Sample records for adjacent coastal region

  1. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    USGS Publications Warehouse

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  2. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  3. Stable isotopes in juvenile marine fishes and their invertebrate prey from the Thames Estuary, UK, and adjacent coastal regions

    NASA Astrophysics Data System (ADS)

    Leakey, Chris D. B.; Attrill, Martin J.; Jennings, Simon; Fitzsimons, Mark F.

    2008-04-01

    Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. Stable isotope analysis may be used to assess relative resource use from isotopically distinct sources. This study comprised two major components: (1) development of a spatial map and discriminant function model of stable isotope variation in selected invertebrate groups inhabiting the Thames Estuary and adjacent coastal regions; and (2) analysis of stable isotope signatures of juvenile bass ( Dicentrarchus labrax), sole ( Solea solea) and whiting ( Merlangius merlangus) for assessment of resource use and feeding strategies. The data were also used to consider anthropogenic enrichment of the estuary and potential energetic benefits of feeding in estuarine nursery habitat. Analysis of carbon (δ 13C), nitrogen (δ 15N) and sulphur (δ 34S) isotope data identified significant differences in the 'baseline' isotopic signatures between estuarine and coastal invertebrates, and discriminant function analysis allowed samples to be re-classified to estuarine and coastal regions with 98.8% accuracy. Using invertebrate signatures as source indicators, stable isotope data classified juvenile fishes to the region in which they fed. Feeding signals appear to reflect physiological (freshwater tolerance) and functional (mobility) differences between species. Juvenile sole were found to exist as two isotopically-discrete sub-populations, with no evidence of mixing between the two. An apparent energetic benefit of estuarine feeding was only found for sole.

  4. 33 CFR 150.35 - How may an adjacent coastal State request an amendment to the operations manual?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provide equivalent or improved protection and safety. The adjacent coastal State may petition the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How may an adjacent coastal State... § 150.35 How may an adjacent coastal State request an amendment to the operations manual? (a) An...

  5. 33 CFR 150.35 - How may an adjacent coastal State request an amendment to the operations manual?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provide equivalent or improved protection and safety. The adjacent coastal State may petition the... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false How may an adjacent coastal State... § 150.35 How may an adjacent coastal State request an amendment to the operations manual? (a) An...

  6. 33 CFR 150.35 - How may an adjacent coastal State request an amendment to the operations manual?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provide equivalent or improved protection and safety. The adjacent coastal State may petition the... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false How may an adjacent coastal State... § 150.35 How may an adjacent coastal State request an amendment to the operations manual? (a) An...

  7. 33 CFR 150.35 - How may an Adjacent Coastal State request an amendment to the deepwater port operations manual?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equivalent or improved protection and safety. The Adjacent Coastal State may petition the Commandant (CG-5P... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false How may an Adjacent Coastal State...: OPERATIONS General § 150.35 How may an Adjacent Coastal State request an amendment to the deepwater port...

  8. 33 CFR 150.35 - How may an Adjacent Coastal State request an amendment to the deepwater port operations manual?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalent or improved protection and safety. The Adjacent Coastal State may petition the Commandant (CG-5P... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false How may an Adjacent Coastal State...: OPERATIONS General § 150.35 How may an Adjacent Coastal State request an amendment to the deepwater port...

  9. Variability in physical and biological exchange among coastal wetlands and their adjacent Great Lakes

    EPA Science Inventory

    Hydrology is a major governor of physically-driven exchange among coastal wetlands and the adjacent Great Lake, whereas fish movement is a major governor of biologically-driven exchange. We use data describing coastal wetland morphology, hydrology, water quality, and fish tissue...

  10. Local and regional scale exchanges of dissolved organic carbon (DOC) between tidal wetlands and their adjacent coastal waters

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Joshi, I.; Lebrasse, M. C.; Oviedo-Vargas, D.; Bianchi, T. S.; Bohnenstiehl, D. R.; D'Sa, E. J.; He, R.; Ko, D.; Arellano, A.; Ward, N. D.

    2017-12-01

    The contribution of blue carbon from tidal wetlands to the coastal ocean in the form of dissolved organic carbon (DOC) represents a terrestrial-aquatic linkage of increasing importance. DOC flux results will be presented from local (tidal creek) and regional (bays) scale studies in which various combinations of field observations, ocean-color satellite observations, and the outputs of high-resolution hydrodynamic models were used to estimate DOC export. The first project was located in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina (NC). DOC fluxes were computed using a bathymetric data collected via unmanned surface vehicle (USV) and a numerical hydrodynamic model (SCHISM) based on the relationships between colored dissolved organic matter (CDOM) absorption, DOC concentration, and salinity taken from field observations. Model predictions estimated an annual net export of DOC at 54 g C m-2 yr-1 from the tidal creek to the adjacent estuary. Carbon stable isotope (δ13C) values were used to estimate the contribution of wetland carbon to this export. In the second project, DOC fluxes from the Apalachicola Bay, FL, Barataria Bay, LA, were based on the development of algorithms between DOC and CDOM absorption derived from the VIIRS ocean color sensor. The Navy Coastal Ocean Model (NCOM) was used to compute salt flux estimates from each bay to the Louisiana-Texas shelf. The relationship between salinity and CDOM was used to estimate net annual DOC exports of 8.35 x 106 g C m-2 y-1 (Apalachicola Bay) and 7.14 x 106 g C m-2 yr-1 (Barataria Bay). These values approximate 13% and 9% of the annual loads of DOC from the Mississippi River to the Gulf of Mexico, respectively. CDOM and lignin were used in a mixing model to estimate wetland-derived DOC were 2% for Apalachicola Bay and 13% for Barataria Bay, the latter having one of the highest rates of relative sea level rise in North America. Results from our project demonstrated the utility

  11. NITROGEN CONCENTRATIONS IN LOADING SOURCES FOR THREE COASTAL LAGOONS FROM ATMOSPHERIC AND WATERSHED SOURCES, ADJACENT COASTAL MARSHES, TIDAL EXCHANGES

    EPA Science Inventory

    Abstract and Oral Presentation Gulf Estuarine Research Society.

    Standing stocks and inputs of total dissolved nitrogen (TDN) to three coastal lagoons, hereafter referred to as Kee's Bayou, Gongora, and State Park, with varying adjacent land-use, geomorphology, and water re...

  12. Tsunami Ready Recognition Program for the Caribbean and Adjacent Regions Launched in 2015

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Hinds, K.; Aliaga, B.; Brome, A.; Lopes, R.

    2015-12-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions over the past 500 years with 4,561 associated deaths according to the NOAA Tsunami Database. The most recent devastating tsunamis occurred in 1946 in Dominican Republic; 1865 died. With the explosive increase in residents, tourists, infrastructure, and economic activity along the coasts, the potential for human and economic loss is enormous. It has been estimated that on any day, more than 500,000 people in the Caribbean could be in harm's way just along the beaches, with hundreds of thousands more working and living in the tsunamis hazard zones. In 2005 the UNESCO Intergovernmental Oceanographic Commission established the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (ICG CARIBE EWS) to coordinate tsunami efforts among the 48 participating countries in territories in the region. In addition to monitoring, modeling and communication systems, one of the fundamental components of the warning system is community preparedness, readiness and resilience. Over the past 10 years 49 coastal communities in the Caribbean have been recognized as TsunamiReady® by the US National Weather Service (NWS) in the case of Puerto Rico and the US Virgin Islands and jointly by UNESCO and NWS in the case of the non US jurisdictions of Anguilla and the British Virgin Islands. In response to the positive feedback of the implementation of TsunamiReady, the ICG CARIBE EWS in 2015 recommended the approval of the guidelines for a Community Performance Based Recognition program. It also recommended the adoption of the name "Tsunami Ready", which has been positively consulted with the NWS. Ten requirements were established for recognition and are divided among Preparedness, Mitigation and Response elements which were adapted from the proposed new US TsunamiReady guidelines and align well with emergency management functions. Both a

  13. Directory of Facilities. Development Activities in the Marine Environment of the Coastal Plains Region.

    ERIC Educational Resources Information Center

    Hill, Philip G.

    Described in this directory are marine activities on the coasts of North Carolina, South Carolina, and Georgia, and the adjacent offshore area, known administratively as the Coastal Plains Region. The facilities for each state are described within these categories: educational institutions, state agencies, federal agencies, and industrial…

  14. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  15. Best Merge Region Growing Segmentation with Integrated Non-Adjacent Region Object Aggregation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Tarabalka, Yuliya; Montesano, Paul M.; Gofman, Emanuel

    2012-01-01

    Best merge region growing normally produces segmentations with closed connected region objects. Recognizing that spectrally similar objects often appear in spatially separate locations, we present an approach for tightly integrating best merge region growing with non-adjacent region object aggregation, which we call Hierarchical Segmentation or HSeg. However, the original implementation of non-adjacent region object aggregation in HSeg required excessive computing time even for moderately sized images because of the required intercomparison of each region with all other regions. This problem was previously addressed by a recursive approximation of HSeg, called RHSeg. In this paper we introduce a refined implementation of non-adjacent region object aggregation in HSeg that reduces the computational requirements of HSeg without resorting to the recursive approximation. In this refinement, HSeg s region inter-comparisons among non-adjacent regions are limited to regions of a dynamically determined minimum size. We show that this refined version of HSeg can process moderately sized images in about the same amount of time as RHSeg incorporating the original HSeg. Nonetheless, RHSeg is still required for processing very large images due to its lower computer memory requirements and amenability to parallel processing. We then note a limitation of RHSeg with the original HSeg for high spatial resolution images, and show how incorporating the refined HSeg into RHSeg overcomes this limitation. The quality of the image segmentations produced by the refined HSeg is then compared with other available best merge segmentation approaches. Finally, we comment on the unique nature of the hierarchical segmentations produced by HSeg.

  16. FISH-MEDIATED NUTRIENT AND ENERGY EXCHANGE BETWEEN A LAKE SUPERIOR COASTAL WETLAND AND ITS ADJACENT BAY

    EPA Science Inventory

    Little has been done to quantify fluxes of organisms, nutrients, and energy between freshwater coastal habitats and adjacent offshore waters or to evaluate the ecological implications of these exchanges on a whole-lake basis. To test the hypothesis that fish-mediated transport m...

  17. 33 CFR 148.217 - How can a State be designated as an adjacent coastal State?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: GENERAL Processing Applications... as an adjacent coastal State in the notice may request to be designated as one if the environmental risks to it are equal to or greater than the risks posed to a State directly connected by pipeline to...

  18. Multidecadal simulation of coastal fog with a regional climate model

    NASA Astrophysics Data System (ADS)

    O'Brien, Travis A.; Sloan, Lisa C.; Chuang, Patrick Y.; Faloona, Ian C.; Johnstone, James A.

    2013-06-01

    In order to model stratocumulus clouds and coastal fog, we have coupled the University of Washington boundary layer model to the regional climate model, RegCM (RegCM-UW). By comparing fog occurrences observed at various coastal airports in the western United States, we show that RegCM-UW has success at modeling the spatial and temporal (diurnal, seasonal, and interannual) climatology of northern California coastal fog. The quality of the modeled fog estimate depends on whether coast-adjacent ocean or land grid cells are used; for the model runs shown here, the oceanic grid cells seem to be most appropriate. The interannual variability of oceanic northern California summertime fog, from a multi-decadal simulation, has a high and statistically significant correlation with the observed interannual variability ( r = 0.72), which indicates that RegCM-UW is capable of investigating the response of fog to long-term climatological forcing. While RegCM-UW has a number of aspects that would benefit from further investigation and development, RegCM-UW is a new tool for investigating the climatology of coastal fog and the physical processes that govern it. We expect that with appropriate physical parameterizations and moderate horizontal resolution, other climate models should be capable of simulating coastal fog. The source code for RegCM-UW is publicly available, under the GNU license, through the International Centre for Theoretical Physics.

  19. U.S. Geological Survey (USGS), Western Region: Coastal ecosystem responses to influences from land and sea, Coastal and Ocean Science

    USGS Publications Warehouse

    Bodkin, James L.

    2010-01-01

    Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.

  20. Quantifying 10 years of Improvements in Earthquake and Tsunami Monitoring in the Caribbean and Adjacent Regions

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Huerfano Moreno, V. A.; McNamara, D. E.; Saurel, J. M.

    2014-12-01

    The magnitude-9.3 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness to the destructive hazard of earthquakes and tsunamis. Post event assessments of global coastline vulnerability highlighted the Caribbean as a region of high hazard and risk and that it was poorly monitored. Nearly 100 tsunamis have been reported for the Caribbean region and Adjacent Regions in the past 500 years and continue to pose a threat for its nations, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North and South America. Significant efforts to improve monitoring capabilities have been undertaken since this time including an expansion of the United States Geological Survey (USGS) Global Seismographic Network (GSN) (McNamara et al., 2006) and establishment of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). The minimum performance standards it recommended for initial earthquake locations include: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. In this study, we assess current compliance with performance standards and model improvements in earthquake and tsunami monitoring capabilities in the Caribbean region since the first meeting of the UNESCO ICG-Caribe EWS in 2006. The three measures of network capability modeled in this study are: 1) minimum Mw detection threshold; 2) P-wave detection time of an automatic processing system and; 3) theoretical earthquake location uncertainty. By modeling three measures of seismic network capability, we can optimize the distribution of ICG-Caribe EWS seismic stations and select an international network that will be contributed from existing real-time broadband national networks in the region. Sea level monitoring improvements both offshore and

  1. Effects of stream-adjacent logging in fishless headwaters on downstream coastal cutthroat trout

    USGS Publications Warehouse

    Bateman, Douglas S.; Sloat, Matthew R.; Gresswell, Robert E.; Berger, Aaron M.; Hockman-Wert, David; Leer, David W.; Skaugset, Arne E.

    2016-01-01

    To investigate effects of headwater logging on downstream coastal cutthroat trout (Oncorhynchus clarkii clarkii) populations, we monitored stream habitat and biotic indicators including biomass, abundance, growth, movement, and survival over 8 years using a paired-watershed approach. Reference and logged catchments were located on private industrial forestland on ∼60-year harvest rotation. Five clearcuts (14% of the logged catchment area) were adjacent to fishless portions of the headwater streams, and contemporary regulations did not require riparian forest buffers in the treatment catchment. Logging did not have significant negative effects on downstream coastal cutthroat trout populations for the duration of the sample period. Indeed, the only statistically significant response of fish populations following logging in fishless headwaters was an increase in late-summer biomass (g·m−2) of age-1+ coastal cutthroat trout in tributaries. Ultimately, the ability to make broad generalizations concerning effects of timber harvest is difficult because response to disturbance (anthropogenically influenced or not) in aquatic systems is complex and context-dependent, but our findings provide one example of environmentally compatible commercial logging in a regenerated forest setting.

  2. Cadmium in the Coastal Upwelling Area Adjacent to the California Mexico Border

    NASA Astrophysics Data System (ADS)

    Segovia-Zavala, J. A.; Delgadillo-Hinojosa, F.; Alvarez-Borrego, S.

    1998-04-01

    Cadmium concentrations ([Cd]) were measured in samples from the water column of the coastal upwelling zone adjacent to the California - Mexico border. Temperature and nutrient distributions showed an intense upwelling event during our sampling. Lowest [Cd] were found at locations offshore (50 km) (0·03-0·058 nM), whereas the maximum concentrations were found inshore (0·14-0·166 nM). Both nutrients and [Cd] were enriched in coastal waters. Our inshore [Cd] values are about 25% of those reported for waters off central California. This is possibly due to the intrusion of oligotrophic waters from the eastern edge of the North Pacific Central Gyre to the Southern California Bight. Multivariate analysis indicates that high [Cd]s were associated with high phytoplankton biomass, nutrients and low temperature. Our data present no evidence of a [Cd] gradient due to the San Diego and Tijuana sewage discharges, which indicates that they maintain a very local effect.

  3. Historical bathymetry and bathymetric change in the Mississippi-Alabama coastal region, 1847-2009

    USGS Publications Warehouse

    Buster, Noreen A.; Morton, Robert A.

    2011-01-01

    Land loss and seafloor change around the Mississippi and Alabama (MS-AL) barrier islands are of great concern to the public and to local, state, and federal agencies. The islands provide wildlife protected areas and recreational land, and they serve as a natural first line of defense for the mainland against storm activity (index map on poster). Principal physical conditions that drive morphological seafloor and coastal change in this area include decreased sediment supply, sea-level rise, storms, and human activities (Otvos, 1970; Byrnes and others, 1991; Morton and others, 2004; Morton, 2008). Seafloor responses to the same processes can also affect the entire coastal zone. Sediment eroded from the barrier islands is entrained in the littoral system, where it is redistributed by alongshore currents. Wave and current activity is partially controlled by the profile of the seafloor, and this interdependency along with natural and anthropogenic influences has significant effects on nearshore environments. When a coastal system is altered by human activity such as dredging, as is the case of the MS-AL coastal region, the natural state and processes are altered, and alongshore sediment transport can be disrupted. As a result of deeply dredged channels, adjacent island migration is blocked, nearshore environments downdrift in the littoral system become sediment starved, and sedimentation around the channels is modified. Sediment deposition and erosion are reflected through seafloor evolution. In a rapidly changing coastal environment, understanding historically where and why changes are occurring is essential. To better assess the comprehensive dynamics of the MS-AL coastal zone, a 160-year evaluation of the bathymetry and bathymetric change of the region was conducted.

  4. Directory of Personnel in Research, Technology, Education, Administration and Management. Development Activities in the Marine Environment of the Coastal Plains Region.

    ERIC Educational Resources Information Center

    Mecca, Christyna E.

    Listed in this directory are individuals concerned currently with marine activities on the coasts of North Carolina, South Carolina, and Georgia, and the adjacent offshore area, known administratively as the Coastal Plains Region. The categories for the listings include educational institutions, state and county agencies, and federal agencies. The…

  5. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The synoptic repetitive coverage of the multispectral imagery from the ERTS-1 satellite, when photographically reprocessed using the state-of-the-art techniques, has given indication of spectral differences in Block Island and adjacent New England waters which were heretofore unknown. Of particular interest was the possible detection of relatively small amounts of phytoplankton prior to the occurrence of the red tide in Massachusetts waters. Preparation of spatial and temporal hydrographic charts using ERTS-1 imagery and ground truth analysis will hopefully determine the environmental impact on New York coastal waters.

  6. Development of a Florida Coastal Mapping Program Through Local and Regional Coordination

    NASA Astrophysics Data System (ADS)

    Hapke, C. J.; Kramer, P. A.; Fetherston-Resch, E.; Baumstark, R.

    2017-12-01

    The State of Florida has the longest coastline in the contiguous United States (2,170 km). The coastal zone is heavily populated and contains 1,900 km of sandy beaches that support economically important recreation and tourism. Florida's waters also host important marine mineral resources, unique ecosystems, and the largest number of recreational boats and saltwater fishermen in the country. There is increasing need and demand for high resolution data of the coast and adjacent seafloor for resource and habitat mapping, understanding coastal vulnerability, evaluating performance of restoration projects, and many other coastal and marine spatial planning efforts. The Florida Coastal Mapping Program (FCMP), initiated in 2017 as a regional collaboration between four federal and three state agencies, has goals of establishing the priorities for high resolution seafloor mapping of Florida's coastal environment, and developing a strategy for leveraging funds to support mapping priorities set by stakeholders. We began by creating a comprehensive digital inventory of existing data (collected by government, the private sector, and academia) from 1 kilometer inland to the 200 meter isobath for a statewide geospatial database and gap analysis. Data types include coastal topography, bathymetry, and acoustic data such as sidescan sonar and subbottom profiles. Next, we will develop appropriate proposals and legislative budget requests in response to opportunities to collect priority data in high priority areas. Data collection will be undertaken by a combination of state and federal agencies. The FCMP effort will provide the critical baseline information that is required for characterizing changes to fragile ecosystems, assessing marine resources, and forecasting the impacts on coastal infrastructure and recreational beaches from future storms and sea-level rise.

  7. 33 CFR 148.510 - What happens when a petition for exemption involves the interests of an Adjacent Coastal State?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false What happens when a petition for exemption involves the interests of an Adjacent Coastal State? 148.510 Section 148.510 Navigation and...: GENERAL Exemption From or Adjustments to Requirements in This Subchapter § 148.510 What happens when a...

  8. 33 CFR 148.510 - What happens when a petition for exemption involves the interests of an adjacent coastal State?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What happens when a petition for exemption involves the interests of an adjacent coastal State? 148.510 Section 148.510 Navigation and...: GENERAL Exemption From or Adjustments to Requirements in This Subchapter § 148.510 What happens when a...

  9. Multi-element otolith chemistry of juvenile sole ( Solea solea), whiting ( Merlangius merlangus) and European seabass ( Dicentrarchus labrax) in the Thames Estuary and adjacent coastal regions

    NASA Astrophysics Data System (ADS)

    Leakey, Chris D. B.; Attrill, Martin J.; Fitzsimons, Mark F.

    2009-04-01

    Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. To assess the extent of estuarine use by juvenile (0+) common sole ( Solea solea), whiting ( Merlangius merlangus) and European seabass ( Dicentrarchus labrax) we: (1) developed techniques to distinguish between estuarine and coastally-caught juveniles using otolith chemistry; and (2) examined the accuracy with which multi-elemental signatures could re-classify juveniles to their region of collection. High-resolution solution-based inductively coupled plasma mass spectrometry (HB-SB-ICPMS) was used to quantify 32 elements within the juvenile otoliths; 14 elements occurred above detection limits for all samples. Some elemental distributions demonstrated clear differences between estuarine and coastally-caught fish. Multivariate analysis of the otolith chemistry data resulted in 95-100% re-classification accuracy to the region of collection. Estuarine and coastal signatures were most clearly defined for sole which, compared to bass and whiting, have low mobility and are less likely to move from estuarine to coastal habitats between larval settlement and later migration to adult stocks. Sole were the only species to reveal an energetic benefit associated with an estuarine juvenile phase. The physiological ability of bass to access upper estuarine regions was consistent with some elemental data, while the high mobility and restricted range of whiting resulted in less distinct otolith chemistries.

  10. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    NASA Astrophysics Data System (ADS)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  11. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  12. Watershed Influences on Nearshore Waters Across the Entire US Great Lakes Coastal Region

    EPA Science Inventory

    We have combined three elements of observation to enable a comprehensive characterization of the Great Lakes nearshore that links nearshore conditions with their adjacent coastal watersheds. The three elements are: 1) a shore-parallel, high-resolution survey of the nearshore usin...

  13. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Treesearch

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  14. Local government units initiatives on coastal resource management in adjacent municipalities in Camarines Sur, Philippines

    NASA Astrophysics Data System (ADS)

    Faustino, A. Z.; Madela, H. L.

    2018-03-01

    This research was conducted to determine the local government units (LGUs) initiatives on coastal resource management (CRM) in adjacent municipalities in Camarines Sur, Philippines. The respondents of this study are 100 fisherfolk leaders in the municipalities of Calabanga, Tinambac and Siruma. Descriptive, comparative and evaluative methods of research were employed and a survey questionnaire was used as the primary tool in data gathering. On the test of difference, the computed F-value of 12.038 and p-value of .001 revealed a very high difference in the implementation of CRM initiatives in the adjacent municipalities. The respondents in this study live below the poverty threshold. The intrusion of commercial fishers and the use of active fishing gears inside the 15-km municipal waters significantly affect the marine habitat while fishpond conversion kills the natural cycle in the mangrove forests. However, the FOs membership in the Municipal Fisheries and Aquatic Resources Management Council empower them to engage in governance which can be a venue for them to recommend policies related to CRM. As a result of this study, a CRM monitoring and evaluation model was crafted to guide the LGUs in the review, revision and crafting of CRM programs.

  15. Tracking Cholera in Coastal Regions using Satellite Observations

    PubMed Central

    Jutla, Antarpreet S; Akanda, Ali S; Islam, Shafiqul

    2010-01-01

    Cholera remains a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and then spread inland through secondary means. Cholera bacteria show strong association with plankton abundance in coastal ecosystems. This review study investigates relationship(s) between cholera incidence and coastal processes and explores utility of using remote sensing data to track coastal plankton blooms, using chlorophyll as a surrogate variable for plankton abundance, and subsequent cholera outbreaks. Most studies over the last several decades have primarily focused on the microbiological and epidemiological understanding of cholera outbreaks. Accurate identification and mechanistic understanding of large scale climatic, geophysical and oceanic processes governing cholera-chlorophyll relationship is important for developing cholera prediction models. Development of a holistic understanding of these processes requires long and reliable chlorophyll dataset(s), which are beginning to be available through satellites. We have presented a schematic pathway and a modeling framework that relate cholera with various hydroclimatic and oceanic variables for understanding disease dynamics using latest advances in remote sensing. Satellite data, with its unprecedented spatial and temporal coverage, have potentials to monitor coastal processes and track cholera outbreaks in endemic regions. PMID:21072249

  16. Coastal flooding hazard assessment on potentially vulnerable coastal sectors at Varna regional coast

    NASA Astrophysics Data System (ADS)

    Eftimova, Petya; Valchev, Nikolay; Andreeva, Nataliya

    2017-04-01

    Storm induced flooding is one of the most significant threats that the coastal communities face. In the light of the climate change it is expected to gain even more importance. Therefore, the adequate assessment of this hazard could increase the capability of mitigation of environmental, social, and economic impacts. The study was accomplished in the frames of the Coastal Risk Assessment Framework (CRAF) developed within the FP7 RISC-KIT Project (Resilience-Increasing Strategies for Coasts - toolkit). The hazard assessment was applied on three potentially vulnerable coastal sectors located at the regional coast of Varna, Bulgarian Black Sea coast. The potential "hotspot" candidates were selected during the initial phase of CRAF which evaluated the coastal risks at regional level. The area of interest comprises different coastal types - from natural beaches and rocky cliffs to man modified environments presented by coastal and port defense structures such as the Varna Port breakwater, groynes, jetties and beaches formed by the presence of coastal structures. The assessment of coastal flooding was done using combination of models -XBeach model and LISFLOOD inundation model applied consecutively. The XBeach model was employed to calculate the hazard intensities at the coast up to the berm crest, while LISFLOOD model was used to calculate the intensity and extent of flooding in the hinterland. At the first stage, 75 extreme storm events were simulated using XBeach model run in "non-hydrostatic" mode to obtain series of flood depth, depth-velocity and overtopping discharges at the predefined coastal cross-shore transects. Extreme value analysis was applied to the calculated hazard parameters series in order to determine their probability distribution functions. This is so called response approach, which is focused on the onshore impact rather than on the deep water boundary conditions. It allows calculation of the hazard extremes probability distribution induced by a

  17. Seasonal phenology of the heterotrophic dinoflagellate Noctiluca scintillans (Macartney) in Jiaozhou Bay and adjacent coastal Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Wang, Weicheng; Sun, Song; Sun, Xiaoxia; Zhang, Fang; Zhang, Guangtao; Zhu, Mingliang

    2017-11-01

    Seasonal variations in numerical abundance, cell diameter and population carbon biomass of the heterotrophic dinoflagellate Noctiluca scintillans were studied for 10 years from 2004 to 2013 in Jiaozhou Bay and adjacent coastal Yellow Sea, China, and their ecological functions were evaluated. In both areas, N. scintillans occurred throughout the year and demonstrated an essentially similar seasonality; the cell abundance increased rapidly from the winter minimum to an annual peak in late spring and early summer, and decreased gradually toward the autumn-winter minimum. The peak abundance differed by years, and there was no consistent trend in long-term numerical variations. The cell diameter also showed a seasonal fluctuation, being larger in spring and early summer than the other seasons. Estimated carbon biomass of N. scintillans population reached to a peak as high as 90.3 mg C/m3, and occasionally exceed over phytoplankton and copepod biomass. Our results demonstrate that N. scintillans in northwestern Yellow Sea displays the seasonal phenology almost identical to the populations in other temperate regions, and play important trophic roles as a heterotroph to interact with sympatric phytoplankton and copepods.

  18. 40 CFR 81.152 - Southern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Southern Coastal Plain Intrastate Air Quality Control Region. 81.152 Section 81.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.152 Southern Coastal Plain Intrastate Air Quality Control Region. The...

  19. 40 CFR 81.149 - Northern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Northern Coastal Plain Intrastate Air Quality Control Region. 81.149 Section 81.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.149 Northern Coastal Plain Intrastate Air Quality Control Region. The...

  20. 40 CFR 81.149 - Northern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northern Coastal Plain Intrastate Air Quality Control Region. 81.149 Section 81.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.149 Northern Coastal Plain Intrastate Air Quality Control Region. The...

  1. 40 CFR 81.152 - Southern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Southern Coastal Plain Intrastate Air Quality Control Region. 81.152 Section 81.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.152 Southern Coastal Plain Intrastate Air Quality Control Region. The...

  2. 40 CFR 81.152 - Southern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southern Coastal Plain Intrastate Air Quality Control Region. 81.152 Section 81.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.152 Southern Coastal Plain Intrastate Air Quality Control Region. The...

  3. 40 CFR 81.152 - Southern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Southern Coastal Plain Intrastate Air Quality Control Region. 81.152 Section 81.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.152 Southern Coastal Plain Intrastate Air Quality Control Region. The...

  4. 40 CFR 81.149 - Northern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Northern Coastal Plain Intrastate Air Quality Control Region. 81.149 Section 81.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.149 Northern Coastal Plain Intrastate Air Quality Control Region. The...

  5. 40 CFR 81.152 - Southern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Southern Coastal Plain Intrastate Air Quality Control Region. 81.152 Section 81.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.152 Southern Coastal Plain Intrastate Air Quality Control Region. The...

  6. 40 CFR 81.149 - Northern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Northern Coastal Plain Intrastate Air Quality Control Region. 81.149 Section 81.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.149 Northern Coastal Plain Intrastate Air Quality Control Region. The...

  7. 40 CFR 81.149 - Northern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Northern Coastal Plain Intrastate Air Quality Control Region. 81.149 Section 81.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.149 Northern Coastal Plain Intrastate Air Quality Control Region. The...

  8. Saltwater intrusion in coastal regions of North America

    USGS Publications Warehouse

    Barlow, Paul M.; Reichard, Eric G.

    2010-01-01

    Saltwater has intruded into many of the coastal aquifers of the United States, Mexico, and Canada, but the extent of saltwater intrusion varies widely among localities and hydrogeologic settings. In many instances, the area contaminated by saltwater is limited to small parts of an aquifer and to specific wells and has had little or no effect on overall groundwater supplies; in other instances, saltwater contamination is of regional extent and has resulted in the closure of many groundwater supply wells. The variability of hydrogeologic settings, three-dimensional distribution of saline water, and history of groundwater withdrawals and freshwater drainage has resulted in a variety of modes of saltwater intrusion into coastal aquifers. These include lateral intrusion from the ocean; upward intrusion from deeper, more saline zones of a groundwater system; and downward intrusion from coastal waters. Saltwater contamination also has occurred along open boreholes and within abandoned, improperly constructed, or corroded wells that provide pathways for vertical migration across interconnected aquifers. Communities within the coastal regions of North America are taking actions to manage and prevent saltwater intrusion to ensure a sustainable source of groundwater for the future. These actions can be grouped broadly into scientific monitoring and assessment, engineering techniques, and regulatory approaches.

  9. Going coastal: shared evolutionary history between coastal British Columbia and Southeast Alaska wolves (Canis lupus).

    PubMed

    Weckworth, Byron V; Dawson, Natalie G; Talbot, Sandra L; Flamme, Melanie J; Cook, Joseph A

    2011-05-04

    Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.

  10. Overview of the Pre-YMC2015 campaign over the southwestern coastal land and adjacent sea of Sumatera Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Mori, Shuichi; Katsumata, Masaki; Yoneyama, Kunio; Suzuki, Kenji; Hayati, Noer; Syamsudin, Fadli

    2016-04-01

    An international research project named Years of the Maritime Continent (YMC) is planned during 2017-2019 to expedite the progress of improving understanding and prediction of local multi-scale variability of the Maritime Continent (MC) weather-climate system and its global impact through observations and modeling exercises. We carried out a campaign observation over the southwestern coastal land and adjacent sea of Sumatera Island, Indonesia, during November-December 2015 as a pilot study of the YMC to examine land-ocean coupling processes in mechanisms of coastal heavy rain band (CHeR) along Sumatera Island and further potential scientific themes in the coming YMC. We deployed two land observation sites at Bengkulu city (3.86S, 102.34E) in the southwestern coast of Sumatera Island with various kinds of instruments including an X-band dual polarimetric (DP) radar and a C-band Doppler radar, and the R/V Mirai approximately 50 km southwest (4.07S, 101.90E) of the land stations with a C-band DP radar. We made 3 hourly soundings at Bengkulu and the R/V Mirai during 09 November - 25 December (47 days) and 24 November - 17 December (24 days), respectively. In addition, 18 videosondes observations, which could identify precipitation particles by an onboard camera in and out of rainclouds, were performed under heavy rainfall condition to examine cloud microphysical processes as well as simultaneous RHI observations with the Mirai DP radar. Whereas rainfall amount during the period was less than that of climatological view due to the Godzilla El-Nino event in this rainy season, we found concrete diurnal variation with thunderstorms in the evening along the foothills of coastal land and widely spread stratiform precipitation mainly over the adjacent sea due to the passage of Madden-Julian Oscillation (MJO) convection with strong westerly wind in the lower troposphere during the former and latter halves of the campaign period, respectively. Diurnally developed thunderstorms

  11. Lagrangian Turbulence and Transport in Semi-enclosed Basins and Coastal Regions

    DTIC Science & Technology

    2009-01-01

    enclosed Basins and Coastal Regions Annalisa Griffa Division of Meteorology and Physical Oceanography Rosenstiel School of Marine and Atmospheric...enclosed Basins and Coastal Regions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...variables. A set of diagnostics is then performed, including hydrological sections, transport, mean circulation and variability, aimed at quantifying

  12. Coastal Inlets Research Program

    DTIC Science & Technology

    2014-04-01

    PCs to evaluate inlets, channels, structures, adjacent beaches dredging and placement within, regional systems .  Transfer technology and...Coastal  Modeling  or o o  Management System   (CMS) Alex Sanchez Ned MitchellCIRP Honghai Li Waves at  Research & Development Geomorphic  Evolution T B k...channel infilling Aug 2005 Baltimore, MD Inlet Modeling  System  technology transfer workshop #7 – FSBPA, Jan/Feb 2006 Sarasota, FL Modeling of waves

  13. Coastal Inlets Research Program

    DTIC Science & Technology

    2013-03-01

    structures, adjacent beaches dredging and placement within, regional systems .  Transfer technology and products  Guidance documents, Workshops...Mitch Brown Coastal  Modeling  Waves at  Navigation System   (CMS) Alex Sanchez   Structures Lihwa Lin Z ki D i bil kCIRPHonghai Li e   em r e C l...MD Inlet Modeling System technology transfer workshop 13 Years of Annu l Wo kshops 40 Cumulativ Workshops  ,            #7 – FSBPA, Jan/Feb 2006

  14. Going coastal: Shared evolutionary history between coastal British Columbia and Southeast Alaska wolves (canis lupus)

    USGS Publications Warehouse

    Weckworth, B.V.; Dawson, N.G.; Talbot, S.L.; Flamme, M.J.; Cook, J.A.

    2011-01-01

    Background: Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. Methodology/Principal Findings: By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. Conclusions/Significance: We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species. ?? 2011 This is an open-access article.

  15. 77 FR 35357 - Atlantic Highly Migratory Species; Commercial Atlantic Region Non-Sandbar Large Coastal Shark...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Highly Migratory Species; Commercial Atlantic Region Non-Sandbar Large Coastal Shark Fishery Opening Date... commercial Atlantic region non-sandbar large coastal shark fishery. This action is necessary to inform... large coastal shark fishery will open on July 15, 2012. FOR FURTHER INFORMATION CONTACT: Karyl Brewster...

  16. Analyzing coastal turbidity under complex terrestrial loads characterized by a 'stress connectivity matrix' with an atmosphere-watershed-coastal ocean coupled model

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Nadaoka, Kazuo

    2018-04-01

    Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.

  17. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zullo, V.A.; Harris, W.B.; Price, V.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geologymore » in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.« less

  18. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    USGS Publications Warehouse

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  19. Recent crustal movements and seismicity in the western coastal region of peninsular India

    NASA Astrophysics Data System (ADS)

    Kailasam, L. N.

    1983-09-01

    Recent crustal movements, tectonics and seismicity of the western coastal region of peninsular India have been studied in detail in the very recent past. Prominent geomorphic features and large-scale manifestation of Holocene deformation and crustal movements have been noticed and studied over this coastal region from the Gulf of Cambay to the southernmost parts of Kerala, evidence for which is afforded in the form of Recent and sub-Recent raised beaches, sandbars, raised old terraces, pebble beds, etc. The sedimentary formations in this narrow coastal belt include Neogene and Quaternary sediments. The Bouguer gravity map of the western coastal tract shows some prominent gravity features extending into the offshore regions, suggestive of some significant tectonic and structural features. The seismic data in the offshore regions bring out some prominent roughly northwest-southeast as well as east-west faults and shears, in addition to prominent structural "highs" off the Bombay and Ratnagiri coast which have proved oil. The seismicity in this coastal tract as well as the faulted western margin of the western continental shelf in the Arabian Sea is generally of magnitude 3-6.

  20. Statistical Field Estimation for Complex Coastal Regions and Archipelagos (PREPRINT)

    DTIC Science & Technology

    2011-04-09

    and study the computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal...computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal regions and... multiscale free-surface code builds on the primitive-equation model of the Harvard Ocean Predic- tion System (HOPS, Haley et al. (2009)). Additionally

  1. A Science Plan for a Comprehensive Regional Assessment of the Atlantic Coastal Plain Aquifer System in Maryland

    USGS Publications Warehouse

    Shedlock, Robert J.; Bolton, David W.; Cleaves, Emery T.; Gerhart, James M.; Nardi, Mark R.

    2007-01-01

    The Maryland Coastal Plain region is, at present, largely dependent upon ground water for its water supply. Decades of increasing pumpage have caused ground-water levels in parts of the Maryland Coastal Plain to decline by as much as 2 feet per year in some areas of southern Maryland. Continued declines at this rate could affect the long-term sustainability of ground-water resources in Maryland's heavily populated Coastal Plain communities and the agricultural industry of the Eastern Shore. In response to a recommendation in 2004 by the Advisory Committee on the Management and Protection of the State's Water Resources, the Maryland Geological Survey and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information and new data management and analysis tools for the State to use in allocating ground water in the Coastal Plain. The comprehensive assessment has five goals aimed at improving the current information and tools used to understand the resource potential of the aquifer system: (1) document the geologic and hydrologic characteristics of the aquifer system in the Maryland Coastal Plain and appropriate areas of adjacent states; (2) conduct detailed studies of the regional ground-water-flow system and water budget for the aquifer system; (3) improve documentation of patterns of water quality in all Coastal Plain aquifers, including the distribution of saltwater; (4) enhance ground-water-level, streamflow, and water-quality-monitoring networks in the Maryland Coastal Plain; and (5) develop science-based tools to facilitate sound management of the ground-water resources in the Maryland Coastal Plain. The assessment, as designed, will be conducted in three phases and if fully implemented, is expected to take 7 to 8 years to complete. Phase I, which was initiated in January 2006, is an effort to assemble all the information and investigation tools needed to do a more comprehensive assessment of

  2. Isotope geochemistry and fluxes of carbon and organic matter in tropical small mountainous river systems and adjacent coastal waters of the Caribbean

    USGS Publications Warehouse

    Moyer, Ryan; Bauer, James; Grottoli, Andrea

    2012-01-01

    Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.

  3. Conceptualization and analysis of ground-water flow system in the Coastal Plain of Virginia and adjacent parts of Maryland and North Carolina

    USGS Publications Warehouse

    Harsh, John F.; Laczniak, Randell J.

    1990-01-01

    The ground-water flow system in the Coastal Plain of Virginia and adjacent parts of Maryland and North Carolina consists of a water table aquifer and an underlying sequence of confined aquifers and intervening confining units composed of unconsolidated sand and clay. A digital flow model was developed to enhance knowledge of the behavior of the ground-water flow system in response to its development. Ten pumping periods covering 90 yr of withdrawal simulated the history of ground-water development. Simulated potentiometric-surface maps for 1980 show lowered water levels and the development of coalescing cones of depression around the cities of Franklin, Suffolk, and Williamsburg and the town of West Point, all in Virginia. The largest simulated decline in water level, about 210 ft was near Franklin. Water budgets indicate that over the period of simulation (1891-1980): (1) pumpage from the model area increased by about 105 Mgal/d; (2) lateral boundary outflow increased by about 5 Mgal/d; (3) ground-water flow to streams and coastal water decreased by about 107.5 Mgal/d; (4) lateral boundary inflow increased by about 0.7 Mgal/d, and (5) water released from aquifer storage increased by about 1.6 Mgal/d. Simulated rates of recharge into the confined aquifer system at the end of the final pumping period (1980) varied up to 3.8 in/yr. and simulated rates of discharge out of the confined system varied up to 2.2 in/yr. Results of simulations show an increase of about 110 Mgal/d into the confined system from the unconfined system over the period of simulation. This increase in flow into the confined system affected local discharge of ground water to streams and regional discharge to coastal water. Lowering the storage coefficient of the aquifer had a minimal effect simulated water levels, whereas increasing the storage coefficient had a much more significant effect.

  4. Regional Risk Assessment for climate change impacts on coastal aquifers.

    PubMed

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    USGS Publications Warehouse

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  6. Coastal Studies in a Comprehensive Summer Field Geology Course.

    ERIC Educational Resources Information Center

    Cameron, Barry; Jones, Richard J.

    1979-01-01

    Describes a college geology course that incorporates a coastal segment. Field studies are done on Plum Island and include examining beaches, dune fields, and an adjacent marsh and spit. Topics include sedimentation, coastal geomorphology, botanical effects, and coastal studies methodology. (MA)

  7. Challenges of Tsunami Disaster and Extreme climate Events Along Coastal Region in Asia-Pacific

    NASA Astrophysics Data System (ADS)

    Chaudhari, S.

    2017-12-01

    South Asia is more vulnerable to Geo disasters and impacts of climate changes in recent years. On 26 December 2004 massive waves triggered by an earthquake surged into coastal communities in Asia and East Africa with devastating force. Hitting Indonesia, Sri Lanka , Thailand and India hardest, the deadly waves swept more than 200 000 people to their deaths. Also in an another extreme climate change phenomenon during 2005 - 2006,causing heavy rains and flooding situation in the South Asia - Europe and Pacific region ,more than 100 million population in these regions are witnessing the social- economical and ecological risks and impacts due to climate changes and Geohazards. For mitigating geo-disasters, marine hazards and rehabilitation during post tsunami period, scientific knowledge is needed, requiring experienced research communities who can train the local population during tsunami rehabilitation. Several civil society institutions jointly started the initiatives on the problem identifications in management of risks in geo-disasters, tsunami rehabilitation ,Vulnerability and risk assessments for Geohazards etc., to investigate problems related to social-economic and ecological risks and management issues resulting from the December tsunami and Geo- disaster, to aid mitigation planning in affected areas and to educate scientists and local populations to form a basis for sustainable and economic solutions. The poster aims to assess the potential risk and hazard , technical issues, problems and damage arising from Tsunami in the Asia-pacific region in coastal geology, coastal ecosystems and coastal environmental systems . This poster deals with the status and issues of interactions between Human and Ocean Systems, Geo-risks, marine risks along coastal region of Asia- Pacific and also human influence on the earth system . The poster presentation focuses on capacity building of the local population, scientists and researchers for integration of human and ocean

  8. The ground beetles (Coleoptera: Carabidae) of the Strandzha Mountain and adjacent coastal territories (Bulgaria and Turkey)

    PubMed Central

    Guéorguiev, Borislav

    2016-01-01

    Abstract Background The knowledge of the ground-beetle fauna of Strandzha is currently incomplete, and is largely based on data from the Bulgarian part of the region and on records resulting from casual collecting. This study represents a critical revision of the available literature, museum collections and a three years field study of the carabid beetles of the Bulgarian and Turkish parts of Strandzha Mountain and the adjacent Black Sea Coast territories. New information A total of 328 species and subspecies of Carabidae, belonging to 327 species from the region of Strandzha Mountain and adjacent seacoast area, have been listed. Of these, 77 taxa represent new records for the Bulgarian part of the region, and 110 taxa new records for Turkish part of the studied region. Two taxa, one subgenus (Haptotapinus Reitter, 1886) and one species (Pterostichus crassiusculus), are new to the fauna of Bulgaria. Based on a misidentification, the species Apotomus testaceus is excluded from the list of the Bulgarian fauna. Seven species (Carabus violaceus azurescens, Apotomus rufus, Platynus proximus, Molops alpestris kalofericus, M. dilatatus angulicollis, Pterostichus merklii, and Calathus metallicus) are treated as doubtful for the regional fauna, and one (Apotomus rufus) also for the Bulgarian fauna. Altogether, 43 taxa collected in the Turkish part of the region are new for European Turkey. New taxa for Turkey are the genera Myas and Oxypselaphus, the subgenus Feronidius, and nine species and subspecies (Carabus granulatus granulatus, Dyschirius tristis, Bembidion normannum apfelbecki, B. subcostatum vau, Acupalpus exiguus, Myas chalybaeus, Oxypselaphus obscurus, Pterostichus leonisi, Pt. melas). In addition, there are a further seven species that are here confirmed for Turkey. PMID:27099564

  9. Lithospheric structure of the South China Sea and adjacent regions: Results from potential field modelling

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Fang, Jian; Cui, Ronghua

    2018-02-01

    This work aims to investigate the crustal and lithospheric mantle thickness of the South China Sea (SCS) and adjacent regions. The crust-mantle interface, average crustal density, and lithospheric mantle base are calculated from free-air gravity anomaly and topographic data using an iterative inversion method. We construct a three-dimensional lithospheric model with different hierarchical layers. The satellite-derived gravity is used to invert the average crustal density and Moho (crust-mantle interface) undulations. The average crustal density and LAB (lithosphere-asthenosphere boundary) depths are further adjusted by topographic data under the assumption of local isostasy. The average difference in Moho depths between this study and the seismic measurement results is <1.5 km. The results show that in oceanic regions, the Moho depths are 7.5-30 km and the LAB depths are 65-120 km. The lithospheric thickness of the SCS basin and the adjacent regions increases from the sea basin to the continental margin with a large gradient in the ocean-continent transition zones. The Moho depths of conjugate plots during the opening of SCS, Zhongsha Islands and Reed Bank, reveal the asymmetric spreading pattern of SCS seafloor spreading. The lithospheric thinning pattern indicate two different spreading directions during seafloor spreading, which changed from N-S to NW-SE after the southward transition of the spreading axis. The lithosphere of the SCS basin and adjacent regions indicate that the SCS basin is a young basin with a stable interior lithosphere.

  10. A meta-analysis of plant facilitation in coastal dune systems: responses, regions, and research gaps.

    PubMed

    Castanho, Camila de Toledo; Lortie, Christopher J; Zaitchik, Benjamin; Prado, Paulo Inácio

    2015-01-01

    Empirical studies in salt marshes, arid, and alpine systems support the hypothesis that facilitation between plants is an important ecological process in severe or 'stressful' environments. Coastal dunes are both abiotically stressful and frequently disturbed systems. Facilitation has been documented, but the evidence to date has not been synthesized. We did a systematic review with meta-analysis to highlight general research gaps in the study of plant interactions in coastal dunes and examine if regional and local factors influence the magnitude of facilitation in these systems. The 32 studies included in the systematic review were done in coastal dunes located in 13 countries around the world but the majority was in the temperate zone (63%). Most of the studies adopt only an observational approach to make inferences about facilitative interactions, whereas only 28% of the studies used both observational and experimental approaches. Among the factors we tested, only geographic region mediates the occurrence of facilitation more broadly in coastal dune systems. The presence of a neighbor positively influenced growth and survival in the tropics, whereas in temperate and subartic regions the effect was neutral for both response variables. We found no evidence that climatic and local factors, such as life-form and life stage of interacting plants, affect the magnitude of facilitation in coastal dunes. Overall, conclusions about plant facilitation in coastal dunes depend on the response variable measured and, more broadly, on the geographic region examined. However, the high variability and the limited number of studies, especially in tropical region, indicate we need to be cautious in the generalization of the conclusions. Anyway, coastal dunes provide an important means to explore topical issues in facilitation research including context dependency, local versus regional drivers of community structure, and the importance of gradients in shaping the outcome of net

  11. COUPLING BETWEEN THE COASTAL OCEAN AND YAQUINA BAY, OREGON: THE IMPORTANCE OF OCEANIC INPUTS RELATIVE TO OTHER NITROGEN SOURCES

    EPA Science Inventory

    Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaqu...

  12. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  13. Using Morphological, Molecular and Climatic Data to Delimitate Yews along the Hindu Kush-Himalaya and Adjacent Regions

    PubMed Central

    Poudel, Ram C.; Möller, Michael; Gao, Lian-Ming; Ahrends, Antje; Baral, Sushim R.; Liu, Jie; Thomas, Philip; Li, De-Zhu

    2012-01-01

    Background Despite the availability of several studies to clarify taxonomic problems on the highly threatened yews of the Hindu Kush-Himalaya (HKH) and adjacent regions, the total number of species and their exact distribution ranges remains controversial. We explored the use of comprehensive sets of morphological, molecular and climatic data to clarify taxonomy and distributions of yews in this region. Methodology/Principal Findings A total of 743 samples from 46 populations of wild yew and 47 representative herbarium specimens were analyzed. Principle component analyses on 27 morphological characters and 15 bioclimatic variables plus altitude and maximum parsimony analysis on molecular ITS and trnL-F sequences indicated the existence of three distinct species occurring in different ecological (climatic) and altitudinal gradients along the HKH and adjacent regions Taxus contorta from eastern Afghanistan to the eastern end of Central Nepal, T. wallichiana from the western end of Central Nepal to Northwest China, and the first report of the South China low to mid-elevation species T. mairei in Nepal, Bhutan, Northeast India, Myanmar and South Vietnam. Conclusion/Significance The detailed sampling and combination of different data sets allowed us to identify three clearly delineated species and their precise distribution ranges in the HKH and adjacent regions, which showed no overlap or no distinct hybrid zone. This might be due to differences in the ecological (climatic) requirements of the species. The analyses further provided the selection of diagnostic morphological characters for the identification of yews occurring in the HKH and adjacent regions. Our work demonstrates that extensive sampling combined with the analysis of diverse data sets can reliably address the taxonomy of morphologically challenging plant taxa. PMID:23056501

  14. Towards a regional coastal ocean observing system: An initial design for the Southeast Coastal Ocean Observing Regional Association

    NASA Astrophysics Data System (ADS)

    Seim, H. E.; Fletcher, M.; Mooers, C. N. K.; Nelson, J. R.; Weisberg, R. H.

    2009-05-01

    A conceptual design for a southeast United States regional coastal ocean observing system (RCOOS) is built upon a partnership between institutions of the region and among elements of the academic, government and private sectors. This design envisions support of a broad range of applications (e.g., marine operations, natural hazards, and ecosystem-based management) through the routine operation of predictive models that utilize the system observations to ensure their validity. A distributed information management system enables information flow, and a centralized information hub serves to aggregate information regionally and distribute it as needed. A variety of observing assets are needed to satisfy model requirements. An initial distribution of assets is proposed that recognizes the physical structure and forcing in the southeast U.S. coastal ocean. In-situ data collection includes moorings, profilers and gliders to provide 3D, time-dependent sampling, HF radar and surface drifters for synoptic sampling of surface currents, and satellite remote sensing of surface ocean properties. Nested model systems are required to properly represent ocean conditions from the outer edge of the EEZ to the watersheds. An effective RCOOS will depend upon a vital "National Backbone" (federally supported) system of in situ and satellite observations, model products, and data management. This dependence highlights the needs for a clear definition of the National Backbone components and a Concept of Operations (CONOPS) that defines the roles, functions and interactions of regional and federal components of the integrated system. A preliminary CONOPS is offered for the Southeast (SE) RCOOS. Thorough system testing is advocated using a combination of application-specific and process-oriented experiments. Estimates of costs and personnel required as initial components of the SE RCOOS are included. Initial thoughts on the Research and Development program required to support the RCOOS are

  15. Sea level variability influencing coastal flooding in the Swan River region, Western Australia

    NASA Astrophysics Data System (ADS)

    Eliot, Matt

    2012-02-01

    Coastal flooding refers to the incidence of high water levels produced by water level fluctuations of marine origin, rather than riverine floods. An understanding of the amplitude and frequency of high water level events is essential to foreshore management and the design of many coastal and estuarine facilities. Coastal flooding events generally determine public perception of sea level phenomena, as they are commonly associated with erosion events. This investigation has explored the nature of coastal flooding events affecting the Swan River Region, Western Australia, considering water level records at four sites in the estuary and lower river, extending from the mouth of the Swan River to 40 km upstream. The analysis examined the significance of tides, storms and mean sea level fluctuations over both seasonal and inter-annual time scales. The relative timing of these processes is significant for the enhanced or reduced frequency of coastal flooding. These variations overlie net sea level rise previously reported from the coastal Fremantle record, which is further supported by changes to the distribution of high water level events at an estuarine tidal station. Seasonally, coastal flooding events observed in the Swan River region are largely restricted to the period from May to July due to the relative phases of the annual mean sea fluctuation and biannual tidal cycle. Although significant storm surge events occur outside this period, their impact is normally reduced, as they are superimposed on lower tidal and mean sea level conditions. Over inter-annual time scales tide, storminess and mean sea level produce cycles of enhanced and depressed frequency of coastal flooding. For the Swan River region, the inter-annual tidal variation is regular, dominated by the 18.6 year lunar nodal cycle. Storminess and mean sea level variations are independent and irregular, with cycles from 3 to 10 year duration. Since 1960, these fluctuations have not occurred in phase

  16. Regional flow in the Baltic Shield during Holocene coastal regression

    USGS Publications Warehouse

    Voss, Clifford I.; Andersson, Johan

    1993-01-01

    The occurrence of saline waters in the Baltic Shield in Sweden is consistent with ongoing but incomplete Holocene flushing and depends on the geometry and connectivity of conductive structures at both regional and local scales, and on the surface topography. Numerical simulation of regional variable-density fluid flow during Holocene land-rise and coastal regression shows that the existence of any old saline water, whether derived from submarine recharge in regions below Sweden's highest postglacial coastline or geochemical processes in the crystalline rock, is an indication either of slow fluid movements through the bedrock over long times, or of long travel distances through fracture systems before arriving at measurement points. During the land-rise period, regional flow is not affected by the variable density of fluids in the upper few kilometers of the shield, and the topography of the water table is the only driving force. The spatial distribution of meteoric flushing water and pre-Holocene waters may be complex, with the possibility of relatively fresh water in fracture zones below salty units even at depths of a few kilometers. The domination of the topographic driving force implies that deep saline water is not necessarily stagnant, and significant flow may be expected to occur in well-connected horizons even at depth. Local topography variation and fracture zone location combine to create a complex flow field in which local topographic driving forces extend to considerable depth in some areas, whereas regional topographic forces predominate in others. Thus, a pattern may be difficult to discern in measurements of the regional salinity distribution, although it is clear that the coastal region is the major zone of discharge for deeper pre-Holocene fluids. During the land-rise period, the regional flow field equilibrates with changing climatic conditions and coastal positions, while the distribution of flushing water and older water lags and will

  17. GIS and remote sensing applications in the assessment of change within a coastal environment in the Niger Delta region of Nigeria.

    PubMed

    Twumasi, Yaw A; Merem, Edmund C

    2006-03-01

    In the last decades, the Niger Delta region has experienced rapid growth in population and economic activity with enormous benefits to the adjacent states and the entire Nigerian society. As the region embarks upon an unprecedented phase of economic expansion in the 21st century, it faces several environmental challenges fuelled partly by the pressures caused by human activities such as oil and gas exploration, housing development, and road construction for transportation, economic development and demographic changes. This continued growth has resulted in environmental problems such as coastal wetland loss, habitat degradation, and water pollution, gas flaring, destruction of forest vegetation as well as a host of other issues. This underscores the urgent need to design new approaches for managing remote costal resources in sensitive tropical environments effectively in order to maintain a balance between coastal resource conservation and rapid economic development in developing countries for sustainability. Notwithstanding previous initiatives, there have not been any major efforts in the literature to undertake a remote sensing and GIS based assessment of the growing incidence of environmental change within coastal zone environments of the study area. This project is an attempt to fill that void in the literature by exploring the applications of GIS and remote sensing in a tropical coastal zone environment with emphasis on the environmental impacts of development in the Niger Delta region of Southern Nigeria. To deal with some of the aforementioned issues, several research questions that are of great relevance to the paper have been posed. The questions include, Have there been any changes in the coastal environment of the study area? What are the impacts of the changes? What forces are responsible for the changes? Has there been any major framework in place to deal with the changes? The prime objective of the paper is to provide a novel approach for assessing

  18. GIS and Remote Sensing Applications in the Assessment of Change within a Coastal Environment in the Niger Delta Region of Nigeria

    PubMed Central

    Twumasi, Yaw A.; Merem, Edmund C.

    2006-01-01

    In the last decades, the Niger Delta region has experienced rapid growth in population and economic activity with enormous benefits to the adjacent states and the entire Nigerian society. As the region embarks upon an unprecedented phase of economic expansion in the 21st century, it faces several environmental challenges fuelled partly by the pressures caused by human activities such as oil and gas exploration, housing development, and road construction for transportation, economic development and demographic changes. This continued growth has resulted in environmental problems such as coastal wetland loss, habitat degradation, and water pollution, gas flaring, destruction of forest vegetation as well as a host of other issues. This underscores the urgent need to design new approaches for managing remote costal resources in sensitive tropical environments effectively in order to maintain a balance between coastal resource conservation and rapid economic development in developing countries for sustainability. Notwithstanding previous initiatives, there have not been any major efforts in the literature to undertake a remote sensing and GIS based assessment of the growing incidence of environmental change within coastal zone environments of the study area. This project is an attempt to fill that void in the literature by exploring the applications of GIS and remote sensing in a tropical coastal zone environment with emphasis on the environmental impacts of development in the Niger Delta region of Southern Nigeria. To deal with some of the aforementioned issues, several research questions that are of great relevance to the paper have been posed. The questions include, Have there been any changes in the coastal environment of the study area? What are the impacts of the changes? What forces are responsible for the changes? Has there been any major framework in place to deal with the changes? The prime objective of the paper is to provide a novel approach for assessing

  19. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection

    PubMed Central

    Kim, Sungho

    2015-01-01

    Sea-based infrared search and track (IRST) is important for homeland security by detecting missiles and asymmetric boats. This paper proposes a novel scheme to interpret various infrared scenes by classifying the infrared background types and detecting the coastal regions in omni-directional images. The background type or region-selective small infrared target detector should be deployed to maximize the detection rate and to minimize the number of false alarms. A spatial filter-based small target detector is suitable for identifying stationary incoming targets in remote sea areas with sky only. Many false detections can occur if there is an image sector containing a coastal region, due to ground clutter and the difficulty in finding true targets using the same spatial filter-based detector. A temporal filter-based detector was used to handle these problems. Therefore, the scene type and coastal region information is critical to the success of IRST in real-world applications. In this paper, the infrared scene type was determined using the relationships between the sensor line-of-sight (LOS) and a horizontal line in an image. The proposed coastal region detector can be activated if the background type of the probing sector is determined to be a coastal region. Coastal regions can be detected by fusing the region map and curve map. The experimental results on real infrared images highlight the feasibility of the proposed sea-based scene interpretation. In addition, the effects of the proposed scheme were analyzed further by applying region-adaptive small target detection. PMID:26404308

  20. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    PubMed

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science

    USGS Publications Warehouse

    Kinsinger, Anne E.

    2009-01-01

    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  2. Revised hydrogeologic framework of the Floridan aquifer system in the northern coastal area of Georgia and adjacent parts of South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Gill, Harold E.

    2010-01-01

    The hydrogeologic framework for the Floridan aquifer system has been revised for eight northern coastal counties in Georgia and five coastal counties in South Carolina by incorporating new borehole geophysical and flowmeter log data collected during previous investigations. Selected well logs were compiled and analyzed to determine the vertical and horizontal continuity of permeable zones that make up the Upper and Lower Floridan aquifers and to define more precisely the thickness of confining beds that separate these aquifers. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual permeable zones that compose these aquifers. The revised boundaries of the Floridan aquifer system were mapped by taking into account results from local studies and regional correlations of geologic and hydrogeologic units. Because the revised framework does not match the previous regional framework along all edges, additional work will be needed to expand the framework into adjacent areas. The Floridan aquifer system in the northern coastal region of Georgia and parts of South Carolina can be divided into the Upper and Lower Floridan aquifers, which are separated by a middle confining unit of relatively lower permeability. The Upper Floridan aquifer includes permeable and hydraulically connected carbonate rocks of Oligocene and upper Eocene age that represent the most transmissive part of the aquifer system. The middle confining unit consists of low permeability carbonate rocks that lie within the lower part of the upper Eocene in Beaufort and Jasper Counties, South Carolina, and within the upper to middle parts of the middle Eocene elsewhere. Locally, the middle confining unit contains thin zones that have moderate to high permeability and can produce water to wells that tap them. The Lower Floridan aquifer

  3. Regional biomass stores and dynamics in forests of coastal Alaska

    Treesearch

    Mikhaill A. Yatskov; Mark E. Harmon; Olga N. Krankina; Tara M. Barrett; Kevin R. Dobelbower; Andrew N. Gray; Becky Fasth; Lori Trummer; Toni L. Hoyman; Chana M. Dudoit

    2015-01-01

    Coastal Alaska is a vast forested region (6.2 million ha) with the potential to store large amounts of carbon in live and dead biomass thus influencing continental and global carbon dynamics. The main objectives of this study were to assess regional biomass stores, examine the biomass partitioning between live and dead pools, and evaluate the effect of disturbance on...

  4. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide

    DTIC Science & Technology

    2016-04-01

    SERDP NOAA USACE Ocean MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR DEPARTMENT OF DEFENSE COASTAL SITES...WORLDWIDE APRIL 2016 REGIONAL SEA LEVEL SCENARIOS FOR COASTAL RISK MANAGEMENT: COVER PHOTOS, FROM LEFT TO RIGHT: - Overwash of the island of Roi-Namur on...J.A., S. Gill, J. Obeysekera, W. Sweet, K. Knuuti, and J. Marburger. 2016. Regional Sea Level Scenarios for Coastal Risk Management: Managing the

  5. Editorial: Eutrophication and hypoxia and their impacts on the ecosystem of the Changjiang Estuary and adjacent coastal environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Xiao, Tian; Huang, Daji; Liu, Su Mei; Fang, Jianguang

    2016-02-01

    The Changjiang (Yangtze River) Estuary plays an important role in the land-ocean interactions of East Asia, particularly in regard to the fate of land-derived materials and their impact on marine ecosystems in the Northwest Pacific Ocean. The 12 papers included in this special issue describe results from the MEcoPAM Study, an IMBER-China project, which occurred in 2011-2015. This project used a multi-disciplinary approach to understand ecosystem function of the Changjiang Estuary in response to multiple stressors (i.e. combined external forcings). The results presented here show that human activities in the watersheds have greatly changed the flux and variation of dissolved and particulate materials from the river. Further interactions between the Changjiang Watersheds and the East China Sea can dramatically modify the pathways of biogeochemistry and food web dynamics of the estuary and adjacent coastal environment at seasonal and inter-annual scales.

  6. Regional vicarious gain adjustment for coastal VIIRS products

    NASA Astrophysics Data System (ADS)

    Bowers, Jennifer; Arnone, Robert; Ladner, Sherwin; Fargion, Giulietta S.; Lawson, Adam; Martinolich, Paul; Vandermeulen, Ryan

    2014-05-01

    As part of the Joint Polar Satellite System (JPSS) Ocean Cal/Val Team, Naval Research Lab - Stennis Space Center (NRL-SSC) has been working to facilitate calibration and validation of the Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. By relaxing the constraints of the NASA Ocean Biology Processing Group (OBPG) methodology for vicarious calibration of ocean color satellites and utilizing the Aerosol Robotic Network Ocean Color (AERONET-OC) system to provide in situ data, we investigated differences between remotely sensed water leaving radiance and the expected in situ response in coastal areas and compare the results to traditional Marine Optical Buoy (MOBY) calibration/validation activities. An evaluation of the Suomi National Polar-Orbiting Partnership (SNPP)-VIIRS ocean color products was performed in coastal waters using the time series data obtained from the Northern Gulf of Mexico AERONET-OC site, WaveCIS. The coastal site provides different water types with varying complexity of CDOM, sedimentary, and chlorophyll components. Time series data sets were used to develop a vicarious gain adjustment (VGA) at this site, which provides a regional top of the atmospheric (TOA) spectral offset to compare the standard MOBY spectral calibration gain in open ocean waters.

  7. A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek.

    PubMed

    DeLorenzo, Marie E; Thompson, Brian; Cooper, Emily; Moore, Janet; Fulton, Michael H

    2012-01-01

    Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to water-quality problems including nutrient enrichment, chemical contamination, and bacterial contamination. This study presents 5 years of monitoring data assessing water quality of a residential subdivision pond and adjacent tidal creek in coastal South Carolina, USA. The stormwater pond is eutrophic, as described by elevated concentrations of chlorophyll and phosphorus, and experiences periodic cyanobacterial blooms. A maximum monthly average chlorophyll concentration of 318.75 μg/L was measured in the stormwater pond and 227.63 μg/L in the tidal creek. Fecal coliform bacteria (FCB) levels were measured in both the pond and the tidal creek that exceeded health and safety standards for safe recreational use. A maximum monthly average FCB level of 1,247 CFU/100 mL was measured in the stormwater pond and 12,850 CFU/100 mL in the tidal creek. In addition, the presence of antibiotic resistant bacteria and pathogenic bacteria were detected. Low concentrations of herbicides (atrazine and 2,4-D: ), a fungicide (chlorothalonil), and insecticides (pyrethroids and imidacloprid) were measured. Seasonal trends were identified, with the winter months having the lowest concentrations of chlorophyll and FCB. Statistical differences between the stormwater pond and the tidal creek were also noted within seasons. The tidal creek had higher FCB levels than the stormwater pond in the spring and summer, whereas the stormwater pond had higher chlorophyll levels than the tidal creek in the summer and fall seasons. Chlorophyll and FCB levels in the stormwater pond were significantly correlated with monthly average temperature and total rainfall. Pesticide concentrations were also significantly correlated with temperature and rainfall. Pesticide concentrations in the stormwater pond were significantly correlated with

  8. A Coastal Risk Assessment Framework Tool to Identify Hotspots at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Van Dongeren, A.; Viavattene, C.; Jimenez, J. A.; Ferreira, O.; Bolle, A.; Owen, D.; Priest, S.

    2016-02-01

    Extreme events in combination with an increasing population on the coast, future sea level rise and the deterioration of coastal defences can lead to catastrophic consequences for coastal communities and their activities. The Resilience-Increasing Strategies for Coasts - toolkit (RISC-KIT) FP7 EU project is producing a set of EU-coherent open-source and open-access tools in support of coastal managers and decision-makers. This paper presents one of these tools, the Coastal Risk Assessment Framework (CRAF) which assesses coastal risk at a regional scale to identify potential impact hotspots for more detailed assessment. Applying a suite of complex models at a full and detailed regional scale remains difficult and may not be efficient, therefore a 2-phase approach is adopted. CRAF Phase 1 is a screening process based on a coastal-index approach delimiting several hotspots in alongshore length by assessing the potential exposure for every kilometre along the coast. CRAF Phase 2 uses a suite of more complex modelling process (including X-beach 1D, inundation model, impact assessment and Multi-Criteria Analysis approach) to analyse and compare the risks between the aforementioned identified hotspots. Results of its application are compared on 3 European Case Studies, the Flemish highly protected low-lying coastal plain with important urbanization and harbors, a Portuguese coastal lagoon protected by a multi-inlet barrier system, the highly urbanized Catalonian coast with touristic activities at threat. The flexibility of the tool allows tailoring the comparative analysis to these different contexts and to adapt to the quality of resources and data available. Key lessons will be presented.

  9. Detection of pharmaceuticals and other personal care products in groundwater beneath and adjacent to onsite wastewater treatment systems in a coastal plain shallow aquifer.

    PubMed

    Del Rosario, Katie L; Mitra, Siddhartha; Humphrey, Charles P; O'Driscoll, Michael A

    2014-07-15

    Onsite wastewater treatment systems (OWTS) are the predominant disposal method for human waste in areas without municipal sewage treatment alternatives. Relatively few studies have addressed the release of pharmaceuticals and personal care products (PPCPs) from OWTS to groundwater. PPCP fate and transport from OWTS are important, particularly where these systems are adjacent to sensitive aquatic ecosystems such as coastal areas or wetlands. The objectives of this study were to identify PPCPs in residential wastewater and groundwater beneath OWTS and to characterize the environmental conditions affecting the OWTS discharge of PPCPs to nearby streams. The study sites are in coastal plain aquifers, which may be considered vulnerable "end-members" for subsurface PPCP transport. The PPCPs most commonly detected in the OWTS, at concentrations ranging from 0.12 μg L(-1) to 12.04 μg L(-1) in the groundwater, included: caffeine, ibuprofen, DEET, and homosalate. Their presence was related to particulate and dissolved organic carbon abundance. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  11. The comparison of vernacular residences' thermal comfort in coastal with that in mountainous regions of tropical areas

    NASA Astrophysics Data System (ADS)

    Hermawan, Prianto, Eddy; Setyowati, Erni; Sunaryo

    2017-11-01

    Adaptive thermal comfort is the latest theory used to analyze thermal acceptability of the naturally ventilated buildings for occupants in tropical areas. Vernacular residences are considered capable to meet the thermal comfort for the occupants. The combination between adaptive and passive theory is still rarely conducted. This study aims to compare the adaptive and passive thermal comfort for occupants of vernacular residences in mountainous and coastal regions using AMV (Actual Mean Vote) and PMV (Predicted Mean Vote). This research uses a quantitative method with a statistical analysis on variables of air temperature, globe temperature, velocity, relative humidity, age, weight, and height. AMV data are collected based on questionnaires with ASHRAE (American Society of Heating, Refrigeration, Air conditioning Engineering) standards. The samples consist of 100 vernacular residences of both coastal and mountainous regions. The results show that there are AMV and PMV differences in each region. The AMV values in those vernacular residences in mountainous and coastal regions are respectively -0.4982 and 0.1673. It indicates that the occupants of vernacular residences in coastal regions accept the thermal conditions better. Thus, it can be concluded that vernacular residences in coastal areas comfort the occupants more.

  12. Time-Series Analysis of Remotely-Sensed SeaWiFS Chlorophyll in River-Influenced Coastal Regions

    NASA Technical Reports Server (NTRS)

    Acker, James G.; McMahon, Erin; Shen, Suhung; Hearty, Thomas; Casey, Nancy

    2009-01-01

    The availability of a nearly-continuous record of remotely-sensed chlorophyll a data (chl a) from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, now longer than ten years, enables examination of time-series trends for multiple global locations. Innovative data analysis technology available on the World Wide Web facilitates such analyses. In coastal regions influenced by river outflows, chl a is not always indicative of actual trends in phytoplankton chlorophyll due to the interference of colored dissolved organic matter and suspended sediments; significant chl a timeseries trends for coastal regions influenced by river outflows may nonetheless be indicative of important alterations of the hydrologic and coastal environment. Chl a time-series analysis of nine marine regions influenced by river outflows demonstrates the simplicity and usefulness of this technique. The analyses indicate that coastal time-series are significantly influenced by unusual flood events. Major river systems in regions with relatively low human impact did not exhibit significant trends. Most river systems with demonstrated human impact exhibited significant negative trends, with the noteworthy exception of the Pearl River in China, which has a positive trend.

  13. Increasing Incidence of Tuberculosis Infection in the Coastal Region of Northern Miyagi after the Great East Japan Earthquake.

    PubMed

    Sakurai, Masahiro; Takahashi, Tatsuya; Ohuchi, Miyako; Terui, Yuki; Kiryu, Kouji; Shikano, Kazuo

    2016-03-01

    On March 11, 2011, the Great East Japan Earthquake struck off the northeast coast of Japan. Within an hour of the earthquake, devastating tsunamis swept over the coastal region of the Miyagi Prefecture, facing Pacific Ocean. Accordingly, more than 400,000 residents were forced to stay at evacuation shelters. We investigated the changes in tuberculosis prevalence after the disaster. Annual data for all tuberculosis patients between April 1, 2009 and March 31, 2013 were extracted from the database of the Miyagi Prefectural Government. In the coastal region of Northern Miyagi, the number of tuberculosis patients increased in the post-disaster period (p < 0.001, 9.6 vs.19.1 per 100,000 people), compared to the pre-disaster period. In contrast, its prevalence did not change in the inland region of Northern Miyagi and the coastal and inland regions of Southern Miyagi. Importantly, in the inland and coastal regions of Northern Miyagi, the number of patients with latent tuberculosis infection (LTBI) increased in the post-disaster period (p < 0.001). Furthermore, in the coastal shelters, 11 evacuees with the history of contacting tuberculosis patients were diagnosed with LTBI, whereas no cases of LTBI patients were observed in the inland shelters. Thus, staying in the coastal shelters was a risk factor for contracting tuberculosis (OR: 19.31, 95% CI: 1.11-334.80); indeed, twice as many evacuees visited each coastal shelter on April 1, 2011, compared to the inland region. We should prepare the shelters to avoid overcrowding, and long-term observation is required to detect the prevalence of tuberculosis infection.

  14. THE POTENTIAL IMPACTS OF CLIMATE CHANGE ON THE MID-ATLANTIC COASTAL REGION

    EPA Science Inventory

    This paper assesses the potential impacts of climate change on the mid-Atlantic coastal (MAC) region of the United States. In order of increasing uncertainty, it is projected that sea level, temperature and streamflow will increase in the MAC region in response to higher levels o...

  15. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  16. Seasonal dynamics of particulate organic matter in the Changjiang Estuary and adjacent coastal waters illustrated by amino acid enantiomers

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Liu, Zongguang; Hu, Jun; Zhu, Zhuoyi; Liu, Sumei; Zhang, Jing

    2016-02-01

    Total suspended matter (TSM) was collected in the Changjiang Estuary and adjacent areas of the East China Sea in July, August, and November 2011, to study the composition and fate of particulate organic nitrogen (PON) during an August typhoon event and bottom trawling activities. Concentrations of particulate organic carbon (POC), particulate nitrogen (PN), and hydrolyzable particulate amino acids (PAA, D- and L-enantiomers) were higher during July and August than during November; however, D-arginine and alanine levels were significantly higher in November. Seasonal trends in the composition of PAAs indicate that in situ production is a key factor in their temporal distribution. No significant increase in TSM or decrease in labile organic matter was observed during the transit period following a typhoon event in August. In contrast, higher primary production was observed at this time as a result of the penetration of Changjiang Diluted Water caused by the typhoon event. Trawling effects were studied by comparing the calm season (July) with the bottom-trawling period (November) at similar sampling sites. The effect of trawling on the composition of bottom organic matter was studied by comparing D-amino acids concentrations and C/N ratios in the calm season (July) with the bottom-trawling period (November). A substantial contribution of microbial organic matter during the November cruise was indicated by a decrease in glutamic acid, an increase in TSM and D-alanine, and a lower carbon/nitrogen (C/N) ratio. In shallow coastal regions, anthropogenic activities (bottom trawling) may enhance the transfer of low-nutritional-value particulate organic matter into the benthic food chain.

  17. Ocean and Coastal Acidification off New England and Nova Scotia

    EPA Science Inventory

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  18. Microbial water quality before and after the repair of a failing onsite wastewater treatment system adjacent to coastal waters

    USGS Publications Warehouse

    Conn, K.E.; Habteselassie, M.Y.; Denene, Blackwood A.; Noble, R.T.

    2012-01-01

    Aims: The objective was to assess the impacts of repairing a failing onsite wastewater treatment system (OWTS, i.e., septic system) as related to coastal microbial water quality. Methods and Results: Wastewater, groundwater and surface water were monitored for environmental parameters, faecal indicator bacteria (total coliforms, Escherichia coli, enterococci) and the viral tracer MS2 before and after repairing a failing OWTS. MS2 results using plaque enumeration and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) often agreed, but inhibition limited the qRT-PCR assay sensitivity. Prerepair, MS2 persisted in groundwater and was detected in the nearby creek; postrepair, it was not detected. In groundwater, total coliform concentrations were lower and E.??coli was not detected, while enterococci concentrations were similar to prerepair levels. E.??coli and enterococci surface water concentrations were elevated both before and after the repair. Conclusions: Repairing the failing OWTS improved groundwater microbial water quality, although persistence of bacteria in surface water suggests that the OWTS was not the singular faecal contributor to adjacent coastal waters. A suite of tracers is needed to fully assess OWTS performance in treating microbial contaminants and related impacts on receiving waters. Molecular methods like qRT-PCR have potential but require optimization. Significance and Impact of Study: This is the first before and after study of a failing OWTS and provides guidance on selection of microbial tracers and methods. ?? 2011 The Authors. Journal of Applied Microbiology ?? 2011 The Society for Applied Microbiology.

  19. Transport processes near coastal ocean outfalls

    USGS Publications Warehouse

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  20. Studies on geotechnical properties of subsoil in south east coastal region of India

    NASA Astrophysics Data System (ADS)

    Dutta, Susom; Barik, D. K.

    2017-11-01

    Soil testing and analysis has become essential before commencement of any activity or process on soil i.e. residential construction, road construction etc. It is the most important work particularly in coastal area as these areas are more vulnerable to the natural disastrous like tsunami and cyclone. In India, there is lack of facility to collect and analyse the soil from the field. Hence, to study the various characteristics of the coastal region sub soil, Old Mahabalipuram area, which is the South East region of India has been chosen in this study. The aim of this study is to collect and analyse the soil sample from various localities of the Old Mahabalipuram area. The analysed soil data will be helpful for the people who are working in the field of Geotechnical in coastal region of India to make decision. The soil sample collected from different boreholes have undergone various field and laboratory tests like Pressuremeter Test, Field Permeability Test, Electrical Resistivity Test, Standard Penetration Test, Shear Test, Atterberg Limits etc. are performed including rock tests to know the geotechnical properties of the soil samples for each and every stratum

  1. Effects of a coastal golf complex on water quality, periphyton, and seagrass

    USGS Publications Warehouse

    Lewis, M.A.; Boustany, R.G.; Dantin, D.D.; Quarles, R.L.; Moore, J.C.; Stanley, R.S.

    2002-01-01

    The objective of this study was to provide baseline information on the effects of a golf course complex on water quality, colonized periphyton, and seagrass meadows in adjacent freshwater, near-coastal, and wetland areas. The chemical and biological impacts of the recreational facility, which uses reclaimed municipal wastewater for irrigation, were limited usually to near-field areas and decreased seaward during the 2-year study. Concentrations of chromium, copper, and organochlorine pesticides were below detection in surface water, whereas mercury, lead, arsenic, and atrazine commonly occurred at all locations. Only mercury and lead exceeded water quality criteria. Concentrations of nutrients and chlorophyll a were greater in fairway ponds and some adjacent coastal areas relative to reference locations and Florida estuaries. Periphyton ash free dry weight and pigment concentrations statistically differed but not between reference and non-reference coastal areas. Biomass of Thalassia testudinum (turtle grass) was approximately 43% less in a meadow located adjacent to the golf complex (P < 0.05). The results of the study suggest that the effects of coastal golf courses on water quality may be primarily localized and limited to peripheral near-coastal areas. However, this preliminary conclusion needs additional supporting data. ?? 2002 Elsevier Science (USA).

  2. Genetic organization of the unc-22 IV gene and the adjacent region in Caenorhabditis elegans.

    PubMed

    Rogalski, T M; Baillie, D L

    1985-01-01

    The genetic organization of the region immediately adjacent to the unc-22 IV gene in Caenorhabditis elegans has been studied. We have identified twenty essential genes in this interval of approximately 1.5-map units on Linkage Group IV. The mutations that define these genes were positioned by recombination mapping and complementation with several deficiencies. With few exceptions, the positions obtained by these two methods agreed. Eight of the twenty essential genes identified are represented by more than one allele. Three possible internal deletions of the unc-22 gene have been located by intra-genic mapping. In addition, the right end point of a deficiency or an inversion affecting the adjacent genes let-56 and unc-22 has been positioned inside the unc-22 gene.

  3. Pollution status of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River Estuary and its adjacent coastal zone.

    PubMed

    Wang, Chenglong; Zou, Xinqing; Gao, Jianhua; Zhao, Yifei; Yu, Wenwen; Li, Yali; Song, Qiaochu

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are mainly produced by incomplete combustion and are used as indicators of anthropogenic activities on the environment. This study analyses the PAHs level in the Yangtze River Estuary (YRE), an important component of Yangtze River and a developed and populated region in China. Surface sediments were collected from 77 sites at the YRE and its adjacent coastal zone (IACZ) for a comprehensive study of PAHs. Kriging interpolation technology and Positive matrix factorization (PMF) model were applied to explore the spatial distribution and sources of PAHs. Concentrations of 16 PAHs (ΣPAHs) varied from 27.2 ng g(-1) to 621.6 ng g(-1) dry weight, with an average value of 158.2 ng g(-1). Spatially, ΣPAHs exhibited wide fluctuation and exhibited an increasing tendency from north to south. In addition, ΣPAHs exhibited a decreasing trend with increasing distance between the estuary and IACZ. The deposition flux of PAHs indicated that more than 107.8 t a(-1) PAHs was deposited in the study area annually. The results of the PMF model revealed that anthropogenic activities were the main sources of PAHs in the study area. Vehicle emissions and marine engines were the most important sources and accounted for 40.9% of the pollution. Coal combustion, petrogenic sources, and wood combustion were other sources that contributed 23.9%, 23.6%, and 11.5%, respectively. The distribution patterns of PAHs in the YRE and IACZ were influenced by many complicated factors such as sediment grain size, hydrodynamics and so on. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Why is Coastal Community Resilience Important in the Gulf of Mexico Region?

    EPA Pesticide Factsheets

    The Gulf of Mexico Program supports the regional collaborative approach and efforts of the Coastal Community Resilience Priority Issue Team of the Gulf of Mexico Governors’ Alliance and its broad spectrum of partners and stakeholders.

  5. Late Holocene evolution of a coupled, mud-dominated delta plain-chenier plain system, coastal Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Hijma, Marc P.; Shen, Zhixiong; Törnqvist, Torbjörn E.; Mauz, Barbara

    2017-11-01

    Major deltas and their adjacent coastal plains are commonly linked by means of coast-parallel fluxes of water, sediment, and nutrients. Observations of the evolution of these interlinked systems over centennial to millennial timescales are essential to understand the interaction between point sources of sediment discharge (i.e. deltaic distributaries) and adjacent coastal plains across large spatial (i.e. hundreds of kilometres) scales. This information is needed to constrain future generations of numerical models to predict coastal evolution in relation to climate change and other human activities. Here we examine the coastal plain (Chenier Plain, CP) adjacent to the Mississippi River delta, one of the world's largest deltas. We use a refined chronology based on 22 new optically stimulated luminescence and 22 new radiocarbon ages to test the hypothesis that cyclic Mississippi subdelta shifting has influenced the evolution of the adjacent CP. We show that over the past 3 kyr, accumulation rates in the CP were generally 0-1 Mt yr-1. However, between 1.2 and 0.5 ka, when the Mississippi River shifted to a position more proximal to the CP, these rates increased to 2.9 ±1.1 Mt yr-1 or 0.5-1.5 % of the total sediment load of the Mississippi River. We conclude that CP evolution during the past 3 kyr was partly a direct consequence of shifting subdeltas, in addition to changing regional sediment sources and modest rates of relative sea-level (RSL) rise. The RSL history of the CP during this time period was constrained by new limiting data points from the base of overwash deposits associated with the cheniers. These findings have implications for Mississippi River sediment diversions that are currently being planned to restore portions of this vulnerable coast. Only if such diversions are located in the western portion of the Mississippi Delta plain could they potentially contribute to sustaining the CP shoreline. Our findings highlight the importance of a better

  6. Characteristics and environmental carrying capacities of coastal area in Yogyakarta Special Region for aquaculture

    NASA Astrophysics Data System (ADS)

    Triyatmo, B.; Rustadi; Priyono, S. B.

    2018-03-01

    The purpose of this study were to determine characteristics and environmental carrying capacities of coastal area in Yogyakarta Special Region for aquaculture. This study was conducted in 2015 by characterizing land and water dynamics, land use, and the suitability of coastal environments for aquaculture. Evaluation on the coastal environments suitability for aquaculture ponds was based on the landforms, soil properties, water quality and land. Selection of coastal locations for aquaculture development was based on the level of suitability of coastal environment. The results showed that the coastal in Kulon Progo and Bantul Regencies were characterized by sand dune and beach ridge with sandy soil texture, while in Gunungkidul Regency was characterized by limestone hill with rocky texture. Water sources of the coastal area were the sea, river, and ground water with the salinity of 31–37, 7–11, 7–31 ppt and pH of 7.4–8.4 7.0–8.2 and 7.4–9.9, respectively. The coastal lands were used for seasonal/annual planting, ponds, fish landing sites, tourism areas and conservation areas. The coastal carrying capacity was rather suitable for aquaculture, especially in the sandy soil area. Aquaculture in that area can be done intensively for shrimp (Litopenaeus vannamei), using biocrete (biological material) or plastic sheet.

  7. A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation

    NASA Astrophysics Data System (ADS)

    Aa, Ercha; Huang, Wengeng; Yu, Shimei; Liu, Siqing; Shi, Liqin; Gong, Jiancun; Chen, Yanhong; Shen, Hua

    2015-06-01

    In this paper, a regional total electron content (TEC) mapping technique over China and adjacent areas (70°E-140°E and 15°N-55°N) is developed on the basis of a Kalman filter data assimilation scheme driven by Global Navigation Satellite Systems (GNSS) data from the Crustal Movement Observation Network of China and International GNSS Service. The regional TEC maps can be generated accordingly with the spatial and temporal resolution being 1°×1° and 5 min, respectively. The accuracy and quality of the TEC mapping technique have been validated through the comparison with GNSS observations, the International Reference Ionosphere model values, the global ionosphere maps from Center for Orbit Determination of Europe, and the Massachusetts Institute of Technology Automated Processing of GPS TEC data from Madrigal database. The verification results indicate that great systematic improvements can be obtained when data are assimilated into the background model, which demonstrates the effectiveness of this technique in providing accurate regional specification of the ionospheric TEC over China and adjacent areas.

  8. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh.

    PubMed

    Shammi, Mashura; Rahman, Md Mostafizur; Islam, Md Atikul; Bodrud-Doza, Md; Zahid, Anwar; Akter, Yeasmin; Quaiyum, Samia; Kurasaki, Masaaki

    2017-06-01

    The study was designed to collect water samples over two seasons-wet-monsoon season (n = 96) (March-April) and dry-monsoon season (n = 44) (September-October)-to understand the seasonal variation in anion and cation hydrochemistry of the coastal rivers and estuaries contributing in the spatial trend in salinity. Hydrochemical examination of wet-monsoon season primarily revealed Ca-Mg-HCO 3 type (66%) and followed by Na-Cl type (17.70%) water. In the dry-monsoon season, the scenario reversed with primary water being Na-Cl type (52.27%) followed by Ca-Mg-HCO 3 type (31.81%). Analysis of Cl/Br molar ratio vs. Cl (mg/L) depicted sampling area affected by seawater intrusion (SWI). Spatial analysis by ordinary kriging method confirmed approximately 77% sample in the dry-monsoon, and 34% of the wet-monsoon season had shown SWI. The most saline-intruded areas in the wet-monsoon seasons were extreme south-west coastal zone of Bangladesh, lower Meghna River floodplain and Meghna estuarine floodplain and south-eastern part of Chittagong coastal plains containing the districts of Chittagong and Cox's Bazar adjacent to Bay of Bengal. In addition, mid-south zone is also affected slightly in the dry-monsoon season. From the analyses of data, this study could further help to comprehend seasonal trends in the hydrochemistry and water quality of the coastal and estuarine rivers. In addition, it can help policy makers to obligate some important implications for the future initiatives taken for the management of land, water, fishery, agriculture and environment of coastal rivers and estuaries of Bangladesh.

  9. Projected climate change for the coastal plain region of Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...

  10. A regional classification of the effectiveness of depressional wetlands at mitigating nitrogen transport to surface waters in the Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.; LaMotte, Andrew E.; Sekellick, Andrew J.

    2013-01-01

    Nitrogen from nonpoint sources contributes to eutrophication, hypoxia, and related ecological degradation in Atlantic Coastal Plain streams and adjacent coastal estuaries such as Chesapeake Bay and Pamlico Sound. Although denitrification in depressional (non-riparian) wetlands common to the Coastal Plain can be a significant landscape sink for nitrogen, the effectiveness of individual wetlands at removing nitrogen varies substantially due to varying hydrogeologic, geochemical, and other landscape conditions, which are often poorly or inconsistently mapped over large areas. A geographic model describing the spatial variability in the likely effectiveness of depressional wetlands in watershed uplands at mitigating nitrogen transport from nonpoint sources to surface waters was constructed for the Northern Atlantic Coastal Plain (NACP), from North Carolina through New Jersey. Geographic and statistical techniques were used to develop the model. Available medium-resolution (1:100,000-scale) stream hydrography was used to define 33,799 individual watershed catchments in the study area. Sixteen landscape metrics relevant to the occurrence of depressional wetlands and their effectiveness as nitrogen sinks were defined for each catchment, based primarily on available topographic and soils data. Cluster analysis was used to aggregate the 33,799 catchments into eight wetland landscape regions (WLRs) based on the value of three principal components computed for the 16 original landscape metrics. Significant differences in topography, soil, and land cover among the eight WLRs demonstrate the effectiveness of the clustering technique. Results were used to interpret the relative likelihood of depressional wetlands in each WLR and their likely effectiveness at mitigating nitrogen transport from upland source areas to surface waters. The potential effectiveness of depressional wetlands at mitigating nitrogen transport varies substantially over different parts of the NACP

  11. Digital depth horizon compilations of the Alaskan North Slope and adjacent Arctic regions

    USGS Publications Warehouse

    Saltus, Richard W.; Bird, Kenneth J.

    2003-01-01

    Data have been digitized and combined to create four detailed depth horizon grids spanning the Alaskan North Slope and adjacent offshore areas. These map horizon compilations were created to aid in petroleum system modeling and related studies. Topography/bathymetry is extracted from a recent Arctic compilation of global onshore DEM and satellite altimetry and ship soundings offshore. The Lower Cretaceous Unconformity (LCU), the top of the Triassic Shublik Formation, and the pre-Carboniferous acoustic basement horizon grids are created from numerous seismic studies, drill hole information, and interpolation. These horizons were selected because they mark critical times in the geologic evolution of the region as it relates to petroleum. The various horizons clearly show the major tectonic elements of this region including the Brooks Range, Colville Trough, Barrow Arch, Hanna Trough, Chukchi Platform, Nuwuk Basin, Kaktovik Basin, and Canada Basin. The gridded data are available in a variety of data formats for use in regional studies.

  12. Evaluation of Tsunami Run-Up on Coastal Areas at Regional Scale

    NASA Astrophysics Data System (ADS)

    González, M.; Aniel-Quiroga, Í.; Gutiérrez, O.

    2017-12-01

    Tsunami hazard assessment is tackled by means of numerical simulations, giving as a result, the areas flooded by tsunami wave inland. To get this, some input data is required, i.e., the high resolution topobathymetry of the study area, the earthquake focal mechanism parameters, etc. The computational cost of these kinds of simulations are still excessive. An important restriction for the elaboration of large scale maps at National or regional scale is the reconstruction of high resolution topobathymetry on the coastal zone. An alternative and traditional method consists of the application of empirical-analytical formulations to calculate run-up at several coastal profiles (i.e. Synolakis, 1987), combined with numerical simulations offshore without including coastal inundation. In this case, the numerical simulations are faster but some limitations are added as the coastal bathymetric profiles are very simply idealized. In this work, we present a complementary methodology based on a hybrid numerical model, formed by 2 models that were coupled ad hoc for this work: a non-linear shallow water equations model (NLSWE) for the offshore part of the propagation and a Volume of Fluid model (VOF) for the areas near the coast and inland, applying each numerical scheme where they better reproduce the tsunami wave. The run-up of a tsunami scenario is obtained by applying the coupled model to an ad-hoc numerical flume. To design this methodology, hundreds of worldwide topobathymetric profiles have been parameterized, using 5 parameters (2 depths and 3 slopes). In addition, tsunami waves have been also parameterized by their height and period. As an application of the numerical flume methodology, the coastal parameterized profiles and tsunami waves have been combined to build a populated database of run-up calculations. The combination was tackled by means of numerical simulations in the numerical flume The result is a tsunami run-up database that considers real profiles shape

  13. Oyster reproduction is compromised by acidification experienced seasonally in coastal regions.

    PubMed

    Boulais, Myrina; Chenevert, Kyle John; Demey, Ashley Taylor; Darrow, Elizabeth S; Robison, Madison Raine; Roberts, John Park; Volety, Aswani

    2017-10-16

    Atmospheric carbon dioxide concentrations have been rising during the past century, leading to ocean acidification (OA). Coastal and estuarine habitats experience annual pH variability that vastly exceeds the magnitude of long-term projections in open ocean regions. Eastern oyster (Crassostrea virginica) reproduction season coincides with periods of low pH occurrence in estuaries, thus we investigated effects of moderate (pH 7.5, pCO 2 2260 µatm) and severe OA (pH 7.1, pCO 2 5584 µatm; and 6.7, pCO 2 18480 µatm) on oyster gametogenesis, fertilization, and early larval development successes. Exposure at severe OA during gametogenesis caused disruption in oyster reproduction. Oogenesis appeared to be more sensitive compared to spermatogenesis. However, Eastern oyster reproduction was resilient to moderate OA projected for the near-future. In the context of projected climate change exacerbating seasonal acidification, OA of coastal habitats could represent a significant bottleneck for oyster reproduction which may have profound negative implications for coastal ecosystems reliant on this keystone species.

  14. Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database

    USGS Publications Warehouse

    Danielson, Jeffrey J.; Poppenga, Sandra K.; Brock, John C.; Evans, Gayla A.; Tyler, Dean; Gesch, Dean B.; Thatcher, Cindy A.; Barras, John

    2016-01-01

    During the coming decades, coastlines will respond to widely predicted sea-level rise, storm surge, and coastalinundation flooding from disastrous events. Because physical processes in coastal environments are controlled by the geomorphology of over-the-land topography and underwater bathymetry, many applications of geospatial data in coastal environments require detailed knowledge of the near-shore topography and bathymetry. In this paper, an updated methodology used by the U.S. Geological Survey Coastal National Elevation Database (CoNED) Applications Project is presented for developing coastal topobathymetric elevation models (TBDEMs) from multiple topographic data sources with adjacent intertidal topobathymetric and offshore bathymetric sources to generate seamlessly integrated TBDEMs. This repeatable, updatable, and logically consistent methodology assimilates topographic data (land elevation) and bathymetry (water depth) into a seamless coastal elevation model. Within the overarching framework, vertical datum transformations are standardized in a workflow that interweaves spatially consistent interpolation (gridding) techniques with a land/water boundary mask delineation approach. Output gridded raster TBDEMs are stacked into a file storage system of mosaic datasets within an Esri ArcGIS geodatabase for efficient updating while maintaining current and updated spatially referenced metadata. Topobathymetric data provide a required seamless elevation product for several science application studies, such as shoreline delineation, coastal inundation mapping, sediment-transport, sea-level rise, storm surge models, and tsunami impact assessment. These detailed coastal elevation data are critical to depict regions prone to climate change impacts and are essential to planners and managers responsible for mitigating the associated risks and costs to both human communities and ecosystems. The CoNED methodology approach has been used to construct integrated TBDEM models

  15. Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Torresan, S.; Critto, A.; Rizzi, J.; Marcomini, A.

    2012-07-01

    Sea level rise, changes in storms and wave climate as a consequence of global climate change are expected to increase the size and magnitude of flooded and eroding coastal areas, thus having profound impacts on coastal communities and ecosystems. River deltas, beaches, estuaries and lagoons are considered particularly vulnerable to the adverse effects of climate change, which should be studied at the regional/local scale. This paper presents a regional vulnerability assessment (RVA) methodology developed to analyse site-specific spatial information on coastal vulnerability to the envisaged effects of global climate change, and assist coastal communities in operational coastal management and conservation. The main aim of the RVA is to identify key vulnerable receptors (i.e. natural and human ecosystems) in the considered region and localize vulnerable hot spot areas, which could be considered as homogeneous geographic sites for the definition of adaptation strategies. The application of the RVA methodology is based on a heterogeneous subset of bio-geophysical and socio-economic vulnerability indicators (e.g. coastal topography, geomorphology, presence and distribution of vegetation cover, location of artificial protection), which are a measure of the potential harm from a range of climate-related impacts (e.g. sea level rise inundation, storm surge flooding, coastal erosion). Based on a system of numerical weights and scores, the RVA provides relative vulnerability maps that allow to prioritize more vulnerable areas and targets of different climate-related impacts in the examined region and to support the identification of suitable areas for human settlements, infrastructures and economic activities, providing a basis for coastal zoning and land use planning. The implementation, performance and results of the methodology for the coastal area of the North Adriatic Sea (Italy) are fully described in the paper.

  16. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities.

    PubMed

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Fu, Yaning; Zhu, Zhaoyun; Liu, Shijie; Xie, Shuangwei; Xiao, Yang; Giesy, John P

    2014-07-01

    Perfluoroalkyl acids (PFAAs) are emerging contaminants that have raised great concern in recent years. While PFAAs manufacturing becomes regulated in developed countries, production has been partly shifted to China. Eight fluoropolymer manufacturing facilities located in the South Bohai coastal region, one of the most populated areas of China, have been used to manufacture PFAA-related substances since 2001. The environmental consequence of the intensive production of PFAAs in this region remains largely unknown. We analyzed 17 PFAAs in twelve coastal rivers of this region, and found staggeringly high concentrations of perfluorooctanoic acid (PFOA) ranging from 0.96 to 4534.41 ng/L. The highest concentration was observed in the Xiaoqing River which received effluents from certain fluoropolymer facilities. Principal component analysis indicated similar sources of several perfluoroalkyl carboxylic acids (PFCAs) in all rivers, which indicated that atmospheric transport, wastewater treatment and surface runoff also acted as important supplements to direct discharge to surface water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  18. Benefits of coastal recreation in Europe: identifying trade-offs and priority regions for sustainable management.

    PubMed

    Ghermandi, Andrea

    2015-04-01

    This paper examines the welfare dimension of the recreational services of coastal ecosystems through the application of a meta-analytical value transfer framework, which integrates Geographic Information Systems (GIS) for the characterization of climate, biodiversity, accessibility, and anthropogenic pressure in each of 368 regions of the European coastal zone. The relative contribution of international, domestic, and local recreationists to aggregated regional values is examined. The implications of the analysis for prioritization of conservation areas and identification of good management practices are highlighted through the comparative assessment of estimated recreation values, current environmental pressures, and existing network of protected sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Ecosystem services provided by a complex coastal region: challenges of classification and mapping.

    PubMed

    Sousa, Lisa P; Sousa, Ana I; Alves, Fátima L; Lillebø, Ana I

    2016-03-11

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  20. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    PubMed Central

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-01-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping. PMID:26964892

  1. Comparison of CH4 Emission from Rice Paddy Soils between Coastal Zone and Inland Regions

    NASA Astrophysics Data System (ADS)

    Sun, M.; Li, X.

    2016-12-01

    Numerous measurements of methane (CH4) emission fluxes have been carried out in rice paddy soil between coastal zone and inland regions. However, the differences of CH4 emission from rice paddy soils in these two locations were unavailable. A database of CH4 emission in paddy rice was compiled from previous published references and field observations with major parameters including water regimes, fertilizer application, CH4 fluxes, and environmental variables. Results showed that CH4 emission from inland paddy fields was significantly higher than that in the coastal zone (p < 0.05). Fertilizer application and water management played an important role in CH4 emission. The application of organic fertilizer and continuous flooding significantly promoted CH4 emission from paddy fields. CH4 fluxes showed significantly positive correlations with organic matter, total nitrogen, available potassium and annual temperature (R2 = 0.39, 0.53, 0.27 and 0.23, p < 0.05), and negative correlations with pH and available phosphorus (R2 = 0.29 and 0.37, p < 0.05). Significant differences occurred in available potassium between inland and coastal rice paddy (p < 0.05), which might account for the difference of CH4 emission between inland and coastal rice paddy. The contrasting of CH4 fluxes between inland and coastal wetlands could improve our understanding of the roles of rice paddies in the regional CH4 regulation. Our results also have implications for informing rice paddy management and climate change policy making the efforts being made by agricultural organizations and enterprises to restore coastal rice paddies for mitigating CH4 emissions.

  2. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China.

    PubMed

    Ouyang, Xiaoguang; Lee, Shing Yip; Connolly, Rod M; Kainz, Martin J

    2018-02-14

    Coastal wetlands are increasingly recognised for their pivotal role in mitigating the growing threats from cyclones (including hurricanes) in a changing climate. There is, however, insufficient information about the economic value of coastal wetlands for cyclone mitigation, particularly at regional scales. Analysis of data from 1990-2012 shows that the variation of cyclone frequencies is related to EI Niño strength in the Pacific Ocean adjacent to Australia, but not China. Among the cyclones hitting the two countries, there are significant relationships between the ratio of total economic damage to gross domestic production (TD/GDP) and wetland area within cyclone swaths in Australia, and wetland area plus minimum cyclone pressure despite a weak relationship in China. The TD/GDP ratio is significantly higher in China than in Australia. Despite their extensive and growing occurrence, seawalls in China appear not to play a critical role in cyclone mitigation, and cannot replace coastal wetlands, which provide other efficient ecosystem services. The economic values of coastal wetlands in Australia and China are respectively estimated at US$52.88 billion and 198.67 billion yr -1 for cyclone mitigation, albeit with large within-country geographic variation. This study highlights the urgency to integrate this value into existing valuations of coastal wetlands.

  3. Regional Sea Level Variation: California Coastal Subsidence (Invited)

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Nerem, R.

    2013-12-01

    Satellite altimetry over the last two decades has measured variations in geocentric sea level (GSL), relative to the Earth system center of mass, providing valuable data to test models of physical oceanography and the effects of global climate change. The societal impacts of sea level change however relate to variations in local sea level (LSL), relative to the land at the coast. Therefore, assessing the impacts of sea level change requires coastal measurements of vertical land motion (VLM). Indeed, ΔLSL = ΔGSL - ΔVLM, with subsidence mapping 1:1 into LSL. Measurements of secular coastal VLM also allow tide-gauge data to test models of GSL over the last century in some locations, which cannot be provided by satellite data. Here we use GPS geodetic data within 15 km of the US west coast to infer regional, secular VLM. A total of 89 GPS stations met the criteria that time series span >4.5 yr, and do not have obvious non-linear variation, as may be caused by local instability. VLM rates for the GPS stations are derived in the secular reference frame ITRF2008, which aligns with the Earth system center of mass to ×0.5 mm/yr. We find that regional VLM has different behavior north and south of the Mendocino Triple Junction (MTJ). The California coast has a coherent regional pattern of subsidence averaging 0.5 mm/yr, with an increasing trend to the north. This trend generally matches GIA model predictions. Around San Francisco Bay, the observed coastal subsidence of 1.0 mm/yr coherently decreases moving away from the Pacific Ocean to very small subsidence on the east shores of the bay. This gradient is likely caused by San Andreas-Hayward Fault tectonics, and possibly by differential surface loading across the bay and Sacramento-San Joachim River Delta. Thus in addition to the trend in subsidence from GIA going northward along the California coast, tectonics may also play a role where the plate boundary fault system approaches the coast. In contrast, we find that VLM

  4. Environmental Indicators for the Coastal Region of North American Great Lakes: Introduction and Prospectus

    EPA Science Inventory

    Environmental indicators are benchmarks for the current conditions of the Great Lakes coastal region and provide measurable endpoints to assess the success of future management, conservation, protection, and restoration of this important resource.

  5. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  6. Transforming management of tropical coastal seas to cope with challenges of the 21st century.

    PubMed

    Sale, Peter F; Agardy, Tundi; Ainsworth, Cameron H; Feist, Blake E; Bell, Johann D; Christie, Patrick; Hoegh-Guldberg, Ove; Mumby, Peter J; Feary, David A; Saunders, Megan I; Daw, Tim M; Foale, Simon J; Levin, Phillip S; Lindeman, Kenyon C; Lorenzen, Kai; Pomeroy, Robert S; Allison, Edward H; Bradbury, R H; Corrin, Jennifer; Edwards, Alasdair J; Obura, David O; Sadovy de Mitcheson, Yvonne J; Samoilys, Melita A; Sheppard, Charles R C

    2014-08-15

    Over 1.3 billion people live on tropical coasts, primarily in developing countries. Many depend on adjacent coastal seas for food, and livelihoods. We show how trends in demography and in several local and global anthropogenic stressors are progressively degrading capacity of coastal waters to sustain these people. Far more effective approaches to environmental management are needed if the loss in provision of ecosystem goods and services is to be stemmed. We propose expanded use of marine spatial planning as a framework for more effective, pragmatic management based on ocean zones to accommodate conflicting uses. This would force the holistic, regional-scale reconciliation of food security, livelihoods, and conservation that is needed. Transforming how countries manage coastal resources will require major change in policy and politics, implemented with sufficient flexibility to accommodate societal variations. Achieving this change is a major challenge - one that affects the lives of one fifth of humanity. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Geohazards and myths: ancient memories of rapid coastal change in the Asia-Pacific region and their value to future adaptation

    NASA Astrophysics Data System (ADS)

    Nunn, Patrick D.

    2014-12-01

    Rapid coastal change is common in the Asia-Pacific region yet an understanding of its causes, recurrence times, and impacts is not always clear through the use of conventional geological methods. It is suggested that myths (traditional [oral] tales) are underutilized sources of information about coastal change in this region. This is illustrated by consideration of myths likely to recall (early) Holocene sea-level rise, particularly along the coasts of India and Australia, as well as myths recalling rapid episodic coastal emergence and submergence, the latter including the disappearance of entire landmasses (islands). Two examples of how details in such myths can inform geological understanding of coastal change are given. The first argues that myths recalling the rapid flooding of coastal cities/lowlands are likely to represent memories of extreme wave events superimposed on a rising (postglacial) sea level. The second suggests that many myths about landmass/island disappearance fail to report the occurrence of rapid (coseismic and aseismic) subsidence even though they provide inferential evidence that this occurred. Few such myths are known to the author from many parts of Asia yet it is likely they exist and could, as elsewhere in the world, help illuminate the understanding of the nature and chronology of rapid coastal change. The challenges involved in helping communities in the Asia-Pacific region adapt to future coastal changes might be partly overcome by the use of appropriate myths to demonstrate precedents and engender local participation in adaptation strategies.

  8. On observing high frequency dynamics in coastal regions: latest insights of the MARINA project.

    NASA Astrophysics Data System (ADS)

    Roblou, Laurent; Delebecque, Caroline; Vignudelli, Stefano; Jerome, Bouffard; Cipollini, Paolo; Morrow, Rosemary; Birol, Florence

    Altimetry missions in the last 16 years (TOPEX/Poseidon, ERS-1/2, GFO, Jason-1 and EN-VISAT) and the recently-launched Jason-2 mission have resulted in great advances in deep ocean research and operational oceanography. However, oceanographic applications using satellite al-timeter data become very challenging over regions extending from near-shore to the continental shelf and slope. In coastal systems, shorter spatial and temporal scales make ocean dynamics particularly complex, and the temporal and spatial sampling of current altimeter missions is not sufficiently fine to capture such variability. Moreover, the error budget of sea level in-ferred from satellite radar altimetry measurements in coastal regions is increased by intrinsic difficulties. Before the next-generation satellite altimeters (e.g. SARAL/AltiKa, Sentinel-3 or SWOT), the observation of the coastal ocean dynamics requires the reinvestigation of standard altimetry processing procedures and various groups are currently working to correct the known weaknesses in the overall processing phase that prevent the use of altimetry in coastal and shelf seas. This effort of reprocessing the existing archive can be separated into two stages. The pre-processing stage intends to reduce intrinsic limitations related to the instruments behaviour in coastal seas (mainly due to land contamination in the instruments footprint) that degrades in accuracy the altimeter-and radiometer-derived parameters (e.g. sea state bias, ionospheric path delay, dry and wet tropospheric path delays). The post-processing stage deals with the building of coastally-dedicated geophysical sea level estimates a posteriori from standard altime-try products delivery. Shortly, it means improving the data selection procedures, the dealiasing corrections (tides, atmospheric effects) and the vertical reference frame. An innovative post-processing strategy has been initiated at LEGOS/CTOH during the pio-neering effort constituted by the ALBICOCCA

  9. Grey mullet (Mugilidae) as possible indicators of global warming in South African estuaries and coastal waters.

    PubMed

    James, Nicola C; Whitfield, Alan K; Harrison, Trevor D

    2016-12-01

    The grey mullet usually occur in large numbers and biomass in the estuaries of all three South African biogeographic regions, thus making it an ideal family to use in terms of possibly acting as an environmental indicator of global warming. In this analysis the relative estuarine abundance of the dominant three groups of mugilids, namely tropical, warm-water and cool-water endemics, were related to sea surface coastal temperatures. The study suggests a strong link between temperature and the distribution and abundance of the three mullet groups within estuaries and indicates the potential of this family to act as an indicator for future climate change within these systems and adjacent coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Rural Poverty in Three Southern Regions: Mississippi Delta, Ozarks, Southeast Coastal Plain.

    ERIC Educational Resources Information Center

    McCoy, John L.

    The focus of this report is on poverty and its relationships to certain individual characteristics as distributed across 3 regions: the Ozarks, Mississippi Delta, and Southeast Coastal Plain. After a broad description of these areas, the study looks at (1) age of household heads, (2) number of persons in households, (3) housing quality (running…

  11. Content-based image retrieval by matching hierarchical attributed region adjacency graphs

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.

    2004-05-01

    Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.

  12. Modelization of highly nonlinear waves in coastal regions

    NASA Astrophysics Data System (ADS)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  13. Comparative water relations of adjacent california shrub and grassland communities.

    PubMed

    Davis, S D; Mooney, H A

    1985-07-01

    Much of the coastal mountains and foothills of central and southern California are covered by a mosaic of grassland, coastal sage scrub, and evergreen sclerophyllous shrubs (chaparral). In many cases, the borders between adjacent plant communities are stable. The cause of this stability is unknown. The purpose of our study was to examine the water use patterns of representative grasses, herbs, and shrubs across a grassland/chaparrel ecotone and determine the extent to which patterns of water use contribute to ecotone stability. In addition, we examined the effects of seed dispersal and animal herbivory. We found during spring months, when water was not limited, grassland species had a much higher leaf conductance to water vapor diffusion than chaparral plants. As the summer drought progressed, grassland species depleted available soil moisture first, bare zone plants second, and chaparral third, with one chaparral species (Quercus durata) showing no evidence of water stress. Soil moisture depletion patterns with depth and time corresponded to plant water status and root depth. Rabbit herbivory was highest in the chaparral and bare zone as indicated by high densities of rabbit pellets. Dispersal of grassland seeds into the chaparral and bare zone was low. Our results support the hypothesis that grassland species deplete soil moisture in the upper soil horizon early in the drought, preventing the establishment of chaparral seedlings or bare zone herbs. Also, grassland plants are prevented from invading the chaparral because of low seed dispersability and high animal herbivory in these regions.

  14. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  15. US EPA Region 9 and US Coast Guard Jurisdictional Boundary

    EPA Pesticide Factsheets

    This line feature represents the jurisdictional boundary along the California coastline that defines EPA (Inland Zone) and Coast Guard (Coastal Zone) emergency response jurisdictions. The U.S. Environmental Protection Agency / U.S. Coast Guard (USEPA / USCG) Jurisdictional Boundary runs from the Oregon to the Mexican border adjacent to the coastline. The boundary was developed from text descriptions provided in the U.S. Environmental Protection Agency Region 9 Mainland Regional Contingency Plan dated March 17, 1994. The Bolsa Chica Ecological Reserve was added to the EPA's jurisdiction in 2011.

  16. Do Mangroves Subsidize Carbon to Adjacent Mudflat Fish Communities?

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Hartmann, J.; Staubwasser, M.; Hernandez, M. F.; West, L.; Midway, S. R.; Polito, M. J.

    2017-12-01

    Mangroves are often implicated as energetic sources for fisheries productivity. However, the validity of this connection still remains in contention. Stable isotopes may provide answers by tracking the use of specific basal carbon sources in fish and invertebrates living in mangrove-mudflat habitat mosaics. We analyzed 307 consumer samples representing n=44 fish and invertebrate species collected from mangrove forest creeks and adjacent mudflats in coastal Tanzania using bulk carbon and nitrogen stable isotope analysis. Given the proposed high productivity of mangrove habitats, we hypothesize that mudflat communities will have carbon stable isotope values similar to mangrove communities either through the flux of mangrove carbon into adjacent mudflats and/or via the movement of mudflat fish communities into and out of mangrove habitats. Alternatively, mangrove carbon is often refractory, which may result in mudflat communities with isotopic values that differ from those found in adjacent mangrove communities. This scenario would suggest limited carbon flow between mudflat and mangrove food webs and that the movement of fish into and out of mangrove habitats is related to shelter from predation more than feeding. Data analysis is ongoing to test these competing hypotheses. By understanding the contribution of mangrove carbon to adjacent habitats, managers in Tanzania can make better informed decisions regarding the protection of mangroves and the local fisheries, which are a crucial source of income and food.

  17. Meta-analyses of habitat selection by fishers at resting sites in the Pacific coastal region

    Treesearch

    Keith B. Aubry; Catherine M. Raley; Steven W. Buskirk; William J. Zielinski; Michael K. Schwartz; Richard T. Golightly; Kathryn L. Purcell; Richard D. Weir; J. Scott Yaeger

    2013-01-01

    The fisher (Pekania pennanti) is a species of conservation concern throughout the Pacific coastal region in North America. A number of radiotelemetry studies of habitat selection by fishers at resting sites have been conducted in this region, but the applicability of observed patterns beyond the boundaries of each study area is unknown. Broadly...

  18. Primary production of coral ecosystems in the Vietnamese coastal and adjacent marine waters

    NASA Astrophysics Data System (ADS)

    Tac-An, Nguyen; Minh-Thu, Phan; Cherbadji, I. I.; Propp, M. V.; Odintsov, V. S.; Propp, L. H.

    2013-11-01

    Coral reef ecosystems in coastal waters and islands of Vietnam have high primary production. Average gross primary production (GPP) in coral reef waters was 0.39 g C m-2 day-1. GPP of corals ranged from 3.12 to 4.37 g C m-2 day-1. GPP of benthic microalgae in coral reefs ranged from 2 to 10 g C m-2 day-1. GPP of macro-algae was 2.34 g C m-2 day-1. Therefore, the total of GPP of whole coral reef ecosystems could reach 7.85 to 17.10 g C m-2 day-1. Almost all values of the ratio of photosynthesis to respiration in the water bodies are higher than 1, which means these regions are autotrophic systems. Wire variation of GPP in coral reefs was contributed by species abundance of coral and organisms, nutrient supports and environmental characteristics of coral ecosystems. Coral reefs play an important ecological role of biogeochemical cycling of nutrients in waters around the reefs. These results contribute valuable information for the protection, conservation and sustainable exploitation of the natural resources in coral reef ecosystems in Vietnam.

  19. Differences in coastal and oceanic SST trends north of Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Varela, R.; Costoya, X.; Enriquez, C.; Santos, F.; Gómez-Gesteira, M.

    2018-06-01

    The coastal area north of Yucatan has experienced a cooling SST trend from 1982 to 2015 during the upwelling season (May-September) that contrasts with the warming observed at the adjacent ocean area. Different drivers were analyzed to identify the possible causes of that unusual coastal cooling. Changes in coastal upwelling and in sea-atmosphere heat fluxes are not consistent with the observed coastal cooling. The eastward shift of the Yucatan Current observed over the last decades is hypothesized as the most probable cause of coastal cooling. This shift enhances the vertical transport of cold deeper water to the continental shelf from where it is pumped to the surface by upwelling favorable westerly winds.

  20. Energy and resource basis of an Italian coastal resort region integrated using emergy synthesis.

    PubMed

    Vassallo, Paolo; Paoli, Chiara; Tilley, David R; Fabiano, Mauro

    2009-10-01

    Sustainable development of coastal zones must balance economic development that encourages human visitation from a larger population with desires that differ from the local residents with the need to maintain opportunities for the local resident society and conserve ecological capital, which may serve as the basis for residents. We present a case study in which the sustainability level of a coastal zone (Riviera del Beigua), located along the Ligurian coast of north-western Italy, was assessed through the lens of systems ecology using emergy synthesis to integrate across economic, social and environmental sub-systems. Our purposes were (1) to quantify the environmental sustainability level of this coastal zone, (2) to evaluate the role of tourism in affecting the economy, society and environment, and (3) to compare emergy synthesis to Butler's Tourism Area Life Cycle model (TALC). Results showed that 81% of the total emergy consumption in the coastal zone was derived from external sources, indicating that this tourist-heavy community was not sustainable. Tourism, as the dominant economic sub-system, consumed 42% of the total emergy budget, while local residents used the remaining 58%. The progressive stages of the TALC model were found to parallel the dynamic changes in the ratio of external emergy inputs to local emergy inputs, suggesting that emergy synthesis could be a useful tool for detecting a tourist region's TALC stage. Use of such a quantitative tool could expedite sustainability assessment to allow administrative managers to understand the complex relationship between a region's economy, environment and resident society so sound policies can be developed to improve overall sustainability.

  1. Agricultural conservation practices and wetland ecosystem services in the wetland-rich Piedmont–Coastal Plain region

    Treesearch

    Diane De Steven; Richard Lowrance

    2011-01-01

    In the eastern U.S. Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the agricultural landscape. We review the extent of regional knowledge regarding the...

  2. Future riverine nitrogen export to US coastal regions ...

    EPA Pesticide Factsheets

    Excess nitrogen (N) in the environment degrades ecosystems and adversely affects human health. Here we examine predictions of contemporary (2000) and future (2030) coastal N loading in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future output is from storylines of the Millennium Ecosystem Assessment (MEA) and two additional scenarios that reflect “business as usual” and “ambitious” approaches to nutrient management. Modeled total nitrogen (TN) export by rivers to US coastal areas ranged between 2.5 Tg N y-1 in 2000 and 1.9 - 3.0 Tg N y-1 in 2030, depending on scenario. Differences among scenarios reflect the interactions of increased food and energy demands associated with population growth and efforts to reduce losses of N to the environment. Depending on year and scenario, agriculture supplies 25-43% of coastal TN, atmospheric N deposition 6-8%, human sewage 6-12%, and natural and particulate N sources account for the remainder. Our analysis suggests that achieving reductions in coastal N loading will require aggressive management actions. Coastal TN export could be reduced 22% between 2000 and 2030 to 1.9 Tg N y-1 if currently available best management practices and technologies are fully implemented to control N from agriculture, fossil fuel emissions, and wastewater effluent. If N management capabilities do not improve by 2030, coastal N loads could increase 20% to 3.0 Tg N y-1, due primarily to increases in N from agricu

  3. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change.

  4. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (??13C) and radiocarbon (??14C) isotopes of coastal DIC are influenced by the ??13C and ??14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, ??13C and ??14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the ??13C and ??14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both ??13C and ??14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in ??13C and ??14C than seawater DIC, and (3) the correlation of ??13C and ??14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal ??13C and ??14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change. ?? 2011 United States Geological Survey.

  5. Water and sediment dynamics in the Red River mouth and adjacent coastal zone

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.

    2007-02-01

    The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.

  6. Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System

    USGS Publications Warehouse

    Barnard, Patrick L.; Foxgrover, Amy C.; Elias, Edwin P.L.; Erikson, Li H.; Hein, James; McGann, Mary; Mizell, Kira; Rosenbauer, Robert J.; Swarzenski, Peter W.; Takesue, Renee K.; Wong, Florence L.; Woodrow, Don

    2013-01-01

    Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach-sized sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

  7. Influence of sea-land breezes on the tempospatial distribution of atmospheric aerosols over coastal region.

    PubMed

    Tsai, Hsieh-Hung; Yuan, Chung-Shin; Hung, Chung-Hsuang; Lin, Chitsan; Lin, Yuan-Chung

    2011-04-01

    The influence of sea-land breezes (SLBs) on the spatial distribution and temporal variation of particulate matter (PM) in the atmosphere was investigated over coastal Taiwan. PM was simultaneously sampled at inland and offshore locations during three intensive sampling periods. The intensive PM sampling protocol was continuously conducted over a 48-hr period. During this time, PM2.5 and PM(2.5-10) (PM with aerodynamic diameters < 2.5 microm and between 2.5 and 10 microm, respectively) were simultaneously measured with dichotomous samplers at four sites (two inland and two offshore sites) and PM10 (PM with aerodynamic diameters < or =10 microm) was measured with beta-ray monitors at these same 4 sites and at 10 sites of the Taiwan Air Quality Monitoring Network. PM sampling on a mobile air quality monitoring boat was further conducted along the coastline to collect offshore PM using a beta-ray monitor and a dichotomous sampler. Data obtained from the inland sites (n=12) and offshore sites (n=2) were applied to plot the PM10 concentration contour using Surfer software. This study also used a three-dimensional meteorological model (Pennsylvania State University/National Center for Atmospheric Research Meteorological Model 5) and the Comprehensive Air Quality Model with Extensions to simulate surface wind fields and spatial distribution of PM10 over the coastal region during the intensive sampling periods. Spatial distribution of PM10 concentration was further used in investigating the influence of SLBs on the transport of PM10 over the coastal region. Field measurement and model simulation results showed that PM10 was transported back and forth across the coastline. In particular, a high PM10 concentration was observed at the inland sites during the day because of sea breezes, whereas a high PM10 concentration was detected offshore at night because of land breezes. This study revealed that the accumulation of PM in the near-ocean region because of SLBs influenced the

  8. Simulating spatial adaption of groundwater pumping on seawater intrusion in coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Ladwig, Robert; Schütze, Niels; Walther, Marc

    2016-04-01

    Coastal aquifer systems are used intensively to meet the growing demands for water in those regions. They are especially at risk for the intrusion of seawater due to aquifer overpumping, limited groundwater replenishment and unsustainable groundwater management which in turn also impacts the social and economical development of coastal regions. One example is the Al-Batinah coastal plain in northern Oman where irrigated agriculture is practiced by lots of small scaled farms in different distances from the sea, each of them pumping their water from coastal aquifer. Due to continuous overpumping and progressing saltwater intrusion farms near the coast had to close since water for irrigation got too saline. For investigating appropriate management options numerical density dependent groundwater modelling is required which should also portray the adaption of groundwater abstraction schemes on the water quality. For addressing this challenge a moving inner boundary condition is implemented in the numerical density dependent groundwater model which adjusts the locations for groundwater abstraction according to the position of the seawater intrusion front controlled by thresholds of relative chloride concentration. The adaption process is repeated for each management cycle within transient model simulations and allows for considering feedbacks with the consumers e.g. the agriculture by moving agricultural farms more inland or towards the sea if more fertile soils at the coast could be recovered. For finding optimal water management strategies efficiently, the behaviour of the numerical groundwater model for different extraction and replenishment scenarios is approximated by an artificial neural network using a novel approach for state space surrogate model development. Afterwards the derived surrogate is coupled with an agriculture module within a simulation based water management optimisation framework to achieve optimal cropping pattern and water abstraction schemes

  9. Spaceborne imaging spectrometer for environmental assessment of the coastal ocean

    NASA Astrophysics Data System (ADS)

    Davis, Curtiss O.

    1996-10-01

    With half of the world's population living within 50 km of the coastal ocean the coast and adjacent land areas are heavily used for recreation, and for frequently conflicting uses, such as, fisheries, oil and gas production, disposal of wastes, transportation and naval operations. Coastal ecosystems are sensitive, highly productive systems which are being heavily impacted by human activities, but which are not adequately sampled by any present or planned spaceborne remote sensing system. To remedy that situation we propose building a coastal ocean imaging spectrometer (COIS) with adequate spectral and spatial resolution and high signal to noise to provide long term monitoring and real-time characterization of the coastal environment. COIS would provide a snapshot of the effects of human activities and natural processes, including runoff, tides, currents and storms, on the distributions of phytoplankton, suspended sediments, colored dissolved organic matter, including sediment resuspension and changes in bathymetry. COIS will also be an excellent tool to assess changing land use practices and the health of corps and natural vegetation on the adjacent land areas. This paper reviews the scientific rationale for such an instrument, and the recent scientific and engineering innovations that make it possible to build a small inexpensive spaceborne instrument to meet these requirements.

  10. A robust interpolation procedure for producing tidal current ellipse inputs for regional and coastal ocean numerical models

    NASA Astrophysics Data System (ADS)

    Byun, Do-Seong; Hart, Deirdre E.

    2017-04-01

    Regional and/or coastal ocean models can use tidal current harmonic forcing, together with tidal harmonic forcing along open boundaries in order to successfully simulate tides and tidal currents. These inputs can be freely generated using online open-access data, but the data produced are not always at the resolution required for regional or coastal models. Subsequent interpolation procedures can produce tidal current forcing data errors for parts of the world's coastal ocean where tidal ellipse inclinations and phases move across the invisible mathematical "boundaries" between 359° and 0° degrees (or 179° and 0°). In nature, such "boundaries" are in fact smooth transitions, but if these mathematical "boundaries" are not treated correctly during interpolation, they can produce inaccurate input data and hamper the accurate simulation of tidal currents in regional and coastal ocean models. These avoidable errors arise due to procedural shortcomings involving vector embodiment problems (i.e., how a vector is represented mathematically, for example as velocities or as coordinates). Automated solutions for producing correct tidal ellipse parameter input data are possible if a series of steps are followed correctly, including the use of Cartesian coordinates during interpolation. This note comprises the first published description of scenarios where tidal ellipse parameter interpolation errors can arise, and of a procedure to successfully avoid these errors when generating tidal inputs for regional and/or coastal ocean numerical models. We explain how a straightforward sequence of data production, format conversion, interpolation, and format reconversion steps may be used to check for the potential occurrence and avoidance of tidal ellipse interpolation and phase errors. This sequence is demonstrated via a case study of the M2 tidal constituent in the seas around Korea but is designed to be universally applicable. We also recommend employing tidal ellipse parameter

  11. Cooperative Monitoring Center Occasional Paper/11: Cooperative Environmental Monitoring in the Coastal Regions of India and Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajen, Gauray

    1999-06-01

    The cessation of hostilities between India and Pakistan is an immediate need and of global concern, as these countries have tested nuclear devices, and have the capability to deploy nuclear weapons and long-range ballistic missiles. Cooperative monitoring projects among neighboring countries in South Asia could build regional confidence, and, through gradual improvements in relations, reduce the threat of war and the proliferation of weapons of mass destruction. This paper discusses monitoring the trans-border movement of flow and sediment in the Indian and Pakistani coastal areas. Through such a project, India and Pakistan could initiate greater cooperation, and engender movement towardsmore » the resolution of the Sir Creek territorial dispute in their coastal region. The Joint Working Groups dialogue being conducted by India and Pakistan provides a mechanism for promoting such a project. The proposed project also falls within a regional framework of cooperation agreed to by several South Asian countries. This framework has been codified in the South Asian Seas Action Plan, developed by Bangladesh, India, Maldives, Pakistan and Sri Lanka. This framework provides a useful starting point for Indian and Pakistani cooperative monitoring in their trans-border coastal area. The project discussed in this paper involves computer modeling, the placement of in situ sensors for remote data acquisition, and the development of joint reports. Preliminary computer modeling studies are presented in the paper. These results illustrate the cross-flow connections between Indian and Pakistani coastal regions and strengthen the argument for cooperation. Technologies and actions similar to those suggested for the coastal project are likely to be applied in future arms control and treaty verification agreements. The project, therefore, serves as a demonstration of cooperative monitoring technologies. The project will also increase people-to-people contacts among Indian and Pakistani

  12. Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system

    USGS Publications Warehouse

    Miller, J.A.; Renken, R.A.

    1988-01-01

    Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)

  13. Water-balance and groundwater-flow estimation for an arid environment: San Diego region, California

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Stolp, B. J.; Danskin, W. R.

    2012-03-01

    The coastal-plain aquifer that underlies the San Diego City metropolitan area in southern California is a groundwater resource. The understanding of the region-wide water balance and the recharge of water from the high elevation mountains to the east needs to be improved to quantify the subsurface inflows to the coastal plain in order to develop the groundwater as a long term resource. This study is intended to enhance the conceptual understanding of the water balance and related recharge processes in this arid environment by developing a regional model of the San Diego region and all watersheds adjacent or draining to the coastal plain, including the Tijuana River basin. This model was used to quantify the various components of the water balance, including semi-quantitative estimates of subsurface groundwater flow to the coastal plain. Other approaches relying on independent data were used to test or constrain the scoping estimates of recharge and runoff, including a reconnaissance-level groundwater model of the San Diego River basin, one of three main rivers draining to the coastal plain. Estimates of subsurface flow delivered to the coastal plain from the river basins ranged from 12.3 to 28.8 million m3 yr-1 from the San Diego River basin for the calibration period (1982-2009) to 48.8 million m3 yr-1 from all major river basins for the entire coastal plain for the long-term period 1940-2009. This range of scoping estimates represents the impact of climatic variability and realistically bounds the likely groundwater availability, while falling well within the variable estimates of regional recharge. However, the scarcity of physical and hydrologic data in this region hinders the exercise to narrow the range and reduce the uncertainty.

  14. Defining Flood Zone Transitions in Low-Gradient Coastal Regions

    NASA Astrophysics Data System (ADS)

    Bilskie, M. V.; Hagen, S. C.

    2018-03-01

    Worldwide, coastal, and deltaic communities are susceptible to flooding from the individual and combined effects of rainfall excess and astronomic tide and storm surge inundation. Such flood events are a present (and future) cause of concern as observed from recent storms such as the 2016 Louisiana flood and Hurricanes Harvey, Irma, and Maria. To assess flood risk across coastal landscapes, it is advantageous to first delineate flood transition zones, which we define as areas susceptible to hydrologic and coastal flooding and their collective interaction. We utilize numerical simulations combining rainfall excess and storm surge for the 2016 Louisiana flood to describe a flood transition zone for southeastern Louisiana. We show that the interaction of rainfall excess with coastal surge is nonlinear and less than the superposition of their individual components. Our analysis provides a foundation to define flooding zones across coastal landscapes throughout the world to support flood risk assessments.

  15. ON THE WIND-INDUCED EXCHANGE BETWEEN INDIAN RIVER BAY, DELAWARE AND THE ADJACENT CONTINENTAL SHELF. (R826945)

    EPA Science Inventory

    The structure of the wind-induced exchange between Indian River Bay, Delaware and the adjacent continental shelf is examined based on current measurements made at the Indian River Inlet which represents the only conduit of exchange between the bay and the coastal ocean. Local ...

  16. Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment.

    PubMed

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Rajmohan, Natarajan; Al-Yaroubi, Saif

    2008-12-01

    A study was carried out to develop a vulnerability map for Barka region in the North Batina of Oman using DRASTIC vulnerability index method in GIS environment. DRASTIC layers were created using data from published reports and the seven DRASTIC layers were processed by the ArcGIS geographic information system. Finally, DRASTIC maps were created for 1995 and 2004 to understand the long-term changes in the vulnerability index. DRASTIC vulnerability maps were evaluated using groundwater quality data such as chemical and biological parameters. DRASTIC vulnerability maps of 1995 and 2004 indicate that the northern part of Barka is more vulnerable to pollution than southern part and the central part of Barka also shows high relative vulnerability which is mostly related to the high conductivity values. Moreover, the changes in water level due to high abstraction rate of groundwater reflect in the vulnerability maps and low vulnerability area is increased in the southern part during 2004 compared to 1995. Moreover, regional distribution maps of nitrate, chloride and total and fecal coliforms are well correlated with DRASTIC vulnerability maps. In contrast to this, even though DRASTIC method predicted the central part of the study region is highly vulnerable, both chemical and biological parameters show lower concentrations in this region compared to coastal belt, which is mainly due to agricultural and urban development. In Barka, urban development and agricultural activities are very high in coastal region compared to southern and central part of the study area. Hence, this study concluded that DRASTIC method is also applicable in coastal region having ubiquitous contamination sources.

  17. Process for evaluating overweight truck corridors serving coastal port regions and border ports of entry

    DOT National Transportation Integrated Search

    2017-08-01

    Coastal and inland ports, regional mobility authorities, cities, and counties located near or along the Texas Gulf Coast, and along the border with Mexico, have been granted authority by the state legislature to establish permitted overweight truck c...

  18. Tectonics and Current Plate Motions of Northern Vancouver Island and the Adjacent Mainland

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Leonard, L. J.; Henton, J.; Hyndman, R. D.

    2016-12-01

    Northern Vancouver Island comprises a complex transition zone along the western margin of the North America plate, between the subducting Juan de Fuca plate to the south and the transcurrent Queen Charlotte Fault to the north off Haida Gwaii. The tectonic history and seismic potential for this region are unclear. Here we present current plate motions for northern Vancouver Island and the adjacent mainland, determined from continuous and campaign GPS measurements processed in a consistent manner. Immediately to the north of the mid-Vancouver Island Nootka Fault Zone, the northern limit of Juan de Fuca plate subduction, GPS velocity vectors show slower Explorer plate subduction than the Juan de Fuca Plate. Off northernmost Vancouver Island, the Winona Block is possibly converging at a slow rate that decreases northward to zero. We find a constant northward margin-parallel translation of up to 5 mm/year from northern Vancouver Island extending to Alaska. The southern limit of this translation coincides with areas of high heat flow that may reflect extension and the northern limit of episodic tremor and slip (ETS) on the Cascadia megathrust. The origin of the northward translation is poorly understood. We find a mainland coastal shear zone extends as far south as northern Vancouver Island where the offshore plate boundary is likely subduction. The pattern of the observed coastal shear cannot reflect interseismic locking on a major offshore transcurrent fault. The geodetically determined mainland coastal zone velocities decrease landward from 5 to 0 mm/yr across a region where no active faults have been identified and there is very little current seismicity. In Haida Gwaii, oblique convergence is apparent in the GPS data, consistent with partitioning between margin-parallel and margin-perpendicular strain. After removing the margin parallel translation from the data, we determine an average maximum locking depth of 15 km for the Queen Charlotte transcurrent fault

  19. Preliminary geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Stone, Paul; Powell, Charles L.; Gurrola, Larry D.; Selting, Amy J.; Brandt, Theodore R.

    2002-01-01

    This report presents a new geologic digital map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. This preliminary map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Santa Barbara and Goleta 7.5' quadrangles. A planned second version will extend the mapping westward into the adjoining Dos Pueblos Canyon quadrangle and eastward into the Carpinteria quadrangle. The mapping presented here results from the collaborative efforts of geologists with the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) (Minor, Kellogg, Stanley, Stone, and Powell) and the tectonic geomorphology research group at the University of California at Santa Barbara (Gurrola and Selting). C.L. Powell, II, performed all new fossil identifications and interpretations reported herein. T.R. Brandt designed and edited the GIS database,performed GIS database integration and created the digital cartography for the map layout. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along a west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain region, which extends from the Santa Ynez Mountains on the north to the Santa Barbara Channel on the south, is underlain by numerous active and potentially active folds and partly buried thrust faults of the Santa Barbara fold and fault belt. Strong earthquakes that occurred in the region in 1925 (6.8 magnitude) and 1978 (5.1 magnitude) are evidence that such structures pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. Also, young landslide deposits along the steep lower flank of the Santa

  20. Regional evaluation of particulate matter composition in an Atlantic coastal area (Cantabria region, northern Spain): Spatial variations in different urban and rural environments

    NASA Astrophysics Data System (ADS)

    Arruti, A.; Fernández-Olmo, I.; Irabien, A.

    2011-07-01

    The aim of this study was to determine the major components (Na, Ca, K, Mg, Fe, Al, NH 4+, SO 42-, NO 3-, Cl - and TC) and trace-metal levels (As, Ni, Cd, Pb, Ti, V, Cr, Mn, Cu, Mo, Rh and Hg) in PM 10 and PM 2.5 at an Atlantic coastal city (Santander, Cantabria region, Northern Spain). Additional samples were collected in other urban sites of the Cantabria region to assess the metal content found in different urban environments within the region. To control for the mass attributed to inland regional background particulate matter, samples were also collected in Los Tojos village. The spatial variability of the major PM components shows that PM origins are different at inland and coastal sites. In the coastal city of Santander, the most important contributors are (i) the marine aerosol and (ii) the secondary inorganic aerosol (SIA) and the total carbon (TC) in PM 10 and PM 2.5, respectively. Additionally, the influence of the coastal location on the ionic balance of PM is also studied. The trace metal spatial variability is studied using the coefficient of divergence (COD), which shows that the levels of trace metals at the three studied urban sites are mainly influenced by local emission sources. The main local tracers are identified as follows: Mn in the Santander area; Mo, Cr and Pb at Reinosa; and Ni and V at Castro Urdiales. A more detailed source apportionment study of the local trace metals at Santander is conducted by Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF); these two receptor models report complementary information. From these statistical analyses, the identified sources of trace metals in PM 10 are urban background sources, industrial sources and traffic. The industrial factor was dominated by Mn, Cu and Pb, which are trace metals used in steel production and manganese-ferroalloy production plant. With respect to PM 2.5, the identified emission sources of trace metals are combustion processes as well as traffic and

  1. Assessment of hydrogeochemical status of groundwater in a coastal region of Southeast coast of India

    NASA Astrophysics Data System (ADS)

    Chidambaram, S.; Sarathidasan, J.; Srinivasamoorthy, K.; Thivya, C.; Thilagavathi, R.; Prasanna, M. V.; Singaraja, C.; Nepolian, M.

    2018-03-01

    A study was conducted in a coastal region of Cuddalore district of Tamil Nadu, India, to identify the hydrogeochemical processes controlling the groundwater chemistry. The major geological units of the study area are sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 64 groundwater samples were measured for major ions and stable isotopes. Higher electrical conductivity values indicate the poor quality groundwater along the coastal region. Saline water intrusion mainly affects the hydrochemical composition of the aquifer water reflected by Na-Cl-type waters. Cl-/(Cl- + HCO3 -) ratio also indicates the mixing of fresh groundwater with saline water. The results of δD and δ18O analyses show that isotopic compositions of groundwater ranges from - 7.7 to - 2.1‰ for δ18O and from - 55.6 to - 18.5‰ for δD. Correlation and factor analysis were carried out to find the association of ions and to determine the major factors controlling the groundwater chemistry of the region. The study indicates that ion exchange, weathering, salt water intrusion along the coast, and anthropogenic impacts are the major controlling factors for the groundwater chemistry of the region.

  2. Electronic atlas of the Russian Arctic coastal zone: natural conditions and technogenic risk

    NASA Astrophysics Data System (ADS)

    Drozdov, D. S.; Rivkin, F. M.; Rachold, V.

    2004-12-01

    compiled based on the analysis of geotechnical and geocryological conditions in the areas adjacent to the coastal band. Industrial impact assessment has been estimated differently for each engineering-geocryological region distinguished on the coast, considering technological features of construction and engineering facilities: aerial construction, highways and airdromes, underground (with positive and negative pipe temperatures) and surface pipelines and quarries. The atlas is being used as a base for the circum-Arctic segmentation of the coastline and the analyses of coastal dynamics within the Arctic Coastal Dynamics (ACD) Project. The work has been supported by INTAS (project number 01-2332).

  3. Factors regulating early life history dispersal of Atlantic cod (Gadus morhua) from coastal Newfoundland.

    PubMed

    Stanley, Ryan R E; deYoung, Brad; Snelgrove, Paul V R; Gregory, Robert S

    2013-01-01

    To understand coastal dispersal dynamics of Atlantic cod (Gadus morhua), we examined spatiotemporal egg and larval abundance patterns in coastal Newfoundland. In recent decades, Smith Sound, Trinity Bay has supported the largest known overwintering spawning aggregation of Atlantic cod in the region. We estimated spawning and dispersal characteristics for the Smith Sound-Trinity Bay system by fitting ichthyoplankton abundance data to environmentally-driven, simplified box models. Results show protracted spawning, with sharply increased egg production in early July, and limited dispersal from the Sound. The model for the entire spawning season indicates egg export from Smith Sound is 13%•day(-1) with a net mortality of 27%•day(-1). Eggs and larvae are consistently found in western Trinity Bay with little advection from the system. These patterns mirror particle tracking models that suggest residence times of 10-20 days, and circulation models indicating local gyres in Trinity Bay that act in concert with upwelling dynamics to retain eggs and larvae. Our results are among the first quantitative dispersal estimates from Smith Sound, linking this spawning stock to the adjacent coastal waters. These results illustrate the biophysical interplay regulating dispersal and connectivity originating from inshore spawning of coastal northwest Atlantic.

  4. Factors Regulating Early Life History Dispersal of Atlantic Cod (Gadus morhua) from Coastal Newfoundland

    PubMed Central

    Stanley, Ryan R. E.; deYoung, Brad; Snelgrove, Paul V. R.; Gregory, Robert S.

    2013-01-01

    To understand coastal dispersal dynamics of Atlantic cod (Gadus morhua), we examined spatiotemporal egg and larval abundance patterns in coastal Newfoundland. In recent decades, Smith Sound, Trinity Bay has supported the largest known overwintering spawning aggregation of Atlantic cod in the region. We estimated spawning and dispersal characteristics for the Smith Sound-Trinity Bay system by fitting ichthyoplankton abundance data to environmentally-driven, simplified box models. Results show protracted spawning, with sharply increased egg production in early July, and limited dispersal from the Sound. The model for the entire spawning season indicates egg export from Smith Sound is 13%•day−1 with a net mortality of 27%•day–1. Eggs and larvae are consistently found in western Trinity Bay with little advection from the system. These patterns mirror particle tracking models that suggest residence times of 10–20 days, and circulation models indicating local gyres in Trinity Bay that act in concert with upwelling dynamics to retain eggs and larvae. Our results are among the first quantitative dispersal estimates from Smith Sound, linking this spawning stock to the adjacent coastal waters. These results illustrate the biophysical interplay regulating dispersal and connectivity originating from inshore spawning of coastal northwest Atlantic. PMID:24058707

  5. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Groundwater Modeling in Coastal Arid Regions Under the Influence of Marine Saltwater Intrusion

    NASA Astrophysics Data System (ADS)

    Walther, Marc; Kolditz, Olaf; Grundmann, Jens; Liedl, Rudolf

    2010-05-01

    The optimization of an aquifer's "safe yield", especially within agriculturally used regions, is one of the fundamental tasks for nowaday's groundwater management. Due to the limited water ressources in arid regions, conflict of interests arise that need to be evaluated using scenario analysis and multicriterial optimization approaches. In the context of the government-financed research project "International Water Research Alliance Saxony" (IWAS), the groundwater quality for near-coastal, agriculturally used areas is investigated under the influence of marine saltwater intrusion. Within the near-coastal areas of the study region, i.e. the Batinah plains of Northern Oman, an increasing agricultural development could be observed during the recent decades. Simultaneously, a constant lowering of the groundwater table was registered, which is primarily due to the uncontrolled and unsupervised mining of the aquifers for the local agricultural irrigation. Intensively decreased groundwater levels, however, cause an inversion of the hydraulic gradient which is naturally aligned towards the coast. This, in turn,leads to an intrusion of marine saltwater flowing inland, endangering the productivity of farms near the coast. Utilizing the modeling software package OpenGeoSys, which has been developed and constantly enhanced by the Department of Environmental Informatics at the Helmholtz Centre for Environmental Research Leipzig (UFZ; Kolditz et al., 2008), a three-dimensional, density-dependent model including groundwater flow and mass transport is currently being built up. The model, comprehending three selected coastal wadis of interest, shall be used to investigate different management scenarios. The main focus of the groundwater modelling are the optimization of well positions and pumping schemes as well as the coupling with a surface runoff model, which is also used for the determination of the groundwater recharge due to wadi runoff downstream of retention dams. Based on

  7. Precipitable water vapor characterization in the coastal regions of China based on ground-based GPS

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyang; Zhou, Xinghua; Liu, Yanxiong; Zhou, Dongxu; Zhang, Huayi; Sun, Weikang

    2017-12-01

    Water vapor plays an important role in climate change; thus, studying the spatial distribution and temporal variation of precipitable water vapor (PWV) in the coastal regions of China would help researchers to understand the climate characteristics of those regions. In this paper, 6-year 1-h interval PWV were derived from 27 Global Positioning System stations observations of Chinese coastal GPS observation network, surface meteorological data and European Center for Medium-Range Weather Forecasts (ERA-Interim) reanalysis products. The present study provides the use of these data to investigate the spatial-temporal variability of water vapor throughout the coastal regions of China. Latitude is the main factor affecting the spatial distribution of GPS-derived PWV; that is, PWV decreased by about 1.5 mm for each 1° increase of latitude. For regions at the same latitude, a region that is relatively close to the ocean will have a higher content of PWV. The PWV in the southeastern and southwestern coastal regions of China is significantly higher in summer; this may be influenced by the southeastern and southwestern water vapor inflow corridors. The PWV obviously varies monthly, reaching a minimum in January; however, the timing of the maximum varied but usually appeared in June, July or August and was affected by the monsoons. The PWV varies largely between summer and winter with a larger gradient of change in PWV with latitude in winter than in summer. The positive correlation coefficient between PWV and the surface temperature varied in different seasons; this is related to the changes of temperature and the horizontal motion of water vapor. Use of the Fast Fourier Transform method showed that the PWV time series data have multi-scale characteristics. The amplitude and phase of the PWV time series in annual, semiannual, four month and seasonal cycles were extracted through harmonic wave analysis. The amplitude of four month and seasonal cycles did not pass

  8. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Blenkinsop, S.; Fowler, H. J.

    2015-05-01

    A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  9. Recent warming trend in the coastal region of Qatar

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  10. The origins of the anomalous warming in the California coastal ocean and San Francisco Bay during 2014-2016

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Farrara, John D.; Bjorkstedt, Eric; Chai, Fei; Chavez, Francisco; Rudnick, Daniel L.; Enright, Wendy; Fisher, Jennifer L.; Peterson, William T.; Welch, Gregory F.; Davis, Curtiss O.; Dugdale, Richard C.; Wilkerson, Frances P.; Zhang, Hongchun; Zhang, Yinglong; Ateljevich, Eli

    2017-09-01

    During 2014 exceptionally warm water temperatures developed across a wide area off the California coast and within San Francisco Bay (SFB) and persisted into 2016. Observations and numerical model output are used to document this warming and determine its origins. The coastal warming was mostly confined to the upper 100 m of the ocean and was manifested strongly in the two leading modes of upper ocean (0-100 m) temperature variability in the extratropical eastern Pacific. Observations suggest that the coastal warming in 2014 propagated into nearshore regions from the west while later indicating a warming influence that propagated from south to north into the region associated with the 2015-2016 El Niño event. An analysis of the upper ocean (0-100 m) heat budget in a Regional Ocean Modeling System (ROMS) simulation confirmed this scenario. The results from a set of sensitivity runs with the model in which the lateral boundary conditions varied supported the conclusions drawn from the heat budget analysis. Concerning the warming in the SFB, an examination of the observations and the heat budget in an unstructured-grid numerical model simulation suggested that the warming during the second half of 2014 and early 2016 originated in the adjacent California coastal ocean and propagated through the Golden Gate into the Bay. The finding that the coastal and Bay warming are due to the relatively slow propagation of signals from remote sources raises the possibility that such warming events may be predictable many months or even several seasons in advance.

  11. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  12. Promoting discovery and access to real time observations produced by regional coastal ocean observing systems

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Snowden, D. P.; Bochenek, R.; Bickel, A.

    2015-12-01

    In the U.S. coastal waters, a network of eleven regional coastal ocean observing systems support real-time coastal and ocean observing. The platforms supported and variables acquired are diverse, ranging from current sensing high frequency (HF) radar to autonomous gliders. The system incorporates data produced by other networks and experimental systems, further increasing the breadth of the collection. Strategies promoted by the U.S. Integrated Ocean Observing System (IOOS) ensure these data are not lost at sea. Every data set deserves a description. ISO and FGDC compliant metadata enables catalog interoperability and record-sharing. Extensive use of netCDF with the Climate and Forecast convention (identifying both metadata and a structured format) is shown to be a powerful strategy to promote discovery, interoperability, and re-use of the data. To integrate specialized data which are often obscure, quality control protocols are being developed to homogenize the QC and make these data more integrate-able. Data Assembly Centers have been established to integrate some specialized streams including gliders, animal telemetry, and HF radar. Subsets of data that are ingested into the National Data Buoy Center are also routed to the Global Telecommunications System (GTS) of the World Meteorological Organization to assure wide international distribution. From the GTS, data are assimilated into now-cast and forecast models, fed to other observing systems, and used to support observation-based decision making such as forecasts, warnings, and alerts. For a few years apps were a popular way to deliver these real-time data streams to phones and tablets. Responsive and adaptive web sites are an emerging flexible strategy to provide access to the regional coastal ocean observations.

  13. Inventory of coastal protected areas and historical heritage sites (North Bulgarian coast)

    NASA Astrophysics Data System (ADS)

    Palazov, Atanas; Stancheva, Margarita; Stanchev, Hristo; Krastev, Anton; Peev, Preslav

    2015-04-01

    Coastal protected areas and historical heritage sites in Bulgaria are established by national policy instruments/laws and EU Directives to protect a wide range of natural and cultural resources along the coast. Within the framework of HERAS Project (Submarine Archaeological Heritage of the Western Black Sea Shelf), financed by European Union under the CBC Program Romania-Bulgaria, we made an inventory and identification of protected areas, nature reserves, monuments, parks and onshore historical sites along the North Bulgarian coast (NUTS III level). The adjacent coastline is 96 km long between cape Sivriburun to the border of Romania on the north and cape Ekrene on the south. Coastal zone here is mostly undeveloped and low urbanized compared to other coastal regions in Bulgaria. It comprises of large sand beaches, vast sand dunes, up to 70 m spectacular high limestone cliffs, coastal fresh-water lakes, wetlands etc. This coastal section includes also one of the most important wetlands and it is migration corridor for many protected birds in Bulgaria, that host one of the rarest ecosystem types with national and international conservational value. Added to ecosystem values, the region is also an archeologically important area, where numerous underwater and coastal archaeological sites from different periods have been discovered - Prehistory, Antiquity (ancient Greek, Hellenistic, Roman), Mediaeval (Early Byzantium, Bulgarian). Research was made within 2100 m zone from the coastline (in accordance with zones defined by the Black Sea Coastal Development Act) for territories with protected status in the framework of many national laws and EU Directives. The total area of this strip zone is 182, 6 km2 and around 67% is under protection. There are 11 unique NATURA 2000 protected areas (6 Special Protection Areas (SPAs) and 5 Sites of Communities Importance (SCI), 2 nature reserves and 1 Nature Park. Some of them are also onshore historical sites. In Bulgaria such sites

  14. Chronology of Quaternary coastal aeolianite deposition and the drowned shorelines of southwestern Western Australia - a reappraisal

    NASA Astrophysics Data System (ADS)

    Brooke, B. P.; Olley, J. M.; Pietsch, T.; Playford, P. E.; Haines, P. W.; Murray-Wallace, C. V.; Woodroffe, C. D.

    2014-06-01

    Aeolianite successions of low-gradient continental margins commonly show complex records of coastal dune deposition linked to a wide range of sea-level positions and climatic periods of the middle and late Pleistocene, recording both regional and broader-scale drivers of sediment production, coastal dune development and landform preservation. To better characterise the general pattern of sedimentation that occurs over Quaternary glacial-interglacial cycles on low-gradient, temperate carbonate continental shelves we examine the morphology, stratigraphy and age of aeolianite deposits in the Perth region, Western Australia. This includes an analysis of well-defined drowned coastal landforms preserved on the adjacent shelf. New and previously published optical ages provide a preliminary timeframe for the deposition of aeolianite in the Perth region and on Rottnest Island, 17 km offshore. An extensive aeolianite ridge near Perth, representing a former barrier, has Optically Stimulated Luminesence (OSL) ages that range from 120 ± 12 to 103 ± 10 ka (MIS 5e-5a in the context of associated age uncertainties). OSL ages for an exposure in the same ridge 2.5 km inland, record the onlap of much older aeolianite, OSL age 415 ± 70 ka, by shell-rich estuarine beds, OSL age 290 ± 30 ka. A further 5.5 km inland from the coast, two thick aeolianite units, separated by a well-developed palaeosol, have stratigraphically consistent OSL ages of 310 ± 30 and 155 ± 20 ka. In contrast, aeolianite units that form the northern coast of Rottnest Island have OSL ages of 77 ± 12 ka and 27 ± 5 ka. The new OSL ages and previously reported TL and U/Th ages indicate that the bulk of the island comprises dunes deposited around the end of the Last Interglacial sensu lato (MIS 5a-4) and during the Last Glacial (MIS 4-2), accumulating over a Last Interglacial coral reef and basal calcarenite. Drowned barrier and dune landforms preserved on the adjacent continental shelf reveal that barriers were

  15. Understanding Urban Communication in Information Era: Analyzing Development Progress of Coastal Territories in the Context of West Java’s Metropolitan Regions

    NASA Astrophysics Data System (ADS)

    Sutriadi, Ridwan; Indriyani Kurniasari, Meta

    2017-07-01

    This paper explores a consequence of metropolitan and development centers policy to the development progress of coastal territories by analyzing municipal website base on urban communication functions of communicative city concept. In terms of coastal territories as a part of development center, efforts have to be made in enhancing the role and function of municipal website to show their development progress. Perceptual analysis is taken as a method to measure their position, especially kabupaten/kota as coastal territories in regional context (West Java Province). The results indicate that the availability of public information in coastal territories cities lower than other cities in metropolitan area. Innovation in specifying coastal features has to be promoted in illustrating development progress of coastal territories as a part of development centers in West Java Province.

  16. Dependence of waterbirds and shorebirds on shallow-water habitats in the Mid-Atlantic coastal region: An ecological profile and management recommendations

    USGS Publications Warehouse

    Erwin, R.M.

    1996-01-01

    Waterbirds (waterfowl, colonially nesting wading and seabirds, ospreys [Pandion haliaetus], and bald eagles [Haliaeetus leucocephalus]) and shorebirds (sandpipers, plovers, and relatives) may constitute a large fraction of the top level carnivore trophic component in many shallow-water areas of the mid-Atlantic region. The large biomass of many species (>1 kg body mass for the two raptors and some waterfowl) and enormous populations (e.g., >1 million shorebirds in late May in parts of Delaware Bay) reveal the importance of waterbirds as consumers and as linkages in nutrient flux in many shallow-water habitats. Salt and brackish marsh shallow-water habitats, including marsh pannes and tidal pools and creeks as well as constructed impoundments, are used intensively during most months of the year; in fall and winter, mostly by dabbling ducks, in spring and summer by migrant shorebirds and breeding colonial wading birds and seabirds. In adjacent estuaries, the intertidal flats and littoral zones of shallow embayments are heavily used by shorebirds, raptors, and colonial waterbirds in the May to September periods, with use by duck and geese heaviest from October to March. With the regional degradation of estuarine habitats and population declines of many species of waterbirds in the past 20 yr, some management recommendations relevant to shallow waters include: better protection, enhancement, and creation of small bay islands (small and isolated to preclude most mammalian predators) for nesting and brooding birds, especially colonial species; establishment of sanctuaries from human disturbance (e.g., boating, hunting) both in open water (waterfowl) and on land, better allocation of sandy dredged materials to augment islands or stabilize eroding islands; improvement in water management of existing impoundments to ensure good feeding, resting, and nesting opportunities for all the waterbirds, support for policies to preclude point and nonpoint source runoff of chemicals

  17. NATIONAL COASTAL ASSESSMENT

    EPA Science Inventory

    The purpose of the National Coastal Assessment (NCA) is to estimate the status and trends of the condition of the nation's coastal resources on a state, regional and national basis. Based on NCA monitoring from 1999-2001, 100% of the nation's estuarine waters (at over 2500 locati...

  18. Spatio-temporal variation in δ13CDIC of a tropical eutrophic estuary (Cochin estuary, India) and adjacent Arabian Sea

    NASA Astrophysics Data System (ADS)

    Bhavya, P. S.; Kumar, Sanjeev; Gupta, G. V. M.; Sudharma, K. V.; Sudheesh, V.

    2018-02-01

    Carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) in the Cochin estuary, a tropical eutrophic estuary along the southwest coast of India, and the adjacent coastal Arabian Sea was measured to understand spatio-temporal variability in sources and processes controlling inorganic carbon (C) dynamics in this estuarine-coastal system. δ13CDIC in the Cochin estuary showed wide variation during three different seasons (premonsoon: - 12.2 to - 3.26‰; monsoon: - 13.6 to - 5.69‰; and postmonsoon: - 6.34 to + 0.79‰). Detailed mixing curve approximation modeling along with relationships of δ13CDIC with dissolved oxygen and nutrients suggest dominant role of freshwater mixing and degassing of CO2 on DIC dynamics during wet seasons (premonsoon and monsoon). Excess CO2 brought in by rivers and in situ production due to respiration in the Cochin estuary result into one of the highest pCO2 observed in estuarine systems, leading to its degassing. During postmonsoon, a relatively dry period with high salinity, calcite precipitation was a major process with calcite saturation index > 1 at few locations. Relatively lower average surface values of δ13CDIC in the coastal Arabian Sea (premonsoon: + 0.95‰; monsoon: + 0.88‰; and postmonsoon: + 0.66‰) compared to the predicted open ocean value along with mixing curve modeling suggest dominance of respiration/organic matter (OM) degradation over primary productivity. Estuarine influence on coastal DIC dynamics was observed in nearshore region ( 10 km), whereas evidence of upwelling was found at farther locations.

  19. Super-micron Particles over US Coastal Region: Seasonal Changes from TCAP data

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Fast, J. D.; Zelenyuk, A.; Tomlinson, J. M.; Chand, D.; Barnard, J.; Jefferson, A.

    2016-12-01

    Numerous studies have demonstrated that wind-blown dust and ocean wave breaking are two major sources of atmospheric super-micron particles. However, the fate of generated super-micron particles and their relative contribution to the aerosol microphysical and optical properties is not well understood especially for coastal regions with complex interplay of local and large-scale flow patterns. To estimate this contribution, we take advantage of an integrated dataset collected from ground-based observations during the recent Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/) over the North Atlantic Ocean and US coastal region (Cape Cod, MA, USA). This region represents a crossroads of flow patterns with pronounced seasonal changes. Conducted from June 2012 through June 2013, TCAP involved one-month summer and winter periods of intensive aircraft observations that included the U.S. Department of Energy (DOE) Gulfstream-159 (G-1) aircraft. Aerosol size spectra, chemical composition and total scattering data were collected with high temporal resolution (<1 min) during the TCAP flights. The twelve-month TCAP dataset integrates ground-based observations from a suite of instruments for measuring cloud, aerosol and radiative properties, including the Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS) and a three-wavelength nephelometer. To demonstrate the importance of super-micron particles on the climate-relevant aerosol microphysical and optical properties, we examine data from the ground-based and airborne instruments. In particular, we show that the contribution of super-micron particles to the total scattering can be large (up to 50%) during winter period and this large contribution is mostly associated with sea-salt particles. The expected application of our results to the evaluation and improvement of regional and global climate models will be discussed as well.

  20. Monitoring habitat restoration projects: U.S. Fish and Wildlife Service Pacific Region Partners for Fish and Wildlife Program and Coastal Program Protocol

    USGS Publications Warehouse

    Woodward, Andrea; Hollar, Kathy

    2011-01-01

    The U.S. Fish and Wildlife Service's (FWS) Pacific Region (Region 1) includes more than 158 million acres (almost 247,000 square miles) of land base in Idaho, Oregon, Washington, Hawai`i, the Commonwealth of the Northern Mariana Islands, American Samoa, Guam, the Republic of Palau, the Federated States of Micronesia, and the Republic of the Marshall Islands. Region 1 is ecologically diverse with landscapes that range from coral reefs, broadleaf tropical forests, and tropical savannahs in the Pacific Islands, to glacial streams and lakes, lush old-growth rainforests, inland fjords, and coastal shoreline in the Pacific Northwest, to the forested mountains, shrub-steppe desert, and native grasslands in the Inland Northwest. Similarly, the people of the different landscapes perceive, value, and manage their natural resources in ways unique to their respective regions and cultures. The Partners for Fish and Wildlife Program (Partners Program) and Coastal Program work with a variety of partners in Region 1 including individual landowners, watershed councils, land trusts, Soil and Water Conservation Districts, non-governmental organizations, Tribal governments, Native Hawaiian organizations, and local, State, and Federal agencies. The Partners Program is the FWS's vanguard for working with private landowners to voluntarily restore and conserve fish and wildlife habitat. Using non-regulatory incentives, the Partners Program engages willing partners to conserve and protect valuable fish and wildlife habitat on their property and in their communities. This is accomplished by providing the funding support and technical and planning tools needed to make on-the-ground conservation affordable, feasible, and effective. The primary goals of the Pacific Region Partners Program are to: Promote citizen and community-based stewardship efforts for fish and wildlife conservation Contribute to the recovery of at-risk species, Protect the environmental integrity of the National Wildlife

  1. Discrimination of Coastal Vegetation and Biomass Using AIS Data

    NASA Technical Reports Server (NTRS)

    Gross, M. F.; Klemas, V.

    1985-01-01

    The Airborne Imaging Spectrometer (AIS) was flown over a coastal wetlands region near Lewes, Delaware, adjacent to the Delaware Bay on 16 August 1984. Using the AIS data, it was possible to discriminate between four different types of wetland vegetation canopies: (1) trees; (2) broadleaf herbaceous plants (e.g., Acnida cannabina, Hisbiscus moscheutos); (3) the low marsh grass Spartina alterniflora; and (4) the high marsh grasses Distichlis spicata and Spartina patens. The single most useful region of the spectrum was that between 1.40 and 1.90 microns, where slopes of portions of the radiance curve and ratios of radiance at particular wavelengths were significantly different for the four canopy types. The ratio between the highest digital number in the 1.40 to 1.90 microns and .84 to .94 microns regions and a similar ratio between the peaks in radiance in the 1.12 to 1.40 microns and .84 to .94 microns spectral regions were also very effective at discriminating between vegetation types. Differences in radiance values at various wavelengths between samples of the same vegetation type could potentially be used to estimate biomass.

  2. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  3. The spatiotemporal inhomogeneity of pollutant concentrations and its dependence on regional weather conditions in a coastal city of China.

    PubMed

    Zhou, Baohua; Yu, Lejiang; Zhong, Shiyuan; Bian, Xindi

    2018-04-02

    Hourly data for sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and inhalable particulate matter (PM 10 ) over a 33-month period from a network of air quality monitoring stations across Qingdao, a major coastal city in eastern China, along with surface and upper-air meteorological data, are used to characterize the spatiotemporal variability of these pollutants in the region and the role of meteorological conditions play in pollution episodes. Large differences in the concentrations of all three pollutants are found between densely populated or industrial areas and suburban commercial or residential or coastal tourist areas, but the differences are relatively small between older and newer parts of the residential-commercial areas and between old and newly developed industrial areas. Wavelet analyses revealed a strong seasonal cycle for all three pollutants, introseasonal variability with a periodicity depending on pollutant and location, and diurnal and a semi-diurnal variability with season-dependent amplitude and phase. Low wind speed is found to be the leading factor for pollution buildup in the region. These results may prove useful for urban planning and development and implementation of effective air pollution control strategies for other coastal regions with economic development similar to Qingdao.

  4. Connecting large-scale coastal behaviour with coastal management of the Rhône delta

    NASA Astrophysics Data System (ADS)

    Sabatier, François; Samat, Olivier; Ullmann, Albin; Suanez, Serge

    2009-06-01

    The aim of this paper is to connect the Large Scale Coastal Behaviour (LSCB) of the Rhône delta (shoreface sediment budget, river sediment input to the beaches, climatic change) with the impact and efficiency of hard engineering coastal structures. The analysis of the 1895 to 1974 bathymetric maps as well as 2D modelling of the effect of wave blocking on longshore transport allows us to draw up a conceptual model of the LSCB of the Rhône delta. The river sand input, settled in the mouth area (prodeltaic lobe), favours the advance of adjacent beaches. There is however a very weak alongshore sand feeding of the non-adjacent beaches farther off the mouth. After a mouth shift, the prodelta is eroded by aggressive waves and the sand is moved alongshore to build spits. This conceptual model suggests that there is a "timeshift" between the input of river sediments to the sea and the build up of a beach (nonadjacent to the mouth). Nowadays, as the river channels are controlled by dykes and human interventions, a river shift is not possible. It thus appears unlikely that the river sediments can supply the beaches of the Rhône delta coast. Under these conditions, we must expect that the problems of erosion will continue at Saintes-Maries-de-la-Mer and on the Faraman shore, in areas with chronic erosion where the shoreline retreat has been partially stopped by hard engineering practices in the 1980s. Therefore, these artificially stabilised sectors remain potentially under threat because of profile steepening and downdrift erosion evidenced in this paper by bathymetric profile measurements. In the long-term (1905 to 2003), the temporal analysis of the storm surges and the sea level show very weak but reliable increasing trends. Thus, these climatic agents will be more aggressive on the beaches and on the coastal structures calling their efficiency into question. We also evidence that the hard engineering structures were built in a favourable climatic context during the

  5. Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Gurrola, Larry D.; Keller, Edward A.; Brandt, Theodore R.

    2009-01-01

    of Los Angeles. The coastal plain surface includes several mesas and hills that are geomorphic expressions of potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB) that transects the coastal plain. Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude), and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara, Goleta, and Carpinteria. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the coastal plain region.

  6. IMPACTS OF GLOBAL CHANGE ON UV EXPOSURE IN COASTAL SHELF REGIONS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Global change has a variety of impact on UV exposure in coastal shelf regions of the southeastern United States. Changes in solar UV reaching the water surface have been caused by human alterations of atmospheric composition such as depletion of the ozone layer.

  7. The effects of coastal development on sponge abundance, diversity, and community composition on Jamaican coral reefs.

    PubMed

    Stubler, Amber D; Duckworth, Alan R; Peterson, Bradley J

    2015-07-15

    Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 0-6820: A process for designating and managing overweight truck routes in coastal port regions [project summary

    DOT National Transportation Integrated Search

    2017-01-01

    The project developed a process to evaluate potential oversize/overweight (OS/OW) freight corridors that will serve Texas coastal port regions and border ports of entry (POEs); such evaluations provide valuable input during legislative inquiries and ...

  9. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Adjacent to the Monterey Bay National Marine Sanctuary D Appendix D to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE...

  10. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Adjacent to the Monterey Bay National Marine Sanctuary D Appendix D to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE...

  11. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Adjacent to the Monterey Bay National Marine Sanctuary D Appendix D to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE...

  12. Evidence of local and regional freshening of Northeast Greenland coastal waters.

    PubMed

    Sejr, Mikael K; Stedmon, Colin A; Bendtsen, Jørgen; Abermann, Jakob; Juul-Pedersen, Thomas; Mortensen, John; Rysgaard, Søren

    2017-10-13

    The supply of freshwater to fjord systems in Greenland is increasing as a result of climate change-induced acceleration in ice sheet melt. However, insight into the marine implications of the melt water is impaired by lack of observations demonstrating the fate of freshwater along the Greenland coast and providing evaluation basis for ocean models. Here we present 13 years of summer measurements along a 120 km transect in Young Sound, Northeast Greenland and show that sub-surface coastal waters are decreasing in salinity with an average rate of 0.12 ± 0.05 per year. This is the first observational evidence of a significant freshening on decadal scale of the waters surrounding the ice sheet and comes from a region where ice sheet melt has been less significant. It implies that ice sheet dynamics in Northeast Greenland could be of key importance as freshwater is retained in southward flowing coastal currents thus reducing density of water masses influencing major deep water formation areas in the Subarctic Atlantic Ocean. Ultimately, the observed freshening could have implications for the Atlantic meridional overturning circulation.

  13. Multi-scale trends analysis of landscape stressors in an urbanizing coastal watershed

    EPA Science Inventory

    Anthropogenic land based stressors within a watershed can deliver major impacts to downstream and adjacent coastal waterways affecting water quality and estuarine habitats. Our research focused on a subset of non-point sources of watershed stressors specifically, human population...

  14. Observations of Urban Heat Island Mitigation in California Coastal Cities due to a Sea Breeze Induced Coastal-Cooling ``REVERSE-REACTION'' to Global Warming

    NASA Astrophysics Data System (ADS)

    Bornstein, R. D.; Lebassi, B.; Gonzalez, J.

    2010-12-01

    The study evaluated long-term (1948-2005) air temperatures at over 300 urban and rural sites in California (CA) during summer (June-August, JJA). The aggregate CA results showed asymmetric warming, as daily min temperatures increased faster than daily max temperatures. The spatial distributions of daily max temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a “reverse-reaction” to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. That daytime summer coastal cooling was seen in coastal urban areas implies that urban heat island (UHI) warming was weaker than the reverse-reaction sea breeze cooling; if there was no UHI effect, then the cooling would have been even stronger. Analysis of daytime summer max temperatures at four adjacent pairs of urban and rural sites near the inland cooling-warming boundary, however, showed that the rural sites experienced cooling, while the urban sites showed warming due to UHI development. The rate of heat island growth was estimated as the sum of each urban warming rate and the absolute magnitude of the concurrent adjacent rural cooling rate. Values ranged from 0.12 to 0.55 K decade-1, and were proportional to changes in urban population and urban extent. As Sacramento, Modesto, Stockton, and San José have grown in aerial extent (21 to 59%) and population (40 to 118%), part of the observed increased JJA max values could be due to increased daytime UHI-intensity. Without UHI effects, the currently observed JJA SFBA

  15. Sediment transport patterns in the San Francisco Bay Coastal System from cross-validation of bedform asymmetry and modeled residual flux

    USGS Publications Warehouse

    Barnard, Patrick L.; Erikson, Li H.; Elias, Edwin P.L.; Dartnell, Peter

    2013-01-01

    The morphology of ~ 45,000 bedforms from 13 multibeam bathymetry surveys was used as a proxy for identifying net bedload sediment transport directions and pathways throughout the San Francisco Bay estuary and adjacent outer coast. The spatially-averaged shape asymmetry of the bedforms reveals distinct pathways of ebb and flood transport. Additionally, the region-wide, ebb-oriented asymmetry of 5% suggests net seaward-directed transport within the estuarine-coastal system, with significant seaward asymmetry at the mouth of San Francisco Bay (11%), through the northern reaches of the Bay (7-8%), and among the largest bedforms (21% for λ > 50 m). This general indication for the net transport of sand to the open coast strongly suggests that anthropogenic removal of sediment from the estuary, particularly along clearly defined seaward transport pathways, will limit the supply of sand to chronically eroding, open-coast beaches. The bedform asymmetry measurements significantly agree (up to ~ 76%) with modeled annual residual transport directions derived from a hydrodynamically-calibrated numerical model, and the orientation of adjacent, flow-sculpted seafloor features such as mega-flute structures, providing a comprehensive validation of the technique. The methods described in this paper to determine well-defined, cross-validated sediment transport pathways can be applied to estuarine-coastal systems globally where bedforms are present. The results can inform and improve regional sediment management practices to more efficiently utilize often limited sediment resources and mitigate current and future sediment supply-related impacts.

  16. Sediment transport patterns in the San Francisco Bay Coastal System from cross-validation of bedform asymmetry and modeled residual flux

    USGS Publications Warehouse

    Barnard, Patrick L.; Erikson, Li H.; Elias, Edwin P.L.; Dartnell, Peter; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    The morphology of ~ 45,000 bedforms from 13 multibeam bathymetry surveys was used as a proxy for identifying net bedload sediment transport directions and pathways throughout the San Francisco Bay estuary and adjacent outer coast. The spatially-averaged shape asymmetry of the bedforms reveals distinct pathways of ebb and flood transport. Additionally, the region-wide, ebb-oriented asymmetry of 5% suggests net seaward-directed transport within the estuarine-coastal system, with significant seaward asymmetry at the mouth of San Francisco Bay (11%), through the northern reaches of the Bay (7–8%), and among the largest bedforms (21% for λ > 50 m). This general indication for the net transport of sand to the open coast strongly suggests that anthropogenic removal of sediment from the estuary, particularly along clearly defined seaward transport pathways, will limit the supply of sand to chronically eroding, open-coast beaches. The bedform asymmetry measurements significantly agree (up to ~ 76%) with modeled annual residual transport directions derived from a hydrodynamically-calibrated numerical model, and the orientation of adjacent, flow-sculpted seafloor features such as mega-flute structures, providing a comprehensive validation of the technique. The methods described in this paper to determine well-defined, cross-validated sediment transport pathways can be applied to estuarine-coastal systems globally where bedforms are present. The results can inform and improve regional sediment management practices to more efficiently utilize often limited sediment resources and mitigate current and future sediment supply-related impacts.

  17. Role of mesoscale eddies on exchanges between coastal regions

    NASA Astrophysics Data System (ADS)

    Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Dekeyser, I.

    2012-04-01

    The general circulation in the northwestern Mediterranean Sea is characterized by a cyclonic circulation. The northern part of this gyre is formed by the Northern Current (NC), which flows along the continental slope from the Ligurian Sea towards the Catalan Shelf. The NC has an important influence on the Gulf of Lion (GoL), a large continental margin in the northern part of the basin. The NC constitutes an effective dynamical barrier which blocks coastal waters on the continental shelf. The western part of the GoL is a key region for regulating the outflow from the continental shelf to the Catalan Basin. These exchanges are mainly induced by partially ageostrophic processes originating from the interaction between the NC and mesoscale activity like meanders, filaments and eddies. Both GoL and Catalan shelf are characterized by an intense mesoscale activity. Eddies in the GoL are baroclinic structures extending throughout the mixed layer (30 to 50m), often elliptic in shape and about 20-30km in diameter. Catalan eddies are characterized by a vertical extension between 70 and 100m and a diameter of about 45km. The LAgrangian Transport EXperiment (LATEX, 2008-2011) was designed to study the mechanisms of formation of anticyclones in the western part of the GoL and their influence on cross-shelf exchanges. Mesoscale anticyclones have been observed in the western part of the GoL and over the Catalan shelf by the combined use of data from satellite observations, in situ measurements and numerical modeling. Recent numerical experiments show an anticyclonic circulation extending over a large part of the coastal area (latitudinal range : 41°50' to 43°N ; longitudinal range : 3°10' to 4°10'E). Interaction with a meander of the NC induces the separation of this circulation in two different eddies, one in the GoL and the other in the Catalan shelf. These eddies exhibit strong interaction between them, resulting in important exchanges between the two coastal regions. On

  18. Use of Land Use Land Cover Change Mapping Products in Aiding Coastal Habitat Conservation and Restoration Efforts of the Mobile Bay NEP

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Swann, Roberta; Smooth, James

    2010-01-01

    The Mobile Bay region has undergone significant land use land cover change (LULC) over the last 35 years, much of which is associated with urbanization. These changes have impacted the region s water quality and wildlife habitat availability. In addition, much of the region is low-lying and close to the Gulf, which makes the region vulnerable to hurricanes, climate change (e.g., sea level rise), and sometimes man-made disasters such as the Deepwater Horizon (DWH) oil spill. Land use land cover change information is needed to help coastal zone managers and planners to understand and mitigate the impacts of environmental change on the region. This presentation discusses selective results of a current NASA-funded project in which Landsat data over a 34-year period (1974-2008) is used to produce, validate, refine, and apply land use land cover change products to aid coastal habitat conservation and restoration needs of the Mobile Bay National Estuary Program (MB NEP). The project employed a user defined classification scheme to compute LULC change mapping products for the entire region, which includes the majority of Mobile and Baldwin counties. Additional LULC change products have been computed for select coastal HUC-12 sub-watersheds adjacent to either Mobile Bay or the Gulf of Mexico, as part of the MB NEP watershed profile assessments. This presentation will include results of additional analyses of LULC change for sub-watersheds that are currently high priority areas, as defined by MB NEP. Such priority sub-watersheds include those that are vulnerable to impacts from the DWH oil spill, as well as sub-watersheds undergoing urbanization. Results demonstrating the nature and permanence of LULC change trends for these higher priority sub-watersheds and results characterizing change for the entire 34-year period and at approximate 10-year intervals across this period will also be presented. Future work will include development of value-added coastal habitat quality

  19. Phytoplankton and nutrient distributions in a front-eddy area adjacent to the coastal upwelling zone off Concepcion (Chile): implications for ecosystem productivity.

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson

    2016-04-01

    exportation of coastal communities to the open ocean in this region. We discuss how this interaction might affect ecosystem productivity in the coastal band.

  20. Rainfall effects on inflow and infiltration in wastewater treatment systems in a coastal plain region.

    PubMed

    Cahoon, Lawrence B; Hanke, Marc H

    2017-04-01

    Aging wastewater collection and treatment systems have not received as much attention as other forms of infrastructure, even though they are vital to public health, economic growth, and environmental quality. Inflow and infiltration (I&I) are among potentially widespread problems facing central sewage collection and treatment systems, posing risks of sanitary system overflows (SSOs), system degradation, and water quality impairment, but remain poorly quantified. Whole-system analyses of I&I were conducted by regression analyses of system flow responses to rainfall and temperature for 93 wastewater treatment plants in 23 counties in eastern North Carolina, USA, a coastal plain region with high water tables and generally higher rainfalls than the continental interior. Statistically significant flow responses to rainfall were found in 92% of these systems, with 2-year average I&I values exceeding 10% of rainless system flow in over 40% of them. The effects of rainfall, which can be intense in this coastal region, have region-wide implications for sewer system performance and environmental management. The positive association between rainfall and excessive I&I parallels the effects of storm water runoff on water quality, in that excessive I&I can also drive SSOs, thus confounding water quality protection efforts.

  1. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment

    PubMed Central

    Neumann, Barbara; Vafeidis, Athanasios T.; Zimmermann, Juliane; Nicholls, Robert J.

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  2. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    PubMed

    Neumann, Barbara; Vafeidis, Athanasios T; Zimmermann, Juliane; Nicholls, Robert J

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  3. Twitter Analytics: Are the U.S. Coastal Regions Prepared for Climate Change in 2017?

    NASA Astrophysics Data System (ADS)

    Singleton, S. L.; Kumar, S.

    2017-12-01

    According to the U.S. National Climate Assessment, the Southeast Coast and Gulf Coast of the United States are particularly susceptible to sea level rise, heat waves, hurricanes and less accessibility to clean water due to climate change. This is because of the extreme variation of topography in these two regions. Preparation for climate change consequences can only occur with conversation, which is a method of bringing awareness to the issue. Over the past decade, social media has taken over the spectrum of information exchange in the United States. Social Network Analysis (SNA) is a field that is emerging with the growth in popularity of social media. SNA is the practice of analyzing trends in volume and opinion of a population of social media users. Twitter, one popular social media platform, is one of the largest microblogging sites in the world, and it provides an abundance of data related to the trending topics such as climate change. Twitter analytics is a type of SNA performed on data from the tweets of Twitter users. In this work, Twitter analytics is performed on the data generated from the Twitter users in the United States, who were talking about climate change, global warming and/or CO2, over the course of one year (July 2016 - June 2017). Specifically, a regional comparative analysis on the coastal U.S. regions was conducted to recognize which region(s) is/are falling behind on the conversation about climate change. Sentiment analysis was also performed to understand the trends in opinion about climate change that vary over time. Experimental results determined that the southeast coast of the United States is deficient in their discussion about climate change compared to the other coastal regions. Igniting the conversation about this issue in these regions will mitigate the disasters due to climate change by increasing awareness in the people of these regions so they can properly prepare.

  4. PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF CDOM IN WATERS FROM SELECTED COASTAL REGIONS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Biological and photochemical degradation of colored dissolved organic matter (CDOM) were investigated in controlled experiments using waters from southeastern U.S. estuaries, from the Mississippi River plume and Gulf of Mexico, and from the coastal shelf region in the Florida Key...

  5. Regional Interdependence in Adaptation to Sea Level Rise and Coastal Flooding

    NASA Astrophysics Data System (ADS)

    Stacey, M. T.; Lubell, M.; Hummel, M.; Wang, R. Q.; Barnard, P.; Erikson, L. H.; Herdman, L.; Pozdnukhov, A.; Sheehan, M.

    2017-12-01

    Projections of sea level rise may differ in the pace of change, but there is clear consensus that coastal communities will be facing more frequent and severe flooding events in the coming century. As communities adapt to future conditions, infrastructure systems will be developed, modified and abandoned, with important consequences for services and resilience. Whether action or inaction is pursued, the decisions made by an individual community regarding a single infrastructure system have implications that extend spatially and temporally due to geographic and infrastructure system interactions. At the same time, there are a number of barriers to collective or coordinated action that inhibit regional solutions. This interplay between local actions and regional responses is one of the great challenges facing decision-makers grappling with both local and regional climate-change adaptation. In this talk, I present case studies of the San Francisco Bay Area that examine how shoreline infrastructure, transporation sytems and decision-making networks interact to define the regional response to local actions and the local response to regional actions. I will characterize the barriers that exist to regional solutions, and characterize three types of interdependence that may motivate decision-makers to overcome those barriers. Using these examples, I will discuss the importance of interdisciplinary analyses that integrate the natural sciences, engineering and the social science to climate change adaptation more generally.

  6. EFFECTS OF A COASTAL GOLF COMPLEX ON WATER QUALITY, PERIPHYTON, AND SEAGRASS.

    EPA Science Inventory

    The objective of this study was to determine the effects of a golf course complex on water quality, colonized periphyton and seagrass meadows in adjacent freshwater, near-coastal and wetland areas. The environmental impact of the recreational facility, which uses spray wastewater...

  7. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    PubMed

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Using recent hurricanes and associated event layers to evaluate regional storm impacts on estuarine-wetland systems

    NASA Astrophysics Data System (ADS)

    Smith, C. G.; Marot, M. E.; Osterman, L. E.; Adams, C. S.; Haller, C.; Jones, M.

    2016-12-01

    Tropical cyclones are a major driver of change in coastal and estuarine environments. Heightened waves and sea level associated with tropical cyclones act to erode sediment from one environment and redistribute it to adjacent environments. The fate and transport of this redistributed material is of great importance to the long-term sediment budget, which in turns affects the vulnerability of these coastal systems. The spatial variance in both storm impacts and sediment redistribution is large. At the regional-scale, difference in storm impacts can often be attributed to natural variability in geologic parameters (sediment availability/erodibility), coastal geomorphology (including fetch, shoreline tortuosity, back-barrier versus estuarine shoreline, etc.), storm characteristics (intensity, duration, track/approach), and ecology (vegetation type, gradient, density). To assess storm characteristics and coastal geomorphology on a regional-scale, cores were collected from seven Juncus marshes located in coastal regions of Alabama and Mississippi (i.e., Mobile Bay, Bon Secour Bay, Mississippi Sound, and Grand Bay) expected to have been impacted by Hurricane Frederic (1979). All cores were sectioned and processed for water content, organic matter (loss-on-ignition), and select cores analyzed for foraminiferal assemblages, stable isotopes and bulk metals to aid in the identification of storm events. Excess lead-210 and cesium-137 were used to develop chronologies for the cores and evaluate mass accumulation rates and sedimentation rates. Temporal variations in accumulation rates of inorganic and organic sediments were compared with shoreline and areal change rates derived from historic aerial imagery to evaluate potential changes in sediment exchange prior to, during, and following the storm. A combined geospatial and geologic approach will improve our understanding of coastal change in estuarine marsh environments, as well help refine the influence of storms on regional

  9. Species Profiles: Life Histories and Environmental Requirements of Coastal Vertebrates and Invertebrates Pacific Ocean Region. Report 5. The Parrotfishes, Family Scaridae

    DTIC Science & Technology

    1991-03-01

    AND ENVIRONMENTAL REQUIREMENTS OF COASTAL VERTEBRATES AND INVERTEBRATES PACIFIC OCEAN REGION Report 5 THE PARROTFISHES, FAMILY SCARIDAE by R. E. Brock...SeaGrant College Program and . _Hawaii Institute of Marine Biology University of Hawaii P.O. Box 1346, Coconut Island Kaneohe, Hawaii 96744 ,A DTIC...TITLE (Include Security Classification) Species Profiles: Life Histories and Environmental Requirements of’Coastal Vertebrates and Invertebrates

  10. COASTAL ZONES, A REPORT OF THE MID-ATLANTIC REGIONAL ASSESSMENT TEAM FOR THE GLOBAL CHANGE RESEARCH PROGRAM

    EPA Science Inventory

    Impacts of climate change on coastal areas can be expected to have a regional signature that depends on the local climate change and the local geomorphological, biogeochemical, ecological and social factors that affect the sensitivity to climate. Here we present an assessment of...

  11. Comprehensive assessment of coastal eutrophication in Taiwan and its implications for management strategy.

    PubMed

    Liu, Ta-Kang; Chen, Ping; Chen, Hou-Yu

    2015-08-15

    Due to the rapid population growth, anthropogenic activities result in agricultural, industrial, and urban diffuse runoffs that elevate the level of nutrients such as nitrogen and phosphorus in coastal waters. Currently there is no integrated analysis for coastal eutrophication in Taiwan. A comprehensive analysis of the coastal eutrophic status was performed in this study based on decade-long coastal water quality monitoring data from Taiwan's Environmental Protection Administration. A 3-tiered monitoring strategy is recommended based on the severity of the current eutrophication state. Results indicate that the most problematic area of coastal eutrophication is located in the estuary of the Donggang River (DGR) and its adjacent coastal waters, i.e., the Kao-Ping mouth (KPM) and Dapeng Bay (DPB) in south-western Taiwan. With a worsening eutrophic status, these areas demand intensive monitoring and research with higher spatial and temporal resolutions to evaluate the stresses of nutrient forcing and predict possible future responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Regional assessment of sediment contamination from marshes to the continental shelf: Results of the western component of the US EPA National Coastal Assessment

    EPA Science Inventory

    The US EPA National Coastal Assessment (NCA) program on the U.S. West Coast was designed as a pilot project to explore assessment of new components of coastal resources not previously incorporated in the NCA. The Western Regional component of the NCA program began with a two yea...

  13. A study on biological activity of marine fungi from different habitats in coastal regions.

    PubMed

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  14. PIXE analysis of elements in gastric cancer and adjacent mucosa

    NASA Astrophysics Data System (ADS)

    Liu, Qixin; Zhong, Ming; Zhang, Xiaofeng; Yan, Lingnuo; Xu, Yongling; Ye, Simao

    1990-04-01

    The elemental regional distributions in 20 resected human stomach tissues were obtained using PIXE analysis. The samples were pathologically divided into four types: normal, adjacent mucosa A, adjacent mucosa B and cancer. The targets for PIXE analysis were prepared by wet digestion with a pressure bomb system. P, K, Fe, Cu, Zn and Se were measured and statistically analysed. We found significantly higher concentrations of P, K, Cu, Zn and a higher ratio of Cu compared to Zn in cancer tissue as compared with normal tissue, but statistically no significant difference between adjacent mucosa and cancer tissue was found.

  15. The numerical calculation of hydrological processes in the coastal zone of the Black Sea region in the city of Poti

    NASA Astrophysics Data System (ADS)

    Saghinadze, Ivane; Pkhakadze, Manana

    2016-04-01

    (The article was published with support of the Sh. Rustaveli National Science Foundation) The serious environmental problems started in Poti after transfer of the main flow of the river Rioni to the north. As a result the flooding of the city stopped, but the reduction of water consumption in the city channel, caused a decrease of the sediments carried away by the river, what leads to coastal erosion. The coast changes are connected with the movement of the waves and currents in the coastal part of the sea. In the paper, the three-dimensional mathematical model of sediment transport and coastal zone lithodynamics is developed. The finite element formulations for the problems of wave modes, coastal currents, sediment transport and evolution of the coastal zone of the sea, are given. The numerical algorithms, implemented in the form of software. Programs are allowing to bring the solutions of the tasks to numerical results. The numerical modeling was developed in three stages. In the first stage the topography of the coast and the initial geometry of the structures are considered as an input parameters. Then, coastal wave field is calculated for the conditions prescribed in the initial wave. In the second stage, the calculated wave field is used to estimate the spatial distribution of the radiation stresses near-bottom orbital velocity. In the third stage the coastal wave fields and flow fields are used in the sub-models of sediment transport and changes in the topography of the coast. In the numerical solution of basic equations of motion of the waves, coastal currents and changes in sea bottom topography we use: finite element, finite difference methods and the method of upper relaxation, Crank-Nicolson scheme. As an example, we are giving the results of research of the wave regime in the coastal area of the city of Poti (700X600m) adjacent to the port of Poti. The bottom profile, in this area is rather complicated. During the calculations of the average rise of

  16. Atmospheric correction over coastal waters using multilayer neural networks

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Li, W.; Charles, G.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. H.

    2017-12-01

    Standard atmospheric correction (AC) algorithms work well in open ocean areas where the water inherent optical properties (IOPs) are correlated with pigmented particles. However, the IOPs of turbid coastal waters may independently vary with pigmented particles, suspended inorganic particles, and colored dissolved organic matter (CDOM). In turbid coastal waters standard AC algorithms often exhibit large inaccuracies that may lead to negative water-leaving radiances (Lw) or remote sensing reflectance (Rrs). We introduce a new atmospheric correction algorithm for coastal waters based on a multilayer neural network (MLNN) machine learning method. We use a coupled atmosphere-ocean radiative transfer model to simulate the Rayleigh-corrected radiance (Lrc) at the top of the atmosphere (TOA) and the Rrs just above the surface simultaneously, and train a MLNN to derive the aerosol optical depth (AOD) and Rrs directly from the TOA Lrc. The SeaDAS NIR algorithm, the SeaDAS NIR/SWIR algorithm, and the MODIS version of the Case 2 regional water - CoastColour (C2RCC) algorithm are included in the comparison with AERONET-OC measurements. The results show that the MLNN algorithm significantly improves retrieval of normalized Lw in blue bands (412 nm and 443 nm) and yields minor improvements in green and red bands. These results indicate that the MLNN algorithm is suitable for application in turbid coastal waters. Application of the MLNN algorithm to MODIS Aqua images in several coastal areas also shows that it is robust and resilient to contamination due to sunglint or adjacency effects of land and cloud edges. The MLNN algorithm is very fast once the neural network has been properly trained and is therefore suitable for operational use. A significant advantage of the MLNN algorithm is that it does not need SWIR bands, which implies significant cost reduction for dedicated OC missions. A recent effort has been made to extend the MLNN AC algorithm to extreme atmospheric conditions

  17. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological,more » chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions.« less

  18. Atrazine fate and transport within the coastal zone in southeastern Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Herbicide transport from crop-land to coastal waters may adversely impact water quality. This work examined potential atrazine impact from use on a farm field adjacent to the Jobos Bay National Estuarine Research Reserve on Puerto Rico’s southeastern coast. Atrazine application was linked to residu...

  19. GMES and Down-stream Services Following User Requirements: Examples on Regional And Coastal Scale

    NASA Astrophysics Data System (ADS)

    Noehren, I.; Breitbach, G.; Schroeder, F.

    2012-04-01

    MyOcean as part of the Global Monitoring for Environment and Security (GMES) services provides information on the state of the oceans on a regular basis. The products are delivered on a global as well as on a regional scale like EU, covering the physical state of the ocean and primary ecosystem parameters. For local or coastal scales these Core Services very often do not meet the requirements of the potential end-user who needs information on e. g. marine safety, oil spills, marine resources and coastal management. For these local information needs Downstream Services derived from GMES Core Services, e.g. MyOcean products, but also directly from observation infrastructure are necessary. With Cosyna (Coastal Observation System for Northern and Arctic Seas) a national project between MyOcean and downstream services is established. The core of the project is an integrated pre-operational observation system which combines in-situ observations and remote sensing procedures with numerical models to obtain synoptic data sets of the southern North Sea and make basic infrastructure and continuous data available to the scientific community. The network provides intermediate products in terms of quality-assured time series and maps with high temporal and spatial resolution; end-users might produce their own end products. Integrated products cover processed information based on a combination of different observations and models, accompanied by instructions of use and optionally by interpretations. To enhance operational services in coastal areas improved forecasts with coupled models and data assimilation are developed in the EC funded FIELD_AC project (Fluxes, Interactions and Environment at the Land-Ocean Boundary. Downscaling, Assimilation and Coupling). The application area of the German partner is the German Bight. By means of a strong interaction with the Cosyna observational network main emphasis is laid on the user needs (e.g. of national agencies, coastal and harbour

  20. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  1. Planning report for the Gulf Coast Regional Aquifer-System Analysis in the Gulf of Mexico coastal plain, United States

    USGS Publications Warehouse

    Grubb, Hayes F.

    1984-01-01

    Large quantities of water for municipal, industrial and agriculture use are supplied from the aquifers in Tertiary and younger sediments over an area of about 225,000 square miles in the Coastal Plain of Alabama, Arkansas, Florida, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas. Three regional aquifer systems, the Mississippi Embayment aquifer system, the Coastal Lowlands aquifer system, and the Texas Coastal Uplands aquifer system have been developed to varying degrees throughout the area. A variety of problems has resulted from development such as movement of the saline-freshwater interface into parts of aquifers that were previously fresh, lowering of the potentiometric surface with resulting increases in pumping lift, and land-surface subsidence due to the compaction of clays within the aquifer. Increased demand for ground water is anticipated to meet the needs of urban growth, expanded energy development, and growth of irrigated agriculture. The U. S. Geological Survey initiated an eightyear study in 1981 to define the geohydrologic framework, describe the chemistry of the ground water, and to analyze the regional ground-water flow patterns. The objectives, plan, and organization of the study are described in this report and the major tasks to be undertaken are outlined.

  2. Anthropogenic activities and coastal environmental quality: a regional quantitative analysis in southeast China with management implications.

    PubMed

    Chen, Kai; Liu, Yan; Huang, Dongren; Ke, Hongwei; Chen, Huorong; Zhang, Songbin; Yang, Shengyun; Cai, Minggang

    2018-02-01

    Regional analysis of environmental issues has always been a hot topic in the field of sustainable development. Because the different levels of economic growth, urbanization, resource endowments, etc. in different regions generate apparently different ecological responses, a better description and comparison across different regions will provide more valuable implications for ecological improvement and policymaking. In this study, seven typical bays in southeast China that are a rapid developing area were selected to quantitatively analyze the relationship between socioeconomic development and coastal environmental quality. Based on the water quality data from 2007 to 2015, the multivariate statistical method was applied to analyze the potential environmental risks and to classify the seven bays based on their environmental quality status. The possible variation trends of environmental indices were predicted based on the cross-regional panel data by Environmental Kuznets Curve. The results showed that there were significant regional differences among the seven bays, especially Quanzhou, Xiamen, and Luoyuan Bays, suffered from severer artificial disturbances than other bays, despite their different development patterns. Socioeconomic development level was significantly associated with some water quality indices (pH, DIN, PO 4 -P); the association was roughly positive: the areas with higher GDP per capita have some worse water quality indices. In addition, the decreasing trend of pH values and the increasing trend of nutrient concentration in the seven bays will continue in the foreseeable future. In consideration of the variation trends, the limiting nutrient strategy should be implemented to mitigate the deterioration of the coastal environments.

  3. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: a case study for the Minho region

    NASA Astrophysics Data System (ADS)

    Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.

    2012-04-01

    Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water

  4. Osmotically driven membrane process for the management of urban runoff in coastal regions.

    PubMed

    Li, Zhenyu; Valladares Linares, Rodrigo; Abu-Ghdaib, Muhannad; Zhan, Tong; Yangali-Quintanilla, Victor; Amy, Gary

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier to reject runoff-derived contaminants. The process was demonstrated by a lab scale testing using synthetic urban runoff (as the feed solution) and synthetic seawater (as the draw solution). The submerged forward osmosis process was conducted under neutral, acidic and natural organic matter fouling condition, respectively. Forward osmosis flux decline was mainly attributed to the dilution of seawater during a semi-batch process in lab scale testing. However, it is possible to minimize flux decrease by maintaining a constant salinity at the draw solution side. Various changes in urban runoff water quality, including acidic conditions (acid rain) and natural organic matter presence, did not show significant effects on the rejection of trace metals and phosphorus, but influenced salt leakage and the rejection of nitrate and total nitrogen. Rejection of trace metals varied from 98% to 100%, phosphorus varied from 97% to 100, nitrate varied from 52% to 94% and total nitrogen varied from 65% to 85% under different feed water conditions. The work described in this study contributes to an integrated system of urban runoff management, seawater desalination and possible power generation in coastal regions to achieve a sustainable solution to the water-energy nexus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. REGIONAL AND STATE VIEWS OF ESTURAINE CONDITION IN NORTHEAST US BASED ON 2000 AND 2001 COASTAL ASSESSMENT DATA

    EPA Science Inventory

    The National Coastal Assessment (NCA) is a probability-based survey that permits assessment of estuarine conditions at national, regional, or large-system scales. Additionally, states may use these data to comply with requirements of the Clean Water Act (CWA), which mandates re...

  6. Extended Shared Socioeconomic Pathways for Coastal Impact Assessment: Spatial Coastal Population Scenarios

    NASA Astrophysics Data System (ADS)

    Merkens, Jan-Ludolf; Reimann, Lena; Hinkel, Jochen; Vafeidis, Athanasios T.

    2016-04-01

    This work extends the Shared Socioeconomic Pathways (SSPs) by developing spatial projections of global coastal population distribution for the five basic SSPs. Based on a series of coastal migration drivers, which were identified from existing literature, we develop coastal narratives for the five basic SSPs (SSP1-5). These narratives account for differences in coastal versus inland population development in urban and rural areas. To spatially distribute population we use the International Institute for Applied Systems Analysis (IIASA) national population and urbanisation projections and employ country-specific growth rates which differ for coastal and inland as well as for urban and rural regions. These rates are derived from spatial analysis of historical population data. We then adjust these rates for each SSP based on the coastal narratives. The resulting global population grids depict the projected distribution of coastal population for each SSP, until the end of the 21st century, at a spatial resolution of 30 arc seconds. These grids exhibit a three- to four-fold increase in coastal population compared to the basic SSPs. Across all SSPs, except for SSP3, coastal population peaks by the middle of the 21st century and declines afterwards. In SSP3 the coastal population grows continuously until 2100. Compared to the base year 2000 the coastal population increases considerably in all SSPs. The extended SSPs are intended to be utilised in Impact, Adaptation and Vulnerability (IAV) assessments as they allow for improved analysis of exposure to sea-level rise and coastal flooding under different physical and socioeconomic scenarios.

  7. Salinity Is an Agent of Divergent Selection Driving Local Adaptation of Arabidopsis to Coastal Habitats1[OPEN

    PubMed Central

    Teres, Joana; Bomblies, Kirsten; Douglas, Alex; Salt, David E.

    2015-01-01

    Understanding the molecular mechanism of adaptive evolution in plants provides insights into the selective forces driving adaptation and the genetic basis of adaptive traits with agricultural value. The genomic resources available for Arabidopsis (Arabidopsis thaliana) make it well suited to the rapid molecular dissection of adaptive processes. Although numerous potentially adaptive loci have been identified in Arabidopsis, the consequences of divergent selection and migration (both important aspects of the process of local adaptation) for Arabidopsis are not well understood. Here, we use a multiyear field-based reciprocal transplant experiment to detect local populations of Arabidopsis composed of multiple small stands of plants (demes) that are locally adapted to the coast and adjacent inland habitats in northeastern Spain. We identify fitness tradeoffs between plants from these different habitats when grown together in inland and coastal common gardens and also, under controlled conditions in soil excavated from coastal and inland sites. Plants from the coastal habitat also outperform those from inland when grown under high salinity, indicating local adaptation to soil salinity. Sodium can be toxic to plants, and we find its concentration to be elevated in soil and plants sampled at the coast. We conclude that the local adaptation that we observe between adjacent coastal and inland populations is caused by ongoing divergent selection driven by the differential salinity between coastal and inland soils. PMID:26034264

  8. Pan-European Coastal Erosion and Accretion: translating incomplete data and information for coastal reslience assessments

    NASA Astrophysics Data System (ADS)

    van Heteren, Sytze; Moses, Cherith; van der Ven, Tamara

    2017-04-01

    EMODnet has changed the face of the European marine data landscape and is developing tools to connect national data and information resources to make them easily available for multiple users, for multiple purposes. Building on the results of EUROSION, an EU-project completed some ten years ago, EMODnet-Geology has been compiling coastal erosion and sedimentation data and information for all European shorelines. Coverage is being expanded, and data and information are being updated. Challenges faced during this compilation phase are posed by a) differences between parameters used as indicators of shoreline migration, b) restricted access to third-party data, and c) data gaps. There are many indicators of coastal behaviour, with inherent incompatibilities and variations between low-lying sediment and cliffed rock shorelines. Regionally, low data availability and limited access result in poor coverage. With Sentinel data expected to become increasingly available, it is time to invest in automated methods to derive coastal-erosion data from satellite monitoring. Even so, consistency of data and derived information on coastal erosion and accretion does not necessarily translate into usability in pan-European coastal-zone management. Indicators of shoreline change need to be assessed and weighted regionally in light of other parameters in order to be of value in assessing coastal resilience or vulnerability. There is no single way to portray coastal vulnerability for all of Europe in a meaningful way. A common legend, however attractive intuitively, results in data products that work well for one region but show insufficient or excessive detail elsewhere. For decision making, uniform products are often not very helpful. The ability to zoom in on different spatial levels is not a solution either. It is better to compile and visualize vulnerability studies with different legends, and to provide each map with a confidence assessment and other relevant metadata.

  9. Patterns and Trends of Primary Production, Inorganic Carbon and Oxygen and Their Ecosystem Impacts in a Regional Biogeochemical Ocean Model for Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Fennel, K.; Rutherford, K. E.; Kuhn, A. M.; Zhang, W.; Brennan, C. E.; Zhang, R.

    2016-12-01

    Representing coastal oceans in global biogeochemical models is a challenge, yet the ecosystems in these regions are most vulnerable to the combined stressors of ocean warming, deoxygenation, acidification, eutrophication and fishing. Coastal regions also have large air-sea fluxes of CO2, making them an important but poorly quantified component of the global carbon cycle, and are the most relevant for human activities. Regional model applications that are nested within large-scale or global models are necessary for detailed studies of coastal regions. We present results from such a regional biogeochemical model for the northwestern North Atlantic shelves and adjacent deep ocean of Atlantic Canada. The model is an implementation of the Regional Ocean Modeling System (ROMS) and includes an NPZD-type nitrogen cycle model with explicit representation of dissolved oxygen and inorganic carbon. The region is at the confluence of the Gulf Stream and Labrador Current making it highly dynamic, a challenge for analysis and prediction, and prone to large changes. Historically a rich fishing ground, coastal ecosystems in Atlantic Canada have undergone dramatic changes including the collapse of several economically important fish stocks and the listing of many species as threatened or endangered. Furthermore it is unclear whether the region is a net source or sink of atmospheric CO2 with estimates of the size and direction of the net air-sea CO2 flux remaining controversial. We will discuss simulated patterns of primary production, inorganic carbon fluxes and oxygen trends in the context of circulation features and shelf residence times for the present ocean state and present future projections.

  10. Composition of soil seed banks in southern California coastal sage scrub and adjacent exotic grassland

    Treesearch

    Robert D. Cox; Edith B. Allen

    2008-01-01

    Soil seed banks are important to many plant communities and are recognized as an important component of management plans. Understanding seed bank composition and density is especially important when communities have been invaded by exotic species and must be managed to promote desirable species. We examined germinable soil seed banks in southern California coastal sage...

  11. Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Graham, William; Smoot, James

    2009-01-01

    This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was

  12. Observed changes in relative humidity and dew point temperature in coastal regions of Iran

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Talaee, P.; Sabziparvar, A. A.; Tabari, Hossein

    2012-12-01

    The analysis of trends in hydroclimatic parameters and assessment of their statistical significance have recently received a great concern to clarify whether or not there is an obvious climate change. In the current study, parametric linear regression and nonparametric Mann-Kendall tests were applied for detecting annual and seasonal trends in the relative humidity (RH) and dew point temperature ( T dew) time series at ten coastal weather stations in Iran during 1966-2005. The serial structure of the data was considered, and the significant serial correlations were eliminated using the trend-free pre-whitening method. The results showed that annual RH increased by 1.03 and 0.28 %/decade at the northern and southern coastal regions of the country, respectively, while annual T dew increased by 0.29 and 0.15°C per decade at the northern and southern regions, respectively. The significant trends were frequent in the T dew series, but they were observed only at 2 out of the 50 RH series. The results showed that the difference between the results of the parametric and nonparametric tests was small, although the parametric test detected larger significant trends in the RH and T dew time series. Furthermore, the differences between the results of the trend tests were not related to the normality of the statistical distribution.

  13. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  14. Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns

    NASA Astrophysics Data System (ADS)

    Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.

    2018-01-01

    Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.

  15. Coastal applications of the ERTS-1 satellite imagery

    NASA Technical Reports Server (NTRS)

    Magoon, O. T. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. Samples are given of the possible applications of ERTS-1 imagery to coastal and nearshore studies. Briefly discussed are: (1) obtaining regional views of extended coastal areas; (2) distribution of sediments; (3) coastal configurations and changes; (4) barrier islands; (5) underwater penetration, and (6) coastal waves.

  16. The "shallow-waterness" of the wave climate in European coastal regions

    NASA Astrophysics Data System (ADS)

    Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind

    2017-07-01

    In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.

  17. Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region.

    PubMed

    Chae, Doo-Hyeon; Kim, In-Sung; Kim, Seung-Kyu; Song, Young Kyoung; Shim, Won Joon

    2015-10-01

    Microplastics in marine environments are of emerging concern due to their widespread distribution, their ingestion by various marine organisms, and their roles as a source and transfer vector of toxic chemicals. However, our understanding of their abundance and distribution characteristics in surface seawater (SSW) remains limited. We investigated microplastics in the surface microlayer (SML) and the SSW at 12 stations near-shore and offshore of the Korean west coast, Incheon/Kyeonggi region. Variation between stations, sampling media, and sampling methods were compared based on abundances, size distribution, and composition profiles of microsized synthetic polymer particles. The abundance of microplastics was greater in the SML (152,688 ± 92,384 particles/m(3)) than in SSW and showed a significant difference based on the sampling method for SSWs collected using a hand net (1602 ± 1274 particles/m(3)) and a zooplankton trawl net (0.19 ± 0.14 particles/m(3)). Ship paint particles (mostly alkyd resin polymer) accounted for the majority of microplastics detected in both SML and SSWs, and increased levels were observed around the voyage routes of large vessels. This indicates that polymers with marine-based origins become an important contributor to microplastics in coastal SSWs of this coastal region.

  18. Coastal zone - Terra (and aqua) incognita - Integrated Coastal Zone Management in the Black Sea

    NASA Astrophysics Data System (ADS)

    Kosyan, R. D.; Velikova, V. N.

    2016-02-01

    In the Black Sea coastal states (Bulgaria, Georgia, Romania, Russian Federation, Turkey, and Ukraine), Integrated Coastal Zone Management (ICZM) has no properly established legal and institutional framework. The term "coastal zone" is undefined in national (reportedly with the exception of Bulgaria) and regional legislative documents. The interface between science and policy within ICZM remains poorly developed. Policies for streamlining efforts have been ill-managed and decisions taken in functional zoning and the balanced use and protection of coastal zones have often been shown to be incorrect. The observed proliferation of consultative committees and councils has not been much helpful, public participation has been widely neglected. Illegal practices are in place, and coastal developments continue being largely unsustainable. These problems are often explained by the low awareness of ICZM benefits, and hence, a shortage of political good will, but also by the lack of appropriate Black Sea scientific research, which would ensure a fundamental knowledge-base. There are hundreds of organizations involved in collection of data and information of relevance for ICZM, although there is a distinct lack of coordination. Consequently, there is a substantial overlap of activities, whilst important scientific and policy questions remain unanswered. We review the status of ICZM or mismanagement (ICZmisM) in the Black Sea region, building links between environmental problems and policy measures in response, and providing appropriate examples. Recommendations are put forward with regard to major gaps in ICZM at levels of its theoretical development and practical implementation within the region. The review is intended to remind of major disastrous consequences of present complacency and laissez-faire in the management of the Black Sea. This paper calls for urgent implementation of ICZM in the Black Sea at national and regional levels.

  19. An integrated assessment for wind energy in Lake Michigan coastal counties.

    PubMed

    Nordman, Erik; VanderMolen, Jon; Gajewski, Betty; Isely, Paul; Fan, Yue; Koches, John; Damm, Sara; Ferguson, Aaron; Schoolmaster, Claire

    2015-04-01

    The benefits and challenges of onshore and offshore wind energy development were assessed for a 4-county area of coastal Michigan. Economic, social, environmental, and spatial dimensions were considered. The coastal counties have suitable wind resources for energy development, which could contribute toward Michigan's 10% renewable energy standard. Wind energy is cost-effective with contract prices less than the benchmark energy price of a new coal-fired power plant. Constructing a 100 MW wind farm could have a $54.7 million economic impact. A patchwork of township-level zoning ordinances regulates wind energy siting. Voluntary collaborations among adjacent townships standardizing the ordinances could reduce regulatory complexity. A Delphi Inquiry on offshore wind energy in Lake Michigan elicited considerable agreement on its challenges, but little agreement on the benefits to coastal communities. Offshore turbines could be acceptable to the participants if they reduced pollution, benefited coastal communities, involved substantial public participation, and had minimal impact on property values and tourism. The US Coast Guard will take a risk-based approach to evaluating individual offshore developments and has no plans to issue blanket restrictions around the wind farms. Models showed that using wind energy to reach the remainder of the 10% renewable energy standard could reduce SO2 , NOx , and CO2 pollution by 4% to 7%. Turbines are highly likely to impact the area's navigational and defense radar systems but planning and technological upgrades can reduce the impact. The integrated assessment shows that responsible wind energy development can enhance the quality of life by reducing air pollution and associated health problems and enhancing economic development. Policies could reduce the negative impacts to local communities while preserving the benefits to the broader region. © 2015 SETAC.

  20. Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida-predevelopment, 1980, and 2000

    USGS Publications Warehouse

    Payne, Dorothy F.; Rumman, Malek Abu; Clarke, John S.

    2005-01-01

    A digital model was developed to simulate steady-state ground-water flow in a 42,155-square-mile area of coastal Georgia and adjacent parts of South Carolina and Florida. The model was developed to (1) understand and refine the conceptual model of regional ground-water flow, (2) serve as a framework for the development of digital subregional ground-water flow and solute-transport models, and (3) serve as a tool for future evaluations of hypothetical pumping scenarios used to facilitate water management in the coastal area. Single-density ground-water flow was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000 for mean-annual conditions during predevelopment (pre?1900) and the years 1980 and 2000. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. A combination of boundary conditions was applied, including a general-head boundary condition on the top active cells of the model and a time-variable fixed-head boundary condition along part of the southern lateral boundary. Simulated heads for 1980 and 2000 conditions indicate a good match to observed values, based on a plus-or-minus 10-foot (ft) calibration target and calibration statistics. The root-mean square of residual water levels for the Upper Floridan aquifer was 13.0 ft for the 1980 calibration and 9.94 ft for the 2000 calibration. Some spatial patterns of residuals were indicated for the 1980 and 2000 simulations, and are likely a result of model-grid cell size and insufficiently detailed hydraulic-property and pumpage data in some areas. Simulated potentiometric surfaces for predevelopment, 1980, and 2000 conditions all show major flow system features that are indicated by estimated peotentiometric maps. During 1980?2000, simulated water levels at the centers of pumping at Savannah and Brunswick rose more than 20 ft and 8 ft, respectively, in

  1. Water Column Variability in Coastal Regions

    DTIC Science & Technology

    1998-01-01

    Bay off the HKUST campus. Endeco/YSI sondes were placed at 0.4 m depth below the surface and at 1 m off the bottom in 6 m of water to make...with colleagues at the Hong Kong University of Science and Technology ( HKUST ) using these methods to examine coastal variability in southern China due...the University of Rhode Island in order to devote the year to an intensive set of field measurements at HKUST . Wendy Woods also spent the past year

  2. Coastal Wetland Deterioration, Climate Change and Nutrient Inputs in California and Southern New England Salt Marsh

    EPA Science Inventory

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the i...

  3. Digital elevations and extents of regional hydrogeologic units in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Pope, Jason P.; Andreasen, David C.; Mcfarland, E. Randolph; Watt, Martha K.

    2016-08-31

    Digital geospatial datasets of the extents and top elevations of the regional hydrogeologic units of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina were developed to provide an updated hydrogeologic framework to support analysis of groundwater resources. The 19 regional hydrogeologic units were delineated by elevation grids and extent polygons for 20 layers: the land and bathymetric surface at the top of the unconfined surficial aquifer, the upper surfaces of 9 confined aquifers and 9 confining units, and the bedrock surface that defines the base of all Northern Atlantic Coastal Plain sediments. The delineation of the regional hydrogeologic units relied on the interpretive work from source reports for New York, New Jersey, Delaware and Maryland, Virginia, and North Carolina rather than from re-analysis of fundamental hydrogeologic data. This model of regional hydrogeologic unit geometries represents interpolation, extrapolation, and generalization of the earlier interpretive work. Regional units were constructed from available digital data layers from the source studies in order to extend units consistently across political boundaries and approximate units in offshore areas.Though many of the Northern Atlantic Coastal Plain hydrogeologic units may extend eastward as far as the edge of the Atlantic Continental Shelf, the modeled boundaries of all regional hydrogeologic units in this study were clipped to an area approximately defined by the furthest offshore extent of fresh to brackish water in any part of the aquifer system, as indicated by chloride concentrations of 10,000 milligrams per liter. Elevations and extents of units that do not exist onshore in Long Island, New York, were not included north of New Jersey. Hydrogeologic units in North Carolina were included primarily to provide continuity across the Virginia-North Carolina State boundary, which was important for defining the southern edge of

  4. Neotropical coastal wetlands

    USGS Publications Warehouse

    McKee, Karen L.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    The Neotropical region, which includes the tropical Americas, is one of the world's eight biogeographic zones. It contains some of the most diverse and unique wetlands in the world, some of which are still relatively undisturbed by humans. This chapter focuses on the northern segment of the Neotropics (south Florida, the Caribbean islands, Mexico, and Central America), an area that spans a latitudinal gradient from about 7 N to 29 N and 60 W to 112 W. Examples of coastal wetlands in this realm include the Everglades (Florida, USA), Ten Thousand Islands (Florida, USA), Laguna de Terminos (Mexico), Twin Cays (Belize), and Zapata Swamp (Cuba). Coastal wetlands are dominated by mangroves, which will be emphasized here, but also include freshwater swamps and marshes, saline marshes, and seagrass beds. The aim of this chapter is to provide a broad overview of Neotropical coastal wetlands of the North American continent, with an emphasis on mangroves, since this is the dominant vegetation type and because in-depth coverage of all wetland types is impossible here. Instead, the goal is to describe the environmental settings, plant and animal communities, key ecological controls, and some conservation concerns, with specific examples. Because this book deals with wetlands of North America, this chapter excludes coastal wetlands of South America. However, much of the information is applicable to mangrove, marsh, and seagrass communities of other tropicaI regions.

  5. The Potential Effect of Sea Level Rise on Coastal Property Values

    NASA Astrophysics Data System (ADS)

    O'Donnell, J.

    2015-12-01

    It is well established that one consequence of increasing global sea level is that the frequency of flooding at low-lying coastal sites will increase. We review recent evidence that the effects coastal geometry will create substantial spatial variations in the changes in flooding frequency with scales of order 100km. Using a simple model of the evolution of coastal property values we demonstrate that a consequence of sea level rise is that the appreciation of coastal properties will peak, and then decline relative to higher properties. The time when the value reach a maximum is shown to depend upon the demand for the coastal property, and the local rate of change of flooding frequency due to sea level rise. The simple model is then extended to include, in an elementary manner, the effects on the value of adjacent but higher properties. We show that the effect of increased flooding frequency of the lower properties leads to an accelerated appreciation of the value of upland properties and an accelerated decline in the value of the coastal properties. We then provide some example calculations for selected sites. We conclude with a discussion of comparisons of the prediction of the analyses to recent data, and then comments on the impact of sea level rise on tax base of coastal communities.

  6. Regional Hydrogeochemistry of a Modern Coastal Mixing Zone

    NASA Astrophysics Data System (ADS)

    Wicks, Carol M.; Herman, Janet S.

    1996-02-01

    In west central Florida, groundwater samples were collected along flow paths in the unconfined upper Floridan aquifer that cross the inland, freshwater recharge area and the coastal discharge area. A groundwater flow and solute transport model was used to evaluate groundwater flow and mixing of fresh and saline groundwater along a cross section of the unconfined upper Floridan aquifer. Results show that between 8% and 15% of the fresh and 30-31% of the saline groundwater penetrates to the depth in the flow system where contact with and dissolution of gypsum is likely. The deeply circulating fresh and saline groundwater returns to the near-surface environment discharging CaSO4-rich water to the coastal area where it mixes with fresh CaHCO3 groundwater, resulting in a prediction of calcite precipitation in the modern mixing zone.

  7. [Deposition and burial of organic carbon in coastal salt marsh: research progress].

    PubMed

    Cao, Lei; Song, Jin-Ming; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; Duan, Li-Qin

    2013-07-01

    Coastal salt marsh has higher potential of carbon sequestration, playing an important role in mitigating global warming, while coastal saline soil is the largest organic carbon pool in the coastal salt marsh carbon budget. To study the carbon deposition and burial in this soil is of significance for clearly understanding the carbon budget of coastal salt marsh. This paper summarized the research progress on the deposition and burial of organic carbon in coastal salt marsh from the aspects of the sources of coastal salt marsh soil organic carbon, soil organic carbon storage and deposition rate, burial mechanisms of soil organic carbon, and the relationships between the carbon sequestration in coastal salt marsh and the global climate change. Some suggestions for the future related researches were put forward: 1) to further study the underlying factors that control the variability of carbon storage in coastal salt marsh, 2) to standardize the methods for measuring the carbon storage and the deposition and burial rates of organic carbon in coastal salt marsh, 3) to quantify the lateral exchange of carbon flux between coastal salt marsh and adjacent ecosystems under the effects of tide, and 4) to approach whether the effects of global warming and the increased productivity could compensate for the increase of the organic carbon decomposition rate resulted from sediment respiration. To make clear the driving factors determining the variability of carbon sequestration rate and how the organic carbon storage is affected by climate change and anthropogenic activities would be helpful to improve the carbon sequestration capacity of coastal salt marshes in China.

  8. Regional stratigraphy and subsurface geology of Cenozoic deposits, Gulf Coastal Plain, south-central United States

    USGS Publications Warehouse

    Hosman, R.L.

    1991-01-01

    Although Cenozoic deposits are not uniformly differentiated, interstate correlations of major Paleocene and Eocene units are generally established throughout the area. Younger deposits are not as well differentiated. Some stratigraphic designations made at surface exposures cannot be extended into the sub-surface, and the scarcity of distinct geologic horizons has hampered differentiation on a regional scale. The complexities of facies development in Oligocene and younger coastal deposits preclude the development of extensive recognizable horizons needed for stratigraphic applications. Coastal deposits are a heterogeneous assemblage of deltaic, lagoonal, lacustrine, palustrine, eolian, and fluvial clastic facies and local calcareous reef facies. Even major time boundaries, as between geologic series, are not fully resolved. Surficial Quaternary deposits overlie the truncated subcrops of Tertiary strata and generally are distinguishable, although some contacts between Pleistocene and underlying Pliocene deposits have been a ?lstoncal source of controversy. Glacially related terraces are characteristic of the Pleistocene Epoch, and alluvium of aggrading streams typifies the Holocene. 

  9. Past storminess recorded in the internal architecture of coastal formations of Estonia in the NE Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Tõnisson, Hannes; Vilumaa, Kadri; Kont, Are; Sugita, Shinya; Rosentau, Alar; Muru, Merle; Anderson, Agnes

    2016-04-01

    Over the past 50 years, storminess has increased in northern Europe because of the changes in cyclonic activity. The cyclone season in the Baltic Sea area has shifted from autumn to winter; this has led to intensification of shore processes (erosion, sediment transport and accumulation) and has increased pressure to the economy (land use, coastal protection measures) of the coastal regions in the Baltic states. Therefore, studing the effects of such changes on shore processes in the past is critical for prediction of the future changes along the Baltic coasts. Beach ridge plains are found worldwide, where cyclones and storm surges affect accumulation forms. These sandy shores are highly susceptible to erosion. Due to the isostatic uplift on the NE coast of the Baltic Sea, the signs of major past events are well-preserved in the internal architecture of old coastal formations (dune ridge-swale complexes). Wave-eroded scarps in beach deposits are visible in subsurface ground-penetrating radar (GPR) records, indicating the past high-energy events. Several study areas and transects were selected on the NW coast of Estonia, using high-resolution topographic maps (LiDAR). Shore-normal subsurface surveys have been conducted with a digital GSSI SIR-3000 georadar with a 270 MHz antenna at each transect. Interpretation of GPR facies was based on hand auger and window sampler coring, which provided accurate depths of key stratigraphic boundaries and bounding surfaces. Several samples for luminescence and 14C dating were collected to determine the approximate chronology of the coastal formations along the Estonian coast. We have found that changes in storminess, including the periods of high and low intensity of storms in late Holocene, are clearly reflected in the internal patterns of ancient coastal formations. The sections with small ridges with short seaward-dipped layers (interface between wave-built and aeolian deposits) in deeper horizons are probably formed during

  10. Development of a global river-coastal coupling model and its application to flood simulation in Asian mega-delta regions

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip; Verlaan, Martin; Winsemius, Hessel; Kanae, Shinjiro

    2017-04-01

    The world's mega-delta regions and estuaries are susceptible to various water-related disasters, such as river flooding and storm surge. Moreover, simultaneous occurrence of them would be more devastating than a situation where they occur in isolation. Therefore, it is important to provide information about compound risks of fluvial and coastal floods at a large scale, both their statistical dependency as well as their combined resulting flooding in delta regions. Here we report on a first attempt to address this issue globally by developing a method to couple a global river model (CaMa-Flood) and a global tide and surge reanalysis (GTSR) dataset. A state-of-the-art global river routing model, CaMa-Flood, was modified to represent varying sea levels due to tides and storm surges as downstream boundary condition, and the GTSR dataset was post-processed to serve as inputs to the CaMa-Flood river routing simulation and a long-term simulation was performed to incorporate the temporal dependency between coastal tide and surge on the one hand, and discharge on the other. The coupled model was validated against observations, showing better simulation results of water levels in deltaic regions than simulation without GTSR. For example in the Ganges Delta, correlation coefficients were increased by 0.06, and root mean square errors were reduced by 0.22 m. Global coupling simulations revealed that storm surges affected river water levels in coastal regions worldwide, especially in low-lying flat areas with increases in water level larger than 0.5 m. By employing enhanced storm surge simulation with tropical storm tracks, we also applied the model to examine impacts of past hurricane and cyclone storm events on river flood inundation.

  11. U.S. Geological Survey (USGS) Western Region: Alaska Coastal and Ocean Science

    USGS Publications Warehouse

    Holland-Bartels, Leslie

    2009-01-01

    The U.S. Geological Survey (USGS), a bureau of the Department of the Interior (DOI), is the Nation's largest water, earth, and biological science and mapping agency. The bureau's science strategy 'Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017' describes the USGS vision for its science in six integrated areas of societal concern: Understanding Ecosystems and Predicting Ecosystem Change; Climate Variability and Change; Energy and Minerals; Hazards, Risk, and Resilience; Environment and Wildlife in Human Health; and Water Census of the United States. USGS has three Regions that encompass nine geographic Areas. This fact sheet describes examples of USGS science conducted in coastal, nearshore terrestrial, and ocean environments in the Alaska Area.

  12. Coastal vulnerability assessment of the Northern Gulf of Mexico to sea-level rise and coastal change

    USGS Publications Warehouse

    Pendleton, E.A.; Barras, J.A.; Williams, S.J.; Twichell, D.C.

    2010-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise along the Northern Gulf of Mexico from Galveston, TX, to Panama City, FL. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rate, mean tidal range, and mean significant wave height. The rankings for each variable are combined and an index value is calculated for 1-kilometer grid cells along the coast. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. The CVI assessment presented here builds on an earlier assessment conducted for the Gulf of Mexico. Recent higher resolution shoreline change, land loss, elevation, and subsidence data provide the foundation for a better assessment for the Northern Gulf of Mexico. The areas along the Northern Gulf of Mexico that are likely to be most vulnerable to sea-level rise are parts of the Louisiana Chenier Plain, Teche-Vermillion Basin, and the Mississippi barrier islands, as well as most of the Terrebonne and Barataria Bay region and the Chandeleur Islands. These very high vulnerability areas have the highest rates of relative sea-level rise and the highest rates of shoreline change or land area loss. The information provided by coastal vulnerability assessments can be used in long-term coastal management and policy decision making.

  13. Coastal resource and sensitivity mapping of Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odin, L.M.

    1997-08-01

    This paper describes a project to establish a relationship between environmental sensitivity (primarily to oil pollution) and response planning and prevention priorities for Vietnamese coastal regions. An inventory of coastal environmental sensitivity and the creation of index mapping was performed. Satellite and geographical information system data were integrated and used for database creation. The database was used to create a coastal resource map, coastal sensitivity map, and a field inventory base map. The final coastal environment sensitivity classification showed that almost 40 percent of the 7448 km of mapped shoreline has a high to medium high sensitivity to oil pollution.

  14. Florida coastal ecological characterization: a socioeconomic study of the southwestern region. Volume I. Text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, C.O.; Parsons, J.W.

    1983-08-01

    Data are compiled from existing sources on the social and economic characteristics of the southwestern coastal region of Florida, which is made up of Charlotte, Collier, DeSoto, Hillsborough, Lee, Manatee, Monroe, Pasco, Pinellas, and Sarasota Counties. Described are the components and interrelationships among complex processes that include population and demographics characteristics, mineral production, multiple-use conflicts, recreation and tourism, agricultural production, sport and commercial fishing, transportation, industrial and residential development, and environmental issues and regulations. Energetics models of socioeconomic systems are also presented. 43 figures, 98 tables.

  15. Atlas of natural hazards in the Hawaiian coastal zone

    USGS Publications Warehouse

    Fletcher, Charles H.; Grossman, Eric E.; Richmond, Bruce M.; Gibbs, Ann E.

    2002-01-01

    The purpose of this report is to communicate to citizens and regulatory authorities the history and relative intensity of coastal hazards in Hawaii. This information is the key to the wise use and management of coastal resources. The information contained in this document,we hope,will improve the ability of Hawaiian citizens and visitors to safely enjoy the coast and provide a strong data set for planners and managers to guide the future of coastal resources. This work is largely based on previous investigations by scientific and engineering researchers and county, state, and federal offices and agencies. The unique aspect of this report is that, to the extent possible, it assimilates prior efforts in documenting Hawaiian coastal hazards and combines existing knowledge into a single comprehensive coastal hazard data set. This is by no means the final word on coastal hazards in Hawaii. Every hazardous phenomenon described here, and others such as slope failure and rocky shoreline collapse, need to be more carefully quantified, forecast, and mitigated. Our ultimate goal, of course, is to make the Hawaiian coast a safer place by educating the people of the state, and their leaders, about the hazardous nature of the environment. In so doing, we will also be taking steps toward improved preservation of coastal environments, because the best way to avoid coastal hazards is to avoid inappropriate development in the coastal zone. We have chosen maps as the medium for both recording and communicating the hazard history and its intensity along the Hawaiian coast.Two types of maps are used: 1) smallscale maps showing a general history of hazards on each island and summarizing coastal hazards in a readily understandable format for general use, and 2) a large-scale series of technical maps (1:50,000) depicting coastal sections approximately 5 to 7 miles in length with color bands along the coast ranking the relative intensity of each hazard at the adjacent shoreline.

  16. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  17. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience.

    PubMed

    Guannel, Greg; Arkema, Katie; Ruggiero, Peter; Verutes, Gregory

    2016-01-01

    Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems.

  18. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience

    PubMed Central

    Guannel, Greg; Arkema, Katie; Ruggiero, Peter; Verutes, Gregory

    2016-01-01

    Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems. PMID:27409584

  19. Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian; Itzel, Gary Michael

    2001-01-01

    A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.

  20. Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas

    USGS Publications Warehouse

    Stohlgren, T.J.; Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, Jill S.

    1998-01-01

    We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.

  1. Sea-level Rise Increases the Frequency of Nuisance Flooding in Coastal Regions

    NASA Astrophysics Data System (ADS)

    Moftakhari Rostamkhani, H.; Aghakouchak, A.; Sanders, B. F.; Feldman, D.; Sweet, W.; Matthew, R.; Luke, A.

    2015-12-01

    The global warming-drivensea-level rise (SLR) posesa serious threat for population and assets in flood-prone coastal zones over the next century. The rate of SLR is accelerated in recent decades and is expected to increase based on current trajectories of anthropogenic activities and greenhouse gas emissions. Over the 20th century, an increase in the frequency of nuisance (minor) flooding has been reported due to the reduced gap between tidal datum and flood stage. Nuisance flooding (NF), however non-destructive, causes public inconvenience, business interruption, and substantial economic losses due to impacts such as road closures and degradation of infrastructure. It also portends an increased risk in severe floods. Here we report substantial increases in NF along the coasts of United States due to SLR over the past decades. We then take the projected SLR under the least and the most extreme representative concentration pathways (e.gRCP2.6 and RCP 8.5) to estimate the increase in NF in the near- (2030) and mid-term (2050) future. The results suggest that projected SLR will cause up to two-fold more frequent NF by 2050, compared with the 20th century. The projected increase in NF will have significant socio-economic impacts and pose public health risks especially in rapidly urbanized coastal regions.

  2. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model.

    PubMed

    Liu, Shijie; Lu, Yonglong; Xie, Shuangwei; Wang, Tieyu; Jones, Kevin C; Sweetman, Andrew J

    2015-12-01

    Perfluorooctane Sulfonate (PFOS) and related substances have been widely applied in both industrial processes and domestic products in China. Exploring the environmental fate and transport of PFOS using modeling methods provides an important link between emission and multimedia diffusion which forms a vital part in the human health risk assessment and chemical management for these substances. In this study, the gridded fugacity based BETR model was modified to make it more suitable to model transfer processes of PFOS in a coastal region, including changes to PFOS partition coefficients to reflect the influence of water salinity on its sorption behavior. The fate and transport of PFOS in the Bohai coastal region of China were simulated under steady state with the modified version of the model. Spatially distributed emissions of PFOS and related substances in 2010 were estimated and used in these simulations. Four different emission scenarios were investigated, in which a range of half-lives for PFOS related substances were considered. Concentrations of PFOS in air, vegetation, soil, fresh water, fresh water sediment and coastal water were derived from the model under the steady-state assumption. The median modeled PFOS concentrations in fresh water, fresh water sediment and soil were 7.20ng/L, 0.39ng/g and 0.21ng/g, respectively, under Emission Scenario 2 (which assumed all PFOS related substances immediately degrade to PFOS) for the whole region, while the maximum concentrations were 47.10ng/L, 4.98ng/g and 2.49ng/g, respectively. Measured concentration data for PFOS in the Bohai coastal region around the year of 2010 were collected from the literature. The reliability of the model results was evaluated by comparing the range of modeled concentrations with the measured data, which generally matched well for the main compartments. Fate and transfer fluxes were derived from the model based on the calculated inventory within the compartments, transfer fluxes between

  3. Connectivity of a large embayment and coastal fishery: spawning aggregations in one bay source local and broad-scale fishery replenishment.

    PubMed

    Hamer, P A; Acevedo, S; Jenkins, G P; Newman, A

    2011-04-01

    Ichthyoplankton sampling and otolith chemistry were used to determine the importance of transient spawning aggregations of snapper Chrysophrys auratus (Sparidae) in a large embayment, Port Phillip Bay (PPB), Australia, as a source of local and broad-scale fishery replenishment. Ichthyoplankton sampling across five spawning seasons within PPB, across the narrow entrance to the bay and in adjacent coastal waters, indicated that although spawning may occur in coastal waters, the spawning aggregations within the bay were the primary source of larval recruitment to the bay. Otolith chemical signatures previously characterized for 0+ year C. auratus of two cohorts (2000 and 2001) were used as the baseline signatures to quantify the contribution that fish derived from reproduction in PPB make to fishery replenishment. Sampling of these cohorts over a 5 year period at various widely dispersed fishery regions, combined with maximum likelihood analyses of the chemistry of the 0+ year otolith portions of these older fish, indicated that C. auratus of 1 to 3+ years of age displayed both local residency and broad-scale emigration from PPB to populate coastal waters and an adjacent bay (Western Port). While the PPB fishery was consistently dominated (>70%) by locally derived fish irrespective of cohort or age, the contribution of fish that had originated from PPB to distant populations increased with age. At 4 to 5+ years of age, when C. auratus mature and fully recruit to the fishery, populations of both cohorts across the entire central and western Victorian fishery, including two major embayments and c. 800 km of coastal waters, were dominated (>70%) by fish that had originated from the spawning aggregations and nursery habitat within PPB. Dependence of this broadly dispersed fishery on replenishment from heavily targeted spawning aggregations within one embayment has significant implications for management and monitoring programmes. © 2011 The Authors. Journal of Fish

  4. NOAA Photo Library - America's Coastlines

    Science.gov Websites

    coastline and the adjacent coastal regions. NOAA and its predecessor agencies have been observing, studying 19th century church Historical Coastal Views Publication of the National Oceanic & Atmospheric

  5. Pn tomography of South China Sea, Taiwan Island, Philippine archipelago, and adjacent regions

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Song, Xiaodong; Li, Jiangtao

    2017-02-01

    The South China Sea (SCS) and its surrounding areas are geologically highly heterogeneous from the interactions of multiple plates in Southeast Asia (Eurasian plate, Indian-Australian plate, Philippine Sea plate, and Pacific plate). To understand the tectonics at depth, here we combined bulletin and handpicked data to conduct Pn tomography of the region. The results show distinct features that are correlated with the complex geology at surface, suggesting a lithosphere-scale tectonics of the region. Low Pn velocities are found along a belt of the western Pacific transpressional system from the Okinawa Trough and eastern East China Sea, across central and eastern Taiwan orogeny, to the island arcs of the Luzon Strait and the entire Philippine Islands, as well as under the Palawan Island and part of the continental margin north of the Pearl River Basin. High velocities are found under Ryukyu subduction zone, part of the Philippine subduction zone, part of the Eurasian subduction beneath the southwestern Taiwan, and the continent-ocean boundary between the south China and the SCS basin. The Taiwan Strait, the Mainland SE coast, and the main SCS basin sea are relatively uniform with average Pn values. Crustal thicknesses show large variations in the study region but also coherency with tectonic elements. The Pn pattern in Taiwan shows linear trends of surface geology and suggests strongly lithosphere-scale deformation of the young Taiwan orogenic belt marked by the deformation boundary under the Western Foothill and the Western Coastal Plain at depth, and the crustal thickness shows a complex pattern from the transpressional collision. Our observations are consistent with rifting and extension in the northern margin of the SCS but are not consistent with mantle upwelling as a mechanism for the opening and the subsequent closing of the SCS. The Philippine island arc is affected by volcanisms from both the Asian and Philippine Sea subductions in the south but mainly from

  6. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed anmore » investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.« less

  7. Analysis of Dynamics in Bays and Coastal Waters Impacted by Hurricanes

    NASA Astrophysics Data System (ADS)

    Li, C.; Lin, H.; Chen, C.

    2012-12-01

    The dynamical processes in coastal bays/estuaries and continental shelf are mostly tidally and wind driven. Under severe weather conditions such as hurricanes and tropical storms, the process is much more dynamic and variable. In an attempt to illustrate the dynamical regimes in coastal bays and adjacent coastal ocean, we have simulated circulation and storm tides in the northern Gulf of Mexico forced by 49 hurricanes, respectively; among which 4 are the most recent real hurricanes: Hurricane Katrina and Hurricane Rita of 2005, and Hurricane Gustav and Hurricane Ike of 2008. The other 45 hurricanes are hypothetical in their tracks, but based on the real hurricanes in terms of forcing conditions. More specifically, these 45 hurricanes are divided into five groups, each corresponding to one of these four real hurricanes plus a group for hypothetical Category 5 hurricanes, based on the information of Hurricane Katrina, except that the strength of the hurricane is increased to Category 5. Using otherwise the same forcing conditions of the hurricanes, we apply variations of each of the hurricane tracks with roughly the same moving speed. Each group has a total of 9 simulations (with 9 different tracks). Our model allows inundation of wetland, and low lying lands on the coast and around the Louisiana Bays. The model for the hurricane storm tide was done with an implementation of the Finite Volume Coastal Ocean Model, or FVCOM. Our analysis of the results reveals rich dynamical processes in the bays and estuaries and on the adjacent continental shelf. It involves various oscillations, depending on the hurricane conditions and track history and positions, long waves, under the influence of earth rotation, and currents. The protruding delta, bathymetry, and the setup of the bays all play some roles in shaping the dynamics, water movement, inundation, and receding of the storm surges.

  8. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median

  9. Coastal submergence at Ukishima-ga-hara adjacent to the Suruga Trough (eastern Nankai Trough), central Japan, inferred from diatoms and plant macrofossils

    NASA Astrophysics Data System (ADS)

    Sawai, Y.; Momohara, A.

    2017-12-01

    Five episodic submergence events during the past 3500 years were recognized at the Ukishima-ga-hara lowland, northern coast of Suruga Trough (eastern Nankai Trough). Coastal submergence in this region was originally reported by Osamu Fujiwara and his colleagues (e.g., Fujiwara et al., 2016) based mainly on changes in lithostratigraphy from a peaty layer that abruptly changed to a light-colored mud and results of microfossil analyses (pollen and diatoms from 57 and 13 samples, respectively). They attributed the submergence events to coseismic deformation associated with earthquakes in the Fujikawa-kako fault zone or Suruga Trough. Here I reevaluated the micropaleontology of this area using 200 samples from 15 cores to reconstruct the full history of coastal submergence during the last few thousand years. The submergence events were shown not by lithostratigraphy but clearly by changes in fossil diatom assemblages and plant macrofossils. For example, at about 2.3 m and 3.1 m below the ground surface, while aerophilic diatoms (such as Diadesmis contenta and Diploneis elliptica) dominate the underlying peaty layer, freshwater and brackish planktonic taxa (Aulacoseira and Thalassiosira) abound in the overlying layer. As many as five such changes in diatom assemblages were found in a 8-m core and radiocarbon ages constrain the age of the entire sequence to 3500 yr BP.

  10. Global learning for local solutions: Reducing vulnerability of marine-dependent coastal communities

    NASA Astrophysics Data System (ADS)

    Salim, S. S.; Paytan, A.

    2016-12-01

    The project `Global learning for local solutions: Reducing vulnerability of marine-dependent coastal communities' (GULLS) falls within the Belmont Forum and G8 Research Councils Initiative on Multilateral Research Funding. Participants include teams from nine countries: Australia, Brazil, India, Madagascar, Mozambique, New Zealand, South Africa, the United Kingdom and the United States of America. The project focuses on five regional `hotspots' of climate and social change, defined as fast-warming marine areas and areas experiencing social tensions as a result of change: south-east Australia, Brazil, India, South Africa, and the Mozambique Channel and adjacent countries of Mozambique and Madagascar. These areas require most urgent attention and serve as valuable case studies for wider applications. The project aims to assist coastal communities and other stakeholders dependent on marine resources to adapt to climate change and variability through an integrated and trans-disciplinary approach. Combining best available global knowledge with local knowledge and conditions, it is exploring adaptation options and approaches to strengthen resilience at local and community levels, with a focus on options for reconciling the needs for food security with long-term sustainability and conservation. The project will also contribute to capacity development and empowering fishing communities and other fisheries-dependent stakeholders.A standardized vulnerability assessment framework is being developed that will be used to integrate results from natural, social and economic studies in order to identify needs and options for strengthening management and existing policies. Structured comparisons between the hot-spots will assist global efforts for adaptation and strengthening resilience in marine and coastal social-ecological systems.

  11. Regional differences in diabetes prevalence and awareness between coastal and interior provinces in China: a population-based cross-sectional study.

    PubMed

    Xu, Shaoyong; Ming, Jie; Xing, Ying; Gao, Bin; Yang, Chunbao; Ji, Qiuhe; Chen, Gang

    2013-04-04

    Most studies on diabetes prevalence and awareness in China are regional or about a single province, and differences between coastal and interior provinces have not been discussed even in the nation-based studies. The aim of this study was to determine regional differences in diabetes prevalence and awareness between coastal and interior provinces, and to identify the factors associated with diabetes prevalence and awareness. Provinces Fujian and Shaanxi were chosen to represent the coastal and interior provinces, respectively. The data of two provinces were from the China National Diabetes and Metabolic Disorders Study 2007-08. A total of 5926 people (Fujian 2672 and Shaanxi 3254) aged above 20 years were included as participants in the study. Age-standardized prevalence and awareness were compared between provinces. Logistic regression analysis was performed not only to examine risk factors of diabetes prevalence and awareness, but also to examine the association between regional difference and diabetes prevalence and awareness. The age-standardized prevalence of diabetes in Fujian was higher than that in Shaanxi among total (11.5% vs. 8.0%), male (13.6% vs. 8.9%) and female (10.8% vs. 7.4%) populations. Diabetes awareness for total and male population in Fujian was higher than that in Shaanxi (42.3% vs. 34.9% and 46.8% vs. 35.2%, respectively). Age, sex, central obesity, family history of diabetes, and metabolic risk factors were all significantly associated with diabetes prevalence in both provinces. However, cigarette smoking was significantly associated with prevalence in Fujian and physical activity was significantly associated with the prevalence in Shaanxi. Family history of diabetes was the only independent risk factor of diabetes awareness in both provinces. After being adjusted for all listed risk factors, the regional difference of diabetes prevalence was still significant, but that of diabetes awareness lost significance. Both diabetes prevalence and

  12. Ecosystem Services Transcend Boundaries: Estuaries Provide Resource Subsidies and Influence Functional Diversity in Coastal Benthic Communities

    PubMed Central

    Savage, Candida; Thrush, Simon F.; Lohrer, Andrew M.; Hewitt, Judi E.

    2012-01-01

    Background Estuaries are highly productive ecosystems that can export organic matter to coastal seas (the ‘outwelling hypothesis’). However the role of this food resource subsidy on coastal ecosystem functioning has not been examined. Methodology/Principal Findings We investigated the influence of estuarine primary production as a resource subsidy and the influence of estuaries on biodiversity and ecosystem functioning in coastal mollusk-dominated sediment communities. Stable isotope values (δ13C, δ15N) demonstrated that estuarine primary production was exported to the adjacent coast and contributed to secondary production up to 4 km from the estuary mouth. Further, isotope signatures of suspension feeding bivalves on the adjacent coast (Dosinia subrosea) closely mirrored the isotope values of the dominant bivalves inside the estuaries (Austrovenus stutchburyi), indicating utilization of similar organic matter sources. However, the food subsidies varied between estuaries; with estuarine suspended particulate organic matter (SPOM) dominant at Tairua estuary, while seagrass and fringing vegetation detritus was proportionately more important at Whangapoua estuary, with lesser contributions of estuarine SPOM. Distance from the estuary mouth and the size and density of large bivalves (Dosinia spp.) had a significant influence on the composition of biological traits in the coastal macrobenthic communities, signaling the potential influence of these spatial subsidies on ecosystem functioning. Conclusions/Significance Our study demonstrated that the locations where ecosystem services like productivity are generated are not necessarily where the services are utilized. Further, we identified indirect positive effects of the nutrient subsidies on biodiversity (the estuarine subsidies influenced the bivalves, which in turn affected the diversity and functional trait composition of the coastal sediment macrofaunal communities). These findings highlight the importance of

  13. REGIONAL AND STATE VIEWS OF ESTUARINE CONDITION IN NORTHEASTERN UNITED STATE BASED ON 2001 AND 2001 NATIONAL COASTAL ASSESSMENT DATA

    EPA Science Inventory

    The National Coastal Assessment (NCA) is a probability-based survey that permits assessment of estuarine conditions at national, regional, or large-system scales. Additionally, states may use these data to comply with requirements of the Clean Water Act (CWA), which mandates re...

  14. (abstract) Seasonal Variability in Coastal Upwelling: A Comparison of Four Coastal Upwelling Sites from Space

    NASA Technical Reports Server (NTRS)

    Carr, Mary-Elena

    1996-01-01

    Coastal upwelling of subsurface nutrient-rich water occurs along the eastern boundary of the ocean basins and leads to high primary production and fish catches. In this study satellite observations are used to compare the seasonal cycle in wind forcing and in the oceanic and biological response of the major coastal upwelling regions associated with the Canary, Benguela, California, and Humboldt Currents.

  15. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.J. Payne; R. McCaffrey; R.W. King

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{supmore » -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to

  16. Predicting impact of SLR on coastal flooding in Banda Aceh coastal defences

    NASA Astrophysics Data System (ADS)

    Al'ala, Musa; Syamsidik, Kato, Shigeru

    2017-10-01

    Banda Aceh is a low-lying city located at the northern tip of Sumatra Island and situated at the conjuncture of Malacca Strait and the Andaman Sea. A Sea Level Rise (SLR) rate at 7 mm/year has been observed around this region. In the next 50 years, this city will face a serious challenge to encounter impacts of the sea level rise, such as frequent coastal floodings. This study is aimed at estimating impacts of the sea level rise induced coastal floodings on several types of coastal structures and city drainage system. Numerical simulations of Delft3D were applied to investigate the influence of the gradual sea level rise in 50 years. The hydrodynamic process of coastal flooding and sediment transport were simulated by Delft3D-Flow. Topography and bathymetry data were collected from GEBCO and updated with the available nautical chart (DISHIDROS, JICA, and field measurements). Hydrodynamic process gains the flow process revealing the level of the sea water intrusion also observed in the model. Main rivers (Krueng Aceh, Krueng Neng, and Alue Naga Flood Canal) and the drainage system were observed to see the tides effects on coastal structures and drainage system. The impact on coastal community focusing on affected area, shoreline retreat, the rate of sea intrusion was analyzed with spatial tools. New coastal line, coastal flooding vulnerable area, and the community susceptibility properties map influenced by 50 years sea level rise is produced. This research found that the city needs to address strategies to anticipate the exacerbating impacts of the sea level rise by managing its coastal spatial planning and modify its drainage system, especially at the drainage outlets.

  17. Increasing Influence of Societal Response Variables in Coastal Evolution Projections (Invited)

    NASA Astrophysics Data System (ADS)

    Gayes, P. T.; McCoy, C. A.; Pietrafesa, L. J.

    2010-12-01

    Recent efforts to project changes in coastal erosion and vulnerability of the state of South Carolina’s (SC’s) oceanfront for different scenarios of future sea level have reinforced the significance of the influence of societal modifications and response to past and anticipated coastal change in these systems. For large reaches of the SC coast human interactions have been a dominant signal driving coastal change across annual to decadal scales. Over the last 20 years, SC’s shoreline has been advanced seawards in many areas due to a combination of sustained societal commitment to beach nourishment and to a lull in atmospheric storms; reversing the long-term erosional trend of shoreline change. Adjacent areas not yet threatened or where coastal defense is unsupported economically have continued to migrate landwards. Locally, efforts focused on stabilizing the subaerial beach have not moderated long-term shoreward migration of the shoreface changing the overall morphology of the coastal boundary waves and currents are operating against. These societal effects, coupled with realistic, substative assessments of future atmospheric storm activity and sea level variability, both over scales of seasons to multi-decades, require consideration to realistically project future coastal behavior across time and spatial scales for planning and resource management. As with future climate and sea level variability effects on the shoreline, the scale and intensity of societal response is not static or precisely projected spatially and temporally into the future. With continued expansion of coastal development and erosion into previously lightly developed and defended coastal areas, societal influences should be expected to increase. Increasing cost of larger scale defenses will likely drive pressure for hardened structures to enhance ”softer” nourishment strategies. However, this strategy would further modify the ability of nature to respond to natural forces. Nourishment

  18. Analysis of tsunami disaster resilience in Bandar Lampung Bay Coastal Zone

    NASA Astrophysics Data System (ADS)

    Alhamidi; Pakpahan, V. H.; Simanjuntak, J. E. S.

    2018-05-01

    The coastal area is an area that has potential diversity of natural resources and high economic value. The coastal area is influenced by changes in land and sea so that the coastal areas are highly vulnerable to tsunami. Bandar Lampung has the potential of coastal areas of considerable potential as it is located in the bay adjacent to the Sunda Strait. Based on the study of Heru Sri Naryanto (2003), Bandar Lampung ranks third from the level of vulnerability to tsunami. Therefore, the purpose of this study to determine the readiness of the region in facing tsunami and the magnitude of the potential risks of tsunami disaster in the Gulf Coast region of Lampung in Bandar Lampung; thus, it needs to make the model or concept of tsunami disaster mitigation appropriate in terms of vulnerability and danger in creating the resilience of the Gulf Coast region of Lampung in Bandar Lampung against tsunami. The methodology used in this study was the methods of primary and secondary data collection, and the data analysis method was quantitative analysis such as spatial analysis and descriptive analysis of the data obtained from the field. The results showed that the level of preparedness in the Gulf coast region of Lampung in Bandar Lampung in facing the tsunami was still low. There are still many developed regions or houses belonging to the community either fishermen or non-fishermen located in a tsunami hazard zone. Other than that, the level of education in the Gulf coast region of Lampung in Bandar Lampung is still low where the majority of inhabitants work as fishermen. Besides, the infrastructure is old and not well-maintained so that it becomes a slum area. Therefore, the development and planning to mitigate the natural disasters tsunami using technology of IOT (Internet of Things) is an embeded system with the use of sensor seismic as a means of pre-Earthquakes vibrations, placed both on the land and in the ocean, to read the vibrations and faults in the earth’s crust

  19. Measuring Capacity for Resilience among Coastal Counties of the US Northern Gulf of Mexico Region

    PubMed Central

    Reams, Margaret A.; Lam, Nina S. N.; Baker, Ariele

    2016-01-01

    Many have voiced concern about the long-term survival of coastal communities in the face of increasingly intense storms and sea level rise. In this study we select indicators of key theoretical concepts from the social-ecological resilience literature, aggregate those indicators into a resilience-capacity index, and calculate an index score for each of the 52 coastal counties of Louisiana, Texas, Mississippi, Alabama and Florida. Building upon Cutter’s Social Vulnerability Index work [1], we use Factor Analysis to combine 43 variables measuring demographics, social capital, economic resources, local government actions, and environmental conditions within the counties. Then, we map the counties’ scores to show the spatial distribution of resilience capacities. The counties identified as having the highest resilience capacities include the suburban areas near New Orleans, Louisiana and Tampa, Florida, and the growing beach-tourist communities of Alabama and central Florida. Also, we examine whether those counties more active in oil and gas development and production, part of the region’s “energy coast”, have greater capacity for resilience than other counties in the region. Correlation analyses between the resilience-capacity index scores and two measures of oil and gas industry activity (total employment and number of business establishments within five industry categories) yielded no statistically significant associations. By aggregating a range of important contextual variables into a single index, the study demonstrates a useful approach for the more systematic examination and comparison of exposure, vulnerability and capacity for resilience among coastal communities. PMID:27500076

  20. Assessing societal vulnerability of U.S. Pacific Northwest communities to storm-induced coastal change

    USGS Publications Warehouse

    Baron, Heather M.; Wood, Nathan J.; Ruggerio, Peter; Allan, Jonathan; Corcoran, Patrick

    2010-01-01

    Progressive increases in storm intensities and extreme wave heights have been documented along the U.S. West Coast. Paired with global sea level rise and the potential for an increase in El Niño occurrences, these trends have substantial implications for the vulnerability of coastal communities to natural coastal hazards. Community vulnerability to hazards is characterized by the exposure, sensitivity, and adaptive capacity of human-environmental systems that influence potential impacts. To demonstrate how societal vulnerability to coastal hazards varies with both physical and social factors, we compared community exposure and sensitivity to storm-induced coastal change scenarios in Tillamook (Oregon) and Pacific (Washington) Counties. While both are backed by low-lying coastal dunes, communities in these two counties have experienced different shoreline change histories and have chosen to use the adjacent land in different ways. Therefore, community vulnerability varies significantly between the two counties. Identifying the reasons for this variability can help land-use managers make decisions to increase community resilience and reduce vulnerability in spite of a changing climate.

  1. Drivers of coastal shoreline change: case study of hon dat coast, Kien Giang, Vietnam.

    PubMed

    Nguyen, Hai-Hoa; McAlpine, Clive; Pullar, David; Leisz, Stephen Joseph; Galina, Gramotnev

    2015-05-01

    Coastal shorelines are naturally dynamic, shifting in response to coastal geomorphological processes. Globally, land use change associated with coastal urban development and growing human population pressures is accelerating coastal shoreline change. In southern Vietnam, coastal erosion currently is posing considerable risks to shoreline land use and coastal inhabitants. The aim of this paper is to quantify historical shoreline changes along the Hon Dat coast between 1995 and 2009, and to document the relationships between coastal mangrove composition, width and density, and rates of shoreline change. The generalized linear mixed-effects models were used to quantify the major biophysical and land-use factors influencing shoreline change rates. Most significant drivers of the rates of change are cutting of mangroves, the dominant mangrove genus, changes in adjacent shoreline land use, changes of shoreline land cover, and width of fringing mangroves. We suggest that a possible and inexpensive strategy for robust mangrove shoreline defense is direct mangrove planting to promote mangrove density with the presence of breakwater structures. In the shorter term, construction of coastal barriers such as fence-structured melaleuca poles in combination with mangrove restoration schemes could help retain coastal sediments and increase the elevation of the accretion zone, thereby helping to stabilize eroding fringe shorelines. It also is recommended that implementation of a system of payments for mangrove ecosystem services and the stronger regulation of mangrove cutting and unsustainable land-use change to strengthen the effectiveness of mangrove conservation programs and coastal land-use management.

  2. Growth and invasive potential of Sapium sebiferum (Euphorbiaceae) within the coastal prairie region: the effects of soil and moisture regime

    USGS Publications Warehouse

    Barrilleaux, T.C.; Grace, J.B.

    2000-01-01

    The introduced tree Sapium sebiferum (Euphorbiaceae) is considered a serious threat to the preservation of the coastal prairie region of Louisiana and Texas, although it is currently uncommon in the western part of the region. The objective of this study was to evaluate the potential effects of location, soils, and available moisture on the growth and survival of S. sebiferum in coastal prairie. In a field experiment, S. sebiferum mortality was significantly greater at a western site than at central and eastern sites. The greatest mortality and least growth of surviving plants occurred on a soil from the western region, regardless of site. A greenhouse study also found that S. sebiferum growth was lowest on the western soil. Watering frequency significantly affected S. sebiferum growth, except on the western soil. Sapium sebiferum growth responded to both nitrogen and phosphorum additions for all soils. Soil analyses revealed the highest sand, sodium, and phosphorus contents, and much higher electrical conductivity in the western soil. It is concluded that the soil examined from the western region is unfavorable for S. sebiferum growth, though not to the extent to preclude S. sebiferum completely. Evidence suggests that soil salinity may be the primary cause of the poor S. sebiferum growth at the western site.

  3. Contrasting Impact of Floodwaters on Coastal Biogeochemistry in the Great Barrier Reef Ecosystem

    NASA Astrophysics Data System (ADS)

    Crosswell, J.; Carlin, G.; Steven, A. D.; Franklin, H.

    2017-12-01

    Delivery of terrestrial nutrients and organic material to Great Barrier Reef (GBR) ecosystem is dominated by episodic floods, and the biogeochemical impact of these events is expected to change under future climatic and man-made stressors. Here we compare the biogeochemical response of coastal waters to floods from two of the largest catchment in northeast Australia, the Fitzroy and Normanby River basins. The Fitzroy catchment is dominated by agriculture, principally grazing, whereas the Normanby is regarded as relatively pristine. High-resolution spatial surveys showed that flood plumes in both regions extended 30-100 km seaward and along the coast, reaching interior reefs and islands of the GBR. Floodwaters from both catchments were characterized by elevated nutrients and dissolved organic carbon (DOC), but the fate of flood-borne material in coastal waters showed significant differences between the two systems. In the Normanby, nutrients were rapidly removed near the estuary mouth and chlorophyll a was low throughout the adjacent Princess Charlotte Bay. Elevated DOC levels persisted in the Normanby flood plume, but high dissolved oxygen and low CO2 throughout a stratified water column suggested that the flood-borne organic matter was recalcitrant. By contrast, there was a clear source of DOC and nutrients in the hypoxic bottom waters of the Fitzroy flood plume, suggesting that the flood-borne particulate organic matter was highly labile. Decoupling of autotrophic surface waters from heterotrophic bottom waters in the Fitzroy plume supported a large phytoplankton bloom that extended >100 km and led to low pH and low light availability at nearby reefs. The contrasting impact of major floods in these two coastal systems appeared to be primarily driven by the quality of flood-borne organic matter, as well as differences in coastal morphology.

  4. Geographic and stratigraphic distribution of coastal Quaternary aminozones across the Cape Fear Arch, U. S. Atlantic Geology Coastal Plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehmiller, J.F.; York, L.L.; Krantz, D.E.

    1992-01-01

    The interpretation of the regional aminostratigraphy of Coastal Plain Quaternary units from North and South Carolina is potentially affected by sampling biases, variable preservation of coastal records, reoccupation of coastal environments by multiple transgressions, geochemical alteration of samples, variable thermal histories of specific samples, and intergeneric and interlaboratory differences in analytical results.Two primary models for the correlation of emergent Coastal Plain units diverge significantly in southeastern North Carolina. New data from fresh exposure (1990--1991) at emergent sites between Wilmington, NC and Charleston, SC, from previous onshore collections in this region, and from submergent samples between Cape Lookout, NC and Capemore » Romain, SC provide insight into the nature of these correlation issues. Although sampling of the area is not uniform, these results fill a major gap between regions of previous aminostratigraphy study. Inferred early-to-middle Pleistocene aminozones dominate the emergent coastal region between Cape Lookout and Romain, and late Pleistocene aminozones in this area are represented by subsurface samples beneath barrier islands or in shallow inner shelf cores, but have not been found onshore. A map view of the distribution of aminozones along the coast between northeastern NC and central SC mimics that of pre-Quaternary units that thin or disappear over the axis of the Cape Fear Arch, suggesting that the sampled Quaternary record reflects the combination of processes responsible for the preservation of the pre-Quaternary record. This perspective should provide a model for resolution of various geochronological controversies that have arisen because of limited stratigraphic or geochemical data.« less

  5. Coastal erosion and accretion rates in Greece

    NASA Astrophysics Data System (ADS)

    Foteinis, Spyros; Papadopoulos, Costas; Koutsogiannaki, Irini; Synolakis, Costas

    2010-05-01

    Erosion threatens many coastal regions of Greece. Anthropogenic changes of landforms such as coastal roads built on even narrow beaches, sand mining for construction, poor design of coastal structures that interfere with sediment, and dams without sediment bypasses have significantly reduced beach widths. We present erosion rates for different beaches, some of which are in sensitive ecosystems, otherwise "protected" by local and EU ordinances. By comparing inferences of beach widths in varying intervals from 1933 to 2006, we infer that the construction of dams in Acheloos river in western Greece, built in a faraonic attempt to partially divert its flows to eastern Greece, this is responsible for up to 20m/year erosion rates observed in certain locales in the Acheloos delta. More characteristic erosion rates in the region are ~ 2m/year. By contrast, there appears rapid accretion of up to 4m/year in the beaches around the Nestos delta in northern Greece (Papadopoulos, 2009). In beaches that are not near large river deltas, erosion rates range from 0.5m/year to 1m/year. While we have not done comprehensive comparisons among coastlines with different levels of coastal development, it does appear that rapid coastal development correlates well with erosion rates. The underlying problem is the complete lack of any semblance of coastal zone management in Greece and substandard design of coastal structures, which are often sited without any measurements of waves and currents offshore (Synolakis et al, 2008). Beach maintenance remains an exotic concept for most local authorities, who invariably prefer to build hard coastal structures to "protect" versus nourish, siting lack of experience with nourishment and "environmental" concerns. In certain cases, choices are dictated by costs, the larger the cost the easier the project gets approved by regulatory authorities, hence the preference for concrete or rubble structures. We conclude that, unless urgent salvage measures are

  6. Consequences of Climate Change, Eutrophication, and Other Anthropogenic Impacts to Coastal Salt Marshes: Multiple Stressors Reduce Resiliency and Sustainability

    EPA Science Inventory

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the ...

  7. Concepts and theoretical specifications of a Coastal Vulnerability Dynamic Simulator (COVUDS): A multi-agent system for simulating coastal vulnerability towards management of coastal ecosystem services

    NASA Astrophysics Data System (ADS)

    Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the

  8. Diversity of Somatic Coliphages in Coastal Regions with Different Levels of Anthropogenic Activity in São Paulo State, Brazil ▿

    PubMed Central

    Burbano-Rosero, E. M.; Ueda-Ito, M.; Kisielius, J. J.; Nagasse-Sugahara, T. K.; Almeida, B. C.; Souza, C. P.; Markman, C.; Martins, G. G.; Albertini, L.; Rivera, I. N. G.

    2011-01-01

    Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 103 PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 102 PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 101 PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption. PMID:21531842

  9. Boundary Layer Depth In Coastal Regions

    NASA Astrophysics Data System (ADS)

    Porson, A.; Schayes, G.

    The results of earlier studies performed about sea breezes simulations have shown that this is a relevant feature of the Planetary Boundary Layer that still requires effort to be diagnosed properly by atmospheric models. Based on the observations made during the ESCOMPTE campaign, over the Mediterranean Sea, different CBL and SBL height estimation processes have been tested with a meso-scale model, TVM. The aim was to compare the critical points of the BL height determination computed using turbulent kinetic energy profile with some other standard evaluations. Moreover, these results have been analysed with different mixing length formulation. The sensitivity of formulation is also analysed with a simple coastal configuration.

  10. Decision-making in Coastal Management and a Collaborative Governance Framework

    EPA Science Inventory

    Over half of the US population lives in coastal watersheds, creating a regional pressure for coastal ecosystems to provide a broad spectrum of services while continuing to support healthy communities and economies. The National Ocean Policy, issued in 2010, and Coastal and Marin...

  11. Estimation of regional material yield from coastal landslides based on historical digital terrain modelling

    USGS Publications Warehouse

    Hapke, C.J.

    2005-01-01

    High-resolution historical (1942) and recent (1994) digital terrain models were derived from aerial photographs along the Big Sur coastline in central California to measure the long-term volume of material that enters the nearshore environment. During the 52-year measurement time period, an average of 21 000 ?? 3100 m3 km-1 a-1 of material was eroded from nine study sections distributed along the coast, with a low yield of 1000 ?? 240 m3 km-1 a-1 and a high of 46 700 ?? 7300 m3 km-1 a-1. The results compare well with known volumes from several deep-seated landslides in the area and suggest that the processes by which material is delivered to the coast are episodic in nature. In addition, a number of parameters are investigated to determine what influences the substantial variation in yield along the coast. It is found that the magnitude of regional coastal landslide sediment yield is primarily related to the physical strength of the slope-forming material. Coastal Highway 1 runs along the lower portion of the slope along this stretch of coastline, and winter storms frequently damage the highway. The California Department of Transportation is responsible for maintaining this scenic highway while minimizing the impacts to the coastal ecosystems that are part of the Monterey Bay National Marine Sanctuary. This study provides environmental managers with critical background data on the volumes of material that historically enter the nearshore from landslides, as well as demonstrating the application of deriving historical digital terrain data to model landscape evolution. Published in 2005 by John Wiley & Sons, Ltd.

  12. Seismicity in Azerbaijan and Adjacent Caspian Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicatemore » that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.« less

  13. Switchgrass (Panicum virgatum L.) genotypes differ between coastal sites and inland road corridors in the Northeastern US

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a North American grass that exhibits vast genetic diversity across its geographic range. In the Northeast, switchgrass was restricted to a narrow zone adjacent to the coastal salt marsh, but current populations inhabit inland road verges raising questions about t...

  14. Adjacent slice prostate cancer prediction to inform MALDI imaging biomarker analysis

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Cazares, Lisa; Nyalwidhe, Julius; Troyer, Dean; Semmes, O. John; Li, Jiang; McKenzie, Frederic D.

    2010-03-01

    Prostate cancer is the second most common type of cancer among men in US [1]. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. Proteomic biomarkers can improve upon these methods. MALDI molecular spectra imaging is used to visualize protein/peptide concentrations across biopsy samples to search for biomarker candidates. Unfortunately, traditional processing methods require histopathological examination on one slice of a biopsy sample while the adjacent slice is subjected to the tissue destroying desorption and ionization processes of MALDI. The highest confidence tumor regions gained from the histopathological analysis are then mapped to the MALDI spectra data to estimate the regions for biomarker identification from the MALDI imaging. This paper describes a process to provide a significantly better estimate of the cancer tumor to be mapped onto the MALDI imaging spectra coordinates using the high confidence region to predict the true area of the tumor on the adjacent MALDI imaged slice.

  15. Coastal flooding impact evaluation using an INtegrated DisRuption Assessment (INDRA) model for Varna region, Western Black Sea

    NASA Astrophysics Data System (ADS)

    Andreeva, Nataliya; Eftimova, Petya; Valchev, Nikolay; Prodanov, Bogdan

    2017-04-01

    The study presents evaluation and comparative analysis of storm induced flooding impacts on different coastal receptors at a scale of Varna region using INtegrated DisRuption Assessment (INDRA) model. The model was developed within the FP7 RISC-KIT project, as a part of Coastal Risk Assessment Framework (CRAF) consisting of two phases. CRAF Phase 1 is a screening process that evaluates coastal risk at a regional scale by means of coastal indices approach, which helps to identify potentially vulnerable coastal sectors: hot spots (HS). CRAF Phase 2 has the objective to assess and rank identified hotspots by detailed risk analysis done by jointly performing a hazard assessment and an impact evaluation on different categories (population, businesses, ecosystems, transport and utilities) using INDRA model at a regional level. Basically, the model assess the shock of events by estimating the impact on directly exposed to flooding hazard receptors of different vulnerability, as well as the potential ripple effects during an event in order to assess the "indirect" impacts, which occur outside the hazard area and/or continue after the event for all considered categories. The potential impacts are expressed in terms of uniform "Impact Indicators", which independently score the indirect impacts of these categories assessing disruption and recovery of the receptors. The ultimate hotspot ranking is obtained through the use of a Multi Criteria analysis (MCA) incorporated in the model, considering preferences of stakeholders. The case study area - Varna regional coast - is located on the western Black Sea, Bulgaria. The coastline, with a length of about 70 km, stretches from cape Ekrene to cape St. Atanas and includes Varna Bay. After application of CRAF Phase 1 three hotspots were selected for further analysis: Kabakum beach (HS1), Varna Central beach plus Port wall (HS2) and Artificial Island (HS3). For first two hotspots beaches and associated infrastructure are the assets

  16. Environmental monitoring and assessment of antibacterial metabolite producing actinobacteria screened from marine sediments in south coastal regions of Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Garka, Shruthi; Puttaswamy, Sushmitha; Shanbhogue, Shobitha; Devaraju, Raksha; Narayanappa, Rajeswari

    2017-06-01

    Assessment of the therapeutic potential of secondary metabolite producing microorganisms from the marine coastal areas imparts scope and application in the field of environmental monitoring. The present study aims to screen metabolites with antibacterial potential from actionbacteria associated with marine sediments collected from south coastal regions of Karnataka, India. The actinobacteria were isolated and characterized from marine sediments by standard protocol. The metabolites were extracted, and antibacterial potential was analyzed against eight hospital associated bacteria. The selected metabolites were partially characterized by proximate analysis, SDS-PAGE, and FTIR-spectroscopy. The antibiogram of the test clinical isolates revealed that they were emerged as multidrug-resistant strains (P ≤ 0.05). Among six actinobacteria (IS1-1S6) screened, 100 μl -1 metabolite from IS1 showed significant antibacterial activities against all the clinical isolates except Pseudomonas aeruginosa. IS2 demonstrated antimicrobial potential towards Proteus mirabilis, Streptococcus pyogenes, and Escherichia coli. The metabolite from IS3 showed activity against Strep. pyogenes and E. coli. The metabolites from IS4, IS5, and IS6 exhibited antimicrobial activities against Ps. aeruginosa (P ≤ 0.05). The two metabolites that depicted highest antibacterial activities against the test strains were suggested to be antimicrobial peptides with low molecular weight. These isolates were characterized and designated as Streptomyces sp. strain mangaluru01 and Streptomyces sp. mangaloreK01 by 16S ribosomal DNA (rDNA) sequencing. This study suggests that south coastal regions of Karnataka, India, are one of the richest sources of antibacterial metabolites producing actinobacteria and monitoring of these regions for therapeutic intervention plays profound role in healthcare management.

  17. Discrimination of coastal wetland environments in the Amazon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery

    NASA Astrophysics Data System (ADS)

    Souza-Filho, Pedro Walfir M.; Paradella, Waldir R.; Rodrigues, Suzan W. P.; Costa, Francisco R.; Mura, José C.; Gonçalves, Fabrício D.

    2011-11-01

    This study assessed the use of multi-polarized L-band images for the identification of coastal wetland environments in the Amazon coast region of northern Brazil. Data were acquired with a SAR R99B sensor from the Amazon Surveillance System (SIVAM) on board a Brazilian Air Force jet. Flights took place in the framework of the 2005 MAPSAR simulation campaign, a German-Brazilian feasibility study focusing on a L-band SAR satellite. Information retrieval was based on the recognition of the interaction between a radar signal and shallow-water morphology in intertidal areas, coastal dunes, mangroves, marshes and the coastal plateau. Regarding the performance of polarizations, VV was superior for recognizing intertidal area morphology under low spring tide conditions; HH for mapping coastal environments covered with forest and scrub vegetation such as mangrove and vegetated dunes, and HV was suitable for distinguishing transition zones between mangroves and coastal plateau. The statistical results for the classification maps expressed by kappa index and general accuracy were 83.3% and 0.734 for the multi-polarized color composition (R-HH, G-HV, B-VV), 80.7% and 0.694% for HH, 79.7% and 0.673% for VV, and 77.9% and 0.645% for HV amplitude image. The results indicate that use of multi-polarized L-band SAR is a valuable source of information aiming at the identification and discrimination of distinct geomorphic targets in tropical wetlands.

  18. South Texas coastal classification maps - Mansfield Channel to the Rio Grande

    USGS Publications Warehouse

    Morton, Robert A.; Peterson, Russell L.

    2006-01-01

    The Nation's rapidly growing coastal population requires reliable information regarding the vulnerability of coastal regions to storm impacts. This has created a need for classifying coastal lands and evaluating storm-hazard vulnerability. Government officials and resource managers responsible for dealing with natural hazards also need accurate assessments of potential storm impacts in order to make informed decisions before, during, and after major storm events. Both economic development and coastal-damage mitigation require integrated models of storm parameters, hazard vulnerability, and expected coastal responses. Thus, storm-hazard vulnerability assessments constitute one of the fundamental components of forecasting storm impacts. Each year as many as 10 to 12 hurricanes and tropical storms will be the focus of national attention. Of particular interest are intense hurricanes (Categories 3 to 5 of the Saffir-Simpson Hurricane Scale) that have the potential to cause substantial economic and environmental damage to the Atlantic and Gulf Coasts of the United States. These coastal regions include some of the largest metropolitan areas in the country and they continue to experience rapid population growth. Based on media reports, there is a general lack of public knowledge regarding how different coastal segments will respond to the same storm or how the same coastal segment will respond differently depending on storm conditions. A primary purpose of the USGS National Assessment of Coastal Change Project is to provide accurate representations of pre-storm ground conditions for areas that are designated high priority because they have dense populations or valuable resources that are at risk. A secondary purpose is to develop a broad coastal classification that, with only minor modification, can be applied to most coastal regions in the United States.

  19. Shoreline changes and Coastal Flooding impacts: South Gujarat coast (India)

    NASA Astrophysics Data System (ADS)

    Parihar, S. B.

    2016-12-01

    South Gujarat coast (India) is experiencing increased coastal inundation and erosion caused by sea-level rise affecting the population, infrastructure, and environment. The area falls under low elevation coastal zone (LEZ) and its topography of the area is also making coast highly susceptible to flooding, especially at high tides and during the rainy season. As part of studies on shoreline changes field trip carried on the coastal taluka's of South Gujarat coast i.e. Surat, Navsari and Valsad shows various temporal changes is taking place at coastal belt. There are ample of studies on coastal dynamics and impacts. The study focus on spatial temporal analysis shows the vulnerable zones covering various physical elements at risk. These coastal areas are attractive in nature for all kind of economic development and growth because of availability of the water & fertile land for house hold use, fishing and transportation. On the contrary, South Gujarat coast being tectonically active; makes this region high vulnerable for any kind of infrastructure development. The region had also witnessed loss of life and property, disruptions to transport & power and incidences of epidemics during the floods of 2006 in Surat. Coastal flooding would, under these scenarios, threaten region that are home of 370,000 approx (Census, 2011) people in seven coastal taluka's of Surat, Navsari and Valsad district. Among the people residing in the region, the most vulnerable communities are fishermen, farmer and industrial labours. The wide range of infrastructure such as roads, hospitals, schools, power plants, industries and port will also be at risk. Shoreline changes are inevitably changing the characteristics of south Gujarat coast; practices and policies should be put in place to mitigate the potentially adverse impacts on environment and human settlements. Key words: sea level rise, LEZ, vulnerable, erosion, inundation, spatial temporal analysis, landuse changes.

  20. Identification guide to skates (Family Rajidae) of the Canadian Atlantic and adjacent regions

    USGS Publications Warehouse

    Sulak, Kenneth J.; MacWhirter, P. D.; Luke, K.E.; Norem, A.D.; Miller, J.M.; Cooper, J.A.; Harris, L.E.

    2009-01-01

    Ecosystem-based management requires sound information on the distribution and abundance of species both common and rare. Therefore, the accurate identification for all marine species has assumed a much greater importance. The identification of many skate species is difficult as several are easily confused and has been found to be problematic in both survey data and fisheries data collection. Identification guides, in combination with training and periodic validation of taxonomic information, improve our accuracy in monitoring data required for ecosystem-based management and monitoring of populations. This guide offers a comparative synthesis of skate species known to occur in Atlantic Canada and adjacent regions. The taxonomic nomenclature and descriptions of key morphological features are based on the most up-to-date understanding of diversity among these species. Although this information will aid the user in accurate identification, some features vary geographically (such as colour) and others with life stage (most notably the proportion of tail length to body length; the presence of spines either sharper in juveniles or in some cases not yet present; and also increases in the number of tooth rows as species grow into maturity). Additional information on juvenile features are needed to facilitate problematic identifications (e.g. L. erinacea vs. L. ocellata). Information on size at maturity is still required for many of these species throughout their geographic distribution.

  1. Coastal barium cycling at the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Pyle, K. M.; Hendry, K. R.; Sherrell, R. M.; Meredith, M. P.; Venables, H.; Lagerström, M.; Morte-Ródenas, A.

    2017-05-01

    Barium cycling in the ocean is associated with a number of processes, including the production and recycling of organic matter, freshwater fluxes, and phenomena that affect alkalinity. As a result, the biogeochemical cycle of barium offers insights into past and present oceanic conditions, with barium currently used in various forms as a palaeoproxy for components of organic and inorganic carbon storage, and as a quasi-conservative water mass tracer. However, the nature of the oceanic barium cycle is not fully understood, particularly in cases where multiple processes may be interacting simultaneously with the dissolved and particulate barium pools. This is particularly the case in coastal polar regions such as the West Antarctic Peninsula, where biological drawdown and remineralisation occur in tandem with sea ice formation and melting, glacial meltwater input, and potential fluxes from shelf sediments. Here, we use a high-precision dataset of dissolved barium (Bad) from a grid of stations adjacent to the West Antarctic Peninsula in conjunction with silicic acid (Si(OH)4), the oxygen isotope composition of water, and salinity measurements, to determine the relative control of various coastal processes on the barium cycle throughout the water column. There is a strong correlation between Bad and Si(OH)4 present in deeper samples, but nevertheless persists significantly in surface waters. This indicates that the link between biogenic opal and barium is not solely due to barite precipitation and dissolution at depth, but is supplemented by an association between Bad and diatom tests in surface waters, possibly due to barite formation within diatom-dominated phytodetritus present in the photic zone. Sea-ice meltwater appears to exert a significant secondary control on barium concentrations, likely due to non-conservative biotic or abiotic processes acting as a sink for Bad within the sea ice itself, or sea-ice meltwater stimulating non-siliceous productivity that acts

  2. Monitoring Coastal Processes at Local and Regional Geographic Scales with UAS

    NASA Astrophysics Data System (ADS)

    Starek, M. J.; Bridges, D.; Prouty, D.; Berryhill, J.; Williams, D.; Jeffress, G.

    2014-12-01

    Unmanned Aerial Systems (UAS) provide a powerful tool for coastal mapping due to attractive features such as low cost data acquisition, flexibility in data capture and resolution, rapid response, and autonomous flight. We investigate two different scales of UAS platforms for monitoring coastal processes along the central Texas Gulf coast. Firstly, the eBee is a small-scale UAS weighing ~0.7 kg designed for localized mapping. The imaging payload consists of a hand held RGB digital camera and NIR digital camera, both with 16.1 megapixel resolutions. The system can map up to 10 square kilometers on a single flight and is capable of acquiring imagery down to 1.5 cm ground sample distance. The eBee is configured with a GPS receiver, altitude sensor, gyroscope and a radio transmitter enabling autonomous flight. The system has a certificate of authorization (COA) from the FAA to fly over the Ward Island campus of Texas A&M University-Corpus Christi (TAMUCC). The campus has an engineered beach, called University Beach, located along Corpus Christi Bay. A set of groins and detached breakwaters were built in an effort to protect the beach from erosive wave action. The eBee is being applied to periodically survey the beach (Figure 1A). Through Structure from Motion (SfM) techniques, eBee-derived image sequences are post-processed to extract 3D topography and measure volumetric change. Additionally, when water clarity suffices, this approach enables the extraction of shallow-water bathymetry. Results on the utilization of the eBee to monitor beach morphodynamics will be presented including a comparison of derived estimates to RTK GPS and airborne lidar. Secondly, the RS-16 UAS has a 4 m wingspan and 11 kg sensor payload. The system is remotely piloted and has a flight endurance of 12 to 16 hours making it suitable for regional scale coastal mapping. The imaging payload consists of a multispectral sensor suite measuring in the visible, thermal IR, and ultraviolet ranges of the

  3. Social and economic consequences of onshore OCS-related activities in coastal Alabama: Final baseline report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, J.O.; Wade, W.W.

    This report documents existing economic conditions in the coastal Alabama region and highlights industry sectors important to the region`s economy. This report discusses the interplay among different users of the region`s natural resources, noting the tourism, fishing and offshore natural gas industries. Data are presented that show how the tourism and natural gas industries contribute to the economic growth of coastal Alabama and the State of Alabama. The recent conflict between the offshore gas and tourism industries over the use of coastal Alabama resources is discussed. Several case studies highlight local area experience relative to economic growth, industry coexistence andmore » the importance of the coastal region`s natural resources to the local and state economies.« less

  4. Two faces of agricultural intensification hanging over aquatic biodiversity: The case of chironomid diversity from farm ponds vs. natural wetlands in a coastal region

    NASA Astrophysics Data System (ADS)

    Fenoy, Encarnación; Casas, J. Jesús

    2015-05-01

    Increasing agricultural land use and intensification have given rise to the loss and eutrophication of coastal wetlands worldwide. In Mediterranean coastal regions, irrigated agriculture, in turn, has prompted the proliferation of farm ponds which might compensate for wetland loss and degradation if their management regimen results are compatible with biodiversity conservation. Here, we studied regional (γ-), local (α-) and interlocal (β-) diversities of chironomids in coastal wetlands and irrigation ponds from a Mediterranean region, to determine the contribution of each habitat type to regional diversity, and to disentangle which environmental factors, anthropogenic or natural, contributed most to explain diversity patterns. Regional diversity was slightly, but still significantly, higher in natural wetlands than in farm ponds, which can be attributed to the significantly higher β-diversity in natural wetlands, since, despite the much larger surface area of wetlands, both habitat types did not differ in local diversity (α-diversity). In both habitats, however, the contribution of β-diversity to regional diversity was higher compared to that of α-diversity, and the component 'spatial species turnover' exceeded that of the component 'nestedness' of β-diversity. This, together with an outstanding assemblage complementarity (approx. 50%) between habitat types, emphasizes the vital contribution of farm ponds, together with natural wetlands, to regional diversity. Despite the higher salinity and eutrophication of natural wetlands that tended to reduce diversity in chironomid assemblages, their more heterogeneous shore line likely compensated somewhat for such negative effects. Unlike wetlands, the homogeneous and unvegetated shore of farm ponds, in conjunction with their intensive management, probably induced adverse effects on local and interlocal diversity. Specific recommendations are given in this regards to mitigate impacts and improve the value of both

  5. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    NASA Astrophysics Data System (ADS)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, log N( M, L) = A + B (5 - M) + C log L, where N( M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth's meridian, differ by a factor of 30 and more and mainly fall in the interval from -1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of -1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the

  6. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties.

    PubMed

    Schulz, Karoline; Mikhailyuk, Tatiana; Dreßler, Mirko; Leinweber, Peter; Karsten, Ulf

    2016-01-01

    Biological soil crusts (BSCs) are known as "ecosystem-engineers" that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 (3-)) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.

  7. Impacts of high resolution model downscaling in coastal regions

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy; Wolf, Judith

    2013-04-01

    With model development and cheaper computational resources ocean forecasts are becoming readily available, high resolution coastal forecasting is now a reality. This can only be achieved, however, by downscaling global or basin-scale products such as the MyOcean reanalyses and forecasts. These model products have resolution ranging from 1/16th - 1/4 degree, which are often insufficient for coastal scales, but can provide initialisation and boundary data. We present applications of downscaling the MyOcean products for use in shelf-seas and the nearshore. We will address the question 'Do coastal predictions improve with higher resolution modelling?' with a few focused examples, while also discussing what is meant by an improved result. Increasing resolution appears to be an obvious route for getting more accurate forecasts in operational coastal models. However, when models resolve finer scales, this may lead to the introduction of high-frequency variability which is not necessarily deterministic. Thus a flow may appear more realistic by generating eddies but the simple statistics like rms error and correlation may become less good because the model variability is not exactly in phase with the observations (Hoffman et al., 1995). By deciding on a specific process to simulate (rather than concentrating on reducing rms error) we can better assess the improvements gained by downscaling. In this work we will select two processes which are dominant in our case-study site: Liverpool Bay. Firstly we consider the magnitude and timing of a peak in tide-surge elevations, by separating out the event into timing (or displacement) and intensity (or amplitude) errors. The model can thus be evaluated on how well it predicts the timing and magnitude of the surge. The second important characteristic of Liverpool Bay is the position of the freshwater front. To evaluate model performance in this case, the location, sharpness, and temperature difference across the front will be

  8. Structure and variability of the Western Maine Coastal Current

    USGS Publications Warehouse

    Churchill, J.H.; Pettigrew, N.R.; Signell, R.P.

    2005-01-01

    Analyses of CTD and moored current meter data from 1998 and 2000 reveal a number of mechanisms influencing the flow along the western coast of Maine. On occasions, the Eastern Maine Coastal Current extends into the western Gulf of Maine where it takes the form of a deep (order 100 m deep) and broad (order 20 km wide) southwestward flow with geostrophic velocities exceeding 20 cm s -1. This is not a coastally trapped flow, however. In fields of geostrophic velocity, computed from shipboard-CTD data, the core of this current is roughly centered at the 100 m isobath and its onshore edge is no closer than 10 km from the coast. Geostrophic velocity fields also reveal a relatively shallow (order 10 m deep) baroclinic flow adjacent to the coast. This flow is also directed to the southwest and appears to be principally comprised of local river discharge. Analyses of moored current meter data reveal wind-driven modulations of the coastal flow that are consistent with expectations from simple theoretical models. However, a large fraction of the near-shore current variance does not appear to be directly related to wind forcing. Sea-surface temperature imagery, combined with analysis of the moored current meter data, suggests that eddies and meanders within the coastal flow may at times dominate the near-shore current variance. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Distributions of organochlorine compounds in sediments from Jiulong River Estuary and adjacent Western Taiwan Strait: Implications of transport, sources and inventories.

    PubMed

    Wu, Yuling; Wang, Xinhong; Ya, Miaolei; Li, Yongyu; Hong, Huasheng

    2016-12-01

    Estuaries and coastal areas strongly influenced by terrestrial inputs resulted from anthropogenic activities. To study the distributions, origins, potential transport and burden of organochlorine compounds (OCs) from river to marginal sea, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in surface sediments collected from a subtropical estuary (Jiulong River Estuary, JRE) and the inner shelf of adjacent Western Taiwan Strait (WTS). The concentrations of OCPs and PCBs were from 5.2 to 551.7 and 1.0-8.1 ng g -1 (dry weight), respectively. OCP concentrations in the JRE were higher than in adjacent WTS, and a decreasing trend with the ascending distance from the estuary to the open sea was observed. Concentrations of DDTs were quite high in the upper reach of the estuary, inferred from antifouling paint on fishing boats of a local shipping company. According to established sediment quality guidelines, DDTs in the JRE posed potential ecological risk. HCHs in the estuary were mainly derived from the weathered HCHs preserved in the agriculture soils via local major river runoffs. OCPs patterns showed that OCPs in the south coast of WTS were resulted from local sources via river input, while OCPs in the north coast attributed to the long-range transport derived by the Fujian-Zhejiang Coastal Current. Minor variations of PCB concentrations and homologs indicated that PCBs were not the main pollutant in the agricultural region, consistent lighter PCBs reflected industrial PCBs were transported via atmospheric deposition derived by East Asia Monsoon. Moreover, the primary distribution pattern founded for DDTs and the considerable mass inventories and burdens calculated (258.1 ng cm -2 and 10.4 tones for OCPs) that higher than Pearl River Delta and Yangtze River Delta, together suggested that the contaminated sediments in the study area may be a potential source of OCPs to the global ocean. Copyright © 2016 Elsevier Ltd. All rights

  10. Using radon-222 and radium-226 isotopes to deduce the functioning of a coastal aquifer adjacent to a hypersaline lake in NW Iran

    NASA Astrophysics Data System (ADS)

    Amiri, Vahab; Nakhaei, Mohammad; Lak, Razyeh

    2017-10-01

    This study aims to assess the hydrogeochemistry of coastal groundwater, the occurrence of 222Rn and 226Ra, and their isotopic response to salinity and associated chemical compositions of groundwater in the coastal Urmia Aquifer (UA) at the western side of Urmia Lake (UL). The results of the PCA show that 87.3% of groundwater chemistry changes are controlled by six principal components. The interaction between groundwater and coastal igneous and metamorphic rocks in eastern areas (next to the UL) results in complex hydrogeochemical conditions than western areas. Based on correlation of U and salinity, some coastal samples display conservative and the others non-conservative behaviors. Differed from most previous studies, 226Ra and 222Rn concentrations in coastal groundwater samples of UA do not show a good correlation with salinity. Given 10% of groundwater 222Rn is originated from host rocks, the radon concentrations recorded in the coastal groundwater samples are relatively in range that can effectively be supplied by the local rocks (5-49 Bq/l). Results of different chemical and isotopic parameters in this area indicate that there is no direct connection between fresh groundwater and UL saltwater. This is because that the hard and thick salty layer in the lakebed acts as an impermeable barrier to prevent the underground hydraulic connection. Results show that removing the salty layer of UL as an option to progress in rehabilitation program of this lake may result in more hydraulic connection between the lake and groundwater resources in some areas.

  11. Carbon Sequestration in Wetland Soils of the Northern Gulf of Mexico Coastal Region

    EPA Science Inventory

    Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon...

  12. Biomass and nitrogen-use efficiency of grain sorghum (Sorghum bicolor L.) with nitrogen and supplemental irrigation in Coastal Plain Region, USA

    USDA-ARS?s Scientific Manuscript database

    Poor rainfall distribution and soil conditions such as high soil strength, low water holding capacity of soils and poor soil fertility in the humid Coastal Plain region may affect production of grain crops. Nitrogen insufficiency and water stress can both reduce crop yield, but little information is...

  13. Advanced Regional and Decadal Predictions of Coastal Inundation for the U.S. Atlantic and Gulf Coasts (Invited)

    NASA Astrophysics Data System (ADS)

    Horton, B.; Corbett, D. R.; Donnelly, J. P.; Kemp, A.; Lin, N.; Lindeman, K.; Mann, M. E.; Peltier, W. R.; Rahmstorf, S.

    2013-12-01

    Future inundation of the U.S. Atlantic and Gulf coasts will depend upon sea-level rise and the intensity and frequency of tropical cyclones, each of which will be affected by climate change. Through ongoing, collaborative research we are employing new interdisciplinary approaches to bring about a step change in the reliability of predictions of such inundation. The rate of sea level rise along the U.S. Atlantic and Gulf coasts increased throughout the 20th century. Whilst there is widespread agreement that it continue to accelerate during the 21st century, great uncertainty surrounds its magnitude and geographic variability. Key uncertainties include the role of continental ice sheets, mountain glaciers, and ocean density changes. Insufficient understanding of these complex physical processes precludes accurate prediction of sea-level rise. New approaches using semi-empirical models that relate instrumental records of climate and sea-level rise have projected up to 2 m of sea-level rise by AD 2100. But the time span of instrumental sea-level records is insufficient to adequately constrain the climate:sea-level relationship. We produced new, high-resolution proxy sea-level reconstructions to provide crucial additional constraints to such semi-empirical models. Our dataset spans the alternation between the 'Medieval Climate Anomaly' and 'Little Ice Age'. Before the models can provide appropriate data for coastal management and planning, they must be complemented with regional estimates of sea-level rise. Therefore, the proxy sea-level data has been collected from four study areas (Connecticut, New Jersey, North Carolina and Florida) to accommodate the required extent of regional variability. In the case of inundation arising from tropical cyclones, the historical and observational records are insufficient for predicting their nature and recurrence, because they are such extreme and rare events. Moreover, future storm surges will be superimposed on background sea

  14. A conceptual cross-scale approach for linking empirical discharge measurements and regional groundwater models with application to legacy nitrogen transport and coastal nitrogen management

    NASA Astrophysics Data System (ADS)

    Barclay, J. R.; Helton, A. M.; Starn, J. J.; Briggs, M. A.

    2016-12-01

    Despite years of management, seasonal hypoxia from excess nitrogen (N) is a pervasive problem in many coastal waters. Current approaches to managing coastal eutrophication in the United States (USA) focus on surface runoff and river transport of nutrients, and often assume that groundwater N is at steady state. This is not necessarily the case, as terrestrial N inputs are affected by changing land use and nutrient management practices. Furthermore, approximately 70% of surface water in the USA is derived from groundwater and there is widespread N contamination in many of our nation's aquifers. Nitrogen export via groundwater discharge to streams during baseflow may be the reason many impaired coastal systems show little improvement. There is a critical need to develop approaches that consider the effects of groundwater transport on N loading to surface waters. Aquifer transport times, which can be decades or even centuries longer than surface water transport times, introduce lags between changes in terrestrial management and reductions in coastal loads. Ignoring these lags can lead to overly ambitious and unrealistic load reduction goals, or incorrect conclusions regarding the effectiveness of management strategies. Additionally, regional groundwater models typically have a coarse resolution that makes it difficult to incorporate fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients at stream bed interfaces. Despite this challenge, representing these important fine-scale processes well is essential to modeling groundwater transport of N across regional scales and to making informed management decisions. We present 1) a conceptual approach to linking regional models and fine-scale empirical measurements, and 2) preliminary groundwater flow and transport model results for the Housatonic and Farmington Rivers in Connecticut, USA. Our cross-scale approach utilizes thermal infrared imaging and vertical

  15. Evaluating Approaches to a Coupled Model for Arctic Coastal Erosion, Infrastructure Risk, and Associated Coastal Hazards

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Bull, D. L.; Jones, C.; Roberts, J.; Thomas, M. A.

    2016-12-01

    Arctic coastlines are receding at accelerated rates, putting existing and future activities in the developing coastal Arctic environment at extreme risk. For example, at Oliktok Long Range Radar Site, erosion that was not expected until 2040 was reached as of 2014 (Alaska Public Media). As the Arctic Ocean becomes increasingly ice-free, rates of coastal erosion will likely continue to increase as (a) increased ice-free waters generate larger waves, (b) sea levels rise, and (c) coastal permafrost soils warm and lose strength/cohesion. Due to the complex and rapidly varying nature of the Arctic region, little is known about the increasing waves, changing circulation, permafrost soil degradation, and the response of the coastline to changes in these combined conditions. However, as scientific focus has been shifting towards the polar regions, Arctic science is rapidly advancing, increasing our understanding of complex Arctic processes. Our present understanding allows us to begin to develop and evaluate the coupled models necessary for the prediction of coastal erosion in support of Arctic risk assessments. What are the best steps towards the development of a coupled model for Arctic coastal erosion? This work focuses on our current understanding of Arctic conditions and identifying the tools and methods required to develop an integrated framework capable of accurately predicting Arctic coastline erosion and assessing coastal risk and hazards. We will present a summary of the state-of-the-science, and identify existing tools and methods required to develop an integrated diagnostic and monitoring framework capable of accurately predicting and assessing Arctic coastline erosion, infrastructure risk, and coastal hazards. The summary will describe the key coastal processes to simulate, appropriate models to use, effective methods to couple existing models, and identify gaps in knowledge that require further attention to make progress in our understanding of Arctic coastal

  16. Home Oxygen Program review: Regionalization in Vancouver Coastal Health and British Columbia.

    PubMed

    Sandberg, Dan

    2015-01-01

    Since its inception in the 1980s, the Home Oxygen Program in British Columbia was centrally managed by the Ministry of Health. Initially a small program with few clients across the province, it soon became a large program with many clients and increasing expenditures. A pilot program started in Victoria (British Columbia) in 1996 demonstrated that managing the program locally could offer better client care, better contract management and significant cost savings. In 2002, the pilot's model and recommendations were implemented in British Columbia's five health authorities. The present review details the experiences of regionalizing the program in the Vancouver Coastal Health authority. After fine adjustments to the model were developed and new contracts and criteria changes made, better care for clients was provided than the previous centralized model at a reduced cost to the taxpayer.

  17. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  18. The transforming perception of a regional geohazard between coastal defence and mediated discourse on global warming: Storm surges in Hamburg, Germany

    NASA Astrophysics Data System (ADS)

    Neverla, I.; Lüthje, C.

    2010-03-01

    The term regional geohazard is used for a major geophysical risk which can lead to a natural disaster. The effects will be strictly located to a specific region. It is expected but still not proven that global warming will intensify weather extremes and thus the number of regional geohazards will increase. Regional geohazards are not dangerous per se, but from the perspective of human being certain weather and nature extremes are considered dangerous as they impose damage on human beings and their belongings. Therefore the media often call them ‘natural disaster’ and as a matter of fact it seems to be a ‘must’ - according to theory and practice of news selections - that media report on any natural disaster that occur in their region. Moreover, media even report on geohazards in any other region as soon as these events seem to have any general impact. The major geophysical risk along the coast of the North Sea is storm surges. A long list of historical disasters has deeply engraved the ubiquity of this hazard into the collective memory and habitus of the local population. Not only coastal region is concerned by this danger but also the megacity of Hamburg. Hamburg is the second-largest city in Germany and the sixth-largest city in the European Union. The Hamburg Metropolitan Region has more than 4.3 million inhabitants. The estuary of the river Elbe extends from Cuxhaven (coast) to Hamburg a distance of about 130 km. Hamburg has often been subject to storm surges with significant damages. But after the storm flood in 1855 for more than 100 years until 1962 no severe storm surge happened. The Big Flood in the night from February 16 to February 17 1962 destroyed the homes of about 60.000 people. The death toll amounted to 315 in the city of Hamburg, where the storm surge had a traumatic impact and was followed by political decisions driven by the believe in technological solutions. After 1962 massive investments into the coastal defence were made and dikes

  19. Modeling and water quality assessment during realisation of the coastal projects in Sochi region (Black sea coast of Russia)

    NASA Astrophysics Data System (ADS)

    Prokhoda-Shumskikh, L.

    2012-04-01

    Sochi region is the unique subtropical resort on the Black Sea coast of Russia. Nowadays due to Sochi is the capital of the Olympic game 2014, the government of the Russian Federation accepts the special federal program of Black Sea coast development. Program foresees the existing and creation of new coastal recreational and touristic complexes along the Russian Black Sea coast, such as complex of yacht harbors, water centers (aqua-centers), network of port localities and etc. These coastal projects are different, but the main problems of the environmental impact assessment are the same. The environmental impact and the relative damage should be assessed at the stage of construction as well as at the stage of operation. The key problem for the recreation coastal zone is water quality management. The port localities network as example is considered. To increase the accuracy and informative of forecasts for the coastal zone conditions the system-dynamic model has been developed, what allows to estimate the quality of the sea water, including that in the semi-enclosed coastal water areas with the limited water exchange. The model of water quality in the coastal zone includes the equations of deposit concentration changes and chemical substances evolution in the studied areas. The model incorporates joint description of cycles of two biogenic elements - nitrogen and phosphorus. The system is completely defined by the biogeochemical reactions. The sizes of such water areas allow the applying the full mixing and zero-dimensional models of water quality. The circulation of water inside the area is taken into account additionally. Water exchange in the semi-enclosed coastal water areas is defined by the discharge through the open parts of area border. The novelty of the offered model is its adaptation to the specific conditions of semi-enclosed coastal water areas. At the same time, the model contains details of the biogeochemical processes to complete modelling of the

  20. Coastal Chile Perspective View

    NASA Image and Video Library

    2010-03-04

    This perspective view from NASA Shuttle Radar Topography Mission of coastal Chile indicates the epicenter red marker of the 8.8 earthquake on Feb. 27, 2010, just offshore of the Maule region in the Bahia de Chanco.

  1. Greenhouse gas emissions and denitrification within depressional wetlands of the southeastern US coastal plain in an agricultural landscape

    USDA-ARS?s Scientific Manuscript database

    Carolina Bays are depressional wetlands on the Coastal Plain of the southeastern USA. These wetlands are often adjacent to agricultural land and may be the recipients of nutrient runoff. Because of their saturated conditions, nutrient cycling may be important for water quality. Three small bays in S...

  2. The tiger beetles (Coleoptera, Carabidae, Cicindelinae) of Israel and adjacent lands

    PubMed Central

    Matalin, Andrey V.; Chikatunov, Vladimir I.

    2016-01-01

    Abstract Based on field studies, museums collections and literature sources, the current knowledge of the tiger beetle fauna of Israel and adjacent lands is presented. In Israel eight species occur, one of them with two subspecies, while in the Sinai Peninsula nine species of tiger beetles are now known. In the combined regions seven genera from two tribes were found. The Rift Valley with six cicindelids species is the most specious region of Israel. Cylindera contorta valdenbergi and Cicindela javeti azari have localized distributions and should be considered regional endemics. A similarity analysis of the tiger beetles faunas of different regions of Israel and the Sinai Peninsula reveal two clusters of species. The first includes the Great Rift Valley and most parts of the Sinai Peninsula, and the second incorporates most regions of Israel together with Central Sinai Foothills. Five distinct adult phenological groups of tiger beetles can be distinguished in these two clusters: active all-year (three species), spring-fall (five species), summer (two species), spring-summer (one species) and spring (one species). The likely origins of the tiger beetle fauna of this area are presented. An annotated list and illustrated identification key of the Cicindelinae of Israel and adjacent lands are provided. PMID:27110198

  3. Study on water quality around mangrove ecosystem for coastal rehabilitation

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  4. Characterizing Fishing Effort and Spatial Extent of Coastal Fisheries

    PubMed Central

    Stewart, Kelly R.; Lewison, Rebecca L.; Dunn, Daniel C.; Bjorkland, Rhema H.; Kelez, Shaleyla; Halpin, Patrick N.; Crowder, Larry B.

    2010-01-01

    Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km2) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional ‘hotspots’ of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries. PMID:21206903

  5. Characterizing fishing effort and spatial extent of coastal fisheries.

    PubMed

    Stewart, Kelly R; Lewison, Rebecca L; Dunn, Daniel C; Bjorkland, Rhema H; Kelez, Shaleyla; Halpin, Patrick N; Crowder, Larry B

    2010-12-29

    Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km²) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.

  6. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three

  7. Coastal erosion in Sicily: geomorphologic impact and mitigation (Italy)

    NASA Astrophysics Data System (ADS)

    Liguori, V.; Manno, G.

    2009-04-01

    The coast of Sicily region stretches about 1400 km, bathing three different seas: the North tract, from Messina to Capo San Vito wash to the Tyrrhenian Sea, the oriental side, from Messina to Capo Passero, wash to the Ionian Sea, and finally the southern side wash to the Mediterranean. Of these, 395 km are made up of beaches and 970 km from rocky shores. The coastal morph-type were analyzed in relation to their evolutionary trend (backspace or advancement of the seaside), can be summarized as follows: a low shores of torrent plain (Messina), low shores with salt (Trapani), low shores beaches edged with dunal systems, subject to backspace, where urbanization has reduced or eliminated the internal sand dunes, shores on marine terraces, with beaches at the foot (Agrigento) and high shores non-affected of real phenomena of backspace, but subject to often dangerous events of detachment and collapse of blocks (high rocky shores). The marine and coastal environment is a complex and articulated, in balance with the Earth's environment, in which live together, but through different dynamics strongly interacting, ecosystems and marine ecosystems typically transition. The increasing density of population concentrated along the shores, the gradual expansion of activities related to the use of marine and coastal resources, are some of the issues that threaten the delicate balance of nature and the sea coast. The sicilian coastal areas most subject to erosion are those in Ragusa shores areas in south-eastern of Sicily, where the critical areas interesting low coastline and high shores. Following the coast, between Capo Peloro and Milazzo (Messina),where the erosion affects the coast with a low of about 23 km. In the coastal between Capo St. Marco and Capo Feto (Trapani) the critical areas interesting the low coastline and, in part erodible bluffs. One of this case is localized in the town of Mazara del Vallo. In general, the phenomenon erosive affects almost all the sicilian

  8. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from

  9. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications

    NASA Astrophysics Data System (ADS)

    Vargas, Cristian A.; Contreras, Paulina Y.; Pérez, Claudia A.; Sobarzo, Marcus; Saldías, Gonzalo S.; Salisbury, Joe

    2016-06-01

    A combined data set, combining data from field campaigns and oceanographic cruises, was used to ascertain the influence of both river discharges and upwelling processes, covering spatial and temporal variation in dissolved inorganic carbon (DIC) and aragonite saturation state. This work was conducted in one of the most productive river-influenced upwelling areas in the South Pacific coasts (36°S). Additionally, further work was also conducted to ascertain the contribution of different DIC sources, influencing the dynamics of DIC along the land-ocean range. Six sampling campaigns were conducted across seven stations at the Biobío River basin, covering approximately 200 km. Three research cruises were undertaken simultaneously, covering the adjacent continental shelf, including 12 sampling stations for hydrographic measurements. Additionally, six stations were also sampled for chemical analyses, covering summer, winter, and spring conditions over 2010 and 2011. Our results evidenced that seaward extent of the river plume was more evident during the winter field campaign, when highest riverine DIC fluxes were observed. The carbonate system along the river-ocean continuum was very heterogeneous varying over spatial and temporal scales. High DIC and pCO2 were observed in river areas with larger anthropogenic effects. CO2 supersaturation at the river plume was observed during all campaigns due to the influence of low pH river waters in winter/spring and high-pCO2 upwelling waters in summer. δ13CDIC evidenced that main DIC sources along the river and river plume corresponded to the respiration of terrestrial organic matter. We have linked this natural process to the carbonate saturation on the adjacent river-influenced coastal area, suggesting that Ωaragonite undersaturation in surface/subsurface waters is largely modulated by the influence of both river discharge and coastal upwelling events in this productive coastal area. Conditions of low Ωaragonite might impact

  10. Statistical wave climate projections for coastal impact assessments

    NASA Astrophysics Data System (ADS)

    Camus, P.; Losada, I. J.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J.

    2017-09-01

    Global multimodel wave climate projections are obtained at 1.0° × 1.0° scale from 30 Coupled Model Intercomparison Project Phase 5 (CMIP5) global circulation model (GCM) realizations. A semi-supervised weather-typing approach based on a characterization of the ocean wave generation areas and the historical wave information from the recent GOW2 database are used to train the statistical model. This framework is also applied to obtain high resolution projections of coastal wave climate and coastal impacts as port operability and coastal flooding. Regional projections are estimated using the collection of weather types at spacing of 1.0°. This assumption is feasible because the predictor is defined based on the wave generation area and the classification is guided by the local wave climate. The assessment of future changes in coastal impacts is based on direct downscaling of indicators defined by empirical formulations (total water level for coastal flooding and number of hours per year with overtopping for port operability). Global multimodel projections of the significant wave height and peak period are consistent with changes obtained in previous studies. Statistical confidence of expected changes is obtained due to the large number of GCMs to construct the ensemble. The proposed methodology is proved to be flexible to project wave climate at different spatial scales. Regional changes of additional variables as wave direction or other statistics can be estimated from the future empirical distribution with extreme values restricted to high percentiles (i.e., 95th, 99th percentiles). The statistical framework can also be applied to evaluate regional coastal impacts integrating changes in storminess and sea level rise.

  11. Chemistry and quality of groundwater in a coastal region of Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Rao, N. Subba; Vidyasagar, G.; Surya Rao, P.; Bhanumurthy, P.

    2017-03-01

    The chemistry of groundwater in the coastal region between Chirala and Ongole of Andhra Pradesh, India shows pollution to varying extent. The relative contribution of ions in six zones divided based on TDS indicates unsuitability of groundwater here for drinking, irrigation and industrial use. The water is brackish except in first zone and further alkaline. TDS is less than 1,000 mg/L in first zone, while it is more in other zones. This classification of groundwater into zones is also investigated by hydrogeochemical facies, genetic classification, mechanisms of groundwater chemistry and geochemical signatures. Hydrogeochemical facies of Na+>Mg2+>Ca2+: {{HCO}}3^{ - } > Cl- > SO 4^{2 - } is observed from zone I, while that of Na+>Mg2+>Ca2+:Cl- > HCO 3^{ - } > SO 4^{2 - } from second to sixth zones. The genetic classification of groundwater in first and second zones is HCO 3^{ - } type and supported by good drainage conditions, while zones III to VI belong to Cl- category evident from poor drainage scenario. The location of six zones on mechanisms of groundwater chemistry supports sluggish drainage conditions of second to six zones, while predominate rock-water interaction in first zone. The geochemical signatures (HCO 3^{ - } :Cl- > 1 and Na+:Cl- < 1) also endorse the pollution. The quantities of chemical species (Mg2+, Na+, K+, HCO 3^{ - } , Cl ^{ - } , SO 4^{2 - } , NO 3^{ - } and F ^{ - } ) and TDS in all zones are far greater than the stipulated limits for drinking. The United States Salinity Laboratory plots discriminated the suitability of groundwater in second to sixth zones for irrigation after only special soil treatment. Higher concentrations of TDS, HCO 3^{ - } , Cl- and SO 4^{2 - } in all zones render it unsuitable for industry too. This information is crucial for public and civic authorities for taking up strategic management plan for preventing further deterioration of hydrogeochemical environmental conditions of this part of the coastal region.

  12. Variation of optical properties at Lucinda Jetty Coastal Observatory and its input into an optical model of coastal waters in Great Barrier Reef region.

    NASA Astrophysics Data System (ADS)

    Wozniak, Monika; Baird, Mark; Schroeder, Thomas; Clementson, Lesley; Jones, Emlyn

    2017-04-01

    The water column optical properties from an observation station located at the end of a 5.8 km long jetty in the coastal waters of the Great Barrier Reef World Heritage Area (18.52 S, 146.39 E) were studied. Due to the location of the Lucinda Jetty Coastal Observatory (LJCO), at the interface of large riverine nutrient and sediment sources and clear open ocean waters, it is an optically variable and interesting region. LJCO is the only Southern Hemisphere ocean colour validation site integrated into NASA's AERONET-OC global network of ground-based radiometers. LJCO has a 3 years long time series (2014-2016) of continuous in-water optical measurements of absorption (AC-S), scattering (AC-S) and backscattering (BB-9) spectra together with water-leaving radiance spectra (SeaPRISM) acquired above the water surface and concentration of water components (WQM). Further HPLC and spectrophotometrically-retrieved absorption and scattering were determined fortnightly. These detailed bio-optical observations are rarely available as a time-series for model assessment. We use these data to quantify the relationship between optical properties and water constituents and to developing a more accurate optical model for coastal, optically complex water like GBR model. Pigment analysis show that studied area is dominated by alternatively freshwater and oceanic phytoplankton species depending on weather condition, tides and season. Absorption spectra at 440 nm and 550 nm are dominated by detritus but also have a significant CDOM contribution, which influences reflectance values in that range of spectrum and negatively affects wavebands used in satellite and remote algorithms for water constituents. These emergent features are compared to the model outputs, demonstrating when the model produces accurate optical signals with realistic process representation.

  13. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; hide

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  14. MICOM-Based Nowcast/Forecast for Coastal/Open Ocean Regions

    DTIC Science & Technology

    1999-09-30

    and gyre dynamics (  Ozg okmen et al., 1999; Stern and Chassignet, 1999; Pratt et al., 1999) RESULTS In the ne mesh North Atlantic simulation...Stern, M.E., and E.P. Chassignet, 1999: Mechanism of eddy separation from coastal currents. J. Mar. Res., submitted.  Ozg okmen, T.M., E.P. Chassignet

  15. Summary of hydraulic properties of the Floridan Aquifer system in coastal Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Leeth, David C.; Taylor-Harris, DaVette; Painter, Jaime A.; Labowski, James L.

    2005-01-01

    Hydraulic-property data for the Floridan aquifer system and equivalent clastic sediments in a 67-county area of coastal Georgia and adjacent parts of South Carolina and Florida were evaluated to provide data necessary for development of ground-water flow and solute-transport models. Data include transmissivity at 324 wells, storage coefficient at 115 wells, and vertical hydraulic conductivity of 72 core samples from 27 sites. Hydraulic properties of the Upper Floridan aquifer vary greatly in the study area due to the heterogeneity (and locally to anisotropy) of the aquifer and to variations in the degree of confinement provided by confining units. Prominent structural features in the areathe Southeast Georgia Embayment, the Beaufort Arch, and the Gulf Troughinfluence the thickness and hydraulic properties of the sediments comprising the Floridan aquifer system. Transmissivity of the Upper Floridan aquifer and equivalent updip units was compiled for 239 wells and ranges from 530 feet squared per day (ft2/d) at Beaufort County, South Carolina, to 600,000 ft2/d in Coffee County, Georgia. In carbonate rock settings of the lower Coastal Plain, transmissivity of the Upper Floridan aquifer generally is greater than 20,000 ft2/d, with values exceeding 100,000 ft2/d in the southeastern and southwestern parts of the study area (generally coinciding with the area of greatest aquifer thickness). Transmissivity of the Upper Floridan aquifer generally is less than 10,000 ft2/d in and near the upper Coastal Plain, where the aquifer is thin and consists largely of clastic sediments, and in the vicinity of the Gulf Trough, where the aquifer consists of low permeability rocks and sediments. Large variability in the range of transmissivity in Camden and Glynn Counties, Georgia, and Nassau County, Florida, demonstrates the anisotropic distribution of hydraulic properties that may result from fractures or solution openings in the carbonate rocks. Storage coefficient of the Upper

  16. Ecosystem-based management and refining governance of wind energy in the Massachusetts coastal zone: A case study approach

    NASA Astrophysics Data System (ADS)

    Kumin, Enid C.

    While there are as yet no wind energy facilities in New England coastal waters, a number of wind turbine projects are now operating on land adjacent to the coast. In the Gulf of Maine region (from Maine to Massachusetts), at least two such projects, one in Falmouth, Massachusetts, and another on the island of Vinalhaven, Maine, began operation with public backing only to face subsequent opposition from some who were initially project supporters. I investigate the reasons for this dynamic using content analysis of documents related to wind energy facility development in three case study communities. For comparison and contrast with the Vinalhaven and Falmouth case studies, I examine materials from Hull, Massachusetts, where wind turbine construction and operation has received steady public support and acceptance. My research addresses the central question: What does case study analysis of the siting and initial operation of three wind energy projects in the Gulf of Maine region reveal that can inform future governance of wind energy in Massachusetts state coastal waters? I consider the question with specific attention to governance of wind energy in Massachusetts, then explore ways in which the research results may be broadly transferable in the U.S. coastal context. I determine that the change in local response noted in Vinalhaven and Falmouth may have arisen from a failure of consistent inclusion of stakeholders throughout the entire scoping-to-siting process, especially around the reporting of environmental impact studies. I find that, consistent with the principles of ecosystem-based and adaptive management, design of governance systems may require on-going cycles of review and adjustment before the implementation of such systems as intended is achieved in practice. I conclude that evolving collaborative processes must underlie science and policy in our approach to complex environmental and wind energy projects; indeed, collaborative process is fundamental to

  17. Size cues and the adjacency principle.

    DOT National Transportation Integrated Search

    1963-11-01

    The purpose of the present study was to apply the adjacency principle to the perception of relative depth from size cues. In agreement with the adjacency principle, it was found that the size cue between adjacent objects was more effective than the s...

  18. Monitoring Coastal Embankment Subsidence and Relative Sea Level Rise in Coastal Bangladesh Using Satellite Geodetic Data

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Shum, C. K.; Jia, Y.; Yi, Y.; Zhu, K.; Kuo, C. Y.; Liibusk, A.

    2015-12-01

    The Bangladesh Delta is located at the confluence of the mega Ganges, Brahmaputra and Meghan Rivers in the Bay of Bengal. It is home to over 160 million people and is one of the most densely populated countries in the world. It is prone to seasonal transboundary monsoonal flooding, potentially aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. Sea level rise, along with tectonic, sediment compaction/load and groundwater extraction induced land uplift/subsidence, have significantly exacerbated these risks and Bangladesh's coastal vulnerability. Bangladesh has built 123 coastal embankments or polders since the 1960's, to protect the coastal regions from cyclone/tidal flooding and to reduce salinity incursions. Since then, many coastal polders have suffered severe erosion and anthropogenic damage, and require repairs or rebuilding. However, the physical and anthropogenic processes governing the historic relative sea level rise and its future projection towards its quantification remain poorly understood or known, and at present not accurate enough or with an adequately fine local spatial scale for practical mitigation of coastal vulnerability or coastal resilience studies. This study reports on our work in progress to use satellite geodetic and remote sensing observations, including satellite radar altimetry/backscatter measurements over land and in coastal oceans, optical/infrared imageries, and SAR backscatter/InSAR data, to study the feasibility of coastal embankment/polder erosion monitoring, quantify seasonal polder water intrusions, observing polder subsidence, and finally, towards the goal of improving the relative sea level rise hazards assessment at the local scale in coastal Bangladesh.

  19. Analysis of Stakeholder's Behaviours for an Improved Management of an Agricultural Coastal Region in Oman

    NASA Astrophysics Data System (ADS)

    Khatri, Ayisha Al; Jens, Grundmann; der Weth Rüdiger, van; Niels, Schütze

    2015-04-01

    Al Batinah coastal area is the main agricultural region in Oman. Agriculture is concentrated in Al Batinah, because of more fertile soils and easier access to water in the form of groundwater compared to other administrative areas in the country. The region now is facing a problem as a result of over abstraction of fresh groundwater for irrigation from the main aquifer along the coast. This enforces the inflow of sea water into the coastal aquifer and causes salinization of the groundwater. As a consequence the groundwater becomes no longer suitable for irrigation which impacts the social and economical situation of farmers as well as the environment. Therefore, the existing situation generates conflicts between different stakeholders regarding water availability, sustainable aquifer management, and profitable agricultural production in Al Batinah region. Several management measures to maintain the groundwater aquifer in the region, were implemented by the government. However, these solutions showed only limited successes for the existing problem. The aim of this study now is to evaluate the implementation potential of several management interventions and their combinations by analysing opinions and responses of all relevant stakeholders in the region. This is done in order to identify potential conflicts among stakeholders to a participatory process within the frame of an integrated water resources management and to support decision makers in taking more informed decisions. Questionnaires were designed for collecting data from different groups of stakeholders e.g. water professionals, farmers from the study area and decision makers of different organizations and ministries. These data were analysed statistically for each group separately as well as regarding relations amongst groups by using the SPSS (Statistical Package for Social Science) software package. Results show, that the need to improve the situation is supported by all groups. However, significant

  20. Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States

    PubMed Central

    Anderson, Donald M.; Burkholder, JoAnn M.; Cochlan, William P.; Glibert, Patricia M.; Gobler, Christopher J.; Heil, Cynthia A.; Kudela, Raphael; Parsons, Michael L.; Rensel, J. E. Jack; Townsend, David W.; Trainer, Vera L.; Vargo, Gabriel A.

    2008-01-01

    Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research. PMID:19956363

  1. Global climate change impacts on coastal ecosystems in the Gulf of Mexico: considerations for integrated coastal management

    USGS Publications Warehouse

    Day, John W.; Yáñez-Arancibia, Alejandro; Cowan, James H.; Day, Richard H.; Twilley, Robert R.; Rybczyk, John R.

    2013-01-01

    Global climate change is important in considerations of integrated coastal management in the Gulf of Mexico. This is true for a number of reasons. Climate in the Gulf spans the range from tropical to the lower part of the temperate zone. Thus, as climate warms, the tropical temperate interface, which is currently mostly offshore in the Gulf of Mexico, will increasingly move over the coastal zone of the northern and eastern parts of the Gulf. Currently, this interface is located in South Florida and around the US-Mexico border in the Texas-Tamaulipas region. Maintaining healthy coastal ecosystems is important because they will be more resistant to climate change.

  2. Satellite Observations of Coastal Processes from a Geostationary Orbit: Application to estuarine, coastal, and ocean resource management

    NASA Astrophysics Data System (ADS)

    Tzortziou, M.; Mannino, A.; Schaeffer, B. A.

    2016-02-01

    Coastal areas are among the most vulnerable yet economically valuable ecosystems on Earth. Estuaries and coastal oceans are critically important as essential habitat for marine life, as highly productive ecosystems and a rich source of food for human consumption, as a strong economic driver for coastal communities, and as a highly dynamic interface between land and ocean carbon and nutrient cycles. Still, our present capabilities to remotely observe coastal ocean processes from space are limited in their temporal, spatial, and spectral resolution. These limitations, in turn, constrain our ability to observe and understand biogeochemical processes in highly dynamic coastal ecosystems, or predict their response and resilience to current and future pressures including sea level rise, coastal urbanization, and anthropogenic pollution.On a geostationary orbit, and with high spatial resolution and hyper-spectral capabilities, NASA's Decadal Survey mission GEO-CAPE (GEO-stationary for Coastal and Air Pollution Events) will provide, for the first time, a satellite view of the short-term changes and evolution of processes along the economically invaluable but, simultaneously, particularly vulnerable near-shore waters of the United States. GEO-CAPE will observe U.S. lakes, estuaries, and coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, track sediments and pollutants, capture diurnal biogeochemical processes and rates of transformation, monitor harmful algal blooms and large oil spills, observe episodic events and coastal hazards. Here we discuss the GEO-CAPE applications program and the new capabilities afforded by this future satellite mission, to identify potential user communities, incorporate end-user needs into future mission planning, and allow integration of science and management at the coastal interface.

  3. Satellite Observations of Coastal Processes from a Geostationary Orbit: Application to estuarine, coastal, and ocean resource management

    NASA Astrophysics Data System (ADS)

    Tzortziou, M.; Mannino, A.; Schaeffer, B. A.

    2016-12-01

    Coastal areas are among the most vulnerable yet economically valuable ecosystems on Earth. Estuaries and coastal oceans are critically important as essential habitat for marine life, as highly productive ecosystems and a rich source of food for human consumption, as a strong economic driver for coastal communities, and as a highly dynamic interface between land and ocean carbon and nutrient cycles. Still, our present capabilities to remotely observe coastal ocean processes from space are limited in their temporal, spatial, and spectral resolution. These limitations, in turn, constrain our ability to observe and understand biogeochemical processes in highly dynamic coastal ecosystems, or predict their response and resilience to current and future pressures including sea level rise, coastal urbanization, and anthropogenic pollution.On a geostationary orbit, and with high spatial resolution and hyper-spectral capabilities, NASA's Decadal Survey mission GEO-CAPE (GEO-stationary for Coastal and Air Pollution Events) will provide, for the first time, a satellite view of the short-term changes and evolution of processes along the economically invaluable but, simultaneously, particularly vulnerable near-shore waters of the United States. GEO-CAPE will observe U.S. lakes, estuaries, and coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, track sediments and pollutants, capture diurnal biogeochemical processes and rates of transformation, monitor harmful algal blooms and large oil spills, observe episodic events and coastal hazards. Here we discuss the GEO-CAPE applications program and the new capabilities afforded by this future satellite mission, to identify potential user communities, incorporate end-user needs into future mission planning, and allow integration of science and management at the coastal interface.

  4. Multiscale habitat suitability index models for priority landbirds in the Central Hardwoods and West Gulf Coastal Plain/Ouachitas Bird Conservation Regions

    Treesearch

    John M. Tirpak; D. Todd Jones-Farrand; Frank R., III Thompson; Daniel J. Twedt; William B., III Uihlein

    2009-01-01

    Habitat Suitability Index (HSI) models were developed to assess habitat quality for 40 priority bird species in the Central Hardwoods and West Gulf Coastal Plain/Ouachitas Bird Conservation Regions. The models incorporated both site and landscape environmental variables from one of six nationally consistent datasets. Potential habitat was first defined from unique...

  5. Sediment transport in the San Francisco Bay Coastal System: An overview

    USGS Publications Warehouse

    Barnard, Patrick L.; Schoellhamer, David H.; Jaffe, Bruce E.; Lester J. McKee,

    2013-01-01

    The papers in this special issue feature state-of-the-art approaches to understanding the physical processes related to sediment transport and geomorphology of complex coastal-estuarine systems. Here we focus on the San Francisco Bay Coastal System, extending from the lower San Joaquin-Sacramento Delta, through the Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~ 8 x 109 m3/day, in addition to the transport of mud, sand, biogenic material, nutrients, and pollutants. Despite this physical, biological and chemical connection, resource management and prior research have often treated the Delta, Bay and adjacent ocean as separate entities, compartmentalized by artificial geographic or political boundaries. The body of work herein presents a comprehensive analysis of system-wide behavior, extending a rich heritage of sediment transport research that dates back to the groundbreaking hydraulic mining-impact research of G.K. Gilbert in the early 20th century.

  6. Coastal vulnerability to typhoon inundation in the Bay of Bangkok, Thailand? Evidence from carbonate boulder deposits on Ko Larn island

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Jankaew, Kruawun; Dunne, Kieran

    2015-11-01

    At the head of the Gulf of Thailand, the subsiding Chao Phraya delta and adjacent low-lying coastlines surrounding the Bay of Bangkok are at risk of coastal flooding. Although a significant marine inundation event has not been experienced in historical times, this work identifies coastal depositional evidence for high-energy waves in the past. On Ko Larn island in eastern Bay of Bangkok, numerous coastal carbonate boulders (CCBs) were discovered at elevations up to 4+ m above sea level, the largest weighing over 1.3 tonnes. For the majority of CCBs, their karstified appearance bears testimony to long periods of immobility since original deposition, whilst their geomorphic settings on coastal slopes of coarse blocky talus is helpful in recognising lifting (saltation) as the probable mode of wave transport. In the absence of local tsunamigenic potential, these CCBs are considered to be prehistoric typhoon deposits, presumably sourced from fringing coral reefs by high-energy wave action. Application of existing hydrodynamic flow transport equations reveals that 4.7 m/s and 7.1 m/s are the minimum flow velocities required to transport 50% and 100% of the measured CCBs, respectively. Such values are consistent with cyclone-impacted coastlines studied elsewhere in the tropical Asia-Pacific region. Overall, the evidence of elevated carbonate boulder deposits on Ko Larn implies that typhoons before the modern record may have entered the Bay of Bangkok. The recurrence of a similar event in future would have the potential to cause damaging marine inundation on surrounding low-lying coastlines.

  7. Impacts of Potential Changes in Land Use, Climate, and Water Use on Water Availability, Coastal Carolinas Region, Southeastern United States

    NASA Astrophysics Data System (ADS)

    Gurley, L. N.; Garcia, A. M.

    2017-12-01

    Sustainable growth in coastal areas with rapidly increasing populations, such as the coastal regions of North and South Carolina, relies on an understanding of the current state of coastal natural resources coupled with the ability to assess future impacts of changing coastal communities and resources. Changes in climate, water use, population, and land use (e.g. urbanization) will place additional stress on societal and ecological systems that are already competing for water resources. The potential effects of these stressors on water availability are not fully known. To meet societal and ecological needs, water resources management and planning efforts require estimates of likely impacts of population growth, land-use, and climate. Two Soil and Water Assessment (SWAT) hydrologic models were developed to help address the challenges that water managers face in the Carolinas: the (1) Cape Fear and (2) Pee Dee drainage basins. SWAT is a basin-scale, process-based watershed model with the capability of simulating water-management scenarios. Model areas were divided into two square mile sub-basins to evaluate ecological response at headwater streams. The sub-basins were subsequently divided into smaller, discrete hydrologic response units based on land use, slope, and soil type. Monthly and annual water-use data were used for 2000 to 2014 and included estimates of municipal, industrial, agricultural, and commercial water use. Models were calibrated for 2000 to 2014 and potential future streamflows were estimated through 2060 based on a suite of scenarios that integrated land use change projections, climate projections and water-use forecasts. The approaches and new techniques developed as part of this research could be applied to other coastal areas that face similar current and future water availability demands.

  8. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    USGS Publications Warehouse

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  9. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue

    PubMed Central

    Geybels, Milan S.; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A.; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L.

    2016-01-01

    Background Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. Methods The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. Results In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value <0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for ten genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. Conclusions This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. PMID:26383847

  10. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.

    PubMed

    Geybels, Milan S; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L

    2015-12-01

    Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. © 2015 Wiley Periodicals, Inc.

  11. Quantifying 10 years of improved earthquake-monitoring performance in the Caribbean region

    USGS Publications Warehouse

    McNamara, Daniel E.; Hillebrandt-Andrade, Christa; Saurel, Jean-Marie; Huerfano-Moreno, V.; Lynch, Lloyd

    2015-01-01

    Over 75 tsunamis have been documented in the Caribbean and adjacent regions during the past 500 years. Since 1500, at least 4484 people are reported to have perished in these killer waves. Hundreds of thousands are currently threatened along the Caribbean coastlines. Were a great tsunamigenic earthquake to occur in the Caribbean region today, the effects would potentially be catastrophic due to an increasingly vulnerable region that has seen significant population increases in the past 40–50 years and currently hosts an estimated 500,000 daily beach visitors from North America and Europe, a majority of whom are not likely aware of tsunami and earthquake hazards. Following the magnitude 9.1 Sumatra–Andaman Islands earthquake of 26 December 2004, the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Early Warning System for the Caribbean and Adjacent Regions (CARIBE‐EWS) was established and developed minimum performance standards for the detection and analysis of earthquakes. In this study, we model earthquake‐magnitude detection threshold and P‐wave detection time and demonstrate that the requirements established by the UNESCO ICG CARIBE‐EWS are met with 100% of the network operating. We demonstrate that earthquake‐monitoring performance in the Caribbean Sea region has improved significantly in the past decade as the number of real‐time seismic stations available to the National Oceanic and Atmospheric Administration tsunami warning centers have increased. We also identify weaknesses in the current international network and provide guidance for selecting the optimal distribution of seismic stations contributed from existing real‐time broadband national networks in the region.

  12. Monitoring the change of coastal zones from space

    NASA Astrophysics Data System (ADS)

    Cazenave, A. A.; Le Cozannet, G.; Benveniste, J.; Woodworth, P. L.

    2017-12-01

    The world's coastal zones, where an important fraction of the world population is currently living, are under serious threat because of coastal erosion, cyclones, storms, and salinization of estuaries and coastal aquifers. In the future, these hazards are expected to increase due to the combined effects of sea level rise, climate change, human activities and population increase. The response of coastal environments to natural and anthropogenic forcing factors (including climate change) depends on the characteristics of the forcing agents, as well as on the internal properties of the coastal systems, that remain poorly known and mostly un-surveyed at global scale. To better understand changes affecting coastal zones and to provide useful information to decision makers, various types of observations with global coverage need to be collected and analysed. Observations from space appear as an important complement to existing in situ observing systems (e.g., regional tide gauge networks). In this presentation, we discuss the benefit of systematic coastal monitoring from space, addressing both observations of forcing agents and of the coastal response. We highlight the need for a global coastal sea level data set based on retracked nadir altimetry missions and new SAR technology.

  13. Regional Risk Assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea.

    NASA Astrophysics Data System (ADS)

    Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge

  14. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  15. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  16. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  17. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  18. An Earth's Future Special Collection: Impacts of the coastal dynamics of sea level rise on low-gradient coastal landscapes

    NASA Astrophysics Data System (ADS)

    Kidwell, David M.; Dietrich, J. Casey; Hagen, Scott C.; Medeiros, Stephen C.

    2017-01-01

    Rising sea level represents a significant threat to coastal communities and ecosystems, including altered habitats and increased vulnerability to coastal storms and recurrent inundation. This threat is exemplified in the northern Gulf of Mexico, where low topography, marshes, and a prevalence of tropical storms have resulted in extensive coastal impacts. The ability to facilitate adaptation and mitigation measures relies, in part, on the development of robust predictive capabilities that incorporate complex biological processes with physical dynamics. Initiated in 2010, the 6-year Ecological Effects of Sea Level Rise—Northern Gulf of Mexico project applied a transdisciplinary science approach to develop a suite of integrated modeling platforms informed by empirical data that are capable of evaluating a range of climate change scenarios. This special issue highlights resultant integrated models focused on tidal hydrodynamics, shoreline morphology, oyster ecology, coastal wetland vulnerability, and storm surges that demonstrate the need for dynamic models to incorporate feedbacks among physical and biological processes in assessments of sea level rise effects on coastal systems. Effects are projected to be significant, spatially variable and nonlinear relative to sea level rise rates. Scenarios of higher sea level rise rates are projected to exceed thresholds of wetland sustainability, and many regions will experience enhanced storm surges. Influenced by an extensive collaborative stakeholder engagement process, these assessments on the coastal dynamics of sea level rise provide a strong foundation for resilience measures in the northern Gulf of Mexico and a transferable approach for application to other coastal regions throughout the world.

  19. Evaluating pond sand filter as sustainable drinking water supplier in the Southwest coastal region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Harun, M. A. Y. A.; Kabir, G. M. M.

    2013-03-01

    This study investigates existing water supply scenario, and evaluates the performance of pond sand filter (PSF) in meeting drinking water demand of Dacope Upazila in southwest coastal Bangladesh. Questionnaire survey to the villagers reveals that PSF is the major drinking water sources (38 %) of the study area followed by tubewells (30.4 %), rainwater harvesting (RWH) systems (12.6 %), ponds (10.3 %) and others (8.7 %). The spot test and laboratory analysis show that odour, colour, pH, dissolved oxygen, hardness, calcium, magnesium, nitrate, sulphate and phosphate of the PSFs water meet Bangladesh standard. The efficiency of PSF in reducing total dissolved solids (TDS) (15 %) and potassium (8.2 %) is not enough to meet the standard of 20 % PSFs for TDS and one-third PSFs for potassium. The study proves that PSF is unable to remove coliform bacteria by 100 % from highly contaminated water. Hence, disinfection should be adopted before distribution to ensure safe drinking water. Majority of the PSF's users (80 %) are either partially satisfied or dissatisfied with the existing system. The beneficiary's willingness to pay for drinking water technologies seems that the combination of PSF and RWH could ensure sustainable drinking water in coastal region of Bangladesh.

  20. Biological validation of physical coastal waters classification along the NE Atlantic region based on rocky macroalgae distribution

    NASA Astrophysics Data System (ADS)

    Ramos, Elvira; Puente, Araceli; Juanes, José Antonio; Neto, João M.; Pedersen, Are; Bartsch, Inka; Scanlan, Clare; Wilkes, Robert; Van den Bergh, Erika; Ar Gall, Erwan; Melo, Ricardo

    2014-06-01

    A methodology to classify rocky shores along the North East Atlantic (NEA) region was developed. Previously, biotypes and the variability of environmental conditions within these were recognized based on abiotic data. A biological validation was required in order to support the ecological meaning of the physical typologies obtained. A database of intertidal macroalgae species occurring in the coastal area between Norway and the South Iberian Peninsula was generated. Semi-quantitative abundance data of the most representative macroalgal taxa were collected in three levels: common, rare or absent. Ordination and classification multivariate analyses revealed a clear latitudinal gradient in the distribution of macroalgae species resulting in two distinct groups: one northern and one southern group, separated at the coast of Brittany (France). In general, the results based on biological data coincided with the results based on physical characteristics. The ecological meaning of the coastal waters classification at a broad scale shown in this work demonstrates that it can be valuable as a practical tool for conservation and management purposes.

  1. Practitioners' views of science needs for the Great Lakes coastal ecosystem

    USGS Publications Warehouse

    Pebbles, Victoria; Lillard, Elizabath C.; Seelbach, Paul W.; Fogarty, Lisa Reynolds

    2015-01-01

    In 2014, the U.S. Geological Survey Great Lake Science Center (USGS-GLSC) and the USGS-Michigan Water Science Center partnered with the Great Lakes Commission (GLC) to conduct a series of four workshops with coastal practitioners and managers across the Great Lakes basin to highlight the need for, and get input on, a Great Lakes regional coastal science strategy. To this end, this report is intended to help guide USGS coastal and nearshore science priorities, but may also help guide other science agencies. The USGS-GLSC partnership on this effort was part of a broader five-year Memorandum of Understanding between the USGS-GLSC and the GLC to enhance communications between coastal science and management communities within the Great Lakes region. This report presents a summary and analysis of participant feedback from the four workshops held in 2014. Participant feedback included participant worksheets as well as interactive drawing sessions, individual notes and group flip chart notes from each workshop. The results are presented as a series of findings that can be used to guide USGS coastal/nearshore science priorities in support of management needs at local, state and regional scales.

  2. TRANSFERRING TECHNOLOGIES, TOOLS AND TECHNIQUES: THE NATIONAL COASTAL ASSESSMENT

    EPA Science Inventory

    The purpose of the National Coastal Assessment (NCA) is to estimate the status and trends of the condition of the nation's coastal resources on a state, regional and national basis. Based on NCA monitoring from 1999-2001, 100% of the nation's estuarine waters (at over 2500 locati...

  3. Biogeochemical and Optical Analysis of Coastal DOM for Satellite Retrieval of Terrigenous DOM in the U.S. Middle Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Mannino, A.; Dyda, R. Y.; Hernes, P. J.; Hooker, Stan; Hyde, Kim; Novak, Mike

    2012-01-01

    Estuaries and coastal ocean waters experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine/estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements (elemental content, molecular analyses), optical properties (absorption) and remote sensing to examine terrestrial DOM contributions into the U.S. Middle Atlantic Bight (MAB). We measured lignin phenol composition, DOC and CDOM absorption within the Chesapeake and Delaware Bay mouths, plumes and adjacent coastal ocean waters to derive empirical relationships between CDOM and biogeochemical measurements for satellite remote sensing application. Lignin ranged from 0.03 to 6.6 ug/L between estuarine and outer shelf waters. Our results demonstrate that satellite-derived CDOM is useful as a tracer of terrigenous DOM in the coastal ocean

  4. Regional variations in the diversity and predicted metabolic potential of benthic prokaryotes in coastal northern Zhejiang, East China Sea

    PubMed Central

    Wang, Kai; Ye, Xiansen; Zhang, Huajun; Chen, Heping; Zhang, Demin; Liu, Lian

    2016-01-01

    Knowledge about the drivers of benthic prokaryotic diversity and metabolic potential in interconnected coastal sediments at regional scales is limited. We collected surface sediments across six zones covering ~200 km in coastal northern Zhejiang, East China Sea and combined 16 S rRNA gene sequencing, community-level metabolic prediction, and sediment physicochemical measurements to investigate variations in prokaryotic diversity and metabolic gene composition with geographic distance and under local environmental conditions. Geographic distance was the most influential factor in prokaryotic β-diversity compared with major environmental drivers, including temperature, sediment texture, acid-volatile sulfide, and water depth, but a large unexplained variation in community composition suggested the potential effects of unmeasured abiotic/biotic factors and stochastic processes. Moreover, prokaryotic assemblages showed a biogeographic provincialism across the zones. The predicted metabolic gene composition similarly shifted as taxonomic composition did. Acid-volatile sulfide was strongly correlated with variation in metabolic gene composition. The enrichments in the relative abundance of sulfate-reducing bacteria and genes relevant with dissimilatory sulfate reduction were observed and predicted, respectively, in the Yushan area. These results provide insights into the relative importance of geographic distance and environmental condition in driving benthic prokaryotic diversity in coastal areas and predict specific biogeochemically-relevant genes for future studies. PMID:27917954

  5. Establishing physiographic provinces for an integrative approach of the coastal zone management - The case of Rhodes Island, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Anagnostou, Vasileios; Angelos Hatiris, Georgios; Sioulas, Andreas

    2017-04-01

    The coastal zone is a dynamic natural system affected by terrestrial and marine processes as well as human intervention. The sediments derived by the land and supplied by the adjacent catchment are reworked and distributed according to the prevailing hydrodynamic regime. Based on inland and coastal physiography of Rhodes Island, six (6) main Physiographic Provinces were identified, which incorporate 56 main drainage basins and 168 interfluves. Moreover, the variety of coastal types was mapped and the total length of the island's coastline ( 285 km) was measured by using geospatial tools (ArcGIS and Google Earth). The coastline is comprised of depositional sandy beaches (44.5%), rocky coasts (47%) and coasts altered from anthropogenic constructions (8.5%). The Physiographic Provinces were defined in order to facilitate an Integrated Coastal Zone Management (ICZM) scheme for Rhodes Island and also adaptation measures. Overexploitation of the island's natural coastal environment by the tourism industry, mainly in the northern and northeastern parts of the island, left a series of adverse effects on the coastal area, such as erosion of beaches, water and energy overconsumption and land degradation.

  6. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by

  7. Impact of Ibrahim River on the spatial variation of coastal marine sediment characteristics

    NASA Astrophysics Data System (ADS)

    Ghsoub, Myriam; Fakhri, Milad; Courp, Thierry; Khalaf, Gaby; Buscail, Roselyne; Ludwig, Wolfgang

    2017-04-01

    In the aim to evaluate the impact of Ibrahim River on the environmental status of its coastal marine zone, sedimentological (grain size composition), geochemical (organic carbon, total nitrogen, total carbon, organic matter, calcium carbonate, organic and inorganic phosphate) biochemical (chlorophyll-a, pheopigments) and biological parameters (macro-invertebrates) of the sediment were analyzed and interpreted. Three sampling campaigns were executed using the scientific vessel CANA-CNRS on 26-4-2016, 20-6-2016 and 29-7-2016 successively. The samples were collected according to a middle horizontal transectat three different depths (10, 20, and 30 m).The grain size composition of the sediment was mainly composed of fine sand. The obtained values of organic matter ranged between 32 and 54 mg/g. The total nitrogen was between 0.006 and 0.014%. The percentage of calcium carbonate fluctuated between 20 and 30%. This situation may be attributed to the decomposition and the sinking of the shells and some aquatic organism such as Coccolithophores, foraminifers, gastropods and bivalves. Calcium carbonate may also have terrestrial origin related to the carbonated adjacent land and may be exported to the coastal area with the river inputs. The sediment of the studied area was richer in pheopigments (between 0.8 and 3 μg/g) than in chlorophyll-a (less than 0.4 μg/g) witnessing the presence of degraded material due to the high hydrodynamic conditions. Furthermore, the low values of chlorophyll-a witnessed the oligotrophy of the zone. The concentrations of total phosphate ranged between 97 and 148 μg/g. The dominance of the inorganic phosphate at all sampling points indicates that phosphorus is available for the producers, and that the studied area is less contaminated with anthropogenic discharges. This research project reveals the presence of gastropods, crustaceans and some polychaetes along the five studied stations. These groups are generally found in sandy bottoms

  8. The socio-economic significance of the Turkish coastal environment for sustainable development.

    PubMed

    Kuleli, Tuncay

    2015-05-01

    The objective of this study was to estimate the contribution from the coastal resources in the coastal region to the national economy for sustainable development. There was no separate data base for the coastal zone so that the contribution from the coastal resources in the coastal region to the national economy was not evaluated. In estimating the significance of Turkish coastal cities, indirect methods and the geographical information system were used. In conclusion, it was found that 61.09% of the total national gross domestic product and 50.75% of the national agricultural, 90.98% of the national fisheries, 68.19% of the national tourism and 71.82% of the national industrial gross domestic product came from the coastal zone. It was determined that while coastal cities of Turkey had 28.23% of the national surface area, the coastal district had 12.96%; in other words, 21.5 million (28.04%) of the national population lived in 101.5 thousand km(2) (12.96%) of the national surface area. Approximately 44% of the national gross domestic product comes from the top ten coastal cities. According to the contribution ratio to the national economy of each coastal city, these low-lying coastal cities have about $16 billion risk value. An analysis showed that the coastal zone is very important for the national economy of Turkey and also the pressure on the coastal zone is very high. At a time of increasing pressures on coastal resources of Turkey, the decision-makers need the most up-to-date information on the full range of values these resources provide in order to make decisions that best reflect the public interest.

  9. Fluoride occurrence in the groundwater in a coastal region of Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Rao, N. Subba; Rao, P. Surya; Dinakar, A.; Rao, P. V. Nageswara; Marghade, Deepali

    2017-06-01

    Fluoride (F-) content varies from 0.60 to 1.80 mg/L in the coastal region between Chirala and Ongole of Andhra Pradesh, India. It exceeds the threshold limit of 1.20 mg/L in 20 % of the total groundwater samples. The aim of the present study is to assess the controlling factors of F- content. The study area experiences a dry climate and is underlain by Charnockite Group of rocks over which the river and coastal alluvium occur. The results of the study identify the four factors that control the high F- content. First one is related to alkalinity, leading to active dissolution and leaching of F--bearing minerals, which supports the positive correlation of F- with pH and HCO3 -. A longer water residence time in the clays is the second factor, which activates not only solubility and dissolution of F--bearing minerals, but also anion exchange between F- and OH-. Third factor is a result of higher Na+ due to impact of saline water, ion exchange between Na+ and Ca2+, and precipitation of CaCO3. This reduces the Ca2+ content, causing dissolution of CaF2 to maintain the chemical equilibria, which is supported by positive correlation between Na2+ and F-. The influence of anthropogenic activities is the last factor, which acts as an additional source of F-. Thus, the shallow groundwater shows higher content of F- and the hydrogeochemical facies also support this hypothesis. The study suggests the remedial measures to reduce the F- content.

  10. Researchers focus attention on coastal response to climate change

    NASA Astrophysics Data System (ADS)

    Anderson, John; Rodriguez, Antonio; Fletcher, Charles; Fitzgerald, Duncan

    The world's population has been steadily migrating toward coastal cities, resulting in severe stress on coastal environments. But the most severe human impact on coastal regions may lie ahead as the rate of global sea-level rise accelerates and the impacts of global warming on coastal climates and oceanographic dynamics increase [Varekamp and Thomas, 1998; Hinrichsen, 1999; Goodwin et al., 2000]. Little is currently being done to forecast the impact of global climate change on coasts during the next century and beyond. Indeed, there are still many politicians, and even some scientists, who doubt that global change is a real threat to society.

  11. Phytoplankton community structure and nitrogen nutrition in Leeuwin Current and coastal waters off the Gascoyne region of Western Australia

    NASA Astrophysics Data System (ADS)

    Hanson, Christine E.; Waite, Anya M.; Thompson, Peter A.; Pattiaratchi, Charitha B.

    2007-04-01

    Within the coastal waters of the eastern Indian Ocean adjacent to Western Australia, we tested the hypothesis that regenerated production (and, by inference, the microbial food web) would predominate in oligotrophic Leeuwin Current (LC) and offshore (OS) surface waters. Conversely, we expected that new production would be more important within the ˜5 times more productive shelf countercurrents (Ningaloo and Capes Currents; NC&CC) and the LC&OS deep chlorophyll maximum (DCM). Phytoplankton species composition and abundance were assessed using both light microscopy and chemotaxonomic methods, and isotopic nitrogen uptake experiments ( 15NO 3-, 15NH 4+) were performed at trace (0.05 μM) and saturating (5.0 μM) levels. Phytoplankton community structure was statistically distinct between LC&OS and countercurrent regions. Picoplankton (unicellular cyanobacteria and prochlorophytes) accounted for a mean of 55-65% of pigment biomass in LC&OS waters, with haptophytes as the other primary contributor (21-32%). Conversely, within countercurrent and shelf regions, diatoms (up to 22%) and haptophytes (up to 57%) were more abundant, although cyanobacteria still played an important role (up to 40% of pigment biomass). Absolute NO 3- uptake rates for all samples ranged between 0.5 and 7.1 nmol L -1 h -1, and in countercurrent waters were not significantly different at the surface (3.0±2.1 nmol L -1 h -1; mean±SD) compared to the DCM (2.7±2.3 nmol L -1 h -1). However, in LC&OS waters, rates were significantly lower at the surface (1.2±0.7 nmol L -1 h -1) than the DCM (3.9±2.5 nmol L -1 h -1; p=0.05). These values represent conservative estimates for the region due to methodological difficulties encountered with nitrogen uptake experiments in these oligotrophic waters. In contrast with the distinct community composition between different water types, mean estimates of the f-ratio were similar across sampling depths and water types: 0.17±0.07 at the surface and 0.16±0.06 at

  12. Impact of oil spill from ship on air quality around coastal regions of Korea

    NASA Astrophysics Data System (ADS)

    Shon, Zang-Ho; Song, Sang-Keun

    2010-05-01

    Regional air quality around coastal regions, where regular maritime traffic emissions from cargo, other commercial, fishing and military vessels are significantly active, can be affected by their direct emission of primary air pollutants (NOx, SO2, particulate matter (PM), etc.). For instance, harbor traffic exerted an important impact on NO2, SO2, O3, and PM levels. In addition, regional air quality around coastal regions is also affected by oil spill caused by ship accident in the coast. On 7 Dec., 2007, a barge carrying a crane hit the oil tanker MT Hebei Sprit off the west coast of the Republic of Korea, Yellow Sea (approximately 10 km off the coast), at 0700 local time, causing the spill of total estimated 12,547 tons of Iranian heavy (IH) and Kuwait Export (KE) crude oils. Since then, oil began coming on shore late in the night on 7 Dec. More than 150 km of coastline had been identified as being impacted by 17 Dec. Much of the affected area is part of the Taean-gun National Park and the nearest coastal city to spilled area is Taean. On 8 Dec., the flow of oil from the tanker was stopped when the holes were patched. The accident is the worst oil spill in Korea and the spill area is about one-third of the size of the Exxon Valdez oil spill. The short- and long-term effects of oil spill on marine environment have been numerously studied, not on atmospheric environment. In this study, the air quality impact near spilled area by the evaporation of hydrocarbons from the oil spill is studied in detail. The evaporation rates of the volatile fractions of the crude oils released by oil spill were estimated based on their mole fractions of crude oils and mass transfer coefficients. Based on a molecular diffusion process, the flux of spilled oil component (Fivap, mol m-2 s-1) can be expressed as follows: Fivap = Kivap(Civap - C∞vap) (1) where Civap is concentration (mol m-3) of a component i of crude oil vapor in the air at the oil-air interface; C∞vap is the

  13. Progress and limitations on quantifying nutrient and carbon loading to coastal waters

    NASA Astrophysics Data System (ADS)

    Stets, E.; Oelsner, G. P.; Stackpoole, S. M.

    2017-12-01

    Riverine export of nutrients and carbon to estuarine and coastal waters are important determinants of coastal ecosystem health and provide necessary insight into global biogeochemical cycles. Quantification of coastal solute loads typically relies upon modeling based on observations of concentration and discharge from selected rivers draining to the coast. Most large-scale river export models require unidirectional flow and thus are referenced to monitoring locations at the head of tide, which can be located far inland. As a result, the contributions of the coastal plain, tidal wetlands, and concentrated coastal development are often poorly represented in regional and continental-scale estimates of solute delivery to coastal waters. However, site-specific studies have found that these areas are disproportionately active in terms of nutrient and carbon export. Modeling efforts to upscale fluxes from these areas, while not common, also suggest an outsized importance to coastal flux estimates. This presentation will focus on illustrating how the problem of under-representation of near-shore environments impacts large-scale coastal flux estimates in the context of recent regional and continental-scale assessments. Alternate approaches to capturing the influence of the near-coastal terrestrial inputs including recent data aggregation efforts and modeling approaches will be discussed.

  14. Coastal terrorism: using tabletop discussions to enhance coastal community infrastructure through relationship building.

    PubMed

    Richter, Jane; Livet, Melanie; Stewart, Jill; Feigley, Charles E; Scott, Geoff; Richter, Donna L

    2005-11-01

    The unique vulnerability of the nation's ports to terrorist attacks and other major disasters requires development of specialized training approaches that integrate and connect critical stakeholders. In 2003, the University of South Carolina Center for Public Health Preparedness developed and held its first Coastal Terrorism workshop in conjunction with the National Oceanic and Atmospheric Administration. Key federal, regional, state, and coastal agency leaders were invited to the 2-day event to explore, in a no-risk environment, the crucial role that public health agencies would play in a covert biological agent incident aboard a cruise ship. The incident began as a possible outbreak of a Norwalk-like viral agent; however, as the scenario unfolded, evidence of a terrorist plot emerged. This immediately shifted the scenario from a public health-dominated incident to one directed by law enforcement. Communication and coordination issues surfaced illustrating potential conflicts between disciplines and jurisdictions in terms of roles and responsibilities of responding agencies. The goals of the workshop were to facilitate communication and interagency networking among coastal stakeholders while assessing their training and research needs and increasing their familiarity with resources and protocols regarding a bioterrorist coastal event. Positive systems changes were observed.

  15. Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco).

    PubMed

    Re, V; Sacchi, E; Mas-Pla, J; Menció, A; El Amrani, N

    2014-12-01

    Groundwater pollution from anthropogenic sources is a serious concern affecting several coastal aquifers worldwide. Increasing groundwater exploitation, coupled with point and non-point pollution sources, are the main anthropogenic impacts on coastal environments and are responsible for severe health and food security issues. Adequate management strategies to protect groundwater from contamination and overexploitation are of paramount importance, especially in arid prone regions, where coastal aquifers often represent the main freshwater resource to sustain human needs. The Bou-Areg Aquifer (Morocco) is a perfect example of a coastal aquifer constantly exposed to all the negative externalities associated with groundwater use for agricultural purposes, which lead to a general increase in aquifer salinization. In this study data on 61 water samples, collected in June and November 2010, were used to: (i) track groundwater composition changes related to the use of irrigation water from different sources, (ii) highlight seasonal variations to assess aquifer vulnerability, and (iii) present a reproducible example of multi-tracer approach for groundwater management in rural coastal areas. Hydrogeochemical results show that Bou-Areg groundwater is characterized by - high salinity, associated with a remarkable increase in bicarbonate content in the crop growing season, due to more intense biological activity in irrigated soils. The coupled multi-tracer and statistical analysis confirms the strong dependency on irrigation activities as well as a clear identification of the processes governing the aquifer's hydrochemistry in the different seasons. Water Rock Interaction (WRI) dominates the composition of most of groundwater samples in the Low Irrigation season (L-IR) and Agricultural Return Flow (ARF) mainly affects groundwater salinization in the High Irrigation season (H-IR) in the same areas naturally affected by WRI. In the central part of the plain River Recharge (RR

  16. Creating a Coastal National Elevation Database (CoNED) for science and conservation applications

    USGS Publications Warehouse

    Thatcher, Cindy A.; Brock, John C.; Danielson, Jeffrey J.; Poppenga, Sandra K.; Gesch, Dean B.; Palaseanu-Lovejoy, Monica; Barras, John; Evans, Gayla A.; Gibbs, Ann

    2016-01-01

    The U.S. Geological Survey is creating the Coastal National Elevation Database, an expanding set of topobathymetric elevation models that extend seamlessly across coastal regions of high societal or ecological significance in the United States that are undergoing rapid change or are threatened by inundation hazards. Topobathymetric elevation models are raster datasets useful for inundation prediction and other earth science applications, such as the development of sediment-transport and storm surge models. These topobathymetric elevation models are being constructed by the broad regional assimilation of numerous topographic and bathymetric datasets, and are intended to fulfill the pressing needs of decision makers establishing policies for hazard mitigation and emergency preparedness, coastal managers tasked with coastal planning compatible with predictions of inundation due to sea-level rise, and scientists investigating processes of coastal geomorphic change. A key priority of this coastal elevation mapping effort is to foster collaborative lidar acquisitions that meet the standards of the USGS National Geospatial Program's 3D Elevation Program, a nationwide initiative to systematically collect high-quality elevation data. The focus regions are located in highly dynamic environments, for example in areas subject to shoreline change, rapid wetland loss, hurricane impacts such as overwash and wave scouring, and/or human-induced changes to coastal topography.

  17. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  18. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Wang, Weilai; Wu, Jianping; Fang, Lihua; Lai, Guijuan; Cai, Yan

    2017-03-01

    The sedimentary and crustal thicknesses and Poisson's ratios of the NE Tibetan Plateau and its adjacent regions are estimated by the h- κ stacking and CCP image of receiver functions from the data of 1,317 stations. The horizontal resolution of the obtained results is as high as 0.5° × 0.5°, which can be used for further high resolution model construction in the region. The crustal thicknesses from Airy's equilibrium are smaller than our results in the Sichuan Basin, Qilian tectonic belt, northern Alxa block and Qaidam Basin, which is consistent with the high densities in the mantle lithosphere and may indicate that the high-density lithosphere drags crust down overall. High Poisson's ratios and low velocity zones are found in the mid- and lower crust beneath eastern Qilian tectonic belt and the boundary areas of the Ordos block, indicating that partial melting may exist in these regions. Low Poisson's ratios and low-velocity anomalies are observed in the crust in the NE Tibetan Plateau, implying that the mafic lower crust is thinning or missing and that the mid- and lower crust does not exhibit melting or partial melting in the NE Tibetan Plateau, and weak flow layers are not likely to exist in this region.

  19. The numerical modeling the sensitivity of coastal wind and ozone concentration to different SST forcing

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan

    2012-01-01

    This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.

  20. EPA's National Coastal Condition Assessment: Pilot research ...

    EPA Pesticide Factsheets

    The EPA Office of Water’s 5-year cycles of national surveys of wetlands, lakes, rivers, and coastal areas help satisfy the assessment and antidegradation provisions of the Clean Water Act. Measuring extant conditions precedes measuring change in conditions. Surveys are challenged to adequately sample extreme conditions occurring in small areas. Extremely bad conditions are targets for remediation. Extremely good conditions are targets for protection. In 2010, the National Coastal Condition Assessment (NCCA) found the majority of the coastal Great Lakes (by area) was in good condition for water (60%) and sediment (51%) quality but not benthos (20%) and fish tissue contaminants (<1%). Low sampling success for biological sampling was an issue. As part of the 2014 Lake Erie CSMI field year, EPA’s Great Lakes National Program Office, working with the Office of Research and Development, began pilot research to integrate connecting channels into Great Lakes surveys. Assessments of the Huron-Erie corridor (HEC; 2014, 2015) and St Marys River (SMR; 2015, 2016) which have previously gone unassessed by NCCA, are being developed. Water, sediment, and benthic quality data from the 2014 HEC survey (n=60) were compared to 2010 NCCA data from adjacent lakes. Water quality rated “poor” (as % area) in HEC was intermediate compared to Lake Huron and Erie regardless of which lake-specific thresholds were used. However, the amount of area classified as “good” was highl

  1. Impact of Sea Level Rise on Mangrove Ecosystem and its Dependent Fishing Communities in the Coastal Regions of Cauvery Delta: A Message for Policy Planners to Frame Suitable Antcipatory Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Amsad Ibrahim Khan, S. K.; Ramachandran, A.; Kandasamy, P.; Selvam, V.; Shanmugam, P.

    2014-12-01

    Coastal adaptation to sea-level rise (SLR) in the deltaic region is a multidimensional and complex process requiring informed decisions based on predicted impact and vulnerability assessment of SLR. Elevation plays a key role in determining the impact and vulnerability of coastal land areas to inundation from SLR. Highly accurate mapping of the elevation of the landscape is essential to identify low-lying coastal deltaic regions with valuable ecosystem like mangroves and its dependent human communities that are potentially at risk of inundation. It is difficult for policy planners and decision makers to identify suitable adaptation strategies without having information on the predicted impact and degree of vulnerability of coastal systems to SLR. Importantly, modeling and mapping will provide valuable input to climate change adaptation planning (NOAA 2010). Unfortunately, the comprehensive range of information that is typically required is seldom available and rarely in the possession of decision makers responsible for management of the deltaic and coastal zone (O'Regan, 1996). The present study seeks to provide insights on predicted impact of climate change induced SLR on mangrove ecosystem and its dependent human communities of Pichavaram mangroves, located at the Vellar-Coleroon estuarine region on the banks of Cauvery delta, Tamil Nadu, India. Based on real-time on-ground elevation measurement by DGPS (Differential Global Positioning System) survey and by using GIS portals, the study has identified about 597 ha of mangroves (one third of total mangrove regions) and about 9 fishing hamlets with 12,000 and more of human population that directly depends on this mangrove ecosystem for their livelihood are under threat of inundation to the predicted impact of 0.5m SLR. The present study is intended to showcase a method by providing reliable scientific information on predicted impact of SLR on mangroves and its dependent human communities to policy planner for

  2. Coastal Geographic Structures in Coastal-Marine Environmental Management

    NASA Astrophysics Data System (ADS)

    Baklanov, P. Ya.; Ganzei, K. S.; Ermoshin, V. V.

    2018-01-01

    It has been proposed to distinguish the coastal geographic structures consisting of a spatial combination of three interconnected and mutually conditioned parts (coastal-territorial, coastal, coastal-marine), which are interlinked with each other by the cumulative effect of real-energy flows. Distinguishing specific resource features of the coastal structures, by which they play a connecting role in the complex coastalmarine management, has been considered. The main integral resource feature of the coastal structures is their connecting functions, which form transitional parts mutually connecting the coastal-territorial and coastalmarine environmental management.

  3. A Global Estimate of Seafood Consumption by Coastal Indigenous Peoples.

    PubMed

    Cisneros-Montemayor, Andrés M; Pauly, Daniel; Weatherdon, Lauren V; Ota, Yoshitaka

    2016-01-01

    Coastal Indigenous peoples rely on ocean resources and are highly vulnerable to ecosystem and economic change. Their challenges have been observed and recognized at local and regional scales, yet there are no global-scale analyses to inform international policies. We compile available data for over 1,900 coastal Indigenous communities around the world representing 27 million people across 87 countries. Based on available data at local and regional levels, we estimate a total global yearly seafood consumption of 2.1 million (1.5 million-2.8 million) metric tonnes by coastal Indigenous peoples, equal to around 2% of global yearly commercial fisheries catch. Results reflect the crucial role of seafood for these communities; on average, consumption per capita is 15 times higher than non-Indigenous country populations. These findings contribute to an urgently needed sense of scale to coastal Indigenous issues, and will hopefully prompt increased recognition and directed research regarding the marine knowledge and resource needs of Indigenous peoples. Marine resources are crucial to the continued existence of coastal Indigenous peoples, and their needs must be explicitly incorporated into management policies.

  4. Using Multitemporal Remote Sensing Imagery and Inundation Measures to Improve Land Change Estimates in Coastal Wetlands

    USGS Publications Warehouse

    Allen, Y.C.; Couvillion, B.R.; Barras, J.A.

    2012-01-01

    Remote sensing imagery can be an invaluable resource to quantify land change in coastal wetlands. Obtaining an accurate measure of land change can, however, be complicated by differences in fluvial and tidal inundation experienced when the imagery is captured. This study classified Landsat imagery from two wetland areas in coastal Louisiana from 1983 to 2010 into categories of land and water. Tide height, river level, and date were used as independent variables in a multiple regression model to predict land area in the Wax Lake Delta (WLD) and compare those estimates with an adjacent marsh area lacking direct fluvial inputs. Coefficients of determination from regressions using both measures of water level along with date as predictor variables of land extent in the WLD, were higher than those obtained using the current methodology which only uses date to predict land change. Land change trend estimates were also improved when the data were divided by time period. Water level corrected land gain in the WLD from 1983 to 2010 was 1 km 2 year -1, while rates in the adjacent marsh remained roughly constant. This approach of isolating environmental variability due to changing water levels improves estimates of actual land change in a dynamic system, so that other processes that may control delta development such as hurricanes, floods, and sediment delivery, may be further investigated. ?? 2011 Coastal and Estuarine Research Federation (outside the USA).

  5. Distribution and region-specific sources of Dechlorane Plus in marine sediments from the coastal East China Sea.

    PubMed

    Wang, Guoguang; Peng, Jialin; Hao, Ting; Liu, Yao; Zhang, Dahai; Li, Xianguo

    2016-12-15

    Dechlorane Plus (DP) is a highly chlorinated flame retardant and found to be ubiquitously present in the environment. We reported here the first record of DP in sediments from the coastal East China Sea (ECS). DP was detected in most of the surface sediments, and the concentrations ranged from 14.8 to 198pg/g dry weight (dw) with a mean value of 64.4pg/g dw. Overall, DP levels exhibited a seaward decreasing trend from the inshore toward outer sea. The fractional abundance of anti-DP (f anti ) showed regional discrepancies, attributing to different environmental behaviors of DP isomers. Depth profiles of DP in a sediment core from estuarine environment showed distinct fluctuation, and the core in open sea had stable deposition environment with two peak values of DP in ~1978 and 2000. The f anti exhibited downward decreasing trend prior to mid-1950s, indicating a preferential degradation of anti-DP and/or a greater adsorption capacity of syn-DP after its burial. Lignin and lipid biomarkers (∑C 27 +C 29 +C 31 n-alkanes) of terrestrial organic matters were introduced to identify region-specific sources of DP, and the results showed that DP in the northern inner shelf, southern inner shelf of 29 °N and mud area southwest of Cheju Island was mainly come from Yangtze River (YR) input, surface runoffs after discharge of local sources close to the Taizhou-Wenzhou Region and the atmospheric deposition from the North China and East Asia, respectively. The coastal ECS was an important reservoir of DP in the world, with mass inventory of approximately 310.7kg in the surface sediments (0-5cm). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Genetic evidence of local exploitation of Atlantic salmon in a coastal subsistence fishery in the Northwest Atlantic

    USGS Publications Warehouse

    Bradbury, Ian R.; Hamilton, Lorraine C.; Rafferty, Sara; Meerburg, David; Poole, Rebecca; Dempson, J. Brian; Robertson, Martha J.; Reddin, David G.; Bourret, Vincent; Dionne, Mélanie; Chaput, Gerald J.; Sheehan, Timothy F.; King, Tim L.; Candy, John R.; Bernatchez, Louis

    2014-01-01

    Fisheries targeting mixtures of populations risk the over utilization of minor stock constituents unless harvests are monitored and managed. We evaluated stock composition and exploitation of Atlantic salmon in a subsistence fishery in coastal Labrador, Canada using genetic mixture analysis and individual assignment with a microsatellite baseline (15 loci, 11 829 individuals, 12 regional groups) encompassing the species western Atlantic range. Bayesian and maximum likelihood mixture analyses of fishery samples over six years (2006-2011; 1 772 individuals) indicate contributions of adjacent stocks of 96-97%. Estimates of fishery associated exploitation were highest for Labrador salmon (4.2-10.6% per year) and generally < 1% for other regions. Individual assignment of fishery samples indicated non-local contributions to the fishery (e.g., Quebec, Newfoundland) were rare and primarily in southern Labrador, consistent with migration pathways utilizing the Strait of Belle Isle. This work illustrates how genetic analysis of mixed stock Atlantic salmon fisheries in the northwest Atlantic using this new baseline can disentangle exploitation and reveal complex migratory behaviours.

  7. Coastal hazards in a changing world: projecting and communicating future coastal flood risk at the local-scale using the Coastal Storm Modeling System (CoSMoS)

    NASA Astrophysics Data System (ADS)

    O'Neill, Andrea; Barnard, Patrick; Erikson, Li; Foxgrover, Amy; Limber, Patrick; Vitousek, Sean; Fitzgibbon, Michael; Wood, Nathan

    2017-04-01

    The risk of coastal flooding will increase for many low-lying coastal regions as predominant contributions to flooding, including sea level, storm surge, wave setup, and storm-related fluvial discharge, are altered with climate change. Community leaders and local governments therefore look to science to provide insight into how climate change may affect their areas. Many studies of future coastal flooding vulnerability consider sea level and tides, but ignore other important factors that elevate flood levels during storm events, such as waves, surge, and discharge. Here we present a modelling approach that considers a broad range of relevant processes contributing to elevated storm water levels for open coast and embayment settings along the U.S. West Coast. Additionally, we present online tools for communicating community-relevant projected vulnerabilities. The Coastal Storm Modeling System (CoSMoS) is a numerical modeling system developed to predict coastal flooding due to both sea-level rise (SLR) and plausible 21st century storms for active-margin settings like the U.S. West Coast. CoSMoS applies a predominantly deterministic framework of multi-scale models encompassing large geographic scales (100s to 1000s of kilometers) to small-scale features (10s to 1000s of meters), resulting in flood extents that can be projected at a local resolution (2 meters). In the latest iteration of CoSMoS applied to Southern California, U.S., efforts were made to incorporate water level fluctuations in response to regional storm impacts, locally wind-generated waves, coastal river discharge, and decadal-scale shoreline and cliff changes. Coastal hazard projections are available in a user-friendly web-based tool (www.prbo.org/ocof), where users can view variations in flood extent, maximum flood depth, current speeds, and wave heights in response to a range of potential SLR and storm combinations, providing direct support to adaptation and management decisions. In order to capture

  8. Regional chloride distribution in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Charles, Emmanuel

    2016-08-31

    Although additional offshore chloride data are available compared to 27 years ago (1989), the offshore information remains sparse, resulting in less confidence in the offshore interpretations than in the onshore interpretations. Regionally, the 250- and 10,000-mg/L isochlors tend to map progressively eastward from the deepest to the shallowest aquifers across the Northern Atlantic Coastal Plain aquifer system but with some exceptions. The additional data, conceptual understanding, and interpretations in the vicinity of the buried Chesapeake Bay impact structure in eastern Virginia resulted in substantial refinement of isochlors in that area. Overall, the interpretations in this study are updates of the previous regional study from 1989 but do not comprise major differences in interpretation and do not indicate regional movement of the freshwater-saltwater interface since then.

  9. Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways

    NASA Astrophysics Data System (ADS)

    Merkens, Jan-Ludolf; Reimann, Lena; Hinkel, Jochen; Vafeidis, Athanasios T.

    2016-10-01

    Existing quantifications of the Shared Socioeconomic Pathways (SSP) used for climate impact assessment do not account for subnational population dynamics such as coastward-migration that can be critical for coastal impact assessment. This paper extends the SSPs by developing spatial projections of global coastal population distribution for the five basic SSPs. Based on a series of coastal migration drivers we develop coastal narratives for each SSP. These narratives account for differences in coastal and inland population developments in urban and rural areas. To spatially distribute population, we use the International Institute for Applied Systems Analysis (IIASA) national population and urbanisation projections and employ country-specific growth rates, which differ for coastal and inland as well as for urban and rural regions, to project coastal population for each SSP. These rates are derived from spatial analysis of historical population data and adjusted for each SSP based on the coastal narratives. Our results show that, compared to the year 2000 (638 million), the population living in the Low Elevated Coastal Zone (LECZ) increases by 58% to 71% until 2050 and exceeds one billion in all SSPs. By the end of the 21st century, global coastal population declines to 830-907 million in all SSPs except for SSP3, where coastal population growth continues and reaches 1.184 billion. Overall, the population living in the LECZ is higher by 85 to 239 million compared to the original IIASA projections. Asia expects the highest absolute growth (238-303 million), Africa the highest relative growth (153% to 218%). Our results highlight regions where high coastal population growth is expected and will therefore face an increased exposure to coastal flooding.

  10. Seasonal Changes in Bacterial and Archaeal Gene Expression Patterns across Salinity Gradients in the Columbia River Coastal Margin

    PubMed Central

    Smith, Maria W.; Herfort, Lydie; Tyrol, Kaitlin; Suciu, Dominic; Campbell, Victoria; Crump, Byron C.; Peterson, Tawnya D.; Zuber, Peter; Baptista, Antonio M.; Simon, Holly M.

    2010-01-01

    Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April) and late summer (August). Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean) relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition. Furthermore, our results

  11. Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM

    NASA Astrophysics Data System (ADS)

    Beltrán-Abaunza, J. M.; Kratzer, S.; Brockmann, C.

    2013-11-01

    In this study, retrievals of the medium resolution imaging spectrometer (MERIS) reflectances and water quality products using 4 different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http.vattenkvalitet.se). The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL) processor, correcting for adjacency effects, improve the retrieval of spectral reflectance for all processors, Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin) processing algorithm, although overestimations in the range 18-26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (< 2.5 mg m-3), random errors dominated in the retrievals with the MEGS (MERIS ground segment processor) processor. The lowest bias and random errors were obtained with MEGS for suspended particulate matter, for which overestimations in te range of 8-16% were found. Only the FUB retrieved CDOM (Coloured Dissolved Organic Matter) correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a~local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in presence of high CDOM attenuation.

  12. Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM

    NASA Astrophysics Data System (ADS)

    Beltrán-Abaunza, J. M.; Kratzer, S.; Brockmann, C.

    2014-05-01

    In this study, retrievals of the medium resolution imaging spectrometer (MERIS) reflectances and water quality products using four different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http://vattenkvalitet.se). The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL) processor, correcting for adjacency effects, improves the retrieval of spectral reflectance for all processors. Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin) processing algorithm, although overestimations in the range 18-26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (< 2.5 mg m-3), data dispersion dominated in the retrievals with the MEGS (MERIS ground segment processor) processor. The lowest bias and data dispersion were obtained with MEGS for suspended particulate matter, for which overestimations in the range of 8-16% were found. Only the FUB retrieved CDOM (coloured dissolved organic matter) correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in the presence of high CDOM attenuation.

  13. A Voronoi interior adjacency-based approach for generating a contour tree

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  14. Coastal Chile Shaded Relief View

    NASA Image and Video Library

    2010-03-04

    This color-coded shaded relief view from NASA Shuttle Radar Topography Mission of coastal Chile indicates the epicenter red marker of the 8.8 earthquake on Feb. 27, 2010, just offshore of the Maule region in the Bahia de Chanco.

  15. Macroclimatic change expected to transform coastal wetland ecosystems this century

    USGS Publications Warehouse

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  16. Geomorphic and human influence on large-scale coastal change

    USGS Publications Warehouse

    Hapke, Cheryl J.; Kratzmann, Meredith G.; Himmelstoss, Emily A.

    2013-01-01

    An increasing need exists for regional-scale measurements of shoreline change to aid in management and planning decisions over a broad portion of the coast and to inform assessments of coastal vulnerabilities and hazards. A recent dataset of regional shoreline change, covering a large portion of the U.S. East coast (New England and Mid-Atlantic), provides rates of shoreline change over historical (~ 150 years) and recent (25–30 years) time periods making it ideal for a broad assessment of the regional variation of shoreline change, and the natural and human-induced influences on coastal behavior. The variable coastal landforms of the region provide an opportunity to investigate how specific geomorphic landforms relate to the spatial variability of shoreline change. In addition to natural influences on the rates of change, we examine the effects that development and human modifications to the coastline have on the measurements of regional shoreline change.Regional variation in the rates of shoreline change is a function of the dominant type and distribution of coastal landform as well as the relative amount of human development. Our results indicate that geomorphology has measurable influence on shoreline change rates. Anthropogenic impacts are found to be greater along the more densely developed and modified portion of the coast where jetties at engineered inlets impound large volumes of sediment resulting in extreme but discrete progradation updrift of jetties. This produces a shift in averaged values of rates that may mask the natural long-term record. Additionally, a strong correlation is found to exist between rates of shoreline change and relative level of human development. Using a geomorphic characterization of the types of coastal landform as a guide for expected relative rates of change, we found that the shoreline appears to be changing naturally only along sparsely developed coasts. Even modest amounts of development influence the rates of change

  17. Hyperspectral Imager for the Coastal Ocean (HICO): Overview, Operational Updates, and Coastal Ocean Applications

    NASA Technical Reports Server (NTRS)

    Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Evans, Cynthia A.; Stefanov, William L.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) was built to measure in-water properties of complex coastal regions. HICO enables synoptic coverage; 100-meter spatial resolution for sampling the variability and spatial irregularity of coastal waters; and high spectral resolution to untangle the signals from chlorophyll, colored dissolved organic matter, suspended sediments and varying bottom types. HICO was built by the Naval Research Laboratory, installed on the International Space Station (ISS) in September 2009, and operated for ONR for the first three years. In 2013, NASA assumed sponsorship of operations in order to leverage HICO's ability to address their Earth monitoring mission. This has opened up access of HICO data to the broad research community. Over 8000 images are now available on NASA's Ocean Color Website (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). Oregon State University's HICO website (http://hico.coas.oregonstate.edu) remains the portal for researchers to request new collections and access their requested data. We will present updates on HICO's calibration and improvements in geolocation and show examples of the use of HICO data to address issues in the coastal ocean and Great Lakes.

  18. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  19. Geologic effects and coastal vulnerability to sea-level rise, erosion, and storms

    USGS Publications Warehouse

    Williams, S.J.; Gutierrez, B.T.; Thieler, E.R.; Pendleton, E.

    2008-01-01

    A combination of natural and human factors are driving coastal change and making coastal regions and populations increasingly vulnerable. Sea level, a major agent of coastal erosion, has varied greatly from -120 m below present during glacial period low-stands to + 4 to 6 m above present during interglacial warm periods. Geologic and tide gauge data show that global sea level has risen about 12 to 15 cm during the past century with satellite measurements indicating an acceleration since the early 1990s due to thermal expansion and ice-sheet melting. Land subsidence due to tectonic forces and sediment compaction in regions like the mid-Atlantic and Louisiana increase the rate of relative sea-level rise to 40 cm to 100 cm per century. Sea- level rise is predicted to accelerate significantly in the near future due to climate change, resulting in pervasive impacts to coastal regions and putting populations increasingly at risk. The full implications of climate change for coastal systems need to be understood better and long-term plans are needed to manage coasts in order to protect natural resources and mitigate the effects of sea-level rise and increased storms on human infrastructure. 

  20. Modeling water exchange and contaminant transport through a Baltic coastal region.

    PubMed

    Engqvist, Anders; Döös, Kristofer; Andrejev, Oleg

    2006-12-01

    The water exchange of the Baltic coastal zone is characterized by its seasonally varying regimes. In the safety assessment of a potential repository for spent nuclear fuel, it is important to assess the consequences of a hypothetical leak of radionuclides through the seabed into a waterborne transport phase. In particular, estimates of the associated residence times in the near-shore coastal zone are of interest. There are several methods to quantify such measures, of which three are presented here. Using the coastal location of Forsmark (Sweden) as an example, methods based on passive tracers, particle trajectories, and the average age distribution of exogeneous water parcels are compared for a representative one-year cycle. Tracer-based methods can simulate diffusivity more realistically than the other methods. Trajectory-based methods can handle Lagrangian dispersion processes due to advection but neglect diffusion on the sub-grid scale. The method based on the concept of average age (AvA) of exogeneous water can include all such sources simultaneously not only boundary water bodies but also various (fresh)-water discharges. Due to the inclusion of sub-grid diffusion this method gives a smoother measure of the water renewal. It is shown that backward in time trajectories and AvA-times are basically equipollent methods, yielding correlated results within the limits set by the diffusivity.

  1. Global patterns of phytoplankton dynamics in coastal ecosystems

    USGS Publications Warehouse

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  2. Turnover and release of P-, N-, Si-nutrients in the Mexicali Valley (Mexico): interactions between the lower Colorado River and adjacent ground- and surface water systems.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Camacho-Ibar, V F; Ortiz-Campos, E; Barth, J A C

    2015-04-15

    A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Adapting to Sea Level Rise to the Year 2100 and Beyond in the State of Florida, USA: A Regional Approach Based upon Common Vulnerabilities and the Utility of Shared Resources

    NASA Astrophysics Data System (ADS)

    Parkinson, R. W.; Harlem, P. W.; Meeder, J.

    2014-12-01

    regional boundaries could be expanded to include adjacent non-coastal counties. However, differences in the perception of risk and associated vulnerability between coastal and inland counties may complicate timely collaboration. References: [1] A. Levermann et al. (2013), The Multi-Millennial Sea-Level Commitment of Global Warming, doi:10.1073/pnas.1219414110.

  4. Cascading disasters in the huge coastal aquifer of Salento (Apulia region, Southern Italy) ensuing droughts

    NASA Astrophysics Data System (ADS)

    Parisi, Alessandro; Fidelibus, Maria Dolores

    2017-04-01

    Physical extremes can be distinguished in "sudden physical extremes" (e.g. earthquakes, tsunami) and "progressive physical extremes" (e.g. drought, desertification, landslides). They differ for frequency, intensity, spatial extent, duration and timing of occurrence. If a physical extreme, by interacting with human systems, induces negative consequences, its outcome can be a "disaster". The disasters are, in both above cases, characterized by a few phases: physical extreme occurrence, emergency, response, and recovery. However, in the case of a progressive physical extreme, the disaster develops with an overlap in the time of the above-mentioned phases. When the events are repetitive, the emergency planning (which follows a cycle) succeeds with preparedness and mitigation with the intent of reducing the risk. Both the sudden and progressive physical extremes produce cascading effects of consequences on social, environmental and economic systems. Disasters consequent to sudden and progressive extremes show, however, some differences, mainly attributable to the "visibility" of the effects and to their time scale of evolution. As matter of fact, a disaster consequent to a progressive physical extreme produces "emerging signals" that are often invisible. Moreover, the emergency phase can arise with a time delay compared to the occurrence of the physical extreme, depending on the spatial scale of impacted system. The above differences allow defining "creeping disasters" the potential disasters related to progressive physical extremes. This study deals with some peculiar "cascading disasters" consequent to drought, which is the main "creeping disaster", namely the groundwater drought and the consequent salinization of coastal aquifers. In regional flow systems, their effects are invisible in the immediate to common people (and often even to managers) because of the concealed nature of groundwater; moreover, they are difficult to assess because of the shift over time of

  5. POLLUTION AND ECOSYSTEM HEALTH - ASSESSING ECOLOGICAL CONDITION OF COASTAL ECOSYSTEMS

    EPA Science Inventory

    Summers, Kevin. 2004. Pollution and Ecosystem Health - Assessing Ecological Condition of Coastal Ecosystems. Presented at the White Water to Blue Water (WW2BW) Miami Conference, 21-26 March 2004, Miami, FL. 1 p. (ERL,GB R973).

    Throughout the coastal regions and Large Mari...

  6. Genetic diversity of the HLA system in human populations from the Sierra (Andean), Oriente (Amazonian) and Costa (Coastal) regions of Ecuador.

    PubMed

    Galarza, Juan M; Barquera, Rodrigo; Álvarez, Ana M Tito; Hernández Zaragoza, Diana I; Sevilla, Gabriela Peralta; Tamayo, Andrea; Pérez, Mariel; Dávila, David; Birnberg, Lotty; Alonzo, Víctor Acuña; Krause, Johannes; Grijalva, Marcelo

    2018-06-13

    We studied HLA class I (HLA-A, -B) and class II (HLA-DRB1, -DQB1) alleles by PCR-SSP based typing in a total of 1101 Ecuadorian individuals from three regions of the country, the Coastal region, the Andean region, and the Amazonian region, to obtain information regarding allelic and haplotypic frequencies and their linkage disequilibrium. We find that the most frequent HLA haplotypes with significant linkage disequilibrium in those populations are HLA-A∗24∼B∗35∼DRB1∗04∼DQB1∗03:02, A∗02∼B∗35∼DRB1∗04∼DQB1∗03:02, A∗24∼B∗35∼DRB1∗14∼DQB1∗03:01, A∗02∼B∗35∼DRB1∗14∼DQB1∗03:01 and A∗02∼B∗40:02∼DRB1∗04∼DQB1∗03:02. The only non-Native American haplotype with frequency > 1% shared by all groups was A∗29∼B∗44∼DRB1∗07∼DQB1∗02. Admixture estimates obtained by a maximum likelihood method using HLA-B as genetic estimator revealed that the main genetic components for this sample of mixed-ancestry Ecuadorians are Native American (ranging from 52.86% to 63.83%) and European (from 28.95% to 46.54%), while an African genetic component was only apparent in the Coastal region (18.19%). Our findings provide a starting point for the study of population immunogenetics of Ecuadorian populations. Copyright © 2018. Published by Elsevier Inc.

  7. Global climate change and intensification of coastal ocean upwelling.

    PubMed

    Bakun, A

    1990-01-12

    A mechanism exists whereby global greenhouse warning could, by intensifying the alongshore wind stress on the ocean surface, lead to acceleration of coastal upwelling. Evidence from several different regions suggests that the major coastal upwelling systems of the world have been growing in upwelling intensity as greenhouse gases have accumulated in the earth's atmosphere. Thus the cool foggy summer conditions that typify the coastlands of northern California and other similar upwelling regions might, under global warming, become even more pronounced. Effects of enhanced upwelling on the marine ecosystem are uncertain but potentially dramatic.

  8. Guidelines for Measuring Coastal Acidification

    EPA Science Inventory

    The purpose of this presentation is to provide EPA colleagues in region 1 with background information related to, and a description of, the recently published document entitled "Guidelines for Measuring Changes in seawater pH and associated carbonate chemistry in coastal env...

  9. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    NASA Astrophysics Data System (ADS)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng; Elmhamdi, Abouazza; Su, Jiangtao; Liu, Ying D.; Kordi, Ayman. S.

    2017-08-01

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory. The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observed at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s-1. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.

  10. Modification of misovortices during landfall in the Japan Sea coastal region

    NASA Astrophysics Data System (ADS)

    Kato, Ryohei; Kusunoki, Kenichi; Inoue, Hanako Y.; Arai, Ken-ichiro; Nishihashi, Masahide; Fujiwara, Chusei; Shimose, Ken-ichi; Mashiko, Wataru; Sato, Eiichi; Saito, Sadao; Hayashi, Syugo; Yoshida, Satoru; Suzuki, Hiroto

    2015-05-01

    Misovortices frequently occur near the coastline of the Japan Sea during wintertime cold air outbreaks, generally developing over the sea and moving inland. To clarify the behavior of misovortices during landfall, temporal changes in the intensity and tilt of 12 misovortices over the coastal region of the Japan Sea were investigated during the winters of 2010/11 and 2011/12 using an X-band Doppler radar. For 11 vortices whose diameters were more than twice the effective radar beamwidth, the temporal change in the peak tangential velocity at lower levels (averaged below 400 m AGL) was analyzed. It was found that 8 out of the 11 vortices decreased after progressing between 0 and 6 km inland. For the remaining three vortices, the patterns of Doppler velocity couplet became unclear between 0 and 5 km inland, suggesting that these vortices also decayed soon after landfall. For four of the vortices, for which the analysis of the temporal evolution of tilt with height was made possible by several successive volume scans, the forward tilt with height increased after landfall. This study showed that modification to both the intensity and tilt with height of misovortices occurred after landfall.

  11. Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas

    NASA Astrophysics Data System (ADS)

    Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Schofield, Oscar

    2017-01-01

    Mixed-layer depth (MLD) has been widely linked to phytoplankton dynamics in Antarctica's coastal regions; however, inconsistent definitions have made intercomparisons among region-specific studies difficult. Using a data set with over 20,000 water column profiles corresponding to 32 Slocum glider deployments in three coastal Antarctic regions (Ross Sea, Amundsen Sea, and West Antarctic Peninsula), we evaluated the relationship between MLD and phytoplankton vertical distribution. Comparisons of these MLD estimates to an applied definition of phytoplankton bloom depth, as defined by the deepest inflection point in the chlorophyll profile, show that the maximum of buoyancy frequency is a good proxy for an ecologically relevant MLD. A quality index is used to filter profiles where MLD is not determined. Despite the different regional physical settings, we found that the MLD definition based on the maximum of buoyancy frequency best describes the depth to which phytoplankton can be mixed in Antarctica's coastal seas.

  12. California heat waves: their spatial evolution, variation, and coastal modulation by low clouds

    NASA Astrophysics Data System (ADS)

    Clemesha, Rachel E. S.; Guirguis, Kristen; Gershunov, Alexander; Small, Ivory J.; Tardy, Alexander

    2018-06-01

    We examine the spatial and temporal evolution of heat waves through California and consider one of the key modulating factors of summertime coastal climate—coastal low cloudiness (CLC). Heat waves are defined relative to daytime maximum temperature (Tmax) anomalies after removing local seasonality and capture unseasonably warm events during May—September. California is home to several diverse climate regions and characteristics of extreme heat events are also variable throughout these regions. Heat wave events tend to be shorter, but more anomalously intense along the coast. Heat waves typically impact both coastal and inland regions, although there is more propensity towards coastally trapped events. Most heat waves with a strong impact across regions start at the coast, proceed inland, and weaken at the coast before letting up inland. Typically, the beginning of coastal heat waves are associated with a loss of CLC, followed by a strong rebound of CLC starting close to the peak in heat wave intensity. The degree to which an inland heat wave is expressed at the coast is associated with the presence of these low clouds. Inland heat waves that have very little expression at the coast tend to have CLC present and an elevated inversion base height compared with other heat waves.

  13. Coastal river plumes: Collisions and coalescence

    USGS Publications Warehouse

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas < 10,000 km2), such as found along most active geologic coastal margins, were much more likely to have river plumes that collide and interact than coastal settings with large rivers (watershed areas > 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and

  14. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    PubMed

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  15. Comparing maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada produced by two different methods

    USGS Publications Warehouse

    Simpson, James J.; Hufford, Gary L.; Daly, Christopher; Berg, Jared S.; Fleming, Michael D.

    2005-01-01

    Maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada, produced by Oregon State University's Spatial Climate Analysis Service (SCAS) and the Alaska Geospatial Data Clearinghouse (AGDC), were analyzed. Because both sets of maps are generally available and in use by the community, there is a need to document differences between the processes and input data sets used by the two groups to produce their respective set of maps and to identify similarities and differences between the two sets of maps and possible reasons for the differences. These differences do not affect the observed large-scale patterns of seasonal and annual variability. Alaska is divided into interior and coastal zones, with consistent but different variability, separated by a transition region. The transition region has high interannual variability but low long-term mean variability. Both data sets support the four major ecosystems and ecosystem transition zone identified in our earlier work. Differences between the two sets of maps do occur, however, on the regional scale; they reflect differences in physiographic domains and in the treatment of these domains by the two groups (AGDC, SCAS). These differences also provide guidance for an improved observational network for Alaska. On the basis of validation with independent in situ data, we conclude that the data set produced by SCAS provides the best spatial coverage of Alaskan long-term mean monthly surface temperature and precipitation currently available. ?? The Arctic Institute of North America.

  16. Coastal monitoring of the May 2005 dredge disposal offshore of Ocean Beach, San Francisco, Calif.

    USGS Publications Warehouse

    Barnard, Patrick L.; Hanes, Daniel M.

    2006-01-01

    Ocean Beach, California, contains an erosion hot spot in the shadow of the San Francisco ebb tidal delta south of Sloat Boulevard that threatens valuable public infrastructure as well as the safe recreational use of the beach. In an effort to reduce the erosion at this location and avoid hazardous navigation conditions at the current disposal site (SF-8), a new plan for the management of sediment dredged annually from the main shipping channel at the mouth of Francisco Bay was implemented in May 2005 by the United States Army Corps of Engineers, San Francisco District (COE). The objective for COE was to perform a test dredge disposal of ~230,000 m3 (300,000 yd3) of sand just offshore of the erosion hot spot, in depths between approximately 9 and 14 m. This disposal site was chosen because it is in a location where the strong tidal currents associated with the mouth of San Francisco Bay and waves can potentially feed sediment toward the littoral zone in the reach of the beach that is experiencing critical erosion. The onshore migration of sediment from the target disposal location might feed the primary longshore bar or the nearshore zone, and provide a buffer to erosion that peaks during winter months when large waves impact the region. The U.S. Geological Survey (USGS), in collaboration with the Sea Floor Mapping Lab (SFML) of California State University, Monterey Bay, monitored the initial bathymetric evolution of the test dredge disposal site and the adjacent coastal region from May 2005 to November 2005. This paper reports on this monitoring effort and assesses the short-term coastal response.

  17. THE ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM: NATIONAL COASTAL ASSESSMENT - LESSONS LEARNED

    EPA Science Inventory

    The purpose of the Environmental Monitoring and Assessment Program's National Coastal Assessment is to estimate the current status, extent, changes, and trends in ecological indicators of the condition of the nation's coastal resources on a state, regional and national basis. Bas...

  18. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    NASA Astrophysics Data System (ADS)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  19. A Global Estimate of Seafood Consumption by Coastal Indigenous Peoples

    PubMed Central

    Pauly, Daniel; Weatherdon, Lauren V.

    2016-01-01

    Coastal Indigenous peoples rely on ocean resources and are highly vulnerable to ecosystem and economic change. Their challenges have been observed and recognized at local and regional scales, yet there are no global-scale analyses to inform international policies. We compile available data for over 1,900 coastal Indigenous communities around the world representing 27 million people across 87 countries. Based on available data at local and regional levels, we estimate a total global yearly seafood consumption of 2.1 million (1.5 million–2.8 million) metric tonnes by coastal Indigenous peoples, equal to around 2% of global yearly commercial fisheries catch. Results reflect the crucial role of seafood for these communities; on average, consumption per capita is 15 times higher than non-Indigenous country populations. These findings contribute to an urgently needed sense of scale to coastal Indigenous issues, and will hopefully prompt increased recognition and directed research regarding the marine knowledge and resource needs of Indigenous peoples. Marine resources are crucial to the continued existence of coastal Indigenous peoples, and their needs must be explicitly incorporated into management policies. PMID:27918581

  20. Controls on the interannual variability of hypoxia in a subtropical embayment and its adjacent waters in the Guangdong coastal upwelling system, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Cheng, Weicong; Chen, Yuren; Yu, Liuqian; Gong, Wenping

    2018-06-01

    Coastal embayments located downwind of large rivers under an upwelling-favorable wind are prone to develop low-oxygen or hypoxic conditions in their bottom water. One such embayment is Mirs Bay, off the Guangdong coast, which is affected by upwelling and the Pearl River Estuary (PRE) plume during summer. The relative importance of physical and biochemical processes on the interannual variability of hypoxia in Mirs Bay and its adjacent waters was investigated using statistical analyses of monthly hydrographic and water quality monitoring data from 2001 to 2015. The results reveal that the southwesterly wind duration and the PRE river discharge together explain 49% of the interannual variability in the size of the hypoxic area, whereas inclusion of the nutrient concentrations inside Mirs Bay and phytoplankton on the shelf explains 75% of the interannual variability in the size of the hypoxic area. This finding suggests that the interannual variability of hypoxia in Mirs Bay is regulated by coupled physical and biochemical processes. Increase of the hypoxic area under a longer-lasting southwesterly wind is caused by increased stratification, extended bottom water residence time, and onshore transport of a low-oxygen water mass induced by stable upwelling. In contrast, a reduction in the size of the hypoxic area may be attributed to a decrease in the surface water residence time of the particulate organic matter outside Mirs Bay due to increased discharge from the PRE. The results also show that the effects of allochthonous particulate organic matter outside Mirs Bay on bottom hypoxia cannot be neglected.

  1. Satellite tagging highlights the importance of productive Mozambican coastal waters to the ecology and conservation of whale sharks.

    PubMed

    Rohner, Christoph A; Richardson, Anthony J; Jaine, Fabrice R A; Bennett, Michael B; Weeks, Scarla J; Cliff, Geremy; Robinson, David P; Reeve-Arnold, Katie E; Pierce, Simon J

    2018-01-01

    The whale shark Rhincodon typus is an endangered, highly migratory species with a wide, albeit patchy, distribution through tropical oceans. Ten aerial survey flights along the southern Mozambican coast, conducted between 2004-2008, documented a relatively high density of whale sharks along a 200 km stretch of the Inhambane Province, with a pronounced hotspot adjacent to Praia do Tofo. To examine the residency and movement of whale sharks in coastal areas around Praia do Tofo, where they may be more susceptible to gill net entanglement, we tagged 15 juveniles with SPOT5 satellite tags and tracked them for 2-88 days (mean = 27 days) as they dispersed from this area. Sharks travelled between 10 and 2,737 km (mean = 738 km) at a mean horizontal speed of 28 ± 17.1 SD km day -1 . While several individuals left shelf waters and travelled across international boundaries, most sharks stayed in Mozambican coastal waters over the tracking period. We tested for whale shark habitat preferences, using sea surface temperature, chlorophyll- a concentration and water depth as variables, by computing 100 random model tracks for each real shark based on their empirical movement characteristics. Whale sharks spent significantly more time in cooler, shallower water with higher chlorophyll- a concentrations than model sharks, suggesting that feeding in productive coastal waters is an important driver of their movements. To investigate what this coastal habitat choice means for their conservation in Mozambique, we mapped gill nets during two dedicated aerial surveys along the Inhambane coast and counted gill nets in 1,323 boat-based surveys near Praia do Tofo. Our results show that, while whale sharks are capable of long-distance oceanic movements, they can spend a disproportionate amount of time in specific areas, such as along the southern Mozambique coast. The increasing use of drifting gill nets in this coastal hotspot for whale sharks is likely to be a threat to regional

  2. Satellite tagging highlights the importance of productive Mozambican coastal waters to the ecology and conservation of whale sharks

    PubMed Central

    Richardson, Anthony J.; Jaine, Fabrice R. A.; Bennett, Michael B.; Weeks, Scarla J.; Cliff, Geremy; Robinson, David P.; Reeve-Arnold, Katie E.; Pierce, Simon J.

    2018-01-01

    The whale shark Rhincodon typus is an endangered, highly migratory species with a wide, albeit patchy, distribution through tropical oceans. Ten aerial survey flights along the southern Mozambican coast, conducted between 2004–2008, documented a relatively high density of whale sharks along a 200 km stretch of the Inhambane Province, with a pronounced hotspot adjacent to Praia do Tofo. To examine the residency and movement of whale sharks in coastal areas around Praia do Tofo, where they may be more susceptible to gill net entanglement, we tagged 15 juveniles with SPOT5 satellite tags and tracked them for 2–88 days (mean = 27 days) as they dispersed from this area. Sharks travelled between 10 and 2,737 km (mean = 738 km) at a mean horizontal speed of 28 ± 17.1 SD km day−1. While several individuals left shelf waters and travelled across international boundaries, most sharks stayed in Mozambican coastal waters over the tracking period. We tested for whale shark habitat preferences, using sea surface temperature, chlorophyll-a concentration and water depth as variables, by computing 100 random model tracks for each real shark based on their empirical movement characteristics. Whale sharks spent significantly more time in cooler, shallower water with higher chlorophyll-a concentrations than model sharks, suggesting that feeding in productive coastal waters is an important driver of their movements. To investigate what this coastal habitat choice means for their conservation in Mozambique, we mapped gill nets during two dedicated aerial surveys along the Inhambane coast and counted gill nets in 1,323 boat-based surveys near Praia do Tofo. Our results show that, while whale sharks are capable of long-distance oceanic movements, they can spend a disproportionate amount of time in specific areas, such as along the southern Mozambique coast. The increasing use of drifting gill nets in this coastal hotspot for whale sharks is likely to be a threat to regional

  3. Approximate changes in water levels in wells completed in the Chicot and Evangeline aquifers, 1977-92 and 1991-92, and measured compaction, 1973-91 in the Houston-Galveston region, Texas.

    USGS Publications Warehouse

    Kasmarek, Mark C.; Barbie, Dana L.; Campodonico, Al

    1992-01-01

    This report is one in a series of reports that depict water-level changes since 1977 and compaction of subsurface material since 1973.  The report was prepared in cooperation with the Harris-Galveston Coastal Subsidence District and the City of Houston, and presents maps showing the approximate changes in water-levels in wells completed in the Chicot and Evangeline aquifers, 1977-92 and 1991-92 (figs. 1-4), and measured compations, 1973-91 (figs. 5 and 6), in the Houston-Galveston region.  The Houston-Galveston region includes Harris and Galveston Counties and adjacent parts of Brazoria, Fort Bend, Waller, Montgomery, Liberty, and Chambers Counties.

  4. Approximate changes in water levels in wells completed in the Chicot and Evangeline aquifers, 1977-93 and 1992-93, and measured compaction, 1973-92, in the Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Coplin, L.S.; Campodonico, Al

    1993-01-01

    This report is one in a series of reports that depict water-level changes since 1977 and compaction of subsurface material since 1973.  The report was prepared in cooperation with the Harris-Galveston Coastal Subsidence District and the City of Houston, and presents maps showing the approximate changes in water levels in wells completed in the Chicot and Evangeline aquifers, 1977-93 and 1992-93 (figs. 1-4), and measured compaction, 1973-92 (figs. 5 and 6), in the Houston-Galveston region.  The Houston-Galveston region includes Harris and Galveston Counties and adjacent parts of Brazoria, Fort Bend, Waller, Montgomery, Liberty, and Chambers Counties.

  5. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    NASA Astrophysics Data System (ADS)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  6. Shape Up or Ship Out: Can We Enhance Productivity in Coastal Aquaculture to Compete with Other Uses?

    PubMed Central

    Schrobback, Peggy; Pascoe, Sean; Coglan, Louisa

    2014-01-01

    Coastal resources are coming under increasing pressure from competition between recreational, commercial and conservation uses. This is particularly so in coastal areas adjacent to major population centres. Given high recreational and conservation values in such areas, economic activities need to be highly efficient in order to persist. Management of these industries must therefore also encourage efficient production and full utilisation of the areas available. In order to achieve this, managers must first understand the level and drivers of productivity, and how these can be influenced. In this study, by way of illustration, the focus was on the Sydney rock oyster industry within Queensland's Moreton Bay, a multiple use marine park with high recreational and conservation value adjacent to Australia’s third largest city. Productivity of the oyster industry in Moreton Bay is currently low compared to historic levels, and management has an objective of reversing this trend. It is unclear whether this difference is due to oyster farmers’ business choices and personal characteristics or whether varying environmental conditions in the Moreton Bay limit the capacity of the oyster industry. These require different management responses in order to enhance productivity. The study examined different productivity measures of the oyster industry using data envelopment analysis (DEA) to determine where productivity gains can be made and by how much. The findings suggest that the industry is operating at a high level of capacity utilisation, but a low level of efficiency. The results also suggest that both demographic and environmental conditions affect technical efficiency in the Bay, with water characteristics improvements and appropriate training potentially providing the greatest benefits to the industry. Methods used in this study are transferable to other industries and provide a means by which coastal aquaculture may be managed to ensure it remains competitive with

  7. Shape up or ship out: can we enhance productivity in coastal aquaculture to compete with other uses?

    PubMed

    Schrobback, Peggy; Pascoe, Sean; Coglan, Louisa

    2014-01-01

    Coastal resources are coming under increasing pressure from competition between recreational, commercial and conservation uses. This is particularly so in coastal areas adjacent to major population centres. Given high recreational and conservation values in such areas, economic activities need to be highly efficient in order to persist. Management of these industries must therefore also encourage efficient production and full utilisation of the areas available. In order to achieve this, managers must first understand the level and drivers of productivity, and how these can be influenced. In this study, by way of illustration, the focus was on the Sydney rock oyster industry within Queensland's Moreton Bay, a multiple use marine park with high recreational and conservation value adjacent to Australia's third largest city. Productivity of the oyster industry in Moreton Bay is currently low compared to historic levels, and management has an objective of reversing this trend. It is unclear whether this difference is due to oyster farmers' business choices and personal characteristics or whether varying environmental conditions in the Moreton Bay limit the capacity of the oyster industry. These require different management responses in order to enhance productivity. The study examined different productivity measures of the oyster industry using data envelopment analysis (DEA) to determine where productivity gains can be made and by how much. The findings suggest that the industry is operating at a high level of capacity utilisation, but a low level of efficiency. The results also suggest that both demographic and environmental conditions affect technical efficiency in the Bay, with water characteristics improvements and appropriate training potentially providing the greatest benefits to the industry. Methods used in this study are transferable to other industries and provide a means by which coastal aquaculture may be managed to ensure it remains competitive with other

  8. Estuarine Human Activities Modulate the Fate of Changjiang-derived Materials in Adjacent Seas

    NASA Astrophysics Data System (ADS)

    WU, H.

    2017-12-01

    Mega constructions have been built in many river estuaries, but their environmental consequences in the adjacent coastal oceans were often overlooked. This issue was addressed with an example of the Changjiang River Estuary, which was recently built with massive navigation and reclamation constructions in recent years. Based on the model validations against cruises data and the numerical scenario experiments, it is shown that the estuarine constructions profoundly affected the fates of riverine materials in an indeed large offshore area. This is because estuarine dynamics are highly sensitive to their bathymetries. Previously, the Three Gorges Dam (TGD) was thought to be responsible for some offshore environmental changes through modulating the river plume extension, but here we show that its influences are secondary. Since the TGD and the mega estuarine constructions were built during the similar period, their influences might be confused.

  9. HYDROBIOLOGICAL CHARACTERISTICS OF THE COASTAL LAGOONS AT HUGH TAYLOR BIRCH STATE RECREATION AREA, FORT LAUDERDALE, FLORIDA: A HISTORICAL PERSPECTIVE.

    USGS Publications Warehouse

    Brock, Robert J.

    1987-01-01

    The author presents initial results of an ongoing study of Southeast Florida coastal lagoon lakes. Objectives include presenting environmental conditions within and adjacent to the lagoons under a variety of hydrologic conditions and to determine water-quality changes in ground water and surface water and how these changes in water quality affect lagoonal biological communities within the lagoons.

  10. Weather Condition dominates the Regional PM2.5 Pollutions in the Eastern Coastal Provinces of China during winter

    NASA Astrophysics Data System (ADS)

    Cai, Zhe; Jiang, Fei; Chen, Jingming; Jiang, Ziqiang

    2017-04-01

    China has been suffering from severe particulate matter (PM) pollution in recent years. Both pollution area and pollution levels are increasing gradually. The PM pollution episodes not only occur in the traditional developed areas like Yangtze River Delta (YRD) and Beijing-Tianjin-Hebei (BTH) region, but also frequently happen in the whole eastern coastal provinces (ECPs) of China. Based on hourly PM2.5 concentrations during December 2013 February 2014 of 55 cities located in the ECPs, we investigated the spatial and temporal variabilities of PM2.5 concentrations and the corresponding meteorological conditions during winter. The results shown that basically the seasonal mean concentrations over the whole ECPs exceeded the China's national standard of 75 μg/m3, and the most polluted area with mean concentrations greater than 150 μg/m3 were located in the southwest of Hebei and the west of Shandong provinces. From December to February, there was a decrease trend for the PM2.5 pollution in most areas, especially in the YRD region, while the PM2.5 concentrations over north of Hebei province increased. The spatial distributions and monthly variations are strongly related to the weather conditions. Overall, severe PM pollution was corresponding to a stable weather condition, i.e., small Sea Level Pressure (SLP) gradient, lower Planetary Boundary Layer (PBL) height and weaker wind fields. Statistics shown that the changes of mean PM2.5 concentrations over the ECPs region usually lagged behind the variations of PBL height and wind speeds about 12 18 hours. The variations of weather conditions could explain about 71% (R2) of the overall changes of PM2.5 concentrations in the ECPs region. This study gives a full insight into the PM2.5 pollution in the area of eastern coastal provinces of China during winter, which would be helpful to predict and control the PM2.5 pollution for this area in the future.

  11. Activation gating kinetics of GIRK channels are mediated by cytoplasmic residues adjacent to transmembrane domains.

    PubMed

    Sadja, Rona; Reuveny, Eitan

    2009-01-01

    G-protein-coupled inwardly rectifying potassium channels (GIRK/Kir3.x) are involved in neurotransmission-mediated reduction of excitability. The gating mechanism following G protein activation of these channels likely proceeds from movement of inner transmembrane helices to allow K(+) ions movement through the pore of the channel. There is limited understanding of how the binding of G-protein betagamma subunits to cytoplasmic regions of the channel transduces the signal to the transmembrane regions. In this study, we examined the molecular basis that governs the activation kinetics of these channels, using a chimeric approach. We identified two regions as being important in determining the kinetics of activation. One region is the bottom of the outer transmembrane helix (TM1) and the cytoplasmic domain immediately adjacent (the slide helix); and the second region is the bottom of the inner transmembrane helix (TM2) and the cytoplasmic domain immediately adjacent. Interestingly, both of these regions are sufficient in mediating the kinetics of fast activation gating. This result suggests that there is a cooperative movement of either one of these domains to allow fast and efficient activation gating of GIRK channels.

  12. Chemical characterization of PM2.5 from a southern coastal city of China: applications of modeling and chemical tracers in demonstration of regional transport.

    PubMed

    Zhou, Jiamao; Ho, Steven Sai Hang; Cao, Junji; Zhao, Zhuzi; Zhao, Shuyu; Zhu, Chongshu; Wang, Qiyuan; Liu, Suixin; Zhang, Ting; Zhao, Youzhi; Wang, Ping; Tie, Xuexi

    2018-05-11

    An intensive sampling campaign of airborne fine particles (PM 2.5 ) was conducted at Sanya, a coastal city in Southern China, from January to February 2012. Chemical analyses and mass reconstruction were used identify potential pollution sources and investigate atmospheric reaction mechanisms. A thermodynamic model indicated that low ammonia and high relative humidity caused the aerosols be acidic and that drove heterogeneous reactions which led to the formation of secondary inorganic aerosol. Relationships among neutralization ratios, free acidity, and air-mass trajectories suggest that the atmosphere at Sanya was impacted by both local and regional emissions. Three major transport pathways were identified, and flow from the northeast (from South China) typically brought the most polluted air to Sanya. A case study confirmed strong impact from South China (e.g., Pearl River Delta region) (contributed 76.8% to EC, and then this result can be extended to primary pollutants) when the northeast winds were dominant. The Weather Research Forecasting Black carbon model and trace organic markers were used to apportion local pollution versus regional contributions. Results of the study offer new insights into the atmospheric conditions and air pollution at this coastal city.

  13. Using Satellite-derived Ice Concentration to Represent Antarctic Coastal Polynyas in Ocean Climate Models

    NASA Technical Reports Server (NTRS)

    Stoessel, Achim; Markus, Thorsten

    2003-01-01

    The focus of this paper is on the representation of Antarctic coastal polynyas in global ice-ocean general circulation models (OGCMs), in particular their local, regional, and high-frequency behavior. This is verified with the aid of daily ice concentration derived from satellite passive microwave data using the NASATeam 2 (NT2) and the bootstrap (BS) algorithms. Large systematic regional and temporal discrepancies arise, some of which are related to the type of convection parameterization used in the model. An attempt is made to improve the fresh-water flux associated with melting and freezing in Antarctic coastal polynyas by ingesting (assimilating) satellite ice concentration where it comes to determining the thermodynamics of the open-water fraction of a model grid cell. Since the NT2 coastal open-water fraction (polynyas) tends to be less extensive than the simulated one in the decisive season and region, assimilating NT2 coastal ice concentration yields overall reduced net freezing rates, smaller formation rates of Antarctic Bottom Water, and a stronger southward flow of North Atlantic Deep Water across 30 S. Enhanced net freezing rates occur regionally when NT2 coastal ice concentration is assimilated, concomitant with a more realistic ice thickness distribution and accumulation of High-Salinity Shelf Water. Assimilating BS rather than NT2 coastal ice concentration, the differences to the non-assimilated simulation are generally smaller and of opposite sign. This suggests that the model reproduces coastal ice concentration in closer agreement with the BS data than with the NT2 data, while more realistic features emerge when NT2 data are assimilated.

  14. Ocean and Coastal Law

    NASA Astrophysics Data System (ADS)

    Ross, David A.

    First of all, this is not the typical book that one expects to see reviewed in Eos, but, read on. It should be clear, by now, even to the most esoteric geophysicist, that lawyers and jurists are taking very close looks at many coastal zone and offshore marine activities. More importantly, there are a wide variety of laws (both at the state and the national levels) and international regulations that determine how we now use or will use our coastal region including how and where we will do marine scientific research. Recently, a Presidential Proclamation (March 1983) declared a 200-mile exclusive economic zone for the United States. The President, in the accompanying statements to the Proclamation, has called special attention to polymetallic sulfide deposits (Is someone in the White House reading Eos?) in what will now be U.S. waters (i.e., the Juan de Fuca region). Well, if you or your colleagues want to know more about U.S. and individual state rules for management and use of our marine areas, this might be the book for you.

  15. 30,000 years of hydroclimatic variability in the coastal southwest United States: regional synthesis and forcings analysis.

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.

    2015-12-01

    The coastal southwest United States is characterized by a winter dominated hydroclimate. Far from dependable, this region's supply of winter precipitation is highly variable and often characterized by hydrologic opposites - droughts and floods. Predicting future precipitation and hydrologic dynamics requires a paleoperspective. Here, we present an up-to-date synthesis of hydroclimatic variability over the past 30,000 years. A variety of terrestrial-based studies are examined and compared to understand patterns of regional hydroclimatic change. This comparison is extended into the San Joaquin Basin of California where future climate change will impact the region's agricultural stability and economy. Particularly interesting is the apparent role that Pacific sea surface temperatures (SSTs) play in modulating the region's hydroclimate over a variety of timescales. Are past periods of above average Pacific SSTs analogs for future global warming? If yes, the region might expect an increase in winter precipitation as SSTs rise in response to global warming. However, how this potential precipitation increase is manifest is unknown. For example, will the intensity of precipitation events increase and thus present increased flood hazards and diminished freshwater capture? Finally, we present evidence for changes in the source of winter precipitation over time as well as ecological responses to past hydrologic change.

  16. Stratigraphic and hydrogeologic framework of the Alabama Coastal Plain

    USGS Publications Warehouse

    Davis, M.E.

    1988-01-01

    Tertiary and Cretaceous sand aquifers of the Southeastern United States Coastal Plain comprise a major multlstate aquifer system informally defined as the Southeastern Coastal Plain aquifer system, which is being studied as part of the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) program. The major objectives of each RASA study are to identify, delineate, and map the distribution of permeable clastlc rock, to examine the pattern of ground-water flow within the regional aquifers, and to develop digital computer simulations to understand the flow system. The Coastal Plain aquifers in Alabama are being studied as a part of this system. This report describes the stratlgraphlc framework of the Cretaceous, Tertiary, and Quaternary Systems in Alabama to aid in delineating aquifers and confining units within the thick sequence of sediments that comprises the Southeastern Coastal Plain aquifer system in the State. Stratigraphlc units of Cretaceous and Tertiary age that make up most of the aquifer system in the Coastal Plain of Alabama consist of clastlc deposits of Early Cretaceous age; the Coker and Gordo Formations of the Tuscaloosa Group, Eutaw Formation, and Selma Group of Late Cretaceous age; and the Midway, Wilcox, and Clalborne Groups of Tertiary age. However, stratigraphlc units of late Eocene to Holocene age partially overlie and are hydraulically connected to clastic deposits in southern Alabama. These upper carbonate and clastlc stratlgraphic units also are part of the adjoining Florldan and Gulf Coastal Lowlands aquifer systems. The Coastal Plain aquifer system is underlain by pre-Cretaceous rocks consisting of low-permeabillty sedimentary rocks of Paleozolc, Triassic, and Jurassic age, and a complex of metamorphic and igneous rocks of Precambrian and Paleozolc age similar to those found near the surface in the Piedmont physiographic province. Twelve hydrogeologlc units in the Alabama Coastal Plain are defined--slx aquifers and six confining

  17. Visualizing Coastal Erosion, Overwash and Coastal Flooding in New England

    NASA Astrophysics Data System (ADS)

    Young Morse, R.; Shyka, T.

    2017-12-01

    Powerful East Coast storms and their associated storm tides and large, battering waves can lead to severe coastal change through erosion and re-deposition of beach sediment. The United States Geological Survey (USGS) has modeled such potential for geological response using a storm-impact scale that compares predicted elevations of hurricane-induced water levels and associated wave action to known elevations of coastal topography. The resulting storm surge and wave run-up hindcasts calculate dynamic surf zone collisions with dune structures using discrete regime categories of; "collision" (dune erosion), "overwash" and "inundation". The National Weather Service (NWS) recently began prototyping this empirical technique under the auspices of the North Atlantic Regional Team (NART). Real-time erosion and inundation forecasts were expanded to include both tropical and extra-tropical cyclones along vulnerable beaches (hotspots) on the New England coast. Preliminary results showed successful predictions of impact during hurricane Sandy and several intense Nor'easters. The forecasts were verified using observational datasets, including "ground truth" reports from Emergency Managers and storm-based, dune profile measurements organized through a Maine Sea Grant partnership. In an effort to produce real-time visualizations of this forecast output, the Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS) and the Gulf of Maine Research Institute (GMRI) partnered with NART to create graphical products of wave run-up levels for each New England "hotspot". The resulting prototype system updates the forecasts twice daily and allows users the ability to adjust atmospheric and sea state input into the calculations to account for model errors and forecast uncertainty. This talk will provide an overview of the empirical wave run-up calculations, the system used to produce forecast output and a demonstration of the new web based tool.

  18. An analytical solution of groundwater level fluctuation in a U-shaped leaky coastal aquifer

    NASA Astrophysics Data System (ADS)

    Huang, Fu-Kuo; Chuang, Mo-Hsiung; Wang, Shu-chuan

    2017-04-01

    Tide-induced groundwater level fluctuations in coastal aquifers have attracted much attention in past years, especially for the issues associated with the impact of the coastline shape, multi-layered leaky aquifer system, and anisotropy of aquifers. In this study, a homogeneous but anisotropic multi-layered leaky aquifer system with U-shaped coastline is considered, where the subsurface system consisting of an unconfined aquifer, a leaky confined aquifer, and a semi-permeable layer between them. The analytical solution of the model obtained herein may be considered as an extended work of two solutions; one was developed by Huang et al. (Huang et al. Tide-induced groundwater level fluctuation in a U-shaped coastal aquifer, J. Hydrol. 2015; 530: 291-305) for two-dimensional interacting tidal waves bounded by three water-land boundaries while the other was by Li and Jiao (Li and Jiao. Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system, J. Hydrol. 2002; 268: 234-243) for two-dimensional interacting tidal waves of leaky coastal aquifer system adjacent to a cross-shore estuary. In this research, the effects of leakage and storativity of the semi-permeable layer on the amplitude and phase shift of the tidal head fluctuation, and the influence of anisotropy of the aquifer are all examined for the U-shaped leaky coastal aquifer. Some existing solutions in literatures can be regarded as the special cases of the present solution if the aquifer system is isotropic and non-leaky. The results obtained will be beneficial to coastal development and management for water resources.

  19. Doubling of coastal flooding frequency within decades due to sea-level rise

    USGS Publications Warehouse

    Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.

    2017-01-01

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  20. Regionalization and Evaluation of Impacts of Climate Change on Mexican Coasts

    NASA Astrophysics Data System (ADS)

    Nava-Sanchez, E. H.; Murillo-Jimenez, J. M.; Godinez-Orta, L.; Morales-Perez, R. A.

    2009-04-01

    Mexican coasts exhibit a high variety of geoforms and processes, and consequently, are exposed to a variability of types and impact levels of geological hazards. Tropical cyclones are the most devastating hazards for the Mexican coast, although, impact levels are higher on the southern coast of both Atlantic and Pacific oceans. The second dangerous geo-hazards are earthquakes and tsunamis, which affect all Pacific coast, causing more damage the earthquakes generated in the Cocos Trench. For seismic hazards, there is a regionalization of the Mexican territory, however, even though the high levels of damages caused by other natural hazards, there is a lack of initiatives for performing atlas of natural hazards or coastal management plans. Exceptions are the local scale atlas of natural hazards by the Mexican Geological Survey or some other local scale atlas made with several errors by non experience private consultant companies. Our work shows results of analyses of coastal geological hazards associated to global warming such as the sea level rise, and the increase in strength of some coastal processes. Initially, due to the high diversity in coastal environments for the Mexican coast, it was considered that, a regional characterization of the coastal zone, and the gathering of environmental data for determining levels of impact of the various coastal hazards, as an evaluation of coastal vulnerability. Thus, the basic criteria for defining Coastal Regions, in order of importance, were the following: geomorphology, climate, geology, tectonics, and oceanography. Also, some anthropogenic factors were taken in account for the coastal regionalization, such as civil construction along the coastline, land used and modification of the fluvial system. The analysis of such criteria, allows us to classify the Mexican coasts in 10 Coastal Regions. On the Pacific coast regions are: (I) Pacific Coast of Baja California, (II) Gulf Coast of Baja California, (III) Coastal Plain of

  1. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    NASA Astrophysics Data System (ADS)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  2. Carpinteria Coastal Processes Study, 2005-2007; Final Report

    USGS Publications Warehouse

    Barnard, Patrick L.; Revell, David L.; Eshleman, Jodi L.; Mustain, Neomi

    2008-01-01

    PROJECT SUMMARY The United States Geological Survey (USGS), in collaboration with the University of California, Santa Cruz (UCSC), conducted a two-year study of the beach and nearshore coastal processes for the City of Carpinteria and adjacent beaches. The work was performed in response to and worked directly with the United States Army Corps of Engineers (USACE) Project Management Plan (PMP) for the City of Carpinteria: * Carpinteria Shoreline, Santa Barbara County, California PMP (June 2003) www.spl.usace.army.mil/cms/index.php?option=com_content&task=view&id=487&Itemid=31 The City of Carpinteria has experienced significant erosion and storm damage over the last decade (Figure 1.1). A USACE reconnaissance survey has shown shoreline retreat rates that approach 2 m/yr in some locations. The goals of this project are to analyze historical trends/changes in the beach and nearshore environment, document local wave and tidal currents, and assess current beach and nearshore conditions in terms of grain size, beach size and shape, seasonal changes, and nearshore bathymetry. In summary, this work serves to quantify sediment sources, transport and sinks throughout the study area to support USACE and the City of Carpinteria coastal management activities.

  3. Index based regional vulnerability assessment to cyclones hazards of coastal area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Mohammad, Q. A.; Kervyn, M.; Khan, A. U.

    2016-12-01

    Cyclone, storm surge, coastal flooding, salinity intrusion, tornado, nor'wester, and thunderstorms are the listed natural hazards in the coastal areas of Bangladesh. Bangladesh was hit by devastating cyclones in 1970, 1991, 2007, 2009, and 2016. Intensity and frequency of natural hazards in the coastal area are likely to increase in future due to climate change. Risk assessment is one of the most important steps of disaster risk reduction. As a climate change victim nation, Bangladesh claims compensation from green climate fund. It also created its own climate funds. It is therefore very important to assess vulnerability of the coast of Bangladesh to natural hazards for efficient allocation of financial investment to support the national risk reduction. This study aims at identifying the spatial variations in factors contributing to vulnerability of the coastal inhabitants of Bangladesh to natural hazards. An exploratory factor analysis method has been used to assess the vulnerability at each local administrative unit. The 141 initially selected 141 socio-economic indicators were reduced to 41 by converting some of them to meaningful widely accepted indicators and removing highly correlated indicators. Principle component analysis further reduced 41 indicators to 13 dimensions which explained 79% of total variation. PCA dimensions show three types of characteristics of the people that may lead people towards vulnerability. They are (a) demographic, education and job opportunities, (b) access to basic needs and facilities, and (c) special needs people. Vulnerability maps of the study area has been prepared by weighted overlay of the dimensions. Study revealed that 29 and 8 percent of total coastal area are very high and high vulnerable to natural hazards respectively. These are distributed along sea boundary and major rivers. Comparison of this spatial distribution with the capacities to face disaster show that highly vulnerable areas are well covered by cyclone

  4. Natural and Human Influences on Water Quality in a Shallow Regional Unconsolidated Aquifer, Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.

    2008-01-01

    Data collected from more than 400 wells in the surficial unconfined aquifer in the Northern Atlantic Coastal Plain (New York through North Carolina) were compiled and analyzed to improve understanding of multiple natural and human influences on water quality in such shallow regional aquifers. Geochemical patterns were identified and described through principal components analysis on major ions, and correlation and logistic regression were used to relate observed concentrations of nitrate and selected pesticide compounds (atrazine, metolachlor, simazine, and deethylatrazine, an atrazine degradate) and volatile organic compounds (chloroform, 1,1,1-trichloroethane, tetrachlorethene, and methyl tert-butyl ether) to likely influences, such as observed geochemical patterns, land use, hydrogeology, and soils. Variability in major-ion concentrations is primarily related to ionic strength and redox condition. Concentrations of nitrate, pesticides, and volatile organic compounds are related to natural conditions, as well as the distribution of likely sources reflected in land use. Nitrate is most common in aerobic ground water and in relatively well-drained areas, for example; concentrations greater than 0.4 milligrams per liter may result from a variety of human activities, although concentrations greater than 3 milligrams per liter are more likely in agricultural areas. Atrazine, deethylatrazine, and metolachlor also are related to geochemical patterns, likely because ground-water geochemistry reflects hydrogeologic and soil conditions affecting pesticide transport to the water table. Results demonstrate the value of geochemical information along with the distribution of sources and other influences to understanding the regional occurrence of selected compounds in ground water. Such influences are not unique to the Northern Atlantic Coastal Plain, and thus observations and interpretations are relevant to broader areas.

  5. The Arctic Coastal Erosion Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Jennifer M.; Thomas, Matthew Anthony; Bull, Diana L.

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible bymore » all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  6. [Links and effects of globalization on social and economic organization and malaria prevalence in the Coastal Region of Livingston, Guatemala].

    PubMed

    Nelson, Caro Méndez

    2007-01-01

    As a result of Guatemala's growing involvement in international markets and policies favoring industrial and export-oriented efforts, the population has experienced substantial changes in its economic and social organization, with consequences for the health and well-being of marginal groups. The article discusses various links between global processes, national policies and priorities, social and economic strategies, and malaria prevalence, with the Coastal Region of Livingston, Guatemala as the case study carried out between 2001 and 2003.

  7. Comparative oceanography of coastal lagoons

    NASA Technical Reports Server (NTRS)

    Kjerfve, Bjorn

    1986-01-01

    The hypothesis that physical lagoon characteristics and variability depend on the channel connecting the lagoon to the adjacent coastal ocean is evaluated. The geographical, hydrological, and oceanographic characteristics of 10 lagoon systems are described and analyzed; these oceanographic features are utilized to classify the lagoon systems. Choked lagoons (Laguna Joyuda, Coorong, Lake St.Lucia, Gippsland Lakes, Lake Songkla/Thale Luang/Thale Noi, and Lagoa dos Patos) are prevalent on coasts with high wave energy and low tidal range; restricted lagoons (Lake Pontchartrain and Laguna de Terminos) are located on low/medium wave energy coasts with a low tidal range; and leaky lagoons (Mississippi Sound and Belize Lagoon/Chetumal Bay) are connected to the ocean by wide tidal passes that transmit oceanic effects into the lagoon with a minimum of resistance. The data support the hypothesis that the nature of the connecting channel controls system functions.

  8. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory . The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observedmore » at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s{sup −1}. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.« less

  9. Under-estimated wave contribution to coastal sea-level rise

    NASA Astrophysics Data System (ADS)

    Melet, Angélique; Meyssignac, Benoit; Almar, Rafael; Le Cozannet, Gonéri

    2018-03-01

    Coastal communities are threatened by sea-level changes operating at various spatial scales; global to regional variations are associated with glacier and ice sheet loss and ocean thermal expansion, while smaller coastal-scale variations are also related to atmospheric surges, tides and waves. Here, using 23 years (1993-2015) of global coastal sea-level observations, we examine the contribution of these latter processes to long-term sea-level rise, which, to date, have been relatively less explored. It is found that wave contributions can strongly dampen or enhance the effects of thermal expansion and land ice loss on coastal water-level changes at interannual-to-multidecadal timescales. Along the US West Coast, for example, negative wave-induced trends dominate, leading to negative net water-level trends. Accurate estimates of past, present and future coastal sea-level rise therefore need to consider low-frequency contributions of wave set-up and swash.

  10. Florida coastal ecological characterization: a socioeconomic study of the southwestern region. Volume II. Data appendix, Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, C.O.; Parsons, J.W.

    1983-08-01

    Data are compiled from existing sources on the social and economic characteristics of the southwestern coastal region of Florida, which is made up of Charlotte, Collier, DeSoto, Hillsborough, Lee, Manatee, Monroe, Pasco, Pinellas, and Sarasota Counties. Described are the components and interrelationships among complex processes that include population and demographics characteristics, mineral production, multiple-use conflicts, recreation and tourism, agricultural production, sport and commercial fishing, transportation, industrial and residential development, and environmental issues and regulations. Energetics models of socioeconomic systems are also presented. This volume contains appendices presenting data on land use, public utilities, transportation, recreation and tourism. 21 figures, 141more » tables.« less

  11. Estimating the Provision of Ecosystem Services by Gulf of Mexico Coastal Wetlands.

    EPA Science Inventory

    Gulf of Mexico (GOM) coastal wetlands contribute to human well-being by providing many ecosystem services (e.g., commercial and recreational fishery support, protection of coastal communities from storm surge, water quality improvement, and carbon sequestration). The GOM region c...

  12. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    USGS Publications Warehouse

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal

  13. Government conservation policies on Mexican coastal areas: is "top-down" management working?

    PubMed

    Nava, Héctor; Ramírez-Herrera, M Teresa

    2011-12-01

    Marine and terrestrial ecosystems are declining globally due to environmental degradation and poorly planned resource use. Traditionally, local government agencies have been responsible of the management of natural reserves to preserve biodiversity. Nonetheless, much of these approaches have failed, suggesting the development of more integrative strategies. In order to discuss the importance of a holistic approach in conservation initiatives, coastal and underwater landscape value and biological/environmental indicators of coral reef degradation were assessed using the study case of Zihuatanejo, Guerrero coastal area. This area shelters representative coral reef structures of the Eastern Pacific coast and its terrestrial biodiversity and archaeology enhance the high value of its coastal area. This study explored the landscape value of both terrestrial and marine ecosystems using the geomorphosite approach in two sites on the Zihuatanejo coastal area: Caleta de Chon and Manzanillo Beach. Sedimentation rate, water transparency, chlorophyll and total suspended solids were recorded underwater in each site for environmental characterization. 50 photo-quadrants on five transects were surveyed between 3-4m depth to record coverage (%) of living corals, dead corals, algae, sand and rocks. The conservation status of coral reefs was assessed by the coral mortality index (MI). Landscape values showed that both terrestrial and marine ecosystems had important scientific and aesthetic values, being Manzanillo Beach the site with the highest potential for conservation initiatives (TtV = 14.2). However, coral reefs face elevated sedimentation rates (up to 1.16 kg/m2d) and low water transparency (less of 5m) generated by coastal land use changes that have increased soil erosion in the adjacent coastal area. High coverage of dead corals (23.6%) and algae (up to 29%) confirm the low values in conservation status of coral reefs (MI = 0.5), reflecting a poorly-planned management

  14. Deconvolving the Fate of Carbon in Coastal Sediments

    NASA Astrophysics Data System (ADS)

    Van der Voort, Tessa S.; Mannu, Utsav; Blattmann, Thomas M.; Bao, Rui; Zhao, Meixun; Eglinton, Timothy I.

    2018-05-01

    Coastal oceans play a crucial role in the global carbon cycle, and are increasingly affected by anthropogenic forcing. Understanding carbon cycling in coastal environments is hindered by convoluted sources and myriad processes that vary over a range of spatial and temporal scales. In this study, we deconvolve the complex mosaic of organic carbon manifested in Chinese Marginal Sea (CMS) sediments using a novel numerical clustering algorithm based on 14C and total OC content. Results reveal five regions that encompass geographically distinct depositional settings. Complementary statistical analyses reveal contrasting region-dependent controls on carbon dynamics and composition. Overall, clustering is shown to be highly effective in demarcating areas of distinct organic facies by disentangling intertwined organic geochemical patterns resulting from superimposed effects of OC provenance, reworking and deposition on a shelf region exhibiting pronounced spatial heterogeneity. This information will aid in constraining region-specific budgets of carbon burial and carbon cycle processes.

  15. Remote Sensing of Coastal and Inland Waters

    NASA Astrophysics Data System (ADS)

    De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.

    2016-02-01

    The new generation of satellites (e.g. Landsat 8, HyspIRI, Sentinel 2 and Sentinel 3 …) contain sensors that enable monitoring at increased spatial and/or spectral resolution. This opens a wide range of new opportunities, amongst others improved observation of coastal and inland waters. Algorithms for the pre-processing of these images and the derivation of Level 2 products for these waters need to take into account the specific nature of these environments, with adjacency effects of the nearby land and complex interactions of the optially active substances with varying degrees of turbidity. Here a new atmospheric correction algorithm, OPERA, is presented which can deal with these highly complex environments and which is sensor generic. OPERA accounts for the contribution of adjacency effects and provides surface reflectances for both land and water targets. OPERA is extended with a level 2 water algorithm providing TSM and turbidity estimates for a wide variety of water types. The algorithm is based on a multi wavelength switching approach using shorter wavelengths in low turbid waters and long NIR and SWIR wavelengths for highly and extremely turbid waters. Results are shown for Landsat-8, Sentinel-2 and MERIS for a variety of scenes, validated with field aeronet and turbidity data.

  16. Regional Assessment of Human Fecal Contamination in Southern California Coastal Drainages

    PubMed Central

    Cao, Yiping; Raith, Meredith R.; Smith, Paul D.; Griffith, John F.; Weisberg, Stephen B.; Schriewer, Alexander; Sheldon, Andrew; Crompton, Chris; Gregory, Jason; Guzman, Joe; Othman, Laila; Manasjan, Mayela; Choi, Samuel; Rapoport, Shana; Steele, Syreeta; Nguyen, Tommy; Yu, Xueyuan

    2017-01-01

    Host-associated genetic markers that allow for fecal source identification have been used extensively as a diagnostic tool to determine fecal sources within watersheds, but have not been used in routine monitoring to prioritize remediation actions among watersheds. Here, we present a regional assessment of human marker prevalence among drainages that discharge to the U.S. southern California coast. Approximately 50 samples were analyzed for the HF183 human marker from each of 22 southern California coastal drainages under summer dry weather conditions, and another 50 samples were targeted from each of 23 drainages during wet weather. The HF183 marker was ubiquitous, detected in all but two sites in dry weather and at all sites during wet weather. However, there was considerable difference in the extent of human fecal contamination among sites. Similar site ranking was produced regardless of whether the assessment was based on frequency of HF183 detection or site average HF183 concentration. However, site ranking differed greatly between dry and wet weather. Site ranking also differed greatly when based on enterococci, which do not distinguish between pollution sources, vs. HF183, which distinguishes higher risk human fecal sources from other sources, indicating the additional value of the human-associated marker as a routine monitoring tool. PMID:28777324

  17. Regional Assessment of Human Fecal Contamination in Southern California Coastal Drainages.

    PubMed

    Cao, Yiping; Raith, Meredith R; Smith, Paul D; Griffith, John F; Weisberg, Stephen B; Schriewer, Alexander; Sheldon, Andrew; Crompton, Chris; Amenu, Geremew G; Gregory, Jason; Guzman, Joe; Goodwin, Kelly D; Othman, Laila; Manasjan, Mayela; Choi, Samuel; Rapoport, Shana; Steele, Syreeta; Nguyen, Tommy; Yu, Xueyuan

    2017-08-04

    Host-associated genetic markers that allow for fecal source identification have been used extensively as a diagnostic tool to determine fecal sources within watersheds, but have not been used in routine monitoring to prioritize remediation actions among watersheds. Here, we present a regional assessment of human marker prevalence among drainages that discharge to the U.S. southern California coast. Approximately 50 samples were analyzed for the HF183 human marker from each of 22 southern California coastal drainages under summer dry weather conditions, and another 50 samples were targeted from each of 23 drainages during wet weather. The HF183 marker was ubiquitous, detected in all but two sites in dry weather and at all sites during wet weather. However, there was considerable difference in the extent of human fecal contamination among sites. Similar site ranking was produced regardless of whether the assessment was based on frequency of HF183 detection or site average HF183 concentration. However, site ranking differed greatly between dry and wet weather. Site ranking also differed greatly when based on enterococci, which do not distinguish between pollution sources, vs. HF183, which distinguishes higher risk human fecal sources from other sources, indicating the additional value of the human-associated marker as a routine monitoring tool.

  18. [Characteristics of ichthyoplankton assemblages in Yangtze Estuary and adjacent waters in spring].

    PubMed

    Liu, Shu-De; Xian, Wei-Wei; Liu, Dong

    2008-10-01

    Based on the investigation data of ichthyoplankton assemblages and environmental factors in Yangtze Estuary and adjacent waters in May 1999 and 2001, the characteristics of ichthyoplankton assemblages in these areas in spring were studied by using TWINSPAN (two-way indicator species analysis) and CCA (canonical correspondence analysis). A total of 11 540 ichthyoplankton individuals were taxonomically identified, belonging to 11 orders, 18 families and 32 species, of which, Coilia mystus, Engraulis japonicus, Chaeturichthys hexanema, Allanetta bleekeri, and Trachidermis fasciatus were the dominant species. The ichthyoplankton communities were classified into three assemblages by using TWINSPAN, i.e., estuarine assemblage dominated by C. mystus, coastal assemblage dominated by A. bleekeri and T. fasciatus; and shelf assemblage featured by E. japonicus and C. hexanema. The CCA ordination of the interrelations among the three assemblages and their correlations to the environmental variables revealed that salinity, depth, dissolved oxygen, and total suspended particulate matter were the major factors affecting the ichthyoplankton assemblages in the study areas.

  19. Engaging Communities Where They Are: New Hampshire's Coastal Adaptation Workgroup

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Godlewski, S.; Howard, K.; Labranche, J.; Miller, S.; Peterson, J.; Ashcraft, C.

    2015-12-01

    Rising seas are expected to have significant impacts on infrastructure and natural and cultural resources on New Hampshire's 18 mile open-ocean coastline and 235 miles of tidal shoreline. However, most coastal municipalities in NH lack financial and human resources to even assess vulnerability, let alone plan for climate change. This gap has been filled since 2010 by the NH Coastal Adaptation Workgroup (CAW), composed of 21 regional, state, and federal agencies, businesses, municipalities, academics, and NGOs that bring together stakeholders to discuss climate change challenges and collaboratively develop and implement effective coastal adaptation strategies. Our grassroot efforts serve to nurture existing and build new relationships, disseminate coastal watershed climate assessments, and tap into state, federal, and foundation funds for specific coastal adaptation projects. CAW has achieved collective impact in by connecting federal and state resources to communities by raising money and facilitating projects, translating climate science, educating community members, providing direct technical assistance and general capacity, and sharing success stories and lessons learned. Indicators of success include: 12 coastal communities improved their technical, financial, and human resources for climate adaptation; 80% of the 300 participants in the eleven CAW 'Water, Weather, Climate, and Community Workshops' have increased knowledge, motivation, and capacity to address climate adaptation; $3 million in grants to help communities with climate adaptation; winner of the 2015 EPA Region 1 Environmental Merit Award; and ongoing support for community-led adaptation efforts. In addition, the NH Climate Summit attracts over 100 participants each year, over 90% whom attest to the applicability of what they learn there. CAW also plays a central role in the Coastal Risks and Hazards Commission (established by the state legislature in 2013) to help communities and businesses prepare

  20. CH4 and CO2 production relative to carbon burial in wetlands undergoing sediment loss and accretion in coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Ghaisas, N. A.; Maiti, K.; Rivera-Monroy, V. H.

    2016-02-01

    The coastal Louisiana region encompasses the largest deltaic system at the mouth of the Mississippi River, in the Gulf of Mexico, and includes the largest wetlands area in the United States. Given the critical functional role of coastal wetlands in carbon (C) storage and sequestration it is essential to assess the potential role of wetlands and adjacent tidal channels as sources (via CH4 and CO2 production) and sinks of carbon (via burial) along hydrological gradients. Such information is necessary to construct and constrain landscape-level C budgets. We investigate C burial and CO2 and CH4 emissions in two distinct sediment deposition environments undergoing land loss (Barataria Bay) and land formation (Wax Delta) in coastal Louisiana. Sediment cores (depth, 20 cm) were sampled at both sites along tidal channels, ridges and low elevation marshes during spring (March 10oC), early summer (May 20oC) and late summer (August 30oC) to evaluate seasonal and spatial scale variability in CH4 and CO2 production. CH4 production ranged from 0.003 to 20.8 moles/m2/day and differences were correlated to location, ambient temperature, dissolved O2 concentration in the overlying water and core sediment redox conditions. Seasonal CH4 fluxes into overlying water were significantly higher in the spring compared to the summer season. The CO2 fluxes ranged from 0.42 to 214 moles/m2/day and also showed higher fluxes at colder temperature ( 10 o C). These net fluxes will provide valuable information to evaluate the ratio of greenhouse gas production to carbon burial at two contrasting estuarine environments undergoing both loss and net gain of wetland area in coastal Louisiana.

  1. Evaluating the 100 year floodplain as an indicator of flood risk in low-lying coastal watersheds

    NASA Astrophysics Data System (ADS)

    Sebastian, A.; Brody, S.; Bedient, P. B.

    2013-12-01

    The Gulf of Mexico is the fastest growing region in the United States. Since 1960, the number of housing units built in the low-lying coastal counties has increased by 246%. The region experiences some of the most intense rainfall events in the country and coastal watersheds are prone to severe flooding characterized by wide floodplains and ponding. This flooding is further exacerbated as urban development encroaches on existing streams and waterways. While the 100 year floodplain should play an important role in our ability to develop disaster resilient communities, recent research has indicated that existing floodplain delineations are a poor indicator of actual flood losses in low-lying coastal regions. Between 2001 and 2005, more than 30% of insurance claims made to FEMA in the Gulf Coast region were outside of the 100 year floodplain and residential losses amounted to more than $19.3 billion. As population density and investments in this region continue to increase, addressing flood risk in coastal communities should become a priority for engineers, urban planners, and decision makers. This study compares the effectiveness of 1-D and a 2-D modeling approaches to spatially capture flood claims from historical events. Initial results indicate that 2-D models perform much better in coastal environments and may serve better for floodplain modeling helping to prevent unintended losses. The results of this study encourage a shift towards better engineering practices using existing 2-D models in order to protect resources and provide guidance for urban development in low-lying coastal regions.

  2. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... of the coastal region, for which purpose the proposal must be accompanied by a consistency...

  3. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... of the coastal region, for which purpose the proposal must be accompanied by a consistency...

  4. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... coastal region, for which purpose the proposal must be accompanied by a consistency determination from...

  5. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... coastal region, for which purpose the proposal must be accompanied by a consistency determination from...

  6. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... coastal region, for which purpose the proposal must be accompanied by a consistency determination from...

  7. Distribution of oil and natural-gas wells in relation to ground-water flow systems in the Great Basin region of Nevada and Utah, and adjacent states

    USGS Publications Warehouse

    Schaefer, Donald H.

    1996-01-01

    This map publication is one of several in a series concerning various aspects of the ground-water hydrology of the Great Basin in Nevada, Utah, and adjacent States.  One report in the series describes the hydrogeologic framework of the Great Basin (Plume and Carlton, 1988).  Another shows the ground-water levels for the aquifer systems of the Great Basin (Thomas and others, 1986).  A third report in the series describes the regional ground-water flow patterns in the Great Basin (Harrill and others, 1988).

  8. Hurricane Ike: Observations and Analysis of Coastal Change

    USGS Publications Warehouse

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  9. Systems approaches for coastal hazard assessment and resilience

    USGS Publications Warehouse

    Hagen, Scott C.; Passeri, Davina L.; Bilskie, Matthew V.; DeLorme, Denise E.; Yoskowitz, David

    2017-01-01

    The framework presented herein supports a changing paradigm in the approaches used by coastal researchers, engineers, and social scientists to model the impacts of climate change and sea level rise (SLR) in particular along low-gradient coastal landscapes. Use of a System of Systems (SoS) approach to the coastal dynamics of SLR is encouraged to capture the nonlinear feedbacks and dynamic responses of the bio-geo-physical coastal environment to SLR, while assessing the social, economic, and ecologic impacts. The SoS approach divides the coastal environment into smaller subsystems such as morphology, ecology, and hydrodynamics. Integrated models are used to assess the dynamic responses of subsystems to SLR; these models account for complex interactions and feedbacks among individual systems, which provides a more comprehensive evaluation of the future of the coastal system as a whole. Results from the integrated models can be used to inform economic services valuations, in which economic activity is connected back to bio-geo-physical changes in the environment due to SLR by identifying changes in the coastal subsystems, linking them to the understanding of the economic system and assessing the direct and indirect impacts to the economy. These assessments can be translated from scientific data to application through various stakeholder engagement mechanisms, which provide useful feedback for accountability as well as benchmarks and diagnostic insights for future planning. This allows regional and local coastal managers to create more comprehensive policies to reduce the risks associated with future SLR and enhance coastal resilience.

  10. Prospects of solar energy in the coastal areas of Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emetere, Moses E., E-mail: moses.emetere@covenantuniversity.edu.ng; Akinyemi, Marvel L., E-mail: samuel.sanni@covenantuniversity.edu.ng

    The climatic factors in the coastal areas are cogent in planning a stable and functional solar farm. The experiment performed in this study entails a day-to-day solar radiation pattern in coastal areas. The results show that the solar radiation pattern in coastal region portends danger to the performance of solar photovoltaic (PV) module and its lifecycle. The efficiency of the PV module was tested in the harmattan where dust is a major hindrance. The results were related to meteorological parameters which influences the solar radiation over an area. The solar radiation pattern in coastal areas was traced to the solarmore » sectional shading theory which was summarized and explained.« less

  11. High resolution field monitoring in coastal wetlands of the U.S. Mid-Atlantic to support quantification of storm surge attenuation at the regional scale

    NASA Astrophysics Data System (ADS)

    Paquier, A. E.; Haddad, J.; Lawler, S.; Garzon Hervas, J. L.; Ferreira, C.

    2015-12-01

    Hurricane Sandy (2012) demonstrated the vulnerability of the US East Coast to extreme events, and motivated the exploration of resilient coastal defenses that incorporate both hard engineering and natural strategies such as the restoration, creation and enhancement of coastal wetlands and marshes. Past laboratory and numerical studies have indicated the potential of wetlands to attenuate storm surge, and have demonstrated the complexity of the surge hydrodynamic interactions with wetlands. Many factors control the propagation of surge in these natural systems including storm characteristics, storm-induced hydrodynamics, landscape complexity, vegetation biomechanical properties and the interactions of these different factors. While previous field studies have largely focused on the impact of vegetation characteristics on attenuation processes, few have been undertaken with holistic consideration of these factors and their interactions. To bridge this gap of in-situ field data and to support the calibration of storm surge and wave numerical models such that wetlands can be correctly parametrized on a regional scale, we are carrying out high resolution surveys of hydrodynamics (pressure, current intensity and direction), morphology (topo-bathymetry, micro-topography) and vegetation (e.g. stem density, height, vegetation frontal area) in 4 marshes along the Chesapeake Bay. These areas are representative of the ecosystems and morphodynamic functions present in this region, from the tidal Potomac marshes to the barrier-island back-bays of the Delmarva Peninsula. The field monitoring program supports the investigation of the influence of different types of vegetation on water level, swell and wind wave attenuation and morphological evolution during storm surges. This dataset is also used to calibrate and validate numerical simulations of hurricane storm surge propagation at regional and local scales and to support extreme weather coastal resilience planning in the region

  12. Alabama-Mississippi Coastal Classification Maps - Perdido Pass to Cat Island

    USGS Publications Warehouse

    Morton, Robert A.; Peterson, Russell L.

    2005-01-01

    The primary purpose of the USGS National Assessment of Coastal Change Project is to provide accurate representations of pre-storm ground conditions for areas that are designated high-priority because they have dense populations or valuable resources that are at risk from storm waves. Another purpose of the project is to develop a geomorphic (land feature) coastal classification that, with only minor modification, can be applied to most coastal regions in the United States. A Coastal Classification Map describing local geomorphic features is the first step toward determining the hazard vulnerability of an area. The Coastal Classification Maps of the National Assessment of Coastal Change Project present ground conditions such as beach width, dune elevations, overwash potential, and density of development. In order to complete a hazard vulnerability assessment, that information must be integrated with other information, such as prior storm impacts and beach stability. The Coastal Classification Maps provide much of the basic information for such an assessment and represent a critical component of a storm-impact forecasting capability. The map above shows the areas covered by this web site. Click on any of the location names or outlines to view the Coastal Classification Map for that area.

  13. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  14. Coastal Ecosystem Assessment, Development and Creation of a Policy Tool using Unmanned Aerial Vehicles (UAVs) for: A Case Study of Western Puerto Rico Coastal Region

    NASA Astrophysics Data System (ADS)

    Munoz Barreto, J.; Pillich, J.; Aponte Bermúdez, L. D.; Torres Pagan, G.

    2017-12-01

    This project utilizes low-cost Unmanned Aerial Vehicles (UAVs) based systems for different applications, such as low-altitude (high resolution) aerial photogrammetry for aerial analysis of vegetation, reconstruction of beach topography and mapping coastal erosion to understand, and estimated ecosystem values. As part of this work, five testbeds coastal sites, designated as the Caribbean Littoral Aerial Surveillance System (CLASS), were established. The sites are distributed along western Puerto Rico coastline where population and industry (tourism) are very much clustered and dense along the coast. Over the past year, rapid post-storm deployment of UAV surveying has been successfully integrated into the CLASS sites, specifically at Rincon (Puerto Rico), where coastal erosion has raised the public and government concern over the past decades. A case study is presented here where we collected aerial photos before and after the swells caused by Hurricane Mathew (October 2016). We merged the point cloud obtained from the UAV photogrammetric assessment with topo-bathymetric data, to get a complete beach topography. Using the rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for the pre-swell and post-swell events. Also, we used numerical modeling (X-Beach) to simulate the rate-of-change dynamics of the coastal zones and compare the model results to observed values (including multiple historic shoreline positions). In summary, our project has accomplished the first milestone which is the Development and Implementation of an Effective Shoreline Monitoring Program using UAVs. The activities of the monitoring program have enabled the collection of crucial data for coastal mapping along Puerto Rico's shorelines with emphasis on coastal erosion hot spots zones and ecosystem values. Our results highlight the potential of the synergy between UAVs, photogrammetry, and Geographic Information Systems to provide faster and low-cost reliable

  15. Pacific Coastal Ecology Branch: Research Overview

    EPA Science Inventory

    The Pacific Coastal Ecology Branch, Newport, Oregon is part of the Western Ecology Division of the National Health and Environmental Effects Research Laboratory of the U.S. EPA. The Branch conducts research and provides scientific technical support to Headquarters and Regional O...

  16. Depositional and diagenetic history and petroleum geology of the Jurassic Norphlet Formation of the Alabama coastal waters area and adjacent federal waters area

    USGS Publications Warehouse

    Kugler, R.L.; Mink, R.M.

    1999-01-01

    The discovery of deep (>20,000 ft) gas reservoirs in eolian sandstone of the Upper Jurassic Norphlet Formation in Mobile Bay and offshore Alabama in the late 1970s represents one of the most significant hydrocarbon discoveries in the nation during the past several decades. Estimated original proved gas from Norphlet reservoirs in the Alabama coastal waters and adjacent federal waters is 7.462 trillion ft3 (Tcf) (75% recovery factor). Fifteen fields have been established in the offshore Alabama area. Norphlet sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in updip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition, resulted in reworking of the upper part of the Norphlet Formation. Norphlet reservoir sandstone is arkose and subarkose, consisting of a simple assemblage of three minerals, quartz, albite, and K-feldspar. The present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex. Important authigenic minerals include carbonate phases (calcite, dolomite, Fe-dolomite, and breunnerite), feldspar (albite and K-feldspar), evaporite minerals (anhydrite and halite), clay minerals (illite and chlorite), quartz, and pyrobitumen. The abundance and distribution of these minerals varies significantly between onshore and offshore regions of Norphlet production. The lack of sufficient internal sources of components for authigenic minerals, combined with unusual chemical compositions of chloride (Mg-rich), breunnerite, and some minor authigenic minerals, suggests that Louann-derived fluids influenced Norphlet diagenesis. In offshore Alabama reservoirs, porosity is dominantly modified primary porosity. Preservation of porosity in deep Norphlet reservoirs is due

  17. Regional modeling of the water masses and circulation annual variability at the Southern Brazilian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Mendonça, L. F.; Souza, R. B.; Aseff, C. R. C.; Pezzi, L. P.; Möller, O. O.; Alves, R. C. M.

    2017-02-01

    The Southern Brazilian Continental Shelf (SBCS) is one of the more productive areas for fisheries in Brazilian waters. The water masses and the dynamical processes of the region present a very seasonal behavior that imprint strong effects in the ecosystem and the weather of the area and its vicinity. This paper makes use of the Regional Ocean Modeling System (ROMS) for studying the water mass distribution and circulation variability in the SBCS during the year of 2012. Model outputs were compared to in situ, historical observations and to satellite data. The model was able to reproduce the main thermohaline characteristics of the waters dominating the SBCS and the adjacent region. The mixing between the Subantarctic Shelf Water and the Subtropical Shelf Water, known as the Subtropical Shelf Front (STSF), presented a clear seasonal change in volume. As a consequence of the mixing and of the seasonal oscillation of the STSF position, the stability of the water column inside the SBCS also changes seasonally. Current velocities and associated transports estimated for the Brazil Current (BC) and for the Brazilian Coastal Current (BCC) agree with previous measurements and estimates, stressing the fact that the opposite flow of the BCC occurring during winter in the study region is about 2 orders of magnitude smaller than that of the BC. Seasonal maps of simulated Mean Kinetic Energy and Eddy Kinetic Energy demonstrate the known behavior of the BC and stressed the importance of the mean coastal flow off Argentina throughout the year.

  18. Ecosystem-based coastal defence in the face of global change.

    PubMed

    Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J

    2013-12-05

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

  19. Regional scale impact of tidal forcing on groundwater flow in unconfined coastal aquifers

    NASA Astrophysics Data System (ADS)

    Pauw, P. S.; Oude Essink, G. H. P.; Leijnse, A.; Vandenbohede, A.; Groen, J.; van der Zee, S. E. A. T. M.

    2014-09-01

    This paper considers the impact of tidal forcing on regional groundwater flow in an unconfined coastal aquifer. Numerical models are used to quantify this impact for a wide range of hydrogeological conditions. Both a shallow and a deep aquifer are investigated with regard to three dimensionless parameter groups that determine the groundwater flow to a large extent. Analytical expressions are presented that allow for a quick estimate of the regional scale effect of tidal forcing under the same conditions as used in the numerical models. Quantitatively, the results in this paper are complementary to previous studies by taking into account variable density groundwater flow, dispersive salt transport and a seepage face in the intertidal area. Qualitatively, the results are in line with previous investigations. The time-averaged hydraulic head at the high tide mark increases upon a decrease of each of the three considered dimensionless parameter groups: R (including the ratio of the hydraulic conductivity and the precipitation excess), α (the slope of the intertidal area) and AL (the ratio of the width of the fresh water lens and the tidal amplitude). The relative change of the location and the hydraulic head of the groundwater divide, which together characterize regional groundwater flow, increase as α and AL decrease, but decrease as R decreases. The difference between the analytical solutions and numerical results is small. Therefore, the presented analytical solutions can be used to estimate the bias that is introduced in a numerical model if tidal forcing is neglected. The results should be used with caution in case of significant wave forcing, as this was not considered.

  20. Coastal ground water at risk - Saltwater contamination at Brunswick, Georgia and Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Krause, Richard E.; Clarke, John S.

    2001-01-01

    IntroductionSaltwater contamination is restricting the development of ground-water supply in coastal Georgia and adjacent parts of South Carolina and Florida. The principal source of water in the coastal area is the Upper Floridan aquifer—an extremely permeable and high-yielding aquifer—which was first developed in the late 1800s. Pumping from the aquifer has resulted in substantial ground-water-level decline and subsequent saltwater intrusion of the aquifer from underlying strata containing highly saline water at Brunswick, Georgia, and with encroachment of sea-water into the aquifer at the northern end of Hilton Head Island, South Carolina. The saltwater contamination at these locations has constrained further development of the Upper Floridan aquifer in the coastal area and has created competing demands for the limited supply of freshwater. The Georgia Department of Natural Resources, Georgia Environmental Protection Division (GaEPD) has restricted permitted withdrawal of water from the Upper Floridan aquifer in parts of the coastal area (including the Savannah and Brunswick areas) to 1997 rates, and also has restricted additional permitted pumpage in all 24 coastal area counties to 36 million gallons per day above 1997 rates. These actions have prompted interest in alternative management of the aquifer and in the development of supplemental sources of water supply including those from the shallower surficial and upper and lower Brunswick aquifers and from the deeper Lower Floridan aquifer.

  1. Modeling Compound Flood Hazards in Coastal Embayments

    NASA Astrophysics Data System (ADS)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the

  2. Coastal warming and wind-driven upwelling: A global analysis.

    PubMed

    Varela, Rubén; Lima, Fernando P; Seabra, Rui; Meneghesso, Claudia; Gómez-Gesteira, Moncho

    2018-10-15

    Long-term sea surface temperature (SST) warming trends are far from being homogeneous, especially when coastal and ocean locations are compared. Using data from NOAA's AVHRR OISST, we have analyzed sea surface temperature trends over the period 1982-2015 at around 3500 worldwide coastal points and their oceanic counterparts with a spatial resolution of 0.25 arc-degrees. Significant warming was observed at most locations although with important differences between oceanic and coastal points. This is especially patent for upwelling regions, where 92% of the coastal locations showed lower warming trends than at neighboring ocean locations. This result strongly suggests that upwelling has the potential to buffer the effects of global warming nearshore, with wide oceanographic, climatic, and biogeographic implications. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Development of a Reference Coastal Wetland set in Southern New England (USA)

    EPA Science Inventory

    Various measures of plants, soils, and invertebrates were described for a reference set of tidal coastal wetlands in southern New England in order to provide a framework for assessing the condition of other similar wetlands in the region. The condition of the ten coastal wetland...

  4. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA

    USGS Publications Warehouse

    Hoover, Daniel J.; Odigie, Kingsley; Swarzenski, Peter W.; Barnard, Patrick

    2017-01-01

    Study regionThe study region spans coastal California, USA, and focuses on three primary sites: Arcata, Stinson Beach, and Malibu Lagoon.Study focus1 m and 2 m sea-level rise (SLR) projections were used to assess vulnerability to SLR-driven groundwater emergence and shoaling at select low-lying, coastal sites in California. Separate and combined inundation scenarios for SLR and groundwater emergence were developed using digital elevation models of study site topography and groundwater surfaces constructed from well data or published groundwater level contours.New hydrological insights for the regionSLR impacts are a serious concern in coastal California which has a long (∼1800 km) and populous coastline. Information on the possible importance of SLR-driven groundwater inundation in California is limited. In this study, the potential for SLR-driven groundwater inundation at three sites (Arcata, Stinson Beach, and Malibu Lagoon) was investigated under 1 m and 2 m SLR scenarios. These sites provide insight into the vulnerability of Northern California coastal plains, coastal developments built on beach sand or sand spits, and developed areas around coastal lagoons associated with seasonal streams and berms. Northern California coastal plains with abundant shallow groundwater likely will see significant and widespread groundwater emergence, while impacts along the much drier central and southern California coast may be less severe due to the absence of shallow groundwater in many areas. Vulnerability analysis is hampered by the lack of data on shallow coastal aquifers, which commonly are not studied because they are not suitable for domestic or agricultural use. Shallow saline aquifers may be present in many areas along coastal California, which would dramatically increase vulnerability to SLR-driven groundwater emergence and shoaling. Improved understanding of the extent and response of California coastal aquifers to SLR will help in preparing for mitigation

  5. Mapping seagrass beds and coral reefs in the coastal region of Vietnam using VNREDSAT-1 data

    NASA Astrophysics Data System (ADS)

    Lau, K. V.; Chen, C. F.; Nguyen, S. T.; Chen, C. R.; Tong Phuoc, H. S.; Nguyen, H. H.

    2015-12-01

    Seagrass beds and coral reefs are two important ecosystems in the coastal zone. They play an important role to protect and shelter various marine organisms. Both seagrass beds and coral reefs could prevent the coastline from erosion. While seagrass stabilizes sediments and acts as a biofilter, coral reefs can control carbon dioxide in the ocean water. Besides, seagrass also provides direct food for many fish and marine animals. Therefore, mapping seagrass beds and coral reefs is very important for coastal management and conservation. In May 2013, Vietnam launched the first satellite for earth observations, called Vietnam Natural Resources, Environment and Disaster Monitoring Satellite (VNREDSAT-1). It is a great opportunity for environmental monitoring in the country using the data from this satellite. The objective of this study is to use the VNREDSAT-1 data to map seagrass beds and coral reefs in the coastal region of Ninh Hai district, Ninh Thuan province, Vietnam, where the seagrass still remains in good a condition. We processed the VNREDSAT-1 image through four steps: (1) Atmospheric correction using Second Simulation of the Satellite Signal in the Solar Spectrum radiative transfer model (6S), (2) Sun glint removal by using Hedley method, (3) Water column correction using the depth-variant index (DII) proposed by Lyzenga, and (4) Image classification using the maximum likelihood algorithm. The mapping results verified with the ground reference data showed a good overall accuracy of 75% and Kappa coefficient of 0.7. The total area of seagrass beds was approximately 323.09 ha, which mainly distributed in My Hoa and Thai An villages. The total area of coral reefs was approximately 564.42 ha, located along the coast and on outer area to seagrass and shoreline reefs. This study demonstrates the applicability of VNREDSAT-1 for underwater habitat monitoring. The results could be useful for natural resources managers to devise strategies for management and

  6. Interoperability Between Coastal Web Atlases Using Semantic Mediation: A Case Study of the International Coastal Atlas Network (ICAN)

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Lassoued, Y.; Dwyer, N.; Haddad, T.; Bermudez, L. E.; Dunne, D.

    2009-12-01

    Coastal mapping plays an important role in informing marine spatial planning, resource management, maritime safety, hazard assessment and even national sovereignty. As such, there is now a plethora of data/metadata catalogs, pre-made maps, tabular and text information on resource availability and exploitation, and decision-making tools. A recent trend has been to encapsulate these in a special class of web-enabled geographic information systems called a coastal web atlas (CWA). While multiple benefits are derived from tailor-made atlases, there is great value added from the integration of disparate CWAs. CWAs linked to one another can query more successfully to optimize planning and decision-making. If a dataset is missing in one atlas, it may be immediately located in another. Similar datasets in two atlases may be combined to enhance study in either region. *But how best to achieve semantic interoperability to mitigate vague data queries, concepts or natural language semantics when retrieving and integrating data and information?* We report on the development of a new prototype seeking to interoperate between two initial CWAs: the Marine Irish Digital Atlas (MIDA) and the Oregon Coastal Atlas (OCA). These two mature atlases are used as a testbed for more regional connections, with the intent for the OCA to use lessons learned to develop a regional network of CWAs along the west coast, and for MIDA to do the same in building and strengthening atlas networks with the UK, Belgium, and other parts of Europe. Our prototype uses semantic interoperability via services harmonization and ontology mediation, allowing local atlases to use their own data structures, and vocabularies (ontologies). We use standard technologies such as OGC Web Map Services (WMS) for delivering maps, and OGC Catalogue Service for the Web (CSW) for delivering and querying ISO-19139 metadata. The metadata records of a given CWA use a given ontology of terms called local ontology. Human or machine

  7. Remote sensing in the coastal and marine environment. Proceedings of the US North Atlantic Regional Workshop

    NASA Technical Reports Server (NTRS)

    Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)

    1980-01-01

    Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.

  8. Coastal Thematic Exploitation Platform (C-TEP): An innovative and collaborative platform to facilitate Big Data coastal research

    NASA Astrophysics Data System (ADS)

    Tuohy, Eimear; Clerc, Sebastien; Politi, Eirini; Mangin, Antoine; Datcu, Mihai; Vignudelli, Stefano; Illuzzi, Diomede; Craciunescu, Vasile; Aspetsberger, Michael

    2017-04-01

    indicators (water quality, water level, vegetation stress) from Near Real Time data. To demonstrate the benefits of C-TEP, three pilot cases have been implemented, each addressing specific, and highly topical, coastal research needs. These applications include change detection in land and seabed cover, water quality monitoring and reporting, and a coastal altimetry processor. The pilot cases demonstrate the wide scope of C-TEP and how it may contribute to European projects and international coastal networks. In conclusion, CTEP aims to provide new services and tools which will revolutionise accessibility to EO datasets, support a multi-disciplinary research collaboration, and the provision of long-term data series and innovative services for the monitoring of coastal regions.

  9. Dissolved and particulate trace metals in coastal waters of the Gulf and Western Arabian Sea

    NASA Astrophysics Data System (ADS)

    Fowler, S. W.; Huynh-Ngoc, L.; Fukai, R.

    Concentrations of chemical species of selected heavy metals (Cu, Zn, Cd, Hg and Pb) were determined in surface waters from a series of coastal sites in Bahrain, United Arab Emirates (UAE) and the Sultanate of Oman. Analyses were carried out on bulk sea water samples as well as on suspended particulates by anodic stripping voltammetry. Heavy metal concentrations were relatively low with the exception of some "hot spots" which occurred in the vicinity of industrial and port activities. Average copper levels along the coast of UAE were generally higher than those measured in sea water from either Bahrain of Oman. Waters from the more populated and industrialised northwest coast of Oman were found to contain approximately 3 to 4-fold higher Cd and Zn (pH 4-4.5) concentrations than those from the southern coast, an undeveloped region adjacent to the more open waters of the Arabian Sea. Possible reasons for the observed regional variations in trace metal concentrations in Oman are discussed in terms of natural and anthropogenic input sources. Average concentrations in the Gulf (inside the Strait of Hormuz) were 510 ng 1 -1 (Cu), 340 ng 1 -1 (Zn), 20 ng 1 -1 (Cd), 16 ng 1 -1 (Hg) and 76 ng 1 -1 (Pb); in the western Arabian Sea along the coast of Oman concentrations averaged 290 ng 1 -1 (Cu), 180 ng 1 -1 (Zn), 37 ng 1 -1 (Cd), 11 ng 1 -1 (Hg) and 80 ng 1 -1 (Pb). Ranges of concentrations for these metals in Gulf and western Arabian Sea waters approach those which have been reported for open surface waters of the Atlantic, Pacific, Indian Oceans and the Mediterranean Sea indicating that, in general, the coastal waters of this region are not impacted by metal pollution and that the existing natural levels can be used as a point of reference for future pollutant studies.

  10. Communicating Coastal Risk Analysis in an Age of Climate Change

    DTIC Science & Technology

    2011-10-01

    extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm

  11. Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea.

    PubMed

    Hong, Sang Hee; Shim, Won Joon; Han, Gi Myung; Ha, Sung Yong; Jang, Mi; Rani, Manviri; Hong, Sunwook; Yeo, Gwang Yeong

    2014-02-01

    Persistent organic pollutants (POPs) levels in resident and migratory birds collected from an urbanized coastal region of South Korea were investigated. As target species, resident birds that reside in different habitats-such as inland and coastal regions-were selected and their POP contamination status and accumulation features evaluated. Additionally, winter and summer migratory species were analysed for comparison with resident birds. Black-tailed gull and domestic pigeon were selected as the coastal and inland resident birds, respectively, and pacific loon and heron/egret were selected as the winter and summer migratory birds, respectively. The overall POP concentrations (unit: ng/g lipid) in resident birds were 14-131,000 (median: 13,400) for PCBs, 40-284,000 (11,200) for DDTs, <1.0-2850 (275) for CHLs, 23-2020 (406) for HCHs, 2-1520 (261) for HCB, <0.2-48 (5) for pentachlorobenzene (PeCB), 71-7120 (1840) for PBDEs, and <1.8-2300 (408) for HBCDs. In resident birds, the overall level of POPs was higher in seagull compared to pigeon. The stable isotope ratio of nitrogen and carbon indicates that seagull occupies a higher trophic position in the environment than pigeon. However, the POP accumulation profiles in these species differed. Pigeon tends to accumulate more recently used POPs such as PBDEs than seagull. The high-brominated BDE congeners, γ-HBCDs and γ-HCH (also called lindane) were enriched in pigeon compared to seagull, implying the widespread use of Deca-BDE, technical HBCDs, and lindane in the terrestrial environment of South Korea. The different accumulation profile of POPs in both resident species would be related to their habitat difference and trophic positions. For urban resident bird such as pigeon, an intentional intake of dust or soils during feeding is likely to be an additional route of exposure to POPs. Resident birds generally accumulated higher POPs concentrations than migratory birds, the exceptions being relatively volatile compounds

  12. Extreme flood impact on estuarine and coastal biogeochemistry: the 2013 Elbe flood

    NASA Astrophysics Data System (ADS)

    Voynova, Yoana G.; Brix, Holger; Petersen, Wilhelm; Weigelt-Krenz, Sieglinde; Scharfe, Mirco

    2017-02-01

    Within the context of the predicted and observed increase in droughts and floods with climate change, large summer floods are likely to become more frequent. These extreme events can alter typical biogeochemical patterns in coastal systems. The extreme Elbe River flood in June 2013 not only caused major damages in several European countries but also generated large-scale biogeochemical changes in the Elbe estuary and the adjacent German Bight. The high-frequency monitoring network within the Coastal Observing System for Northern and Arctic Seas (COSYNA) captured the flood influence on the German Bight. Data from a FerryBox station in the Elbe estuary (Cuxhaven) and from a FerryBox platform aboard the M/V Funny Girl ferry (traveling between Büsum and Helgoland) documented the salinity changes in the German Bight, which persisted for about 2 months after the peak discharge. The Elbe flood generated a large influx of nutrients and dissolved and particulate organic carbon on the coast. These conditions subsequently led to the onset of a phytoplankton bloom, observed by dissolved oxygen supersaturation, and higher than usual pH in surface coastal waters. The prolonged stratification also led to widespread bottom water dissolved oxygen depletion, unusual for the southeastern German Bight in the summer.

  13. E-Estuary: Developing a Decision-support System for Coastal Management in the Counterminous Untied States (Coastal Geotools 09)

    EPA Science Inventory

    Ready access to geographic information is needed to support management decisions for estuaries at local, state, regional, and national scales. The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary ...

  14. Using Buoy and Radar Data to Study Sudden Wind Gusts Over Coastal Regions

    NASA Technical Reports Server (NTRS)

    Priftis, Georgios; Chronis, Themis; Lang, Timothy J.

    2017-01-01

    Significant sudden wind gusts can pose a threat to aviation near the coastline, as well as small (sailing) boats and commercial ships approaching the ports. Such cases can result in wind speed changes of more than an order of magnitude within 5 minutes, which can then last up to 20 minutes or more. Although the constellation of scatterometers is a good means of studying maritime convection, those sudden gusts are not easily captured because of the low time resolution. The National Data Buoy Center (NDBC) provides continuous measurements of wind speed and direction along the US coastal regions every 6 minutes. Buoys are platforms placed at specific places on the seas, especially along coastlines, providing data for atmospheric and oceanic studies. Next Generation Radars (NEXRADs), after the recent upgrade of the network to dual-pol systems, offer enhanced capabilities to study atmospheric phenomena. NEXRADs provide continuous full-volume scans approximately every 5 minutes and therefore are close to the time resolution of the buoy measurements. Use of single- Doppler retrievals might also provide a means of further validation.

  15. Seamless geoids across coastal zones - a comparison of satellite-derived gravity to airborne gravity across the seven continents

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Barnes, D.; Ingalls, S. E.; Minter, C. F.; Presicci, M. R.

    2017-12-01

    An accurate coastal geoid model is important for determination of near-shore ocean dynamic topography and currents, as well as for land GPS surveys and global geopotential models. Since many coastal regions across the globe are regions of intense development and coastal protection projects, precise geoid models at cm-level accuracy are essential. The only way to secure cm-geoid accuracies across coastal regions is to acquire more marine gravity data; here airborne gravity is the obvious method of choice due to the uniform accuracy, and the ability to provide a seamless geoid accuracy across the coastline. Current practice for gravity and geoid models, such as EGM2008 and many national projects, is to complement land gravity data with satellite radar altimetry at sea, a procedure which can give large errors in regions close to the coast. To quantify the coastal errors in satellite gravity, we compare results of a large set of recent airborne gravity surveys, acquired across a range of coastal zones globally from polar to equatorial regions, and quantify the errors as a function of distance from the coast line for a number of different global altimetry gravity solutions. We find that accuracy in satellite altimetry solutions depend very much on the availability of gravity data along the coast-near land regions in the underlying reference fields (e.g., EGM2008), with satellite gravity accuracy in the near-shore zone ranging from anywhere between 5 to 20 mGal r.m.s., with occasional large outliers; we also show how these errors may typically propagate into coastal geoid errors of 5-10 cm r.m.s. or more. This highlight the need for airborne (land) gravity surveys to be extended at least 20-30 km offshore, especially for regions of insufficient marine gravity coverage; we give examples of a few such recent surveys and associated marine geoid impacts.

  16. Regional ground-water discharge to large streams in the upper coastal plain of South Carolina and parts of North Carolina and Georgia

    USGS Publications Warehouse

    Aucott, W.R.; Meadows, R.S.; Patterson, G.G.

    1987-01-01

    Base flow was computed to estimate discharge from regional aquifers for six large streams in the upper Coastal Plain of South Carolina and parts of North Carolina and Georgia. Aquifers that sustain the base flow of both large and small streams are stratified into shallow and deep flow systems. Base-flow during dry conditions on main stems of large streams was assumed to be the discharge from the deep groundwater flow system. Six streams were analyzed: the Savannah, South and North Fork Edisto, Lynches, Pee Dee, and the Luber Rivers. Stream reaches in the Upper Coastal Plain were studied because of the relatively large aquifer discharge in these areas in comparison to the lower Coastal Plain. Estimates of discharge from the deep groundwater flow system to the six large streams averaged 1.8 cu ft/sec/mi of stream and 0.11 cu ft/sec/sq mi of surface drainage area. The estimates were made by subtracting all tributary inflows from the discharge gain between two gaging stations on a large stream during an extreme low-flow period. These estimates pertain only to flow in the deep groundwater flow system. Shallow flow systems and total base flow are > flow in the deep system. (USGS)

  17. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    USGS Publications Warehouse

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  18. Florida coastal ecological characterization: a socioeconomic study of the southwestern region. Volume II. Data appendix, Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, C.O.; Parsons, J.W.

    1983-08-01

    Data are compiled from existing sources on the social and economic characteristics of the southwestern coastal region of Florida, which is made up of Charlotte, Collier, DeSoto, Hillsborough, Lee, Manatee, Monroe, Pasco, Pinellas, and Sarasota Counties. Described are the components and interrelationships among complex processes that include population and demographics characteristics, mineral production, multiple-use conflicts, recreation and tourism, agricultural production, sport and commercial fishing, transportation, industrial and residential development, and environmental issues and regulations. Energetics models of socioeconomic systems are also presented. This volume contains appendices presenting data on mineral and oil production, and environmental issues and regulations. 255 references,more » 20 figures, 91 tables.« less

  19. Florida coastal ecological characterization: a socioeconomic study of the southwestern region. Volume II. Data appendix, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, C.O.; Parsons, J.W.

    1983-08-01

    Data are compiled from existing sources on the social and economic characteristics of the southwestern coastal region of Florida, which is made up of Charlotte, Collier, DeSoto, Hillsborough, Lee, Manatee, Monroe, Pasco, Pinellas, and Sarasota Counties. Described are the components and interrelationships among complex processes that include population and demographics characteristics, mineral production, multiple-use conflicts, recreation and tourism, agricultural production, sport and commercial fishing, transportation, industrial and residential development, and environmental issues and regulations. Energetics models of socioeconomic systems are also presented. This volume contains appendices presenting data on population, employment, income, health services, agriculture, fish and game, and industrialmore » development. 9 figures, 246 tables.« less

  20. Coastal Inlets Research Program

    DTIC Science & Technology

    2015-10-30

    transport, and vessel-induced flow and wake. In FY 2014, the Corps spent approximately $808 million in maintenance dredging of 152 million cubic...yards from Federal navigation channels*. Dredging costs are likely to increase in the future because of increasing fuel, mobilization, and...channels and jetties can have a profound effect on the integrity of the navigation structures, adjacent beaches, estuaries, ecosystems and regions