01

    Two patients with specific and similar phenotypes were both found to have an unusual marker chromosome present in 70%-80% of their lymphocytes at routine cytogenetic examination. The marker chromosomes were isolated by flow sorting and were amplified by degenerate oligonucleotide-primed PCR. These libraries and a cosmid probe located at 15q26 were used to characterize the marker chromosomes by FISH. Both marker chromosomes were found to consist of duplicated chromosome material from the distal part of chromosome 15q and were identified as inv dup(15) (qter[yields]q23::q23[yields]qter) and inv dup(15) (qter[yields]q24[yields]qter), respectively. Hence, the markers did not include any known centromere region, and no alpha-satellite DNA could be detected at the site of the primary construction. Tetrasomy 15q may be a new syndrome, associated with a specific type of marker chromosome. In addition, further analysis of this type of marker chromosome might give new insight into the structure and function of the mammalian centromere. 29 refs., 4 figs., 1 tab.

  7. High similarity of U2 snDNA sequence between A and B chromosomes in the grasshopper Abracris flavolineata.

    PubMed

    Menezes-de-Carvalho, Nahanna Zimmermann; Palacios-Gimenez, Octavio Manuel; Milani, Diogo; Cabral-de-Mello, Diogo Cavalcanti

    2015-10-01

    B chromosomes are frequently enriched for a wide variety of repetitive DNAs. Among grasshoppers in the species Abracris flavolineata (Ommatolampidinae) the B chromosomes are submetacentric, C-negative and harbor repetitive DNAs such as, U2 snDNA, C 0 t-1 DNA, two Mariner-like elements and some microsatellites. Here, we provide evidence showing the intragenome similarity between the B chromosome and the A complement in A. flavolineata, combining analysis of microdissection and chromosome painting and B chromosome-specific amplification through polymerase chain reaction (PCR) of U2 snDNA. Chromosome painting revealed signals spread through the C-negative regions, including the A and B chromosomes. Moreover, significant clustered signals forming bands were observed in some A chromosomes, and for the B chromosome, significant signals were located on both arms, which could be caused by accumulation of repetitive DNA sequences. The C-positive regions did not reveal any signals. Sequence comparison of U2 snDNA between that obtained from a genome without the B chromosome and that from µB-DNA revealed high similarity with the occurrence of four shared haplotypes, one of them (i.e., Hap1) being highly prevalent and putatively ancestral. The highest divergence from Hap1 was observed for Hap3, which was caused by only six mutational steps. These data support an intraspecific origin of the B chromosome in A. flavolineata that is highly similar with the A complement, and the low U2 snDNA sequence diversity observed in the B chromosome could be related to its recent origin, besides intrachromosomal concerted evolution for U2 snDNA repeats in the B chromosome.

  8. Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans.

    PubMed

    Bouchonville, Kelly; Forche, Anja; Tang, Karen E S; Selmecki, Anna; Berman, Judith

    2009-10-01

    Candida albicans strains tolerate aneuploidy, historically detected as karyotype alterations by pulsed-field gel electrophoresis and more recently revealed by array comparative genome hybridization, which provides a comprehensive and detailed description of gene copy number. Here, we first retrospectively analyzed 411 expression array experiments to predict the frequency of aneuploidy in different strains. As expected, significant levels of aneuploidy were seen in strains exposed to stress conditions, including UV light and/or sorbose treatment, as well as in strains that are resistant to antifungal drugs. More surprisingly, strains that underwent transformation with DNA displayed the highest frequency of chromosome copy number changes, with strains that were initially aneuploid exhibiting approximately 3-fold more copy number changes than strains that were initially diploid. We then prospectively analyzed the effect of lithium acetate (LiOAc) transformation protocols on the stability of trisomic chromosomes. Consistent with the retrospective analysis, the proportion of karyotype changes was highly elevated in strains carrying aneuploid chromosomes. We then tested the hypothesis that stresses conferred by heat and/or LiOAc exposure promote chromosome number changes during DNA transformation procedures. Indeed, a short pulse of very high temperature caused frequent gains and losses of multiple chromosomes or chromosome segments. Furthermore, milder heat exposure over longer periods caused increased levels of loss of heterozygosity. Nonetheless, aneuploid chromosomes were also unstable when strains were transformed by electroporation, which does not include a heat shock step. Thus, aneuploid strains are particularly prone to undergo changes in chromosome number during the stresses of DNA transformation protocols.

  9. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications†

    PubMed Central

    Guenther, Dale C.; Anderson, Grace H.; Karmakar, Saswata; Anderson, Brooke A.; Didion, Bradley A.; Guo, Wei; Verstegen, John P.; Hrdlicka, Patrick J.

    2015-01-01

    Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers. Here, probes with different chemistries and architectures – varying in the position, number, and distance between the intercalator zippers – are studied with respect to hybridization energetics and DNA-targeting properties. Experiments with model DNA targets demonstrate that optimized probes enable efficient (C50 < 1 μM), fast (t50 < 3h), kinetically stable (> 24h), and single nucleotide specific recognition of DNA targets at physiologically relevant ionic strengths. Optimized probes were used in non-denaturing fluorescence in situ hybridization experiments for detection of gender-specific mixed-sequence chromosomal DNA target regions. These probes present themselves as a promising strategy for recognition of chromosomal DNA, which will enable development of new tools for applications in molecular biology, genomic engineering and nanotechnology. PMID:26240741

  10. Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae

    PubMed Central

    Choi, Jaehyuk; Park, Jongsun; Jeon, Junhyun; Chi, Myoung-Hwan; Goh, Jaeduk; Yoo, Sung-Yong; Park, Jaejin; Jung, Kyongyong; Kim, Hyojeong; Park, Sook-Young; Rho, Hee-Sool; Kim, Soonok; Kim, Byeong Ryun; Han, Seong-Sook; Kang, Seogchan; Lee, Yong-Hwan

    2007-01-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) has become a prevalent tool for functional genomics of fungi, but our understanding of T-DNA integration into the fungal genome remains limited relative to that in plants. Using a model plant-pathogenic fungus, Magnaporthe oryzae, here we report the most comprehensive analysis of T-DNA integration events in fungi and the development of an informatics infrastructure, termed a T-DNA analysis platform (TAP). We identified a total of 1110 T-DNA-tagged locations (TTLs) and processed the resulting data via TAP. Analysis of the TTLs showed that T-DNA integration was biased among chromosomes and preferred the promoter region of genes. In addition, irregular patterns of T-DNA integration, such as chromosomal rearrangement and readthrough of plasmid vectors, were also observed, showing that T-DNA integration patterns into the fungal genome are as diverse as those of their plant counterparts. However, overall the observed junction structures between T-DNA borders and flanking genomic DNA sequences revealed that T-DNA integration into the fungal genome was more canonical than those observed in plants. Our results support the potential of ATMT as a tool for functional genomics of fungi and show that the TAP is an effective informatics platform for handling data from large-scale insertional mutagenesis. PMID:17850257

  11. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications

    PubMed Central

    2012-01-01

    Background 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of the distribution of these sites along the chromosome in several genera has suggested some bias in their distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of some chromosomal and karyotypic features on the distribution of these sites, a database was built with the position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant species. Results In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted. The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm. The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families. Conclusions The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but some hypotheses are considered and the observed trends are discussed. PMID:23181612

  12. DNA and the chromosome – varied targets for chemotherapy

    PubMed Central

    Nelson, Stephanie M; Ferguson, Lynnette R; Denny, William A

    2004-01-01

    The nucleus of the cell serves to maintain, regulate, and replicate the critical genetic information encoded by the genome. Genomic DNA is highly associated with proteins that enable simple nuclear structures such as nucleosomes to form higher-order organisation such as chromatin fibres. The temporal association of regulatory proteins with DNA creates a dynamic environment capable of quickly responding to cellular requirements and distress. The response is often mediated through alterations in the chromatin structure, resulting in changed accessibility of specific DNA sequences that are then recognized by specific proteins. Anti-cancer drugs that target cellular DNA have been used clinically for over four decades, but it is only recently that nuclease specific drugs have been developed to not only target the DNA but also other components of the nuclear structure and its regulation. In this review, we discuss some of the new drugs aimed at primary DNA sequences, DNA secondary structures, and associated proteins, keeping in mind that these agents are not only important from a clinical perspective but also as tools for understanding the nuclear environment in normal and cancer cells. PMID:15157277

  13. Location of B- and Z-DNA in the chromosomes of a primitive eukaryote dinoflagellate.

    PubMed

    Soyer-Gobillard, M O; Géraud, M L; Coulaud, D; Barray, M; Théveny, B; Révet, B; Delain, E

    1990-08-01

    The usual conformation of DNA is a right-handed double helix (B-DNA). DNA with stretches of alternating purine-pyrimidine (G-C or A-T) can form a left-handed helix (Z-DNA). The transition B----Z, facilitated by the presence of divalent cations, cytosine methylation, or constraints on DNA such as superhelicity may play a role in the regulation of gene expression and/or in DNA compaction (Zarling, D. A., D. J. Arndt-Jovin, M. Robert-Nicoud, L. P. McIntosh, R. Tomae, and T. M. Jovin. 1984. J. Mol. Biol. 176:369-415). Divalent cations are also important in the structure of the quasi-permanently condensed chromosomes of dinoflagellate protists (Herzog, M., and M.-O. Soyer. 1983. Eur. J. Cell Biol. 30:33-41) which also have superhelicity in their DNA. The absence of histones in dinoflagellate chromosomes suggest that the search for Z-DNA sequences might be fruitful and could provide one indication of the physiological role of this particular DNA conformation. We report a complete immunofluorescent and immunogold analysis of the nuclei of the dinoflagellate Prorocentrum micans E. using monoclonal and polyclonal anti-B and anti-Z-DNA antibodies. Positive labeling was obtained with immunofluorescence using squash preparations and cryosections, both of which showed the intranuclear presence of the two DNA conformations. In ultrathin sections of aldehyde-prefixed, osmium-fixed, and epoxy-embedded cells, we have localized B-DNA and Z-DNA either with single or double immunolabeling using IgG labeled with 5- and 7-nm gold particles, respectively. Chromosomal nucleofilaments of dividing or nondividing chromosomes, as seen in ultrathin sections in their arch-shaped configuration, are abundantly labeled with anti-B-DNA antibody. Extrachromosomal anti-B-DNA labeling is also detected on the nucleoplasm that corresponds to DNA loops; we confirm the presence of these loops previously described external to the chromosomes (Soyer, M.-O., and O. K. Haapala. 1974. Chromosoma (Berl.). 47

  14. Chromosomal Replication Complexity: A Novel DNA Metrics and Genome Instability Factor

    PubMed Central

    Kuzminov, Andrei

    2016-01-01

    As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC) appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two major reasons to avoid elevating it further: (i) increased chromosomal fragmentation and (ii) complications with subsequent double-strand break repair. Remarkably, examples of stable elevated CRC in eukaryotic chromosomes are well known under various terms like "differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-replication" and highlight the phenomenon of static replication fork (sRF). To accurately describe the resulting "amplification by overinitiation," I propose a new term: "replification" (subchromosomal overreplication). In both prokaryotes and eukaryotes, replification, via sRF processing, causes double-strand DNA breaks and, with their repair elevating chromosomal rearrangements, represents a novel genome instability factor. I suggest how static replication bubbles could be stabilized and speculate that some tandem duplications represent such persistent static bubbles. Moreover, I propose how static replication bubbles could be transformed into tandem duplications, double minutes, or inverted triplications. Possible experimental tests of these models are discussed. PMID:27711112

  15. Chromosome 16-specific repetitive DNA sequences that map to chromosomal regions known to undergo breakage/rearrangement in leukemia cells.

    PubMed

    Stallings, R L; Doggett, N A; Okumura, K; Ward, D C

    1992-06-01

    Human chromosome 16-specific low-abundance repetitive (CH16LAR) DNA sequences have been identified during the course of constructing a physical map of this chromosome. At least three CH16LAR sequences exist and they are interspersed, in small clusters, over four regions that constitute more than 5% of the chromosome. CH16LAR sequences were observed in one unusually large cosmid contig (number 55), where the ordering of clones was difficult because these sequences led to false overlaps between noncontiguous clones. Contig 55 contains 78 clones, or approximately 2% of all the clones contained within the present cosmid contig physical map. Fluorescent in situ hybridization of multiple clones, including cosmid and YAC contig 55 clones, mapped the four CH16LAR-rich regions to bands p13, p12, p11, and q22. These regions are of biological interest since the pericentric inversion and the interhomologue translocation breakpoints commonly found in acute nonlymphocytic leukemia (ANLL) subtype M4 fall within these bands. Sequence analysis of a 2.2-kb HindIII fragment from a cosmid containing a CH16LAR sequence indicated that one of the CH16LAR elements is similar to a minisatellite sequence in that the core repeat is only 40 bp in length. Additional characterization of other repetitive elements is in progress.

  16. Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation

    PubMed Central

    Hyppa, Randy W.; Benko, Zsigmond; Misova, Ivana; Schleiffer, Alexander; Smith, Gerald R.; Gregan, Juraj

    2016-01-01

    To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. PMID:27304859

  17. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers

    SciTech Connect

    Rosen, D.R.; Sapp, P.; O`Regan, J.; McKenna-Yasek, D.; Schlumpf, K.S.; Haines, J.L.; Gusella, J.F.; Horvitz, H.R.; Brown, R.H. Jr.

    1994-05-15

    Amyotrophic lateral sclerosis (ALS; Lou Gehrig`s Disease) is a lethal neurodegenerative disease of upper and lower motorneurons in the brain and spinal cord. We previously reported linkage of a gene for familial ALS (FALS) to human chromosome 21 using 4 restriction fragment length polymorphism DNA markers and identified disease-associated mutations in the superoxide dismutase (SOD)-1 gene in some ALS families. We report here the genetic linkage data that led us to examine the SOD-1 gene for mutations. We also report a new microsatellite DNA marker for D21S63, derived from the cosmid PW517. Ten microsatellite DNA markers, including the new marker D21S63, were used to reinvestigate linkage of FALS to chromosome 21. Genetic linkage analysis performed with 13 ALS familes for these 10 DNA markers confirmed the presence of a FALS gene on chromosome 21. The highest total 2-point LOD score for all families was 4.33, obtained at a distance of 10 cM from the marker D21S223. For 5 ALS families linked to chromosome 21, a peak 2-point LOD score of 5.94 was obtained at the DNA marker D21S223. A multipoint score of 6.50 was obtained with the markers D21S213, D21S223, D21S167, and FALS for 5 chromosome 21-linked ALS families. The haplotypes of these families for the 10 DNA markers reveal recombination events that further refined the location of the FALS gene to a segment of approximately 5 megabases (Mb) between D21S213 and D21S219. The only characterized gene within this segment was SOD-1, the structural gene for Cu, Zn SOD. 30 refs., 4 figs., 4 tabs.

  18. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays

    PubMed Central

    Gribble, Susan M; Ng, Bee Ling; Prigmore, Elena; Fitzgerald, Tomas; Carter, Nigel P

    2012-01-01

    Aarray painting is a technique that uses microarray technology to rapidly map chromosome translocation breakpoints. previous methods to map translocation breakpoints have used fluorescence in situ hybridization (FIsH) and have consequently been labor-intensive, time-consuming and restricted to the low breakpoint resolution imposed by the use of metaphase chromosomes. array painting combines the isolation of derivative chromosomes (chromosomes with translocations) and high-resolution microarray analysis to refine the genomic location of translocation breakpoints in a single experiment. In this protocol, we describe array painting by isolation of derivative chromosomes using a MoFlo flow sorter, amplification of these derivatives using whole-genome amplification and hybridization onto commercially available oligonucleotide microarrays. although the sorting of derivative chromosomes is a specialized procedure requiring sophisticated equipment, the amplification, labeling and hybridization of Dna is straightforward, robust and can be completed within 1 week. the protocol described produces good quality data; however, array painting is equally achievable using any combination of the available alternative methodologies for chromosome isolation, amplification and hybridization. PMID:19893508

  19. Integration of hepatitis B virus DNA in chromosome-specific satellite sequences

    SciTech Connect

    Shaul, Y.; Garcia, P.D.; Schonberg, S.; Rutter, W.J.

    1986-09-01

    The authors previously reported the cloning and detailed analysis of the integrated hepatitis B virus sequences in a human hepatoma cell line. They report here the integration of at least one of hepatitis B virus at human satellite DNA sequences. The majority of the cellular sequences identified by this satellite were organized as a multimeric composition of a 0.6-kilobase EcoRI fragment. This clone hybridized in situ almost exclusively to the centromeric heterochromatin of chromosomes 1 and 16 and to a lower extent to chromosome 2 and to the heterochromatic region of the Y chromosome. The immediate flanking host sequence appeared as a hierarchy of repeating units which were almost identical to a previously reported human satellite III DNA sequence.

  20. Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA.

    PubMed

    Meyne, J; Goodwin, E H; Moyzis, R K

    1994-04-01

    The predominant chromosomal locations of human satellite I DNA were detected using fluorescent in situ hybridization (FISH). Synthetic deoxyoligonucleotides designed from consensus sequences of the simple sequence repeats of satellite 1 were used as probes. The most abundant satellite I repeat, the -A-B-A-B-A- form, is located at the pericentromeric regions of chromosomes 3, 4, 13, 14, 15, 21, and 22. The less abundant -B-B-B-form was not detected on chromosome 4, but was present at all the other locations. A variation of FISH that allows strand-specific hybridization of single-stranded probes (CO-FISH) determined that the human satellite I sequences are predominantly arranged in head-to-tail fashion along the DNA strand. PMID:8055716

  1. Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans.

    PubMed

    Ruíz-Estévez, Mercedes; López-León, M Dolores; Cabrero, Josefa; Camacho, Juan Pedro M

    2013-09-01

    B chromosomes are considered to be genetically inert elements. However, some of them are able to show nucleolus organizer region (NOR) activity, as detected by both cytological and molecular means. The grasshopper Eyprepocnemis plorans shows a B chromosome polymorphism characterized by the existence of many B variants. One of them, B24, shows NOR activity in about half of B-carrying males in the Torrox population. Molecular data have suggested the recent origin for B chromosomes in this species, and on this basis it would be expected that NOR activity was widespread among the different B variants. Here we test this hypothesis in four different B chromosome variants (B1, B2, B5, and B24) from 11 natural populations of the grasshopper E. plorans covering the south and east of the Iberian Peninsula plus the Balearic Islands. We used two different approaches: (1) the cytological observation of nucleoli attached to the distal region of the B chromosome (where the rDNA is located), and (2) the molecular detection of the rDNA transcripts carrying an adenine insertion characteristic of B chromosome ITS2 sequences. The results showed NOR expression not only for B24 but also for the B1 and B2 variants. However, the level of B-NOR expression in these latter variants, measured by the proportion of cells showing nucleoli attached to the B chromosomes, was much lower than that previously reported for B24. This suggests the possibility that structural or genetic background conditions are enhancing the expressivity of the rDNA in the B24 variant.

  2. Structure and variation of human ribosomal DNA: the external transcribed spacer and adjacent regions.

    PubMed Central

    Wilson, G N; Szura, L L; Rushford, C; Jackson, D; Erickson, J

    1982-01-01

    A group of human ribosomal DNA (rDNA) recombinants that include the probable site for initiation of transcription have been examined for sequence polymorphism. A detailed restriction map of one rDNA insert was constructed using plasmid subclones and end-labeled segments. Comparison of 16 similar rDNA inserts by restriction and heteroduplex analysis demonstrated striking conservation of the external transcribed spacer and 18S gene regions, but defined a region where restriction sites for the enzymes Sma I, Hpa II, and Hha I become frequent or variable. This region extends for about 400--800 base pairs (bp) at the left end of the rDNA insert and is postulated to contain nontranscribed spacer sequences. The use of cloned rDNA segments as probes for the restriction analysis of genomic rDNA has demonstrated certain fixed sites in the nontranscribed spacer that do not vary significantly among different individuals or tumor cell lines. In contrast, restriction with the enzyme Sal I reveals several variable fragments, one of which has been found only in a retinoblastoma cell line. Images Fig. 6 Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:6282117

  3. A rare polymorphic variant of NBS1 reduces DNA repair activity and elevates chromosomal instability.

    PubMed

    Yamamoto, Yuki; Miyamoto, Mamiko; Tatsuda, Daisuke; Kubo, Michiaki; Nakagama, Hitoshi; Nakamura, Yusuke; Satoh, Hitoshi; Matsuda, Koichi; Watanabe, Toshiki; Ohta, Tsutomu

    2014-07-15

    Failure to expeditiously repair DNA at sites of double-strand breaks (DSB) ultimately is an important etiologic factor in cancer development. NBS1 plays an important role in the cellular response to DSB damage. A rare polymorphic variant of NBS1 that resulted in an isoleucine to valine substitution at amino acid position 171 (I171V) was first identified in childhood acute lymphoblastic leukemia. This polymorphic variant is located in the N-terminal region that interacts with other DNA repair factors. In earlier work, we had identified a remarkable number of structural chromosomal aberrations in a patient with pediatric aplastic anemia with a homozygous polymorphic variant of NBS1-I171V; however, it was unclear whether this variant affected DSB repair activity or chromosomal instability. In this report, we demonstrate that NBS1-I171V reduces DSB repair activity through a loss of association with the DNA repair factor MDC1. Furthermore, we found that heterozygosity in this polymorphic variant was associated with breast cancer risk. Finally, we showed that this variant exerted a dominant-negative effect on wild-type NBS1, attenuating DSB repair efficiency and elevating chromosomal instability. Our findings offer evidence that the failure of DNA repair leading to chromosomal instability has a causal impact on the risk of breast cancer development.

  4. Alterations in Chromosomal Synapses and DNA Repair in Apoptotic Spermatocytes of Mus m. Domesticus

    PubMed Central

    Ayarza, E.; González, M.; López, F.; Fernández-Donoso, R.; Page, J.; Berrios, S.

    2016-01-01

    We investigated whether apoptotic spermatocytes from the mouse Mus m. domesticus presented alterations in chromosomal synapses and DNA repair. To enrich for apoptotic spermatocytes, the scrotum’s temperature was raised by partially exposing animals for 15 min to a 42ºC water bath. Spermatocytes in initial apoptosis were identified in situ by detecting activated caspase-9. SYCP1 and SYCP3 were markers for evaluating synapses or the structure of synaptonemal complexes and Rad51 and γH2AX for detecting DNA repair and chromatin remodeling. Apoptotic spermatocytes were concentrated in spermatogenic cycle stages III-IV (50.3%), XI-XII (44.1%) and IX-X (4.2%). Among apoptotic spermatocytes, 48% were in middle pachytene, 44% in metaphase and 6% in diplotene. Moreover, apoptotic spermatocytes showed several structural anomalies in autosomal bivalents, including splitting of chromosomal axes and partial asynapses between homologous chromosomes. γH2AX and Rad51 were atypically distributed during pachytene and as late as diplotene and associated with asynaptic chromatin, single chromosome axes or discontinuous chromosome axes. Among apoptotic spermatocytes at pachytene, 70% showed changes in the structure of synapses, 67% showed changes in γH2AX and Rad51 distribution and 50% shared alterations in both synapses and DNA repair. Our results showed that apoptotic spermatocytes from Mus m. domesticus contain a high frequency of alterations in chromosomal synapses and in the recruitment and distribution of DNA repair proteins. Together, these observations suggest that these alterations may have been detected by meiotic checkpoints triggering apoptosis. PMID:27349323

  5. Alterations in chromosomal synapses and DNA repair in apoptotic spermatocytes of Mus m. domesticus.

    PubMed

    Ayarza, E; González, M; López, F; Fernández-Donoso, R; Page, J; Berrios, S

    2016-01-01

    We investigated whether apoptotic spermatocytes from the mouse Mus m. domesticus presented alterations in chromosomal synapses and DNA repair. To enrich for apoptotic spermatocytes, the scrotum's temperature was raised by partially exposing animals for 15 min to a 42ºC water bath. Spermatocytes in initial apoptosis were identified in situ by detecting activated Caspase-9.  SYCP1 and SYCP3 were markers for evaluating synapses or the structure of synaptonemal complexes and Rad51 and γH2AX for detecting DNA repair and chromatin remodeling. Apoptotic spermatocytes were concentrated in spermatogenic cycle stages III-IV (50.3%), XI-XII (44.1%) and IX-X (4.2%). Among apoptotic spermatocytes, 48% were in middle pachytene, 44% in metaphase and 6% in diplotene. Moreover, apoptotic spermatocytes showed several structural anomalies in autosomal bivalents, including splitting of chromosomal axes and partial asynapses between homologous chromosomes. gH2AX and Rad51 were atypically distributed during pachytene and as late as diplotene and associated with asynaptic chromatin, single chromosome axes or discontinuous chromosome axes. Among apoptotic spermatocytes at pachytene, 70% showed changes in the structure of synapses, 67% showed changes in gH2AX and Rad51 distribution and 50% shared alterations in both synapses and DNA repair. Our results showed that apoptotic spermatocytes from Mus m. domesticus contain a high frequency of alterations in chromosomal synapses and in the recruitment and distribution of DNA repair proteins. Together, these observations suggest that these alterations may have been detected by meiotic checkpoints triggering apoptosis. PMID:27349323

  6. U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization

    PubMed Central

    Anjos, A; Ruiz-Ruano, F J; Camacho, J P M; Loreto, V; Cabrero, J; de Souza, M J; Cabral-de-Mello, D C

    2015-01-01

    The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements. PMID:25248465

  7. Conformational Variants of Duplex DNA Correlated with Cytosine-rich Chromosomal Fragile Sites*S⃞

    PubMed Central

    Tsai, Albert G.; Engelhart, Aaron E.; Hatmal, Ma'mon M.; Houston, Sabrina I.; Hud, Nicholas V.; Haworth, Ian S.; Lieber, Michael R.

    2009-01-01

    We found that several major chromosomal fragile sites in human lymphomas, including the bcl-2 major breakpoint region, bcl-1 major translocation cluster, and c-Myc exon 1-intron 1 boundary, contain distinctive sequences of consecutive cytosines exhibiting a high degree of reactivity with the structure-specific chemical probe bisulfite. To assess the inherent structural variability of duplex DNA in these regions and to determine the range of structures reactive to bisulfite, we have performed bisulfite probing on genomic DNA in vitro and in situ; on duplex DNA in supercoiled and linearized plasmids; and on oligonucleotide DNA/DNA and DNA/2′-O-methyl RNA duplexes. Bisulfite is significantly more reactive at the frayed ends of DNA duplexes, which is expected given that bisulfite is an established probe of single-stranded DNA. We observed that bisulfite also distinguishes between more subtle sequence/structural differences in duplex DNA. Supercoiled plasmids are more reactive than linear DNA; and sequences containing consecutive cytosines, namely GGGCCC, are more reactive than those with alternating guanine and cytosine, namely GCGCGC. Circular dichroism and x-ray crystallography show that the GGGCCC sequence forms an intermediate B/A structure. Molecular dynamics simulations also predict an intermediate B/A structure for this sequence, and probe calculations suggest greater bisulfite accessibility of cytosine bases in the intermediate B/A structure over canonical B- or A-form DNA. Electrostatic calculations reveal that consecutive cytosine bases create electropositive patches in the major groove, predicting enhanced localization of the bisulfite anion at homo-C tracts over alternating G/C sequences. These characteristics of homo-C tracts in duplex DNA may be associated with DNA-protein interactions in vivo that predispose certain genomic regions to chromosomal fragility. PMID:19106104

  8. Reduced Y-Chromosome, but Not Mitochondrial DNA, Diversity in Human Populations from West New Guinea

    PubMed Central

    Kayser, Manfred; Brauer, Silke; Weiss, Gunter; Schiefenhövel, Wulf; Underhill, Peter; Shen, Peidong; Oefner, Peter; Tommaseo-Ponzetta, Mila; Stoneking, Mark

    2003-01-01

    To investigate the paternal population history of New Guinea, 183 individuals from 11 regional populations of West New Guinea (WNG) and 131 individuals from Papua New Guinea (PNG) were analyzed at 26 binary markers and seven short-tandem-repeat loci from the nonrecombining part of the human Y chromosome and were compared with 14 populations of eastern and southeastern Asia, Polynesia, and Australia. Y-chromosomal diversity was low in WNG compared with PNG and with most other populations from Asia/Oceania; a single haplogroup (M-M4) accounts for 75% of WNG Y chromosomes, and many WNG populations have just one Y haplogroup. Four Y-chromosomal lineages (haplogroups M-M4, C-M208, C-M38, and K-M230) account for 94% of WNG Y chromosomes and 78% of all Melanesian Y chromosomes and were identified to have most likely arisen in Melanesia. Haplogroup C-M208, which in WNG is restricted to the Dani and Lani, two linguistically closely related populations from the central and western highlands of WNG, was identified as the major Polynesian Y-chromosome lineage. A network analysis of associated Y-chromosomal short-tandem-repeat haplotypes suggests two distinct population expansions involving C-M208—one in New Guinea and one in Polynesia. The observed low levels of Y-chromosome diversity in WNG contrast with high levels of mtDNA diversity reported for the same populations. This most likely reflects extreme patrilocality and/or biased male reproductive success (polygyny). Our data further provide evidence for primarily female-mediated gene flow within the highlands of New Guinea but primarily male-mediated gene flow between highland and lowland/coastal regions. PMID:12532283

  9. Chromosome architecture can dictate site-specific initiation of DNA replication in Xenopus egg extracts

    PubMed Central

    1996-01-01

    Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure. PMID:8947545

  10. First Polish DNA "manhunt"--an application of Y-chromosome STRs.

    PubMed

    Dettlaff-Kakol, A; Pawlowski, R

    2002-10-01

    This study presents the application of Y-chromosomal STR polymorphisms to male identification in the case of a serial rapist and woman murderer in Poland. Since August 1996 a rapist from Swinoujscie (northwest Poland) committed at least 14 rapes. In the year 2000 he brutally raped 8 young girls and murdered a 22-year-old girl. DNA profiles obtained from semen stains left at the scenes of crime gave information that one and the same man had committed all the rapes. The Y-chromosome haplotype (9 loci) obtained was used for the elimination process of 421 suspects. One man was found who had an identical DNA profile in all Y-chromosome STR loci analysed and possessed common alleles in 9 out of 10 autosomal loci, strongly suggesting that the real rapist and the typed man were closely related males. Analysis of reference DNA obtained from the man's brother revealed an identical DNA STR profile to that identified at the crime scenes. To the best of our knowledge this is the first case in Poland and probably in Eastern Europe where DNA typing of a large population was used to identify the offender. PMID:12376840

  11. First Polish DNA "manhunt"--an application of Y-chromosome STRs.

    PubMed

    Dettlaff-Kakol, A; Pawlowski, R

    2002-10-01

    This study presents the application of Y-chromosomal STR polymorphisms to male identification in the case of a serial rapist and woman murderer in Poland. Since August 1996 a rapist from Swinoujscie (northwest Poland) committed at least 14 rapes. In the year 2000 he brutally raped 8 young girls and murdered a 22-year-old girl. DNA profiles obtained from semen stains left at the scenes of crime gave information that one and the same man had committed all the rapes. The Y-chromosome haplotype (9 loci) obtained was used for the elimination process of 421 suspects. One man was found who had an identical DNA profile in all Y-chromosome STR loci analysed and possessed common alleles in 9 out of 10 autosomal loci, strongly suggesting that the real rapist and the typed man were closely related males. Analysis of reference DNA obtained from the man's brother revealed an identical DNA STR profile to that identified at the crime scenes. To the best of our knowledge this is the first case in Poland and probably in Eastern Europe where DNA typing of a large population was used to identify the offender.

  12. Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers.

    PubMed

    Galetti, Pedro Manoel; Molina, Wagner Franco; Affonso, Paulo Roberto A M; Aguilar, Cecília Teixeira

    2006-01-01

    Little is known on genetics of Brazilian coral reef fish and most of this information is limited to chromosome characterization of major representative species. The diploid chromosome number in marine fish varies from 2n= 22-26 to 2n = 240-260. Despite of this apparent diversity, most studied marine species have a diploid complement with 48 acrocentric chromosomes. This latter trend is mostly observed among Perciformes, an important major taxon of coral reef fishes. Studies in the families Pomacentridae, Pomacanthidae and Chaetodontidae, for example, have shown a common karyotype pattern entirely formed by 48 uniarmed chromosomes. However, rare numerical and structural chromosome polymorphisms and cryptic chromosome rearrangements involving heterochromatin segments and/or nucleolar organizing sites have been reported among such fishes. Although new chromosome forms can contribute to the establishment of genetically isolated populations, their role in reef fish speciation at marine realm still is an open question. More recently, genomic DNA analyses using RAPD and microsatellites, and sequencing and RFLP of mitochondrial DNA have increasingly been used in Atlantic reef fish species. Genetic homogeneity over wide geographical ranges has been reported for different fish groups, in contrast to several cases of population substructuring related to environmental constraints or evolutionary history. Amazonas outflow and upwelling on the Southeastern coast of Brazil are believed to be strong barriers to dispersal of some reef species. Moreover, it is suggested that the pattern of speciation and population structure at South Atlantic is quite distinctive from Pacific Ocean, even when comparing closely related taxa. Further genetic studies are strongly encouraged in Brazilian reef fishes in order to provide a reliable scenario of the genetic structure in this important and diverse fish group.

  13. Identification of chromosomal errors in human preimplantation embryos with oligonucleotide DNA microarray.

    PubMed

    Liang, Lifeng; Wang, Cassie T; Sun, Xiaofang; Liu, Lian; Li, Man; Witz, Craig; Williams, Daniel; Griffith, Jason; Skorupski, Josh; Haddad, Ghassan; Gill, Jimmy; Wang, Wei-Hua

    2013-01-01

    A previous study comparing the performance of different platforms for DNA microarray found that the oligonucleotide (oligo) microarray platform containing 385K isothermal probes had the best performance when evaluating dosage sensitivity, precision, specificity, sensitivity and copy number variations border definition. Although oligo microarray platform has been used in some research fields and clinics, it has not been used for aneuploidy screening in human embryos. The present study was designed to use this new microarray platform for preimplantation genetic screening in the human. A total of 383 blastocysts from 72 infertility patients with either advanced maternal age or with previous miscarriage were analyzed after biopsy and microarray. Euploid blastocysts were transferred to patients and clinical pregnancy and implantation rates were measured. Chromosomes in some aneuploid blastocysts were further analyzed by fluorescence in-situ hybridization (FISH) to evaluate accuracy of the results. We found that most (58.1%) of the blastocysts had chromosomal abnormalities that included single or multiple gains and/or losses of chromosome(s), partial chromosome deletions and/or duplications in both euploid and aneuploid embryos. Transfer of normal euploid blastocysts in 34 cycles resulted in 58.8% clinical pregnancy and 54.4% implantation rates. Examination of abnormal blastocysts by FISH showed that all embryos had matching results comparing microarray and FISH analysis. The present study indicates that oligo microarray conducted with a higher resolution and a greater number of probes is able to detect not only aneuploidy, but also minor chromosomal abnormalities, such as partial chromosome deletion and/or duplication in human embryos. Preimplantation genetic screening of the aneuploidy by DNA microarray is an advanced technology used to select embryos for transfer and improved embryo implantation can be obtained after transfer of the screened normal embryos.

  14. Introducing the Algerian Mitochondrial DNA and Y-Chromosome Profiles into the North African Landscape

    PubMed Central

    Bekada, Asmahan; Fregel, Rosa; Cabrera, Vicente M.; Larruga, José M.; Pestano, José; Benhamamouch, Soraya; González, Ana M.

    2013-01-01

    North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography. PMID:23431392

  15. Differential Chromosomal Localization of Centromeric Histone CENP-A Contributes to Nematode Programmed DNA Elimination.

    PubMed

    Kang, Yuanyuan; Wang, Jianbin; Neff, Ashley; Kratzer, Stella; Kimura, Hiroshi; Davis, Richard E

    2016-08-30

    The stability of the genome is paramount to organisms. However, diverse eukaryotes carry out programmed DNA elimination in which portions or entire chromsomes are lost in early development or during sex determination. During early development of the parasitic nematode, Ascaris suum, 13% of the genome is eliminated. How different genomic segments are reproducibly retained or discarded is unknown. Here, we show that centromeric histone CENP-A localization plays a key role in this process. We show that Ascaris chromosomes are holocentric during germline mitoses, with CENP-A distributed along their length. Prior to DNA elimination in the four-cell embryo, CENP-A is significantly diminished in chromosome regions that will be lost. This leads to the absence of kinetochores and microtubule attachment sites necessary for chromosome segregation, resulting in loss of these regions upon mitosis. Our data suggest that changes in CENP-A localization specify which portions of chromosomes will be lost during programmed DNA elimination. PMID:27545882

  16. Data Mining Empowers the Generation of a Novel Class of Chromosome-specific DNA Probes

    SciTech Connect

    Zeng, Hui; Weier, Heinz-Ulrich G.; Kwan, Johnson; Wang, Mei; O'Brien, Benjamin

    2011-03-08

    Probes that allow accurate delineation of chromosome-specific DNA sequences in interphase or metaphase cell nuclei have become important clinical tools that deliver life-saving information about the gender or chromosomal make-up of a product of conception or the probability of an embryo to implant, as well as the definition of tumor-specific genetic signatures. Often such highly specific DNA probes are proprietary in nature and have been the result of extensive probe selection and optimization procedures. We describe a novel approach that eliminates costly and time consuming probe selection and testing by applying data mining and common bioinformatics tools. Similar to a rational drug design process in which drug-protein interactions are modeled in the computer, the rational probe design described here uses a set of criteria and publicly available bioinformatics software to select the desired probe molecules from libraries comprised of hundreds of thousands of probe molecules. Examples describe the selection of DNA probes for the human X and Y chromosomes, both with unprecedented performance, but in a similar fashion, this approach can be applied to other chromosomes or species.

  17. RNA FISH, DNA FISH and Chromosome Painting of Chicken Oocytes.

    PubMed

    Guioli, Silvana; Lovell-Badge, Robin

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a molecular cytogenetic technique. It identifies the location of DNA loci and RNAs, including nascent RNAs in the process of being transcribed, within individual cells. Great advances in fluorescent dye technology and technique sensitivity, combined with developments in light microscopy and imaging software have made it widely accessible and have expanded the range of applications in basic research as well as in diagnostics. Being able to perform RNA hybridization, DNA hybridization, and protein immunofluorescence consecutively on the same sample is an invaluable tool to study RNA expression in relation to their gene loci and to map RNA and DNA in relation to nuclear or cellular structures. This has contributed to enormous progress in understanding basal mechanisms of male and female meiosis in different animal model systems. In this chapter we describe in detail the protocols for FISH based techniques applied to study gene expression dynamics and nuclear architecture of chicken oocytes during meiotic prophase I. These techniques can be easily performed in any molecular and cell biology laboratory and be adapted to different systems and to different phases of gametogenesis. PMID:27557582

  18. The Caulobacter crescentus chromosome replication origin evolved two classes of weak DnaA binding sites.

    PubMed

    Taylor, James A; Ouimet, Marie-Claude; Wargachuk, Richard; Marczynski, Gregory T

    2011-10-01

    The Caulobacter crescentus replication initiator DnaA and essential response regulator CtrA compete to control chromosome replication. The C. crescentus replication origin (Cori) contains five strong CtrA binding sites but only two apparent DnaA boxes, termed G-boxes (with a conserved second position G, TGATCCACA). Since clusters of DnaA boxes typify bacterial replication origins, this discrepancy suggested that C. crescentus DnaA recognizes different DNA sequences or compensates with novel DNA-binding proteins. We searched for novel DNA sites by scanning mutagenesis of the most conserved Cori DNA. Autonomous replication assays showed that G-boxes and novel W-boxes (TCCCCA) are essential for replication. Further analyses showed that C. crescentus DnaA binds G-boxes with moderate and W-boxes with very weak affinities significantly below DnaA's capacity for high-affinity Escherichia coli-boxes (TTATCCACA). Cori has five conserved W-boxes. Increasing W-box affinities increases or decreases autonomous replication depending on their strategic positions between the G-boxes. In vitro, CtrA binding displaces DnaA from proximal G-boxes and from distal W-boxes implying CtrA-DnaA competition and DnaA-DnaA cooperation between G-boxes and W-boxes. Similarly, during cell cycle progression, CtrA proteolysis coincides with DnaA binding to Cori. We also observe highly conserved W-boxes in other replication origins lacking E. coli-boxes. Therefore, strategically weak DnaA binding can be a general means of replication control.

  19. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  20. Prenatal assessment of fetal chromosomal and genetic disorders through maternal plasma DNA analysis.

    PubMed

    Liao, Gary J W; Chiu, Rossa W K; Lo, Y M Dennis

    2012-02-01

    The existence of cell free DNA derived from the fetus in the plasma of pregnant women was first demonstrated in 1997. This discovery offered the possibility of non-invasive sampling of fetal genetic material simply through the collection of a maternal blood sample. Such cell free fetal DNA molecules in the maternal circulation have subsequently been shown to originate from the placenta and could be detected from about 7 weeks of gestation. It has been shown that cell free fetal DNA analysis could offer highly accurate assessment of fetal genotype and chromosomal makeup for some applications. Thus, cell free fetal DNA analysis has been incorporated as a part of prenatal screening programs for the prenatal management of sex-linked and sex-associated diseases, rhesus D incompatibility as well as the prenatal detection of Down's syndrome.Cell free fetal DNA analysis may lead to a change in the way prenatal assessments are made.

  1. Fragile Sites of ‘Valencia’ Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA

    PubMed Central

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in ‘Valencia’ C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of ‘Valencia’ C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid ‘Valencia’ C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in ‘Valencia’ sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in ‘Valencia’ sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  2. Large-scale oscillation of structure-related DNA sequence features in human chromosome 21

    NASA Astrophysics Data System (ADS)

    Li, Wentian; Miramontes, Pedro

    2006-08-01

    Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.

  3. High Performance DNA Probes for Perinatal Detection of Numerical Chromosome Aberrations

    PubMed Central

    Lemke, Kalistyn H; Weier, Jingly F; Weier, Heinz-Ulrich G; Lawin-O’Brien, Anna R

    2016-01-01

    Human reproduction is a tightly controlled process of stepwise evolution with multiple, mostly yet unknown milestones and checkpoints. Healthy halpoid gametes have to be produced by the parents, which will fuse to form the diploid zygote that implants in the female uterus and grows to become first an embryo, then a fetus and finally matures into a newborn. There are several known risk factors that interfere with normal production of gametes, spermatocytes or oocytes, and often cause embryonic mortality and fetal demise at an early stage. Yet some embryos with chomosomal abnormalities can develop beyond the critical first trimester of pregnancy and, while those with supernumary chromosomes in their hyperdiploid cells will be spontaneously aborted, a small fraction of fetuses with an extra chromosome continues to grow to term and will be delivered as a liveborn baby. While minor clinical symptoms displayed by children with trisomies are manageable for many parents, the burden of caring for a child with numerical chromosome abnormalities can be overwhelming to partners or individual families. It also poses a significant financial burden to the society and poses ethical dilemma. In this communication, we will review the progress that has been made in the development of molecular techniques to test individual fetal cells for chromosomal imbalances. We will focus our discussion on the direct visualization of chromosome-specific DNA sequences in live or fixed specimens using fluorescence in situ hybridization (FISH) and, more specifically, talk about the groundbreaking progress that in recent years has been achieved towards an improved diagnosis with novel, chromosome-specific DNA probes. PMID:26855976

  4. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    SciTech Connect

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. )

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  5. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment

    PubMed Central

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-01-01

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect. PMID:27257076

  6. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment.

    PubMed

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-09-19

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect. PMID:27257076

  7. Evolutionary Dynamics of rDNA Clusters in Chromosomes of Five Clam Species Belonging to the Family Veneridae (Mollusca, Bivalvia)

    PubMed Central

    Pérez-García, Concepción; Hurtado, Ninoska S.; Morán, Paloma; Pasantes, Juan J.

    2014-01-01

    The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae. PMID:24967400

  8. Cluster of DnaA Boxes Involved in Regulation of Streptomyces Chromosome Replication: from In Silico to In Vivo Studies†

    PubMed Central

    Smulczyk-Krawczyszyn, Aleksandra; Jakimowicz, Dagmara; Ruban-Ośmiałowska, Beata; Zawilak-Pawlik, Anna; Majka, Jerzy; Chater, Keith; Zakrzewska-Czerwińska, Jolanta

    2006-01-01

    In Streptomyces coelicolor, replication is initiated by the DnaA protein in the centrally located oriC region and proceeds bidirectionally until the replication forks reach the ends of the linear chromosome. We identified three clusters of DnaA boxes (H69, H24, and D78) which are in a relatively short segment of the chromosome centered on the oriC region. Of the clusters analyzed, D78 exhibited the highest affinity for the DnaA protein; the affinity of DnaA for the D78 cluster was about eightfold higher than the affinity for oriC. The high-affinity DnaA boxes appear to be involved in the control of chromosome replication. Deletion of D78 resulted in more frequent chromosome replication (an elevated ratio of origins to chromosome ends was observed) and activated aerial mycelium formation, leading to earlier colony maturation. In contrast, extra copies of D78 (delivered on a plasmid) caused slow colony growth, presumably because of a reduction in the frequency of initiation of chromosome replication. This suggests that the number of high-affinity DnaA boxes is relatively constant in hyphal compartments and that deletion of D78 therefore permits an increased copy number of either the chromosomal origin region or a plasmid harboring the D78 cluster. This system conceivably influences the timing of decisions to initiate aerial mycelial formation and sporulation. PMID:16923885

  9. Chromosomal localization of 18S and 5S rDNA using FISH in the genus Tor (Pisces, Cyprinidae).

    PubMed

    Singh, Mamta; Kumar, Ravindra; Nagpure, N S; Kushwaha, B; Gond, Indramani; Lakra, W S

    2009-12-01

    Dual color fluorescence in situ hybridization (FISH) was performed to study the simultaneous chromosomal localization of 18S and 5S ribosomal genes in the genus Tor for the first time. The 18S and 5S rDNAs in four Tor species were amplified, sequenced and mapped on the metaphase chromosomes. The number and distribution of 18S and 5S rDNA clusters were examined on metaphase chromosome spreads using FISH. The specimens of T. chelynoides, T. putitora and T. progeneius showed six bright fluorescent signals of 18S rDNA and T. tor exhibited ten such signals. The 5S rDNA signals were present only on one pair of chromosomes in all the four Tor species. Ag-NORs were observed on two pairs of chromosomes in T. chelynoides, T. putitora, T. progeneius and four pairs in T. tor. Comparison of the observed 18S rDNA FISH signals and Ag-NORs strongly suggested a possible inactivation of NORs localized at the telomeres of a subtelocentric and telocentric chromosome pairs in all four species. The 5S rDNA contained an identical 120 bp long coding region and 81 bp long highly divergent non-transcribed spacers in all species examined. 18S and 5S rDNA sequencing and chromosomal localization can be a useful genetic marker in species identification as well as phylogenetic and evolutionary studies.

  10. Bacteriophage P1 pac sites inserted into the chromosome greatly increase packaging and transduction of Escherichia coli genomic DNA.

    PubMed

    Huang, Haomin; Masters, Millicent

    2014-11-01

    The Escherichia coli bacteriophage P1 packages host chromosome separately from phage DNA, and transfers it to recipient cells at low frequency in a process called generalized transduction. Phage genomes are packaged from concatemers beginning at a specific site, pac. To increase transduction rate, we have inserted pac into the chromosome at up to five equally spaced positions; at least this many are fully tolerated in the absence of P1 infection. A single chromosomal pac greatly increases transduction of downstream markers without decreasing phage yields; 3.5 × as much total chromosomal DNA is packaged. Additional insertions decrease phage yield by > 90% and also decrease phage DNA synthesis, although less dramatically. Packaging of chromosomal markers near to and downstream of each inserted pac site is, at the same time, increased by greater than 10 fold. Transduction of markers near an inserted pac site can be increased by over 1000-fold, potentially allowing identification of such transductants by screening.

  11. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system.

    PubMed

    Hamilton, Holly L; Domínguez, Nadia M; Schwartz, Kevin J; Hackett, Kathleen T; Dillard, Joseph P

    2005-03-01

    The process of DNA donation for natural transformation of bacteria is poorly understood and has been assumed to involve bacterial cell death. Recently in Neisseria gonorrhoeae we found that mutations in three genes in the gonococcal genetic island (GGI) reduced the ability of a strain to act as a donor in transformation and to release DNA into the culture. To better characterize the GGI and the process of DNA donation, the 57 kb genetic island was cloned, sequenced and subjected to insertional mutagenesis. DNA sequencing revealed that the GGI has characteristics of a horizontally acquired genomic island and encodes homologues of type IV secretion system proteins. The GGI was found to be incorporated near the chromosomal replication terminus at the dif site, a sequence targeted by the site-specific recombinase XerCD. Using a plasmid carrying a small region of the GGI and the associated dif site, we demonstrated that this model island could be integrated at the dif site in strains not carrying the GGI and was spontaneously excised from that site. Also, we were able to delete the entire 57 kb region by transformation with DNA from a strain lacking the GGI. Thus the GGI was likely acquired and integrated into the gonococcal chromosome by site-specific recombination and may be lost by site-specific recombination or natural transformation. We made mutations in six putative type IV secretion system genes and assayed these strains for the ability to secrete DNA. Five of the mutations greatly reduced or completely eliminated DNA secretion. Our data indicate that N. gonorrhoeae secretes DNA via a specific process. Donated DNA may be used in natural transformation, contributing to antigenic variation and the spread of antibiotic resistance, and it may modulate the host immune response.

  12. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  13. Mechanism of chromosomal DNA replication initiation and replication fork stabilization in eukaryotes.

    PubMed

    Wu, LiHong; Liu, Yang; Kong, DaoChun

    2014-05-01

    Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replication of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites called DNA origins so that the replication could be completed in a limited time. Further, eukaryotic DNA replication is sophisticatedly regulated, and this regulation guarantees that each origin fires once per S phase and each segment of DNA gets duplication also once per cell cycle. The first step of replication initiation is the assembly of pre-replication complex (pre-RC). Since 1973, four proteins, Cdc6/Cdc18, MCM, ORC and Cdt1, have been extensively studied and proved to be pre-RC components. Recently, a novel pre-RC component called Sap1/Girdin was identified. Sap1/Girdin is required for loading Cdc18/Cdc6 to origins for pre-RC assembly in the fission yeast and human cells, respectively. At the transition of G1 to S phase, pre-RC is activated by the two kinases, cyclindependent kinase (CDK) and Dbf4-dependent kinase (DDK), and subsequently, RPA, primase-polα, PCNA, topoisomerase, Cdc45, polδ, and polɛ are recruited to DNA origins for creating two bi-directional replication forks and initiating DNA replication. As replication forks move along chromatin DNA, they frequently stall due to the presence of a great number of replication barriers on chromatin DNA, such as secondary DNA structures, protein/DNA complexes, DNA lesions, gene transcription. Stalled forks must require checkpoint regulation for their stabilization. Otherwise, stalled forks will collapse, which results in incomplete DNA replication and genomic instability. This short review gives a concise introduction regarding the current understanding of replication initiation and replication fork stabilization.

  14. Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes.

    PubMed Central

    Heslop-Harrison, J S; Murata, M; Ogura, Y; Schwarzacher, T; Motoyoshi, F

    1999-01-01

    A highly abundant repetitive DNA sequence family of Arabidopsis, AtCon, is composed of 178-bp tandemly repeated units and is located at the centromeres of all five chromosome pairs. Analysis of multiple copies of AtCon showed 95% conservation of nucleotides, with some alternative bases, and revealed two boxes, 30 and 24 bp long, that are 99% conserved. Sequences at the 3' end of these boxes showed similarity to yeast CDEI and human CENP-B DNA-protein binding motifs. When oligonucleotides from less conserved regions of AtCon were hybridized in situ and visualized by using primer extension, they were detected on specific chromosomes. When used for polymerase chain reaction with genomic DNA, single primers or primer pairs oriented in the same direction showed negligible amplification, indicating a head-to-tail repeat unit organization. Most primer pairs facing in opposite directions gave several strong bands corresponding to their positions within AtCon. However, consistent with the primer extension results, some primer pairs showed no amplification, indicating that there are chromosome-specific variants of AtCon. The results are significant because they elucidate the organization, mode of amplification, dispersion, and evolution of one of the major repeated sequence families of Arabidopsis. The evidence presented here suggests that AtCon, like human alpha satellites, plays a role in Arabidopsis centromere organization and function. PMID:9878630

  15. Y chromosome and mitochondrial DNA characterization of Pasiegos, a human isolate from Cantabria (Spain).

    PubMed

    Maca-Meyer, N; Sánchez-Velasco, P; Flores, C; Larruga, J-M; González, A-M; Oterino, A; Leyva-Cobián, F

    2003-07-01

    Mitochondrial DNA sequences and Y chromosome haplotypes were characterized in Pasiegos, a human isolate from Cantabria, and compared with those of other Cantabrian and neighbouring Northern Spain populations. Cantabria appears to be a genetically heterogeneous community. Whereas Lebaniegos do not differ from their eastern Basque and western Asturian and Galician neighbours, Pasiegos and other non-Lebaniego Cantabrians show significant differences with all of them. Pasiegos are peculiar for their high frequencies of Y chromosomal markers (E-M81) with North African assignation, and Y chromosomal (R-SRY2627) and mtDNA (V, I, U5) markers related to northern European populations. This dual geographic contribution is more in agreement with the complex demographic history of this isolate, as opposed to recent drift effects. The high incidence in Cantabrians with pre-V and V mtDNA haplotypes, considered as a signal of Postglacial recolonization in Europe from south-western refugees, points to such refugees as a better candidate population than Basques for this expansion. However, this does not discount a conjoint recolonization.

  16. Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds.

    PubMed

    Governini, L; Guerranti, C; De Leo, V; Boschi, L; Luddi, A; Gori, M; Orvieto, R; Piomboni, P

    2015-11-01

    This study investigated chromosomal aneuploidies and DNA damage in spermatozoa from male patients contaminated by perfluorinated compounds (PFCs) in whole blood and seminal plasma. Sperm aneuploidy and diploidy rate for chromosomes 18, X and Y were evaluated by FISH; sperm DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling technique coupled to flow cytometry. Our results indicated that PFC contamination was present in 58% of subjects included in the study. A significant increase in alterations of sperm parameters was observed in PFC-positive subjects compared to PFC-negative subjects. As regards the sperm aneuploidy, both disomy and diploidy rates resulted significantly increased in subjects positive for PFC contamination compared to PFC-negative samples. In addition, sperm DNA fragmentation index resulted significantly increased in PFC-contaminated subjects compared to PFC-non-contaminated subjects, with a significant increased level of dimmer DNA fragmentation index. Our results clearly indicate that PFC contamination may detrimentally affect spermatogenesis, disturbing both meiotic segregation and DNA integrity. We could therefore suggest cautions to reduce or eliminate any contact with these compounds because the long-term effects of PFC accumulation in the body are not predictable.

  17. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks.

    PubMed

    Lecointe, François; Sérèna, Céline; Velten, Marion; Costes, Audrey; McGovern, Stephen; Meile, Jean-Christophe; Errington, Jeffrey; Ehrlich, S Dusko; Noirot, Philippe; Polard, Patrice

    2007-10-01

    In bacteria, several salvage responses to DNA replication arrest culminate in reassembly of the replisome on inactivated forks to resume replication. The PriA DNA helicase is a prominent trigger of this replication restart process, preceded in many cases by a repair and/or remodeling of the arrested fork, which can be performed by many specific proteins. The mechanisms that target these rescue effectors to damaged forks in the cell are unknown. We report that the single-stranded DNA binding (SSB) protein is the key factor that links PriA to active chromosomal replication forks in vivo. This targeting mechanism determines the efficiency by which PriA reaches its specific DNA-binding site in vitro and directs replication restart in vivo. The RecG and RecQ DNA helicases, which are involved in intricate replication reactivation pathways, also associate with the chromosomal replication forks by similarly interacting with SSB. These results identify SSB as a platform for linking a 'repair toolbox' with active replication forks, providing a first line of rescue responses to accidental arrest.

  18. Y-chromosome and mitochondrial DNA studies on the population structure of the Christmas Island community.

    PubMed

    Wise, Cheryl A; Sullivan, Sheena G; Black, Michael L; Erber, Wendy N; Bittles, Alan H

    2005-11-01

    Christmas Island is a remote Australian territory located close to the main Indonesian island of Java. Y-chromosome and mitochondrial DNA (mtDNA) markers were used to investigate the genetic structure of the population, which comprises communities of mixed ethnic origin. Analysis of 12 Y-chromosome biallelic polymorphisms revealed a high level of gene diversity and haplotype frequencies that were consistent with source populations in southern China and Southeast Asia. mtDNA hypervariable segment I (HVS-I) sequences displayed high levels of haplotype diversity and nucleotide diversity that were comparable to various Asian populations. Genetic distances revealed extremely low mtDNA differentiation among Christmas Islanders and Asian populations. This was supported by the relatively high proportion of sequence types shared among these populations. The most common mtDNA haplogroups were M* and B, followed by D and F, which are prevalent in East/Southeast Asia. Christmas Islanders of European descent were characterized by the Eurasian haplogroup R*, and a limited degree of admixture was observed. In general, analysis of the genetic data indicated population affinities to southern Chinese (in particular from the Yunnan Province) and Southeast Asia (Thailand, Malaysia, and Cambodia), which was consistent with historical records of settlement. The combined use of these different marker systems provides a useful and appropriate model for the study of contemporary populations derived from different ethnic origins.

  19. Homologous recombination enhancement conferred by the Z-DNA motif d(TG)30 is abrogated by simian virus 40 T antigen binding to adjacent DNA sequences.

    PubMed

    Wahls, W P; Moore, P D

    1990-02-01

    The Z-DNA motif polydeoxythymidylic-guanylic [d(TG)].polydeoxyadenylic-cytidylic acid [d(AC)], present throughout eucaryotic genomes, is capable of readily forming left-handed Z-DNA in vitro and has been shown to promote homologous recombination. The effects of simian virus 40 T-antigen-dependent substrate replication upon the stimulation of recombination conferred by the Z-DNA motif d(TG)30 were analyzed. Presence of d(TG)30 adjacent to a T-antigen-binding site I can stimulate homologous recombination between nonreplicating plasmids, providing that T antigen is absent, in both simian CV-1 cells and human EJ cells (W. P. Wahls, L. J. Wallace, and P. D. Moore, Mol. Cell. Biol. 10:785-793). It has also been shown elsewhere that the presence of d(TG)n not adjacent to the T-antigen-binding site can stimulate homologous recombination in simian virus 40 molecules replicating in the presence of T antigen (P. Bullock, J. Miller, and M. Botchan, Mol. Cell. Biol. 6:3948-3953, 1986). However, it is demonstrated here that d(TG)30 nine base pairs distant from a T-antigen-binding site bound with T antigen does not stimulate recombination between either replicating or nonreplicating substrates in somatic cells. The bound T antigen either prevents the d(TG)30 sequence from acquiring a recombinogenic configuration (such as left-handed Z-DNA), or it prevents the interaction of recombinase proteins with the sequence by stearic hindrance. PMID:2153923

  20. Distribution of Unlinked Transpositions of a Ds Element from a T-DNA Locus on Tomato Chromosome 4

    PubMed Central

    Briza, J.; Carroll, B. J.; Klimyuk, V. I.; Thomas, C. M.; Jones, D. A.; Jones, JDG.

    1995-01-01

    In maize, receptor sites for unlinked transpositions of Activator (Ac) elements are not distributed randomly. To test whether the same is true in tomato, the receptor sites for a Dissociation (Ds) element derived from Ac, were mapped for 26 transpositions unlinked to a donor T-DNA locus on chromosome 4. Four independent transposed Dss mapped to sites on chromosome 4 genetically unlinked to the donor T-DNA, consistent with a preference for transposition to unlinked sites on the same chromosome as opposed to sites on other chromosomes. There was little preference among the nondonor chromosomes, except perhaps for chromosome 2, which carried seven transposed Dss, but these could not be proven to be independent. However, these data, when combined with those from other studies in tomato examining the distribution of transposed Acs or Dss among nondonor chromosomes, suggest there may be absolute preferences for transposition irrespective of the chromosomal location of the donor site. If true, transposition to nondonor chromosomes in tomato would differ from that in maize, where the preference seems to be determined by the spatial arrangement of chromosomes in the interphase nucleus. The tomato lines carrying Ds elements at known locations are available for targeted transposon tagging experiments. PMID:8536985

  1. Abstracts of papers presented at the LVIII Cold Spring Harbor Symposium on quantitative Biology: DNA and chromosomes

    SciTech Connect

    Not Available

    1993-12-31

    This volume contains the abstracts of oral and poster presentations made at the LVIII Cold Spring Harbor Symposium on Quantitative Biology entitles DNA & Chromosomes. The meeting was held June 2--June 9, 1993 at Cold Spring Harbor, New York.

  2. Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription.

    PubMed Central

    Comb, M; Mermod, N; Hyman, S E; Pearlberg, J; Ross, M E; Goodman, H M

    1988-01-01

    Synthesis of the endogenous opioid precursor, proenkephalin, is regulated by neurotransmitters and membrane depolarization. These events act through second messenger dependent signal transduction pathways via a short inducible DNA enhancer to regulate transcription of the proenkephalin gene. Two DNA elements located within this enhancer are essential for the transcriptional response to cAMP and phorbol ester. Inactivation of either element by mutation or by alteration of their stereospecific alignment eliminates inducible enhancer activity. The promoter distal element, ENKCRE-1, in the absence of a functional adjacent ENKCRE-2 element, has no inherent capacity to activate transcription. However, in the presence of a functional ENKCRE-2 element, this element synergistically augments cAMP and phorbol ester inducible transcription. The promoter proximal element, ENKCRE-2, is essential for both basal and regulated enhancer function. Four different protein factors found in HeLa cell nuclear extracts bind in vitro to the enhancer region. ENKTF-1, a novel enhancer binding protein, binds to the DNA region encompassing ENKCRE-1. The transcription factors AP-1 and AP-4 bind to overlapping sites spanning ENKCRE-2, and a fourth transcription factor, AP-2, binds to a site immediately downstream of ENKCRE-2. The binding of ENKTF-1 to mutant ENKCRE-1 sequences in vitro correlates with the in vivo inducibility of the mutant elements suggesting that ENKTF-1 acts in combination with factors that recognize the ENKCRE-2 domain to regulate cAMP inducible transcription. Together, the two DNA elements, ENKCRE-1 and ENKCRE-2 and the protein factors with which they interact, play a critical role in the transduction and reception of signals transmitted from cell surface receptors to the proenkephalin nuclear transcription complex. Images PMID:2850173

  3. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae

    PubMed Central

    Carvalho, Natalia D. M.; Carmo, Edson; Neves, Rogerio O.; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Abstract Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by Cot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by Cot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using Cot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, Cot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of Cot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position. PMID:27551343

  4. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae.

    PubMed

    Carvalho, Natalia D M; Carmo, Edson; Neves, Rogerio O; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by C ot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by C ot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using C ot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, C ot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of C ot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position. PMID:27551343

  5. Replication Fork Velocities at Adjacent Replication Origins Are Coordinately Modified during DNA Replication in Human Cells

    PubMed Central

    Conti, Chiara; Saccà, Barbara; Herrick, John; Lalou, Claude; Pommier, Yves

    2007-01-01

    The spatial organization of replicons into clusters is believed to be of critical importance for genome duplication in higher eukaryotes, but its functional organization still remains to be fully clarified. The coordinated activation of origins is insufficient on its own to account for a timely completion of genome duplication when interorigin distances vary significantly and fork velocities are constant. Mechanisms coordinating origin distribution with fork progression are still poorly elucidated, because of technical difficulties of visualizing the process. Taking advantage of a single molecule approach, we delineated and compared the DNA replication kinetics at the genome level in human normal primary and malignant cells. Our results show that replication forks moving from one origin, as well as from neighboring origins, tend to exhibit the same velocity, although the plasticity of the replication program allows for their adaptation to variable interorigin distances. We also found that forks that emanated from closely spaced origins tended to move slower than those associated with long replicons. Taken together, our results indicate a functional role for origin clustering in the dynamic regulation of genome duplication. PMID:17522385

  6. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping

    SciTech Connect

    Weier, Heinz-Ulrich G.; Greulich-Bode, Karin M.; Wu, Jenny; Duell, Thomas

    2009-09-18

    Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human genome; however, appear to have a higher propensity than others to rearrange in any host system. Thus, techniques to detect and accurately characterize such rearrangements need to be developed. We developed a technique termed 'Quantitative DNA Fiber Mapping (QDFM)' that allows accurate tagging of sequence elements of interest with near kilobase accuracy and optimized it for delineation of rearrangements in recombinant DNA clones. This paper demonstrates the power of this microscopic approach by investigating YAC rearrangements. In our examples, high-resolution physical maps for regions within the immunoglobulin lambda variant gene cluster were constructed for three different YAC clones carrying deletions of 95 kb and more. Rearrangements within YACs could be demonstrated unambiguously by pairwise mapping of cosmids along YAC DNA molecules. When coverage by YAC clones was not available, distances between cosmid clones were estimated by hybridization of cosmids onto DNA fibers prepared from human genomic DNA. In addition, the QDFM technology provides essential information about clone stability facilitating closure of the maps of the human genome as well as those of model organisms.

  7. Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.).

    PubMed

    Valárik, M; Simková, H; Hribová, E; Safár, J; Dolezelová, M; Dolezel, J

    2002-01-01

    Partial genomic DNA libraries were constructed in Musa acuminata and M. balbisiana and screened for clones carrying repeated sequences, and sequences carrying rDNA. Isolated clones were characterized in terms of copy number, genomic distribution in M. acuminata and M. balbisiana, and sequence similarity to known DNA sequences. Ribosomal RNA genes have been the most abundant sequences recovered. FISH with probes for DNA clones Radkal and Radka7, which carry different fragments of Musa 26S rDNA, and Radka14, for which no homology with known DNA sequences has been found, resulted in clear signals at secondary constrictions. Only one clone carrying 5S rDNA, named Radka2, has been recovered. All remaining DNA clones exhibited more or less pronounced clustering at centromeric regions. The study revealed small differences in genomic distribution of repetitive DNA sequences between M. acuminata and M. balbisiana, the only exception being the 5S rDNA where the two Musa clones under study differed in the number of sites. All repetitive sequences were more abundant in M. acuminata whose genome is about 12% larger than that of M. balbisiana. While, for some sequences, the differences in copy number between the species were relatively small, for some of them, e.g. Radka5, the difference was almost thirty-fold. These observations suggest that repetitive DNA sequences contribute to the difference in genome size between both species, albeit to different extents. Isolation and characterization of new repetitive DNA sequences improves the knowledge of long-range organization of chromosomes in

  8. Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes

    NASA Astrophysics Data System (ADS)

    Rybalko, S.; Larionov, S.; Poptsova, M.; Loskutov, A.

    2011-10-01

    Large-scale dynamical properties of complete chromosome DNA sequences of eukaryotes are considered. Using the proposed deterministic models with intermittency and symbolic dynamics we describe a wide spectrum of large-scale patterns inherent in these sequences, such as segmental duplications, tandem repeats, and other complex sequence structures. It is shown that the recently discovered gene number balance on the strands is not of a random nature, and certain subsystems of a complete chromosome DNA sequence exhibit the properties of deterministic chaos.

  9. Mapping of T-DNA and Ac/Ds by TAIL-PCR to Analyze Chromosomal Rearrangements.

    PubMed

    Fujimoto, Satoru; Matsunaga, Sachihiro; Murata, Minoru

    2016-01-01

    Insertion mutagenesis using known DNA sequences such as T-DNA and transposons is an important tool for studies on gene function in plant sciences. The transposons Activator (Ac)/Dissociation (Ds) have been systematically used to manipulate plant chromosomes. For both of these applications, the recovery of genomic DNA sequences flanking the insertions is required to estimate the sizes and/or scales of the reconstituted chromosomes. In this chapter, we describe the protocols for thermal asymmetric interlaced PCR (TAIL-PCR) for isolation of genomic sequences flanking DNA inserts in plant genomes. PMID:27557698

  10. Modular sequence elements associated with origin regions in eukaryotic chromosomal DNA.

    PubMed Central

    Dobbs, D L; Shaiu, W L; Benbow, R M

    1994-01-01

    We have postulated that chromosomal replication origin regions in eukaryotes have in common clusters of certain modular sequence elements (Benbow, Zhao, and Larson, BioEssays 14, 661-670, 1992). In this study, computer analyses of DNA sequences from six origin regions showed that each contained one or more potential initiation regions consisting of a putative DUE (DNA unwinding element) aligned with clusters of SAR (scaffold associated region), and ARS (autonomously replicating sequence) consensus sequences, and pyrimidine tracts. The replication origins analyzed were from the following loci: Tetrahymena thermophila macronuclear rDNA gene, Chinese hamster ovary dihydrofolate reductase amplicon, human c-myc proto-oncogene, chicken histone H5 gene, Drosophila melanogaster chorion gene cluster on the third chromosome, and Chinese hamster ovary rhodopsin gene. The locations of putative initiation regions identified by the computer analyses were compared with published data obtained using diverse methods to map initiation sites. For at least four loci, the potential initiation regions identified by sequence analysis aligned with previously mapped initiation events. A consensus DNA sequence, WAWTTDDWWWDHWGWHMAWTT, was found within the potential initiation regions in every case. An additional 35 kb of combined flanking sequences from the six loci were also analyzed, but no additional copies of this consensus sequence were found. Images PMID:8041609

  11. Development of an in situ loop-mediated isothermal amplification technique for chromosomal localization of DNA sequences

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Wang, Shi; Zhang, Lingling; Huang, Xiaoting; Bao, Zhenmin

    2013-01-01

    In situ loop-mediated isothermal amplification (in situ LAMP) combines in situ hybridization and loop-mediated isothermal amplification (LAMP) techniques for chromosomal localization of DNA sequences. In situ LAMP is a method that is generally more specific and sensitive than conventional techniques such as fluorescence in situ hybridization (FISH), primed in situ labeling (PRINS), and cycling primed in situ labeling (C-PRINS). Here, we describe the development and application of in situ LAMP to identify the chromosomal localization of DNA sequences. To benchmark this technique, we successfully applied this technique to localize the major ribosomal RNA gene on the chromosomes of the Zhikong scallop ( Chlamys farreri).

  12. DNA lesion identity drives choice of damage tolerance pathway in murine cell chromosomes.

    PubMed

    Cohen, Isadora S; Bar, Carmit; Paz-Elizur, Tamar; Ainbinder, Elena; Leopold, Karoline; de Wind, Niels; Geacintov, Nicholas; Livneh, Zvi

    2015-02-18

    DNA-damage tolerance (DDT) via translesion DNA synthesis (TLS) or homology-dependent repair (HDR) functions to bypass DNA lesions encountered during replication, and is critical for maintaining genome stability. Here, we present piggyBlock, a new chromosomal assay that, using piggyBac transposition of DNA containing a known lesion, measures the division of labor between the two DDT pathways. We show that in the absence of DNA damage response, tolerance of the most common sunlight-induced DNA lesion, TT-CPD, is achieved by TLS in mouse embryo fibroblasts. Meanwhile, BP-G, a major smoke-induced DNA lesion, is bypassed primarily by HDR, providing the first evidence for this mechanism being the main tolerance pathway for a biologically important lesion in a mammalian genome. We also show that, far from being a last-resort strategy as it is sometimes portrayed, TLS operates alongside nucleotide excision repair, handling 40% of TT-CPDs in repair-proficient cells. Finally, DDT acts in mouse embryonic stem cells, exhibiting the same pattern—mutagenic TLS included—despite the risk of propagating mutations along all cell lineages. The new method highlights the importance of HDR, and provides an effective tool for studying DDT in mammalian cells. PMID:25589543

  13. DNA lesion identity drives choice of damage tolerance pathway in murine cell chromosomes

    PubMed Central

    Cohen, Isadora S.; Bar, Carmit; Paz-Elizur, Tamar; Ainbinder, Elena; Leopold, Karoline; de Wind, Niels; Geacintov, Nicholas; Livneh, Zvi

    2015-01-01

    DNA-damage tolerance (DDT) via translesion DNA synthesis (TLS) or homology-dependent repair (HDR) functions to bypass DNA lesions encountered during replication, and is critical for maintaining genome stability. Here, we present piggyBlock, a new chromosomal assay that, using piggyBac transposition of DNA containing a known lesion, measures the division of labor between the two DDT pathways. We show that in the absence of DNA damage response, tolerance of the most common sunlight-induced DNA lesion, TT-CPD, is achieved by TLS in mouse embryo fibroblasts. Meanwhile, BP-G, a major smoke-induced DNA lesion, is bypassed primarily by HDR, providing the first evidence for this mechanism being the main tolerance pathway for a biologically important lesion in a mammalian genome. We also show that, far from being a last-resort strategy as it is sometimes portrayed, TLS operates alongside nucleotide excision repair, handling 40% of TT-CPDs in repair-proficient cells. Finally, DDT acts in mouse embryonic stem cells, exhibiting the same pattern—mutagenic TLS included—despite the risk of propagating mutations along all cell lineages. The new method highlights the importance of HDR, and provides an effective tool for studying DDT in mammalian cells. PMID:25589543

  14. Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae.

    PubMed Central

    Hegemann, J H; Shero, J H; Cottarel, G; Philippsen, P; Hieter, P

    1988-01-01

    Saccharomyces cerevisiae centromeres have a characteristic 120-base-pair region consisting of three distinct centromere DNA sequence elements (CDEI, CDEII, and CDEIII). We have generated a series of 26 CEN mutations in vitro (including 22 point mutations, 3 insertions, and 1 deletion) and tested their effects on mitotic chromosome segregation by using a new vector system. The yeast transformation vector pYCF5 was constructed to introduce wild-type and mutant CEN DNAs onto large, linear chromosome fragments which are mitotically stable and nonessential. Six point mutations in CDEI show increased rates of chromosome loss events per cell division of 2- to 10-fold. Twenty mutations in CDEIII exhibit chromosome loss rates that vary from wild type (10(-4)) to nonfunctional (greater than 10(-1)). These results directly identify nucleotides within CDEI and CDEIII that are required for the specification of a functional centromere and show that the degree of conservation of an individual base does not necessarily reflect its importance in mitotic CEN function. Images PMID:3043181

  15. Plasmid-chromosome recombination of irradiated shuttle vector DNA in African Green Monkey kidney cells

    SciTech Connect

    Mudgett, J.S.

    1987-01-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double-strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp/sup r/ recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome.

  16. Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA.

    PubMed

    Kichigin, Ilya G; Giovannotti, Massimo; Makunin, Alex I; Ng, Bee L; Kabilov, Marsel R; Tupikin, Alexey E; Barucchi, Vincenzo Caputo; Splendiani, Andrea; Ruggeri, Paolo; Rens, Willem; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Graphodatsky, Alexander S; Trifonov, Vladimir A

    2016-10-01

    Squamate reptiles show a striking diversity in modes of sex determination, including both genetic (XY or ZW) and temperature-dependent sex determination systems. The genomes of only a handful of species have been sequenced, analyzed and assembled including the genome of Anolis carolinensis. Despite a high genome coverage, only macrochromosomes of A. carolinensis were assembled whereas the content of most microchromosomes remained unclear. Most of the Anolis species have homomorphic XY sex chromosome system. However, some species have large heteromorphic XY chromosomes (e.g., A. sagrei) and even multiple sex chromosomes systems (e.g. A. pogus), that were shown to be derived from fusions of the ancestral XY with microautosomes. We applied next generation sequencing of flow sorting-derived chromosome-specific DNA pools to characterize the content and composition of microchromosomes in A. carolinensis and A. sagrei. Comparative analysis of sequenced chromosome-specific DNA pools revealed that the A. sagrei XY sex chromosomes contain regions homologous to several microautosomes of A. carolinensis. We suggest that the sex chromosomes of A. sagrei are derived by fusions of the ancestral sex chromosome with three microautosomes and subsequent loss of some genetic content on the Y chromosome. PMID:27431992

  17. Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA.

    PubMed

    Kichigin, Ilya G; Giovannotti, Massimo; Makunin, Alex I; Ng, Bee L; Kabilov, Marsel R; Tupikin, Alexey E; Barucchi, Vincenzo Caputo; Splendiani, Andrea; Ruggeri, Paolo; Rens, Willem; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Graphodatsky, Alexander S; Trifonov, Vladimir A

    2016-10-01

    Squamate reptiles show a striking diversity in modes of sex determination, including both genetic (XY or ZW) and temperature-dependent sex determination systems. The genomes of only a handful of species have been sequenced, analyzed and assembled including the genome of Anolis carolinensis. Despite a high genome coverage, only macrochromosomes of A. carolinensis were assembled whereas the content of most microchromosomes remained unclear. Most of the Anolis species have homomorphic XY sex chromosome system. However, some species have large heteromorphic XY chromosomes (e.g., A. sagrei) and even multiple sex chromosomes systems (e.g. A. pogus), that were shown to be derived from fusions of the ancestral XY with microautosomes. We applied next generation sequencing of flow sorting-derived chromosome-specific DNA pools to characterize the content and composition of microchromosomes in A. carolinensis and A. sagrei. Comparative analysis of sequenced chromosome-specific DNA pools revealed that the A. sagrei XY sex chromosomes contain regions homologous to several microautosomes of A. carolinensis. We suggest that the sex chromosomes of A. sagrei are derived by fusions of the ancestral sex chromosome with three microautosomes and subsequent loss of some genetic content on the Y chromosome.

  18. Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes.

    PubMed

    Wang, Hong; Höög, Christer

    2006-05-22

    Meiosis in human oocytes is a highly error-prone process with profound effects on germ cell and embryo development. The synaptonemal complex protein 3 (SYCP3) transiently supports the structural organization of the meiotic chromosome axis. Offspring derived from murine Sycp3(-)(/)(-) females die in utero as a result of aneuploidy. We studied the nature of the proximal chromosomal defects that give rise to aneuploidy in Sycp3(-)(/)(-) oocytes and how these errors evade meiotic quality control mechanisms. We show that DNA double-stranded breaks are inefficiently repaired in Sycp3(-)(/)(-) oocytes, thereby generating a temporal spectrum of recombination errors. This is indicated by a strong residual gammaH2AX labeling retained at late meiotic stages in mutant oocytes and an increased persistence of recombination-related proteins associated with meiotic chromosomes. Although a majority of the mutant oocytes are rapidly eliminated at early postnatal development, a subset with a small number of unfinished crossovers evades the DNA damage checkpoint, resulting in the formation of aneuploid gametes. PMID:16717125

  19. Method for isolating chromosomal DNA in preparation for hybridization in suspension

    DOEpatents

    Lucas, Joe N.

    2000-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. Chromosomal DNA in a sample containing cell debris is prepared for hybridization in suspension by treating the mixture with RNase. The treated DNA can also be fixed prior to hybridization.

  20. Actinophage R4 integrase-based site-specific chromosomal integration of non-replicative closed circular DNA.

    PubMed

    Miura, Takamasa; Nishizawa, Akito; Nishizawa, Tomoyasu; Asayama, Munehiko; Shirai, Makoto

    2016-06-01

    The actinophage R4 integrase (Sre)-based molecular genetic engineering system was developed for the chromosomal integration of multiple genes in Escherichia coli. A cloned DNA fragment containing two attP sites, green fluorescent protein (gfp) as a first transgene, and an antibiotic resistance gene as a selection marker was self-ligated to generate non-replicative closed circular DNA (nrccDNA) for integration. nrccDNA was introduced into attB-inserted E. coli cells harboring the plasmid expressing Sre by electroporation. The expressed Sre catalyzed site-specific integration between one of the two attP sites on nrccDNA and the attB site on the E. coli chromosome. The integration frequency was affected by the chromosomal location of the target site. A second nrccDNA containing two attB sites, lacZα encoding the alpha fragment of β-galactosidase as a transgene, and another antibiotic resistance gene was integrated into the residual attP site on the gfp-integrated E. coli chromosome via one of the two attB sites according to reiterating site-specific recombination. The integrants clearly exhibited β-galactosidase activity and green fluorescence, suggesting the simultaneous expression of multiple recombinant proteins in E. coli. The results of the present study showed that a step-by-step integration procedure using nrccDNA achieved the chromosomal integration of multiple genes. PMID:26870903

  1. Genome organization and DNA methylation patterns of B chromosomes in the red fox and Chinese raccoon dogs.

    PubMed

    Bugno-Poniewierska, Monika; Solek, Przemysław; Wronski, Mariusz; Potocki, Leszek; Jezewska-Witkowska, Grażyna; Wnuk, Maciej

    2014-12-01

    The molecular structure of B chromosomes (Bs) is relatively well studied. Previous research demonstrates that Bs of various species usually contain two types of repetitive DNA sequences, satellite DNA and ribosomal DNA, but Bs also contain genes encoding histone proteins and many others. However, many questions remain regarding the origin and function of these chromosomes. Here, we focused on the comparative cytogenetic characteristics of the red fox and Chinese raccoon dog B chromosomes with particular attention to the distribution of repetitive DNA sequences and their methylation status. We confirmed that the small Bs of the red fox show a typical fluorescent telomeric distal signal, whereas medium-sized Bs of the Chinese raccoon dog were characterized by clusters of telomeric sequences along their length. We also found different DNA methylation patterns for the B chromosomes of both species. Therefore, we concluded that DNA methylation may maintain the transcriptional inactivation of DNA sequences localized to B chromosomes and may prevent genetic unbalancing and several negative phenotypic effects.

  2. Chromosomal diversification in ribosomal DNA sites in Ancistrus Kner, 1854 (Loricariidae, Ancistrini) from three hydrographic basins of Mato Grosso, Brazil.

    PubMed

    Mariotto, Sandra; Centofante, Liano; Vicari, Marcelo Ricardo; Artoni, Roberto Ferreira; Moreira-Filho, Orlando

    2011-01-01

    Populations of seven Ancistrus species were analyzed from streams and rivers of three hydrographic Brazilian basins. All populations showed different diploid numbers (2n), fundamental numbers (FNs), and karyotypes. Some representatives of Loricariidae have 2n = 54 chromosomes, which is very likely an ancestral cytotaxonomic characteristic, but many other representatives show extensive karyotype diversification. In the Ancistrus species studied, extensive karyotypic differentiation, which is generally associated with chromosome number reduction and rearrangement of the ribosomal RNA gene (rDNA) sites, was verified. Chromosomal locations of 18S and 5S rDNA were jointly detected using fluorescence in situ hybridization (FISH). In all the Ancistrus species analyzed, 18S rDNA sites were detected only on one chromosome pair, though this differed among species. 5S rDNA was located on 1-3 chromosome pairs either separately or in synteny with 18S rDNA in four of the seven species/populations. Hence the karyotype differentiation in Ancistrus species could be associated with a morphological speciation process, suggesting that chromosome fusions, inversions, deletions, duplications, and heterochromatination could contribute to the karyotype evolution of these neotropical armored catfishes. PMID:24260636

  3. Chromosomal localization of 18S rDNA and telomere sequence in the aye-aye, Daubentonia madagascariensis.

    PubMed

    Rakotoarisoa, G; Hirai, Y; Go, Y; Kawamoto, Y; Shima, T; Koyama, N; Randrianjafy, A; Mora, R; Hirai, H

    2000-10-01

    Chromosomal localization of 18S rDNA and telomere sequence was attempted on the chromosomes of the aye-aye (2n = 30) using fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS), respectively. The rDNA was localized at the tip or whole of the short arm of acrocentric chromosomes 13 and 14 in all spreads observed. However, post-FISH silver-nitrate (Ag) staining showed that transcriptional activity of the rRNA genes was variable, particularly in chromosome 14, which was most frequently negative in one homologue carrying the smaller copy number of rDNA. This observation supports, at the molecular cytogenetic level, previous data concerning the relationship between the copy number of rDNA and its trancriptional activity. On the other hand, telomere sequence was localized only at the telomeric region of all chromosomes, the so-called telomere-only pattern, a characteristic similar to that of the greater bushbaby. These data may provide information on the chromosomal evolution of the lemur, because locations of rDNA and telomere sequences frequently offer important clues in reconstruction of karyotype differentiation. PMID:11245223

  4. Identifying X- and Y-chromosome-bearing sperm by DNA content: retrospective perspectives and prospective opinions

    SciTech Connect

    Gledhill, B.L.; Pinkel, D.; Garner, D.L.

    1982-03-05

    Theoretically, since DNA should be the most constant component, quantitatively, of normal sperm, then genotoxic agents arising from energy production and consumption, and chemical and physical mutagens, could be identified by measuring variability in the DNA content of individual sperm from exposed men or test animals. The difference between the DNA content of X and Y sperm seemed a biologically significant benchmark for the measurement technology. Several methods are available for determining the genetic activity of agents in male germ cells, but these tests are generally laborious. Sperm-based methods provide an attractive alternate since they are not invasive, and are directly applicable to the study of human exposure. Slide-based assay of DNA content suggests that human sperm with X, Y, or YY chromosome constitutions can be distinguished by their fluorescence with quinacrine. Subsequent measurement of the dry mass of human sperm heads is performed. Dry mass is proportional to DNA content. While the study showed that human sperm with none and one quinacrine-fluorescent spot are X- and Y-bearing, respectively, the dry mass measurements indicated that many of the sperm with two quinacrine-fluorescent spots are not YY-bearing. While several reports on the initial application of flow cytometry of sperm to the investigation of mammalian infertility have appeared recently, emphasis here has been on the development of an in vivo sperm-based flow cytometric bioassay for mutations, and has not centered on andrological applications. In this review, the ability to differentiate between two equally sized populations of sperm, one bearing X and the other Y chromosomes with mean DNA content differing by about 3 to 4% is described. It has direct application to the preselection of sex of offspring, and could likely have a profound impact on animal improvement. (ERB)

  5. Chromosome-Specific DNA Repeats: Rapid Identification in Silico and Validation Using Fluorescence in Situ Hybridization

    PubMed Central

    Hsu, Joanne H.; Zeng, Hui; Lemke, Kalistyn H.; Polyzos, Aris A.; Weier, Jingly F.; Wang, Mei; Lawin-O’Brien, Anna R.; Weier, Heinz-Ulrich G.; O’Brien, Benjamin

    2013-01-01

    Chromosome enumeration in interphase and metaphase cells using fluorescence in situ hybridization (FISH) is an established procedure for the rapid and accurate cytogenetic analysis of cell nuclei and polar bodies, the unambiguous gender determination, as well as the definition of tumor-specific signatures. Present bottlenecks in the procedure are a limited number of commercial, non-isotopically labeled probes that can be combined in multiplex FISH assays and the relatively high price and effort to develop additional probes. We describe a streamlined approach for rapid probe definition, synthesis and validation, which is based on the analysis of publicly available DNA sequence information, also known as “database mining”. Examples of probe preparation for the human gonosomes and chromosome 16 as a selected autosome outline the probe selection strategy, define a timeline for expedited probe production and compare this novel selection strategy to more conventional probe cloning protocols. PMID:23344021

  6. Anomalous Separation of Small Y-Chromosomal DNA Fragments on Microchip Electrophoresis

    PubMed Central

    Jabasini, Mohammad; Ewis, Ashraf; Sato, Youichi; Nakahori, Yutaka; Baba, Yoshinobu

    2016-01-01

    We investigated an anomalous DNA separation where two DNA fragments from the human Y-chromosome sY638 (64 bp) and sY592 (65 bp), with only one base pair difference, were separated. This result is abnormal since in a previous study, we found that 5 bp was the minimum difference between two DNA fragments that the microchip electrophoresis system can separate. The formation of a mini-loop in the structure of the DNA fragment of sY638 (64 bp) was strongly expected to be the reason. To investigate this, we synthesized three modified DNA fragments for sY638 (64 bp), and the modifications were in two expected locations for possible mini-loop formation. Later, the separation between sY592 (65 bp) and the three modified fragments of sY638 (64 bp) was not possible. Thus, we conclude that the formation of a mini-loop in the structure of the DNA is the reason behind this anomalous separation.

  7. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis.

    PubMed Central

    Carle, G F; Olson, M V

    1984-01-01

    A simple agarose-gel apparatus has been developed that allows the separation of DNA molecules in the size range from 50 kb to well over 750 kb, the largest size for which size standards were available. The apparatus is based on the recent discovery that large DNA molecules are readily fractionated on agarose gels if they are alternately subjected to two approximately orthogonal electric fields. The switching time, which was on the order of 20-50 sec in our experiments, can be adjusted to optimize fractionation in a given size range. The resolution of the technique is sufficient to allow the fractionation of a sample of self-ligated lambda DNA into a ladder of approximately 15 bands, spaced at 50 kb intervals. We have applied the technique to the fractionation of yeast DNA into 11 distinct bands, several of which have been shown by DNA-DNA hybridization to hybridize uniquely to different chromosome-specific hybridization probes. In this paper, we describe the design of the apparatus, the electrophoretic protocol, and the sample-handling procedures that we have employed. Images PMID:6379602

  8. Plasmid-Chromosome Recombination of Irradiated Shuttle Vector DNA in African Green Monkey Kidney Cells.

    NASA Astrophysics Data System (ADS)

    Mudgett, John Stuart

    1987-09-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. The successful homologous transfer of the bacterial ampicillin resistance (amp^{rm r}) gene from the inserted sequences to replace a mutant amp^->=ne on the shuttle vector was identified by plasmid extraction and transformation into E. coli host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double -strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp^{rm r} recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome. The observation that these recombinant structures were obtained from all of the plasmid alterations investigated suggests a common mechanistic origin for plasmid -chromosome recombination in these mammalian cells.

  9. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    PubMed Central

    Hennemuth, Brad; Marx, Kenneth A

    2006-01-01

    Background The centromeres in yeast (S. cerevisiae) are organized by short DNA sequences (125 bp) on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale) that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also created using the wild type

  10. Chromosome Model reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-domains

    NASA Technical Reports Server (NTRS)

    Costes, Sylvain V.; Ponomarev, Artem; Chen, James L.; Cucinotta, Francis A.; Barcellos-Hoff, Helen

    2007-01-01

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage is induced. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM and gammaH2AX RIF in cells irradiated with high linear energy transfer (LET) radiation. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by relative DNA image measurements. This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent in regions with lower density DNA than predicted. This deviation from random behavior was more pronounced within the first 5 min following irradiation for phosphorylated ATM RIF, while gammaH2AX and 53BP1 RIF showed very pronounced deviation up to 30 min after exposure. These data suggest the existence of repair centers in mammalian epithelial cells. These centers would be nuclear sub-domains where DNA lesions would be collected for more efficient repair.

  11. Structural instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors.

    PubMed Central

    Neil, D L; Villasante, A; Fisher, R B; Vetrie, D; Cox, B; Tyler-Smith, C

    1990-01-01

    The suitability of yeast artificial chromosome vectors (YACs) for cloning human Y chromosome tandemly repeated DNA sequences has been investigated. Clones containing DYZ3 or DYZ5 sequences were found in libraries at about the frequency anticipated on the basis of their abundance in the genome, but clones containing DYZ1 sequences were under-represented and the three clones examined contained junctions between DYZ1 and DYZ2. One DYZ3 clone was quite stable and had a long-range structure corresponding to genomic DNA. All other clones had long-range structures which either did not correspond to genomic DNA, or were too unstable to allow a simple comparison. The effects of the transformation process and host genotype on YAC structural stability were investigated. Gross structural rearrangements were often associated with re-transformation of yeast by a YAC. rad1-deficient yeast strains showed levels of instability similar to wild-type for all YAC clones tested. In rad52-deficient strains, DYZ5 containing YACs were as unstable as in the wild-type host, but DYZ1/DYZ2 or DYZ3 containing YACs were more stable. Thus the use of rad52 hosts for future library construction is recommended, but some sequences will still be unstable. Images PMID:2183192

  12. Physical analysis of the terminal 270 kb of DNA from human chromosome 1q

    SciTech Connect

    Negorev, D.G.; Macina, R.A.; Spais, C.

    1994-08-01

    DNA from three 1q44-derived human telomeric yeast artificial chromosome clones was analyzed using physical mapping methods. The smallest clone, yRM2004 (65 kb), corresponded exactly to the distal end of the largest clone, yRM2123 (270 kb). The third clone, yRM2192, overlapped with the proximal end of yRM2123 but not the distal end, suggesting that it is most likely a deletion artifact of a clone originally derived from a 1q telomere fragment. Data from fluorescence in situ hybridization analysis, restriction mapping, and RecA-assisted restriction enzyme cleavage experiments indicate that the molecular clone yRM2123 contains low-copy subtelomeric and subterminal repeats at its distal end, single-copy DNA more centromerically, and a CG-rich region with homology to mouse DNA. Markers derived from this clone will allow telomeric closure of the physical and genetic linkage maps of human chromosome 1q. 35 refs., 7 figs.

  13. Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage

    PubMed Central

    Wiland, Ewa; Fraczek, Monika; Olszewska, Marta; Kurpisz, Maciej

    2016-01-01

    Several studies have shown that the ‘poor’ sperm DNA quality appears to be an important factor affecting male reproductive ability. In the case of sperm cells from males with the correct somatic karyotype but with deficient spermatogenesis, resulting in a high degree of sperm DNA fragmentation, we observed changes in the preferential topology of the chromosome 7, 9, 15, 18, X and Y centromeres. The changes occurred in radial localization and may have been directly linked to the sperm chromatin damage. This conclusion is mainly based on a comparison of FISH signals that were observed simultaneously in the TUNEL-positive and TUNEL-negative sperm cells. The analyzed cells originated from the same ejaculated sample and FISH was performed on the same slides, after in situ TUNEL reaction. Based on the observed changes and previous data, it appears that the sperm nucleus architecture can be disrupted by a variety of factors and has a negative influence on spermatogenesis at the same time. Often, these factors coexist (e.g. chromosomal translocations, aneuploidies, a higher DNA fragmentation, abnormal seminology), but no direct correlations between the factors were observed. PMID:27558650

  14. Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage.

    PubMed

    Wiland, Ewa; Fraczek, Monika; Olszewska, Marta; Kurpisz, Maciej

    2016-01-01

    Several studies have shown that the 'poor' sperm DNA quality appears to be an important factor affecting male reproductive ability. In the case of sperm cells from males with the correct somatic karyotype but with deficient spermatogenesis, resulting in a high degree of sperm DNA fragmentation, we observed changes in the preferential topology of the chromosome 7, 9, 15, 18, X and Y centromeres. The changes occurred in radial localization and may have been directly linked to the sperm chromatin damage. This conclusion is mainly based on a comparison of FISH signals that were observed simultaneously in the TUNEL-positive and TUNEL-negative sperm cells. The analyzed cells originated from the same ejaculated sample and FISH was performed on the same slides, after in situ TUNEL reaction. Based on the observed changes and previous data, it appears that the sperm nucleus architecture can be disrupted by a variety of factors and has a negative influence on spermatogenesis at the same time. Often, these factors coexist (e.g. chromosomal translocations, aneuploidies, a higher DNA fragmentation, abnormal seminology), but no direct correlations between the factors were observed. PMID:27558650

  15. mtDNA and Y-chromosome polymorphisms in four Native American populations from southern Mexico.

    PubMed Central

    Torroni, A.; Chen, Y. S.; Semino, O.; Santachiara-Beneceretti, A. S.; Scott, C. R.; Lott, M. T.; Winter, M.; Wallace, D. C.

    1994-01-01

    mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A, B, C, and D) characterize Amerind populations, but only three (haplogroups A, B, and C) were observed in these Mexican populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2. This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females. Images Figure 4 PMID:8304347

  16. Chromosome 11 protects against DNA damage by reactive oxygen species (ROS)

    SciTech Connect

    Hofseth, L.J.; Rosin, M.P.

    1994-12-31

    Recent evidence suggests that chromosome 11 plays an important role in determining a cell`s sensitivity to DNA damage by ROS. The induction of micronuclei (MN) by treatment with ROS was found to be reduced in a bladder carcinoma cell line ({open_quotes}parent{close_quotes}) when a normal chromosome 11 was inserted ({open_quotes}hybrid{close_quotes}). These studies have been extended to include a third cell line ({open_quotes}revertant{close_quotes}) derived from the {open_quotes}hybrid{close_quotes} by spontaneous loss of the chromosome (11) insert. In this study, MN induction and nuclear division indices (NDI) were determined in all 3 lines after exposure to either hydrogen peroxide (H{sub 2}O{sub 2}) (0-32.3 {mu}M) or to {gamma}-radiation (0-3 Gy). For both agents, there was a significant protection against induction of MN in the hybrid cell line (p<0.0001). This protection was lost in the revertant line. There was significantly more protection against H{sub 2}O{sub 2}-induced damage than against damage by irradiation. At the highest dose for H{sub 2}O{sub 2} (32.3{mu}M), induced MN frequencies for hybrid cells (3.7%) were approximately 5-fold lower than frequencies in the parent (17.1%) or revertant (18.6%) cells. In contrast, after 1 Gy of irradiation, induced MN frequencies in hybrid cells (18.7%) were 1.4-fold less than either the parent (26.2%) or revertant (27.6%) cells (ratio at 3 Gy was 1.4-fold also). The 2 treatments also had a different effect on the NDI (an index of toxicity and/or growth inhibition). Both treatments induced a decrease in NDI. The chromosome 11 insert protected hybrid cells from this effect but only after exposure to H{sub 2}O{sub 2} and not to irradiation. These data suggest a protective effect against ROS. Since only a portion of DNA damage from {gamma}-ray treatment is due to ROS, this may account for the reduced ability of the chromosome 11 to provide a protective effect against DNA damage due to {gamma}-ray exposure.

  17. Repair of DNA lesions in chromosomal DNA impact of chromatin structure and Cockayne syndrome proteins.

    PubMed

    Fousteri, Maria; van Hoffen, Anneke; Vargova, Hana; Mullenders, Leon H F

    2005-07-28

    Decondensation of chromatin is essential to facilitate access to DNA metabolizing processes such as transcription and DNA repair. Disruption of histone-DNA contacts by histone modification or by ATP dependent chromatin remodelling allows DNA-binding proteins to compete with histones for DNA. The efficiency of global genome nucleotide excision repair (GGR) that removes a variety of helix distorting DNA lesions is known to be affected by chromatin structure most notably demonstrated by the slow repair of heterochromatin. In addition, the efficiency of GGR to repair lesions in transcriptionally active genes requires functional CSA and B proteins. We found that repair of UV-photolesions in both strands of the active adenosine deaminase gene was delayed in CS cells when compared to normal human fibroblasts. We suggest that the lack of transcription recovery characteristic for CS cells exposed to DNA damaging agents, might lead to changes in the chromatin structure of active genes, causing less efficient repair of lesions in these genes when compared to normal cells. PMID:15961352

  18. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease

    SciTech Connect

    Goldgaber, D.; Lerman, M.I.; McBride, O.W.; Saffiotti, U.; Gajdusek, D.C.

    1987-02-20

    Four clones were isolated from an adult human brain complementary DNA library with an oligonucleotide probe corresponding to the first 20 amino acids of the ..beta.. peptide of brain amyloid from Alzheimer's disease. The open reading frame of the sequenced clone coded for 97 amino acids, including the known amino acid sequence of this polypeptide. The 3.5-kilobase messenger RNA was detected in mammalian brains and human thymus. The gene is highly conserved in evolution and has been mapped to human chromosome 21.

  19. Male DNA typing from 25-year-old vaginal swabs using Y chromosomal STR polymorphisms in a retrial request case.

    PubMed

    Honda, K; Roewer, L; de Knijff, P

    1999-07-01

    We report here the application of Y chromosomal DNA analysis in a retrial request case, raised officially by Sapporo High Court, Japan, of a condemned criminal whose capital punishment has been suspended. DNA was extracted from mixed seminal/vaginal secretion stains collected 25 years ago from two raped and murdered victims, and Y chromosome STR loci (DYS19, 390, 393, YCAII) were amplified and sequenced to clarify the DNA type of the rapist. Alkaline proteinase and sodium hydroxide were used before phenol/chloroform extraction to achieve high quality DNA from very old samples. In addition, amplified fragments of DYS19, DYS390, and DYS393 were sequenced using an automated DNA sequencer. Four Y STR DNA types detected from vaginal swabs were found identical to those of the accused criminal and confirmed that the two rape and murder cases had been committed by the same person. Sapporo High Court accepted the results and rejected the retrial request in February 1998.

  20. Growth inhibition and chromosomal instability of cultured marsupial (opossum) cells after treatment with DNA polymerase α inhibitor.

    PubMed

    Takemura, Masaharu; Kazama, Tomoko; Sakuma, Kurumi; Mizushina, Yoshiyuki; Oshima, Teruyoshi

    2011-01-01

    The DNA replication mechanism has been well established for eutherian mammals (placental mammals such as humans, mice, and cattle), but not, to date, for metatherian mammals (marsupials such as kangaroos, koalas, and opossums). In this study, we found that dehydroaltenusin, a selective inhibitor of mammalian (eutherian) DNA polymerase α, clearly suppressed the growth of metatherian (opossum and rat kangaroo) cultured cells. In cultured opossum (OK) cells, dehydroaltenusin also suppressed the progression of DNA replication. These results suggest that dehydroaltenusin inhibits metatherian as well as eutherian DNA replication. Dehydroaltenusin treatment of OK cells engendered fluctuations in the numbers of chromosomes in the OK cells as well as inhibition of cell growth and DNA replication. This suggests that partial inhibition of DNA replication by dehydroaltenusin causes chromosomal instability in cultured cells.

  1. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication.

    PubMed

    Bianchi, Julie; Rudd, Sean G; Jozwiakowski, Stanislaw K; Bailey, Laura J; Soura, Violetta; Taylor, Elaine; Stevanovic, Irena; Green, Andrew J; Stracker, Travis H; Lindsay, Howard D; Doherty, Aidan J

    2013-11-21

    DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells. PMID:24267451

  2. Regulation of DNA replication and chromosomal polyploidy by the MLL-WDR5-RBBP5 methyltransferases

    PubMed Central

    Lu, Fei; Wu, Xiaojun; Yin, Feng; Chia-Fang Lee, Christina; Yu, Min; Mihaylov, Ivailo S.; Yu, Jiekai; Sun, Hong

    2016-01-01

    ABSTRACT DNA replication licensing occurs on chromatin, but how the chromatin template is regulated for replication remains mostly unclear. Here, we have analyzed the requirement of histone methyltransferases for a specific type of replication: the DNA re-replication induced by the downregulation of either Geminin, an inhibitor of replication licensing protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. We found that siRNA-mediated reduction of essential components of the MLL-WDR5-RBBP5 methyltransferase complexes including WDR5 or RBBP5, which transfer methyl groups to histone H3 at K4 (H3K4), suppressed DNA re-replication and chromosomal polyploidy. Reduction of WDR5/RBBP5 also prevented the activation of H2AX checkpoint caused by re-replication, but not by ultraviolet or X-ray irradiation; and the components of MLL complexes co-localized with the origin recognition complex (ORC) and MCM2-7 replicative helicase complexes at replication origins to control the levels of methylated H3K4. Downregulation of WDR5 or RBBP5 reduced the methylated H3K4 and suppressed the recruitment of MCM2-7 complexes onto replication origins. Our studies indicate that the MLL complexes and H3K4 methylation are required for DNA replication but not for DNA damage repair. PMID:27744293

  3. Preparations of Meiotic Pachytene Chromosomes and Extended DNA Fibers from Cotton Suitable for Fluorescence In Situ Hybridization

    PubMed Central

    Liu, Fang; Ling, Jian; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2012-01-01

    Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established

  4. Identification of RNase-resistant RNAs in Saccharomyces cerevisiae extracts: Separation from chromosomal DNA by selective precipitation.

    PubMed

    Rodriguez, Blanca V; Malczewskyj, Eric T; Cabiya, Joshua M; Lewis, L Kevin; Maeder, Corina

    2016-01-01

    High-quality chromosomal DNA is a requirement for many biochemical and molecular biological techniques. To isolate cellular DNA, standard protocols typically lyse cells and separate nucleic acids from other biological molecules using a combination of chemical and physical methods. After a standard chemical-based protocol to isolate chromosomal DNA from Saccharomyces cerevisiae and then treatment with RNase A to degrade RNA, two RNase-resistant bands persisted when analyzed using gel electrophoresis. Interestingly, such resistant bands did not appear in preparations of Escherichia coli bacterial DNA after RNase treatment. Several enzymatic, chemical, and physical methods were employed in an effort to remove the resistant RNAs, including use of multiple RNases and alcohol precipitation, base hydrolysis, and chromatographic methods. These experiments resulted in the development of a new method for isolation of S. cerevisiae chromosomal DNA. This method utilizes selective precipitation of DNA in the presence of a potassium acetate/isopropanol mixture and produces high yields of chromosomal DNA without detectable contaminating RNAs.

  5. Physical modeling of chromosome segregation in escherichia coli reveals impact of force and DNA relaxation.

    PubMed

    Lampo, Thomas J; Kuwada, Nathan J; Wiggins, Paul A; Spakowitz, Andrew J

    2015-01-01

    The physical mechanism by which Escherichia coli segregates copies of its chromosome for partitioning into daughter cells is unknown, partly due to the difficulty in interpreting the complex dynamic behavior during segregation. Analysis of previous chromosome segregation measurements in E. coli demonstrates that the origin of replication exhibits processive motion with a mean displacement that scales as t(0.32). In this work, we develop a model for segregation of chromosomal DNA as a Rouse polymer in a viscoelastic medium with a force applied to a single monomer. Our model demonstrates that the observed power-law scaling of the mean displacement and the behavior of the velocity autocorrelation function is captured by accounting for the relaxation of the polymer chain and the viscoelastic environment. We show that the ratio of the mean displacement to the variance of the displacement during segregation events is a critical metric that eliminates the compounding effects of polymer and medium dynamics and provides the segregation force. We calculate the force of oriC segregation in E. coli to be ∼0.49 pN.

  6. Linkage of the Wiskott-Aldrich syndrome with polymorphic DNA sequences from the human X chromosome

    SciTech Connect

    Peacocke, M.; Siminovitch, K.A.

    1987-05-01

    The Wiskott-Aldrich syndrome (WAS) is one of several human immunodeficiency diseases inherited as an X-linked trait. The location of WAS on the X chromosome is unknown. The authors have studied 10 kindreds segregating for WAS for linkage with cloned, polymorphic DNA markers and have demonstrated significant linkage between WAS and two loci, DXS14 and DXS7, that map to the proximal short arm of the X chromosome. Maximal logarithm of odds (lod scores) for WAS-DXS14 and WAS-DWS7 were 4.29 (at 0 = 0.03) and 4.12 (at 0 = 0.00), respectively. Linkage data between WAS and six markers loci indicate the order of the loci to be (DXYS1-DXS1)-WAS-DXS14-DXS7-(DXS84-OTC). These results suggest that the WAS locus lies within the pericentric region of the X chromosome and provide an initial step toward identifying the WAS gene and improving the genetic counselling WAS families.

  7. Mouse annexin V chromosomal localization, cDNA sequence conservation, and molecular evolution

    SciTech Connect

    Rodriguez-Garcia, M.I.; Morgan, R.O.; Kozak, C.A.

    1996-01-15

    A full-length cDNA encoding mouse annexin V (ANX5) was cloned, sequenced, and utilized for chromosomal mapping. The gene lies on mouse chromosome 3 in close linkage with the fibroblast growth factor 2 (basic) gene and is syntenic with other genes known to have orthologous counterparts on human chromosome 4q. The open reading frame encoded a protein of 319 amino acids (aa), with 92-96% identity to ANX5 in other species. Internal repeat 3 of mouse ANX5 exhibited the highest level of nonconservative aa replacements with respect to other annexin subfamilies, but the greatest sequence conservation among ANX5 species members. This region may thus contain features that distinguish ANX5 from other annexins in properties or function. Phylogenetic analysis and homology testing of ANX5 members indicated that the 34-kDa annexin from Torpedo marmorata may also belong to this subfamily. Comparison of nine species of ANX5 led to an estimation of the unit evolutionary mutation rate at 1% aa replacements every 8 million years, comparable to other annexins. 46 refs., 4 figs.

  8. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers.

    PubMed

    Vershinina, Alisa O; Anokhin, Boris A; Lukhtanov, Vladimir A

    2015-01-01

    Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little is known about their organization and localization in karyotypes of organisms with holocentric chromosomes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG) n telomeric probes. FISH with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We also demonstrate that Polyommatus species have the classical insect (TTAGG) n telomere organization. This chromosome end protection mechanism probably originated de novo in small chromosomes that evolved via fragmentations.

  9. Identification and regional localization of DNA markers on chromosome 7 for the cloning of the cystic fibrosis gene

    PubMed Central

    Rommens, Johanna M.; Zengerling, Stefanie; Burns, Julie; Melmer, Georg; Kerem, Bat-sheva; Plavsic, Natasa; Zsiga, Martha; Kennedy, Dara; Markiewicz, Danuta; Rozmahel, Richard; Riordan, Jack R.; Buchwald, Manuel; Tsui, Lap-chee

    1988-01-01

    To facilitate mapping of the cystic fibrosis locus (CF) and to isolate the corresponding gene, we have screened a flow-sorted chromosome 7–specific library for additional DNA markers in the 7q31-q32 region. Unique (“single-copy”) DNA segments were selected from the library and used in hybridization analysis with a panel of somatic cell hybrids containing various portions of human chromosome 7 and patient cell lines with deletion of this chromosome. A total of 258 chromosome 7–specific single-copy DNA segments were identified, and most of them localized to subregions. Fifty three of these corresponded to DNA sequences in the 7q31-q32 region. Family and physical mapping studies showed that two of the DNA markers, D7S122 and D7S340, are in close linkage with CF. The data also showed that D7S122 and D7S340 map between MET and D7S8, the two genetic markers known to be on opposite sides of CF. The study thus reaffirms the general strategy in approaching a disease locus on the basis of chromosome location. ImagesFigure 2Figure 5 PMID:2903665

  10. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers

    PubMed Central

    Vershinina, Alisa O.; Anokhin, Boris A.; Lukhtanov, Vladimir A.

    2015-01-01

    Abstract Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little is known about their organization and localization in karyotypes of organisms with holocentric chromosomes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG)n telomeric probes. FISH with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We also demonstrate that Polyommatus species have the classical insect (TTAGG)n telomere organization. This chromosome end protection mechanism probably originated de novo in small chromosomes that evolved via fragmentations. PMID:26140159

  11. Analysis of Plasmid and Chromosomal DNA of Multidrug-Resistant Salmonella enterica Serovar Typhi from Asia

    PubMed Central

    Mirza, S.; Kariuki, S.; Mamun, K. Z.; Beeching, N. J.; Hart, C. A.

    2000-01-01

    Molecular analysis of chromosomal DNA from 193 multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates from 1990 to 1995 from Pakistan, Kuwait, Malaysia, Bangladesh, and India produced a total of five major different pulsed-field gel electrophoresis (PFGE) patterns. Even within a particular country MDR S. enterica serovar Typhi DNA was found to be in different PFGE groups. Similar self-transferable 98-MDa plasmids belonging to either incompatibility group incHI1 or incHI1/FIIA were implicated in the MDR phenotype in S. enterica serovar Typhi isolates from all the locations except Quetta, Pakistan, where the majority were of incFIA. A total of five different PFGE genotypes with six different plasmids, based on incompatibility and restriction endonuclease analysis groups, were found among these MDR S. enterica serovar Typhi isolates. PMID:10747124

  12. Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid.

    PubMed

    Zhu, Hua Ping; Lu, Mai Xin; Gao, Feng Ying; Huang, Zhang Han; Yang, Li Ping; Gui, Jian Fang

    2010-08-01

    In this study, classical and molecular cytogenetic analyses were performed in tilapia fishes, Oreochromis mossambicus (XX/XY sex determination system), O. urolepis hornorum (WZ/ZZ sex determination system) and their hybrid by crossing O. mossambicus female x O. u. hornorum male. An identical karyotype ((2n = 44, NF (total number of chromosomal arms) = 50) was obtained from three examined tilapia samples. Genomic organization analysis of 5S rDNA revealed two different types of 5S rDNA sequences, 5S type I and 5S type II. Moreover, fluorescence in situ hybridization (FISH) with 5S rDNA probes showed six positive fluorescence signals on six chromosomes of all the analysed metaphases from the three tilapia samples. Subsequently, 45S rDNA probes were also prepared, and six positive fluorescence signals were observed on three chromosome pairs in all analysed metaphases of the three tilapia samples. The correlation between 45 rDNA localization and nucleolar organizer regions (NORs) was confirmed by silver nitrate staining in tilapia fishes. Further, different chromosomal localizations of 5S rDNA and 45S rDNA were verified by two different colour FISH probes. Briefly, the current data provide an insights for hybridization projects and breeding improvement of tilapias.

  13. Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia

    SciTech Connect

    Arkesteijn, G.J.A.; Erpelinck, S.L.A.; Martens, A.C.M.; Hagenbeek, A.

    1995-04-01

    Flow cytometry was used to measure the fluorescence intensity of nuclei that were subjected to fluorescent in situ hybridization in suspension with chromosome specific DNA probes. Paraformaldehyde-fixed nuclei were protein digested with trypsin and hybridized simultaneously with a biotin- and DIG labeled probe specific for chromosome 8 and the biotin labeled Y chromosome probe. Y chromosome positive or negative nuclei were sorted onto microscope slides and subsequently classified as being leukemic or not by fluorescence microscopy, on the basis of the presence of a trisomy for chromosome 8. A 120-fold enrichment could be achieved when 300 Y positive nuclei were sorted from a mixture originally containing 0.5% leukemia cells. Given the specificity of the flow cytometry and FISH procedure, the combination of the two methods can reach a lower detection level of 1 per 250,000. 23 refs., 3 figs., 3 tabs.

  14. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900) (Hemiptera: Reduviidae: Hammacerinae)

    PubMed Central

    Poggio, María Georgina; Bressa, María José; Papeschi, Alba Graciela

    2011-01-01

    Abstract In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900) by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y), including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in Microtomus conspicillaris (Drury, 1782) (2n=28+XY). However, Microtomus lunifer has a multiple sex chromosome system X1X2Y (male) that could have originated by fragmentation of the ancestral X chromosome. Taking into account that Microtomus conspicillaris and Microtomus lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in Microtomus lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity. PMID:24260616

  15. Mitochondrial DNA analysis and numerical chromosome condition in human oocytes and polar bodies.

    PubMed

    Gianaroli, Luca; Luiselli, Donata; Crivello, Anna Maria; Lang, Martin; Ferraretti, Anna Pia; De Fanti, Sara; Magli, M Cristina; Romeo, Giovanni

    2015-01-01

    To investigate the mitochondrial DNA (mtDNA) segregation in human oocytes, the level of heteroplasmy in the three products of meioses, polar bodies (PBs) and corresponding oocytes, was assessed by studying the hypervariable region I (HVRI) of the D-loop region. The DNA from 122 PBs and 51 oocytes from 16 patients was amplified by whole genome amplification (WGA). An aliquot of the WGA product was used to assess aneuploidy, and another aliquot to study mtDNA. The HVRI was amplified and sequenced with an efficiency of 75.4 and 63%, respectively, in PBs, and of 100% in oocytes. The comparison with the mtDNA sequences from blood of the individual donors showed full correspondence of polymorphisms with the matching oocytes, whilst in PBs the degree of concordance dropped to 89.6%. Haplogroups were inferred for all 16 patients. Of the 89 diagnosed PBs from the 13 patients belonging to macrohaplogroup R, 23 were euploid and 66 aneuploid. The incidence of total anomalies was significantly lower in haplogroup H (6.5%) when compared with haplogroups J and T (17.6 and 13.4% respectively; P < 0.001). In haplogroup J, hypoaneuploidy occurred more frequently than hyperaneuploidy. In the three patients belonging to haplogroup N*, 81% of PBs were aneuploid with similar rates of chromosome hypoaneuploidy and hyperaneuploidy. The presence of mtDNA base changes confined to PBs could reflect a selection mechanism against severe mtDNA mutations, while permitting a high evolution rate that could result in bioenergetic diversity. The different susceptibility to aneuploidy by some haplogroups strongly supports this hypothesis. PMID:25301778

  16. A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae.

    PubMed

    Salgado-Pabón, Wilmara; Jain, Samta; Turner, Nicholas; van der Does, Chris; Dillard, Joseph P

    2007-11-01

    The Neisseria gonorrhoeae type IV secretion system secretes chromosomal DNA that acts in natural transformation. To examine the mechanism of DNA processing for secretion, we made mutations in the putative relaxase gene traI and used nucleases to characterize the secreted DNA. The nuclease experiments demonstrated that the secreted DNA is single-stranded and blocked at the 5' end. Mutation of traI identified Tyr93 as required for DNA secretion, while substitution of Tyr201 resulted in intermediate levels of DNA secretion. TraI exhibits features of relaxases, but also has features that are absent in previously characterized relaxases, including an HD phosphohydrolase domain and an N-terminal hydrophobic region. The HD domain residue Asp120 was required for wild-type levels of DNA secretion. Subcellular localization studies demonstrated that the TraI N-terminal region promotes membrane interaction. We propose that Tyr93 initiates DNA processing and Tyr201 is required for termination or acts in DNA binding. Disruption of an inverted-repeat sequence eliminated DNA secretion, suggesting that this sequence may serve as the origin of transfer for chromosomal DNA secretion. The TraI domain architecture, although not previously described, is present in 53 uncharacterized proteins, suggesting that the mechanism of TraI function is a widespread process for DNA donation. PMID:17927698

  17. Construction of Agrobacterium strains by electroporation of genomic DNA and its utility in analysis of chromosomal virulence mutations.

    PubMed Central

    Charles, T C; Doty, S L; Nester, E W

    1994-01-01

    We have extended the technique of electroporation as a genetic tool for manipulating the Agrobacterium tumefaciens chromosome. We used this technique to introduce chromosomal DNA into recipient A. tumefaciens strains by electroporation and constructed isogenic chvE mutants that share the same chromosomal background but differ in their types of pTi (octopine or nopaline). Both nopaline and octopine pTi-carrying chvE mutants were deficient in vir regulon induction and exhibited similar reductions in host range. PMID:7993100

  18. Physical mapping of DNA markers in the q13-q22 region of the human X chromosome

    SciTech Connect

    Philippe, C.; Chery, M.; Abbadi, N.; Gilgenkrantz, S. ); Cremers, F.P.M.; Bach, I.; Ropers, H.H. )

    1993-07-01

    DNA probe screening of somatic cell hybrids derived from females with X; autosome translocations has enabled definition of eight new breakpoints within the Xq13-q22 region. Together with other X-chromosome rearrangements that have been described earlier, these breakpoints subdivide the Xq21-q22 region into 20 intervals. This panel refines the physical assignment of 40 probes in the Xq21-q22 segment. Thus, these X-chromosome rearrangements are useful tools for ordering X-linked markers and genes on the proximal long arm of the human X chromosome. 26 refs., 3 figs., 3 tabs.

  19. Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli

    SciTech Connect

    Yung, B.Y.; Kornberg, A.

    1988-10-01

    ADP and ATP are tightly bound to dnaA protein and are crucial to its function in DNA replication; the exchange of these nucleotides is effected specifically by the acidic phospholipids (cardiolipin and phosphatidylglycerol) present in Escherichia coli membranes. We now find that phospholipids derived from membranes lacking an unsaturated fatty acid (e.g., oleic acid) are unable to promote the exchange. This observation correlates strikingly with the long-known effect of 3-decynoyl-N-acetylcysteamine, a ''suicide analog'' that prevents initiation of a cycle of replication in E. coli by inhibiting the synthesis of oleic acid, an inhibition that can be overcome by providing the cells with oleic acid. Profound influences on the specific binding of dnaA protein to phospholipids by temperature, the content of unsaturated fatty acids, and the inclusion of cholesterol can be explained by the need for the phospholipids to be in fluid-phase vesicles. These findings suggest that membrane attachment of dnaA protein is vital for its function in the initiation of chromosome replication in E. coli.

  20. Nanoneedle insertion into the cell nucleus does not induce double-strand breaks in chromosomal DNA.

    PubMed

    Ryu, Seunghwan; Kawamura, Ryuzo; Naka, Ryohei; Silberberg, Yaron R; Nakamura, Noriyuki; Nakamura, Chikashi

    2013-09-01

    An atomic force microscope probe can be formed into an ultra-sharp cylindrical shape (a nanoneedle) using micro-fabrication techniques such as focused ion beam etching. This nanoneedle can be effectively inserted through the plasma membrane of a living cell to not only access the cytosol, but also to penetrate through the nuclear membrane. This technique shows great potential as a tool for performing intranuclear measurements and manipulations. Repeated insertions of a nanoneedle into a live cell were previously shown not to affect cell viability. However, the effect of nanoneedle insertion on the nucleus and nuclear components is still unknown. DNA is the most crucial component of the nucleus for proper cell function and may be physically damaged by a nanoneedle. To investigate the integrity of DNA following nanoneedle insertion, the occurrence of DNA double-strand breaks (DSBs) was assessed. The results showed that there was no chromosomal DNA damage due to nanoneedle insertion into the nucleus, as indicated by the expression level of γ-H2AX, a molecular marker of DSBs.

  1. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  2. Mitochondrial DNA Variation and the Evolution of Robertsonian Chromosomal Races of House Mice, Mus Domesticus

    PubMed Central

    Nachman, M. W.; Boyer, S. N.; Searle, J. B.; Aquadro, C. F.

    1994-01-01

    The house mouse, Mus domesticus, includes many distinct Robertsonian (Rb) chromosomal races with diploid numbers from 2n = 22 to 2n = 38. Although these races are highly differentiated karyotypically, they are otherwise indistinguishable from standard karyotype (i.e., 2n = 40) mice, and consequently their evolutionary histories are not well understood. We have examined mitochondrial DNA (mtDNA) sequence variation from the control region and the ND3 gene region among 56 M. domesticus from Western Europe, including 15 Rb populations and 13 standard karyotype populations, and two individuals of the sister species, Mus musculus. mtDNA exhibited an average sequence divergence of 0.84% within M. domesticus and 3.4% between M. domesticus and M. musculus. The transition/transversion bias for the regions sequenced is 5.7:1, and the overall rate of sequence evolution is approximately 10% divergence per million years. The amount of mtDNA variation was as great among different Rb races as among different populations of standard karyotype mice, suggesting that different Rb races do not derive from a single recent maternal lineage. Phylogenetic analysis of the mtDNA sequences resulted in a parsimony tree which contained six major clades. Each of these clades contained both Rb and standard karyotype mice, consistent with the hypothesis that Rb races have arisen independently multiple times. Discordance between phylogeny and geography was attributable to ancestral polymorphism as a consequence of the recent colonization of Western Europe by mice. Two major mtDNA lineages were geographically localized and contained both Rb and standard karyotype mice. The age of these lineages suggests that mice have moved into Europe only within the last 10,000 years and that Rb populations in different geographic regions arose during this time. PMID:8005418

  3. Detection of cryptic chromosomal abnormalities in unexplained mental retardation: a general strategy using hypervariable subtelomeric DNA polymorphisms.

    PubMed Central

    Wilkie, A O

    1993-01-01

    Given the availability of DNA from both parents, unusual segregation of hypervariable DNA polymorphisms (HVPs) in the offspring may be attributable to deletion, unbalanced chromosomal translocation, or uniparental disomy. The telomeric regions of chromosomes are rich in both genes and hypervariable minisatellite sequences and may also be particularly prone to cryptic breakage events. Here I describe and analyze a general approach to the detection of subtelomeric abnormalities and uniparental disomy in patients with unexplained mental retardation. With 29 available polymorphic systems, approximately 50%-70% of these abnormalities could currently be detected. Development of subtelomeric HVPs physically localized with respect to their telomeres should provide a valuable resource in routine diagnostics. PMID:8352277

  4. Bioinformatic Tools Identify Chromosome-Specific DNA Probes and Facilitate Risk Assessment by Detecting Aneusomies in Extra-embryonic Tissues

    PubMed Central

    Zeng, Hui; Weier, Jingly F; Wang, Mei; Kassabian, Haig J; Polyzos, Aris A; Baumgartner, Adolf; O’Brien, Benjamin; Weier, Heinz-Ulli G

    2012-01-01

    Despite their non-diseased nature, healthy human tissues may show a surprisingly large fraction of aneusomic or aneuploid cells. We have shown previously that hybridization of three to six non-isotopically labeled, chromosome-specific DNA probes reveals different proportions of aneuploid cells in individual compartments of the human placenta and the uterine wall. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or the uterine wall had gained individual chromosomes. Chromosome losses in placental or uterine tissues, on the other hand, were detected infrequently. A more thorough numerical analysis of all possible aneusomies occurring in these tissues and the investigation of their spatial as well as temporal distribution would further our understanding of the underlying biology, but it is hampered by the high cost of and limited access to DNA probes. Furthermore, multiplexing assays are difficult to set up with commercially available probes due to limited choices of probe labels. Many laboratories therefore attempt to develop their own DNA probe sets, often duplicating cloning and screening efforts underway elsewhere. In this review, we discuss the conventional approaches to the preparation of chromosome-specific DNA probes followed by a description of our approach using state-of-the-art bioinformatics and molecular biology tools for probe identification and manufacture. Novel probes that target gonosomes as well as two autosomes are presented as examples of rapid and inexpensive preparation of highly specific DNA probes for applications in placenta research and perinatal diagnostics. PMID:23450259

  5. Terminal proteins of Streptomyces chromosome can target DNA into eukaryotic nuclei.

    PubMed

    Tsai, Hsiu-Hui; Huang, Chih-Hung; Lin, Alan M; Chen, Carton W

    2008-06-01

    Streptomyces species are highly abundant soil bacteria that possess linear chromosomes (and linear plasmids). The 5' ends of these molecules are covalently bound by terminal proteins (TPs), that are important for integrity and replication of the telomeres. There are at least two types of TPs, both of which contain a DNA-binding domain and a classical eukaryotic nuclear localization signal (NLS). Here we show that the NLS motifs on these TPs are highly efficient in targeting the proteins along with covalently bound plasmid DNA into the nuclei of human cells. The TP-mediated nuclear targeting resembles the inter-kingdom gene transfer mediated by Ti plasmids of Agrobacterium tumefaciens, in which a piece of the Ti plasmid DNA is targeted to the plant nuclei by a covalently bound NLS-containing protein. The discovery of the nuclear localization functions of the Streptomyces TPs not only suggests possible inter-kingdom gene exchanges between Streptomyces and eukaryotes in soil but also provides a novel strategy for gene delivery in humans and other eukaryotes. PMID:18480119

  6. Mitochondrial DNA and Y-chromosomal stratification in Iran: relationship between Iran and the Arabian Peninsula.

    PubMed

    Terreros, Maria C; Rowold, Diane J; Mirabal, Sheyla; Herrera, Rene J

    2011-03-01

    Modern day Iran is strategically located in the tri-continental corridor uniting Africa, Europe and Asia. Several ethnic groups belonging to distinct religions, speaking different languages and claiming divergent ancestries inhabit the region, generating a potentially diverse genetic reservoir. In addition, past pre-historical and historical events such as the out-of-Africa migrations, the Neolithic expansion from the Fertile Crescent, the Indo-Aryan treks from the Central Asian steppes, the westward Mongol expansions and the Muslim invasions may have chiseled their genetic fingerprints within the genealogical substrata of the Persians. On the other hand, the Iranian perimeter is bounded by the Zagros and Albrez mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts, which may have restricted gene flow from neighboring regions. By utilizing high-resolution mitochondrial DNA (mtDNA) markers and reanalyzing our previously published Y-chromosomal data, we have found a previously unexplored, genetic connection between Iranian populations and the Arabian Peninsula, likely the result of both ancient and recent gene flow. Furthermore, the regional distribution of mtDNA haplogroups J, I, U2 and U7 also provides evidence of barriers to gene flow posed by the two major Iranian deserts and the Zagros mountain range. PMID:21326310

  7. Chromatin dynamics during repair of chromosomal DNA double-strand breaks

    PubMed Central

    Sinha, Manisha; Peterson, Craig L

    2010-01-01

    The integrity of a eukaryotic genome is often challenged by DNA double-strand breaks (DSBs). Even a single, unrepaired DSB can be a lethal event, or such unrepaired damage can result in chromosomal instability and loss of genetic information. Furthermore, defects in the pathways that respond to and repair DSBs can lead to the onset of several human pathologic disorders with pleiotropic clinical features, including age-related diseases and cancer. For decades, studies have focused on elucidating the enzymatic mechanisms involved in recognizing, signaling and repairing DSBs within eukaryotic cells. The majority of biochemical and genetic studies have used simple, DNA substrates, whereas only recently efforts have been geared towards understanding how the repair machinery deals with DSBs within chromatin fibers, the nucleoprotein complex that packages DNA within the eukaryotic nucleus. The aim of this review is to discuss our recent understanding of the relationship between chromatin structure and the repair of DSBs by homologous recombination. In particular, we discuss recent studies implicating specialized roles for several, distinct ATP-dependent chromatin remodeling enzymes in facilitating multiple steps within the homologous recombination process. PMID:20495614

  8. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    PubMed

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  9. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    PubMed

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  10. Chromosomal localization and molecular characterization of three different 5S ribosomal DNA clusters in the sea urchin Paracentrotus lividus.

    PubMed

    Caradonna, Fabio; Bellavia, Daniele; Clemente, Ann Maria; Sisino, Giorgia; Barbieri, Rainer

    2007-09-01

    In this paper the chromosomal localization and molecular cloning and characterization of three 5S rDNA clusters of 700 bp (base pairs), 900 bp, and 950 bp in the sea urchin Paracentrotus lividus are reported. Southern blot hybridization demonstrated the existence of three 5S rDNA repeats of differing length in the P. lividus genome. Fluorescence in situ hybridization analysis, performed in parallel on both haploid and diploid metaphases and interphase nuclei using different 5S rDNA units as probes, localized these 5S rDNA clusters in 3 different pairs of P. lividus chromosomes. This is the first complete gene mapping not only in a sea urchin but also in the phylum of echinoderms as a whole. PMID:17893727

  11. A Cross-Age Study of the Understanding of Three Genetic Concepts: How Do They Image the Gene, DNA and Chromosome?

    ERIC Educational Resources Information Center

    Saka, Arzu; Cerrah, Lale; Akdeniz, Ali Riza; Ayas, Alipasa

    2006-01-01

    The study was carried out with 175 Turkish students by using drawings at different ages understanding of gene, DNA and chromosome concepts. Students from 8th, 9th, 11th grades and, science and biology student teachers were simply asked to draw the structure of gene, DNA and chromosome in a cell and also to give explanations about these three…

  12. A linkage between DNA markers on the X chromosome and male sexual orientation

    SciTech Connect

    Hamer, D.H.; Hu, S.; Magnuson, V.L.; Hu, N.; Pattatucci, A.M.L.

    1993-07-16

    The role of genetics in male sexual orientation was investigated by pedigree and linkage analyses on 114 families of homosexual men. Increased rates of same-sex orientation were found in the maternal uncles and male cousins of these subjects, but not in their fathers or paternal relatives, suggesting the possibility of sex-linked transmission in a portion of the population. DNA linkage analysis of a selected group of 40 families in which there were two gay brothers and no indication of nonmaternal transmission revealed a correlation between homosexual orientation and the inheritance of polymorphic markers on the X chromosome in approximately 64 percent of the sib-pairs tested. The linkage to markers on Xq28, the subtelomeric region of the long arm of the sex chromosome, had a multipoint lod score of 4.0(P = 10[sup [minus]5]), indicating a statistical confidence level of more than 99 percent that at least one subtype of male sexual orientation is genetically influenced.

  13. Effect of aspirin on chromosome aberration and DNA damage induced by X-rays in mice

    NASA Astrophysics Data System (ADS)

    Niikawa, M.; Chuuriki, K.; Shibuya, K.; Seo, M.; Nagase, H.

    In order to reveal the anticlastogenic potency of aspirin, we evaluated the suppressive ability of aspirin on chromosome aberrations induced by X-ray. Aspirin at doses of 0.5, 5 and 50 mg/kg was administrated intraperitoneally or orally at 0.5 h after or before the X-ray irradiation. The anticlastogenic activity of aspirin on chromosome aberrations induced by X-ray was determined in the mouse micronucleus test and alkaline single cell gel electrophoresis (SCG) assay in vivo. The frequency by polychromatic erythrocytes with micronuclei (MNPCEs) was decreased by about 19-61% at 0.5 h after and about 23-62% at 0.5 h before the X-ray irradiation. DNA damage by X-ray was significantly decreased by oral administration of aspirin at 0.5 h after or before the X-ray irradiation for the SCG assay. We consider aspirin can be used as preventive agents against exposure of X-ray.

  14. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics.

    PubMed

    Saghai Maroof, M A; Biyashev, R M; Yang, G P; Zhang, Q; Allard, R W

    1994-06-01

    This study was undertaken to assess the extent of genetic variation in barley simple sequence repeats (SSRs) and to study the evolutionary dynamics of SSR alleles. SSR polymorphisms were resolved by the polymerase chain reaction with four pairs of primers. In total, 71 variants were observed in a sample of 207 accessions of wild and cultivated barley. Analyses of wheat-barley addition lines and barley doubled haploids identified these variants (alleles) with four loci, each located on a different chromosome. The numbers of alleles detected at a locus corresponded to the number of nucleotide repeats in the microsatellite sequences. The numbers of alleles at two loci were 28 and 37; to our knowledge these are the largest numbers of alleles for single Mendelian loci reported in plants. Three alleles were resolved by each of the other two loci. Allelic diversity was greater in wild than in cultivated barley and surveys of two generations (F8 and F53) of Composite Cross II, an experimental population of cultivated barley, showed that few of the alleles present in the 28 parents survived into generation F53, whereas some infrequent alleles reached high frequencies. Such changes in frequency indicate that the chromosomal segments marked by the SSR alleles are under the influence of natural selection. The SSR variants allow specific DNA sequences to be followed through generations. Thus, the great resolving power of SSR assays may provide clues regarding the precise targets of natural and man-directed selection. PMID:8202509

  15. U-INSERTION/DELETION RNA EDITING MULTIPROTEIN COMPLEXES AND MITOCHONDRIAL RIBOSOMES IN LEISHMANIA TARENTOLAE ARE LOCATED IN ANTIPODAL NODES ADJACENT TO THE KINETOPLAST DNA

    PubMed Central

    Wong, Richard G; Kazane, Katelynn; Maslov, Dmitri A; Rogers, Kestrel; Aphasizhev, Ruslan; Simpson, Larry

    2015-01-01

    We studied the intramitochondrial localization of several multiprotein complexes involved in U-insertion/deletion RNA editing in trypanosome mitochondria. The editing complexes are located in one or two antipodal nodes adjacent to the kinetoplast DNA (kDNA) disk, which are distinct from but associated with the minicircle catenation nodes. In some cases the proteins are in a bilateral sheet configuration. We also found that mitoribosomes have a nodal configuration. This type of organization is consistent with evidence for protein and RNA interactions of multiple editing complexes to form a ~40S editosome and also an interaction of editosomes with mitochondrial ribosomes. PMID:26462764

  16. U-insertion/deletion RNA editing multiprotein complexes and mitochondrial ribosomes in Leishmania tarentolae are located in antipodal nodes adjacent to the kinetoplast DNA.

    PubMed

    Wong, Richard G; Kazane, Katelynn; Maslov, Dmitri A; Rogers, Kestrel; Aphasizhev, Ruslan; Simpson, Larry

    2015-11-01

    We studied the intramitochondrial localization of several multiprotein complexes involved in U-insertion/deletion RNA editing in trypanosome mitochondria. The editing complexes are located in one or two antipodal nodes adjacent to the kinetoplast DNA (kDNA) disk, which are distinct from but associated with the minicircle catenation nodes. In some cases the proteins are in a bilateral sheet configuration. We also found that mitoribosomes have a nodal configuration. This type of organization is consistent with evidence for protein and RNA interactions of multiple editing complexes to form an ~40S editosome and also an interaction of editosomes with mitochondrial ribosomes.

  17. Spatial positioning of all 24 chromosomes in the lymphocytes of six subjects: evidence of reproducible positioning and spatial repositioning following DNA damage with hydrogen peroxide and ultraviolet B.

    PubMed

    Ioannou, Dimitrios; Kandukuri, Lakshmi; Quadri, Ameer; Becerra, Victor; Simpson, Joe Leigh; Tempest, Helen G

    2015-01-01

    The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms. PMID:25756782

  18. Spatial Positioning of All 24 Chromosomes in the Lymphocytes of Six Subjects: Evidence of Reproducible Positioning and Spatial Repositioning following DNA Damage with Hydrogen Peroxide and Ultraviolet B

    PubMed Central

    Kandukuri, Lakshmi; Quadri, Ameer; Becerra, Victor; Simpson, Joe Leigh

    2015-01-01

    The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms. PMID:25756782

  19. Comparative molecular phylogeny and evolution of sex chromosome DNA sequences in the family Canidae (Mammalia: Carnivora).

    PubMed

    Tsubouchi, Ayako; Fukui, Daisuke; Ueda, Miya; Tada, Kazumi; Toyoshima, Shouji; Takami, Kazutoshi; Tsujimoto, Tsunenori; Uraguchi, Kohji; Raichev, Evgeniy; Kaneko, Yayoi; Tsunoda, Hiroshi; Masuda, Ryuichi

    2012-03-01

    To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation. PMID:22379982

  20. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation

    PubMed Central

    Cotton, Allison M.; Price, E. Magda; Jones, Meaghan J.; Balaton, Bradley P.; Kobor, Michael S.; Brown, Carolyn J.

    2015-01-01

    X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease. PMID:25381334

  1. Variability of 18rDNA loci in four lace bug species (Hemiptera, Tingidae) with the same chromosome number

    PubMed Central

    Golub, Natalia V.; Golub, Viktor B.; Kuznetsova, Valentina G.

    2015-01-01

    Abstract Male karyotypes of Elasmotropis testacea (Herrich-Schaeffer, 1835), Tingis cardui (Linnaeus, 1758), Tingis crispata (Herrich-Schaeffer, 1838), and Agramma femorale Thomson, 1871 (Heteroptera, Cimicomorpha, Tingidae) were analyzed using conventional chromosome staining and FISH with 18S rDNA and (TTAGG)n telomeric probes. The FISH technique was applied for the first time in the Tingidae. In spite of the fact that all species showed the same chromosome number (2n = 12 + XY), they have significant differences in the number and position of rDNA loci. FISH with the classical insect (TTAGG)n probe produced no signals on chromosomes suggesting telomeres in lace bugs to be of some other molecular composition. Tingidae share absence of the (TTAGG)n telomeric sequence with all so far studied taxa of the advanced true bug infraorders Cimicomorpha and Pentatomomorpha. PMID:26753071

  2. Increased levels of chromosomal aberrations and DNA damage in a group of workers exposed to formaldehyde.

    PubMed

    Costa, Solange; Carvalho, Sandra; Costa, Carla; Coelho, Patrícia; Silva, Susana; Santos, Luís S; Gaspar, Jorge F; Porto, Beatriz; Laffon, Blanca; Teixeira, João P

    2015-07-01

    Formaldehyde (FA) is a commonly used chemical in anatomy and pathology laboratories as a tissue preservative and fixative. Because of its sensitising properties, irritating effects and cancer implication, FA accounts probably for the most important chemical-exposure hazard concerning this professional group. Evidence for genotoxic effects and carcinogenic properties in humans is insufficient and conflicting, particularly in regard to the ability of inhaled FA to induce toxicity on other cells besides first contact tissues, such as buccal and nasal cells. To evaluate the effects of exposure to FA in human peripheral blood lymphocytes, a group of 84 anatomy pathology laboratory workers exposed occupationally to FA and 87 control subjects were tested for chromosomal aberrations (CAs) and DNA damage (comet assay). The level of exposure to FA in the workplace air was evaluated. The association between genotoxicity biomarkers and polymorphic genes of xenobiotic-metabolising and DNA repair enzymes were also assessed. The estimated mean level of FA exposure was 0.38±0.03 ppm. All cytogenetic endpoints assessed by CAs test and comet assay % tail DNA (%TDNA) were significantly higher in FA-exposed workers compared with controls. Regarding the effect of susceptibility biomarkers, results suggest that polymorphisms in CYP2E1 and GSTP1 metabolic genes, as well as, XRCC1 and PARP1 polymorphic genes involved in DNA repair pathways are associated with higher genetic damage in FA-exposed subjects. Data obtained in this study show a potential health risk situation of anatomy pathology laboratory workers exposed to FA (0.38 ppm). Implementation of security and hygiene measures may be crucial to decrease risk. The obtained information may also provide new important data to be used by health care programs and by governmental agencies responsible for occupational health and safety.

  3. Mitochondrial DNA and Y chromosome diversity and the peopling of the Americas: evolutionary and demographic evidence.

    PubMed

    Schurr, Theodore G; Sherry, Stephen T

    2004-01-01

    A number of important insights into the peopling of the New World have been gained through molecular genetic studies of Siberian and Native American populations. While there is no complete agreement on the interpretation of the mitochondrial DNA (mtDNA) and Y chromosome (NRY) data from these groups, several generalizations can be made. To begin with, the primary migration of ancestral Asians expanded from south-central Siberia into the New World and gave rise to ancestral Amerindians. The initial migration seems to have occurred between 20,000-15,000 calendar years before present (cal BP), i.e., before the emergence of Clovis lithic sites (13,350-12,895 cal BP) in North America. Because an interior route through northern North America was unavailable for human passage until 12,550 cal BP, after the last glacial maximum (LGM), these ancestral groups must have used a coastal route to reach South America by 14,675 cal BP, the date of the Monte Verde site in southern Chile. The initial migration appears to have brought mtDNA haplogroups A-D and NRY haplogroups P-M45a and Q-242/Q-M3 to the New World, with these genetic lineages becoming widespread in the Americas. A second expansion that perhaps coincided with the opening of the ice-free corridor probably brought mtDNA haplogroup X and NRY haplogroups P-M45b, C-M130, and R1a1-M17 to North and Central America. Finally, populations that formerly inhabited Beringia expanded into northern North America after the LGM, and gave rise to Eskimo-Aleuts and Na-Dené Indians.

  4. Use of laser microdissection for the construction of Humulusjaponicus Siebold et Zuccarini, 1846 (Cannabaceae) sex chromosome-specific DNA library and cytogenetics analysis.

    PubMed

    Yakovin, Nickolay A; Divashuk, Mikhail G; Razumova, Olga V; Soloviev, Alexander A; Karlov, Gennady I

    2014-01-01

    Dioecy is relatively rare among plant species, and distinguishable sex chromosomes have been reported in few dioecious species. The multiple sex chromosome system (XX/XY1Y2) of Humulusjaponicus Siebold et Zuccarini, 1846 differs from that of other members of the family Cannabaceae, in which the XX/XY chromosome system is present. Sex chromosomes of Humulusjaponicus were isolated from meiotic chromosome spreads of males by laser microdissection with the P.A.L.M. MicroLaser system. The chromosomal DNA was directly amplified by degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR). Fast fluorescence in situ hybridization (FAST-FISH) using a labeled, chromosome-specific DOP-PCR product as a probe showed preferential hybridization to sex chromosomes. In addition, the DOP-PCR product was used to construct a short-insert, Humulusjaponicus sex chromosomes-specific DNA library. The randomly sequenced clones showed that about 12% of them have significant homology to Humuluslupulus and 88% to Cannabissativa Linnaeus, 1753 sequences from GenBank database. Forty-four percent of the sequences show homology to plant retroelements. It was concluded that laser microdissection is a useful tool for isolating the DNA of sex chromosomes of Humulusjaponicus and for the construction of chromosome-specific DNA libraries for the study of the structure and evolution of sex chromosomes. The results provide the potential for identifying unique or sex chromosome-specific sequence elements in Humulusjaponicus and could aid in the identification of sex chromosome-specific repeat and coding regions through chromosome isolation and genome complexity reduction. PMID:25610546

  5. Use of laser microdissection for the construction of Humulus japonicus Siebold et Zuccarini, 1846 (Cannabaceae) sex chromosome-specific DNA library and cytogenetics analysis

    PubMed Central

    Yakovin, Nickolay A.; Divashuk, Mikhail G.; Razumova, Olga V.; Soloviev, Alexander A.; Karlov, Gennady I.

    2014-01-01

    Abstract Dioecy is relatively rare among plant species, and distinguishable sex chromosomes have been reported in few dioecious species. The multiple sex chromosome system (XX/XY1Y2) of Humulus japonicus Siebold et Zuccarini, 1846 differs from that of other members of the family Cannabaceae, in which the XX/XY chromosome system is present. Sex chromosomes of Humulus japonicus were isolated from meiotic chromosome spreads of males by laser microdissection with the P.A.L.M. MicroLaser system. The chromosomal DNA was directly amplified by degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR). Fast fluorescence in situ hybridization (FAST-FISH) using a labeled, chromosome-specific DOP-PCR product as a probe showed preferential hybridization to sex chromosomes. In addition, the DOP-PCR product was used to construct a short-insert, Humulus japonicus sex chromosomes-specific DNA library. The randomly sequenced clones showed that about 12% of them have significant homology to Humulus lupulus and 88% to Cannabis sativa Linnaeus, 1753 sequences from GenBank database. Forty-four percent of the sequences show homology to plant retroelements. It was concluded that laser microdissection is a useful tool for isolating the DNA of sex chromosomes of Humulus japonicus and for the construction of chromosome-specific DNA libraries for the study of the structure and evolution of sex chromosomes. The results provide the potential for identifying unique or sex chromosome-specific sequence elements in Humulus japonicus and could aid in the identification of sex chromosome-specific repeat and coding regions through chromosome isolation and genome complexity reduction. PMID:25610546

  6. Taiwan Y-chromosomal DNA variation and its relationship with Island Southeast Asia

    PubMed Central

    2014-01-01

    Background Much of the data resolution of the haploid non-recombining Y chromosome (NRY) haplogroup O in East Asia are still rudimentary and could be an explanatory factor for current debates on the settlement history of Island Southeast Asia (ISEA). Here, 81 slowly evolving markers (mostly SNPs) and 17 Y-chromosomal short tandem repeats were used to achieve higher level molecular resolution. Our aim is to investigate if the distribution of NRY DNA variation in Taiwan and ISEA is consistent with a single pre-Neolithic expansion scenario from Southeast China to all ISEA, or if it better fits an expansion model from Taiwan (the OOT model), or whether a more complex history of settlement and dispersals throughout ISEA should be envisioned. Results We examined DNA samples from 1658 individuals from Vietnam, Thailand, Fujian, Taiwan (Han, plain tribes and 14 indigenous groups), the Philippines and Indonesia. While haplogroups O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 follow a decreasing cline from Taiwan towards Western Indonesia, O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 decline northward from Western Indonesia towards Taiwan. Compared to the Taiwan plain tribe minority groups the Taiwanese Austronesian speaking groups show little genetic paternal contribution from Han. They are also characterized by low Y-chromosome diversity, thus testifying for fast drift in these populations. However, in contrast to data provided from other regions of the genome, Y-chromosome gene diversity in Taiwan mountain tribes significantly increases from North to South. Conclusion The geographic distribution and the diversity accumulated in the O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 haplogroups on one hand, and in the O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 haplogroups on the other, support a pincer model of dispersals and gene flow from the mainland to the islands which likely started during the late upper Paleolithic, 18,000 to 15

  7. Geographic distribution of chromosome and microsatellite DNA polymorphisms in Oncorhynchus mykiss native to western Washington

    USGS Publications Warehouse

    Ostberg, C.O.; Thorgaard, G.H.

    1999-01-01

    Chromosome studies of native populations of Oncorhynchus mykiss (steelhead and rainbow trout) in western Washington and southern British Columbia revealed the presence of two evolutionarily distinct chromosome lineages. Populations between, and including, the Elwha River, Washington, and Chilliwack River, British Columbia, contained 2n = 60 chromosomes. Populations on the central Washington coast contained 2n = 58 chromosomes. The north Washington coast and western Strait of Juan de Fuca contained individuals with 58, 59, or 60 chromosomes, suggesting this is a transition zone between 58 and 60 chromosome groups. The differences in chromosomal structure between 2n = 58 and 2n = 60 groups are presumably a Robertsonian rearrangement and an inversion. Allelic variation at three microsatellite loci (One ??6, One ??11 and Omy 77) also was examined, and no significant variation was detected among the 58 and 60 chromosome races. A hypothesis is presented concerning the origin of the 60 chromosome lineage.

  8. Complementary DNA sequence and chromosomal mapping of human proteoglycan-binding cell-adhesion protein (dermatopontin)

    SciTech Connect

    Superti-Furga, A.; Gitzelmann, R.; Schaefer, B.W. ); Rocchi, M. )

    1993-08-01

    The authors have noticed the presence of a protein with a M[sub r] of approx 22 kDa in proteoglycan preparations from human fibroblast cultures and speculated that it might be related to a 22-kDa protein from bovine skin (22K) with proteoglycan- and cell-binding properties. Using degenerated oligomers designed from the amino acid sequence of the bovine protein, they amplified and subcloned sequences from human fibroblast and fibrosarcoma cDNA. The three clones that were characterized contain an open reading frame (603 bp) coding for 201 amino acids comprising a secretory leader peptide of 18 amino acids and a secreted part of 183 amino acids with 96% identity to the bovine sequence, indicating that they code for the human homologue ([open quotes]dermatopontin[close quotes]) of the bovine 22K protein. Expression of dermatopontin is not limited to connective tissue, as northern blots show specific mRNAs in cultured fibroblasts, muscle, heart, pancreas, and lung. Two species of mRNA (1.0 and 2.2 kb) are present, indicating alternative polyadenylation or alternative splicing. The cDNA clones map to 1q12-q23 in a cell hybrid panel containing specific chromosomal deletions. 24 refs., 3 figs.

  9. Microsatellite DNA markers detects 95% of chromosome 22q11 deletions

    SciTech Connect

    Bonnet, D.; Cormier-Daire, V.; Munnich, A.; Lyonnet, S.

    1997-01-20

    Cono-truncal cardiac malformations account for some 50% of congenital heart defects in newborn infants. Recently, hemizygosity for chromosome 22q11.2 was reported in patients with the DiGeorge/Velo-cardio-facial syndromes (DGS/VCFS) and causally related disorders. We have explored the potential use of microsatellite DNA markers for rapid detection of 22q11 deletions in 19 newborn infants referred for cono-truncal heart malformations with associated DGS/VCFS anomalies. A failure of parental inheritance was documented in 84.2% of cases (16/19). PCR-based genotyping using microsatellite DNA markers located within the commonly deleted region allowed us either to confirm or reject a 22q11 microdeletion in 94.3% of cases (18/19) within 24 hours. This test is now currently performed in the infants referred to us for a cono-truncal heart malformation as a first intention screening for 22q11 microdeletion. 10 refs., 1 fig., 1 tab.

  10. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling

    SciTech Connect

    Taylor, B.A.; Phillips, S.J.

    1996-06-15

    The inheritance of obesity has been analyzed in an intercross between the lean 129/Sv mouse strain and the obesity-prone EL/Suz mouse strain. The weights of three major fat pads were determined on 4-month-old mice, and the sum of these weights, divided by body weight, was used as an adiposity index. The strategy of selective DNA pooling was used as a primary screen to identify putative quantitative trait loci (QTLs) affecting adiposity index. DNA pools representing the leanest 15% and fattest 15% of the F2 progeny were compared for differential allelic enrichment using widely dispersed microsatellite variants. To evaluate putative QTLs, individual genotyping and interval mapping were employed to estimate QTL effects and assess statistical significance. One QTL affecting adiposity index, which accounted for 12.3% of phenotypic variance in gender-merged data, was mapped to the central region of Chromosome (Chr) 7. The QTL allele inherited from EL conferred increased adiposity. A second QTL that accounts for 6.3% of phenotypic variance was identified on Chr 1 near D1Mitt211. At both QTLs, the data are consistent with dominant inheritance of the allele contributing to obesity. The possible relationships between these QTLs and previously described obesity QYLs, major obesity mutations, and candidate genes are discussed. 42 refs., 3 figs., 3 tabs.

  11. [Comparative Analysis of DNA Sequences of Regions of X-Chromosome Attachment to the Nuclear Envelope of Nurse Cells Anopheles messeae Fall].

    PubMed

    Artemov, G N; Vasil'eva, O Yu; Stegniy, V N

    2015-07-01

    Polytene chromosomes of ovarian nurse cells of Anopheles mosquitoes form strong contacts with the nuclear envelope. The presence of contacts, their position at nurse cell chromosomes, and their morphological features are species-specific in malaria mosquitoes. It is important to determine the nature of these interspecies differences in the nuclear architecture, both to understand the function of the nucleus and to assess the role of the spatial organization of chromosomes in evolution. Using dot-blot hybridization, we compared DNA sequences of the clone library from the X-chromosome attachment region to the nuclear envelope of ovarian nurse cells of Anopheles messeae with DNA-probes: (1) of the X-chromosome attachment region of An. atroparvus, (2) of the 3R chromosome attachment region ofAn. messeae, and (3) of the chromosome 2 pericentromeric region of An. messeae, without expressed contacts with the nuclear envelope. It has been shown that the chromosome attachment regions have a significantly higher number of homologous DNA sequences as compared with the pericentromeric region of chromosome 2. Sequences that are common for attachment regions are largely potentially able to participate in the formation of chromatin loop domains and to interact with some nucleus frameworks, according to the analysis in the ChrClass program. The obtained results support the important role of DNA in the formation of strong chromosomal attachments to the nuclear envelope in nurse cells of Anopheles mosquitoes.

  12. X and Y chromosome-bearing spermatozoa are equally able to uptake and internalize exogenous DNA by sperm-mediated gene transfer in swine.

    PubMed

    Zaniboni, Andrea; Spinaci, Marcella; Zannoni, Augusta; Bernardini, Chiara; Forni, Monica; Bacci, Maria Laura

    2016-02-01

    Since proteomic differences between male X/Y chromosome-bearing gametes have recently been described, a question has been raised: could these differences be responsible for different behavior between X and Y chromosome-bearing spermatozoa during the binding and internalization of exogenous DNA in the swine species? In order to investigate this hypothesis, our group studied the process of the uptake and internalization of exogenous DNA in X and Y chromosome-bearing sperm sub-populations. No significant differences were found between sperm types in both the uptake and internalization of exogenous DNA. The quantity of internalized exogenous DNA was significantly lower than that of the uptaken DNA. In conclusion, our results showed that X and Y chromosomes-bearing spermatozoa have the same binding capacity and internalization of DNA, and the proteomic differences between them do not seem to interfere with these complex processes.

  13. New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes for radiation molecular cytogenetics

    PubMed Central

    Repin, Mikhail V; Golubev, Pavel I; Repina, Ludmila A

    2009-01-01

    Background The objective of this work is to obtain the correct relative DNA contents of chromosomes in the normal male and female human diploid genomes for the use at FISH analysis of radiation-induced chromosome aberrations. Results The relative DNA contents of chromosomes in the male and female human diploid genomes have been calculated from the publicly available international Human Genome Project data. New sequence-based data on the relative DNA contents of human chromosomes were compared with the data recommended by the International Atomic Energy Agency in 2001. The differences in the values of the relative DNA contents of chromosomes obtained by using different approaches for 15 human chromosomes, mainly for large chromosomes, were below 2%. For the chromosomes 13, 17, 20 and 22 the differences were above 5%. Conclusion New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes were obtained. This approach, based on the genome sequence, can be recommended for the use in radiation molecular cytogenetics. PMID:19500331

  14. DNA replication in the sex chromosomes of the pronghorn and the Rocky Mountain goat.

    PubMed

    Dain, A

    1977-01-01

    The X chromosomes of the male pronghorn (Antilocapra americana) is larger than the "original" type and carries a large segment of late-labelling chromatin. The Y chromosome has a late-labelling segment that appears to duplicate synchronously with that of the X. Both chromosomes have segments that label throughout the period of observation; that the X is about 4.7% of the haploid complement and approaches "original" proportions. The X chromosomes of the Rocky Mountain goat (Oreamnos americanus) appear to be of the "original" type, without marked late-labelling regions, and the Y chromosomes is small. The structure and origin of extra-large sex chromosomes are discussed.

  15. Probabilities of radiation-induced inter- and intrachromosomal exchanges and their dependence on the DNA content of the chromosome

    NASA Technical Reports Server (NTRS)

    Wu, H.; Yang, T. C. (Principal Investigator)

    2001-01-01

    A biophysical model has been developed that is based on the assumptions that an interphase chromosome occupies a spherical territory and that chromosome exchanges are formed by the misrejoining of two DNA double-strand breaks induced within a defined interaction distance. The model is used to explain the relative frequencies of inter- and intrachromosomal exchanges and the relationship between radiation-induced aberrations in individual chromosomes and the DNA content of the chromosome. Although this simple model predicts a higher ratio of inter- to intrachromosomal exchanges for low-LET radiation than for high-LET radiation, as has been suggested by others, we argue that the comparison of the prediction of the model with experimental results is not straightforward. With the model, we also show that the probability of the formation of interchromosomal exchanges is proportional to the "surface area" of the chromosome domain plus a correction term. The correction term is small if the interaction distance is less than 1 microm for both low- and high-LET radiations.

  16. Comparative cytogenetic analysis of the genus symphysodon (discus fishes, cichlidae): chromosomal characteristics of retrotransposons and minor ribosomal DNA.

    PubMed

    Gross, M C; Schneider, C H; Valente, G T; Porto, J I R; Martins, C; Feldberg, E

    2009-01-01

    As part of a genetic screening program for wild Discus fishes, we analyzed karyotypes and cytogenetic characteristics of Symphysodon aequifasciatus, S. discus and S. haraldi using C-banding and fluorescent in situ hybridization (FISH) with the Rex3 retrotransposon and 5S rDNA probes in mitotic and meiotic chromosomes. In the 3 species, diploid chromosome number was 2n = 60 and karyotypes contained predominantly meta-submetacentric chromosomes. C-banding showed blocks of constitutive heterochromatin mainly in the pericentromeric region. Physical mapping of repetitive 5S rDNA sequences and Rex3 retrotransposons in mitotic and meiotic chromosomes showed partial colocalization of constitutive heterochromatin and repetitive elements. Correlations among the accumulation of repetitive elements, heterochromatinization and chromosome rearrangements have been hypothesized to explain the karyotype differentiation in the Symphysodon genus. The role of repetitive elements in adaptation to highly diverse habitats, as well as in the generation of the phenotypic and genetic variability found in wild Discus populations, needs to be further investigated.

  17. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China.

    PubMed

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies. PMID:25699679

  18. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China.

    PubMed

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies.

  19. Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription

    PubMed Central

    Hoffman, Elizabeth A.; McCulley, Andrew; Haarer, Brian; Arnak, Remigiusz

    2015-01-01

    We have previously demonstrated that in Saccharomyces cerevisiae replication, checkpoint inactivation via a mec1 mutation leads to chromosome breakage at replication forks initiated from virtually all origins after transient exposure to hydroxyurea (HU), an inhibitor of ribonucleotide reductase. Here we sought to determine whether all replication forks containing single-stranded DNA gaps have equal probability of producing double-strand breaks (DSBs) when cells attempt to recover from HU exposure. We devised a new methodology, Break-seq, that combines our previously described DSB labeling with next generation sequencing to map chromosome breaks with improved sensitivity and resolution. We show that DSBs preferentially occur at genes transcriptionally induced by HU. Notably, different subsets of the HU-induced genes produced DSBs in MEC1 and mec1 cells as replication forks traversed a greater distance in MEC1 cells than in mec1 cells during recovery from HU. Specifically, while MEC1 cells exhibited chromosome breakage at stress-response transcription factors, mec1 cells predominantly suffered chromosome breakage at transporter genes, many of which are the substrates of those transcription factors. We propose that HU-induced chromosome fragility arises at higher frequency near HU-induced genes as a result of destabilized replication forks encountering transcription factor binding and/or the act of transcription. We further propose that replication inhibitors can induce unscheduled encounters between replication and transcription and give rise to distinct patterns of chromosome fragile sites. PMID:25609572

  20. Cytogenetic and molecular evaluation of centromere-associated DNA sequences from a marsupial (Macropodidae: Macropus rufogriseus) X chromosome.

    PubMed

    Bulazel, Kira; Metcalfe, Cushla; Ferreri, Gianni C; Yu, Jingwei; Eldridge, Mark D B; O'Neill, Rachel J

    2006-02-01

    The constitution of the centromeric portions of the sex chromosomes of the red-necked wallaby, Macropus rufogriseus (family Macropodidae, subfamily Macropodinae), was investigated to develop an overview of the sequence composition of centromeres in a marsupial genome that harbors large amounts of centric and pericentric heterochromatin. The large, C-band-positive centromeric region of the X chromosome was microdissected and the isolated DNA was microcloned. Further sequence and cytogenetic analyses of three representative clones show that all chromosomes in this species carry a 178-bp satellite sequence containing a CENP-B DNA binding domain (CENP-B box) shown herein to selectively bind marsupial CENP-B protein. Two other repeats isolated in this study localize specifically to the sex chromosomes yet differ in copy number and intrachromosomal distribution. Immunocytohistochemistry assays with anti-CENP-E, anti-CREST, anti-CENP-B, and anti-trimethyl-H3K9 antibodies defined a restricted point localization of the outer kinetochore at the functional centromere within an enlarged pericentric and heterochromatic region. The distribution of these repeated sequences within the karyotype of this species, coupled with the apparent high copy number of these sequences, indicates a capacity for retention of large amounts of centromere-associated DNA in the genome of M. rufogriseus.

  1. In situ chromosomal localization of rDNA sites in "Safed Musli" Chlorophytum ker-gawl and their physical measurement by fiber FISH.

    PubMed

    Lavania, U C; Basu, S; Srivastava, S; Mukai, Y; Lavania, S

    2005-01-01

    Fluorescence In Situ Hybridization (FISH) technique has been applied on somatic chromosomes and extended DNA fibers in the medicinally important species of Chlorophytum to elucidate physical localization and measurement of the rDNA sites using two rRNA multigene families homologous to 45S and 5S rDNA. The two species of Chlorophytum, namely C. borivillianum and C. comosum, both with 2n = 28, reveal diversity for copy number and localization of rDNA sites. C. borivillianum is comprised of five 45S-rDNA sites:one each in the secondary constriction region of chromosomes 7, 8, 9; one in the subtelomeric region of the short arm of chromosome 2 and the telomeric region of the short arm of chromosome 12; and one 5S-rDNA site in the subtelomeric region of the long arm of chromosome 1. In C. comosum, there are three 45S-rDNA sites (one each in the short arm of chromosomes 12, 13, and 14) and two 5S-rDNA sites (in the secondary constriction regions of chromosomes 2 and 13). Fiber FISH analysis conducted on extended DNA fibers revealed variation in the size of continuous tandem strings for the two r-DNA families. Taking the standard value of native B DNA equivalent to 3.27 kb for 1 mum, it was estimated that the physical size of continuous DNA strings is of the order of approximately 90 kb, 180 kb, and 300 kb for 45S-rDNA and of the order of 60 kb, 150 kb for 5S-rDNA in C. comosum, grossly in correspondence to their respective physical sizes at metaphase.

  2. Nondisjunction of a Single Chromosome Leads to Breakage and Activation of DNA Damage Checkpoint in G2

    PubMed Central

    Quevedo, Oliver; García-Luis, Jonay; Matos-Perdomo, Emiliano; Aragón, Luis; Machín, Félix

    2012-01-01

    The resolution of chromosomes during anaphase is a key step in mitosis. Failure to disjoin chromatids compromises the fidelity of chromosome inheritance and generates aneuploidy and chromosome rearrangements, conditions linked to cancer development. Inactivation of topoisomerase II, condensin, or separase leads to gross chromosome nondisjunction. However, the fate of cells when one or a few chromosomes fail to separate has not been determined. Here, we describe a genetic system to induce mitotic progression in the presence of nondisjunction in yeast chromosome XII right arm (cXIIr), which allows the characterisation of the cellular fate of the progeny. Surprisingly, we find that the execution of karyokinesis and cytokinesis is timely and produces severing of cXIIr on or near the repetitive ribosomal gene array. Consequently, one end of the broken chromatid finishes up in each of the new daughter cells, generating a novel type of one-ended double-strand break. Importantly, both daughter cells enter a new cycle and the damage is not detected until the next G2, when cells arrest in a Rad9-dependent manner. Cytologically, we observed the accumulation of damage foci containing RPA/Rad52 proteins but failed to detect Mre11, indicating that cells attempt to repair both chromosome arms through a MRX-independent recombinational pathway. Finally, we analysed several surviving colonies arising after just one cell cycle with cXIIr nondisjunction. We found that aberrant forms of the chromosome were recovered, especially when RAD52 was deleted. Our results demonstrate that, in yeast cells, the Rad9-DNA damage checkpoint plays an important role responding to compromised genome integrity caused by mitotic nondisjunction. PMID:22363215

  3. Molecular Evolution of the Escherichia Coli Chromosome. II. Clonal Segments

    PubMed Central

    Milkman, R.; Stoltzfus, A.

    1988-01-01

    Remarkable sequence similarities in the trp region among Escherichia coli strains of diverse natural origins imply the existence of worldwide clones of very recent origin. This in turn implies a low rate of fixation of new universally favorable alleles, which carry adjacent stretches of chromosome to high frequency. These clonal segments begin as entire chromosomes; recombination shortens them progressively by substituting less closely related homologous DNA. The rate of this recombination, comprising the introduction of a homologous chromosomal fragment to a cell and the replacement of part of the original chromosome, is estimated from observations. PMID:3058547

  4. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    PubMed

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  5. A DNA Fragment Mapped within the Submicroscopic Deletion of Ph1, a Chromosome Pairing Regulator Gene in Polyploid Wheat

    PubMed Central

    Gill, K. S.; Gill, B. S.

    1991-01-01

    Bread wheat is an allohexaploid consisting of three genetically related (homoeologous) genomes. The homoeologous chromosomes are capable of pairing but strict homologous pairing is observed at metaphase 1. The diploid-like pairing is regulated predominantly by Ph1, a gene mapped on long arm of chromosome 5B. We report direct evidence that a mutant of the gene (ph1b) arose from a submicroscopic deletion. A probe (XksuS1-5) detects the same missing fragment in two independent mutants ph1b and ph1c and a higher intensity fragment in a duplication of the Ph1 gene. It is likely that XksuS1-5 lies adjacent to Ph1 on the same chromosome fragment that is deleted in ph1b and ph1c. XksuS1-5 can be used to tag Ph1 gene to facilitate incorporation of genetic material from homoeologous genomes of the Triticeae. It may also be a useful marker in cloning Ph1 gene by chromosome walking. PMID:1936962

  6. RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity.

    PubMed

    Yard, Brian D; Reilly, Nicole M; Bedenbaugh, Michael K; Pittman, Douglas L

    2016-06-01

    The RAD51 family is integral for homologous recombination (HR) mediated DNA repair and maintaining chromosome integrity. RAD51D, the fourth member of the family, is a known ovarian cancer susceptibility gene and required for the repair of interstrand crosslink DNA damage and preserving chromosomal stability. In this report, we describe the RNF138 E3 ubiquitin ligase that interacts with and ubiquitinates the RAD51D HR protein. RNF138 is a member of an E3 ligase family that contains an amino-terminal RING finger domain and a putative carboxyl-terminal ubiquitin interaction motif. In mammalian cells, depletion of RNF138 increased the stability of the RAD51D protein, suggesting that RNF138 governs ubiquitin-proteasome-mediated degradation of RAD51D. However, RNF138 depletion conferred sensitivity to DNA damaging agents, reduced RAD51 focus formation, and increased chromosomal instability. Site-specific mutagenesis of the RNF138 RING finger domain demonstrated that it was necessary for RAD51D ubiquitination. Presence of RNF138 also enhanced the interaction between RAD51D and a known interacting RAD51 family member XRCC2 in a yeast three-hybrid assay. Therefore, RNF138 is a newly identified regulatory component of the HR mediated DNA repair pathway that has implications toward understanding how ubiquitination modifies the functions of the RAD51 paralog protein complex.

  7. Global Patterns in Human Mitochondrial DNA and Y-Chromosome Variation Caused by Spatial Instability of the Local Cultural Processes

    PubMed Central

    Kumar, Vikrant; Langstieh, Banrida T; Madhavi, Komal V; Naidu, Vegi M; Singh, Hardeep Pal; Biswas, Silpak; Thangaraj, Kumarasamy; Singh, Lalji; Reddy, B. Mohan

    2006-01-01

    Because of the widespread phenomenon of patrilocality, it is hypothesized that Y-chromosome variants tend to be more localized geographically than those of mitochondrial DNA (mtDNA). Empirical evidence confirmatory to this hypothesis was subsequently provided among certain patrilocal and matrilocal groups of Thailand, which conforms to the isolation by distance mode of gene diffusion. However, we expect intuitively that the patterns of genetic variability may not be consistent with the above hypothesis among populations with different social norms governing the institution of marriage, particularly among those that adhere to strict endogamy rules. We test the universality of this hypothesis by analyzing Y-chromosome and mtDNA data in three different sets of Indian populations that follow endogamy rules to varying degrees. Our analysis of the Indian patrilocal and the matrilocal groups is not confirmatory to the sex-specific variation observed among the tribes of Thailand. Our results indicate spatial instability of the impact of different cultural processes on the genetic variability, resulting in the lack of universality of the hypothesized pattern of greater Y-chromosome variation when compared to that of mtDNA among the patrilocal populations. PMID:16617372

  8. Genetic Diversity and Differentiation in Urban and Indigenous Populations of Mexico: Patterns of Mitochondrial DNA and Y-Chromosome Lineages.

    PubMed

    González-Sobrino, Blanca Z; Pintado-Cortina, Ana P; Sebastián-Medina, Leticia; Morales-Mandujano, Fabiola; Contreras, Alejandra V; Aguilar, Yasnaya E; Chávez-Benavides, Juan; Carrillo-Rodríguez, Aurelio; Silva-Zolezzi, Irma; Medrano-González, Luis

    2016-01-01

    Aside from the admixture between indigenous people and people from overseas, populations in Mexico changed drastically after the Spanish conquest of the sixteenth century, forming an intricate history that has been underutilized in understanding the genetic population structure of Mexicans. To infer historical processes of isolation, dispersal, and assimilation, we examined the phylogeography of mitochondrial (mt) DNA and Y-chromosome lineages in 3,026 individuals from 10 urban and nine indigenous populations by identifying single nucleotide polymorphisms. A geographic array with a predominance of Amerindian lineages was observed for mtDNA, with northern indigenous populations being divergent from the central and southern indigenous populations; urban populations showed low differentiation with isolation by distance. Y-chromosome variation distinguished urban and indigenous populations through the Amerindian haplogroup Q frequency. The MtDNA and the Y-chromosome together primarily distinguished urban and indigenous populations, with different geographic arrays for both. Gene flow across geographical distance and between the urban and indigenous realms appears to have altered the pre-Hispanic phylogeography in central and southern Mexico, mainly by displacement of women, while maintaining the indigenous isolation in the north, southeast, and Zapotec regions. Most Amerindian mtDNA diversity currently occurs in urban populations and appears to be reduced among indigenous people. PMID:27050033

  9. Genetic Diversity and Differentiation in Urban and Indigenous Populations of Mexico: Patterns of Mitochondrial DNA and Y-Chromosome Lineages.

    PubMed

    González-Sobrino, Blanca Z; Pintado-Cortina, Ana P; Sebastián-Medina, Leticia; Morales-Mandujano, Fabiola; Contreras, Alejandra V; Aguilar, Yasnaya E; Chávez-Benavides, Juan; Carrillo-Rodríguez, Aurelio; Silva-Zolezzi, Irma; Medrano-González, Luis

    2016-01-01

    Aside from the admixture between indigenous people and people from overseas, populations in Mexico changed drastically after the Spanish conquest of the sixteenth century, forming an intricate history that has been underutilized in understanding the genetic population structure of Mexicans. To infer historical processes of isolation, dispersal, and assimilation, we examined the phylogeography of mitochondrial (mt) DNA and Y-chromosome lineages in 3,026 individuals from 10 urban and nine indigenous populations by identifying single nucleotide polymorphisms. A geographic array with a predominance of Amerindian lineages was observed for mtDNA, with northern indigenous populations being divergent from the central and southern indigenous populations; urban populations showed low differentiation with isolation by distance. Y-chromosome variation distinguished urban and indigenous populations through the Amerindian haplogroup Q frequency. The MtDNA and the Y-chromosome together primarily distinguished urban and indigenous populations, with different geographic arrays for both. Gene flow across geographical distance and between the urban and indigenous realms appears to have altered the pre-Hispanic phylogeography in central and southern Mexico, mainly by displacement of women, while maintaining the indigenous isolation in the north, southeast, and Zapotec regions. Most Amerindian mtDNA diversity currently occurs in urban populations and appears to be reduced among indigenous people.

  10. Isolation of amplified DNA sequences from IMR-32 human neuroblastoma cells: facilitation by fluorescence-activated flow sorting of metaphase chromosomes.

    PubMed Central

    Kanda, N; Schreck, R; Alt, F; Bruns, G; Baltimore, D; Latt, S

    1983-01-01

    Human neuroblastoma IMR-32 cells have large homogeneously staining regions (HSRs), primarily in the short arms of chromosome 1. We have constructed a recombinant phage library that is enriched for DNA present in the HSR of this chromosome by using fluorescence-activated flow sorting for initial chromosome purification. Eleven distinct cloned DNA segments were identified that showed significantly greater hybridization to IMR-32 genomic DNA, detected by Southern blotting, than to normal human genomic DNA. These sequences have also been localized to the HSR of chromosome 1 by in situ hybridization. Based on an approximate 50-fold sequence amplification for each cloned segment and a total HSR size of 150,000 kilobases, the amplified unit in the HSR is estimated to be 3,000 kilobases. Sequences homologous to all cloned HSR DNA segments were mapped to human chromosome 2 by using human-mouse hybrid cells. Further work using in situ hybridization demonstrated that cloned HSR segments were localized in the short arm of chromosome 2 in both normal and IMR-32 cells. Thus, the amplification of these sequences in IMR-32 cells may have involved transposition from chromosome 2 to chromosome I. Images PMID:6575396

  11. Rearrangement of both alleles of human chromosome 8 in cells, one of them as a result of papillomavirus DNA integration

    SciTech Connect

    Lazo, P.A.

    1988-01-05

    Integration of papillomavirus in the genome of the host cell has been found associated with malignant cases of cervical carcinoma. To determine what role viral integration plays as part of the pathogenic mechanism resulting in a cancer cell, the structure of integrated papillomavirus DNA (human papillomavirus DNA 18) segments and its cellular flanking sequences in HeLa cells as well as the corresponding normal human allele have been characterized. All integrated viral DNA segments have the same human DNA sequences in their 5' flank. The use of human sequence flanking the viral DNA as a probe detected the presence of four different forms of this human DNA region based on restriction fragment length polymorphism. Three of these forms can be linked to integrated viral DNA from human papillomavirus 18. The remaining form could not be linked to viral DNA and did not have a germline pattern in its 5'-end suggesting that it was also structurally altered. None of the forms of the human sequence present in HeLa cells has the complete structure of the germline normal allele characterized in DNA from placenta and human fibroblasts IMR-90. This observation suggests that HeLa cells carry a structural alteration in both alleles of the same locus, one of which was caused by integration of papillomavirus DNA. This locus is located on a chromosome fragile site. These rearrangements will result in a homozygous situation which is interpreted as affecting a recessive phenotype which might be involved in some aspect of tumorigenesis.

  12. The R-Operon: A Model of Repetitive DNA-Organized Transcriptional Compartmentation of Eukaryotic Chromosomes for Coordinated Gene Expression

    PubMed Central

    Tang, Shao-Jun

    2016-01-01

    In eukaryotic genomes, it is essential to coordinate the activity of genes that function together to fulfill the same biological processes. Genomic organization likely plays a key role in coordinating transcription of different genes. However, little is known about how co-regulated genes are organized in the cell nucleus and how the chromosomal organization facilitates the co-regulation of different genes. I propose that eukaryotic genomes are organized into repeat assembly (RA)-based structural domains (“R-operons”) in the nuclear space. R-operons result from the interaction of homologous DNA repeats. In an R-operon, genes in different loci of the linear genome are brought into spatial vicinity and co-regulated by the same pool of transcription factors. This type of large-scale chromosomal organization may provide a mechanism for functional compartmentation of chromosomes to facilitate the transcriptional coordination of gene expression. PMID:27110825

  13. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE PAGES

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; Wyrobek, Andrew J.

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  14. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    SciTech Connect

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; Wyrobek, Andrew J.

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widely used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.

  15. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    PubMed Central

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; Wyrobek, Andrew J.

    2015-01-01

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widely used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. These findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus. PMID:25567288

  16. Cysteine residues in the zinc finger and amino acids adjacent to the finger are necessary for DNA binding by the LAC9 regulatory protein of Kluyveromyces lactis.

    PubMed Central

    Witte, M M; Dickson, R C

    1988-01-01

    LAC9 is a positive regulatory protein that controls transcription of the lactose-galactose regulon in Kluyveromyces lactis. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae. Both proteins have a single "zinc finger" which plays a role in DNA binding. We previously hypothesized (L. V. Wray, M. M. Witte, R. C. Dickson, and M. I. Riley, Mol. Cell. Biol. 7:1111-1121, 1987) that the DNA-binding domain of the LAC9 protein consisted of the zinc finger as well as a region of amino acids on the carboxyl-terminal side of the zinc finger. In this study we used oligonucleotide-directed mutagenesis to introduce 13 single-amino-acid changes into the proposed DNA-binding domain of the LAC9 protein. Variant LAC9 proteins carrying an amino acid substitution in any one of the four highly conserved Cys residues of the zinc finger had reduced DNA-binding activity, suggesting that each Cys is necessary for DNA binding. Three of four variant LAC9 proteins with amino acid substitutions located on the carboxyl-terminal side of the zinc finger had reduced DNA-binding activity. These results support our hypothesis that the DNA-binding domain of the LAC9 protein is composed of the zinc finger and the adjacent region on the carboxyl side of the zinc finger, a region that has the potential to form an alpha-helix. Finally, LAC9 proteins containing His residues substituted for the conserved Cys residues also had reduced DNA-binding activity, indicating that His residues are not equivalent to Cys residues, as had been previously thought. Images PMID:3146691

  17. Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial and Y-Chromosomal DNA Analyses

    PubMed Central

    Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka

    2015-01-01

    Background Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Results Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). Conclusions The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle. PMID:25992976

  18. The human CYP2F gene subfamily: Identification of a cDNA encoding a new cytochrome P450, cDNA-directed expression, and chromosome mapping

    SciTech Connect

    Nhamburo, P.T.; Kimura, Shioko; McBride, O.W.; Kozak, C.A.; Gelboin, H.V.; Gonzalez, F.J. )

    1990-06-12

    A cDNA coding for a P450, designated IIF1, was isolated from a human lung {lambda}gt11 library by screening with a human IIC9 cDNA probe. The cDNA-encoded IIF1 protein had 491 amino acids and a calculated molecular weight of 55,507. IIF1 cDNA, expressed by using a vaccinia virus vector, produced a cytochrome with a {lambda}{sub max} of 454 nm when reduced and complexed with carbon monoxide. This enzyme was able to dealkylate ethoxycoumarin, propoxycoumarin, and pentoxyresorufin but possessed no activity toward ethoxyresorufin and only trace dearylation activity toward benzyloxyresorufin. A variant cDNA, designated IIF1v, was isolated that was identical with IIF1 except for the loss of two segments of 161 and 388 bp within the cDNA coding region. Two mRNAs, consistent with the predicted size of the IIF1 and IIF1v transcripts, were found at very low abundance in lung specimens by Northern blot analysis. A 2-kb transcript, hybridizing with the human IIF1, was also detected as an abundant mRNA in rat lung. The CYP2F gene subfamily was localized to human chromosome 19 and mouse chromosome 7. On the basis of southern blotting analysis with multiple restriction enzymes, the authors conclude that the CYP2F1 gene is flanked by a second highly similar gene.

  19. Chromosomal assignment of human DNA fingerprint sequences by simultaneous hybridization to arbitrarily primed PCR products from human/rodent monochromosome cell hybrids

    SciTech Connect

    Yasuda, Jun; Sekiya, Takao; Navarro, J.M.

    1996-05-15

    We have developed a technique for the simultaneous chromosomal assignment of multiple human DNA sequences from DNA fingerprints obtained by the arbitrarily primed polymerase chain reaction (AP-PCR). Radioactively labeled human AP-PCR products are hybridized to DNA fingerprints generated with the same arbitrary primer from human/rodent monochromosome cell hybrids after electroblotting to a nylong membrane. Human-specific hybridization bands in the human/rodent fingerprints unambiguously determine their chromosome of origin. We named this method simultaneous hybridization of arbitrarily primed PCR DNA fingerprinting products (SHARP). Using this approach, we determined the chromosomal origins of most major bands of human AP-PCR fingerprints obtained with two arbitrary primers. Altogether, the chromosomal localization of near 50 DNA fragments, comprehensive of all human chromosomes except chromosomes 21 and Y, was achieved in this simple manner. Chromosome assignment of fingerprint bands is essential for molecular karyotyping of cancer by AP-PCR DNA fingerprinting. The SHARP method provides a convenient and powerful tool for this purpose. 23 refs., 3 figs., 2 tabs.

  20. Isolation of cDNA, chromosome mapping, and expression of the human TBP-like protein.

    PubMed

    Ohbayashi, T; Kishimoto, T; Makino, Y; Shimada, M; Nakadai, T; Aoki, T; Kawata, T; Niwa, S; Tamura, T

    1999-02-01

    TBP is an essential factor for eukaryotic transcription. In this study, we identified a human cDNA encoding 21-kDa TBP-like protein (TLP). The TLP ORF, carrying 186 amino acids, covered the entire 180 amino acids of the C-terminal conserved domain of human TBP with 39% identity and 76% similarity. FISH determined that human tlp gene was located at chromosome 6 region q22.1-22.3. Northern blot analysis demonstrated that TLP mRNAs were expressed in various human tissues ubiquitously. We found that the TLP proteins exist in multiple mammalian cells and chicken cells. Although the Drosophila TBP-related factor (TRF) is a neurogenesis-related transcription factor, expression of TLP was nearly constant throughout the neural differentiation of P19 cells. Unlike TRF, TLP did not bind to the TATA-box nor direct transcription initiation in vitro. Similarity between TRF and TLP was considerably lower (35 in alignment score) than that between Drosophila TBP and human TBP (88 in alignment score). Multiple amino acids critical for the TBP function were deleted or substituted in TLP. We suggest that TLP is not a bona fide vertebrate counterpart nor a direct descendant of TRF.

  1. Population structure in contemporary Sweden--a Y-chromosomal and mitochondrial DNA analysis.

    PubMed

    Lappalainen, T; Hannelius, U; Salmela, E; von Döbeln, U; Lindgren, C M; Huoponen, K; Savontaus, M-L; Kere, J; Lahermo, P

    2009-01-01

    A population sample representing the current Swedish population was analysed for maternally and paternally inherited markers with the aim of characterizing genetic variation and population structure. The sample set of 820 females and 883 males were extracted and amplified from Guthrie cards of all the children born in Sweden during one week in 2003. 14 Y-chromosomal and 34 mitochondrial DNA SNPs were genotyped. The haplogroup frequencies of the counties closest to Finland, Norway, Denmark and the Saami region in the north exhibited similarities to the neighbouring populations, resulting from the formation of the Swedish nation during the past millennium. Moreover, the recent immigration waves of the 20th century are visible in haplogroup frequencies, and have led to increased diversity and divergence of the major cities. Signs of genetic drift can be detected in several counties in northern as well as in southern Sweden. With the exception of the most drifted subpopulations, the population structure in Sweden appears mostly clinal. In conclusion, our study yielded valuable information of the structure of the Swedish population, and demonstrated the usefulness of biobanks as a source of population genetic research. Our sampling strategy, nonselective on the current population rather than stratified according to ancestry, is informative for capturing the contemporary variation in the increasingly panmictic populations of the world.

  2. Evolution and stability of chromosomal DNA coamplified with the CAD gene

    SciTech Connect

    Sato, I.; Groves, R.; Rolfe, M.; Stark, G.R.; Giulotto, E.

    1989-06-01

    The authors have compared clones of Syrian hamster cells selected for the first amplification of the CAD gene with clones selected for further amplification. The large domain amplified initially was not reamplified as an intact unit. Instead, subregions were reamplified preferentially, and parts of the initial array were often lost. These events reduced the average amount of coamplified DNA accompanying each copy of the selected gene. The degree of amplification was small in the first step (about three extra copies of CAD per cell), but second-step amplifications to a high copy number (up to 60 extra copies per cell) occurred frequently. After several separate steps of amplification, high condensed arrays that brought many CAD genes close together were formed. In striking contrast to the stability of these highly amplified arrays, the low-copy chromosomal arrays formed early were quite unstable and were often lost completely within 1 or 2 months of growth without selection. The results suggest that different mechanisms may be involved in the first step of amplification and in the later evolution of an already amplified array.

  3. Potential use of buccal smears for rapid diagnosis of autosomal trisomy or chromosomal sex in newborn infants using DNA probes

    SciTech Connect

    Harris, C.; Clark, K.; Lazarski, K.; Wilkerson, C.; Meisner, L. |

    1994-12-01

    Buccal smears from 3 women and 1 man were probed with alpha satellite DNA probes for chromosomes 8, 18, X, and Y. Buccal smears were also collected from an adolescent phenotypic female with uterine agenesis, as well as from newborn infants with suspected trisomy 18 and trisomy 21. The clinical cases were confirmed with conventional cytogenetic studies of peripheral lymphocytes. Overall probe efficiency at detecting expected chromosome number in interphase cells was found to be 71% {+-} 6.8%. Higher than expected n-1 signal numbers may be due to karyopyknotic intermediate epithelial cells present in all collected samples. Overall probe efficiency was found to be consistent using alpha satellite and cosmid probes, both of which accurately reflected the modal copy number of the target chromosomes. False trisomy was less than 1%. This study suggests DNA probes can be used in buccal smears for rapid diagnosis of trisomies and chromosomal sex in newborns, but because of high rates of false hydropoploid signals, probed buccal smear specimens may not be accurate at diagnosing mosaicism. 9 refs., 2 figs., 1 tab.

  4. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes)

    PubMed Central

    Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Villa, Mateo Andres; de Oliveira, Ezequiel Aguiar; Tanomtong, Alongklod; Yano, Cassia Fernanda; Supiwong, Weerayuth; Chaveerach, Arunrat

    2015-01-01

    Channid fishes, commonly referred to as “snakeheads”, are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes. PMID:26067030

  5. Chromosome analysis and rDNA FISH in the stag beetle Dorcus parallelipipedus L. (Coleoptera: Scarabaeoidea: Lucanidae).

    PubMed

    Colomba, M S; Vitturi, R; Zunino, M

    2000-01-01

    In the present work the chromosome complement (2n = 18; 8AA + XY) of the stag beetle Dorcus parallelipipedus L. (Scarabaeoidea: Lucanidae) is analyzed using conventional Giemsa staining, banding techniques and ribosomal fluorescent in situ hybridization (rDNA FISH). rDNA FISH remains the unique tool for providing a clear-cut identification of Nucleolar Organizer Regions (NORs) when conventional banding methods such as silver- and CMA3-staining proved to be inadequate. The dull, homogeneous CMA3 fluorescence of all chromosomes indicates the absence of markedly GC rich compartmentalized regions in D. parallelipipedus genome. Silver impregnation inadequacy in detecting NOR regions is to be sought in the unusual extensive silver stainability of heterochromatic material which, on the contrary of what stated for vertebrates, seems to be a common feature in Scarabaeoidea species. PMID:11433969

  6. Demarcation of informative chromosomes in tropical sweet corn inbred lines using microsatellite DNA markers

    PubMed Central

    Kashiani, Pedram; Saleh, Ghizan; Panandam, Jothi Malar; Abdullah, Nur Ashikin Psyquay; Selamat, Ahmad

    2012-01-01

    A study of genetic variation among 10 pairs of chromosomes extracted from 13 tropical sweet corn inbred lines, using 99 microsatellite markers, revealed a wide range of genetic diversity. Allelic richness and the number of effective alleles per chromosome ranged from 2.78 to 4.33 and 1.96 to 3.47, respectively, with respective mean values of 3.62 and 2.73. According to the Shannon’s information index (I) and Nei’s gene diversity coefficient (Nei), Chromosome 10 was the most informative chromosome (I = 1.311 and Nei = 0.703), while Chromosome 2 possessed the least (I = 0.762 and Nei = 0.456). Based on linkage disequilibrium (LD) measurements for loci less than 50 cM apart on the same chromosome, all loci on Chromosomes 1, 6 and 7 were in equilibrium. Even so, there was a high proportion of genetic variation in Chromosomes 4, 5, 8, 9 and 10, thereby revealing their appropriateness for use in the genetic diversity investigations among tropical sweet corn lines. Chromosome 4, with the highest number of loci in linkage disequilibrium, was considered the best for marker-phenotype association and QTL mapping, followed by Chromosomes 5, 8, 9 and 10. PMID:23055801

  7. Demarcation of informative chromosomes in tropical sweet corn inbred lines using microsatellite DNA markers.

    PubMed

    Kashiani, Pedram; Saleh, Ghizan; Panandam, Jothi Malar; Abdullah, Nur Ashikin Psyquay; Selamat, Ahmad

    2012-07-01

    A study of genetic variation among 10 pairs of chromosomes extracted from 13 tropical sweet corn inbred lines, using 99 microsatellite markers, revealed a wide range of genetic diversity. Allelic richness and the number of effective alleles per chromosome ranged from 2.78 to 4.33 and 1.96 to 3.47, respectively, with respective mean values of 3.62 and 2.73. According to the Shannon's information index (I) and Nei's gene diversity coefficient (Nei), Chromosome 10 was the most informative chromosome (I = 1.311 and Nei = 0.703), while Chromosome 2 possessed the least (I = 0.762 and Nei = 0.456). Based on linkage disequilibrium (LD) measurements for loci less than 50 cM apart on the same chromosome, all loci on Chromosomes 1, 6 and 7 were in equilibrium. Even so, there was a high proportion of genetic variation in Chromosomes 4, 5, 8, 9 and 10, thereby revealing their appropriateness for use in the genetic diversity investigations among tropical sweet corn lines. Chromosome 4, with the highest number of loci in linkage disequilibrium, was considered the best for marker-phenotype association and QTL mapping, followed by Chromosomes 5, 8, 9 and 10. PMID:23055801

  8. Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Escherichia coli. Role of acid DNase

    SciTech Connect

    Rozenberg-Arska, M.; van Strijp, J.A.; Hoekstra, W.P.; Verhoef, J.

    1984-05-01

    Phagocytosis and killing by polymorphonuclear and mononuclear leukocytes are important host resistance factors against invading microorganisms. Evidence showing that killing is rapidly followed by degradation of bacterial components is limited. Therefore, we studied the fate of Escherichia coli DNA following phagocytosis of E. coli by polymorphonuclear and mononuclear leukocytes. (/sup 3/H)Thymidine-labeled, unencapsulated E. coli PC2166 and E. coli 048K1 were incubated in serum, washed, and added to leukocytes. Uptake and killing of the bacteria and degradation of DNA were measured. Although phagocytosis and killing by mononuclear leukocytes was less efficient than that by polymorphonuclear leukocytes, only mononuclear leukocytes were able to degrade E. coli PC2166 DNA. Within 2 h, 60% of the radioactivity added to mononuclear leukocytes was released into the supernate, of which 40% was acid soluble. DNA of E. coli 048K1 was not degraded. To further analyze the capacity of mononuclear leukocytes to degrade E. coli DNA, chromosomal and plasmid DNA was isolated from ingested bacteria and subjected to agarose gel-electrophoresis. Only chromosomal DNA was degraded after phagocytosis. Plasmid DNA of E. coli carrying a gene coding for ampicillin resistance remained intact for a 2-h period after ingestion, and was still able to transform recipient E. coli cells after this period. Although we observed no DNA degradation during phagocytosis by polymorphonuclear leukocytes, lysates of both polymorphonuclear and mononuclear leukocytes contained acid-DNase activity with a pH optimum of 4.9. However, the DNase activity of mononuclear leukocytes was 20 times higher than that of polymorphonuclear leukocytes. No difference was observed between DNase activity from polymorphonuclear and mononuclear leukocytes from a chronic granulomatous disease patient with DNase activity from control polymorphonuclear and mononuclear leukocytes.

  9. Multicolor fluorescence in situ hybridization with centromeric DNA probes as a new approach to distinguish chromosome breakage from aneuploidy in interphase cells and micronuclei

    SciTech Connect

    Eastmond, D.A.; Rupa, D.S.; Chen, H.W.; Hasegawa, L.

    1993-12-31

    Chromosomal abnormalities are believed to contribute significantly to human reproductive failure, carcinogenesis and other pathophysiological conditions. For example, approximately 15% of recognized pregnancies terminate in spontaneous abortion, and of these approximately 30% have been shown to be chromosomally abnormal. The contribution of chromosomal abnormalities to early embryonic and fetal death appears to decrease with gestational age, suggesting that as many as 67% of the aborted embryos in early embryonic deaths are chromosomally abnormal. Furthermore, clinically significant chromosomal abnormalities can also be found to be present in approximately 0.58 to 0.67% of live births. These figures indicate that within a given year, hundreds of thousands of chromosomally abnormal babies will be born throughout the world and additional millions of chromosomally abnormal embryos will have been spontaneously aborted. For the past several years, our research has focused on utilizing new molecular cytogenetic techniques to develop assays for detecting aneuploidy-inducing agents in mammalian cells. One approach that we have sucessfully employed involves the use of fluorescence in situ hybridization with chromosome-specific DNA probes to determine the number of copies of a representative chromosome present within the nucleus following chemical exposure. DNA sequences (probes) which hybridize to blocks of repetitive centromeric DNA on specific chromosomes have been developed for most of the human chromosomes. In situ hybridization with these probes results in the staining of a compact chromosomal region which can be easily detected in interphase nuclei. The presence of 3 (or more) hybridization domains in an interphase nucleus indicates the presence of three centromeric regions and has been presumed to indicate that three copies of the entire chromosome were present in the nucleus.

  10. Restriction maps of the regions coding for methicillin and tobramycin resistances on chromosomal DNA in methicillin-resistant staphylococci.

    PubMed Central

    Ubukata, K; Nonoguchi, R; Matsuhashi, M; Song, M D; Konno, M

    1989-01-01

    Chromosomal BamHI DNA fragments containing both the mecA gene encoding the penicillin-binding protein responsible for methicillin resistance and the aadD gene encoding 4',4"-adenylyltransferase responsible for tobramycin resistance were cloned from three methicillin- and tobramycin-resistant strains of Staphylococcus aureus and one strain of Staphylococcus epidermidis. Physical maps of the fragments were similar, suggesting their unique origin. Images PMID:2817861

  11. ParA2, a Vibrio cholerae chromosome partitioning protein, forms left-handed helical filaments on DNA.

    PubMed

    Hui, Monica P; Galkin, Vitold E; Yu, Xiong; Stasiak, Alicja Z; Stasiak, Andrzej; Waldor, Matthew K; Egelman, Edward H

    2010-03-01

    Most bacterial chromosomes contain homologs of plasmid partitioning (par) loci. These loci encode ATPases called ParA that are thought to contribute to the mechanical force required for chromosome and plasmid segregation. In Vibrio cholerae, the chromosome II (chrII) par locus is essential for chrII segregation. Here, we found that purified ParA2 had ATPase activities comparable to other ParA homologs, but, unlike many other ParA homologs, did not form high molecular weight complexes in the presence of ATP alone. Instead, formation of high molecular weight ParA2 polymers required DNA. Electron microscopy and three-dimensional reconstruction revealed that ParA2 formed bipolar helical filaments on double-stranded DNA in a sequence-independent manner. These filaments had a distinct change in pitch when ParA2 was polymerized in the presence of ATP versus in the absence of a nucleotide cofactor. Fitting a crystal structure of a ParA protein into our filament reconstruction showed how a dimer of ParA2 binds the DNA. The filaments formed with ATP are left-handed, but surprisingly these filaments exert no topological changes on the right-handed B-DNA to which they are bound. The stoichiometry of binding is one dimer for every eight base pairs, and this determines the geometry of the ParA2 filaments with 4.4 dimers per 120 A pitch left-handed turn. Our findings will be critical for understanding how ParA proteins function in plasmid and chromosome segregation.

  12. Genomic organization and developmental fate of adjacent repeated sequences in a foldback DNA clone of Tetrahymena thermophila

    SciTech Connect

    Tschunko, A.H.; Loechel, R.H.; McLaren, N.C.; Allen, S.L.

    1987-11-01

    DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. Inverted repeated sequences were present in one clone. This clone, pTtFBl, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. DNA was labeled with (/sup 33/P)-labeled dATP. The authors found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat are totally eliminated during macronuclear development-and contain open reading frames. The significance of retained inverted repeats to the process of elimination is discussed.

  13. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    PubMed Central

    Leclerc, Xavier; Danos, Olivier; Scherman, Daniel; Kichler, Antoine

    2009-01-01

    Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments. PMID:19379497

  14. Genetic relationships of Asians and Northern Europeans, revealed by Y-chromosomal DNA analysis.

    PubMed Central

    Zerjal, T; Dashnyam, B; Pandya, A; Kayser, M; Roewer, L; Santos, F R; Schiefenhövel, W; Fretwell, N; Jobling, M A; Harihara, S; Shimizu, K; Semjidmaa, D; Sajantila, A; Salo, P; Crawford, M H; Ginter, E K; Evgrafov, O V; Tyler-Smith, C

    1997-01-01

    We have identified a new T-->C transition on the human Y chromosome. C-allele chromosomes have been found only in a subset of the populations from Asia and northern Europe and reach their highest frequencies in Yakut, Buryats, and Finns. Examination of the microsatellite haplotypes of the C-allele chromosomes suggests that the mutation occurred recently in Asia. The Y chromosome thus provides both information about population relationships in Asia and evidence for a substantial paternal genetic contribution of Asians to northern European populations such as the Finns. Images Figure 1 Figure 3 Figure 4 PMID:9150165

  15. Chromosomal mapping of repetitive DNAs in Gobionellus oceanicus and G. stomatus (Gobiidae; Perciformes): A shared XX/XY system and an unusual distribution of 5S rDNA sites on the Y chromosome.

    PubMed

    Lima-Filho, Paulo A; Amorim, Karlla D J; Cioffi, Marcelo B; Bertollo, Luiz A C; Molina, Wagner F

    2014-01-01

    With nearly 2,000 species, Gobiidae is the most specious family of the vertebrates. This high level of speciation is accompanied by conspicuous karyotypic modifications, where the role of repetitive sequences remains largely unknown. This study analyzed the karyotype of 2 species of the genus Gobionellus and mapped 18S and 5S ribosomal RNA genes and (CA)15 microsatellite sequences onto their chromosomes. G. oceanicus (2n = 56; ♂ 12 metacentrics (m) + 4 submetacentrics (sm) + 1 subtelocentric (st) + 39 acrocentrics (a); ♀ 12m + 4sm + 2st + 38a) and G. stomatus (2n = 56; ♂ 20m + 14sm + 1st + 21a; ♀ 20m + 14sm + 2st + 20a) possess the highest diploid chromosome number among the Gobiidae and have different karyotypes. Both species share an XX/XY sex chromosome system with a large subtelocentric X and a small acrocentric Y chromosome which is rich in (CA)15 sequences and bears 5S rRNA sites. Although coding and noncoding repetitive DNA sequences may be involved in the genesis or differentiation of the sex chromosomes, the exclusive presence of 5S rDNA sites on the Y, but not on the X chromosome of both species, represents a novelty in fishes. In summary, the karyotypic differences, as well as new data on the sex chromosome systems in these 2 Gobiidae species, confirm the high chromosomal dynamism observed in this family.

  16. A new mutation in the CFTR gene, composed of two adjacent DNA alterations, is a common cause of cystic fibrosis among Georgian Jews

    SciTech Connect

    Shoshani, T.; Berkun, Y.; Yahav, Y.; Augarten, A.; Bashan, N.; Rivlin, Y.; Gazit, E.; Sereth, H.; Kerem, E.; Kerem, B.S. )

    1993-01-01

    Five Jewish cystic fibrosis (CF) patients from four unrelated families, all of whom emigrated from what was Soviet Georgia were studied. The parents in two of the families are first-degree relatives. The clinical phenotype of the patients seems to be associated with a severe disease, as reflected by early age of diagnosis (before the age of 1 year), high sweat chloride level (105-140 meq/liter), and pancreatic insufficiency. The pulmonary function and nutritional status of these patients are normal. These patients were tested for [Delta]F508 by analysis of heteroduplex DNA (4). None of the CF chromosomes was found to carry the [Delta]F508 mutation. Subsequently, PCR-amplified genomic DNA samples from two of these patients were subjected to direct sequencing (5) of regions containing exons 7, 9-12, an 19-21 of the CF gene using the oligonucleotides previously described (3, 6). In exon 7, two DNA alterations 3 bp apart were identified in both patients. The first alteration in a C [yields] A transversion at nucleotide position 1207, changing the glutamine codon to lysine (Q359K). The second DNA alteration is a C [yields] A transversion at nucleotide position 1211 changing the threonine codon to lysine (T360K). The two DNA alterations cause nonconservative amino acid substitutions, changing each of the two uncharged polar amino acids (glutamine and threonine) to a basic amino acid, lysine. The Q359K substitution destroys an Rsal recognition site and can be detected by PCR amplification of exon 7 using 7i-5 and 7i-3 oligonucleotides (6), followed by Rsal digestion and electrophoresis on 10% polyacrylamide gels. Two Rsal sites are found in a normal amplified DNA fragment, resulting in three restriction fragments of 292, 68, and 50 bp. Digestion of the PCR fragment of an individual homozygous for this substitution resulted in only two fragments of 342 and 68 bp. 6 refs., 3 figs.

  17. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes.

    PubMed

    Rossi, Anna Rita; Milana, Valentina; Hett, Anne Kathrin; Tancioni, Lorenzo

    2012-12-01

    Karyotype and other chromosomal characteristics of the Appenine endemic cyprinid fish, Toscana stream chub Squalius lucumonis, were analysed using conventional banding and FISH with 45S and 5S rDNA probes. The diploid chromosome number (2n = 50) and karyotype characteristics including pericentromeric heterochromatic blocks and GC-rich CMA(3)-positive sites corresponding to both positive Ag-NORs and 45S rDNA loci on the short arms of a single medium-sized submetacentric chromosome pair were consistent with those found in most European leuciscine cyprinids. On other hand, 5S rDNA FISH in the Toscana stream chub and three other Italian leuciscines, S. squalus, Rutilus rubilio and Telestes muticellus, revealed a species-specific hybridization pattern, i.e. signals on four (S. lucumonis), three (S. squalus and R. rubilio) and two (T. muticellus) chromosome pairs. Whereas all the species shared the 5S rDNA loci on the largest subtelocentric chromosome pair, a "leuciscine" cytotaxonomic marker, S. lucumonis showed both classes of rDNA loci tandem aligned on the short arms of chromosome pair No. 12. The present findings suggest that the observed high variability of 5S rDNA loci provides a powerful tool for investigation of karyotype differentiation in karyologically conservative leuciscine fishes.

  18. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes.

    PubMed

    Rossi, Anna Rita; Milana, Valentina; Hett, Anne Kathrin; Tancioni, Lorenzo

    2012-12-01

    Karyotype and other chromosomal characteristics of the Appenine endemic cyprinid fish, Toscana stream chub Squalius lucumonis, were analysed using conventional banding and FISH with 45S and 5S rDNA probes. The diploid chromosome number (2n = 50) and karyotype characteristics including pericentromeric heterochromatic blocks and GC-rich CMA(3)-positive sites corresponding to both positive Ag-NORs and 45S rDNA loci on the short arms of a single medium-sized submetacentric chromosome pair were consistent with those found in most European leuciscine cyprinids. On other hand, 5S rDNA FISH in the Toscana stream chub and three other Italian leuciscines, S. squalus, Rutilus rubilio and Telestes muticellus, revealed a species-specific hybridization pattern, i.e. signals on four (S. lucumonis), three (S. squalus and R. rubilio) and two (T. muticellus) chromosome pairs. Whereas all the species shared the 5S rDNA loci on the largest subtelocentric chromosome pair, a "leuciscine" cytotaxonomic marker, S. lucumonis showed both classes of rDNA loci tandem aligned on the short arms of chromosome pair No. 12. The present findings suggest that the observed high variability of 5S rDNA loci provides a powerful tool for investigation of karyotype differentiation in karyologically conservative leuciscine fishes. PMID:23238894

  19. Continuous chromosomal instability in human pluripotent stem cells - the role of DNA replication.

    PubMed

    Lamm, Noa; Kerem, Batsheva

    2016-07-01

    Human pluripotent stem cells (hPSCs) frequently acquire chromosomal aberrations, including aneuploidy, during culture. Recently, we identified a replication stress-based mechanism leading to ongoing chromosomal instability in aneuploid hPSCs that may also operate during the initiation of instability in diploid cells. PMID:27652327

  20. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over occurs in distal sub-telomeric regions representing 40% of the...

  1. Mechanisms of formation of chromosomal aberrations: insights from studies with DNA repair-deficient cells.

    PubMed

    Palitti, F

    2004-01-01

    In order to understand the mechanisms of formation of chromosomal aberrations, studies performed on human syndromes with genomic instability can be fruitful. In this report, the results from studies in our laboratory on the importance of the transcription-coupled repair (TCR) pathway on the induction of chromosomal damage and apoptosis by ultraviolet light (UV) are discussed. UV61 cells (hamster homologue of human Cockayne's syndrome group B) deficient in TCR showed a dramatic increase in the induction of chromosomal aberrations and apoptosis following UV treatment. At relatively low UV doses, the induction of chromosomal aberrations preceded the apoptotic process. Chromosomal aberrations probably lead to apoptosis and most of the cells had gone through an S phase after the UV treatment before entering apoptosis. At higher doses of UV, the cells could go into apoptosis already in the G1 phase of the cell cycle. Abolition of TCR by treatment with alpha-amanitin (an inhibitor of RNA polymerase II) in the parental cell line AA8 also resulted in the induction of elevated chromosomal damage and apoptotic response similar to the one observed in UV61 cells treated with UV alone. This suggests that the lack of TCR is responsible for the increased frequencies of chromosomal aberrations and apoptosis in UV61 cells. Hypersensitivity to the induction of chromosomal damage by inhibitors of antitopoisomerases I and II in Werner's syndrome cells is also discussed in relation to the compromised G2 phase processes involving the Werner protein. PMID:15162020

  2. Sequence of DNA replication in Allium fistulosum chromosomes during S-phase.

    PubMed

    Fujishige, I; Taniguchi, K

    1998-12-01

    Bromodeoxyuridine pulse labelling and immunodetection were applied to synchronized Allium fistulosum cells to study sequential changes in the chromosome replication pattern during S-phase. The replication patterns were classified into five main types depending on the location of the replication signals: (1) over the whole chromosomes; (2) at proximal and interstitial regions; (3) at proximal, interstitial and distal regions; (4) at interstitial and distal regions; and (5) at distal regions. The frequencies of each pattern changed sequentially according to the timing of BrdU incorporation, demonstrating the temporal order of chromosome replication during S-phase. The distal regions that correspond to the major C-bands replicated throughout S-phase except for the earliest stage, but most intensely in late S-phase. The replication time of different chromosome sites overlapped, which is quite different from the biphasic mode of replication that occurs in mammalian chromosomes. PMID:10099874

  3. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    PubMed Central

    Raupach, Michael J.; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C.; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences. PMID:26417993

  4. Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains

    PubMed Central

    Slawson, Elizabeth E; Shaffer, Christopher D; Malone, Colin D; Leung, Wilson; Kellmann, Elmer; Shevchek, Rachel B; Craig, Carolyn A; Bloom, Seth M; Bogenpohl, James; Dee, James; Morimoto, Emiko TA; Myoung, Jenny; Nett, Andrew S; Ozsolak, Fatih; Tittiger, Mindy E; Zeug, Andrea; Pardue, Mary-Lou; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah CR

    2006-01-01

    Background Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago. Results Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %). Conclusion Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging. PMID:16507169

  5. Incidence of Genome Structure, DNA Asymmetry, and Cell Physiology on T-DNA Integration in Chromosomes of the Phytopathogenic Fungus Leptosphaeria maculans

    PubMed Central

    Bourras, Salim; Meyer, Michel; Grandaubert, Jonathan; Lapalu, Nicolas; Fudal, Isabelle; Linglin, Juliette; Ollivier, Benedicte; Blaise, Françoise; Balesdent, Marie-Hélène; Rouxel, Thierry

    2012-01-01

    The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens–mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway. PMID:22908038

  6. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes.

    PubMed

    Fukui, K; Nakayama, S; Ohmido, N; Yoshiaki, H; Yamabe, M

    1998-03-01

    Chromosomes of the three diploid Brassica species, B. rapa (AA), B. nigra (BB) and B. oleracea (CC), were identified based on their morphological characteristics, especially on the condensation pattern appearing at the somatic pro-metaphase stage. The morphological features of the pro-metaphase chromosomes of the three Brassica spp. were quantified by imaging methods using chromosome image analyzing system II (CHIAS 2). As a result, quantitative chromosome maps or idiograms of the three diploid Brassica spp. were developed. The fluorescence in situ hybridization (FISH) method revealed the location of 45s rDNA (the 26s-5.8s-18s ribosomal RNA gene cluster) on the chromosomes involved. The number of 45s rDNA loci in the B. rapa, B. nigra and B. oleracea are five, three and two, respectively. The loci detected were systematically mapped on the idiograms of the three Brassica spp.

  7. Localization of the human fibromodulin gene (FMOD) to chromosome 1q32 and completion of the cDNA sequence

    SciTech Connect

    Sztrolovics, R.; Grover, J.; Roughley, P.J.

    1994-10-01

    This report describes the cloning of the 3{prime}-untranslated region of the human fibromodulin cDNA and its use to map the gene. For somatic cell hybrids, the generation of the PCR product was concordant with the presence of chromosome 1 and discordant with the presence of all other chromosomes, confirming that the fibromodulin gene is located within region q32 of chromosome 1. The physical mapping of genes is a critical step in the process of identifying which genes may be responsible for various inherited disorders. Specifically, the mapping of the fibromodulin gene now provides the information necessary to evaluate its potential role in genetic disorders of connective tissues. The analysis of previously reported diseases mapped to chromosome 1 reveals two genes located in the proximity of the fibromodulin locus. These are Usher syndrome type II, a recessive disorder characterized by hearing loss and retinitis pigmentosa, and Van der Woude syndrome, a dominant condition associated with abnormalities such as cleft lip and palate and hyperdontia. The genes for both of these disorders have been projected to be localized to 1q32 of a physical map that integrates available genetic linkage and physical data. However, it seems improbable that either of these disorders, exhibiting restricted tissue involvement, could be linked to the fibromodulin gene, given the wide tissue distribution of the encoded proteoglycan, although it remains possible that the relative importance of the quantity and function of the proteoglycan may avry between tissues. 11 refs., 1 fig.

  8. Chromosome mapping of 18S rDNA and 5S rDNA by dual-color fluorescence in situ hybridization in the half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Jiang, L; Jiang, J; Liu, J; Yuan, J; Chen, Y; Zhang, Q; Wang, X

    2014-12-18

    Half-smooth tongue sole (Cynoglossus semilaevis) is an important aquaculture flatfish in China. Cytogenetic analysis has revealed that its sex determination system is female heterogametic (ZZ/ZW). The W chromosome is morphologically larger and has been considered evolutionarily younger than any other chromosome in the set. However, the genetic origin and evolution process of this neo-chromosome remains unclear. In this study, 2 tandem arrays of rRNA genes were chosen to address this question. Both the major rDNA (18S rDNA) and the minor rDNA (5S rDNA) were located on the C. semilaevis chromosomes by fluorescence in situ hybridization (FISH). Six 18S rDNA signals were observed on the centromeric regions of 3 pairs of autosomes in both males and females. In females, there was an additional 18S rDNA signal mapping to the telomeric region of the W chromosome long arm. With respect to the 5S rDNA, 12 signals were mapped to the centromeric regions of six pairs of autosomes. Two-color FISH further confirmed that the two pairs of the 5S rDNA signals were correspondingly located at the same positions of the same autosomes as those of the 18S rDNA signals. These results allowed us to speculate about the evolution process of the W chromosome. Chromosome fusions and repetitive sequence accumulations might have occurred in C. semilaevis. The synteny and non-synteny of C. semilaevis 18S rDNA and 5S rDNA might imply the original and evolutionary characteristics of this species. These findings will facilitate studies on karyotype evolution of the order Pleuronectiformes.

  9. Epstein-Barr-based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells

    SciTech Connect

    Kelleher, Z.T.; Fu, H.; Livanos, E.; Wendelburg, B.; Gulino, S.; Vos, J.M.

    1998-08-01

    The authors describe the microcell fusion transfer of 100--200 kb self-replicating circular human minichromosomes from human into mouse cells. This experimental approach is illustrated through the shuttling of the latent 170 kb double-stranded DNA genome from the human herpesvirus, Epstein-Barr virus, into nonpermissive rodent cells. Using this interspecies transfer strategy, circular episomes carrying 95--105 kb of human DNA were successfully established at low copy number in mouse A9 cells. Selected episomes were stably maintained for 6 months, and unselected episomes were characterized by a 95% episomal retention per cell division. The establishment of a mouse artificial episomal chromosome system should facilitate evolutionary and therapeutic studies of large human DNA in rodent genetic backgrounds.

  10. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.

    PubMed

    Dubarry, Marion; Lawless, Conor; Banks, A Peter; Cockell, Simon; Lydall, David

    2015-10-01

    Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase α-primase (Pol α) and DNA polymerase δ (Pol δ) replicate the lagging-strand and Pol α and DNA polymerase ε (Pol ε) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We combined temperature-sensitive mutations affecting the three replicative polymerases, Pol α, Pol δ, and Pol ε with genome-wide collections of null and reduced function mutations. We identify large numbers of genetic interactions that inform about the roles that specific genes play to help Pol α, Pol δ, and Pol ε function. Surprisingly, the overlap between the genetic networks affecting the three DNA polymerases does not represent the majority of the genetic interactions identified. Instead our data support a model for division of labor between the different DNA polymerases during DNA replication. For example, our genetic interaction data are consistent with biochemical data showing that Pol ε is more important to the Pre-Loading complex than either Pol α or Pol δ. We also observed distinct patterns of genetic interactions between leading- and lagging-strand DNA polymerases, with particular genes being important for coupling proliferating cell nuclear antigen loading/unloading (Ctf18, Elg1) with nucleosome assembly (chromatin assembly factor 1, histone regulatory HIR complex). Overall our data reveal specialized genetic networks that affect different aspects of leading- and lagging-strand DNA replication. To help others to engage with these data we have generated two novel, interactive visualization tools, DIXY and Profilyzer. PMID:26297725

  11. Construction and Characterization of a Repetitive DNA Library in Parodontidae (Actinopterygii: Characiformes): A Genomic and Evolutionary Approach to the Degeneration of the W Sex Chromosome

    PubMed Central

    Oliveira, Jordana Inácio Nascimento; Nogaroto, Viviane; Almeida, Mara Cristina; Artoni, Roberto Ferreira; Cestari, Marta Margarete; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo

    2014-01-01

    Abstract Repetitive DNA sequences, including tandem and dispersed repeats, comprise a large portion of eukaryotic genomes and are important for gene regulation, sex chromosome differentiation, and karyotype evolution. In Parodontidae, only the repetitive DNAs WAp and pPh2004 and rDNAs were previously studied using fluorescence in situ hybridization. This study aimed to build a library of repetitive DNA in Parodontidae. We isolated 40 clones using Cot-1; 17 of these clones exhibited similarity to repetitive DNA sequences, including satellites, minisatellites, microsatellites, and class I and class II transposable elements (TEs), from Danio rerio and other organisms. The physical mapping of the clones to chromosomes revealed the presence of a satellite DNA, a Helitron element, and degenerate short interspersed element (SINE), long interspersed element (LINE), and tc1-mariner elements on the sex chromosomes. Some clones exhibited dispersed signals; other sequences were not detected. The 5S rDNA was detected on an autosomal pair. These elements likely function in the molecular degeneration of the W chromosome in Parodontidae. Thus, the location of these elements on the chromosomes is important for understanding the function of these repetitive DNAs and for integrative studies with genome sequencing. The presented data demonstrate that an intensive invasion of TEs occurred during W sex chromosome differentiation in the Parodontidae. PMID:25122415

  12. On the Origin of the Eukaryotic Chromosome: The Role of Noncanonical DNA Structures in Telomere Evolution

    PubMed Central

    Garavís, Miguel; González, Carlos; Villasante, Alfredo

    2013-01-01

    The transition of an ancestral circular genome to multiple linear chromosomes was crucial for eukaryogenesis because it allowed rapid adaptive evolution through aneuploidy. Here, we propose that the ends of nascent linear chromosomes should have had a dual function in chromosome end protection (capping) and chromosome segregation to give rise to the “proto-telomeres.” Later on, proper centromeres evolved at subtelomeric regions. We also propose that both noncanonical structures based on guanine–guanine interactions and the end-protection proteins recruited by the emergent telomeric heterochromatin have been required for telomere maintenance through evolution. We further suggest that the origin of Drosophila telomeres may be reminiscent of how the first telomeres arose. PMID:23699225

  13. Nuclear DNA Variation, Chromosome Numbers and Polyploidy in the Endemic and Indigenous Grass Flora of New Zealand

    PubMed Central

    MURRAY, B. G.; DE LANGE, P. J.; FERGUSON, A. R.

    2005-01-01

    • Background and Aims Little information is available on DNA C-values for the New Zealand flora. Nearly 85 % of the named species of the native vascular flora are endemic, including 157 species of Poaceae, the second most species-rich plant family in New Zealand. Few C-values have been published for New Zealand native grasses, and chromosome numbers have previously been reported for fewer than half of the species. The aim of this research was to determine C-values and chromosome numbers for most of the endemic and indigenous Poaceae from New Zealand. • Scope To analyse DNA C-values from 155 species and chromosome numbers from 55 species of the endemic and indigenous grass flora of New Zealand. • Key Results The new C-values increase significantly the number of such measurements for Poaceae worldwide. New chromosome numbers were determined from 55 species. Variation in C-value and percentage polyploidy were analysed in relation to plant distribution. No clear relationship could be demonstrated between these variables. • Conclusions A wide range of C-values was found in the New Zealand endemic and indigenous grasses. This variation can be related to the phylogenetic position of the genera, plants in the BOP (Bambusoideae, Oryzoideae, Pooideae) clade in general having higher C-values than those in the PACC (Panicoideae, Arundinoideae, Chloridoideae + Centothecoideae) clade. Within genera, polyploids typically have smaller genome sizes (C-value divided by ploidy level) than diploids and there is commonly a progressive decrease with increasing ploidy level. The high frequency of polyploidy in the New Zealand grasses was confirmed by our additional counts, with only approximately 10 % being diploid. No clear relationship between C-value, polyploidy and rarity was evident. PMID:16243852

  14. Membrane regulation of the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein.

    PubMed Central

    Garner, J; Crooke, E

    1996-01-01

    The capacity of DnaA protein to initiate DNA synthesis at the chromosomal origin is influenced profoundly by the tightly bound nucleotides ATP and ADP. Acidic phospholipids can catalyze the conversion of inactive ADP-DnaA protein into the active ATP form. Proteolytic fragments of the nucleotide form of DnaA protein were examined to determine regions of the protein critical for functional interaction with membranes. A 35 kDa chymotryptic and 29 kDa tryptic fragment retained the tightly bound nucleotide. The fragments, whose amino-termini are within three residues of each other, but differ at their carboxyl ends, showed strikingly different behavior when treated with acidic phospholipids. The larger chymotryptic fragment released the bound nucleotide in the presence of acidic, but not neutral phospholipids. In contrast, the smaller tryptic fragment was inert to both forms of phospholipids. Acidic membranes, but not those composed of neutral phospholipids, protect from tryptic digestion a small portion of the segment that constitutes the difference between the 29 and 35 kDa fragments. The resulting 30 kDa tryptic fragment, which possesses this protected region, interacts functionally with acidic membranes to release the bound effector nucleotide. Inasmuch as the anionic ganglioside GM1, a compound structurally dissimilar to acidic glycerophospholipids, efficiently releases the nucleotide from DnaA protein, an acidic surface associated with a hydrophobic environment is the characteristic of the membrane that appears crucial for regulatory interaction with DnaA protein. Images PMID:8670850

  15. Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome 17.

    PubMed Central

    Walz, C; Schlehofer, J R

    1992-01-01

    Parvoviruses are known to interfere with cellular transformation and carcinogenesis. Since infecting adeno-associated virus (AAV) frequently integrates its DNA into the cellular genome, we analyzed whether this integration influences the transformed phenotype of the human tumor cell line HeLa. Analysis of three independent HeLa cell clones with integrated AAV DNA (HA-3x, HA-16, and HA-28) revealed the following phenotypic changes of these cells: (i) reduced growth rate, (ii) increased serum requirement, (iii) reduced capacity for colony formation in soft agar, (iv) reduced cloning efficiency on plastic, (v) elevated sensitivity to genotoxic agents (N-methyl-N'-nitro-N-nitrosoguanidine, 7,12-dimethylbenz[a]anthracene, human tumor necrosis factor alpha, UV irradiation [256 nm], and heat [42 degrees C]), and (vi) reduced sensitivity to the cytolytic effect of parvovirus H-1. Reduced growth rate and enhanced sensitivity to gamma irradiation were also observed in vivo when tumors from AAV DNA-containing HeLa cells were transplanted into nude mice. This alteration of the biological properties of HeLa cells was independent of the number of AAV genomes integrated, the physical structure of integrated AAV DNA, and the transcription of AAV genes. Integration of AAV DNA was found to occur preferentially on the long arm of chromosome 17 in the three HeLa cell clones analyzed. These findings demonstrate that genomic integration of AAV DNA can alter the biological properties of human tumor cells. Images PMID:1313913

  16. Location of the unique integration site on an Escherichia coli chromosome by bacteriophage lambda DNA in vivo.

    PubMed

    Tal, Asaf; Arbel-Goren, Rinat; Costantino, Nina; Court, Donald L; Stavans, Joel

    2014-05-20

    The search for specific sequences on long genomes is a key process in many biological contexts. How can specific target sequences be located with high efficiency, within physiologically relevant times? We addressed this question for viral integration, a fundamental mechanism of horizontal gene transfer driving prokaryotic evolution, using the infection of Escherichia coli bacteria with bacteriophage λ and following the establishment of a lysogenic state. Following the targeting process in individual live E. coli cells in real time revealed that λ DNA remains confined near the entry point of a cell following infection. The encounter between the 15-bp-long target sequence on the chromosome and the recombination site on the viral genome is facilitated by the directed motion of bacterial DNA generated during chromosome replication, in conjunction with constrained diffusion of phage DNA. Moving the native bacterial integration site to different locations on the genome and measuring the integration frequency in these strains reveals that the frequencies of the native site and a site symmetric to it relative to the origin are similar, whereas both are significantly higher than when the integration site is moved near the terminus, consistent with the replication-driven mechanism we propose. This novel search mechanism is yet another example of the exquisite coevolution of λ with its host. PMID:24799672

  17. Identification, molecular characterization, and chromosomal localization of the cDNA encoding a novel leucine zipper motif-containing protein

    SciTech Connect

    Sun, Der-Shan; Chang, Nan-Chi A.; Chang, A.C.

    1996-08-15

    cDNA clones encoding a novel protein (LUZP) with three leucine zipper motifs were first identified from a murine bone marrow cDNA library. After screening two additional cDNA libraries of activated peritoneal exudate cells, 32 positive clones were obtained from 1.3 x 10{sup 7} phage plaques. Four overlapping clones constituting a total of 7399 hp were sequenced on both strands. The complete open reading frame of LUZP is 1067 amino acids. In addition to three leucine zipper motifs located at the NH2 terminus, there are three nuclear localization signals and a large number of putative Ser/Thr phosphorylation sites. Western blot analyses indicate that LUZP is predominantly expressed in brain, whereas immunocytochemistry data clearly reveal its presence in the nucleus of neutrons. Interspecific backcross analyses have mapped Luzp to mouse chromosome 4 in proximity to Gpcr14. Comparative mapping data suggest that the human homolog of Luzp will map to human chromosome 1p36. 32 refs., 4 figs.

  18. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation.

    PubMed

    Kanno, Tatsuo; Bucher, Etienne; Daxinger, Lucia; Huettel, Bruno; Böhmdorfer, Gudrun; Gregor, Wolfgang; Kreil, David P; Matzke, Marjori; Matzke, Antonius J M

    2008-05-01

    RNA-directed DNA methylation (RdDM) is a process in which dicer-generated small RNAs guide de novo cytosine methylation at the homologous DNA region. To identify components of the RdDM machinery important for Arabidopsis thaliana development, we targeted an enhancer active in meristems for methylation, which resulted in silencing of a downstream GFP reporter gene. This silencing system also features secondary siRNAs, which trigger methylation that spreads beyond the targeted enhancer region. A screen for mutants defective in meristem silencing and enhancer methylation retrieved six dms complementation groups, which included the known factors DRD1 (ref. 3; a SNF2-like chromatin-remodeling protein) and Pol IVb subunits. Additionally, we identified a previously unknown gene DMS3 (At3g49250), encoding a protein similar to the hinge-domain region of structural maintenance of chromosomes (SMC) proteins. This finding implicates a putative chromosome architectural protein that can potentially link nucleic acids in facilitating an RNAi-mediated epigenetic modification involving secondary siRNAs and spreading of DNA methylation.

  19. Sex preselection by flow cytometric separation of X and Y chromosome-bearing sperm based on DNA difference: a review.

    PubMed

    Johnson, L A

    1995-01-01

    Recent research on the flow cytometry of sperm for the purpose of predetermining gender of offspring has led to a validated method to separate X from Y chromosome-bearing sperm for use with in vitro fertilization and embryo transfer, intratubal insemination or intracytoplasmic sperm injection. The basis for the method is the sex chromosome-specific marker, DNA, which is present in greater amounts in X-bearing sperm than in Y-bearing sperm of mammals. Sperm are exposed to the vital dye Hoechst 33342 which binds to the minor groove of the DNA helix. Flow cytometric sorting of the sperm using a laser as the excitation source results in populations of Y- or X-bearing sperm that are 85-90% pure. Several hundred offspring have been produced from swine, rabbits, sheep and cattle that confirm the predicted sex. The method is currently being applied to the commercial embryo market. The method is not likely to be used in conjunction with standard cattle or swine artificial insemination practice in its current form since only about 4 x 10(5) sorted sperm can be produced per hour of sorting. The technology has also been applied to human sperm for use by couples that are at risk to sex-linked disease expression in their offspring. Populations of human sperm have been sorted with X and Y purities of about 80% as confirmed by DNA probe technology and fluorescence in situ hybridization. PMID:8711222

  20. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH.

    PubMed

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution.

  1. Bub3–BubR1-dependent sequestration of Cdc20Fizzy at DNA breaks facilitates the correct segregation of broken chromosomes

    PubMed Central

    Derive, Nicolas; Landmann, Cedric; Montembault, Emilie; Claverie, Marie-Charlotte; Pierre-Elies, Priscillia; Goutte-Gattat, Damien; Founounou, Nabila; McCusker, Derek

    2015-01-01

    The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box–dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3–BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes. PMID:26553926

  2. B chromosomes in the grasshopper Eyprepocnemis plorans are present in all body parts analyzed and show extensive variation for rDNA copy number.

    PubMed

    Ruiz-Estévez, Mercedes; Cabrero, Josefa; Camacho, Juan Pedro M; López-León, María Dolores

    2014-01-01

    B chromosomes in the grasshopper Eyprepocnemis plorans are considered to be mitotically stable, because all meiotic (primary spermatocytes and oocytes) or mitotic (embryos, ovarioles, and gastric caecum) cells analyzed within the same individual show the same B chromosome number. Nothing is known, however, about body parts with somatic tissues with no mitotic activity in adult individuals, constituting the immense majority of their body. Therefore, we investigated whether B chromosomes are present in 8 non-mitotically active somatic body parts from both sexes in addition to ovarioles and testes by PCR analysis of 2 B-specific molecular markers. We also elucidated the number of B chromosomes that an individual carried through quantifying the B-located rDNA copy number by qPCR. Our results indicated the amplification of both B-specific markers in all analyzed body parts. However, we found high variation between males for the estimated number of rDNA units in the B chromosomes. These results demonstrate the presence of B chromosomes in all body parts from the same individual and suggest a high variation in the rDNA content of the B chromosomes carried by different individuals from the same population, presumably due to unequal crossovers during meiosis.

  3. Bub3-BubR1-dependent sequestration of Cdc20Fizzy at DNA breaks facilitates the correct segregation of broken chromosomes.

    PubMed

    Derive, Nicolas; Landmann, Cedric; Montembault, Emilie; Claverie, Marie-Charlotte; Pierre-Elies, Priscillia; Goutte-Gattat, Damien; Founounou, Nabila; McCusker, Derek; Royou, Anne

    2015-11-01

    The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box-dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3-BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes.

  4. Different genetic components in the Ethiopian population, identified by mtDNA and Y-chromosome polymorphisms.

    PubMed Central

    Passarino, G; Semino, O; Quintana-Murci, L; Excoffier, L; Hammer, M; Santachiara-Benerecetti, A S

    1998-01-01

    Seventy-seven Ethiopians were investigated for mtDNA and Y chromosome-specific variations, in order to (1) define the different maternal and paternal components of the Ethiopian gene pool, (2) infer the origins of these maternal and paternal lineages and estimate their relative contributions, and (3) obtain information about ancient populations living in Ethiopia. The mtDNA was studied for the RFLPs relative to the six classical enzymes (HpaI, BamHI, HaeII, MspI, AvaII, and HincII) that identify the African haplogroup L and the Caucasoid haplogroups I and T. The sample was also examined at restriction sites that define the other Caucasoid haplogroups (H, U, V, W, X, J, and K) and for the simultaneous presence of the DdeI10394 and AluI10397 sites, which defines the Asian haplogroup M. Four polymorphic systems were examined on the Y chromosome: the TaqI/12f2 and the 49a,f RFLPs, the Y Alu polymorphic element (DYS287), and the sY81-A/G (DYS271) polymorphism. For comparison, the last two Y polymorphisms were also examined in 87 Senegalese previously classified for the two TaqI RFLPs. Results from these markers led to the hypothesis that the Ethiopian population (1) experienced Caucasoid gene flow mainly through males, (2) contains African components ascribable to Bantu migrations and to an in situ differentiation process from an ancestral African gene pool, and (3) exhibits some Y-chromosome affinities with the Tsumkwe San (a very ancient African group). Our finding of a high (20%) frequency of the "Asian" DdeI10394AluI10397 (++) mtDNA haplotype in Ethiopia is discussed in terms of the "out of Africa" model. PMID:9463310

  5. Contrasting patterns of Y chromosome and mtDNA variation in Africa: evidence for sex-biased demographic processes.

    PubMed

    Wood, Elizabeth T; Stover, Daryn A; Ehret, Christopher; Destro-Bisol, Giovanni; Spedini, Gabriella; McLeod, Howard; Louie, Leslie; Bamshad, Mike; Strassmann, Beverly I; Soodyall, Himla; Hammer, Michael F

    2005-07-01

    To investigate associations between genetic, linguistic, and geographic variation in Africa, we type 50 Y chromosome SNPs in 1122 individuals from 40 populations representing African geographic and linguistic diversity. We compare these patterns of variation with those that emerge from a similar analysis of published mtDNA HVS1 sequences from 1918 individuals from 39 African populations. For the Y chromosome, Mantel tests reveal a strong partial correlation between genetic and linguistic distances (r=0.33, P=0.001) and no correlation between genetic and geographic distances (r=-0.08, P>0.10). In contrast, mtDNA variation is weakly correlated with both language (r=0.16, P=0.046) and geography (r=0.17, P=0.035). AMOVA indicates that the amount of paternal among-group variation is much higher when populations are grouped by linguistics (Phi(CT)=0.21) than by geography (Phi(CT)=0.06). Levels of maternal genetic among-group variation are low for both linguistics and geography (Phi(CT)=0.03 and 0.04, respectively). When Bantu speakers are removed from these analyses, the correlation with linguistic variation disappears for the Y chromosome and strengthens for mtDNA. These data suggest that patterns of differentiation and gene flow in Africa have differed for men and women in the recent evolutionary past. We infer that sex-biased rates of admixture and/or language borrowing between expanding Bantu farmers and local hunter-gatherers played an important role in influencing patterns of genetic variation during the spread of African agriculture in the last 4000 years.

  6. Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA

    PubMed Central

    Ding, Z-L; Oskarsson, M; Ardalan, A; Angleby, H; Dahlgren, L-G; Tepeli, C; Kirkness, E; Savolainen, P; Zhang, Y-P

    2012-01-01

    Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog–wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14 437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13–24 wolf founders, but there was no indication of post-domestication dog–wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog–wolf hybridisation contributed modestly to the dog gene pool. PMID:22108628

  7. Origins of domestic dog in southern East Asia is supported by analysis of Y-chromosome DNA.

    PubMed

    Ding, Z-L; Oskarsson, M; Ardalan, A; Angleby, H; Dahlgren, L-G; Tepeli, C; Kirkness, E; Savolainen, P; Zhang, Y-P

    2012-05-01

    Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog-wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14,437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13-24 wolf founders, but there was no indication of post-domestication dog-wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog-wolf hybridisation contributed modestly to the dog gene pool.

  8. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola

    PubMed Central

    Coelho, Margarida; Sequeira, Fernando; Luiselli, Donata; Beleza, Sandra; Rocha, Jorge

    2009-01-01

    Background Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale). We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations. Results Correspondence analysis, lineage sharing patterns and admixture estimates indicate that the gene pool from southwestern Angola is predominantly derived from West-Central Africa. The pastoralist Herero-speaking Kuvale people were additionally characterized by relatively high frequencies of Y-chromosome (12%) and mtDNA (22%) Khoe-San lineages, as well as by the presence of the -14010C lactase persistence mutation (6%), which likely originated in non-Bantu pastoralists from East Africa. Inferred demographic parameters show that both male and female populations underwent significant size growth after the split between the western and eastern branches of Bantu expansions occurring 4000 years ago. However, males had lower population sizes and migration rates than females throughout the Bantu dispersals. Conclusion Genetic variation in southwestern Angola essentially results from the encounter of an offshoot of West-Central Africa with autochthonous Khoisan-speaking peoples from the south. Interactions between the Bantus and the Khoe-San likely

  9. Molecular characterisation and chromosomal localisation of a telomere-like repetitive DNA sequence highly enriched in the C genome of Brassica.

    PubMed

    Galvão Bezerra dos Santos, K; Becker, H C; Ecke, W; Bellin, U

    2007-01-01

    The aim of this work was to find C genome specific repetitive DNA sequences able to differentiate the homeologous A (B. rapa) and C (B. oleracea) genomes of Brassica, in order to assist in the physical identification of B. napus chromosomes. A repetitive sequence (pBo1.6) highly enriched in the C genome of Brassica was cloned from B. oleracea and its chromosomal organisation was investigated through fluorescent in situ hybridisation (FISH) in B. oleracea (2n = 18, CC), B. rapa (2n = 20, AA) and B. napus (2n = 38, AACC) genomes. The sequence was 203 bp long with a GC content of 48.3%. It showed up to 89% sequence identity with telomere-like DNA from many plant species. This repeat was clearly underrepresented in the A genome and the in situ hybridisation showed its B. oleracea specificity at the chromosomal level. Sequence pBo1.6 was localised at interstitial and/or telomeric/subtelomeric regions of all chromosomes from B. oleracea, whereas in B. rapa no signal was detected in most of the cells. In B. napus 18 to 24 chromosomes hybridised with pBo1.6. The discovery of a sequence highly enriched in the C genome of Brassica opens the opportunity for detailed studies regarding the subsequent evolution of DNA sequences in polyploid genomes. Moreover, pBo1.6 may be useful for the determination of the chromosomal location of transgenic DNA in genetically modified oilseed rape.

  10. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4

    PubMed Central

    Liddiard, Kate; Ruis, Brian; Takasugi, Taylor; Harvey, Adam; Ashelford, Kevin E.; Hendrickson, Eric A.; Baird, Duncan M.

    2016-01-01

    Telomeres shorten with each cell division and can ultimately become substrates for nonhomologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterized more than 1400 telomere fusion events at the single-molecule level, using a combination of high-throughput sequence analysis together with experimentally induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse nontelomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions. Fusion frequency was markedly increased in the absence of TP53 checkpoint control and significantly modulated by the cellular capacity for classical, versus alternative, nonhomologous end joining (NHEJ). We observed a striking reduction in inter-chromosomal fusion events in cells lacking DNA ligase 4, in contrast to a remarkably consistent profile of intra-chromosomal fusion in the context of multiple genetic knockouts, including DNA ligase 3 and 4 double-knockouts. We reveal distinct mutational signatures associated with classical NHEJ-mediated inter-chromosomal, as opposed to alternative NHEJ-mediated intra-chromosomal, telomere fusions and evidence for an unanticipated sufficiency of DNA ligase 1 for these intra-chromosomal events. Our findings have implications for mechanisms driving cancer genome evolution. PMID:26941250

  11. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes

    PubMed Central

    Spoz, Aneta; Boron, Alicja; Porycka, Katarzyna; Karolewska, Monika; Ito, Daisuke; Abe, Syuiti; Kirtiklis, Lech; Juchno, Dorota

    2014-01-01

    Abstract The crucian carp Carassius carassius (Linnaeus, 1758) is a species with restricted and decreasing distribution in Europe. Six males and six females of the species from the Baltic Sea basin in Poland were examined to show sequentially CMA3/AgNO3 staining pattern, DAPI staining, and, for the first time in literature, molecular cytogenetic analysis using double-colour fluorescence in situ hybridisation (FISH) with 28S and 5S rDNA probes. The karyotype consisted of 20 m, 36 sm and 44 sta chromosomes, NF=156. The AgNO3 stained NORs were most frequently located terminally in the short arms of two sm and two sta elements, and CMA3-positive sites were also observed suggesting abundant GC-rich repetitive DNA in the regions. Other CMA3-positive sites in the short arms of six to ten sm and sta chromosomes were detected. The results based on 28S rDNA FISH confirmed the location of rDNA sites. DAPI-negative staining of NORs suggested the scarcity of AT-rich DNA in the regions. FISH with 5S rDNA probe revealed 8–14 loci (ten and 12 in respectively 49 and 29% of metaphases). They were located in two sm and eight to ten sta chromosomes and six of them were larger than others. Simultaneously, mapping of the two rDNA families on the chromosomes of C. carassius revealed that both 28S and 5S rDNA probes were located in different chromosomes. Molecular cytogenetic data of C. carassius presented here for the first time give an important insight into the structure of chromosomes of this polyploid and declining species and may be useful in its systematics. PMID:25349674

  12. Fluorescent in situ hybridization with arbitrarily amplified DNA fragments differentiates carrot (Daucus carota L.) chromosomes.

    PubMed

    Nowicka, Anna; Grzebelus, Ewa; Grzebelus, Dariusz

    2012-03-01

    Carrot (Daucus carota L.) chromosomes are small and poorly differentiated in size and morphology. Here we demonstrate that fluorescent in situ hybridization (FISH) signals derived from arbitrary PCR probes can be used for chromosome identification in carrot. To prepare probes, we searched for nonpolymorphic products abundantly amplified with arbitrary decamer primers in a group of accessions representing carrot genetic diversity. As a result, 13 fragments ranging in size from 517 to 1758 bp were selected, sequenced, and used as probes for fluorescent in situ hybridization. Four of these probes produced clear and reproducible hybridization signals. The sequences showed similarity to a number of carrot BAC-end sequences, indicating their repetitive character. Three of them were similar to internal portions of gypsy and copia LTR retrotransposons previously identified in plants. Hybridization signals for the four probes were observed as dotted tracks on chromosomes, differing in distribution and intensity. Generally, they were present in pericentromeric and (or) interstitial localizations on chromosome arms. The use of the four probes allowed discrimination of chromosome pairs and construction of more detailed karyotypes and idiograms of carrot.

  13. [Chromosomal localization of 5S and 45S ribosomal DNA in species of Linum L. section Linum (syn=Protolinum and Adenolinum)].

    PubMed

    Muravenko, O V; Amosova, A V; Samatadze, T E; Semenova, O Iu; Nosova, I V; Popov, K V; Shostak, N G; Zoshchuk, S A; Zelenin, A V

    2004-02-01

    Fluorescence in situ hybridization (FISH) was for the first time used to study the chromosomal location of the 45S (18-2.5S-26S) and 5S ribosomal genes in the genomes of five flax species of the section Linum (syn. Protolinum and Adenolinum). In L. usitatissimum L. (2n = 30), L. angustifolium Huds. (2n = 30), and L. bienne Mill. (2n = 30), a major hybridization site of 45S rDNA was observed in the pericentric region of a large metacentric chromosome. A polymorphic minor locus of 45S rDNA was found on one of the small chromosomes. Sites of 5S rDNA colocalized with those of 45S rDNA, but direct correlation between signal intensities from the 45S and 5S rDNA sites was observed only in some cases. Other 5S rDNA sites mapped to two chromosomes in these flax species. In L. grandiflorum Desf. (2n = 16) and L. austriacum L. (2n = 18), large regions of 45S and 5S rDNA were similarly located on a pair of homologous satellite-bearing chromosomes. An additional large polymorphic site of 45S and 5S rDNA was found in the proximal region of one arm of a small chromosome in the L. usitatissimum. L. angustifolium, and L. bienne karyotypes. The other arm of this chromosome contained a large 5S rDNA cluster. A similar location of the ribosomal genes in the pericentric region of the pair of satellite-bearing metacentrics confirmed the close relationships of the species examined. The difference in chromosomal location of the ribosomal genes between flax species with 2n = 30 and those with 2n = 16 or 18 testified to their assignment to different sections. The use of ribosomal genes as chromosome markers was assumed to be of importance for comparative genomic studies in cultivated flax, a valuable crop species of Russia, and in its wild relatives. PMID:15065434

  14. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation.

    PubMed Central

    Pecon Slattery, J; O'Brien, S J

    1998-01-01

    The 37 species of modern cats have evolved from approximately eight phylogenetic lineages within the past 10 to 15 million years. The Felidae family has been described with multiple measures of morphologic and molecular evolutionary methods that serve as a framework for tracking gene divergence during brief evolutionary periods. In this report, we compare the mode and tempo of evolution of noncoding sequences of a large intron within Zfy (783 bp) and Zfx (854 bp), homologous genes located on the felid Y and X chromosomes, respectively. Zfy sequence variation evolves at about twice the rate of Zfx, and both gene intron sequences track feline hierarchical topologies accurately. As homoplasies are infrequent in patterns of nucleotide substitution, the Y chromosome sequence displays a remarkable degree of phylogenetic consistency among cat species and provides a highly informative glimpse of divergence of sex chromosome sequences in Felidae. PMID:9539439

  15. Sensing DNA damage: A role for chromosome communication in aneuploidy induction

    SciTech Connect

    Resnick, M.A.

    1993-12-31

    Mitotic cells of all organisms examined exhibit the capability for recombination based on the physical or genetic detection of exchange or the isolation of enzymes involved in recombination such as strand exchange protein. However, evidence demonstrating interactions between chromosomes is generally lacking except with smaller eukaryotes. In humans there are abundant examples of homozygosis for disease genes, particularly tumor suppressors, thereby demonstrating the relevance of interchromosomal interactions. The appearance in Bloom`s syndrome of symmetrical quadriradials between the sister chromatids in homologous chromosomes further implies that interchromosomal exchange can occur in mitotic cells of humans. With the yeast Saccharomyces cerevisiae it has been possible to examine the importance of mitotic interchromosomal interactions not only for the purpose of understanding mechanisms of mitotic recombination but also to examine its general biological importance. Unlike meiosis, homologous recombination does not play a role in the distribution of chromosomes in mitosis.

  16. Mitochondrial DNA and Y Chromosome Variation Provides Evidence for a Recent Common Ancestry between Native Americans and Indigenous Altaians

    PubMed Central

    Dulik, Matthew C.; Zhadanov, Sergey I.; Osipova, Ludmila P.; Askapuli, Ayken; Gau, Lydia; Gokcumen, Omer; Rubinstein, Samara; Schurr, Theodore G.

    2012-01-01

    The Altai region of southern Siberia has played a critical role in the peopling of northern Asia as an entry point into Siberia and a possible homeland for ancestral Native Americans. It has an old and rich history because humans have inhabited this area since the Paleolithic. Today, the Altai region is home to numerous Turkic-speaking ethnic groups, which have been divided into northern and southern clusters based on linguistic, cultural, and anthropological traits. To untangle Altaian genetic histories, we analyzed mtDNA and Y chromosome variation in northern and southern Altaian populations. All mtDNAs were assayed by PCR-RFLP analysis and control region sequencing, and the nonrecombining portion of the Y chromosome was scored for more than 100 biallelic markers and 17 Y-STRs. Based on these data, we noted differences in the origin and population history of Altaian ethnic groups, with northern Altaians appearing more like Yeniseian, Ugric, and Samoyedic speakers to the north, and southern Altaians having greater affinities to other Turkic speaking populations of southern Siberia and Central Asia. Moreover, high-resolution analysis of Y chromosome haplogroup Q has allowed us to reshape the phylogeny of this branch, making connections between populations of the New World and Old World more apparent and demonstrating that southern Altaians and Native Americans share a recent common ancestor. These results greatly enhance our understanding of the peopling of Siberia and the Americas. PMID:22281367

  17. Three Different Pathways Prevent Chromosome Segregation in the Presence of DNA Damage or Replication Stress in Budding Yeast.

    PubMed

    Palou, Gloria; Palou, Roger; Zeng, Fanli; Vashisht, Ajay A; Wohlschlegel, James A; Quintana, David G

    2015-09-01

    A surveillance mechanism, the S phase checkpoint, blocks progression into mitosis in response to DNA damage and replication stress. Segregation of damaged or incompletely replicated chromosomes results in genomic instability. In humans, the S phase checkpoint has been shown to constitute an anti-cancer barrier. Inhibition of mitotic cyclin dependent kinase (M-CDK) activity by Wee1 kinases is critical to block mitosis in some organisms. However, such mechanism is dispensable in the response to genotoxic stress in the model eukaryotic organism Saccharomyces cerevisiae. We show here that the Wee1 ortholog Swe1 does indeed inhibit M-CDK activity and chromosome segregation in response to genotoxic insults. Swe1 dispensability in budding yeast is the result of a redundant control of M-CDK activity by the checkpoint kinase Rad53. In addition, our results indicate that Swe1 is an effector of the checkpoint central kinase Mec1. When checkpoint control on M-CDK and on Pds1/securin stabilization are abrogated, cells undergo aberrant chromosome segregation. PMID:26332045

  18. Phylogeny and chromosomal variations in East Asian Carex, Siderostictae group (Cyperaceae), based on DNA sequences and cytological data.

    PubMed

    Yano, Okihito; Ikeda, Hiroshi; Jin, Xiao-Feng; Hoshino, Takuji

    2014-01-01

    Carex (Cyperaceae) is one of the largest genera of the flowering plants, and comprises more than 2,000 species. In Carex, section Siderostictae with broader leaves distributed in East Asia is thought to be an ancestral group. We aimed to clarify the phylogenetic relationships and chromosomal variations within the section Siderostictae, and to examine the relationship of broad-leaved species of the sections Hemiscaposae and Surculosae from East Asia, inferred from DNA sequences and cytological data. Our results indicate that a monophyletic Siderostictae clade, including the sections Hemiscaposae, Siderostictae and Surculosae, as the earliest diverging group in the tribe Cariceae. Low chromosome numbers, 2n = 12 or 24, with large sizes were observed in these three sections. Our results suggest that the genus Carex might have originated or relictly restricted in the East Asia. Geographical distributions of diploid species are restricted in narrower areas, while those of tetraploid species are wider in East Asia. It is concluded that chromosomal variations in Siderostictae clade may have been caused by polyploidization and that tetraploid species may have been able to exploit their habitats by polyploidization.

  19. Rapid Elimination of Low-Copy DNA Sequences in Polyploid Wheat: A Possible Mechanism for Differentiation of Homoeologous Chromosomes

    PubMed Central

    Feldman, M.; Liu, B.; Segal, G.; Abbo, S.; Levy, A. A.; Vega, J. M.

    1997-01-01

    To study genome evolution in allopolyploid plants, we analyzed polyploid wheats and their diploid progenitors for the occurrence of 16 low-copy chromosome- or genome-specific sequences isolated from hexaploid wheat. Based on their occurrence in the diploid species, we classified the sequences into two groups: group I, found in only one of the three diploid progenitors of hexaploid wheat, and group II, found in all three diploid progenitors. The absence of group II sequences from one genome of tetraploid wheat and from two genomes of hexaploid wheat indicates their specific elimination from these genomes at the polyploid level. Analysis of a newly synthesized amphiploid, having a genomic constitution analogous to that of hexaploid wheat, revealed a pattern of sequence elimination similar to the one found in hexaploid wheat. Apparently, speciation through allopolyploidy is accompanied by a rapid, nonrandom elimination of specific, low-copy, probably noncoding DNA sequences at the early stages of allopolyploidization, resulting in further divergence of homoeologous chromosomes (partially homologous chromosomes of different genomes carrying the same order of gene loci). We suggest that such genomic changes may provide the physical basis for the diploid-like meiotic behavior of polyploid wheat. PMID:9383078

  20. Role of Fanconi Anemia FANCG in Preventing Double-Strand Breakage and Chromosomal Rearrangement during DNA Replication

    SciTech Connect

    Tebbs, R S; Hinz, J M; Yamada, N A; Wilson, J B; Jones, N J; Salazar, E P; Thomas, C B; Jones, I M; Thompson, L H

    2003-10-04

    The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are unknown. By constructing and characterizing a null fancg mutant of hamster CHO cells, we present several new insights for FA. The fancg cells show a broad sensitivity to genotoxic agents, not supporting the conventional concept of sensitivity to only DNA crosslinking agents. The aprt mutation rate is normal, but hprt mutations are reduced, which we ascribe to the lethality of large deletions. CAD and dhfr gene amplification rates are increased, implying excess chromosomal breakage during DNA replication, and suggesting amplification as a contributing factor to cancer-proneness in FA patients. In S-phase cells, both spontaneous and mutagen-induced Rad51 nuclear foci are elevated. These results support a model in which FancG protein helps to prevent collapse of replication forks by allowing translesion synthesis or lesion bypass through homologous recombination.

  1. Human {gamma}-aminobutyraldehyde dehydrogenase (ALDH9): cDNA sequence, genomic organization, polymorphism, chromosomal localization, and tissue expression

    SciTech Connect

    Lin, S.W.; Chen, J.C.; Hsu, L.C.

    1996-06-15

    The cDNA and the gene (ALDH9) for a human aldehyde dehydrogenase isozyme, which has a high activity for oxidation of {gamma}-aminobutyraldehyde and other amino aldehydes, were cloned and characterized. The cDNA has an open reading frame of 1479 bp encoding 493 amino acid residues. The gene is about 45 kb and consists of 10 coding exons interrupted by nine introns. The gene was assigned to chromosome 1q22-q23, using fluorescence in situ hybridization. Northern blot hybridization indicated that the size of the mRNA is about 2.4 kb and that the gene is expressed at high levels in adult liver, skeletal muscle, and kidney and low levels in heart, pancreas, lung, and brain. The gene is polymorphic, i.e., C or T at nt 327 and C or G at nt 344. 17 refs., 4 figs., 1 tab.

  2. Tracing the history of goat pastoralism: new clues from mitochondrial and Y chromosome DNA in North Africa.

    PubMed

    Pereira, Filipe; Queirós, Sara; Gusmão, Leonor; Nijman, Isäac J; Cuppen, Edwin; Lenstra, Johannes A; Davis, Simon J M; Nejmeddine, Fouad; Amorim, António

    2009-12-01

    Valuable insights into the history of human populations have been obtained by studying the genetic composition of their domesticated species. Here we address some of the long-standing questions about the origin and subsequent movements of goat pastoralism in Northern Africa. We present the first study combining results from mitochondrial DNA (mtDNA) and Y chromosome loci for the genetic characterization of a domestic goat population. Our analyses indicate a remarkably high diversity of maternal and paternal lineages in a sample of indigenous goats from the northwestern fringe of the African continent. Median-joining networks and a multidimensional scaling of ours and almost 2000 published mtDNA sequences revealed a considerable genetic affinity between goat populations from the Maghreb (Northwest Africa) and the Near East. It has been previously shown that goats have a weak phylogeographic structure compatible with high levels of gene flow, as demonstrated by the worldwide dispersal of the predominant mtDNA haplogroup A. In contrast, our results revealed a strong correlation between genetic and geographical distances in 20 populations from different regions of the world. The distribution of Y chromosome haplotypes in Maghrebi goats indicates a common origin for goat patrilines in both Mediterranean coastal regions. Taken together, these results suggest that the colonization and subsequent dispersal of domestic goats in Northern Africa was influenced by the maritime diffusion throughout the Mediterranean Sea and its coastal regions of pastoralist societies whose economy included goat herding. Finally, we also detected traces of gene flow between goat populations from the Maghreb and the Iberian Peninsula corroborating evidence of past cultural and commercial contacts across the Strait of Gibraltar.

  3. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein

    PubMed Central

    Ravindranathan, Ramya; Dereli, Ihsan; Stanzione, Marcello; Tóth, Attila

    2016-01-01

    Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during

  4. Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames.

    PubMed

    Gamo, F J; Lafuente, M J; Casamayor, A; Ariño, J; Aldea, M; Casas, C; Herrero, E; Gancedo, C

    1996-06-15

    We report the sequence of a 15.5 kb DNA segment located near the left telomere of chromosome XV of Saccharomyces cerevisiae. The sequence contains nine open reading frames (ORFs) longer than 300 bp. Three of them are internal to other ones. One corresponds to the gene LGT3 that encodes a putative sugar transporter. Three adjacent ORFs were separated by two stop codons in frame. These ORFs presented homology with the gene CPS1 that encodes carboxypeptidase S. The stop codons were not found in the same sequence derived from another yeast strain. Two other ORFs without significant homology in databases were also found. One of them, O0420, is very rich in serine and threonine and presents a series of repeated or similar amino acid stretches along the sequence.

  5. Transformation of Azotobacter vinelandii OP with a broad host range plasmid containing a cloned chromosomal nif-DNA marker.

    PubMed

    Bingle, W H

    1988-05-01

    The non-nitrogen-fixing (Nif-) strain UW10 of Azotobacter vinelandii OP (UW) was naturally induced to competence and transformed with broad host range plasmid pKT210 containing the cloned wild-type nif-10 locus from A. vinelandii UW (Nif+); this marker was unable to complement the nif-10 mutation in trans, but could through recombination with the chromosome. The most frequent type of transformation event observed was recombination between the homologous regions of the plasmid and chromosome (producing Nif+ transformants) with loss of the plasmid vector. At a substantially lower frequency, transformants expressing the plasmid-encoded antibiotic resistance determinants were isolated which were phenotypically Nif-. Agarose gel electrophoresis showed that these transformants contained a plasmid migrating with the same mobility as the original donor plasmid. During culture these transformants acquired a Nif+ phenotype without the loss of the plasmid, as judged by the use of a hybridization probe specific for the cloned nif-DNA fragment. These data indicate that plasmids carrying sequences homologous to chromosomal sequences could be maintained in recombination-proficient A. vinelandii UW. The introduction of plasmids containing sequences homologous to chromosomal sequences was facilitated by prelinearization of the plasmid using a restriction endonuclease generating cohesive ends. Because the site of linearization could be chosen outside the region of shared homology, it was unlikely that the route of plasmid establishment occurred via a homology-facilitated transformation mechanism. The data also indicated that A. vinelandii UW could harbor broad host range cloning vectors based on plasmid RSF1010 without significant impairment of its nitrogen-fixation ability.

  6. Evaluation of two new fluorochromes, TOTO and YOYO, for DNA content analysis in cells and chromosomes by flow cytometry

    SciTech Connect

    Hirons, G.T.; Crissman, H.A. )

    1993-01-01

    The fluorochromes TOTO and YOYO were evaluated for their effectiveness in staining for DNA content analysis by flow cytometry (FCM). The dyes are dimers of thiazole orange (TO) and yellow oxazole (YO), respectively (Molecular Probes, Eugene, OR), and both have a very high quantum efficiency. Spectrofluorometric analysis showed that TOTO and YOYO had little fluorescence until bound to DNA or RNA. YOYO, the brighter of the two dyes, had an emission peak at [approximately]510 nm and TOTO at [approximately]530 nm. Analysis by flow cytometry indicated that cells stained with either dye at a concentration of [approximately]4.0 [mu]M could be preferentially excited at either 457 or 488 nm. Unfixed nuclei and fixed cells both treated with RNase, stained with either TOTO or YOYO, and analyzed by FCM yielded coefficients of variation (CV) comparable to CVs obtained for the same samples stained with mithramycin (MI) when excited at 457 nm and propidium iodide (PI) when excited at 488 nm. Both TOTO and YOYO are also being evaluated for their effectiveness in staining Chinese hamster embryo chromosomes; these results are being compared with results obtained with PI stained chromosomes.

  7. European Y-chromosomal lineages in Polynesians: a contrast to the population structure revealed by mtDNA.

    PubMed Central

    Hurles, M E; Irven, C; Nicholson, J; Taylor, P G; Santos, F R; Loughlin, J; Jobling, M A; Sykes, B C

    1998-01-01

    We have used Y-chromosomal polymorphisms to trace paternal lineages in Polynesians by use of samples previously typed for mtDNA variants. A genealogical approach utilizing hierarchical analysis of eight rare-event biallelic polymorphisms, seven microsatellite loci, and internal structural analysis of the hypervariable minisatellite, MSY1, has been used to define three major paternal-lineage clusters in Polynesians. Two of these clusters, both defined by novel MSY1 modular structures and representing 55% of the Polynesians studied, are also found in coastal Papua New Guinea. Reduced Polynesian diversity, relative to that in Melanesians, is illustrated by the presence of several examples of identical MSY1 codes and microsatellite haplotypes within these lineage clusters in Polynesians. The complete lack of Y chromosomes having the M4 base substitution in Polynesians, despite their prevalence (64%) in Melanesians, may also be a result of the multiple bottleneck events during the colonization of this region of the world. The origin of the M4 mutation has been dated by use of two independent methods based on microsatellite-haplotype and minisatellite-code diversity. Because of the wide confidence limits on the mutation rates of these loci, the M4 mutation cannot be conclusively dated relative to the colonization of Polynesia, 3,000 years ago. The other major lineage cluster found in Polynesians, defined by a base substitution at the 92R7 locus, represents 27% of the Polynesians studied and, most probably, originates in Europe. This is the first Y-chromosomal evidence of major European admixture with indigenous Polynesian populations and contrasts sharply with the picture given by mtDNA evidence. PMID:9837833

  8. Human placental Na/sup +/, K/sup +/-ATPase. cap alpha. subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    SciTech Connect

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-11-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na/sup +/, K/sup +/-ATPase ..cap alpha.. subunit was cloned from human placenta and its sequence was identical to that encoding the ..cap alpha.. subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na/sup +/, K/sup +/-ATPase gene from various human tissues and cell lines revealed only one band (approx. = 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) lambdagt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the ..cap alpha.. subunit is on the short is on the short arm (band p11-p13) of chromosome 1.

  9. Analysis of X chromosome genomic DNA sequence copy number variation associated with premature ovarian failure (POF)

    PubMed Central

    Quilter, C.R.; Karcanias, A.C.; Bagga, M.R.; Duncan, S.; Murray, A.; Conway, G.S.; Sargent, C.A.; Affara, N.A.

    2013-01-01

    BACKGROUND Premature ovarian failure (POF) is a heterogeneous disease defined as amenorrhoea for >6 months before age 40, with an FSH serum level >40 mIU/ml (menopausal levels). While there is a strong genetic association with POF, familial studies have also indicated that idiopathic POF may also be genetically linked. Conventional cytogenetic analyses have identified regions of the X chromosome that are strongly associated with ovarian function, as well as several POF candidate genes. Cryptic chromosome abnormalities that have been missed might be detected by array comparative genomic hybridization. METHODS In this study, samples from 42 idiopathic POF patients were subjected to a complete end-to-end X/Y chromosome tiling path array to achieve a detailed copy number variation (CNV) analysis of X chromosome involvement in POF. The arrays also contained a 1 Mb autosomal tiling path as a reference control. Quantitative PCR for selected genes contained within the CNVs was used to confirm the majority of the changes detected. The expression pattern of some of these genes in human tissue RNA was examined by reverse transcription (RT)–PCR. RESULTS A number of CNVs were identified on both Xp and Xq, with several being shared among the POF cases. Some CNVs fall within known polymorphic CNV regions, and others span previously identified POF candidate regions and genes. CONCLUSIONS The new data reported in this study reveal further discrete X chromosome intervals not previously associated with the disease and therefore implicate new clusters of candidate genes. Further studies will be required to elucidate their involvement in POF. PMID:20570974

  10. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung

    SciTech Connect

    Weston, A.; Willey, J.C.; Modali, R.; Sugimura, H.; McDowell, E.M.; Resau, J.; Light, B.; Haugen, A.; Mann, D.L.; Trump, B.F.; Harris, C.C. )

    1989-07-01

    Activation of protooncogens and inactivation of putative tumor suppressor genes are genetic lesions considered to be important in lung carcinogenesis. Fifty-four cases of non-small-cell lung cancer (23 adenocarcinomas, 23 squamous-cell carcinomas, and 8 large-cell carcinomas) were examined for loss of DNA sequences at 13 polymorphic genetic loci. Loss of heterozygosity was seen more frequently in squamous-cell carcinoma than in adenocarcinoma. The loss of DNA sequences from the short arm of chromosome 17 (D17S1 locus) was detected in 8 of 9 heterozygous cases of squamous-cell carcinoma and in only 2 of 11 heterozygous cases of adenocarcinomas. Loss of DNA sequences from chromosome 3 was seen in 16 of 31 cases where the constitutive DNA was heterozygous-i.e., informative. Loss of heterozygosity at the chromosome 13q locus, D13S3, was seen in 9 of 21 informative cases, and in 2 cases, both adenocarcinomas, duplication of the intact DNA sequences suggested the possibility that mitotic recombination had occurred. Frequent DNA sequence deletions, including those from chromosome 17, in squamous-cell carcinomas may reflect the extensive mutagenic and clastogenic effects of tobacco smoke that may lead to inactivation of putative tumor-suppressor genes.

  11. PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria

    PubMed Central

    Devigne, Alice; Guérin, Philippe; Lisboa, Johnny; Quevillon-Cheruel, Sophie; Armengaud, Jean; Sommer, Suzanne; Bouthier de la Tour, Claire

    2016-01-01

    ABSTRACT PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCE D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation

  12. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    SciTech Connect

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  13. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment

    SciTech Connect

    Funk, C.D.; Funk, L.B.; Kennedy, M.E.; Pong, A.S.; Fitzgerald, G.A. )

    1991-06-01

    Platelets metabolize arachidonic acid to thromboxane A{sub 2}, a potent platelet aggregator and vasoconstrictor compound. The first step of this transformation is catalyzed by prostaglandin (PG) G/H synthase, a target site for nonsteroidal antiinflammatory drugs. We have isolated the cDNA for both human platelet and human erythroleukemia cell PGG/H synthase using the polymerase chain reaction and conventional screening procedures. The cDNA encoding the full-length protein was expressed in COS-M6 cells. Microsomal fractions from transfected cells produced prostaglandin endoperoxide derived products which were inhibited by indomethacin and aspirin. Mutagenesis of the serine residue at position 529, the putative aspirin acetylation site, to an asparagine reduced cyclooxygenase activity to barely detectable levels, an effect observed previously with the expressed sheep vesicular gland enzyme. Platelet-derived growth factor and phorbol ester differentially regulated the expression of PGG/H synthase mRNA levels in the megakaryocytic/platelet-like HEL cell line. The PGG/H synthase gene was assigned to chromosome 9 by analysis of a human-hamster somatic hybrid DNA panel. The availability of platelet PGG/H synthase cDNA should enhance our understanding of the important structure/function domains of this protein and it gene regulation.

  14. Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt.

    PubMed

    Bhowmick, Biplab Kumar; Yamamoto, Masashi; Jha, Sumita

    2016-01-01

    Coccinia grandis is a widely distributed dioecious cucurbit in India, with heteromorphic sex chromosomes and X-Y sex determination mode. The present study aids in the cytogenetic characterization of four native populations of this plant employing distribution patterns of 45S rDNA on chromosomes and guanine-cytosine (GC)-rich heterochromatin in the genome coupled with flow cytometric determination of genome sizes. Existence of four nucleolar chromosomes could be confirmed by the presence of four telomeric 45S rDNA signals in both male and female plants. All four 45S rDNA sites are rich in heterochromatin evident from the co-localization of telomeric chromomycin A (CMA)(+ve) signals. The size of 45S rDNA signal was found to differ between the homologues of one nucleolar chromosome pair. The distribution of heterochromatin is found to differ among the male and female populations. The average GC-rich heterochromatin content of male and female populations is 23.27 and 29.86 %, respectively. Moreover, the male plants have a genome size of 0.92 pg/2C while the female plants have a size of 0.73 pg/2C, reflecting a huge genomic divergence between the genders. The great variation in genome size is owing to the presence of Y chromosome in the male populations, playing a multifaceted role in sexual divergence in C. grandis. PMID:25795278

  15. Hybridization between multiple fence lizard lineages in an ecotone: locally discordant variation in mitochondrial DNA, chromosomes, and morphology.

    PubMed

    Leaché, Adam D; Cole, Charles J

    2007-03-01

    We investigated a hybrid zone between two major lineages of fence lizards (Sceloporus cowlesi and Sceloporus tristichus) in the Sceloporus undulatus species complex in eastern Arizona. This zone occurs in an ecotone between Great Basin Grassland and Conifer Woodland habitats. We analysed spatial variation in mtDNA (N=401; 969 bp), chromosomes (N=217), and morphology (N=312; 11 characters) to characterize the hybrid zone and assess species limits. A fine-scale population level phylogenetic analysis refined the boundaries between these species and indicated that four nonsister mtDNA clades (three belonging to S. tristichus and one to S. cowlesi) are sympatric at the centre of the zone. Estimates of cytonuclear disequilibria in the population closest to the centre of the hybrid zone suggest that the S. tristichus clades are randomly mating, but that the S. cowlesi haplotype has a significant nonrandom association with nuclear alleles. Maximum-likelihood cline-fitting analyses suggest that the karyotype, morphology, and dorsal colour pattern clines are all coincident, but the mtDNA cline is skewed significantly to the south. A temporal comparison of cline centres utilizing karyotype data collected in the early 1970s and in 2002 suggests that the cline may have shifted by approximately 1.5 km to the north over a 30-year period. The recent northward expansion of juniper trees into the Little Colorado River Basin resulting from intense cattle overgrazing provides a plausible mechanism for a shifting hybrid zone and the introgression of the mtDNA haplotypes, which appear to be selectively neutral. It is clear that complex interactions are operating simultaneously in this contact zone, including the formation of hybrids between populations within S. tristichus having diagnostic mtDNA, morphology, karyotypes, and dorsal colour patterns, and secondary contact between these and a distantly related yet morphologically cryptic mtDNA lineage (S. cowlesi). PMID:17305859

  16. Cycles of chromosome instability are associated with a fragilesite and are increased by defects in DNA replication and checkpointcontrols in yeast

    SciTech Connect

    Admire, Anthony; Shanks, Lisa; Danzl, Nicole; Wang, Mei; Weier,Ulli; Stevens, William; Hunt, Elizabeth; Weinert, Ted

    2005-11-22

    We report here that a normal budding yeast chromosome (ChrVII) can undergo remarkable cycles of chromosome instability. The events associated with cycles of instability caused a distinctive ''sectoring'' of colonies on selective agar plates. We found that instability initiated at any of several sites on ChrVII, and was sharply increased by the disruption of DNA replication or by defects in checkpoint controls. We studied in detail the cycles of instability associated with one particular chromosomal site (the ''403 site''). This site contained multiple tRNA genes known to stall replication forks, and when deleted, the overall frequency of sectoring was reduced. Instability of the 403 site involved multiple nonallelic recombination events that led to the formation of amonocentric translocation. This translocation remained unstable, frequently undergoing either loss or recombination events linked to the translocation junction. These results suggest a model in which instability initiates at specific chromosomal sites that stall replication forks. Forks not stabilized by checkpoint proteins break and undergo multiple rounds of nonallelic recombination to form translocations. Some translocations remain unstable because they join two ''incompatible'' chromosomal regions. Cycles of instability of this normal yeast chromosome may be relevant to chromosome instability of mammalian fragile sites and of chromosomes in cancer cells.

  17. Sister chromatid exchange assessment by chromosome orientation-fluorescence in situ hybridization on the bovine sex chromosomes and autosomes 16 and 26.

    PubMed

    Revay, T; King, W A

    2012-01-01

    Mammalian genome replication and maintenance are intimately coupled with the mechanisms that ensure cohesion between the resultant sister chromatids and the repair of DNA breaks. Although a sister chromatid exchange (SCE) is an error-free swapping of precisely matched and identical DNA strands, repetitive elements adjacent to the break site can act as alternative template sites and an unequal sister chromatid exchange can result, leading to structural variations and copy number change. Here we test the vulnerability for SCEs of the repeat-rich bovine Y chromosome in comparison with X, 16 and 26 chromosomes, using chromosome orientation-fluorescence in situ hybridization. The mean SCE rate of the Y chromosome (0.065 ± 0.029) was similar to that of BTA16 and BTA26 (0.065, 0.055), but was only approximately half of that of the X chromosome (0.142). As the chromosomal length affects the number of SCE events, we adjusted the SCE rates of the Y, 16, and 26 chromosomes to the length of the largest chromosome X resulting in very similar adjusted SCE (SCE(adj)) rates in all categories. Our results - based on 3 independent bulls - show that, although the cattle Y chromosome is a chest full of repeated elements, their presence and the documented activity of repeats in SCE formation does not manifest in significantly higher SCE(adj) rates and suggest the importance of the structural organization of the Y chromosome and the role of alternative mitotic DNA repair mechanisms.

  18. Role of DNA damage and repair in the function of eukaryotic genes: radiation-induced single-strand breaks and their rejoining in chromosomal and extrachromosomal ribosomal DNA of Tetrahymena

    SciTech Connect

    Chiu, S.M.; Oleinick, N.L.

    1980-04-01

    The production and rejoining of single-strand breaks (SSB) in chromosomal DNA and extrachromosomal ribosomal DNA (rDNA) were investigated after sublethal doses of ..gamma.. radiation to exponentially growing Tetrahymena. Hydrogen-3-labeled total nuclear DNA isolated from either control or irradiated cells was heat denatured and electrophoresed in agarose gels containing formaldehyde. Ribosomal DNA was identified by hybridization to (/sup 32/P)rRNA after transferring the DNA from the gels to nitrocellulose strips. It was found that (a) approximately 0.68 SSB is produced in each strand of rDNA exposed to 40 krad; (b) greater than 80% of SSB were rejoined within the first 20 min after irradiation in both chromosomal and rDNA; and (c) the rejoining process in both chromosomal and rDNA proceeded in the presence of inhibitors of protein synthesis, RNA synthesis, or oxidative metabolism. While the majority of SSB induced by 40 krad is rejoined within 20 min after irradiation, the resumption of rRNA synthesis does not occur until 30 min thereafter; it is concluded that the restoration of the normal size of the rDNA template is probably necessary but not sufficient for the resumption of rRNA synthesis.

  19. Localization of the gene (LAMA4) to chromosome 6q21 and isolation of a partial cDNA encoding a variant laminin A chain

    SciTech Connect

    Richards, A.J.; Al-Imara, L.; Carter, N.P.

    1994-07-01

    Laminin is a basement membrane glycoprotein composed of three nonidentical chains, A, B1, and B2. Variant chains such as merosin and S-laminin have been found in different tissues. The authors have isolated a cDNA encoding a novel laminin A variant that hybridizes to a 6.45-kb mRNA. Using amplification of genomic DNA and flow-sorted chromosomes they have assigned the gene (LAMA4) for this new laminin A variant to chromosome 6. Fluorescence in situ hybridization of a YAC clone further localized the gene to 6q21. 19 refs., 2 figs.

  20. Separating the effects of mutation and selection in producing DNA skew in bacterial chromosomes

    PubMed Central

    Morton, Richard A; Morton, Brian R

    2007-01-01

    Background Many bacterial chromosomes display nucleotide asymmetry, or skew, between the leading and lagging strands of replication. Mutational differences between these strands result in an overall pattern of skew that is centered about the origin of replication. Such a pattern could also arise from selection coupled with a bias for genes coded on the leading strand. The relative contributions of selection and mutation in producing compositional skew are largely unknown. Results We describe a model to quantify the contribution of mutational differences between the leading and lagging strands in producing replication-induced skew. When the origin and terminus of replication are known, the model can be used to estimate the relative accumulation of G over C and of A over T on the leading strand due to replication effects in a chromosome with bidirectional replication arms. The model may also be implemented in a maximum likelihood framework to estimate the locations of origin and terminus. We find that our estimations for the origin and terminus agree very well with the location of genes that are thought to be associated with the replication origin. This indicates that our model provides an accurate, objective method of determining the replication arms and also provides support for the hypothesis that these genes represent an ancestral cluster of origin-associated genes. Conclusion The model has several advantages over other methods of analyzing genome skew. First, it quantifies the role of mutation in generating skew so that its effect on composition, for example codon bias, can be assessed. Second, it provides an objective method for locating origin and terminus, one that is based on chromosome-wide accumulation of leading vs lagging strand nucleotide differences. Finally, the model has the potential to be utilized in a maximum likelihood framework in order to analyze the effect of chromosome rearrangements on nucleotide composition. PMID:17935620

  1. Comparability of multiple data types from the Bering Strait region: cranial and dental metrics and nonmetrics, mtDNA, and Y-chromosome DNA.

    PubMed

    Herrera, Brianne; Hanihara, Tsunehiko; Godde, Kanya

    2014-07-01

    Different data types have previously been shown to have the same microevolutionary patterns in worldwide data sets. However, peopling of the New World studies have shown a difference in migration paths and timings using multiple types of data, spurring research to understand why this is the case. This study was designed to test the degree of similarity in evolutionary patterns by using cranial and dental metric and nonmetric data, along with Y-chromosome DNA and mtDNA. The populations used included Inuits from Alaska, Canada, Siberia, Greenland, and the Aleutian Islands. For comparability, the populations used for the cranial and molecular data were from similar geographic regions or had a shared population history. Distance, R and kinship matrices were generated for use in running Mantel tests, PROTEST analyses, and Procrustes analyses. A clear patterning was seen, with the craniometric data being most highly correlated to the mtDNA data and the cranial nonmetric data being most highly correlated with the Y-chromosome data, while the phenotypic data were also linked. This patterning is suggestive of a possible male or female inheritance, or the correlated data types are affected by the same or similar evolutionary forces. The results of this study indicate cranial traits have some degree of heritability. Moreover, combining data types leads to a richer knowledge of biological affinity. This understanding is important for bioarchaeological contexts, in particular, peopling of the New World studies where focusing on reconciling the results from comparing multiple data types is necessary to move forward. PMID:24643445

  2. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  3. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  4. Population genetic diversity of the northern snakehead (Channa argus) in China based on the mitochondrial DNA control region and adjacent regions sequences.

    PubMed

    Zhou, Aiguo; Zhuo, Xiaolei; Zou, Qing; Chen, Jintao; Zou, Jixing

    2015-06-01

    Genetic variation and population structure of northern snakehead (Channa argus) from eight locations in China were investigated using mitochondrial DNA control region and adjacent regions sequences. Sequence analysis showed that there were 105 haplotypes in 260 individuals, 48 unique haplotypes and 57 shared haplotypes, but no common haplotype shared by all populations. As a whole, the haplotype diversity was high (h=0.989), while the nucleotide diversity was low (π=0.00482). AMOVA analysis detected significant genetic differentiation among all eight populations (FST=0.328, p<0.01) and 66.17% of the total variance was resulted from intra-population differentiation. UPGMA analysis indicated that the eight populations could be divided into four major clusters, which was consistent with that the eight sampled locations were belonged to four isolated river systems. The neutrality and mismatch distribution tests suggested that the eight populations of C. argus in the sampling locations underwent recent population expansion. Among the eight populations, the Erhai Lake population may represent a unique genetic resource and therefore needs to be conserved. PMID:24724976

  5. Population genetic diversity of the northern snakehead (Channa argus) in China based on the mitochondrial DNA control region and adjacent regions sequences.

    PubMed

    Zhou, Aiguo; Zhuo, Xiaolei; Zou, Qing; Chen, Jintao; Zou, Jixing

    2015-06-01

    Genetic variation and population structure of northern snakehead (Channa argus) from eight locations in China were investigated using mitochondrial DNA control region and adjacent regions sequences. Sequence analysis showed that there were 105 haplotypes in 260 individuals, 48 unique haplotypes and 57 shared haplotypes, but no common haplotype shared by all populations. As a whole, the haplotype diversity was high (h=0.989), while the nucleotide diversity was low (π=0.00482). AMOVA analysis detected significant genetic differentiation among all eight populations (FST=0.328, p<0.01) and 66.17% of the total variance was resulted from intra-population differentiation. UPGMA analysis indicated that the eight populations could be divided into four major clusters, which was consistent with that the eight sampled locations were belonged to four isolated river systems. The neutrality and mismatch distribution tests suggested that the eight populations of C. argus in the sampling locations underwent recent population expansion. Among the eight populations, the Erhai Lake population may represent a unique genetic resource and therefore needs to be conserved.

  6. Y-Chromosome and mtDNA Genetics Reveal Significant Contrasts in Affinities of Modern Middle Eastern Populations with European and African Populations

    PubMed Central

    Badro, Danielle A.; Youhanna, Sonia C.; Salloum, Angélique; Ghassibe-Sabbagh, Michella; Johnsrud, Brian; Khazen, Georges; Matisoo-Smith, Elizabeth; Soria-Hernanz, David F.; Wells, R. Spencer; Tyler-Smith, Chris; Platt, Daniel E.; Zalloua, Pierre A.

    2013-01-01

    The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of FST's, RST's, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations. PMID:23382925

  7. Measurement of chromosomal aberrations, sister chromatid exchange, hprt mutations, and DNA adducts in peripheral lymphocytes of human populations at increased risk for cancer

    SciTech Connect

    Jacobson-Kram, D. |; Albertini, R.J.; Branda, R.F.

    1993-10-01

    We have measured various indicators of DNA damage in peripheral lymphocytes of human populations potentially at increased risk for cancer. Sister chromatid exchanges (SCE) and polycyclic aromatic hydrocarbon (PAH)-DNA adducts were evaluated in a group of firefighters; chromosomal aberrations and hprt mutations were evaluated in a group of cancer patients undergoing radioimmunoglobulin therapy (RIT); SCE and acrolein-modified DNA were measured in cancer chemotherapy, patients and in pharmacists preparing chemotherapy prescriptions; and SCE and PAH-DNA adducts are being measured in U.S. army troops stationed in Kuwait. Results indicate that both SCE and PAH-DNA adduct levels were not elevated in firefighters, but that other factors such as smoking status and race were risk factors for increased SCE and PAH-DNA adducts. RIT was found to increase background rates of chromosome-type aberrations and frequencies of hprt mutations and there was a strong correlation between levels of therapy-induced chromosome damage sustained in vivo and in vitro sensitivity to radiation-induced chromosome damage. Peripheral blood lymphocytes of cancer patients treated with cyclophosphamide showed higher levels of SCE and had a higher incidence of acrolein adducts in DNA. Lymphocytes from pharmacists preparing antineoplastic drugs were found to acquire increased in vitro sensitivity to SCE induction by phosphoramide mustard with increased lifetime duration of drug handling. A prospective, longitudinal study was performed to identify environmental factors that modulate genetic damage in breast cancer patients. Women with benign breast masses and no apparent disease served as controls. Mutant frequency, cloning efficiency, and chromosomal aberration frequency did not differ significantly among the three groups. 10 refs., 2 figs., 4 tabs.

  8. Determination of population origin: a comparison of autosomal SNPs, Y-chromosomal and mtDNA haplogroups using a Malagasy population as example

    PubMed Central

    Poetsch, Micaela; Wiegand, Aline; Harder, Melanie; Blöhm, Rowena; Rakotomavo, Noel; Freitag-Wolf, Sandra; von Wurmb-Schwark, Nicole

    2013-01-01

    Y-chromosomal and mitochondrial DNA (mtDNA) polymorphisms have been used for population studies for a long time. However, there is another possibility to define the origin of a population: autosomal single-nucleotide polymorphisms (SNPs) whose allele frequencies differ considerably in different populations. In an attempt to compare the usefulness of these approaches we studied a population from Madagascar using all the three mentioned approaches. Former investigations of Malagasy maternal (mtDNA) and paternal (Y chromosome) lineages have led to the assumption that the Malagasy are an admixed population with an African and Asian-Indonesian heritage. Our additional study demonstrated that more than two-third of the Malagasy investigated showed clearly a West African genotype regarding only the autosomal SNPs despite the fact that 64% had an Asian mtDNA and more than 70% demonstrated an Asian-Indonesian heritage in either mtDNA or Y-chromosomal haplogroup or both. Nonetheless, the admixture of the Malagasy could be confirmed. A clear African or Asian-Indonesian heritage according to all the three DNA approaches investigated was only found in 14% and 1% of male samples, respectively. Not even the European or Northern African influences, detected in 9% of males (Y-chromosomal analysis) and 11% of samples (autosomal SNPs) were consistent. No Malagasy in our samples showed a European or Northern African origin in both categories. So, the analysis of autosomal SNPs could confirm the admixed character of the Malagasy population, even if it pointed to a greater African influence as detectable by Y-chromosomal or mtDNA analysis. PMID:23612573

  9. Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray.

    PubMed

    Rocha, Laiane Corsini; Mittelmann, Andrea; Houben, Andreas; Techio, Vânia Helena

    2016-07-01

    Sites of 45S rDNA of Lolium are regions denominated fragile sites (FSs), constituting regions slightly stained with DAPI due to increased DNA unpacking in metaphasic chromosomes. Considered to be fragile regions in the genome, the FSs might be more responsive to induced breaks and result in chromosomal fragments and rearrangements, unless repairing mechanisms such as recombination or de novo telomere formation play a role at the break site of the DNA. Thus, this study aimed at investigating if SFs from Lolium are hotspots for the occurrence of breakages induced by X-ray and if they are regions favorable to synthesize new telomeres, using Hordeum vulgare as a comparative model. Lolium multiflorum and H. vulgare seedlings were irradiated with 20 and 50 Gy X-ray and evaluated one day following the irradiation and at 7-days intervals for a 28-days period, using FISH technique with 45S rDNA and Arabidopsis-type telomere probes in order to investigate the presence of chromosomal breakages and new telomere formation. H. vulgare did not survive after a few days of irradiation due to the increased rate of abnormalities. L. multiflorum also exhibited chromosomal abnormalities following the exposure, yet over the 28-days trial it had a decrease in the chromosomal damage rate and formation of de novo telomere has not been detected along this time. Despite being considered to be fragile regions in the genome, the 45S rDNA sites of Lolium are not hotspots to chromosomal breakages after the induction of breakages. PMID:27174104

  10. Marked contribution of alternative end-joining to chromosome-translocation-formation by stochastically induced DNA double-strand-breaks in G2-phase human cells.

    PubMed

    Soni, Aashish; Siemann, Maria; Pantelias, Gabriel E; Iliakis, George

    2015-11-01

    Ionizing radiation (IR) induces double strand breaks (DSBs) in cellular DNA, which if not repaired correctly can cause chromosome translocations leading to cell death or cancer. Incorrect joining of DNA ends generating chromosome translocations can be catalyzed either by the dominant DNA-PKcs-dependent, classical non-homologous end-joining (c-NHEJ), or by an alternative end-joining (alt-EJ) process, functioning as backup to abrogated c-NHEJ, or homologous recombination repair. Alt-EJ operates with slower kinetics as compared to c-NHEJ and generates larger alterations at the junctions; it is also considered crucial to chromosome translocation-formation. A recent report posits that this view only holds for rodent cells and that in human cells c-NHEJ is the main mechanism of chromosome translocation formation. Since this report uses designer nucleases that induce DSBs with unique characteristics in specific genomic locations and PCR to detect translocations, we revisit the issue using stochastically distributed DSBs induced in the human genome by IR during the G2-phase of the cell cycle. For visualization and analysis of chromosome translocations, which manifest as chromatid translocations in cells irradiated in G2, we employ classical cytogenetics. In wild-type cells, we observe a significant contribution of alt-EJ to translocation formation, as demonstrated by a yield-reduction after treatment with inhibitors of Parp, or of DNA ligases 1 and 3 (Lig1, Lig3). Notably, a nearly fourfold increase in translocation formation is seen in c-NHEJ mutants with defects in DNA ligase 4 (Lig4) that remain largely sensitive to inhibitors of Parp, and of Lig1/Lig3. We conclude that similar to rodent cells, chromosome translocation formation from randomly induced DSBs in human cells largely relies on alt-EJ. We discuss DSB localization in the genome, characteristics of the DSB and the cell cycle as potential causes of the divergent results generated with IR and designer nucleases

  11. Human {beta}2 chain of laminin (formerly S chain): cDNA cloning, chromosomal localization, and expression in carcinomas

    SciTech Connect

    Wewer, U.M.; Durkin, M.E.; Albrechtsen, R.

    1994-11-15

    Overlapping cDNA clones that encode the full-length human laminin {beta}2 chain, formerly called the S chain, were isolated. The cDNA of 5680 nt contains a 5391-nt open reading frame encoding 1797 amino acids. At the amino terminus is a 32-amino-acid signal peptide that is followed by the mature {beta}2 chain polypeptide of 1765 amino acids with a calculated molecular mass of 192,389 Da. The human {beta}2 chain is predicted to have all of the seven structural domains typical of the {beta} chains of laminin, including the short cysteine-rich {alpha} region. The amino acid sequence of human {beta}2 chain showed 86.1% sequence identity to the rat {beta}2 chain, 50.0% to human {beta}1 chain, and 36.3% to the human {beta}3 chain. The greatest sequence identity was in domains VI, V, and III. The sequence of a 24-amino-acid peptide fragment isolated from the {beta}2 chain of laminin purified from human amniotic basement membrane matched the sequence predicted from the cDNA, confirming that the cDNA encodes human {beta}2 laminin. The cDNA was used to assign the gene (LAMB2) to human chromosome 3p21 by in situ hybridization. It is not linked to genes for human laminin chains {alpha}1, {beta}1, and {gamma}1 or other known laminin genes. Immunostaining showed that the {beta}2 chain is localized to the smooth muscle basement membranes of the arteries, while the homologous {beta}1 chain is confined to the subendothelial basement membranes. The {beta}2 chain was found in the basement membranes of ovarian carcinomas but not colon carcinomas. These results indicate that the expression of the {beta}2 chain gene is tightly regulated in normal human tissues and in disease. 43 refs., 6 figs., 1 tab.

  12. Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics

    PubMed Central

    Suspène, R; Caval, V; Henry, M; Bouzidi, M S; Wain-Hobson, S; Vartanian, J-P

    2014-01-01

    Background: The revolution in cancer genomics shows that the dominant mutations are CG->TA transitions. The sources of these mutations are probably two host cell cytidine deaminases APOBEC3A and APOBEC3B. The former in particular can access nuclear DNA and monotonously introduce phenomenal numbers of C->T mutations in the signature 5′TpC context. These can be copied as G->A transitions in the 5′GpA context. Methods: DNA hypermutated by an APOBEC3 enzyme can be recovered by a technique called 3DPCR, which stands for differential DNA denaturation PCR. This method exploits the fact that APOBEC3-edited DNA is richer in A+T compared with the reference. We explore explicitly 3DPCR error using cloned DNA. Results: Here we show that the technique has a higher error rate compared with standard PCR and can generate DNA strands containing both C->T and G->A mutations in a 5′GpCpR context. Sequences with similar traits have been recovered from human tumour DNA using 3DPCR. Conclusions: Differential DNA denaturation PCR cannot be used to identify fixed C->T transitions in cancer genomes. Presently, the overall mutation frequency is ∼104–105 base substitutions per cancer genome, or 0.003–0.03 kb−1. By contrast, the 3DPCR error rate is of the order of 4–20 kb−1 owing to constant selection for AT DNA and PCR-mediated recombination. Accordingly, sequences recovered by 3DPCR harbouring mixed C->T and G->A mutations associated with the 5′GpC represent artefacts. PMID:24691422

  13. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress

    PubMed Central

    Simoneau, Antoine; Ricard, Étienne; Weber, Sandra; Hammond-Martel, Ian; Wong, Lai Hong; Sellam, Adnane; Giaever, Guri; Nislow, Corey; Raymond, Martine; Wurtele, Hugo

    2016-01-01

    The Saccharomyces cerevisiae genome encodes five sirtuins (Sir2 and Hst1–4), which constitute a conserved family of NAD-dependent histone deacetylases. Cells lacking any individual sirtuin display mild growth and gene silencing defects. However, hst3Δ hst4Δ double mutants are exquisitely sensitive to genotoxins, and hst3Δ hst4Δ sir2Δ mutants are inviable. Our published data also indicate that pharmacological inhibition of sirtuins prevents growth of several fungal pathogens, although the biological basis is unclear. Here, we present genome-wide fitness assays conducted with nicotinamide (NAM), a pan-sirtuin inhibitor. Our data indicate that NAM treatment causes yeast to solicit specific DNA damage response pathways for survival, and that NAM-induced growth defects are mainly attributable to inhibition of Hst3 and Hst4 and consequent elevation of histone H3 lysine 56 acetylation (H3K56ac). Our results further reveal that in the presence of constitutive H3K56ac, the Slx4 scaffolding protein and PP4 phosphatase complex play essential roles in preventing hyperactivation of the DNA damage-response kinase Rad53 in response to spontaneous DNA damage caused by reactive oxygen species. Overall, our data support the concept that chromosome-wide histone deacetylation by sirtuins is critical to mitigate growth defects caused by endogenous genotoxins. PMID:26748095

  14. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress.

    PubMed

    Simoneau, Antoine; Ricard, Étienne; Weber, Sandra; Hammond-Martel, Ian; Wong, Lai Hong; Sellam, Adnane; Giaever, Guri; Nislow, Corey; Raymond, Martine; Wurtele, Hugo

    2016-04-01

    The Saccharomyces cerevisiae genome encodes five sirtuins (Sir2 and Hst1-4), which constitute a conserved family of NAD-dependent histone deacetylases. Cells lacking any individual sirtuin display mild growth and gene silencing defects. However, hst3Δ hst4Δ double mutants are exquisitely sensitive to genotoxins, and hst3Δ hst4Δ sir2Δmutants are inviable. Our published data also indicate that pharmacological inhibition of sirtuins prevents growth of several fungal pathogens, although the biological basis is unclear. Here, we present genome-wide fitness assays conducted with nicotinamide (NAM), a pan-sirtuin inhibitor. Our data indicate that NAM treatment causes yeast to solicit specific DNA damage response pathways for survival, and that NAM-induced growth defects are mainly attributable to inhibition of Hst3 and Hst4 and consequent elevation of histone H3 lysine 56 acetylation (H3K56ac). Our results further reveal that in the presence of constitutive H3K56ac, the Slx4 scaffolding protein and PP4 phosphatase complex play essential roles in preventing hyperactivation of the DNA damage-response kinase Rad53 in response to spontaneous DNA damage caused by reactive oxygen species. Overall, our data support the concept that chromosome-wide histone deacetylation by sirtuins is critical to mitigate growth defects caused by endogenous genotoxins. PMID:26748095

  15. DNA rearrangements in Euplotes crassus coincide with discrete periods of DNA replication during the polytene chromosome stage of macronuclear development

    SciTech Connect

    Frels, J.S.; Jahn, C.L.

    1995-12-01

    This report demonstrates that the timing of excision of transposon-like elements (Tecs) in Euplotes crassus coincides with distinct replication periods, even at a single locus. It relates this to the macronuclear development and DNA synthesis. 36 refs., 5 figs.

  16. A Method to Quantify Cell-Free Fetal DNA Fraction in Maternal Plasma Using Next Generation Sequencing: Its Application in Non-Invasive Prenatal Chromosomal Aneuploidy Detection

    PubMed Central

    Xu, Xu-Ping; Gan, Hai-Yan; Li, Fen-Xia; Tian, Qi; Zhang, Jun; Liang, Rong-Liang; Li, Ming

    2016-01-01

    Objective The fraction of circulating cell-free fetal (cff) DNA in maternal plasma is a critical parameter for aneuploidy screening with non-invasive prenatal testing, especially for those samples located in equivocal zones. We developed an approach to quantify cff DNA fractions directly with sequencing data, and increased cff DNAs by optimizing library construction procedure. Methods Artificial DNA mixture samples (360), with known cff DNA fractions, were used to develop a method to determine cff DNA fraction through calculating the proportion of Y chromosomal unique reads, with sequencing data generated by Ion Proton. To validate our method, we investigated cff DNA fractions of 2,063 pregnant women with fetuses who were diagnosed as high risk of fetal defects. The z-score was calculated to determine aneuploidies for chromosomes 21, 18 and 13. The relationships between z-score and parameters of pregnancies were also analyzed. To improve cff DNA fractions in our samples, two groups were established as follows: in group A, the large-size DNA fragments were removed, and in group B these were retained, during library construction. Results A method to determine cff DNA fractions was successfully developed using 360 artificial mixture samples in which cff DNA fractions were known. A strong positive correlation was found between z-score and fetal DNA fraction in the artificial mixture samples of trisomy 21, 18 and 13, as well as in clinical maternal plasma samples. There was a positive correlation between gestational age and the cff DNA fraction in the clinical samples, but no correlation for maternal age. Moreover, increased fetal DNA fractions were found in group A compared to group B. Conclusion A relatively accurate method was developed to determine the cff DNA fraction in maternal plasma. By optimizing, we can improve cff DNA fractions in sequencing samples, which may contribute to improvements in detection rate and reliability. PMID:26765738

  17. The telomeric region of the human X chromosome long arm: presence of a highly polymorphic DNA marker and analysis of recombination frequency.

    PubMed Central

    Oberlé, I; Drayna, D; Camerino, G; White, R; Mandel, J L

    1985-01-01

    A DNA fragment (named St14) derived from the human X chromosome reveals a small family of related sequences that have been mapped to the Xq26-Xq28 region by using a panel of rodent-human somatic cell hybrids. The probe detects in human DNA digested by Taq I a polymorphic system defined by a series of at least eight allelic fragments with a calculated heterozygosity in females of 80%. With Msp I, we found three additional restriction fragment length polymorphisms, each of them being defined by two alleles. These polymorphisms are also common in Caucasian populations. The genetic locus defined by probe St14 has been localized more precisely to the distal end of the X chromosome (in band q28) by linkage analysis to other polymorphic DNA markers. The results obtained suggest that the frequency of recombination is distributed very unevenly in the q27-qter region of the X chromosome, with a cluster of seven tightly linked loci in q28 showing about 30% recombination with the gene for coagulation factor IX located in the neighboring q27 band. Probe St14 reveals one of the most polymorphic loci known to date in the human genome, and 17 different genotypes have already been observed. It constitutes the best marker on the X chromosome and should be of great use for the genetic study of three important diseases: hemophilia A, mental retardation with a fragile X chromosome, and adrenoleukodystrophy. Images PMID:2986139

  18. Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system.

    PubMed

    Huang, L C; Wood, E A; Cox, M M

    1997-10-01

    We have created a system that utilizes the FLP recombinase of yeast to introduce exogenous cloned DNA reversibly at defined locations in the Escherichia coli chromosome. Recombination target (FRT) sites can be introduced permanently at random locations in the chromosome on a modified Tn5 transposon, now designed so that the inserted FRT can be detected and its location mapped with base pair resolution. FLP recombinase is provided as needed through the regulated expression of its gene on a plasmid. Exogenous DNA is introduced on a cloning vector that contains an FRT, selectable markers, and a replication origin designed to be deleted prior to electroporation for targeting purposes. High yields of targeted integrants are obtained, even in a recA background. This system permits rapid and precise excision of the introduced DNA when needed, without destroying the cells. The efficiency of targeting appears to be affected only modestly by transcription initiation upstream of the chromosomal FRT site. With rare exceptions, FRTs introduced to the bacterial chromosome are targeted with high efficiency regardless of their location. The system should facilitate studies of bacterial genome structure and function, simplify a wide range of chromosomal cloning applications, and generally enhance the utility of E. coli as an experimental organism in biotechnology. PMID:9324255

  19. Micro-geographical differentiation in Northern Iberia revealed by Y-chromosomal DNA analysis.

    PubMed

    Brion, María; Quintans, Bea; Zarrabeitia, Maite; Gonzalez-Neira, Anna; Salas, Antonio; Lareu, Victoria; Tyler-Smith, Chris; Carracedo, Angel

    2004-03-31

    Y-chromosome diversity has been analyzed at a micro-geographical level, examining 10 binary polymorphisms and 7 short tandem repeats (STRs) in 443 samples belonging to 11 populations from two regions of Northern Spain, Galicia and Cantabria. Both regions, as a whole, cluster with other Iberian populations. However, some individual populations, particularly that from the Pas Valley in Cantabria, depart markedly from this general pattern, with higher genetic distances and reduced diversity. This unusual population is even more distinct than the Basques from their Iberian neighbors. Genetic drift in a small isolated population could explain this special behavior, and in addition to its anthropological interest, this finding has important forensic implications.

  20. Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers.

    PubMed

    Hagelberg, E; Kayser, M; Nagy, M; Roewer, L; Zimdahl, H; Krawczak, M; Lió, P; Schiefenhövel, W

    1999-01-29

    Present-day Pacific islanders are thought to be the descendants of Neolithic agriculturalists who expanded from island South-east Asia several thousand years ago. They speak languages belonging to the Austronesian language family, spoken today in an area spanning half of the circumference of the world, from Madagascar to Easter Island, and from Taiwan to New Zealand. To investigate the genetic affinities of the Austronesian-speaking peoples, we analysed mitochondrial DNA, HLA and Y-chromosome polymorphisms in individuals from eight geographical locations in Asia and the Pacific (China, Taiwan, Java, New Guinea highlands, New Guinea coast, Trobriand Islands, New Britain and Western Samoa). Our results show that the demographic expansion of the Austronesians has left a genetic footprint. However, there is no simple correlation between languages and genes in the Pacific.

  1. Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers.

    PubMed Central

    Hagelberg, E; Kayser, M; Nagy, M; Roewer, L; Zimdahl, H; Krawczak, M; Lió, P; Schiefenhövel, W

    1999-01-01

    Present-day Pacific islanders are thought to be the descendants of Neolithic agriculturalists who expanded from island South-east Asia several thousand years ago. They speak languages belonging to the Austronesian language family, spoken today in an area spanning half of the circumference of the world, from Madagascar to Easter Island, and from Taiwan to New Zealand. To investigate the genetic affinities of the Austronesian-speaking peoples, we analysed mitochondrial DNA, HLA and Y-chromosome polymorphisms in individuals from eight geographical locations in Asia and the Pacific (China, Taiwan, Java, New Guinea highlands, New Guinea coast, Trobriand Islands, New Britain and Western Samoa). Our results show that the demographic expansion of the Austronesians has left a genetic footprint. However, there is no simple correlation between languages and genes in the Pacific. PMID:10091254

  2. Cloning of the cDNA (DSC1) coding for human type 1 desmocollin and its assignment to chromosome 18

    SciTech Connect

    King, I.A.; Buxton, R.S. ); Spurr, N.K.; Arnemann, J. )

    1993-11-01

    Desmosomes are adhesive epithelial junctions that contain two distinct classes of cadherin-related glycoproteins (desmogleins and desmocollins), both of which occur as several different isoforms whose expression is related to epithelial differentiation. The authors have now isolated cDNA clones encoding a human desmocollin that is expressed in the more differentiated layers of human epidermis. The isoform has 53% amino acid identity with the previously isolated human (type 3) desmocollin, which is expressed in the basal layers of the epidermis. However, the N- and C-termini of the mature proteins are more highly conserved. Using a panel of somatic cell hybrids, human type 1 desmocollin (gene DSC1) has been assigned to chromosome 18, the same location as the other desmocollin gene (DSC3) and the three desmoglein (DSG) genes already mapped. 49 refs., 5 figs., 1 tab.

  3. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix

    PubMed Central

    Iarovaia, Olga V.; Akopov, Sergey B.; Nikolaev, Lev G.; Sverdlov, Eugene D.; Razin, Sergey V.

    2005-01-01

    The spatial organization of an ∼170 kb region of human chromosome 19, including CD22 and GPR40–GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix. PMID:16049024

  4. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix.

    PubMed

    Iarovaia, Olga V; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D; Razin, Sergey V

    2005-01-01

    The spatial organization of an approximately 170 kb region of human chromosome 19, including CD22 and GPR40-GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix. PMID:16049024

  5. Y-chromosomal short tandem repeats haplotyping from vaginal swabs using a chelating resin-based DNA extraction method and a dual-round polymerase chain reaction.

    PubMed

    Iwasa, Mineo; Koyama, Hiroyoshi; Tsuchimochi, Tsukasa; Maeno, Yoshitaka; Isobe, Ichiro; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun; Matsumoto, Tomohiro; Nagao, Masataka

    2003-09-01

    Reported are 2 autopsy cases in which Y-chromosomal microsatellite short tandem repeats DYS19, DYS389I and II, DYS390, and DYS393 could be haplotyped with vaginal swabs by using a Chelex 100-based DNA extraction method and dual-round polymerase chain reaction. The extraction of DNA from vaginal swabs by using this method was as efficient or more efficient than using proteinase K and phenol-chloroform extraction or the alkaline lysis methods. Y-chromosomal microsatellite short tandem repeats haplotyping based on the dual-round polymerase chain reaction method provided genotypes from all the loci determined. Although amplification of Y-chromosomal microsatellite short tandem repeats loci is not directly involved in the existence of spermatozoa, it is considerably advantageous for male individualization from body fluid mixture stains in criminal cases.

  6. Sequential cloning of chromosomes

    SciTech Connect

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  7. Lack of evidence for association of meiotic nondisjunction with particular DNA haplotypes on chromosome 21.

    PubMed Central

    Sacchi, N; Gusella, J F; Perroni, L; Bricarelli, F D; Papas, T S

    1988-01-01

    The hypothesis of a predisposition to meiotic nondisjunction for chromosome 21 carrying a specific molecular haplotype has been tested. The haplotype in question is defined by the restriction fragment length polymorphisms for the D21S1/D21S11 loci. Our results obtained on a sample of Northern Italian families with the occurrence of trisomy 21 (Down syndrome) failed to support this hypothesis, contradicting a previous study [Antonarakis, S. E., Kittur, S. D., Metaxotou, C., Watkins, P. C. & Patel, A. S. (1985) Proc. Natl. Acad. Sci. USA 82, 3360-3364]. These findings rule out an association between any specific D21S1/D21S11 haplotype (as well as other haplotypes for the D21S13, ETS2, and D21S23 loci) and a putative cis-acting genetic element favoring the meiotic missegregation of chromosome 21. For this reason, no preventive screening for couples at risk for trisomy 21 may be based on any of the haplotypes tested. Images PMID:2898783

  8. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3

    SciTech Connect

    Haiming Chen; Lalioti, M.D.; Perrin, G.; Antonarakis, S.E.

    1996-07-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-binding cassette transporter gene family and is homologous to Drosophila w (and to 2 genes from other species) and to a lesser extent to Drosophila brown (bw) and scarlet (st) genes that are all involved in the transport of eye pigment precursor molecules. A DNA polymorphism with 62% heterozygosity due to variation of a poly (T) region in the 3{prime} UTR of the hW has been identified and used for the incorporation of this gene to the genetic map of chromosome 21. The hW is located at 21q22.3 between DNA markers D21S212 and D21S49 in a P1 clone that also contains marker BCEI. The gene is expressed at various levels in many human tissues. The contributions of this gene to the Down syndrome phenotypes, to human eye color, and to the resulting phenotypes of null or missense mutations are presently unknown. 56 refs., 8 figs., 1 tab.

  9. Physical organization of the 1.709 satellite IV DNA family in Bovini and Tragelaphini tribes of the Bovidae: sequence and chromosomal evolution.

    PubMed

    Adega, F; Chaves, R; Guedes-Pinto, H; Heslop-Harrison, J S

    2006-01-01

    Repetitive DNA in the mammalian genome is a valuable record and marker for evolution, providing information about the order and driving forces related to evolutionary events. The evolutionarily young 1.709 satellite IV DNA family is present near the centromeres of many chromosomes in the Bovidae. Here, we isolated 1.709 satellite DNA sequences from five Bovidae species belonging to Bovini: Bos taurus (BTA, cattle), Bos indicus (BIN, zebu), Bubalus bubalis (BBU, water buffalo) and Tragelaphini tribes: Taurotragus oryx (TOR, eland) and Tragelaphus euryceros (TEU, bongo). Its presence in both tribes shows the sequence predates the evolutionary separation of the two tribes (more than 10 million years ago), and primary sequence shows increasing divergence with evolutionary distance. Genome organization (Southern hybridization) and physical distribution (in situ hybridization) revealed differences in the molecular organization of these satellite DNA sequences. The data suggest that the sequences on the sex chromosomes and the autosomes evolve as relatively independent groups, with the repetitive sequences suggesting that Bovini autosomes and the Tragelaphini sex chromosomes represent the more primitive chromosome forms. PMID:16825766

  10. Physical organization of the 1.709 satellite IV DNA family in Bovini and Tragelaphini tribes of the Bovidae: sequence and chromosomal evolution.

    PubMed

    Adega, F; Chaves, R; Guedes-Pinto, H; Heslop-Harrison, J S

    2006-01-01

    Repetitive DNA in the mammalian genome is a valuable record and marker for evolution, providing information about the order and driving forces related to evolutionary events. The evolutionarily young 1.709 satellite IV DNA family is present near the centromeres of many chromosomes in the Bovidae. Here, we isolated 1.709 satellite DNA sequences from five Bovidae species belonging to Bovini: Bos taurus (BTA, cattle), Bos indicus (BIN, zebu), Bubalus bubalis (BBU, water buffalo) and Tragelaphini tribes: Taurotragus oryx (TOR, eland) and Tragelaphus euryceros (TEU, bongo). Its presence in both tribes shows the sequence predates the evolutionary separation of the two tribes (more than 10 million years ago), and primary sequence shows increasing divergence with evolutionary distance. Genome organization (Southern hybridization) and physical distribution (in situ hybridization) revealed differences in the molecular organization of these satellite DNA sequences. The data suggest that the sequences on the sex chromosomes and the autosomes evolve as relatively independent groups, with the repetitive sequences suggesting that Bovini autosomes and the Tragelaphini sex chromosomes represent the more primitive chromosome forms.

  11. Structure of a frequently rearranged rRNA-encoding chromosome in Giardia lamblia.

    PubMed Central

    Hou, G; Le Blancq, S M; E, Y; Zhu, H; Lee, M G

    1995-01-01

    It has been shown previously that the rRNA encoding chromosomes in Giardia lamblia undergo frequent rearrangements with an estimated rate of approximately 1% per cell per division (Le Blancq et al., 1992, Nucleic Acids Res., 17, 4539-4545). Following these observations, we searched for highly recombinogenic regions in one of the frequently rearranged rRNA encoding chromosomes, that is chromosome 1, a small, 1.1 Mb chromosome. Chromosome 1 undergoes frequent rearrangements that result in size variation of 5-20%. We analyzed the structure of chromosome 1 in clonal lineages from the WB strain. The two ends of chromosome 1 comprise telomere repeat [TAGGG] arrays joined to a truncated rRNA gene and a sequence referred to as '4e', respectively. Comparison of the structure of four polymorphic versions of chromosome 1, resulting from independent rearrangement events in four cloned lines, located a single polymorphic region to the variable rDNA-telomere domain. Chromosome 1 is organized into two domains: a core region spanning approximately 850 kb that does not exhibit size heterogeneity among different chromosome 1 and a variable region that spans 185-450 kb and includes the telomeric rRNA genes, referred to as the variable rDNA-telomere domain. The core region contains a conserved region, spanning approximately 550 kb adjacent to the telomeric 4e sequence, which is only present in the 4e containing chromosomes and a 300 kb region of repetitive sequences that are also components of other chromosomes as well. Changes in the number of rDNA repeats accounted for some, but not all, of the size variation. Since there are four chromosomes that share the core region of chromosome 1, we suggest that the genome is tetraploid for this chromosome. Images PMID:7667108

  12. TRF2-Mediated Control of Telomere DNA Topology as a Mechanism for Chromosome-End Protection.

    PubMed

    Benarroch-Popivker, Delphine; Pisano, Sabrina; Mendez-Bermudez, Aaron; Lototska, Liudmyla; Kaur, Parminder; Bauwens, Serge; Djerbi, Nadir; Latrick, Chrysa M; Fraisier, Vincent; Pei, Bei; Gay, Alexandre; Jaune, Emilie; Foucher, Kevin; Cherfils-Vicini, Julien; Aeby, Eric; Miron, Simona; Londoño-Vallejo, Arturo; Ye, Jing; Le Du, Marie-Hélène; Wang, Hong; Gilson, Eric; Giraud-Panis, Marie-Josèphe

    2016-01-21

    The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.

  13. Characterization and partial nucleotide sequence of endogenous type C retrovirus segments in human chromosomal DNA.

    PubMed Central

    Repaske, R; O'Neill, R R; Steele, P E; Martin, M A

    1983-01-01

    Twenty-six different murine leukemia virus (MuLV)-related clones have been isolated from a human DNA library and characterized by restriction enzyme mapping and reciprocal nucleic acid hybridization reactions. The sequence of approximately 2,600 nucleotides, spanning more than 4.0 kilobases, of one of the MuLV-related cloned human DNAs was also determined. The deduced amino acid sequence permitted the alignment of this prototype cloned human DNA segment with the p12 gag, p30 gag, p10 gag, and pol regions of Moloney MuLV. A majority of the endogenous type C retrovirus-related segments present in human DNA are approximately 6.0 kilobases in size and appear to contain a deletion of env sequences. Images PMID:6298769

  14. The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase α-primase and stimulate its ability to synthesize RNA primers.

    PubMed

    You, Zhiying; De Falco, Mariarosaria; Kamada, Katsuhiko; Pisani, Francesca M; Masai, Hisao

    2013-01-01

    The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2~7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2~7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.

  15. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  16. Microdissected double-minute DNA detects variable patterns of chromosomal localizations and multiple abundantly expressed transcripts in normal and leukemic cells

    SciTech Connect

    Sen, S.; Zhou, Hongyi; Stass, S.A.; Sen, P. ); Mulac-Jericevic, B.; Pirrotta, V. )

    1994-02-01

    Double-minute (dm) chromosomes are cytogenetically resolvable DNA amplification-mediating acentric extrachromosomal structures that are commonly seen in primary tumors, tumor cell lines, and drug-resistant cells grown in vitro. Selective isolation of dm DNAs with standard molecular biological techniques is difficult, and thus, detailed studies to elucidate their structure, site of chromosomal origin, and chromosomal reintegration patterns have been limited. In those instances in which a gene has been localized on dms, characterization of the remainder of the DNA, which far exceeds the size of the gene identified, has remained inconclusive. dms seen in the acute myeloid leukemia cell line HL-60 have been shown to harbor the c-myc protooncogene. In this paper, the authors report the successful isolation of the dm-specific DNAs from these cells by the microdissection/polymerase chain reaction technique and demonstrate that the dm DNAs derived from a single discrete normal chromosome segment 8q24.1-q24.2 reintegrate at various specific locations in the leukemic cells. The microdissected dm DNA detects multiple abundantly expressed transcripts distinct from c-myc mRNA on Northern blots. By devising a [open quotes]transcript selection[close quotes] strategy, they cloned the partial genomic sequence of a gene from the microdissected DNA that encodes two of these RNAs. This strategy will be generally applicable for rapid cloning of unknown amplified genes harbored on dms. With DNA from 20 microdissected dms, they constructed a genomic library of about 20,000 recombinant microclones with an average insert size of about 450 bp. The microclones should help in isolating corresponding yeast artificial chromosome clones for high-resolution physical mapping of dms in HL-60 cells. Furthermore, application of the microdissection technique appears to be an extremely feasible approach to characterization of dms in other cell types. 42 refs., 6 figs., 1 tab.

  17. Variability of the 5S and 45S rDNA Sites in Passiflora L. Species with Distinct Base Chromosome Numbers

    PubMed Central

    DE MELO, NATONIEL FRANKLIN; GUERRA, MARCELO

    2003-01-01

    Cytologically, the species of Passiflora with known chromosome number can be divided into four groups: (1) 2n = 12, 24, 36; (2) 2n = 24; (3) 2n = 18, 72; and (4) 2n = 20. The base chromosome number proposed for the genus is x = 6, with x = 9, x = 10 and x = 12 being considered secondary base numbers. In the present study, variability of 5S and 45S rDNA sites was investigated in 20 species of these four groups to check the reliability of this hypothesis. In the group with x = 6, five diploid species (2n = 12) exhibit two 5S rDNA sites and two (P. capsularis, P. morifolia and P. rubra) or four (P. misera 2x and P. tricuspis) 45S rDNA sites. The hexaploid cytotype of P. misera had 12 45S rDNA sites and six 5S rDNA. A tetraploid species, P. suberosa, had ten 45S rDNA sites and four 5S rDNA sites, both in the same chromosomes as the 45S rDNA sites. In the group with x = 9, P. actinia, P. amethystina, P. edmundoi, P. elegans, P. galbana, P. glandulosa and P. mucronata displayed six 45S rDNA sites, whereas P. alata, P. cincinnata, P. edulis f. flavicarpa, P. edulis var. roxo and P. laurifolia had four sites. In this group, all species were diploid (2n = 18) and had only two 5S rDNA sites. Passiflora foetida, the only species with 2n = 20, had six 45S rDNA sites and four 5S rDNA sites. The species with x = 12 (2n = 24), P. haematostigma and P. pentagona, showed four 45S rDNA sites and two 5S rDNA. In general, the number and location of 5S and 45S rDNA sites were consistent with the hypothesis of x = 6 as the probable ancestral genome for the genus, while the groups of species with x = 9, x = 10 and x = 12 were considered to be of tetraploid origin with descending dysploidy and gene silencing of some redundant gene sites, mainly those of 5S rDNA. PMID:12876193

  18. Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers.

    PubMed

    de Melo, Natoniel Franklin; Guerra, Marcelo

    2003-08-01

    Cytologically, the species of Passiflora with known chromosome number can be divided into four groups: (1) 2n = 12, 24, 36; (2) 2n = 24; (3) 2n = 18, 72; and (4) 2n = 20. The base chromosome number proposed for the genus is x = 6, with x = 9, x = 10 and x = 12 being considered secondary base numbers. In the present study, variability of 5S and 45S rDNA sites was investigated in 20 species of these four groups to check the reliability of this hypothesis. In the group with x = 6, five diploid species (2n = 12) exhibit two 5S rDNA sites and two (P. capsularis, P. morifolia and P. rubra) or four (P. misera 2x and P. tricuspis) 45S rDNA sites. The hexaploid cytotype of P. misera had 12 45S rDNA sites and six 5S rDNA. A tetraploid species, P. suberosa, had ten 45S rDNA sites and four 5S rDNA sites, both in the same chromosomes as the 45S rDNA sites. In the group with x = 9, P. actinia, P. amethystina, P. edmundoi, P. elegans, P. galbana, P. glandulosa and P. mucronata displayed six 45S rDNA sites, whereas P. alata, P. cincinnata, P. edulis f. flavicarpa, P. edulis var. roxo and P. laurifolia had four sites. In this group, all species were diploid (2n = 18) and had only two 5S rDNA sites. Passiflora foetida, the only species with 2n = 20, had six 45S rDNA sites and four 5S rDNA sites. The species with x = 12 (2n = 24), P. haematostigma and P. pentagona, showed four 45S rDNA sites and two 5S rDNA. In general, the number and location of 5S and 45S rDNA sites were consistent with the hypothesis of x = 6 as the probable ancestral genome for the genus, while the groups of species with x = 9, x = 10 and x = 12 were considered to be of tetraploid origin with descending dysploidy and gene silencing of some redundant gene sites, mainly those of 5S rDNA. PMID:12876193

  19. DNA binding by FOXP3 domain-swapped dimer suggests mechanisms of long-range chromosomal interactions

    PubMed Central

    Chen, Yongheng; Chen, Chunxia; Zhang, Zhe; Liu, Chun-Chi; Johnson, Matthew E.; Espinoza, Celso A.; Edsall, Lee E.; Ren, Bing; Zhou, Xianghong Jasmine; Grant, Struan F.A.; Wells, Andrew D.; Chen, Lin

    2015-01-01

    FOXP3 is a lineage-specific transcription factor that is required for regulatory T cell development and function. In this study, we determined the crystal structure of the FOXP3 forkhead domain bound to DNA. The structure reveals that FOXP3 can form a stable domain-swapped dimer to bridge DNA in the absence of cofactors, suggesting that FOXP3 may play a role in long-range gene interactions. To test this hypothesis, we used circular chromosome conformation capture coupled with high throughput sequencing (4C-seq) to analyze FOXP3-dependent genomic contacts around a known FOXP3-bound locus, Ptpn22. Our studies reveal that FOXP3 induces significant changes in the chromatin contacts between the Ptpn22 locus and other Foxp3-regulated genes, reflecting a mechanism by which FOXP3 reorganizes the genome architecture to coordinate the expression of its target genes. Our results suggest that FOXP3 mediates long-range chromatin interactions as part of its mechanisms to regulate specific gene expression in regulatory T cells. PMID:25567984

  20. Large, Male Germ Cell-Specific Hypomethylated DNA Domains With Unique Genomic and Epigenomic Features on the Mouse X Chromosome

    PubMed Central

    Ikeda, Rieko; Shiura, Hirosuke; Numata, Koji; Sugimoto, Michihiko; Kondo, Masayo; Mise, Nathan; Suzuki, Masako; Greally, John M.; Abe, Kuniya

    2013-01-01

    To understand the epigenetic regulation required for germ cell-specific gene expression in the mouse, we analysed DNA methylation profiles of developing germ cells using a microarray-based assay adapted for a small number of cells. The analysis revealed differentially methylated sites between cell types tested. Here, we focused on a group of genomic sequences hypomethylated specifically in germline cells as candidate regions involved in the epigenetic regulation of germline gene expression. These hypomethylated sequences tend to be clustered, forming large (10 kb to ∼9 Mb) genomic domains, particularly on the X chromosome of male germ cells. Most of these regions, designated here as large hypomethylated domains (LoDs), correspond to segmentally duplicated regions that contain gene families showing germ cell- or testis-specific expression, including cancer testis antigen genes. We found an inverse correlation between DNA methylation level and expression of genes in these domains. Most LoDs appear to be enriched with H3 lysine 9 dimethylation, usually regarded as a repressive histone modification, although some LoD genes can be expressed in male germ cells. It thus appears that such a unique epigenomic state associated with the LoDs may constitute a basis for the specific expression of genes contained in these genomic domains. PMID:23861320

  1. Male infertility, genetic analysis of the DAZ genes on the human Y chromosome and genetic analysis of DNA repair.

    PubMed

    Fox, M S; Reijo Pera, R A

    2001-11-26

    Many genes that are required for fertility have been identified in model organisms (). Mutations in these genes cause infertility due to defects in development of the germ cell lineage, but the organism is otherwise healthy. Although human reproduction is undoubtedly as complex as that of other organisms, very few fertility loci have been mapped (). This is in spite of the prevalence of human infertility, the lack of effective treatments to remedy germ cell defects, and the cost to couples and society of assisted reproductive techniques. Fifteen percent of couples are infertile and half of all cases can be traced to the male partner. Aside from defects in sperm production, most infertile men are otherwise healthy. This review is divided into two distinct parts to discuss work that: (i) led to the identification of several genes on the Y chromosome that likely function in sperm production; and (ii) implicates DNA repair in male infertility via increased frequency of mutations in DNA from men with meiotic arrest. PMID:11694340

  2. Combined DNA-RNA Fluorescent In situ Hybridization (FISH) to Study X Chromosome Inactivation in Differentiated Female Mouse Embryonic Stem Cells

    PubMed Central

    Barakat, Tahsin Stefan; Gribnau, Joost

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected. PMID:24961515

  3. Characterization of a DNA sequence family in the Prader-Willi/Angelman syndrome chromosome region in 15q11-q13

    SciTech Connect

    Dittrich, B.; Knoblauch, H.; Buiting, K.; Horsthemke, B. )

    1993-04-01

    IR4-3R (D15S11) is an anonymous DNA sequence from human chromosome 15. Using YAC cloning and restriction enzyme analysis, the authors have found that IR4-3R detects five related DNA sequences, which are spread over 700 kb within the Prader-Willi/Angelman syndrome chromosome region in 15q11-q 13. The RsaI and StyI polymorphisms, which were described previously, are associated with the most proximal copy of IR4-3R and are in strong linkage disequilibrium. IR4-3R represents the third DNA sequence family that has been identified in 15q11-q13. 14 refs., 2 figs., 1 tab.

  4. Great ape Y Chromosome and mitochondrial DNA phylogenies reflect subspecies structure and patterns of mating and dispersal

    PubMed Central

    Hallast, Pille; Maisano Delser, Pierpaolo; Batini, Chiara; Zadik, Daniel; Rocchi, Mariano; Schempp, Werner; Tyler-Smith, Chris

    2016-01-01

    The distribution of genetic diversity in great ape species is likely to have been affected by patterns of dispersal and mating. This has previously been investigated by sequencing autosomal and mitochondrial DNA (mtDNA), but large-scale sequence analysis of the male-specific region of the Y Chromosome (MSY) has not yet been undertaken. Here, we use the human MSY reference sequence as a basis for sequence capture and read mapping in 19 great ape males, combining the data with sequences extracted from the published whole genomes of 24 additional males to yield a total sample of 19 chimpanzees, four bonobos, 14 gorillas, and six orangutans, in which interpretable MSY sequence ranges from 2.61 to 3.80 Mb. This analysis reveals thousands of novel MSY variants and defines unbiased phylogenies. We compare these with mtDNA-based trees in the same individuals, estimating time-to-most-recent common ancestor (TMRCA) for key nodes in both cases. The two loci show high topological concordance and are consistent with accepted (sub)species definitions, but time depths differ enormously between loci and (sub)species, likely reflecting different dispersal and mating patterns. Gorillas and chimpanzees/bonobos present generally low and high MSY diversity, respectively, reflecting polygyny versus multimale–multifemale mating. However, particularly marked differences exist among chimpanzee subspecies: The western chimpanzee MSY phylogeny has a TMRCA of only 13.2 (10.8–15.8) thousand years, but that for central chimpanzees exceeds 1 million years. Cross-species comparison within a single MSY phylogeny emphasizes the low human diversity, and reveals species-specific branch length variation that may reflect differences in long-term generation times. PMID:26883546

  5. Human genetics of the Kula Ring: Y-chromosome and mitochondrial DNA variation in the Massim of Papua New Guinea

    PubMed Central

    van Oven, Mannis; Brauer, Silke; Choi, Ying; Ensing, Joe; Schiefenhövel, Wulf; Stoneking, Mark; Kayser, Manfred

    2014-01-01

    The island region at the southeastern-most tip of New Guinea and its inhabitants known as Massim are well known for a unique traditional inter-island trading system, called Kula or Kula Ring. To characterize the Massim genetically, and to evaluate the influence of the Kula Ring on patterns of human genetic variation, we analyzed paternally inherited Y-chromosome (NRY) and maternally inherited mitochondrial (mt) DNA polymorphisms in >400 individuals from this region. We found that the nearly exclusively Austronesian-speaking Massim people harbor genetic ancestry components of both Asian (AS) and Near Oceanian (NO) origin, with a proportionally larger NO NRY component versus a larger AS mtDNA component. This is similar to previous observations in other Austronesian-speaking populations from Near and Remote Oceania and suggests sex-biased genetic admixture between Asians and Near Oceanians before the occupation of Remote Oceania, in line with the Slow Boat from Asia hypothesis on the expansion of Austronesians into the Pacific. Contrary to linguistic expectations, Rossel Islanders, the only Papuan speakers of the Massim, showed a lower amount of NO genetic ancestry than their Austronesian-speaking Massim neighbors. For the islands traditionally involved in the Kula Ring, a significant correlation between inter-island travelling distances and genetic distances was observed for mtDNA, but not for NRY, suggesting more male- than female-mediated gene flow. As traditionally only males take part in the Kula voyages, this finding may indicate a genetic signature of the Kula Ring, serving as another example of how cultural tradition has shaped human genetic diversity. PMID:24619143

  6. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC).

    PubMed

    Roth, Swaantje J; Höper, Dirk; Beer, Martin; Feineis, Silke; Tischer, B Karsten; Osterrieder, Nikolaus

    2011-01-01

    Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV). We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR) as a bacterial artificial chromosome (BAC) in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows maintenance of large circular DNA in E. coli, into the thymidine kinase locus of CPXV by homologous recombination. Circular replication intermediates were then electroporated into E. coli DH10B cells. Upon successful establishment of the infectious BR clone, we modified the full-length clone such that recombination-mediated excision of bacterial sequences can occur upon transfection in eukaryotic cells. This self-excision of the bacterial replicon is made possible by a sequence duplication within mini-F sequences and allows recovery of recombinant virus progeny without remaining marker or vector sequences. The in vitro growth properties of viruses derived from both BAC clones were determined and found to be virtually indistinguishable from those of parental, wild-type BR. Finally, the complete genomic sequence of the infectious clone was determined and the cloned viral genome was shown to be identical to that of the parental virus. In summary, the generated infectious clone will greatly facilitate studies on individual genes and pathogenesis of CPXV. Moreover, the vector potential of CPXV can now be more systematically explored using this newly generated tool. PMID:21314965

  7. DNA markers closely linked to nematode resistance genes in sugar beet (Beta vulgaris L.) mapped using chromosome additions and translocations originating from wild beets of the Procumbentes section.

    PubMed

    Jung, C; Koch, R; Fischer, F; Brandes, A; Wricke, G; Herrmann, R G

    1992-03-01

    Genes conferring resistance to the beet cyst nematode (Heterodera schachtii Schm.) have been transferred to sugar beet (Beta vulgaris L.) from three wild species of the Procumbentes section using monosomic addition and translocation lines, because no meiotic recombination occurs between chromosomes of cultured and wild species. In the course of a project to isolate the nematode resistance genes by strategies of reverse genetics, probes were cloned from DNA of a fragmented B. procumbens chromosome carrying a resistance gene, which had been isolated by pulsed-field gel electrophoresis. One probe (pRK643) hybridized with a short dispersed repetitive DNA element, which was found only in wild beets, and thus may be used as a molecular marker for nematode resistance to progeneis of monosomic addition lines segregating resistant and susceptible individuals. Additional probes for the resistance gene region were obtained with a polymerase chain reaction (PCR)-based strategy using repetitive primers to amplify DNA located between repetitive elements. One of these probes established the existence of at least six different chromosomes from wild beet species, each conferring resistance independently of the others. A strict correlation between the length of the wild beet chromatin introduced in fragment addition and translocation lines and the repeat copy number has been used physically to map the region conferring resistance to a chromosome segment of 0.5-3 Mb.

  8. Autosomal, mtDNA, and Y-Chromosome Diversity in Amerinds: Pre- and Post-Columbian Patterns of Gene Flow in South America

    PubMed Central

    Mesa, Natalia R.; Mondragón, María C.; Soto, Iván D.; Parra, María V.; Duque, Constanza; Ortíz-Barrientos, Daniel; García, Luis F.; Velez, Iván D.; Bravo, María L.; Múnera, Juan G.; Bedoya, Gabriel; Bortolini, Maria-Cátira; Ruiz-Linares, Andrés

    2000-01-01

    To evaluate sex-specific differences in gene flow between Native American populations from South America and between those populations and recent immigrants to the New World, we examined the genetic diversity at uni- and biparental genetic markers of five Native American populations from Colombia and in published surveys from native South Americans. The Colombian populations were typed for five polymorphisms in mtDNA, five restriction sites in the β-globin gene cluster, the DQA1 gene, and nine autosomal microsatellites. Elsewhere, we published results for seven Y-chromosome microsatellites in the same populations. Autosomal polymorphisms showed a mean GST of 6.8%, in agreement with extensive classical marker studies of South American populations. MtDNA and Y-chromosome markers resulted in GST values of 0.18 and 0.165, respectively. When only Y chromosomes of confirmed Amerind origin were used in the calculations (as defined by the presence of allele T at locus DYS199), GST increased to 0.22. GST values calculated from published data for other South American natives were 0.3 and 0.29 for mtDNA and Amerind Y chromosomes, respectively. The concordance of these estimates does not support an important difference in migration rates between the sexes throughout the history of South Amerinds. Admixture analysis of the Colombian populations suggests an asymmetric pattern of mating involving mostly immigrant men and native women. PMID:11032789

  9. Evolutionary history of the greater white-toothed shrew (Crocidura russula) inferred from analysis of mtDNA, Y, and X chromosome markers.

    PubMed

    Brändli, Laura; Handley, Lori-Jayne Lawson; Vogel, Peter; Perrin, Nicolas

    2005-12-01

    We investigate the evolutionary history of the greater white-toothed shrew across its distribution in northern Africa and mainland Europe using sex-specific (mtDNA and Y chromosome) and biparental (X chromosome) markers. All three loci confirm a large divergence between easte