Sample records for adjacent continental margin

  1. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  2. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  3. Passive recording of an active transform, an example from the Levant continental margin and the Dead Sea Fault

    NASA Astrophysics Data System (ADS)

    Lang, Guy; Lazar, Michael; Schattner, Uri

    2017-04-01

    Transform faults accommodate lateral motion between two adjacent plates. Records of plate motion and consequent boundary development on land is, at times, scarce and limited to structures along the fault axis. Investigation of a passive continental margin adjacent to the plate boundary might broaden the scope and provide estimates for its structural development. To examine this hypothesis, we analyzed depth and time migrated 3D seismic data together with four boreholes located along the southern Levant continental margin, ca. 100 Km from the continental Dead Sea fault (DSF). The analysis focus on the Plio-Pleistocene sequence, a key period in the development of the DSF. It includes formation of structural maps, stacking pattern investigation and calculation of sedimentation rates based on decompacted 3D depth data. These, in turn, enabled the reconstruction of margin development. This includes Messinian-earliest Zanclean NNE-SSW sinistral strike-slip faulting followed by Zanclean-Late Gelasian syn-depositional folding striking in the same direction. Abrupt change is marked by the Top Gelasian surface that shows indications of regional mass slumping. Successive Mid-Late Pleistocene progradation marks a basinward shift of the depocenter. Progradation controls margin sedimentation rates during the mid-late Pleistocene. These were found to increase throughout the whole Plio-Pleistocene, in contrast to reported sediment discharge from the Nile, which was shown to decrease after the Gelasian. Correlations to onshore findings, suggest that the continental margin records strain localization on the DSF during the Pliocene-Gelasian. This trend peaked at 1.8 Ma when short wavelength strain ceased along the margin, and differential subsidence commenced basinwards. This is attributed to consequent deepening of the DSF plate boundary.

  4. A comparison of the South China Sea and Canada Basin: two small marginal ocean basins with hyper-extended margins and central zones of sea-floor spreading.

    NASA Astrophysics Data System (ADS)

    Li, L.

    2015-12-01

    Both the South China Sea and Canada Basin preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated the nature of strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the South China Sea but our results for the Beaufort Sea are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow is suggested for both basins. Extension in the COT may continue even after sea-floor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascle, J.; Blarez, E.

    The authors present a marine study of the eastern Ivory Coast-Ghana continental margins which they consider one of the most spectacular extinct transform margins. This margin has been created during Early-Lower Cretaceous time and has not been submitted to any major geodynamic reactivation since its fabric. Based on this example, they propose to consider during the evolution of the transform margin four main and successive stages. Shearing contact is first active between two probably thick continental crusts and then between progressively thinning continental crusts. This leads to the creation of specific geological structures such as pull-apart graben, elongated fault lineaments,more » major fault scarps, shear folds, and marginal ridges. After the final continental breakup, a hot center (the mid-oceanic ridge axis) is progressively drifting along the newly created margin. The contact between two lithospheres of different nature should necessarily induce, by thermal exchanges, vertical crustal readjustments. Finally, the transform margin remains directly adjacent to a hot but cooling oceanic lithosphere; its subsidence behavior should then progressively be comparable to the thermal subsidence of classic rifted margins.« less

  6. The role of tectonic inheritance in the morphostructural evolution of the Galicia continental margin and adjacent abyssal plains from digital bathymetric model (DBM) analysis (NW Spain)

    NASA Astrophysics Data System (ADS)

    Maestro, A.; Jané, G.; Llave, E.; López-Martínez, J.; Bohoyo, F.; Druet, M.

    2018-06-01

    The identification of recent major tectonic structures in the Galicia continental margin and adjacent abyssal plains was carried out by means of a quantitative analysis of the linear structures having bathymetric expression on the seabed. It was possible to identify about 5800 lineaments throughout the entire study area, of approximately 271,500 km2. Most lineaments are located in the Charcot and Coruña highs, in the western sector of the Galicia Bank, in the area of the Marginal Platforms and in the northern sector of the margin. Analysis of the lineament orientations shows a predominant NE-SW direction and three relative maximum directions: NW-SE, E-W and N-S. The total length of the lineaments identified is over 44,000 km, with a mode around 5000 m and an average length of about 7800 m. In light of different tectonic studies undertaken in the northwestern margin of the Iberian Peninsula, we establish that the lineaments obtained from analysis of the digital bathymetric model of the Galicia continental margin and adjacent abyssal plains would correspond to fracture systems. In general, the orientation of lineaments corresponds to main faults, tectonic structures following the directions of ancient faults that resulted from late stages of the Variscan orogeny and Mesozoic extension phases related to Triassic rifting and Upper Jurassic to Early Cretaceous opening of the North Atlantic Ocean. The N-S convergence between Eurasian and African plates since Palaeogene times until the Miocene, and NW-SE convergence from Neogene to present, reactivated the Variscan and Mesozoic fault systems and related physiography.

  7. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less

  8. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  9. The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions

    NASA Astrophysics Data System (ADS)

    Li, Lu; Stephenson, Randell; Clift, Peter D.

    2016-11-01

    Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  10. The Continental Margin of East Asia: a collage of multiple plates formed by convergence and extension from multiple directions

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.

    2017-12-01

    East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A-type granitoids formed. 4) These dynamics are the result of subduction and extension of the oceanic plates that bordered East Asia. 5) The complex mosaic of geology and geochemistry is the result of compositional variation in the deep lithosphere, as well as variation in the dynamics of oceanic plate movements.

  11. Continental Margins of the Arctic Ocean: Implications for Law of the Sea

    NASA Astrophysics Data System (ADS)

    Mosher, David

    2016-04-01

    A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and continuity of the sediment stratigraphy within the basins. The enclosed nature of the Arctic basin and the undersea ridges that transect the width of the basin result in complex geographies for the coastal States. The relevant fact, therefore, is that the five coastal States surrounding the ocean should have a common understanding of the geological and morphological features and the use of these features in determining the outer edge of the continental margin.

  12. The South China sea margins: Implications for rifting contrasts

    USGS Publications Warehouse

    Hayes, D.E.; Nissen, S.S.

    2005-01-01

    Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the thermal structure of the pre-rift lithosphere. The calculated widths of rifted continental crust for the northern and southern margins, when combined with the differential widths of seafloor generated during the seafloor spreading phase, indicate the total crustal extension that occurred is about 1100 km and is remarkably consistent to within ???10% for all three (eastern, central, western) segments examined. ?? 2005 Elsevier B.V. All rights reserved.

  13. Joint geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin

    NASA Astrophysics Data System (ADS)

    Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek

    2011-01-01

    The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.

  14. The Ocean-Continent Transition at the North Atlantic Volcanic Margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Christie, P. A.; Kusznir, N. J.; Roberts, A. M.; Eccles, J.; Lunnon, Z.; Parkin, C. J.; Smith, L. K.; Spitzer, R.; Roberts, A. W.

    2005-05-01

    The continental margins of the northern North Atlantic are the best studied volcanic margins in the world. There is a wealth of integrated wide-angle and deep seismic profiles across the continent-ocean transition and the adjacent oceanic and continental crust, several of which form conjugate margin studies. We show new results from the integrated Seismic Imaging and Modelling of Margins (iSIMM) profiles across the Faroes continental margin which image both the extruded volcanics which generate seaward dipping reflector sequences and the underlying lower-crustal intrusions from which the extruded basalts are fed. This enables estimation of the degree of continental stretching and the total volume of melt generated from the mantle at the time of continental breakup. The new results are set in the context of profiles along the entire northern North Atlantic margins. The pattern of melt generation during continental breakup and the initiation of seafloor spreading allows us to map the pattern of enhanced sub-lithospheric mantle temperatures caused by initiation of the Iceland mantle plume over this period. The initial mantle plume thermal anomalies have the shape of rising hot sheets of mantle up to 2000 km in length, which focus into a more axisymmetric shape under the present location of Iceland. These spatial and temporal variations in the mantle temperature exert important controls on the history of uplift and subsidence and thermal maturation of the sediments near the continental margin and its hinterland. The iSIMM Scientific Team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms, J Eccles and D Healy. The iSIMM project is supported by Liverpool and Cambridge Universities, Schlumberger Cambridge Research, Badley Technology Limited, WesternGeco, Amerada Hess, Anadarko, BP, ConocoPhillips, ENI-UK, Statoil, Shell, the NERC and DTI. We thank WesternGeco for provision of Q-streamer data.

  15. Illustrations of the importance of mass wasting in the evolution of continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratson, L.; Ryan, W.; Twichell, D.

    1990-05-01

    Side-looking sonar imagery and swath bathymetry from a variety of contemporary continental slopes all display erosional scars and debris aprons, illustrating the importance of mass wasting in the evolution of continental margins. The continental slopes examined include slopes fed directly from the fronts of ice sheets, slopes adjacent to continental shelves that were the sites of glacial outwash, slopes supplied exclusively by fluvial drainage, slopes at carbonate platforms, and slopes on accretionary prisms. Examples are drawn from the Atlantic Ocean, the Gulf of Mexico, and the Mediterranean Sea in both passive and active continental margin settings. The sonar imagery andmore » bathymetry used in this study indicate that continental slopes in different tectonic and climatic environments show similar forms of mass wasting. However, in some cases the dominant mode of erosion and/or the overall degree of mass wasting appears to be distinct to particular sedimentary environments. Timing of both recent and older exhumed erosional surfaces identified in the imagery and in seismic reflection profiles is obtained by ground truth observations using submersibles, towed camera sleds, drilling, and coring. These observations suggest that eustatic fluctuations common to all the margins examined do not explain the range in magnitude and areal density of the observed mass wasting. More localized factors such as lithology, diagenesis, pore fluid conditions, sediment supply rates, and seismic ground motion appear to have a major influence in the evolution of erosional scars and their corresponding unconformities.« less

  16. Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: Age constraints and common characteristics

    NASA Astrophysics Data System (ADS)

    López-Gamundí, Oscar

    2006-12-01

    Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian-through Middle Permian (280-260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.

  17. The Wide Bay Canyon system: A case study of canyon morphology on the east Australian continental margin

    NASA Astrophysics Data System (ADS)

    Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.

    2014-12-01

    A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.

  18. Geoacoustic models of the Donghae-to-Gangneung region in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2016-04-01

    Geoacoustic model is to provide a model of the real seafloor with measured, extrapolated, and predicted values of geoacoustic environmental parameters. It controls acoustic propagation in underwater acoustics. In the Korean continental margin of the East Sea, this study reconstructed geoacoustic models using geoacoustic and marine geologic data of the Donghae-to-Gangneung region (37.4° to 37.8° in latitude). The models were based on the data of the high-resolution subbottom and air-gun seismic profiles with sediment cores. The Donghae region comprised measured P-wave velocities and attenuations of the cores, whereas the Gangneung region comprised regression values using measured values of the adjacent areas. Geoacoustic data of the cores were extrapolated down to a depth of the geoacoustic models. For actual modeling, the P-wave speed of the models was compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of this region probably contribute for geoacoustic and underwater acoustic modelling reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: geoacoustic model, environmental parameter, East Sea, continental margin Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  19. Crustal structure and extension mode in the northwestern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Liu, Zheng; Spence, George

    2016-06-01

    Combining multi-channel seismic reflection and gravity modeling, this study has investigated the crustal structure of the northwestern South China Sea margin. These data constrain a hyper-extended crustal area bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a subparallel fossil ridge in the adjacent Northwest Sub-basin. The thinnest crust is located in the Xisha Trough, where it is remnant lower crust with a thickness of less than 3 km. Gravity modeling also revealed a hyper-extended crust across the Xisha Trough. The postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the South China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha Trough and the Northwest Sub-basin. A narrow continent-ocean transition zone with a width of ˜65 km bounded seaward by a volcanic buried seamount is characterized by crustal thinning, rift depression, low gravity anomaly and the termination of the break-up unconformity seismic reflection. The aborted rift near the continental margin means that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric rift, extreme hyper-extended continental crust and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northwestern South China Sea margin.

  20. New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    2002-12-01

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was thrusted onto the edge of the rifted continental block of the Dangerous Grounds. The subducted oceanic crust of the proto South China Sea must today be located below the Eastern part of Sabah and not along the present NW Sabah Trough.

  1. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  2. Insights into the crustal structure of the transition between Nares Strait and Baffin Bay

    NASA Astrophysics Data System (ADS)

    Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar

    2016-11-01

    The crustal structure and continental margin between southern Nares Strait and northern Baffin Bay were studied based on seismic refraction and gravity data acquired in 2010. We present the resulting P wave velocity, density and geological models of the crustal structure of a profile, which extends from the Greenlandic margin of the Nares Strait into the deep basin of central northern Baffin Bay. For the first time, the crustal structure of the continent-ocean transition of the very northern part of Baffin Bay could be imaged. We divide the profile into three parts: continental, thin oceanic, and transitional crust. On top of the three-layered continental crust, a low-velocity zone characterizes the lowermost layer of the three-layered Thule Supergroup underneath Steensby Basin. The 4.3-6.3 km thick oceanic crust in the southern part of the profile can be divided into a northern and southern section, more or less separated by a fracture zone. The oceanic crust adjacent to the continent-ocean transition is composed of 3 layers and characterized by oceanic layer 3 velocities of 6.7-7.3 km/s. Toward the south only two oceanic crustal layers are necessary to model the travel time curves. Here, the lower oceanic crust has lower seismic velocities (6.4-6.8 km/s) than in the north. Rather low velocities of 7.7 km/s characterize the upper mantle underneath the oceanic crust, which we interpret as an indication for the presence of upper mantle serpentinization. In the continent-ocean transition zone, the velocities are lower than in the adjacent continental and oceanic crustal units. There are no signs for massive magmatism or the existence of a transform margin in our study area.

  3. Crustal structure and inferred extension mode in the northern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, J.; Wu, S.; McIntosh, K. D.; Mi, L.; Spence, G.

    2016-12-01

    Combining multi-channel seismic reflection and satellite gravity data, this study has investigated the crustal structure and magmatic activities of the northern South China Sea (SCS) margin. Results show that a broad continent-ocean transition zone (COT) with more than 140 km wide is characterized by extensive igneous intrusion/extrusion and hyper-extended continental crust in the northeastern SCS margin, a broader COT with 220-265 km wide is characterized by crustal thinning, rift depression, structural highs with igneous rock and perhaps a volcanic zone or a zone of tilted fault blocks at the distal edge in the mid-northern SCS margin, and a narrow COT with 65 km wide bounded seawards by a volcanic buried seamount is characterized by extremely hyper-extended continental crust in the northwestern SCS margin, where the remnant crust with less than 3 km thick is bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a sub-parallel fossil ridge in the adjacent Northwest Sub-basin. Results from gravity modeling and seismic refraction data show that a high velocity layer (HVL) is present in the outer shelf and slope below extended continental crust in the eastern portion of the northern SCS margin and is thickest (up to 10 km) in the Dongsha Uplift where the HVL gradually thins to east and west below the lower slope and finally terminates at the Manila Trench and Baiyun sag of the Pearl River Mouth Basin. The magmatic intrusions/extrusions and HVL may be related to partial melting caused by decompression of passive, upwelling asthenosphere which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. The northern SCS margin is closer to those of the magma-poor margins than those of volcanic margins, but the aborted rift near the northwestern continental margin shows that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric aborted rift, broad hyper-extended continental crust, locally distributed HVL, and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northern South China Sea margin.

  4. First images of the crustal structure across the eastern Algerian margin, from deep penetrating seismic data.

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific

    2013-04-01

    The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.

  5. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  6. Mesozoic Continental Sediment-dispersal Systems of Mexico Linked to Development of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.

    2013-05-01

    Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the continental-margin arc blocked westward drainage and detritus was captured in rift basins. Latest Middle Jurassic fluvial systems formed as the Yucatan block rotated counterclockwise and the Gulf of Mexico began to open. Sediment dispersal, partly equivalent to salt deposition in the Gulf, was largely southward in southern Oaxaquia, but large-volume braided river systems on the Maya (Yucatan) block, represented by the Todos Santos Formation in Chiapas, evidently flowed northward along graben axes toward the western part of the Gulf of Mexico Basin. River systems of nuclear Mexico, or Oaxaquia, occupied a broad sedimentary basin west and south of a divide formed adjacent to the translating Maya block. Despite their big-river characteristics, these deposits contain mainly Grenville and Permo-Triassic grains derived from Oaxaquia basement and subordinate Early and Middle Jurassic grains derived from volcanic rocks and plutons of the arc. Early Late Jurassic (Oxfordian) marine flooding of the entire Gulf rim and nuclear Mexico, evidently resulting in part from marginal subsidence adjoining newly-formed oceanic crust, terminated fluvial deposition adjacent to the young Gulf of Mexico.

  7. On the initiation of subduction

    NASA Technical Reports Server (NTRS)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  8. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper slope is inferred as the source of gravity flows driving canyon evolution. Canyon morphology is shown to be maintained over the course of more than one fall and rise in sea-level. Our model of canyon evolution is applicable to other passive margins (e.g. Argentine continental margin).

  9. Geodynamic settings of microcontinents, non-volcanic islands and submerged continental marginal plateau formation

    NASA Astrophysics Data System (ADS)

    Dubinin, Evgeny; Grokholsky, Andrey; Makushkina, Anna

    2016-04-01

    Complex process of continental lithosphere breakup is often accompanied by full or semi isolation of small continental blocks from the parent continent such as microcontinents or submerged marginal plateaus. We present different types of continental blocks formed in various geodynamic settings. The process depends on thermo-mechanical properties of rifting. 1) The continental blocks fully isolated from the parent continent. This kind of blocks exist in submerged form (Elan Bank, the Jan-Mayen Ridge, Zenith Plateau, Gulden Draak Knoll, Batavia Knoll) and in non-submerged form in case of large block size. Most of listed submerged blocks are formed in proximity of hot-spot or plume. 2) The continental blocks semi-isolated from the parent continent. Exmouth Plateau, Vøring, Agulhas, Naturaliste are submerged continental plateaus of the indicated category; Sri Lanka, Tasmania, Socotra are islands adjacent to continent here. Nowadays illustration of this setting is the Sinai block located between the two continental rifts. 3) The submerged linear continental blocks formed by the continental rifting along margin (the Lomonosov Ridge). Suggested evolution of this paragraph is the rift propagation along existing transtensional (or another type) transform fault. Future example of this type might be the California Peninsula block, detached from the North American plate by the rifting within San-Andreas fault. 4) The submerged continental blocks formed by extensional processes as the result of asthenosphere flow and shear deformations. Examples are submerged blocks in the central and southern Scotia Sea (Terror Bank, Protector Basin, Discovery Bank, Bruce Bank etc.). 5) The continental blocks formed in the transform fault systems originated in setting of contradict rifts propagation in presence of structure barriers, rifts are shifted by several hundreds kilometers from each other. Examples of this geodynamic setting are Equatorial Atlantic at the initial development stage, and the transitional zone between Mohns and Gakkel Ridges. The research funded by RFBR, project № 15-05-03486.

  10. Deep crustal earthquakes associated with continental rifts

    NASA Astrophysics Data System (ADS)

    Doser, Diane I.; Yarwood, Dennis R.

    1994-01-01

    Deep (> 20 km) crustal earthquakes have occurred within or along the margins of at least four continental rift zones. The largest of these deep crustal earthquakes ( M ⩾ 5.0) have strike-slip or oblique-slip mechanisms with T-axes oriented similarly to those associated with shallow normal faulting within the rift zones. The majority of deep crustal earthquakes occur along the rift margins in regions that have cooler, thicker crust. Several deep crustal events, however, occur in regions of high heat flow. These regions also appear to be regions of high strain, a factor that could account for the observed depths. We believe the deep crustal earthquakes represent either the relative motion of rift zones with respect to adjacent stable regions or the propagation of rifting into stable regions.

  11. A new tectono-magmatic model for the Lofoten/Vesterålen Margin at the outer limit of the Iceland Plume influence

    NASA Astrophysics Data System (ADS)

    Breivik, Asbjørn Johan; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst R.; Murai, Yoshio

    2017-10-01

    The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5 km thick and ∼50 km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8 km), but is reduced to 6 km after 1 m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5 km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1 Ma, ∼1 m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time.

  12. Continental transform margins : state of art and future milestones

    NASA Astrophysics Data System (ADS)

    Basile, Christophe

    2010-05-01

    Transform faults were defined 45 years ago as ‘a new class of fault' (Wilson, 1965), and transform margins were consequently individualized as a new class of continental margins. While transform margins represent 20 to 25 % of the total length of continent-ocean transitions, they were poorly studied, especially when compared with the amount of data, interpretations, models and conceptual progress accumulated on divergent or convergent continental margins. The best studied examples of transform margins are located in the northern part of Norway, south of South Africa, in the gulf of California and on both sides of the Equatorial Atlantic. Here is located the Côte d'Ivoire - Ghana margin, where the more complete data set was acquired, based on numerous geological and geophysical cruises, including ODP Leg 159. The first models that encompassed the structure and evolution of transform margins were mainly driven by plate kinematic reconstructions, and evidenced the diachronic end of tectonic activity and the non-cylindrical character of these margins, with a decreasing strike-slip deformation from the convex to the concave divergent-transform intersections. Further thermo-mechanical models were more specifically designed to explain the vertical displacements along transform margins, and especially the occurrence of high-standing marginal ridges. These thermo-mechanical models involved either heat transfer from oceanic to continental lithospheres across the transform faults or tectonically- or gravity-driven mass transfer in the upper crust. These models were far from fully fit observations, and were frequently dedicated to specific example, and not easily generalizable. Future work on transform continental margins may be expected to fill some scientific gaps, and the definition of working directions can benefit from the studies dedicated to other types of margins. At regional scale the structural and sedimentological variability of transform continental margins has to be emphasized. There is not only one type of transform margins, but as for divergent margins huge changes from one margin to another in both structure and evolution. Multiple types have to be evidenced together with the various parameters that should control the variability. As for divergent margins, special attention should be paid to conjugated transform margins as a tool to assess symmetrical / asymmetrical processes in the oceanic opening. Attention should also be focused on the three-dimensional structure of the intersections between transform and divergent margins, such as the one where the giant oil field Jubilee was recently discovered. There is almost no 3D data available in these area, and their structures still have to be described. An other key point to develop is the mechanical behavior of the lithosphere in and in the vicinity of transform margins. The classical behaviors (isostasy, elastic flexure) have be tested extensively. The localization of the deformation by the transform fault, and the coupling of continental and oceanic lithosphere across the transform fault have to be adressed to understand the evolution of these margins. Again as for divergent margins, new concepts are needed to explain the variations in the post-rift and post-transform subsidence, that can not always be explained by classical subsidence models. But the most remarkable advance in our understanding of transform margins may be related to the study of interactions between the lithosphere and adjacent envelops : deep interactions with the mantle, as underplating, tectonic erosion, or possible lateral crustal flow ; surficial interactions between structural evolution, erosion and sedimentation processes in transform margins may affect the topography and bathymetry, thus the oceanic circulation with possible effects on regional and global climate.

  13. GLORIA mosaic of West Coast US Exclusive Economic Zone, northern sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, M.A.; Cacchione, D.A.; Drake, D.E.

    1986-05-01

    The GLORIA (Geological Long-Range Inclined Asdic) side-scanning sonar system was used to compile an image-enhanced acoustic mosaic, similar to an aerial photograph, of the sea floor of the West Coast US Exclusive Economic Zone. The mosaic clearly shows the spreading centers, fracture zones, submarine fans and channels, and transform to convergent continental margins north of latitude 39/sup 0/N. The linear basement ridges originally generated at the Gorda and Juan de Fuca spreading centers are abruptly truncated by the Mendocino and Blanco fracture zones, and their subtle to distinct divergence, bending, and offset attests to past changes in spreading rate andmore » propagation of spreading centers. The major Delgada, Astoria, and Nitinat fans are traversed by lengthy channel-levee complexes extending from major canyons on the adjacent continental slope; areally extensive sediment-wave fields occur adjacent to the right side (facing down-channel) of these complexes. Other drainage features appear on the mosaic, and the range of channel sinuosity and continuity indicates fluvial-like processes at work on the sea floor. Submarine canyons on the continental slope are irregularly distributed; their range of maturity and relation to substrate type and geologic structure are manifest as variations in length, width, and relief, by changes in trend, and by the degree of sidewall gullying. Compressional and diapiric ridges characterize the continental slope in areas of plate convergence, whereas along the transform margin south of the Mendocino fracture zone, the slope is relatively smooth and featureless, except where incised by large canyon systems.« less

  14. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    USGS Publications Warehouse

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  15. Constraints Imposed by Rift Inheritance on the Compressional Reactivation of a Hyperextended Margin: Mapping Rift Domains in the North Iberian Margin and in the Cantabrian Mountains

    NASA Astrophysics Data System (ADS)

    Cadenas, P.; Fernández-Viejo, G.; Pulgar, J. A.; Tugend, J.; Manatschal, G.; Minshull, T. A.

    2018-03-01

    The Alpine Pyrenean-Cantabrian orogen developed along the plate boundary between Iberia and Europe, involving the inversion of Mesozoic hyperextended basins along the southern Biscay margin. Thus, this margin represents a natural laboratory to analyze the control of structural rift inheritance on the compressional reactivation of a continental margin. With the aim to identify former rift domains and investigate their role during the subsequent compression, we performed a structural analysis of the central and western North Iberian margin, based on the interpretation of seismic reflection profiles and local constraints from drill-hole data. Seismic interpretations and published seismic velocity models enabled the development of crustal thickness maps that helped to constrain further the offshore and onshore segmentation. Based on all these constraints, we present a rift domain map across the central and western North Iberian margin, as far as the adjacent western Cantabrian Mountains. Furthermore, we provide a first-order description of the margin segmentation resulting from its polyphase tectonic evolution. The most striking result is the presence of a hyperthinned domain (e.g., Asturian Basin) along the central continental platform that is bounded to the north by the Le Danois High, interpreted as a rift-related continental block separating two distinctive hyperextended domains. From the analysis of the rift domain map and the distribution of reactivation structures, we conclude that the landward limit of the necking domain and the hyperextended domains, respectively, guide and localize the compressional overprint. The Le Danois block acted as a local buttress, conditioning the inversion of the Asturian Basin.

  16. Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    PubMed Central

    Kelly, Noreen E.; Shea, Elizabeth K.; Metaxas, Anna; Haedrich, Richard L.; Auster, Peter J.

    2010-01-01

    Background In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists. PMID:21124960

  17. Evidence for submarine landslides and continental slope erosion related to fault reactivation during the last glaciation offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Saint-Ange, F.; Campbell, C.; MacKillop, K.; Mosher, D. C.; Piper, D. J.; Roger, J.

    2012-12-01

    Many studies have proposed that reactivation of dormant faults during deglaciation is a source of neotectonic activity in glaciated regions, but few have demonstrated the relationship to submarine landslides. In this study, seabed morphology and shallow geology of the outer continental margin adjacent to the Charlie Gibbs Fracture Zone off Newfoundland, Canada was investigated for evidence of this relationship. The glacial history and morphology of the margin suggest that the entire continental shelf in the area, coincident with major continental crustal lineaments, was ice-covered during the Last glacial cycle, and transverse troughs delineate the paleo-icestream drainage patterns. A recent investigation of Notre Dame Trough revealed the existence of large sediment failures on the shelf. The current study investigates complex seafloor erosion and widespread mass transport deposition (MTD) on the continental slope seaward of Notre Dame Trough, using recently-acquired high resolution seismic reflection data and piston cores. The new data reveal that a trough mouth fan (TMF) is present on the slope seaward of Notre Dame Trough. The Notre Dame TMF is characterized by a succession of stacked debris flows, but does not show a lobate shape in plan view like other classic TMFs. Instead, the Notre Dame TMF has abruptly-truncated margins suggesting post-depositional failure and erosion of the fan deposits. Seismic reflection data show that the locations of the failures along the TMF margin are coincident with a set of shallow faults; however the current dataset does not image the deeper portion of the faults. On the upper slope immediately south of the TMF, a narrow and deeply incised canyon is located along-trend with the Notre Dame Trough. The location of this canyon appears to be controlled by a fault. Downslope from this canyon, along the southern margin of the TMF, a 25 km wide, flat-floored, U-shaped valley was eroded into a succession of stacked MTD-filled channels. Seismic stratigraphic analysis shows that the valley developed around the same time as the adjacent TMF, however, the valley morphology and evidence for repeated slope failure suggests that the processes responsible for its formation were different than the processes that formed the nearby TMF. Age control provided from piston cores suggest that the last major slope failure that contributed to valley formation probably occurred at ~29 ka. Geotechnical measurements from piston cores show slightly underconsolidated sediments. The results indicate that this part of the margin is more unstable than Orphan Basin and Labrador slope regions. Given the low factor of safety and the complex fault system, low energy earthquake from the surrounding area could be enough to potentially trigger landslides.

  18. Map showing sediment isopachs in the deep-sea basins of the Pacific continental margin, Cape Mendocino to Point Conception

    USGS Publications Warehouse

    Gardner, J.V.; Cacchione, D.A.; Drake, D.E.; Edwards, B.D.; Field, M.E.; Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.; Masson, D.G.; McCulloch, D.S.; Grim, M.S.

    1993-01-01

    Paskevich, V.F., Wong, F.L., O?Malley, J.J., Stevenson, A.J., and Gutmacher, C.E., 2011, GLORIA sidescan-sonar imagery for parts of the U.S. Exclusive Economic Zone and adjacent areas: U.S. Geological Survey Open-File Report 2010?1332, available at http://pubs.usgs.gov/of/2010/1332/.

  19. Origin of narrow terranes and adjacent major terranes occurring along the denali fault in the eastern and central alaska range, alaska

    USGS Publications Warehouse

    Nokleberg, W.J.; Richter, D.H.

    2007-01-01

    Several narrow terranes occur along the Denali fault in the Eastern and Central Alaska Range in Southern Alaska. These terranes are the Aurora Peak, Cottonwood Creek, Maclaren, Pingston, and Windy terranes, and a terrane of ultramafic and associated rocks. Exterior to the narrow terranes to the south is the majorWrangellia island arc composite terrane, and to the north is the major Yukon Tanana metamorphosed continental margin terrane. Overlying mainly the northern margin of the Wrangellia composite terrane are the Kahiltna overlap assemblage to the west, and the Gravina- Nutzotin-Gambier volcanic-plutonic- sedimentary belt to the east and southeast. The various narrow terranes are interpreted as the result of translation of fragments of larger terranes during two major tectonic events: (1) Late Jurassic to mid-Cretaceous accretion of the Wrangellia island arc composite terrane (or superterrane composed of the Wrangellia, Peninsular, and Alexander terranes) and associated subduction zone complexes; and (2) starting in about the Late Cretaceous, dextral transport of the Wrangellia composite terrane along the Denali fault. These two major tectonic events caused: (1) entrapment of a lens of oceanic lithosphere along the suture belt between the Wrangellia composite terrane and the North American Craton Margin and outboard accreted terranes to form the ultramafic and mafic part of the terrane of ultramafic and associated rocks, (2) subsequent dextral translation along the Denali fault of the terrane of ultramafic and associated rocks, (3) dextral translation along the Denali fault of the Aurora Peak, Cottonwood Creek, and Maclaren and continental margin arc terranes from part of the Coast plutonic-metamorphic complex (Coast-North Cascade plutonic belt) in the southwest Yukon Territory or Southeastern Alaska, (4) dextral translation along the Denali fault of the Pingston passive continental margin from a locus along the North American Continental Margin, and (5) formation and dextral transport along the Denali fault of the m??lange of the Windy terrane from fragments of the Gravina-Nutzotin-Gambier volcanic-plutonic-sedimentary belt and from the North American Continental Margin. Copyright ?? 2007 The Geological Society of America.

  20. Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina

    2014-05-01

    New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388-392. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.

  1. Cruise report; RV Coastal Surveyor Cruise C1-99; multibeam mapping of the Long Beach, California continental shelf; April 12 through May 19, 1999

    USGS Publications Warehouse

    Gardner, James V.; Hughes-Clarke, John E.; Mayer, Larry A.

    1999-01-01

    The greater Los Angeles area of California is home to more than 10 million people. This large population puts increased pressure on the adjacent offshore continental shelf and margin with activities such as ocean disposal for dredged spoils, explosive disposal, waste-water outfall, and commercial fishing. The increased utilization of the shelf and margin in this area has generated accelerated multi-disciplinary research efforts in all aspects of the environment of the coastal zone. Prior to 1996 there were no highly accurate base maps of the continental shelf and slope upon which the research activities could be located and monitored. In 1996, the United States Geological Survey (USGS) Pacific Seafloor Mapping Project began to address this problem by mapping the Santa Monica shelf and margin (Fig. 1) using a state-of-the-art, high-resolution multibeam sonar system (Gardner, et al., 1996; 1999). Additional seafloor mapping in 1998 provided coverage of the continental margin from south of Newport to the proximal San Pedro Basin northwest of Palos Verdes Peninsula (Gardner, et al., 1998) (Fig. 1). The mapping of the seafloor in the greater Los Angeles continental shelf and margin was completed with a 30-day mapping of the Long Beach shelf in April and May 1999, the subject of this report. The objective of Cruise C-1-99-SC was to completely map the broad continental shelf from the eastern end of the Palos Verdes Peninsula to the narrow shelf south of Newport Beach, from the break in slope at about 120-m isobath to the inner shelf at about the 10-m isobath. Mapping the Long Beach shelf was jointly funded by the U.S. Geological Survey and the County of Orange (CA) Sanitation District and was conducted under a Cooperative Agreement with the Ocean Mapping Group from the University of New Brunswick (OMG/UNB). The OMG/UNB contracted with C&C Technologies, Inc. of Lafayette, LA for use of the RV Coastal Surveyor and the latest evolution of high-resolution multibeam sonars, a dual Kongsberg Simrad EM3000D.

  2. Map showing depth to basement in the deep-sea basins of the Pacific continental margin, Strait of Juan de Fuca to Cape Mendocino

    USGS Publications Warehouse

    Gardner, J.V.; Cacchione, D.A.; Drake, D.E.; Edwards, B.D.; Field, M.E.; Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.; Masson, D.G.; McCulloch, D.S.; Grim, M.S.

    1993-01-01

    Paskevich, V.F., Wong, F.L., O?Malley, J.J., Stevenson, A.J., and Gutmacher, C.E., 2011, GLORIA sidescan-sonar imagery for parts of the U.S. Exclusive Economic Zone and adjacent areas: U.S. Geological Survey Open-File Report 2010?1332, available at http://pubs.usgs.gov/of/2010/1332/.

  3. Map showing depth to basement in the deep-sea basins of the Pacific continental margin, Cape Mendocino to Point Conception

    USGS Publications Warehouse

    Gardner, J.V.; Caccione, D.A.; Drake, D.E.; Edwards, B.D.; Field, M.E.; Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.; Masson, D.G.; McCulloch, D.S.; Grim, M.S.

    1993-01-01

    Paskevich, V.F., Wong, F.L., O?Malley, J.J., Stevenson, A.J., and Gutmacher, C.E., 2011, GLORIA sidescan-sonar imagery for parts of the U.S. Exclusive Economic Zone and adjacent areas: U.S. Geological Survey Open-File Report 2010?1332, available at http://pubs.usgs.gov/of/2010/1332/.

  4. Map showing sediment isopachs in the deep-sea basins of the Pacific Continental Margin, Strait of Juan de Fuca to Cape Mendocino

    USGS Publications Warehouse

    Gardner, J.V.; Cacchione, D.A.; Drake, D.E.; Edwards, B.D.; Field, M.E.; Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.; Masson, D.G.; McCulloch, D.S.; Grim, M.S.

    1993-01-01

    Paskevich, V.F., Wong, F.L., O?Malley, J.J., Stevenson, A.J., and Gutmacher, C.E., 2011, GLORIA sidescan-sonar imagery for parts of the U.S. Exclusive Economic Zone and adjacent areas: U.S. Geological Survey Open-File Report 2010?1332, available at http://pubs.usgs.gov/of/2010/1332/.

  5. Map showing depth to basement in the deep-sea basins of the Pacific continental margin, Point Conception to Point Loma

    USGS Publications Warehouse

    Gardner, J.V.; Cacchione, D.A.; Drake, D.E.; Edwards, B.D.; Field, M.E.; Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.; Masson, D.G.; McCulloch, D.S.; Grim, M.S.

    1992-01-01

    Paskevich, V.F., Wong, F.L., O?Malley, J.J., Stevenson, A.J., and Gutmacher, C.E., 2011, GLORIA sidescan-sonar imagery for parts of the U.S. Exclusive Economic Zone and adjacent areas: U.S. Geological Survey Open-File Report 2010?1332, available at http://pubs.usgs.gov/of/2010/1332/.

  6. Influence of the Iceland mantle plume on North Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Isimm Team

    2003-04-01

    Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8-11 Hz. The OBS survey used a 14-gun, 6,300 cu. in. array towed at 20 m depth, and the Q-marine survey used a 48-gun, 10,170 cu. in. array, with shot-by-shot signature recording. They provided excellent arrivals to ranges beyond 120 km, with penetration through the basalts and well into the upper mantle. iSIMM investigators are R.S. White, N.J. Kusznir, P.A.F. Christie, A.M. Roberts, N. Hurst, Z.C. Lunnon, C.J. Parkin, A.W. Roberts, L.K. Smith, R. Spitzer , V. Tymms, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco

  7. Continental magnetic anomaly constraints on continental reconstruction

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.

  8. Alpine inversion of the North African margin and delamination of its continental lithosphere

    NASA Astrophysics Data System (ADS)

    Roure, FrançOis; Casero, Piero; Addoum, Belkacem

    2012-06-01

    This paper aims at summarizing the current extent and architecture of the former Mesozoic passive margin of North Africa from North Algeria in the west up to the Ionian-Calabrian arc and adjacent Mediterranean Ridge in the east. Despite that most paleogeographic models consider that the Eastern Mediterranean Basin as a whole is still underlain by remnants of the Permo-Triassic or a younger Cretaceous Tethyan-Mesogean ocean, the strong similarities documented here in structural styles and timing of inversion between the Saharan Atlas, Sicilian Channel and the Ionian abyssal plain evidence that this portion of the Eastern Mediterranean Basin still belongs to the distal portion of the North African continental margin. A rim of Tethyan ophiolitic units can be also traced more or less continuously from Turkey and Cyprus in the east, in onshore Crete, in the Pindos in Greece and Mirdita in Albania, as well as in the Western Alps, Corsica and the Southern Apennines in the west, supporting the hypothesis that both the Apulia/Adriatic domain and the Eastern Mediterranean Basin still belong to the former southern continental margin of the Tethys. Because there is no clear evidence of crustal-scale fault offsetting the Moho, but more likely a continuous yet folded Moho extending between the foreland and the hinterland beneath the Mediterranean arcs, we propose here a new model of delamination of the continental lithosphere for the Apennines and the Aegean arcs. In this model, only the mantle lithosphere of Apulia and the Eastern Mediterranean is still locally subducted and recycled in the asthenosphere, most if not all the northern portion of the African crust and coeval Moho being currently decoupled from its former, currently delaminated and subducted mantle lithosphere.

  9. Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie

    2013-04-01

    It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness, incorporates a lithosphere thermal gravity anomaly correction and uses sediment thicknesses from 2D seismic data. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The difference between the sediment corrected RDA and the "synthetic" gravity derived RDA gives the component of the RDA which is not due to variations in oceanic crustal thickness. This RDA corrected for sediment loading and crustal thickness variation has a magnitude between +600m and +1000m (corresponding to anomalous uplift) and is comparable to that reported (+1km) by Lucazeau et al. (2008). We are unable to distinguish whether this anomalous uplift is due to mantle dynamic topography or anomalous subsidence with respect to classical rift model predictions.

  10. NRC Continental Margins Workshop

    NASA Astrophysics Data System (ADS)

    Katsouros, Mary Hope

    The Ocean Studies Board of the National Research Council is organizing a workshop, “Continental Margins: Evolution of Passive Continental Margins and Active Marginal Processes,” to stimulate discussion and longterm planning in the scientific community about the evolution of all types of continental margins. We want to coordinate academic, industry, and government agency efforts in this field, and to enhance communication between sea-based and land-based research programs.The continental margins constitute the only available record of the long-term dynamic interaction of oceanic and continental lithosphere. Of great interest are the unique structures and thick sedimentary sequences associated with this interaction. A major focus of the workshop will be to define strategies for exploring and understanding the continental margins in three dimensions and through geologic time. The workshop will be divided into 7 working groups, each concentrating on a major issue in continental margins research. A background document is being prepared summarizing recent research in specific continental margin fields and identifying key scientific and technical issues.

  11. Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Minshull, T. A.; Edwards, R. A.; Flueh, E. R.

    2015-07-01

    The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding continents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.

  12. Relation of MAGSAT and Gravity Anomalies to the Main Tectonic Provinces of South America. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, D. W.

    1984-01-01

    Magnetic anomalies of the South American continent are generally more positive and variable than the oceanic anomalies. There is better correlation between the magnetic anomalies and the major tectonic elements of the continents than between the anomalies and the main tectonic elements of the adjacent oceanic areas. Oceanic areas generally show no direct correlation to the magnetic anomalies. Precambrian continental shields are mainly more magnetic than continental basins and orogenic belts. Shields differ markedly from major aulacogens which are generally characterized by negative magnetic anomalies and positive gravity anomalies. The Andean orogenic belt shows rather poor correlation with the magnetic anomalies. The magnetic data exhibit instead prominent east-west trends, which although consistent with some tectonic features, may be related to processing noise derived from data reduction procedures to correct for external magnetic field effects. The pattern over the Andes is sufficiently distinct from the generally north trending magnetic anomalies occurring in the adjacent Pacific Ocean to separate effectively the leading edge of the South American Plate from the Nazea Plate. Eastern South America is characterized by magnetic anomalies which commonly extend across the continental margin into the Atlantic Ocean.

  13. Anomalous heat flow belt along the continental margin of Brazil

    NASA Astrophysics Data System (ADS)

    Hamza, Valiya M.; Vieira, Fabio P.; Silva, Raquel T. A.

    2018-01-01

    A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100-300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that "tectonic bonding" between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth's internal heat at shallow depths.

  14. Neogene collision and deformation of convergent margins along the backbone of the Americas

    USGS Publications Warehouse

    von Huene, Roland E.; Ranero, C.R.

    2009-01-01

    Along Pacific convergent margins of the Americas, high-standing relief on the subducting oceanic plate "collides" with continental slopes and subducts. Features common to many collisions are uplift of the continental margin, accelerated seafloor erosion, accelerated basal subduction erosion, a flat slab, and a lack of active volcanism. Each collision along America's margins has exceptions to a single explanation. Subduction of an ???600 km segment of the Yakutat terrane is associated with >5000-m-high coastal mountains. The terrane may currently be adding its unsubducted mass to the continent by a seaward jump of the deformation front and could be a model for docking of terranes in the past. Cocos Ridge subduction is associated with >3000-m-high mountains, but its shallow subduction zone is not followed by a flat slab. The entry point of the Nazca and Juan Fernandez Ridges into the subduction zone has migrated southward along the South American margin and the adjacent coast without unusually high mountains. The Nazca Ridge and Juan Fernandez Ridges are not actively spreading but the Chile Rise collision is a triple junction. These collisions form barriers to trench sediment transport and separate accreting from eroding segments of the frontal prism. They also occur at the separation of a flat slab from a steeply dipping one. At a smaller scale, the subduction of seamounts and lesser ridges causes temporary surface uplift as long as they remain attached to the subducting plate. Off Costa Rica, these features remain attached beneath the continental shelf. They illustrate, at a small scale, the processes of collision. ?? 2009 The Geological Society of America. All rights reserved.

  15. Paleogeographic constraints on continental-scale source-to-sink systems: Northern South America and its Atlantic margins

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Chardon, Dominique; Rouby, Delphine; Dall'Asta, Massimo; Roig, Jean-Yves; Loparev, Artiom; Coueffe, Renaud

    2017-04-01

    Our work aims at setting the evolving boundary conditions of erosion and sediments transfer, transit, and onshore-offshore accumulations on northern South America and along its Atlantic margins. Since the Early Mesozoic, the source-to-sink system evolved under the interplay of four main processes, which are (i) volcanism and arc building along the proto-Andes, (ii) long-term dynamics of the Amazon incratonic basin, (iii) rifting, relaxation and rejuvenation of the Atlantic margins and (iv) building of the Andes. We compiled information available from geological maps and the literature regarding tectonics, plate kinematics, magmatism, stratigraphy, sedimentology (including paleoenvironments and currents) and thermochronology to produce a series of paleogeographic maps showing the tectonic and kinematic framework of continental areas under erosion (sources), by-pass and accumulation (sinks) over the Amazonian craton, its adjacent regions and along its Atlantic margins. The maps also allow assessing the relative impact of (i) ongoing Pacific subduction, (ii) Atlantic rifting and its aftermath, and (iii) Atlantic slab retreat from under the Caribbean domain on the distribution and activity of onshore/offshore sedimentary basins. Stratigraphic and thermochronology data are also used to assess denudation / vertical motions due to sediment transfers and lithosphere-asthenosphere interactions. This study ultimately aims at linking the sediment routing system to long-wavelength deformation of northern South America under the influence of mountain building, intracratonic geodynamics, divergent margin systems and mantle dynamics.

  16. High-pressure amphibolite facies dynamic metamorphism and the Mesozoic tectonic evolution of an ancient continental margin, east- central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.

    1995-01-01

    Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors

  17. Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and the western Pacific

    NASA Technical Reports Server (NTRS)

    Fitch, T. J.

    1971-01-01

    A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.

  18. Partitioning of deformation along a reactivated rifted margin: example of the northern Ligurian margin.

    NASA Astrophysics Data System (ADS)

    Sage, Françoise; Beslier, Marie-Odile; Gaullier, Virginie; Larroque, Christophe; Dessa, Jean-Xavier; Mercier de Lepinay, Bernard; Corradi, Nicola; Migeon, Sébastien; Katz, Hélène; Ruiz Constan, Ana

    2013-04-01

    The northern Ligurian margin, of Oligo-Miocene age, is currently undergoing compression related to microplate motions and/or to gravity spreading of the Alpine chain located immediately north of it. Active thrust faults and folds have previously been identified below the margin, together with a global uplift of the continental edge, since at least the Messinian. The seismicity that goes with the present-day margin contraction (e.g. Mw 6.9, 1887/02/23) extends to the axis of the adjacent oceanic basin (e.g. ML 6.0, 1963/07/19; ML 5.4, 2011/07/07). However, we do not know of any recent or active crustal contractional structure within this oceanic domain. In this study, we use new 12-channel high-resolution seismic data (FABLES seismic cruise, 2012, R/V Tethys II) in order to image the sedimentary cover of the Ligurian oceanic basin, up to ~3km below the seabed, including the Plio-Quaternary and the Messinian sediment down to the bottom of the Messinian salt layer. Because the Messinian event is well dated (5.96-5.32 Ma) and well identified in the seismic data, it forms a clear marker that we use to characterize the recent deformation related to both mobile salt motion and crustal tectonics. About 50 km south of the margin offshore of Italy, we identify huge and complex salt walls that elongate SW-NE. Such salt walls, which cannot be explained by salt tectonics only, are interpreted as evidence of deep-seated crustal deformation. They form en echelon structures that are well expressed in the seabed morphology, and do not correspond to any significant vertical throw at the base of the salt layer. This suggests that within the deep basin, mainly strike-slip faulting accommodates long-term crustal deformation. It thus offers a contrast with the margin where deformation is mainly marked by shortening and reverse faulting, with vertical throws of several hundred meters. This discrepancy in the tectonic styles between the margin and the adjacent oceanic basin suggests some partitioning of the deformation. It may result from the difference in the topographic gradient of the main crustal interfaces between the steep margin and the adjacent oceanic domain, and/or to different mechanical behaviours of the adjacent lithospheric domains.

  19. The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan)

    NASA Astrophysics Data System (ADS)

    Brookfield, Michael E.; Hashmat, Ajruddin

    2001-10-01

    The North Afghan platform has a pre-Jurassic basement unconformably overlain by a Jurassic to Paleogene oil- and gas-bearing sedimentary rock platform cover, unconformably overlain by Neogene syn- and post-orogenic continental clastics. The pre-Jurassic basement has four units: (1) An ?Ordovician to Lower Devonian passive margin succession developed on oceanic crust. (2) An Upper Devonian to Lower Carboniferous (Tournaisian) magmatic arc succession developed on the passive margin. (3) A Lower Carboniferous (?Visean) to Permian rift-passive margin succession. (4) A Triassic continental magmatic arc succession. The Mesozoic-Palaeogene cover has three units: (1) A ?Late Triassic to Middle Jurassic rift succession is dominated by variable continental clastics. Thick, coarse, lenticular coal-bearing clastics were deposited by braided and meandering streams in linear grabens, while bauxites formed on the adjacent horsts. (2) A Middle to Upper Jurassic transgressive-regressive succession consists of mixed continental and marine Bathonian to Lower Kimmeridgian clastics and carbonates overlain by regressive Upper Kimmeridgian-Tithonian evaporite-bearing clastics. (3) A Cretaceous succession consists of Lower Cretaceous red beds with evaporites, resting unconformably on Jurassic and older deposits, overlain (usually unconformably) by Cenomanian to Maastrichtian shallow marine limestones, which form a fairly uniform transgressive succession across most of Afghanistan. (4) A Palaeogene succession rests on the Upper Cretaceous limestones, with a minor break marked by bauxite in places. Thin Palaeocene to Upper Eocene limestones with gypsum are overlain by thin conglomerates, which pass up into shales with a restricted brackish-water ?Upper Oligocene-?Lower Miocene marine fauna. The Neogene succession consists of a variable thickness of coarse continental sediments derived from the rising Pamir mountains and adjacent ranges. Almost all the deformation of the North Afghan platform began in the Miocene. Oil and gas traps are mainly in Upper Jurassic carbonates and Lower Cretaceous sandstones across the entire North Afghan block. Upper Jurassic carbonate traps, sealed by evaporites, occur mainly north of the southern limit of the Upper Jurassic salt. Lower Cretaceous traps consist of fine-grained continental sandstones, sealed by Aptian-Albian shales and siltstones. Upper Cretaceous-Palaeocene carbonates, sealed by Palaeogene shales are the main traps along the northern edge of the platform and in the Tajik basin. Almost all the traps are broad anticlines related to Neogene wrench faulting, in this respect, like similar traps along the San Andreas fault. Hydrocarbon sources are in the Mesozoic section. The Lower-Middle Jurassic continental coal-bearing beds provide about 75% of the hydrocarbons; the Callovian-Oxfordian provides about 10%; the Neocomian a meagre 1%, and the Aptian-Albian about 14%. The coal-bearing source rocks decrease very markedly in thickness southwards cross the North Afghan platform. Much of the hydrocarbon generation probably occurred during the Late Cretaceous-Paleogene and migrated to structural traps during Neogene deformation. Since no regional structural dip aids southward hydrocarbon migration, and since the traps are all structural and somewhat small, then there is little chance of very large petroleum fields on the platform. Nevertheless, further studies of the North Afghan platform should be rewarding because: (a) the traps of strike-slip belts are difficult to find without detailed exploration; (b) the troubles of the last 20 years mean that almost no exploration has been done; and, (c) conditions may soon become more favorable. There should be ample potential for oil, and particularly gas, discoveries especially in the northern and western parts of the North Afghan platform.

  20. Seafloor Morphology And Sediment Discharge Of The Storfjorden And Kveithola Palaeo-Ice Streams (NW Barents Sea) During The Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Rebesco, Michele; Pedrosa, Mayte; Demol, Ben; Giulia Lucchi, Renata; Urgeles, Roger; Colmenero-Hidalgo, Elena; Andreassen, Karin; Sverre Laberg, Jan; Winsborrow, Monica

    2010-05-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. In the outer trough of southern Storfjorden, lobate moraines superimpose and are cut by very large linear features attributed to mega-iceberg scours. In the adjacent Kveithola trough, a fresh morphology includes mega-scale glacial lineations overprinted by transverse grounding-zone wedges, diagnostic of episodic ice stream retreat. A 15 m thick glacimarine drape suggests an high post-deglaciation sedimentation rate. Preliminary interpretation suggests that the retreat of the Svalbard/Barents Sea Ice Sheet was highly dynamic and that grounded ice persisted on Spitsbergen Bank for some thousands years after the main Barents Sea deglaciation.The Storfjorden continental slope is divided into three wide lobes. Opposite the two northernmost lobes the slope is dominated by straight gullies in the upper part, and deposition of debris lobes on the mid and lower parts. In contrast, the southernmost lobe is characterized by widespread occurrence of submarine landslides. Sediment failure has accompanied the evolution of the southern Storfjorden and Kveithola margin throughout the Late Neogene, with very large mass transport deposits up to 200 m thick in the early phases of the development of the glacially influenced margin. Conversely, the central and northern parts of the Storfjorden margin have prograded without appreciable episodes of mass failure. Sedimentation has occurred through alternate layering of decimeter-thick glacial debris flows deposits, with laminated and acoustically transparent interglacial sediment drape. Gullies and paleo-gullies incise the glacial debris flows and are covered by the interglacial drape. They are formed early during each deglaciation phase, most likely by the erosive action of short-lived hyperpycnal flows generated by sediment-laden subglacial meltwater discharge. In sediment cores thick finely-laminated sedimentary beds on the upper continental slope of the southern part of the margin indicate preferential deposition by settlement of meltwater sediment plumes. High sedimentation rates of plumites may contribute to the slope instability and suggest that meltwater discharge was focused on the southern Storfjorden and Kveithola paleo-ice streams.

  1. Structural mapping from MSS-LANDSAT imagery: A proposed methodology for international geological correlation studies

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Crepani, E.; Martini, P. R.

    1980-01-01

    A methodology is proposed for international geological correlation studies based on LANDSAT-MSS imagery, Bullard's model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and in relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megafaults that surround the West African craton; and the Pernambuco Lineament with the Ngaurandere Linemanet in Cameroon. Ongoing research to complete the methodological stages includes the mapping of the West African structural framework, reconstruction of the pre-drift puzzle, and an analysis of the counterpart correlations.

  2. Deep structure of the Mid-Norwegian continental margin (the Vøring and Møre basins) according to 3-D density and magnetic modelling

    NASA Astrophysics Data System (ADS)

    Maystrenko, Yuriy Petrovich; Gernigon, Laurent; Nasuti, Aziz; Olesen, Odleiv

    2018-03-01

    A lithosphere-scale 3-D density/magnetic structural model of the Møre and Vøring segments of the Mid-Norwegian continental margin and the adjacent areas of the Norwegian mainland has been constructed by using both published, publically available data sets and confidential data, validated by the 3-D density and magnetic modelling. The obtained Moho topography clearly correlates with the major tectonic units of the study area where a deep Moho corresponds to the base of the Precambrian continental crust and the shallower one is located in close proximity to the younger oceanic lithospheric domain. The 3-D density modelling agrees with previous studies which indicate the presence of a high-density/high-velocity lower-crustal layer beneath the Mid-Norwegian continental margin. The broad Jan Mayen Corridor gravity low is partially related to the decreasing density of the sedimentary layers within the Jan Mayen Corridor and also has to be considered in relation to a possible low-density composition- and/or temperature-related zone in the lithospheric mantle. According to the results of the 3-D magnetic modelling, the absence of a strong magnetic anomaly over the Utgard High indicates that the uplifted crystalline rocks are not so magnetic there, supporting a suggestion that the entire crystalline crust has a low magnetization beneath the greater part of the Vøring Basin and the northern part of the Møre Basin. On the contrary, the crystalline crust is much more magnetic beneath the Trøndelag Platform, the southern part of the Møre Basin and within the mainland, reaching a culmination at the Frøya High where the most intensive magnetic anomaly is observed within the study area.

  3. 3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2017-04-01

    The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.

  4. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    NASA Astrophysics Data System (ADS)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps, where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results highlight that both indentation and subduction of Adria are valid collisional mechanisms to provoke lateral extrusion-type deformation within the Eastern Alps lithosphere, i.e. the upper plate. Moreover, the insights suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps is best described by phases of oblique and subsequent orthogonal subduction which is in line with Miocene rotations of the Adriatic plate. Furthermore, oblique subduction of the Adriatic plate provides a viable mechanism to explain the rapid decrease in slab length beneath the Eastern Alps towards the Pannonian Basin, also implying that the Adriatic slab can behave and form independently with regards to the adjacent subduction of Adria beneath the Dinarides.

  5. Pulling the rug out from under California: Seismic images of the Mendocino Triple Junction region

    USGS Publications Warehouse

    Tréhu, Anne M.

    1995-01-01

    In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.

  6. Geologic and Fossil Locality Maps of the West-Central Part of the Howard Pass Quadrangle and Part of the Adjacent Misheguk Mountain Quadrangle, Western Brooks Range, Alaska

    USGS Publications Warehouse

    Dover, James H.; Tailleur, Irvin L.; Dumoulin, Julie A.

    2004-01-01

    The map depicts the field distribution and contact relations between stratigraphic units, the tectonic relations between major stratigraphic sequences, and the detailed internal structure of these sequences. The stratigraphic sequences formed in a variety of continental margin depositional environments, and subsequently underwent a complexde formational history of imbricate thrust faulting and folding. A compilation of micro and macro fossil identifications is included in this data set.

  7. Continental-Margin Processes Recorded in Shelf and Canyon Sediments. Sediment Deposition, Erosion and Accumulation on a Tidal Flat Adjacent to a River Mouth

    DTIC Science & Technology

    2007-01-01

    to the formation and preservation of sedimentary strata in the seabed. The goal of the tidal-flats project during the first year was to help plan ...publish the STRATAFORM Master Volume (results are summarized under Work Completed); and 3) help with planning the Tidal Flats DRI (results are... Plan (White Paper), negotiating with Korean scientists about a modified study in Korea, and helping to identify and explore US tidal flats for

  8. The Continent-Ocean Transition in the Mid-Norwegian Margin: Insight From Seismic Data and the Onshore Caledonian Analogue in the Seve Nappe Complex

    NASA Astrophysics Data System (ADS)

    Abdelmalak, Mansour M.; Planke, Sverre; Andersen, Torgeir B.; Faleide, Jan Inge; Corfu, Fernando; Tegner, Christian; Myklebust, Reidun

    2015-04-01

    The continental breakup and initial seafloor spreading in the NE Atlantic was accompanied by widespread intrusive and extrusive magmatism and the formation of conjugate volcanic passive margins. These margins are characterized by the presence of seaward dipping reflectors (SDR), an intense network of mafic sheet intrusions of the continental crust and adjacent sedimentary basins and a high-velocity lower crustal body. Nevertheless many issues remain unclear regarding the structure of volcanic passive margins; in particular the transitional crust located beneath the SDR.New and reprocessed seismic reflection data on the Mid-Norwegian margin allow a better sub-basalt imaging of the transitional crust located beneath the SDR. Different high-amplitude reflections with abrupt termination and saucer shaped geometries are identified and interpreted as sill intrusions. Other near vertical and inclined reflections are interpreted as dykes or dyke swarms. We have mapped the extent of the dyke reflections along the volcanic margin. The mapping suggests that the dykes represent the main feeder system for the SDR. The identification of saucer shaped sills implies the presence of sediments in the transitional zone beneath the volcanic sequences. Onshore exposures of Precambrian basement of the eroded volcanic margin in East Greenland show that, locally, the transitional crust is highly intruded by dykes and intrusive complexes with an increasing intensity of the plumbing and dilatation of the continental crust ocean-ward. Another well exposed analogue for a continent-ocean transitional crust is located within the Seve Nappe Complex (SNC) of the Scandinavian Caledonides. The best-preserved parts of SNC in the Pårte, Sarek, Kebnekaise, Abisko, and Indre Troms mountains are composed mainly of meta-sandstones and shales (now hornfelses) truncated typically by mafic dykes. At Sarek and Pårte, the dykes intrude the sedimentary rocks of the Favoritkammen Group, with a dyke density up to 70-80%. This complex was photographed in a regional helicopter survey and sampled for the study of the different dyke generations, their geochemistry and ages in 2014. Extending for at least 800 km within the SNC, the mafic igneous rocks most probably belonged to a volcanic system with the size of a large igneous province (LIP). This volcanic margin is suggested to have formed along the Caledonian margin of Baltica or within hyperextended continental slivers outboard of Baltica during the breakup of Rodinia. The intensity of the pre-Caledonian LIP-magmatism is comparable to that of the NE Atlantic volcanic margins. The SNC-LIP is considered to represent a potential onshore analogue to the deeper level of the Mid-Norwegian margin transitional crust, and permits direct observation, sampling and better understanding of deeper levels of magma-rich margins.

  9. Thermal history and evolution of the Rio de Janeiro - Barbacena section of the southeastern Brazilian continental margin

    NASA Astrophysics Data System (ADS)

    Neri Gezatt, Julia; Stephenson, Randell; Macdonald, David

    2015-04-01

    The transect between the Brazilian cities of Rio de Janeiro and Barbacena (22°54'S, 43°12'W and 21°13'S, 43°46'W, respectively) runs through a segment of a complex range of N-NE/S-SW trending basement units of the Ribeira Belt and southern Sao Francisco Craton, intensely reworked during the Brasiliano-Pan-African orogenic cycle. The ortho- and paragneisses in the area have metamorphic ages between 650 and 540 Ma and are intruded by pre-, syn- and post-tectonic granitic bodies. The transect, perpendicular to the strike direction of the continental margin, crosses the Serra do Mar escarpment, where the sample density is higher in order to better constrain occasional significant age changes. For logistical reasons, the 40 samples collected were processed in two separate batches for apatite fission track (AFT) analysis. The first batch comprised 19 samples, from which 15 produced fission track ages. Analyses were carried out at University College London (UCL), following standard procedures. Preliminary results for the study show AFT ages between 85.9±6.3 and 54.1±4.2 Ma, generally with younger ages close to the coast and progressively older ages towards the continental interior. The highest area sampled, around the city of Teresopolis, ranges from 740 to 1216 m above sea level and shows ages between 85.9±6.3 and 71.3±5.3 Ma. There is no evident lithological or structural distribution control. Medium track length values range from 12.57 to 13.89 µm and distributions are unimodal. Thermal history modelling was done using software QTQt. Individual sample model cooling curves can be divided into two groups: a dominant one, showing a single, slower cooling trend, and a second one with a rapid initial cooling curve, which becomes less steep around 65 Ma. In both groups the maximum paleotemperatures are around 110 Ma. The thermal history model for the first batch of samples is compatible with a single cooling event for the area following continental rifting and formation of the Atlantic Ocean. The preliminary results add to the growing thermochronological data base for the southeastern Brazilian continental margin and to deciphering the complex evolution of the region, as well as to the knowledge about the development and evolution of divergent continental margins in general. In a regional setting, AFT ages from this study, though not broadly variant locally, are distinct from basement rock AFT ages for adjacent areas produced by other authors along the southeastern continental margin. Similar ages are found at the southern Bocaina Plateau, for example, where structural control of age distribution is evident. Such regional thermal age difference has been previously attributed to continental scale structural compartmentalization throughout the continental passive margin, related to Late Cretaceous and Cenozoic reactivation of the E-W fracture zones linked to rifting of the South Atlantic. The present AFT results are compatible with Late Cretaceous reactivation but show no relation with younger events.

  10. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    USGS Publications Warehouse

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.

  11. Reconstruction of the East Africa and Antarctica continental margins

    NASA Astrophysics Data System (ADS)

    Nguyen, Luan C.; Hall, Stuart A.; Bird, Dale E.; Ball, Philip J.

    2016-06-01

    The Early Jurassic separation of Antarctica from Africa plays an important role in our understanding of the dispersal of Gondwana and Pangea. Previous reconstruction models contain overlaps and gaps in the restored margins that reflect difficulties in accurately delineating the continent-ocean-boundary (COB) and determining the amount and distribution of extended continental crust. This study focuses on the evolution of the African margin adjacent to the Mozambique Basin and the conjugate Antarctic margin near the Riiser-Larsen Sea. Satellite-derived gravity data have been used to trace the orientations and landward limits of fracture zones. A 3-D gravity inversion has produced a crustal thickness model that reliably quantifies the extent and amount of stretched crust. Crustal thicknesses together with fracture zone terminations reveal COBs that are significantly closer to the African and Antarctic coasts than previously recognized. Correlation of fracture zone azimuths and identified COBs suggests Antarctica began drifting away from Africa at approximately 171 Ma in a roughly SSE direction. An areal-balancing method has been used to restore the crust to a uniform prerift thickness so as to perform a nonrigid reconstruction for both nonvolcanic and volcanic margins. Both margins reveal a trend of increasing extension from east to west. Our results suggest Africa underwent extension of 60-120 km, while Antarctic crust was stretched by 105-180 km. Various models tested to determine the direction of extension during rifting suggest that Antarctica moved away from Africa in a WNW-ESE direction during the period between 184 and 171 Ma prior to the onset of seafloor spreading.

  12. 40Ar/39Ar Thermochronometry of the Sisters Shear Zone, Stewart Island, New Zealand; Implications for Driving Mechanisms and Multi-Stage Breakup of the Pacific Margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Kula, J. L.; Tulloch, A. J.; Spell, T. L.; Wells, M. L.

    2006-12-01

    New mapping, structural analysis, and thermochronometry of the Sisters Shear Zone (SSZ) indicate this detachment system played a role in continental extension leading to separation of New Zealand from West Antarctica. The SSZ extends 40 km along the southeast coast of Stewart Island, southernmost New Zealand with a footwall consisting of variably deformed 300-105 Ma granites and a hanging wall of coarse non-marine conglomerate and undeformed granite. The trace of the SSZ is subparallel to seafloor isochrons adjacent to the Campbell Plateau and stretching lineations throughout the shear zone are oriented 155/335° ± 10°; consistent with the spreading direction along the Pacific-Antarctic Ridge. Mica and K-feldspar 40Ar/39Ar thermochronometry of SSZ footwall rocks indicate moderately rapid cooling (20-30°C/Ma) over the interval ~89-82 Ma followed by slow cooling. Interpretation of the moderately rapid cooling as due to tectonic denudation makes the SSZ the youngest structure yet identified in New Zealand related to Gondwana breakup. The decrease in cooling rate at 82 Ma coincides with the age of oldest seafloor adjacent to the Campbell Plateau (chron 33r), possibly reflecting the mechanical transition from continental extension to lithospheric rupture and Pacific-Antarctic ridge initiation. The orientation of the SSZ has implications for driving mechanisms of extension. Major arc/forearc terrains through South Island and Stewart Island trend northwest-southeast, and include paired plutonic belts of thick inboard arc terrain adjacent to a thin older, outboard arc belt. Crustal collapse due to the across-arc gradient in gravitational potential energy would have resulted in extension directed normal to the arc trend. The SSZ cuts the paired plutonic belts at a high angle indicating extension was not the result of gravitational collapse, but more likely driven by plate boundary forces such as microplate capture as the dynamics of subduction along the continental margin changed. Combined with published data from New Zealand and West Antarctica, a two-stage rift model for the Gondwana margin is proposed. Stage one was the northward unzipping of the Tasman ridge as recorded first in mylonite dredged from the Ross Sea and later by the Paparoa core complex in northern South Island. Stage two was extension along the SSZ and separation of the Campbell Plateau and West Antarctica with formation of the Pacific-Antarctic ridge.

  13. Chapter 34: Geology and petroleum potential of the rifted margins of the Canada Basin

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.

    2011-01-01

    Three sides of the Canada Basin are bordered by high-standing, conjugate rift shoulders of the Chukchi Borderland, Alaska and Canada. The Alaska and Canada margins are mantled with thick, growth-faulted sediment prisms, and the Chukchi Borderland contains only a thin veneer of sediment. The rift-margin strata of Alaska and Canada reflect the tectonics and sediment dispersal systems of adjacent continental regions whereas the Chukchi Borderland was tectonically isolated from these sediment dispersal systems. Along the eastern Alaska-southern Canada margin, termed herein the 'Canning-Mackenzie deformed margin', the rifted margin is deformed by ongoing Brooks Range tectonism. Additional contractional structures occur in a gravity fold belt that may be present along the entire Alaska and Canada margins of the Canada Basin. Source-rock data inboard of the rift shoulders and regional palaeogeographic reconstructions suggest three potential source-rock intervals: Lower Cretaceous (Hauterivian-Albian), Upper Cretaceous (mostly Turonian) and Lower Palaeogene. Burial history modelling indicates favourable timing for generation from all three intervals beneath the Alaska and Canada passive margins, and an active petroleum system has been documented in the Canning-Mackenzie deformed margin. Assessment of undiscovered petroleum resources indicates the greatest potential in the Canning-Mackenzie deformed margin and significant potential in the Canada and Alaska passive margins. ?? 2011 The Geological Society of London.

  14. Crustal architecture and deep structure of the Namibian passive continental margin around Walvis Ridge from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion

    2013-04-01

    The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.

  15. Retrodeforming the Arabia-Eurasia collision zone : Age of collision and magnitude of continental subduction

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; van Hinsbergen, D. J. J.

    2012-04-01

    When did continents collide, and how is convergence partitioned after collision are first order questions that seem to defy consensus along the Alpine-Himalyan orogen. Estimates on the age of collision for Arabia and Eurasia range from late Cretaceous to Pliocene, based on a wide variety of presumed geologic responses. Both lower Miocene synorgenic strata with growth structures adjacent to the main Zagros fault and upper Oligocene to lower Miocene overlap strata over post-collisional thrusts are derived from Eurasia and require that collision was underway at least by ~25-24 Ma. However, upper plate deformation, exhumation and sedimentation are used to argue for an older, 35 Ma collision age. Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations provides precise estimates of the relative positions between the northern Arabian margin and the southern Eurasia margin. Plate circuits indicate, from NW to SE along the collision zone 490-650 km of post-25 Ma Arabia-Eurasia convergence and 810-1070 km since 35 Ma. To assess the consequences of these collision ages for the amount of Arabian continental subduction, we compile all documented shortening within the orogen. The Zagros fold-thrust belt consists of thrusted upper crust that was offscraped from subducted Arabian continental lithosphere. Balanced cross-sections give 105-180 km of Zagros shortening (including estimates from the Zagros proper, 45-90 km, and the Zagros "crush" zone, 60-90 km). Shortening within Eurasia is estimated to be 53-75 km through the Kopet Dagh and Alborz Mountains, plus 38 km across Central Iran. These estimates suggest that the orogen has shortened 200 to 300 km since the early Miocene. Both a 25 and a 35 Ma collision estimate thus requires that a considerable portion of the Arabian plate subducted without recognized accretion of its upper crust. To balance plate circuits and documented shortening requires whole-sale subduction of ~500-800 km of continental crust since 35 Ma; for a 25 Ma collision this would be between 190-450 km. The ophiolitic fragments preserved along the suture zone allow us to test the magnitude of possible continental subduction. The Oman Ophiolite preserves the geometry and distance over which ophiolites obduced over the northern margin of Arabia in the late Cretaceous. The distance from the southwestern edge of the ophiolite to the northeastern edge of the continent is 180 km, suggesting that the Arabian continental margin plus overlying ophiolites may have extended ~200 km beyond the Main Zagros fault. Assuming that 200 km of Arabian continental margin and overlying ophiolites subducted entirely, except the few remnant ophiolite slivers remaining in the suture zone, would reconstruct ~ 400-500 km of post-collisional Arabia-Eurasia convergence, consistent with a ~25 Ma collision age. As much as 500-800 km of continental subduction required by an earlier (~35 Ma) collision age seems unlikely.

  16. Regional uplift episodes along the NE Atlantic margin constrained by stratigraphic and thermochronologic data

    NASA Astrophysics Data System (ADS)

    Holford, S. P.; Green, P. F.; Hillis, R. R.; Duddy, I. R.; Turner, J. P.; Stoker, M. S.

    2008-12-01

    The magma-rich NE Atlantic passive margin provides a superb natural laboratory for studying vertical motions associated with continental rifting and the rift-drift transition. Here we present an extensive apatite fission-track analysis (AFTA) database from the British Isles which we combine with a detailed stratigraphic framework for the Cretaceous-Cenozoic sedimentary record of the NE Atlantic margin to constrain the uplift history along and inboard of this margin during the past 120 Myr. We show that the British Isles experienced a series of uplift episodes which began between 120 and 115 Ma, 65 and 55 Ma, 40 and 25 Ma and 20 and 15 Ma, respectively. Each episode is of regional extent (~100,000 sq km) and represents a major period of exhumation involving removal of up to 1 km or more of section. These uplift episodes can be correlated with a number of major tectonic unconformities recognised within the sedimentary succession of the NE Atlantic margin, suggesting that the margin was also affected by these uplift episodes. Anomalous syn- and post-rift uplift along this margin have been interpreted in terms of permanent and/or transient movements controlled by the Iceland plume, but neither the timing nor distribution of the uplift episodes, with the exception of the 65 to 55 Ma episode, supports a first-order control by plume activity on vertical motions. Each uplift episode correlates closely with key deformation events at adjacent plate boundaries, suggesting a causative link, and we examine the ways in which plate boundary forces can account for the observed uplift episodes. Similar km-scale uplift events are revealed by thermochronological studies in other magma-rich and magma-poor continental margins, e.g. SE Australia, South Africa, Brazil. The low angle unconformities which result from these regional episodes of km-scale burial and subsequent uplift are often incorrectly interpreted as representing periods of non-deposition and tectonic stability. Similar considerations have also led to an erroneous view of the post-rift stability of many continental margins. Our results indicate that km-scale regional uplift has affected many regions previously interpreted as areas of long-term stability, and that plate boundary deformation exerts the primary control on such episodes.

  17. Map showing sediment isopachs in the deep-sea basins of the Pacific continental margin, Point Conception to Point Loma

    USGS Publications Warehouse

    Gardner, J.V.; Cacchione, D.A.; Drake, D.E.; Edwards, B.D.; Field, M.E.; Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.; Masson, D.G.; McCulloch, D.S.; Grim, M.S.

    1992-01-01

    See Also "U.S. Pacific West Coast Field Activities" (Paskevich and others, 2011; http://pubs.usgs.gov/of/2010/1332/htmldocs/pc/pc_overview.html). Paskevich, V.F., Wong, F.L., O?Malley, J.J., Stevenson, A.J., and Gutmacher, C.E., 2011, GLORIA sidescan-sonar imagery for parts of the U.S. Exclusive Economic Zone and adjacent areas: U.S. Geological Survey Open-File Report 2010?1332, available at http://pubs.usgs.gov/of/2010/1332/.

  18. From hyperextended rift to convergent margin types: mapping the outer limit of the extended Continental Shelf of Spain in the Galicia area according UNCLOS Art. 76

    NASA Astrophysics Data System (ADS)

    Somoza, Luis; Medialdea, Teresa; Vázquez, Juan T.; González, Francisco J.; León, Ricardo; Palomino, Desiree; Fernández-Salas, Luis M.; Rengel, Juan

    2017-04-01

    Spain presented on 11 May 2009 a partial submission for delimiting the extended Continental Shelf in respect to the area of Galicia to the Commission on the Limits of the Continental Shelf (CLCS). The Galicia margin represents an example of the transition between two different types of continental margins (CM): a western hyperpextended margin and a northern convergent margin in the Bay of Biscay. The western Galicia Margin (wGM 41° to 43° N) corresponds to a hyper-extended rifted margin as result of the poly-phase development of the Iberian-Newfoundland conjugate margin during the Mesozoic. Otherwise, the north Galicia Margin (nGM) is the western end of the Cenozoic subduction of the Bay of Biscay along the north Iberian Margin (NIM) linked to the Pyrenean-Mediterranean collisional belt Following the procedure established by the CLCS Scientific and Technical Guidelines (CLCS/11), the points of the Foot of Slope (FoS) has to be determined as the points of maximum change in gradient in the region defined as the Base of the continental Slope (BoS). Moreover, the CLCS guidelines specify that the BoS should be contained within the continental margin (CM). In this way, a full-coverage multibeam bathymetry and an extensive dataset of up 4,736 km of multichannel seismic profiles were expressly obtained during two oceanographic surveys (Breogham-2005 and Espor-2008), aboard the Spanish research vessel Hespérides, to map the outer limit of the CM.In order to follow the criteria of the CLCS guidelines, two types of models reported in the CLCS Guidelines were applied to the Galicia Margin. In passive margins, the Commission's guidelines establish that the natural prolongation is based on that "the natural process by which a continent breaks up prior to the separation by seafloor spreading involves thinning, extension and rifting of the continental crust…" (para. 7.3, CLCS/11). The seaward extension of the wGM should include crustal continental blocks and the so-called Peridotite Ridge (PR), composed by serpentinized exhumed continental mantle. Thus, the PR should be regarded as a natural component of the continental margin since these seafloor highs were formed by hyperextension of the margin. Regarding convergent margins, the architecture of the nGM can be classified according the CLCS/11 as a "poor- or non-accretionary convergent continental margin" characterized by a poorly developed accretionary wedge, which is composed of: a large sedimentary apron mainly formed by large slumps and thrust wedges of igneous (ophiolitic/continental) body overlying subducting oceanic crust (Fig. 6.1B, CLCS/11). According to para. 6.3.6. (CLCS/11), the seaward extent of this type of continental convergent margins is defined by the seaward edge of the accretionary wedge. Applying this definition, the seaward extent of the margin is defined by the outer limit of the ophiolitic deformed body that marks the edge of the accretionary wedge. These geological criteria were strictly applied for mapping the BoS region, where the FoS were determinate by using the maximum change in gradient within this mapped region. Acknowledgments: Project for the Extension of the Spanish Continental according UNCLOS (CTM2010-09496-E) and Project CTM2016-75947-R

  19. Large and giant hydrocarbon accumulations in the transitional continent-ocean zone

    NASA Astrophysics Data System (ADS)

    Khain, V. E.; Polyakova, I. D.

    2008-05-01

    The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.

  20. Structure of the North American Atlantic Continental Margin.

    ERIC Educational Resources Information Center

    Klitgord, K. K.; Schlee, J. S.

    1986-01-01

    Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)

  1. Continental margin sedimentation: From sediment transport to sequence stratigraphy

    USGS Publications Warehouse

    Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins.- Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes- Explores timescales ranging from particle transport at one extreme, to deep burial at the other- Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy- Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation- Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  2. Modelling of sea floor spreading initiation and rifted continental margin formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.

  3. Architecture and sedimentary processes on the mid-Norwegian continental slope: A 2.7 Myr record from extensive seismic evidence

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2018-07-01

    Quaternary architectural evolution and sedimentary processes on the mid-Norwegian continental slope are investigated using margin-wide three- and two-dimensional seismic datasets. Of ∼100,000 km3 sediments delivered to the mid-Norwegian shelf and slope over the Quaternary, ∼75,000 km3 comprise the slope succession. The structural high of the Vøring Plateau, characterised by initially low (∼1-2°) slope gradients and reduced accommodation space, exerted a strong control over the long-term architectural evolution of the margin. Slope sediment fluxes were higher on the Vøring Plateau area, increasing up to ∼32 km3 ka-1 during the middle Pleistocene, when fast-flowing ice streams advanced to the palaeo-shelf edge. Resulted in a more rapid slope progradation on the Vøring Plateau, these rates of sediment delivery are high compared to the maximum of ∼7 km3 ka-1 in the adjacent sectors of the slope, characterised by steeper slope (∼3-5°), more available accommodation space and smaller or no palaeo-ice streams on the adjacent shelves. In addition to the broad-scale architectural evolution, identification of more than 300 buried slope landforms provides an unprecedented level of detailed, process-based palaeoenvironmental reconstruction. Channels dominate the Early Pleistocene record (∼2.7-0.8 Ma), during which glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Morphologic signature of glacigenic debris-flows appear within the Middle-Late Pleistocene (∼0.8-0 Ma) succession. Their abundance increases towards Late Pleistocene, marking a decreasing role for channelized turbidity currents and dense water flows. This broad-scale palaeo-environmental shift coincides with the intensification of Northern Hemispheric glaciations, highlighting first-order climate control on the sedimentary processes in high-latitude continental slopes.

  4. A tectonic reconstruction of accreted terranes along the paleo-Pacific margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Bammel, Brandon

    The southern oceanic margin of Gondwana was nearly 40,000 km long or 24,854.8 miles. The southern margin was the result of the Terra Australis orogen. Spanning 18,000 km or 11,184.7 miles and is proposed as one of the largest and longest lived orogens in Earth history. The paleo-Pacific margin of Gondwana consisted of segments of the Australian-Antarctic craton, southern South America (modern Argentina and Chile), southern South Africa, Marie Byrdland, New Zealand and its adjacent continental shelf, the Ellsworth Mountains, and the Transantarctic Mountains. The process of terrane accretion has played a substantial part in the assembly of the continents as they look today. The paleo-Pacific margin of Gondwana was an active region of terrane accretion from the Neoproterozoic to the Late Mesozoic. This research study examines the accretion of terranes across the paleo-Pacific Gondwana margin to provide a comprehensive reconstruction. A paleogeographic basemap was created using PALEOMAP Project maps and the geology data was provided by the School of Geoscience from the University of Witwatersrand of South Africa. Location and data analyzed for terranes were collected building a PDF library of journal articles across numerous geological publications.

  5. Seismic structure of western Mediterranean back-arc basins and rifted margins - constraints from the Algerian-Balearic and Tyrrhenian Basins

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Ranero, Cesar; Sallares, Valenti; Prada, Manel; Booth-Rea, Guillermo; Gallart, Josep; Zitellini, Nevio

    2017-04-01

    The Western Mediterranean Sea is a natural laboratory to study the processes of continental extension, rifting and back-arc spreading in a convergent setting caused by rollback of fragmented subducting oceanic slabs during the latest phase of consumption of the Tethys ocean, leading to rapid extension in areas characterized by a constant convergence of the African and European Plates since Cretaceous time. Opening of the Algerian-Balearic Basin was governed by a southward and westward retreating slab 21 to 18 Myr and 18 to15 Myr ago, respectively. Opening of the Tyrrhenian Basin was controlled by the retreating Calabrian slab 6 to 2 Myr ago. Yet, little is known about the structure of the rifted margins, back-arc extension and spreading. Here we present results from three onshore/offshore seismic refraction and wide-angle lines and two offshore lines sampling passive continental margins of southeastern Spain and to the south of the Balearic promontory and the structure of the Tyrrhenian Basin to the north of Sicily. Seismic refraction and wide-angle data were acquired in the Algerian-Balearc Basin during a cruise of the German research vessel Meteor in September of 2006 and in the Tyrrhenian Sea aboard the Spanish research vessel Sarmiento de Gamboa in July of 2015. All profiles sampled both continental crust of the margins surrounding the basins and extend roughly 100 km into the Algerian-Balearic and the Tyrrhenian Basins, yielding constraints on the nature of the crust covering the seafloor in the basins and adjacent margins. Crust in the Algerian-Balearic basin is roughly 5-6 km thick and the seismic velocity structure mimics normal oceanic crust with the exception that lower crustal velocity is <6.8 km/s, clearly slower than lower crust sampled in the Pacific Basin. The seismic Moho in the Algerian-Balearic Basin occurs at 11 km below sea level, reaching >24 km under SE Spain and the Balearic Islands, displaying typical features and structure of continental crust. Offshore Sicily, continental crust reaches 22 km. However, the Tyrrhenian Basin indicates a lithosphere with velocities increasing continuously from 3 km/s to 7.5 km/s, mimicking features attributed to un-roofed and hence serpentinized mantle. Therefore, even though the opening of both basins was controlled by slab rollback, the resulting structures of the basins indicate striking differences. It is interesting to note that the continent/ocean transition zone of the margins did not show any evidence for high velocity lower crustal rocks, in contrast to what has been sampled in Western Pacific arc/back-arc systems.

  6. A multi-factor approach for process-based seabed characterization: example from the northeastern continental margin of the Korean peninsula (East Sea)

    NASA Astrophysics Data System (ADS)

    Cukur, Deniz; Um, In-Kwon; Chun, Jong-Hwa; Kim, So-Ra; Lee, Gwang-Soo; Kim, Yuri; Kong, Gee-Soo; Horozal, Senay; Kim, Seong-Pil

    2018-04-01

    This study investigates sediment transport and depositional processes from a newly collected dataset comprising sub-bottom chirp profiles, multibeam bathymetry, and sediment cores from the northeastern continental margin of Korea in the East Sea (Japan Sea). Twelve echo-types and eleven sedimentary facies have been defined and interpreted as deposits formed by shallow-marine, hemipelagic sedimentation, bottom current, and mass-movement processes. Hemipelagic sedimentation, which is acoustically characterized by undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. The inner and outer continental shelf (<150 m water depth) have been influenced by shallow-marine sedimentary processes. Two slope-parallel canyons, 0.2-2 km wide and up to 30 km long, appear to have acted as possible conduits for turbidity currents from the shallower shelf into the deep basins. Bottom current deposits, expressed as erosional moats immediately below topographic highs, are prevalent on the southern lower slope at water depths of 400-450 m. Mass-movements (i.e., slides/slumps, debris flow deposits) consisting of chaotic facies characterize the lower slope and represent one of the most important sedimentary processes in the study area. Piston cores confirm the presence of mass-transport deposits (MTDs) that are characterized by mud clasts of variable size, shape, and color. Multibeam bathymetry shows that large-scale MTDs are chiefly initiated on the lower slope (400-600 m) with gradients up to 3° and where they produce scarps on the order of 100 m in height. Sandy MTDs also occur on the upper continental slope adjacent to the seaward edge of the shelf terrace. Earthquakes associated with tectonic activity and the development of fluid overpressure is considered as the main conditioning factor for destabilizing the slope sediments. Overall, the sedimentary processes show typical characteristics of a fine-grained clastic slope apron and change down-slope and differ within each physiographic province. Furthermore, the influence of geological inheritance (i.e., structural folds and faults) on geomorphology and sediment facies development is an important additional factor on the lower slopes. Together, these factors provide a rational basis for continental margin seabed characterization.

  7. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the upper parts of all canyons, numerous headwall scarps are consistent with retrogressive activity of the canyons. 3) possible gravity sliding -elongate seabed features oriented subparallel to contours are observed, associated with diapiric structures suggest that the elongate seabed features may record a form of downslope sediment sliding above salt. The aim of this work is to reconstruct the dynamics of different type of submarine mass movements on the tectonically active Ionian Calabrian margin (ICM), calculate the volume of sediment mobilized and assess the potential tsunamigenic hazard associated to different type of mass movements. Assessments of tsunami arrival time in adjacent coastal areas, period and wavelength of the tsunami and implication for coastal geohazards have been formulated for the Calabrian margin (small scale) and extrapolated to adjacent margins of the Mediterranean basin (large scale).

  8. Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska

    USGS Publications Warehouse

    Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.

    2000-01-01

    Introduction The U.S. Geological Survey has a long history of exploring marine geology in the Gulf of Alaska. As part of a cooperative program with other federal and state agencies, the USGS is investigating the relations between ocean-floor geology and benthic marine biohabitats. This bottom sediment map, compiled from published literature will help marine biologists develop an understanding of sea-floor geology in relation to various biological habitats. The pattern of sea-floor sedimentation and bottom morphology in the Gulf of Alaska reflects a complex interplay of regional tectonism, glacial advances and retreats, oceanic and tidal currents, waves, storms, eustatic change, and gravity-driven processes. This map, based on numerous cruises during the period of 1970-1996, shows distribution of bottom sediments in areas of study on the continental shelf. The samples were collected with piston, box, and gravity corers, and grab samplers. The interpretations of sediment distribution are the products of sediment size analyses combined with interpretations of high-resolution seismic reflection profiles. The sea floor was separated into several areas as follows: Cook Inlet -- Hazards studies in this embayment emphasized sediment distribution, sediment dynamics, bedforms, shallow faults, and seafloor stability. Migrating mega-sandwaves, driven by strong tidal currents, influence seabed habitats and stability of the seafloor, especially near pipelines and drilling platforms. The coarseness of the bottom sediment reinforces the influence of the strong tidal currents on the seafloor habitats. Kodiak Shelf -- Tectonic framework studies demonstrate the development of an accretionary wedge as the Pacific Plate underthrusts the Alaskan landmass. Seismic data across the accretionary wedge reveal anomalies indicative of fluid/gas vent sites in this segment of the continental margin. Geologic hazards research shows that movement along numerous shallow faults poses a risk to sea floor structures. Sea-floor sediment on shallow banks is eroded by seasonal wave-generated currents. The winnowing action of the large storm waves results in concentrations of gravel over broad segments of the Kodiak shelf. Northeastern Gulf of Alaska -- Tectonic framework studies demonstrate that rocks of distant origin (Yakutat terrane) are currently attached to and moving with the Pacific Plate, as it collides with and is subducted beneath southern Alaska. This collision process has led to pronounced structural deformation of the continental margin and adjacent southern Alaska. Consequences include rapidly rising mountains and high fluvial and glacial sedimentation rates on the adjacent margin and ocean floor. The northeastern Gulf of Alaska shelf also has concentrations of winnowed (lag) gravel on Tarr Bank and on the outer shelf southeast of Yakutat Bay. Between Kayak Island and Yakutat Bay the outer shelf consists of pebbly mud (diamict). This diamict is a product of glacial marine sedimentation during the Pleistocene and is present today as a relict sediment. A prograding wedge of Holocene sediment consisting of nearshore sand grading seaward into clayey silt and silty clay covers the relict pebbly mud to mid-shelf and beyond. Shelf and slope channel systems transport glacially derived sediment across the continental margin into Surveyor Channel, an abyssal fan and channel system that reaches over 1,000 km to the Aleutian Trench.

  9. Morphogenesis of the SW Balearic continental slope and adjacent abyssal plain, Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Accettella, Daniela; Costa, Sergio; Lastras, Galderic; Acosta, Juan; Canals, Miquel; Wardell, Nigel

    2009-06-01

    We present the seafloor morphology and shallow seismic structure of the continental slope south-east of the Balearic promontory and of the adjacent Algero-Balearic abyssal plain from multibeam and chirp sonar data. The main purpose of this research was to identify the sediment pathways from the Balearic promontory to the Algero-Balearic deep basin from the Early Pliocene to the Present. The morphology of the southern Balearic margin is controlled by a SW-NE structural trend, whose main expressions are the Emile Baudot Escarpment transform fault, and a newly discovered WSW-ENE trend that affects the SW end of the escarpment and the abyssal plain. We relate the two structural trends to right-lateral simple shear as a consequence of the Miocene westward migration of the Gibraltar Arc. Newly discovered steep and narrow volcanic ridges were probably enabled to grow by local transtension along the transform margin. Abyssal plain knolls and seahills relate to the subsurface deformation of early stage halokinetic structures such as salt rollers, salt anticlines, and salt pillows. The limited thickness of the overburden and the limited amount of deformation in the deep basin prevent the formation of more mature halokinetic structures such as diapirs, salt walls, bulbs, and salt extrusions. The uppermost sediment cover is affected by a dense pattern of sub-vertical small throw normal faults resulting from extensional stress induced in the overburden by subsurface salt deformation structures. Shallow gas seismic character and the possible presence of an active polygonal fault system suggest upward fluid migration and fluid and sediment expulsion at the seafloor through a probable mud volcano and other piercement structures. One large debris flow deposit, named Formentera Debris Flow, has been identified on the lower slope and rise of the south Formentera margin. Based on current observations, we hypothesize that the landslide originating the Formentera Debris Flow occurred in the Holocene, perhaps in historical times.

  10. Late Cretaceous-Cenozoic subduction-collision history of the Southern Neotethys: new evidence from the Çağlayancerit area, SE Turkey

    NASA Astrophysics Data System (ADS)

    Akıncı, Ahmet Can; Robertson, Alastair H. F.; Ünlügenç, Ulvi Can

    2016-01-01

    Evidence of the subduction-collision history of the S Neotethys is well exposed in the frontal part of the SE Anatolian thrust belt and the adjacent Arabian continental margin. The foreland succession in the study area begins with Eocene shelf carbonates, ranging from shallow marine to deeper marine, without sedimentary input from the Tauride continent to the north. After a regional hiatus (Oligocene), sedimentation resumed during the Early Miocene with terrigenous gravity-flow deposition in the north (Lice Formation) and shallow-marine carbonates further south. Clastic detritus was derived from the Tauride continent and oceanic accretionary material. The base of the overriding Tauride allochthon comprises ophiolite-derived debris flows, ophiolite-related mélange and dismembered ophiolitic rocks. Above this, the regional-scale Bulgurkaya sedimentary mélange (an olistostrome) includes blocks and dismembered thrust sheets of metamorphic rocks, limestone and sandstone, which include Late Cretaceous and Eocene foraminifera. The matrix is mainly strongly deformed Eocene-Oligocene mudrocks, hemipelagic marl and sandstone turbidites. The thrust stack is topped by a regionally extensive thrust sheet (Malatya metamorphic unit), which includes greenschist facies marble, calcschist, schist and phyllite, representing Tauride continental crust. Beginning during the Late Mesozoic, the S Neotethys subducted northwards beneath a backstop represented by the Tauride microcontinent (Malatya metamorphic unit). Ophiolites formed within the S Neotethys and accreted to the Tauride active margin. Large-scale sedimentary mélange developed along the Tauride active margin during Eocene-Oligocene. On the Arabian margin, a sedimentary hiatus and tilting (Oligocene) is interpreted to record initial continental collision. The Early Miocene terrigenous gravity flows represent a collision-related flexural foreland basin. Southward overthrusting of the Tauride allochthon took place during Early-Middle Miocene. Associated regional uplift triggered large-scale alluvial deposition. The foreland folded and faulted in response to suture zone tightening (Late Miocene). Left-lateral strike slip characterised the Plio-Pleistocene.

  11. The Continental Margins Program in Georgia

    USGS Publications Warehouse

    Cocker, M.D.; Shapiro, E.A.

    1999-01-01

    From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These addtional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These additional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.

  12. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin. Based on tephra beds identified within the sediments, this material was likely transported by a series of turbidite events, delivered to the Hikurangi Trough through Poverty Canyon.

  13. The Effect of Temperature Dependent Rheology on a Kinematic Model of Continental Breakup and Rifted Continental Margin Formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Kusznir, N. J.

    2004-12-01

    The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature dependent rheology and isovisous fluid-flow solutions. The effect of incorporating a lithology dependent continental lithosphere rheology (quartz-feldspar crust, olivine mantle) with temperature dependence is also being investigated. The work forms part of the Integrated Seismic Imaging and Modelling of Margins (iSIMM*) project. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Schlumberger Cambridge Research & Badley Geoscience, supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & D. Healy.

  14. U.S. Geological Survey offshore program of resource and geo-environmental studies and topical investigations, Pacific-Arctic region

    USGS Publications Warehouse

    Scholl, David William

    1978-01-01

    The Geological Survey 's marine geology investigations in the Pacific-Arctic area are presented in this report in the context of the underlying socio-economic problem of expanding the domestic production of oil and gas and other mineral and hard- and soft-rock resources while maintaining acceptable standards in the marine environment. The primary mission of the Survey 's Pacific-Arctic Branch of Marine Geology is to provide scientifically interpreted information about the (1) resource potential, (2) geo-environmental setting, and (3) overall geologic characteristics of the continental margins (that is, the continental shelf, slope and rise) and adjacent deeper water and shallower coastal areas off California, Oregon, Washington, Alaska and Hawaii and also, where it is of interest to the U.S. Government, more remote deep-sea areas of the Pacific-Arctic realm. (Sinha-OEIS)

  15. Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Tetreault, Joya; Torsvik, Trond

    2015-04-01

    The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.

  16. Possible reactivation of the Vincent-Chocolate Mountains thrust in the Gavilan Hills area, southeasternmost California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.

    The Late Cretaceous-early Tertiary Orocopia Schist (OS) of southeasternmost California consists of metamorphosed continental margin sedimentary and basaltic rocks, overlain by an upper plate of continental crust along the Vincent-Chocolate Mountains fault (VCMF). Previous analysis of late folds and shear band in OS and upper plate in the Gavilan Hills and adjacent ares indicated that the direction of transport of the upper plate was northeastward. This has been considered evidence of a SW dipping subduction zone, along which an outboard continental fragment was sutured to North America. Another view is that the VCMF was formed by underplating of the OSmore » in an Andean continental margin, and that the NE-vergent late structures formed during uplift of the OS. The authors' continuing work in the Gavilan Hills confirm the NE sense of vergence but suggests a more complex structural history. The schist is characterized by refolded folds, shear bands, and two penetrative lineations. An older lineation that ranges from N10[degree]E to N30[degree]E is widespread in the area, but is more evident at low structural levels. A second lineation ranges from N40[degree]E to N70[degree]E and is strongly developed in rocks near the VCMF. The complex folding pattern, presence of mylonitic schist, relative thinness of upper-plate mylonite, and possible retrogressive character of the shear bands suggest that the VCMF in the Gavilan Hills area may have been reactivated after original thrusting. The VCMF in the Gavilan Hills is intermediate in character between the probable subduction thrust in the San Gabriel Mountains and the reactivated faults in the Orocopia Mountains and areas surrounding the Gavilan Hills.« less

  17. The distribution and tectonic framework of Late Paleozoic volcanoes in the Junggar basin and its adjacent area, NW China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, J. H.

    2012-04-01

    We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.

  18. Investigating Continental Margins: An Activity to Help Students Better Understand the Continental Margins of North America

    ERIC Educational Resources Information Center

    Poli, Maria-Serena; Capodivacca, Marco

    2011-01-01

    Continental margins are an important part of the ocean floor. They separate the land above sea level from the deep ocean basins below and occupy about 11% of Earth's surface. They are also economically important, as they harbor both mineral resources and some of the most valuable fisheries in the world. In this article students investigate North…

  19. Geomorphic characterization of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.

    2013-01-01

    The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.

  20. Geology of continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    With continued high interest in offshore petroleum exploration, the 1977 AAPG Short Course presents the latest interpretations of new data bearing on the geology and geophysics of continental margins. Seven well-known earth scientists have organized an integrated program covering major topics involved in the development of ocean basins and continental margins with emphasis on the slopes and rises. The discussion of plate tectonics and evolution of continental margins is followed by presentations on the stratigraphy and structure of pull-apart and compressional margins. Prospective petroleum source rocks, their organic content, rate of burial, and distribution on slopes and rises of differentmore » margin types is covered. Prospective reservoir rock patterns are related to depositional processes and to the sedimentary and structural histories for different types of continental margins. Finally, the seismic recognition of depositional facies on slopes and rises for different margin types with varying rates of sediment supply during eustatic sea-level changes are discussed. The course with this syllabus offers an invaluable opportunity for explorationists to refresh their understanding of the geology associated with an important petroleum frontier. In addition, the course sets forth a technical frame of reference for the case-histoy papers to be presented later in the AAPG Research Symposium on the Petroleum Potential of Slopes, Rises, and Plateaus.« less

  1. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    USGS Publications Warehouse

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2014-01-01

    The ocean’s continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services including primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  2. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2015-01-01

    The oceans' continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins, (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services. These include primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  3. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    NASA Astrophysics Data System (ADS)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.

  4. Basement and crustal structure of the Davis Sea region (East Antarctica): implications for tectonic setting and continent to oceanic boundary definition

    USGS Publications Warehouse

    Guseva, Y.B.; Leitchenkov, G.L.; Gandyukhin, V.V.; Ivanov, S.V.

    2007-01-01

    This study is based on about 8400 km of MCS, magnetic and gravity data as well as 20 sonobuoys collected by the Russian Antarctic Expedition during 2003 and 2004 in the Davis Sea and adjacent areas between 80°E and 102°E. Major tectonic provinces and features are identified and mapped in the study region including: 1) A marginal rift with a the extended continental crust ranging 130 to more than 200 km in width; 2) The marginal volcanic plateau of the Bruce Bank consisting of the Early Cretaceous igneous rocks; 3) The Early Cretaceous and Late Cretaceous−Paleogene oceanic basins; and 4) The Early Cretaceous igneous province of the Kerguelen Plateau. Four major horizons identified in the sedimentary cover of the Davis Sea region are attributed to main tectonic events and/or paleoenvironmental changes.

  5. Passive margins: U.S. Geological Survey Line 19 across the Georges Bank basin

    USGS Publications Warehouse

    Klitgord, Kim D.; Schlee, John S.; Grow, John A.; Bally, A.W.

    1987-01-01

    Georges Bank is a shallow part of the Atlantic continental shelf southeast of New England (Emery and Uchupi, 1972, 1984). This bank, however, is merely the upper surface of several sedimentary basins overlying a block-faulted basement of igneous and metamorphic crystalline rock. Sedimentary rock forms a seaward-thickening cover that has accumulated in one main depocenter and several ancillary depressions, adjacent to shallow basement platforms of paleozoic and older crystalline rock. Georges Bank basin contains a thickness of sedimentary rock greater than 10 km, whereas the basement platforms that flank the basin are areas of thin sediment accumulation (less than 5 km).

  6. Structure of the North American Atlantic Continental Margin

    USGS Publications Warehouse

    Schlee, J.S.; Klitgord, K.K.

    1986-01-01

    Off E N America, where the structure of the continental margin is essentially constructional, seismic profiles have approximated geologic cross sections up to 10-15km below the sea floor and revealed major structural and stratigraphic features that have regional hydrocarbon potential. These features include a) a block-faulted basement hinge zone; b) a deep, broad, rifted basement filled with clastic sediment and salt; and c) a buried paleoshelf-edge complex that has many forms. The mapping of seismostratigraphic units over the continental shelf, slope, and rise has shown that the margin's developmental state included infilling of a rifted margin, buildup of a carbonate platform, and construction of an onlapping continental-rise wedge that was accompanied by erosion of the slope. -from Authors

  7. Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak

    USGS Publications Warehouse

    von Huene, Roland E.; Miller, John J.; Weinrebe, Wilhelm

    2012-01-01

    Three destructive earthquakes along the Alaska subduction zone sourced transoceanic tsunamis during the past 70 years. Since it is reasoned that past rupture areas might again source tsunamis in the future, we studied potential asperities and barriers in the subduction zone by examining Quaternary Gulf of Alaska plate history, geophysical data, and morphology. We relate the aftershock areas to subducting lower plate relief and dissimilar materials in the seismogenic zone in the 1964 Kodiak and adjacent 1938 Semidi Islands earthquake segments. In the 1946 Unimak earthquake segment, the exposed lower plate seafloor lacks major relief that might organize great earthquake rupture. However, the upper plate contains a deep transverse-trending basin and basement ridges associated with the Eocene continental Alaska convergent margin transition to the Aleutian island arc. These upper plate features are sufficiently large to have affected rupture propagation. In addition, massive slope failure in the Unimak area may explain the local 42-m-high 1946 tsunami runup. Although Quaternary geologic and tectonic processes included accretion to form a frontal prism, the study of seismic images, samples, and continental slope physiography shows a previous history of tectonic erosion. Implied asperities and barriers in the seismogenic zone could organize future great earthquake rupture.

  8. Gulf of Mexico: Dealing with Change in a Marginal Sea

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2017-12-01

    The Gulf of Mexico is shared by the United States, Mexico and Cuba and requires collaborative work for integrated management to conserve its natural assets and derived benefits, as well as to foster the overall regional economic wealth. Many rivers drain into the Gulf, most notably the Mississippi, which ranks among global rivers 4th in discharge, 7th in sediment load and 3rd in drainage area, and accounts for about 90 percent of the freshwater inflow to the Gulf. The Mississippi River proper empties onto a narrow ( 20 km wide) continental shelf, and its tributary, the Atchafalaya River, that carries about one third of the total flow discharges onto the broad ( 200 km) and shallow part of the shelf. The entrainment of the Mississippi River discharge into the Louisiana Coastal Current results in the semblance of an extended estuary across much of the inner to mid continental shelf for much of the year. The nitrogen load from the Mississippi River to the adjacent continental shelf over the last half century has increased by 300 per cent. As a result, eutrophication and hypoxia have developed in this stratified coastal system with implications for biogeochemical cycles and valued resources. While there is recognition that over half of the nitrogen sources come from agricultural practices widespread across the watershed, the environmental goal of bringing a 32-year average 13,800 square kilometers of bottom-water hypoxia to less than 5,000 square kilometers is being realized through voluntary and incentive-based activities, designed within a series of subbasin and state strategies. Some activities funded by the US Department of Agriculture for directed nutrient reduction projects and several small-scale voluntary actions towards sustainable and ecologically sound agriculture show promise, but large-scale social-political solutions do not exist now nor will they for the forseeable future. The coastal waters adjacent to the Mississippi River are just one of many such instances around the Gulf margin. Similar areas exist along the northern and southern Gulf, exhibiting similar processes and challenges.

  9. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left-lateral displacement along this fault zone. If this model is correct, the Mojave-Sonora megashear played a direct role in the Pennsylvanian truncation of the continental margin, and any younger displacement on this fault has been relatively small. ?? 2005 Geological Society of America.

  10. Storm-driven delivery of sediment to the continental slope: Numerical modeling for the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Kniskern, T. A.; Arango, H.

    2016-02-01

    The supply of sediment from the continental shelf to deeper waters is of critical importance for building continental margin repositories of sediment, and may also factor into episodic events on the continental slope such as turbidity currents and slope failures. While numerical sediment transport models have been developed for coastal and continental shelf areas, they have not often been used to infer sediment delivery to deeper waters. A three-dimensional coupled hydrodynamic - suspended sediment transport model for the northern Gulf of Mexico has been developed and run to evaluate the types of conditions that are associated with delivery of suspended sediment to the continental slope. Accounting for sediment delivery by riverine plumes and for sediment resuspension by energetic waves and currents, the sediment transport calculations were implemented within the Regional Ocean Modeling System (ROMS). The model domain represents the northern Gulf of Mexico shelf and slope including the Mississippi birdfoot delta and the Mississippi and DeSoto Canyons. To investigate the role of storms in driving down-slope sediment fluxes, model runs that encompassed fall, 2007 through late summer, 2008 the summer and fall of 2008 were analyzed. This time period included several winter storms, and the passage of two hurricanes (Ike and Gustav) over the study area. Preliminary results indicated that sediment delivery to the continental slope was triggered by the passage of these storm events, and focused at certain locations, such as submarine canyons. Additionally, a climatological analysis indicates that storm track influences both the wind-driven currents and wave energy on the shelf, and as such plays an important role in determining which storms trigger delivery of suspended continental shelf sediment to the adjacent slope.

  11. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron

    2016-01-01

    Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.

  12. Estimating Antarctic Geothermal Heat Flux using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina

    2013-04-01

    Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Golynsky, A.V. & Golynsky, D.A. 2009. Rifts in the tectonic structure of East Antarctica (in Russian). Russian Earth Science Research in Antarctica, 2, 132-162. Rogozhina, I., Hagedoorn, J.M., Martinec, Z., Fleming, K., Soucek, O., Greve, R. & Thomas, M. 2012. Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: An assessment of existing heat flow models. Journal of Geophysical Research-Earth Surface, 117 (F2), F02025. Vaughan, A.P.M., Kusznir, N.J., Ferraccioli, F. & Jordan, T.A.R.M. 2012. Regional heat-flow prediction for Antarctica using gravity inversion mapping of crustal thickness and lithosphere thinning. Geophysical Research Abstracts, 14, EGU2012-8095.

  13. Footwall degradation styles and associated sedimentary facies distribution in SE Crete: Insights into tilt-block extensional basins on continental margins

    NASA Astrophysics Data System (ADS)

    Alves, Tiago M.; Cupkovic, Tomas

    2018-05-01

    Depositional facies resulting from footwall degradation in extensional basins of SE Crete are studied based on detailed geological maps, regional transects, lithological columns and outcrop photos. During an extensional episode affecting Crete in the late Miocene-early Pliocene, depocentres trending N20°E and N70°E were filled with fan deltas, submarine mass-wasting deposits, sandy turbidites and fine-grained hemipelagites sourced from both nearby and distal sediment sources. Deposition of proximal continental and shallow-marine units, and relatively deep (marine) turbidites and mass-transport deposits, occurred within a complex mosaic of tectonically controlled depocentres. The new geological maps and transects in this work reveal that depositional facies in SE Crete were controlled by: a) their relative proximity to active faults and uplifting footwall blocks, b) the relative position (depth and relative height above sea level) of hanging-wall basins, and c) the nature of the basement units eroded from adjacent footwall blocks. Distal sediment sources supplied background siliciclastic sediment ('hemipelagites'), which differ markedly from strata sourced from local footwalls. In parallel, mass-transport of sediment was ubiquitous on tectonically active slopes, and so was the presence of coarse-grained sediment with sizes varying from large blocks > 50 m-wide to heterolithic mass-transport deposits and silty-sandy turbidites. We expect similar tectono-sedimentary settings to have predominated in tectonically active Miocene basins of the eastern Mediterranean, in which hydrocarbon exploration is occurring at present, and on rifted continental margins across the world.

  14. IODP workshop: developing scientific drilling proposals for the Argentina Passive Volcanic Continental Margin (APVCM) - basin evolution, deep biosphere, hydrates, sediment dynamics and ocean evolution

    NASA Astrophysics Data System (ADS)

    Flood, Roger D.; Violante, Roberto A.; Gorgas, Thomas; Schwarz, Ernesto; Grützner, Jens; Uenzelmann-Neben, Gabriele; Hernández-Molina, F. Javier; Biddle, Jennifer; St-Onge, Guillaume; Workshop Participants, Apvcm

    2017-05-01

    The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic-Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8-11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.

  15. The pre-Atlantic Hf isotope evolution of the east Laurentian continental margin: Insights from zircon in basement rocks and glacial tillites from northern New Jersey and southeastern New York

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. Alex; Setera, Jacob; Mathez, Edmond; Vantongeren, Jill; Fossum, Ryanna

    2017-02-01

    This paper presents laser ablation U-Pb age and Hf isotope data for zircons from basement rocks and glacial deposits in northern New Jersey and southeastern New York. The purpose is to understand the eastern Laurentian continental margin's Hf isotope record in relation to its geologic evolution prior to the opening of the Atlantic Ocean. The basement samples encompass a Meso- to Neoproterozoic continental margin arc, an anatectic magmatic suite, as well as a Late Ordovician alkaline igneous suite emplaced during post-orogenic melting of the lithospheric mantle. Additional samples were collected from terminal moraines of two Quaternary continental ice sheets. Across the entire dataset, zircons with ages corresponding to the timing of continental margin arc magmatism ( 1.4 Ga to 1.2 Ga) have positive εHf(initial) values that define the more radiogenic end of a crustal evolution array. This array progresses towards more unradiogenic εHf(initial) values along a series of low 176Lu/177Hf (0.022 to 0.005) trajectories during subsequent anatectic magmatism ( 1.2 Ga to 1.0 Ga) and later metamorphic and metasomatic re-working ( 1.0 Ga to 0.8 Ga) of the continental margin arc crust. In contrast, nearly chondritic εHf(initial) values from the Late Ordovician alkaline magmas indicate that the Laurentian margin was underlain by a re-fertilized mantle source. Such a source may have developed by subduction enrichment of the mantle wedge beneath the continental margin during the Mesoproterozoic. Additionally, preliminary data from a metasedimentary unit of unknown provenance hints at the possibility that some of the sediments occupying this portion of the Laurentian margin prior to the Ordovician were sourced from crust older than 1.9 Ga.

  16. Megabenthic assemblages at the Hudson Canyon head (NW Atlantic margin): Habitat-faunal relationships

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Gori, Andrea; Guida, Vincent G.; Gili, Josep-Maria

    2017-09-01

    The distribution of megabenthic communities at the head of Hudson Canyon and adjacent continental shelf was studied by means of underwater video transects and still photo imagery collected using a towed camera system. The goal was to explore the relationships between faunal distribution and physical seafloor conditions and to test the hypothesis that increased seafloor heterogeneity in the Hudson Canyon supports a larger diversity of benthic communities, compared with the adjacent continental shelf. Hierarchical cluster analysis was performed to identify benthic assemblages as defined in imagery. The BIO-ENV procedure and the Canonical Correspondence Analysis were carried out to elucidate species groupings in relation to terrain variables extracted from bathymetric data. Species accumulation curves were generated to evaluate species turn over in and out of Hudson Canyon. The results indicate that seafloor morphology is the main physical factor related to benthic community composition and distribution. Assemblages dominated by sponges, zoanthids and cup corals colonized the canyon margins and flanks, and were associated with coarse-grained sediments, while sea pen assemblages were observed along muddy seafloor within the thalweg. An assemblage dominated by sea stars occurred on the shelf, associated with a sandy seafloor. Some assemblages were exclusively observed in the canyon area, suggesting that the increased variability of seafloor composition, together with the oceanographic processes specific to the canyon area, enhance beta diversity. The colonization by benthic suspension feeders within the canyon, in contrast to shelf assemblages, mainly composed of carnivores and detritus feeders could be favored the intense hydrodynamics at the canyon head that increase the availability of suspended organic matter. From the perspective of management and conservation of marine resources, the results obtained support the relevance of Hudson Canyon as a biodiversity hotspot. Such results are of particular significance in light of the recent action promoted by the Mid-Atlantic Fisheries Management Council, that restricts bottom trawling in most of the submarine canyons of the US Atlantic margin, including the Hudson Canyon, to protect cold-water corals from damage by fishing gear.

  17. The Palaeoproterozoic accretionary crustal growth: implications from new age data on the crystalline basement in Lithuania, NW Belarus and N Poland (the East European Craton)

    NASA Astrophysics Data System (ADS)

    Skridlaite, G.; Bogdanova, S.; Taran, L.; Wiszniewska, J.

    2012-04-01

    A southwestward younging of Palaeoproterozoic terranes in the crystalline basement in the western part of the East European Craton has been recently suggested by numerous isotopic datings (TIMS, SIMS zircon, EPMA monazite and 40Ar/39Ar). Along with geochemical and geophysical data this allows to decipher a multistage accretionary history. In the east, the Belarus-Podlasie Granulite belt (BPG) is dominated by 1.88 Ga dioritic-granodioritic (calc-alkaline) magmatism in Belarus (Claesson et al., 2001). Remnants of c. 1.89 Ga metadiorites, c. 1.90 Ga magmatic zircon cores in c. 1.80 Ga granites (Vejelyte, 2011) in S and E Lithuania and 1.88 Ga metagranodiorites in E Poland (Radzyn area) confirm the c. 1.90 Ga accretion-related magmatism in the BPG and the East Lithuanian domain. Together with the coeval juvenile granitoids in the adjacent Okolovo terrane this indicates the formation of the Lithuanian-Belarus composite terrane at 1.90-1.88 Ga. At c. 1.86-1.84 Ga, abundant gabbro-diorite-granodiorite-granite intrusions were emplaced further southwest in Lithuania, NW Belarus and N Poland. In Lithuana, within the Polish-Lithuanian terrane the TTG suite of deformed and metamorphosed in amphibolite facies calc-alkaline tonalitic, quartz dioritic and dioritic rocks is characteristic for the Randamonys massif. The strongly deformed granitoids in the adjacent NW Belarus, mafic granulites and gneissic granites of igneous origin in central Lithuania, garnet-cordierite bearing granites further north display similar c. 1.84 Ga magmatic age (Motuza et al., 2008). This shows that various tectonic settings including island and continental magmatic arcs were possible. They were accreted to the Lithuanian-Belarus terrane sometime at 1.84-1.81 Ga while voluminous charnockitic magmatism took place in W Lithuania (e.g. Claesson et al., 2001; Vejelyte, 2011). A chain of younger c. 1.83 Ga volcanic arcs was developed in W and S Lithuania and N Poland (Wiszniewska et al., 2005). The widespread c. 1.80-1.76 Ga metamorphism and tholeiitic magmatism related to post-collisional extension constrain the maximum age of the final accretion of the terranes. It is evidenced by numerous 1.80-1.79 Ga gabbro-noritic, dioritic and granitic intrusions in NE Poland and elsewhere in Lithuania and Belarus (Claesson, 2001; Vejelyte, 2011). The later reworking at c. 1.70-1.45 Ga and c. 1.60-1.45 Ga AMCG magmatism affected the already accreted craton. Evolutionary, a 1.90-1.87 Ga continental margin was established in present-day E Lithuania and NW Belarus, while younger volcanic arcs were still forming to the west and south at 1.86-1.84 Ga. They had been subsequently accreted to the c. 1.89 Ga continental margin in the time span of 1.84-1.80 Ga, and a new continental margin emerged. After the youngest c. 1.83-1.80 Ga island arcs were docked, the ocean was closed and the crust was finally cratonized. The younger 1.70-1.45 Ga events were intracratonic reflections of active geological processes further west. This is a contribution to the project "Precambrian rock provinces and active tectonic boundaries across the Baltic Sea and in adjacent areas" of the Visby Programme (the Swedish Institute), Lithuanian Science Council grant MIP-034/2011 and SYNTHESYS project SE-TAF-1535

  18. Low Seismic Attenuation in Southern New England Lithosphere Implies Little Heating by the Upwelling Asthenosphere

    NASA Astrophysics Data System (ADS)

    Lamoureux, J. M.; Menke, W. H.

    2017-12-01

    The Northern Appalachian Anomaly (NAA) is a patch of the asthenosphere in southern New England that is unusually hot given its passive margin setting. Previous research has detected large seismic wave delays that imply a temperature of 770 deg C higher than the mantle below the adjacent craton at the same depth. A key outstanding issue is whether the NAA interacts with the lithosphere above it (e.g. by heating it up). We study this issue using Po and So waves from two magnitude >5.5 earthquakes near the Puerto Rico Trench. These waves, propagating in the cold oceanic lithosphere at near Moho speeds, deliver high frequency energy to the shallow continental lithosphere. We hypothesized that: (1) once within the continental lithosphere, Po and So experience attenuation with distance that can be quantified by a quality factor Q, and that (2) any heating of the lithosphere above the NAA would lead to a higher Q than in regions further north or south along the continental margin. Corresponding Po and So velocities would also be lower. The decay rates of Po and So are estimated using least-squares applied to RMS coda amplitudes measured from digital seismograms from stations in northeastern North America, corrected for instrument response. A roughly log-linear decrease in amplitude is observed, corresponding to P and S wave quality factors in the range of 394-1500 and 727-6847, respectively. Measurements are made for four margin-perpendicular geographical bands, with one band overlapping the NAA. We detect no effect on these amplitudes by the NAA; 95% confidence bounds overlap in every case; Furthermore, all quality factors are much higher than the 100 predicted by lab experiments for near-solidus mantle rocks. These results suggest that the NAA is not causing significant heating of the lithosphere above it. The shear velocities, however, are about 10% slower above the NAA - an effect that may be fossil, reflecting processes that occurred millions of years ago.

  19. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  20. Pennsylvanian and Early Permian paleogeography of east-central California: Implications for the shape of the continental margin and the timing of continental truncation

    NASA Astrophysics Data System (ADS)

    Stone, Paul; Stevens, Calvin H.

    1988-04-01

    Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.

  1. Nurture Versus Nature: Accounting for the Differences Between the Taiwan and Timor active arc-continent collisions

    NASA Astrophysics Data System (ADS)

    Harris, R. A.

    2011-12-01

    The active Banda arc/continent collision of the Timor region provides many important contrasts to what is observed in Taiwan, which is mostly a function of differences in the nature of the subducting plate. One of the most important differences is the thermal state of the respective continental margins: 30 Ma China passive margin versus 160 Ma NW Australian continental margin. The subduction of the cold and strong NW Australian passive margin beneath the Banda trench provides many new constraints for resolving longstanding issues about the formative stages of collision and accretion of continental crust. Some of these issues include evidence for slab rollback and subduction erosion, deep continental subduction, emplacement or demise of forearc basement, relative amounts of uplift from crustal vs. lithospheric processes, influence of inherited structure, partitioning of strain away from the thrust front, extent of mélange development, metamorphic conditions and exhumation mechanisms, continental contamination and accretion of volcanic arcs, does the slab tear, and does subduction polarity reverse? Most of these issues link to the profound control of lower plate crustal heterogeneity, thermal state and inherited structure. The thermomechanical characteristics of subducting an old continental margin allow for extensive underthrusting of lower plate cover units beneath the forearc and emplacement and uplift of extensive nappes of forearc basement. It also promotes subduction of continental crust to deep enough levels to experience high pressure metamorphism (not found in Taiwan) and extensive contamination of the volcanic arc. Seismic tomography confirms subduction of continental lithosphere beneath the Banda Arc to at least 400 km with no evidence for slab tear. Slab rollback during this process results in massive subduction erosion and extension of the upper plate. Other differences in the nature of the subducting plates in Taiwan in Timor are differences in the lateral continuity of the continental margins. The northern Australian continental margin is highly irregular with many rift basins subducting parallel to their axes. This feature gives rise to irregularities in the uplift pattern of the collision and its continental margin parallel structural grain. Another major difference between Taiwan and Timor is the mechanical stratigraphy entering the trench. The Australian continental margin bears a carbonate rich pre and post rift sequence that is separated by a 1000 m thick, over pressured mudstone unit that acts as major detachment and promotes extensive mud diapirism. The post breakup Australian Passive Margin Sequence is incorporated into the orogenic wedge by frontal accretion and forms a classic imbricate thrust stack near the front of the Banda forearc. The pre breakup Gondwana Sequence below the detachment continues at least to depth of 30 km in the subduction channel beneath the Banda forearc upper plate and stacks up into a duplex zone that forms structural culminations throughout Timor. The upper plate of both collisions is similar in nature but is deformed in different ways due to the strong influence of the lower plate. However, both have extensive subduction erosion and demise of the forearc and systematic accretion of the arc.

  2. Volcanism and Tectonics of the Central Deep Basin, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Lelikov, E. P.; Emelyanova, T. A.; Pugachev, A. A.

    2018-01-01

    The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500-600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene-Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.

  3. Preface - 'Biogeochemistry-ecosystem interaction on changing continental margins in the Anthropocene'

    NASA Astrophysics Data System (ADS)

    Liu, K.-K.; Emeis, Kay-Christian; Levin, Lisa A.; Naqvi, Wajih; Roman, Michael

    2015-01-01

    This special issue is a product of Workshop 1 of IMBIZO III held in Goa, India in January 2013 (Bundy et al., 2013). This IMBIZO (a Zulu word for gathering) has been organized by IMBER (Integrated Marine Biogeochemistry and Ecosystem Research) biannually since 2008. It employs a format of three concurrent but interacting workshops designed to synthesize information on topical research areas in marine science. Workshop 1 addressed the issue, "Biogeochemistry-ecosystem interaction in changing continental margins," which belongs to the purview of the Continental Margins Working Group (CMWG), co-sponsored by IMBER and LOICZ (Land-Ocean Interaction in the Coastal Zone). As a way to explore the emerging issues that concern the CMWG, the workshop had attracted 25 talks and 18 posters that explored the following topics: Human impacts on continental margins

  4. Deep continental margin reflectors

    USGS Publications Warehouse

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  5. New view on tectonic structure of Siberian Sector of the Amerasian Basin (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Vinokurov, Yu. I.

    2014-05-01

    In 2012, JSC Sevmorgeo with assistance of several research institutions of Federal Agency of Mineral Resources (Rosnedra) and Ministry of Defense carried out a unique set of offshore seismic and geological studies in the Mendeleev Rise area and adjacent areas of the Amerasia Basin. Two specially re-equipped icebreakers ("Kapitan Dranitsin" and "Dixon") were used in this campaign. The main results of the expedition were 5315 km of multichannel seismic profiles both with long and short streamers (4500 m and 600 m, respectively), 480 km long refraction profile crossing Mendeleev Rise. Seismic acquisition with short streamers was accompanied by deployment of sonobuoys. Geological studies included deep-water drilling and sea-bottom sampling by dredge, gravity corer, grab and by specially equipped research submarine. The newly acquired geological and geophysical data allowed for the following conclusions: 1. The Mendeleev Rise, the adjacent Lomonosov Ridge and Chukchi Plateau are the direct continuations of the East Siberian Sea tectonic structures. It is confirmed by direct tracking of some morphostructures, faults, gravity and magnetic anomalies from the shelf to deep-water highs. 2. The East Arctic Shelf and the adjacent Arctic Ocean represent offshore extent of the Verkhoyansk-Kolyma crustal domain constituted by a mosaic of separate blocks of the Pre-Cambrian basement (Okhotsk, Omulevka, Omolon, Wrangel-Gerald and Central Arctic) and Late Mesozoic orogens. This area differs significantly from the Ellesmerian crustal domain located to the east (including the Northwind Ridge, which coincides with inferred eastern boundary of the Mesozoides). The Central Arctic domain includes structures of the Mendeleev Ridge and the Chukchi Plateau. Western boundary of this block is inferred along the Spur of Geophysicists, which separates the Podvodnikov Basin into two unequal parts with different basement structure. From the south, southwest and west, the Central Arctic domain is surrounded by younger sedimentary basins: the Vilkitski Megatrough and Podvodnikov Basin, which may have been developing simultaneously. In the Cretaceous, the sediments were delivered mostly from deeply eroded areas of Central Arctic highs, including the Mendeleev Rise. In the beginning of Cenozoic, there was a dramatic reorganization in sediment supply to the Arctic Ocean with Siberian continental margin becoming the major provenance area leading to significant increase of the transported. The general pattern of the magnetic anomalies allows drawing a conclusion about similarity of the Mendeleev Rise and the neighboring De Long Uplift and Wrangel-Gerald Terrain, which constitute parts of HALIP magmatic province. The latter includes both offshore structures of the East Arctic and the structures of the Alpha-Mendeleev Rise. This conclusion is supported by results of sea-bottom geological sampling carried out as a part of our investigations. The crustal thickness and seismic velocity profile of the Mendeleev Rise and adjacent Lomonosov Ridge, Chukchi Plateau and Northwind Ridge are typical for the thinned continental crust. Thus, according to new data available today, the Central Arctic domain may be considered as a part of the deeply subsided Eurasian continental margin characterized by close relationship with the adjacent offshore and onshore structures.

  6. Modelling of Continental Lithosphere Breakup and Rifted Margin Formation in Response to an Upwelling Divergent Flow Field Incorporating a Temperature Dependent Rheology

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Kusznir, N. J.

    2005-05-01

    We numerically model continental lithosphere deformation leading to breakup and sea floor spreading initiation in response to an imposed upwelling and divergent flow field applied to continental lithosphere and asthenosphere. The model is used to predict rifted continental margin lithosphere thinning and temperature structure. Model predictions are compared with observed rifted margin structure for four diverse case studies. Prior to application of the upwelling divergent flow field the continental lithosphere is undeformed with a uniform temperature gradient. The upwelling divergent flow field is defined kinematically using boundary conditions consisting of the upwelling velocity Vz at the divergence axis and the half divergence rate Vx . The resultant velocity field throughout the continuum is computed using finite element (FE) code incorporating a Newtonian temperature dependent rheology. The flow field is used to advect the continental lithosphere material and lithospheric and asthenospheric temperatures. Viscosity structure is hence modified and the velocities change correspondingly in a feedback loop. We find the kinematic boundary conditions Vz and Vx to be of first order importance. A high Vz/Vx (greater than10), corresponding to buoyancy assisted flow, leads to minimal mantle exhumation and a well defined continent ocean transition consistent with observations at volcanic margins. For Vz/Vx near unity, corresponding to plate boundary driven divergence, mantle exhumation over widths of up to 100 km is predicted which is consistent with observations at non-volcanic margins. The FE method allows the upwelling velocity Vz to be propagated upwards from the top of the asthenosphere to the Earth's surface without the requirement of imposing Vx. When continental breakup is achieved the half divergence velocity Vx can be applied at the lithosphere surface and the upwelling velocity Vz left free. We find this time and space dependent set of boundary conditions is more plausible than a constant corner flow type solution and predicts levels of depth dependent stretching and continent ocean transitions consistent with observation. Depth dependent lithosphere stretching, which is observed at rifted continental margins, is predicted to occur before continental breakup and sea-floor spreading initiation. The model may be used to predict surface heat flow and bathymetry, and to provide estimates of melt production rates and cumulative thickness. We compare model predictions with observed margin structure for four diverse rifted margins: the Lofoten Margin (a mature volcanic margin), Goban Spur (a mature non-volcanic margin), the Woodlark Basin (a neotectonic young ocean basin) and the Faroe-Shetland Basin (a failed attempt at continental breakup). This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco¬Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.

  7. Distinct iron isotopic signatures and supply from marine sediment dissolution.

    PubMed

    Homoky, William B; John, Seth G; Conway, Tim M; Mills, Rachel A

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.

  8. Distinct iron isotopic signatures and supply from marine sediment dissolution

    PubMed Central

    Homoky, William B.; John, Seth G.; Conway, Tim M.; Mills, Rachel A.

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from ‘non-reductive’ dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean. PMID:23868399

  9. The Subject of Data in Submissions to the CLCS: Documenting the outer limits of the Northern Continental Shelf of the Faroe Islands

    NASA Astrophysics Data System (ADS)

    Vang Heinesen, Martin; Mørk, Finn

    2017-04-01

    The first partial submissions made by the Kingdom of Denmark, in respect of the continental shelf north of the Faroe Islands (North Faroe Margin, NFM), was submitted to the Commission on the Limits of the Continental Shelf in April 2009 as the result of 7 years of preparation which also included 4 additional continental shelf regions around the Faroe Islands and Greenland, on which individual partial submissions were made subsequently. The NFM covers parts of the NW European continental margin, it continues onto the Faroe-Iceland Ridge and the extinct Ægir (spreading) Ridge and overlaps with the continental margin of Iceland and Norway in the sediment rich Ægir Basin located between the European margin to the south and south-east, and the Jan Mayen Micro-continental margin to the west and north-west. Prior to the onset of the continental shelf project of the Kingdom of Denmark, arrangements had already been made with Norway and Iceland regarding the sharing of existing data and acquisition of new seismic data in the overlapping regions. Before that, the main database in the area included a comprehensive multi-beam bathymetric data set covering large parts of the Ægir Ridge with scattered single beam bathymetric lines in the remaining regions. It also comprised a number of single- and multi-channel seismic lines and a long refraction seismic line transecting the entire eastern part of the basin, from the Norwegian shelf to the Ægir Ridge, in addition to local side scan sonar and regional potential field data. During the project, additional high quality multi-channel seismic data, extensive multi-beam bathymetric data, and a comprehensive high resolution aeromagnetic dataset were acquired, allowing detailed mapping of the morphological and geological nature of the margin, including accurate identification of the base of the continental slope and mapping of the sediment thickness and sediment continuation in the basin. This data proved to be crucial for the documentation to the CLCS of the outer limits of the continental shelf to the north of the Faroe Islands.

  10. Gas hydrates of outer continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvenvolden, K.A.

    1990-05-01

    Gas hydrates are crystalline substances in which a rigid framework of water molecules traps molecules of gas, mainly methane. Gas-hydrate deposits are common in continental margin sediment in all major oceans at water depths greater than about 300 m. Thirty-three localities with evidence for gas-hydrate occurrence have been described worldwide. The presence of these gas hydrates has been inferred mainly from anomalous lacoustic reflectors seen on marine seismic records. Naturally occurring marine gas hydrates have been sampled and analyzed at about tensites in several regions including continental slope and rise sediment of the eastern Pacific Ocean and the Gulf ofmore » Mexico. Except for some Gulf of Mexico gas hydrate occurrences, the analyzed gas hydrates are composed almost exclusively of microbial methane. Evidence for the microbial origin of methane in gas hydrates includes (1) the inverse relation between methane occurence and sulfate concentration in the sediment, (2) the subparallel depth trends in carbon isotopic compositions of methane and bicarbonate in the interstitial water, and (3) the general range of {sup 13}C depletion ({delta}{sub PDB}{sup 13}C = {minus}90 to {minus}60 {per thousand}) in the methane. Analyses of gas hydrates from the Peruvian outer continental margin in particular illustrate this evidence for microbially generated methane. The total amount of methane in gas hydrates of continental margins is not known, but estimates of about 10{sup 16} m{sup 3} seem reasonable. Although this amount of methane is large, it is not yet clear whether methane hydrates of outer continental margins will ever be a significant energy resource; however, these gas hydrates will probably constitute a drilling hazard when outer continental margins are explored in the future.« less

  11. Geomorphology of the Southern Gulf of California Seafloor

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Lonsdale, P. F.; Fletcher, J. M.; Ledesma, J. V.

    2004-12-01

    A Spring 2004 multibeam sonar survey defined the seafloor geomorphology of the southern part of Gulf of California and the intersection of the East Pacific Rise with the North American continent. Survey goals included mapping structural patterns formed during the rifting that opened the Gulf and identifying the spatial transition from continental rifting to seafloor spreading. Multibeam sonar imagery, augmented with archival data and a subaerial DEM of Mexico, illuminates the principal features of this boundary zone between obliquely diverging plates: (i) active and inactive oceanic risecrests within young oceanic basins that are rich in evidence for off-axis magmatic eruption and intrusion; (ii) transforms with pull-apart basins and transpressive ridges along shearing continental margins and within oceanic crust; (iii) orphaned blocks of continental crust detached from sheared and rifted continental margins; and (iv) young, still-extending continental margins dissected by submarine canyons that in many cases are deeply drowned river valleys. Many of the canyons are conduits for turbidity currents that feed deep-sea fans on oceanic and subsided continental crust, and channel sediment to spreading axes, thereby modifying the crustal accretion process. We present a series of detailed bathymetric and seafloor reflectivity maps of this MARGINS Rupturing Continental Lithosphere focus site illustrating geomorphologic features of the southern part of the Gulf, from Guaymas Basin to the Maria Magdalena Rise.

  12. Preliminary report on geology along Atlantic Continental Margin of northeastern United States

    USGS Publications Warehouse

    Minard, J.P.; Perry, W.J.; Weed, E.G.A.; Rhodehamel, E.C.; Robbins, E.I.; Mixon, R.B.

    1974-01-01

    The U.S. Geological Survey is conducting a geologic and geophysical study of the northeastern United States outer continental shelf and the adjacent slope from Georges Bank to Cape Hatteras. The study also includes the adjacent coastal plain because it is a more accessible extension of the shelf. The total study area is about 324,000 sq km, of which the shelf and slope constitute about 181,000 sq km and the coastal plain constitutes 143,000 sq km. The shelf width ranges from about 30 km at Cape Hatteras to about 195 km off Raritan Bay and on Georges Bank. Analyses of bottom samples make it possible to construct a preliminary geologic map of the shelf and slope to a water depth of 2,000 m. The oldest beds cropping out in the submarine canyons and on the slope are of early ate Cretaceous age. Beds of Early Cretaceous and Jurassic age are present in deep wells onshore and probably are present beneath the shelf in the area of this study. Such beds are reported beneath the Scotian shelf on the northeast where they include limestone, salt, and anhydrite. Preliminary conclusions suggest a considerably thicker Mesozoic sedimentary sequence than has been described previously. The region is large; the sedimentary wedge is thick; structures seem favorable; and the hydrocarbon potential may be considerable.

  13. A critical review of the glaciomarine model for Irish sea deglaciation: evidence from southern Britain, the Celtic shelf and adjacent continental slope

    NASA Astrophysics Data System (ADS)

    Scourse, J. D.; Furze, M. F. A.

    2001-07-01

    In support of their glaciomarine model for the deglaciation of the Irish Sea basin, Eyles and McCabe cited the occurrence of distal glaciomarine mud drapes onshore in the Isles of Scilly and North Devon, and of arctic beach-face gravels and sands around the shores of the Celtic Sea. Glacial and sea-level data from the southern part of the Irish Sea in the terminal zone of the ice stream and the adjacent continental slope are reviewed here to test this aspect of the model. The suggestion that the glacial sequences of both the Isles of Scilly and Fremington in North Devon are glaciomarine mud drapes is rejected. An actively calving tidewater margin only occurred early in the deglacial sequence close to the terminal zone in the south-central Celtic Sea. Relative sea-levels were lower, and therefore glacio-isostatic depression less, than envisaged in the glaciomarine model. Geochronological, sedimentological and biostratigraphical data indicate that the raised beach sequences around the shores of the Celtic Sea and English Channel were deposited at, or during regression soon after, interglacial eustatic highstands. Evidence for ice-rafting at a time of high relative sea-levels is restricted to a phase(s) earlier than the Late Devensian. These data indicate that the raised beach sequences have no bearing on the style of Irish Sea deglaciation.

  14. Effective elastic thickness along the conjugate passive margins of India, Madagascar and Antarctica: A re-evaluation using the Hermite multitaper Bouguer coherence application

    NASA Astrophysics Data System (ADS)

    Ratheesh-Kumar, R. T.; Xiao, Wenjiao

    2018-05-01

    Gondwana correlation studies had rationally positioned the western continental margin of India (WCMI) against the eastern continental margin of Madagascar (ECMM), and the eastern continental margin of India (ECMI) against the eastern Antarctica continental margin (EACM). This contribution computes the effective elastic thickness (Te) of the lithospheres of these once-conjugated continental margins using the multitaper Bouguer coherence method. The results reveal significantly low strength values (Te ∼ 2 km) in the central segment of the WCMI that correlate with consistently low Te values (2-3 km) obtained throughout the entire marginal length of the ECMM. This result is consistent with the previous Te estimates of these margins, and confirms the idea that the low-Te segments in the central part of the WCMI and along the ECMM represents paleo-rift inception points of the lithospheric margins that was thermally and mechanically weakened by the combined action of the Marion hotspot and lithospheric extension during the rifting. The uniformly low-Te value (∼2 km) along the EACM indicates a mechanically weak lithospheric margin, probably due to considerable stretching of the lithosphere, considering the fact that this margin remained almost stationary throughout its rift history. In contrast, the ECMI has comparatively high-Te variations (5-11 km) that lack any correlation with the regional tectonic setting. Using gravity forward and inversion applications, we find a leading order of influence of sediment load on the flexural properties of this marginal lithosphere. The study concludes that the thick pile of the Bengal Fan sediments in the ECMI masks and has erased the signal of the original load-induced topography, and its gravity effect has biased the long-wavelength part of the observed gravity signal. The hence uncorrelated flat topography and deep lithospheric flexure together contribute a bias in the flexure modeling, which likely accounts a relatively high Te estimate.

  15. Holistic Approach Offers Potential to Quantify Mass Fluxes Across Continental Margins

    NASA Astrophysics Data System (ADS)

    Kuehl, Steven; Carter, Lionel; Gomez, Basil; Trustrum, Noel

    Most humans live on and utilize the continental margin, the surface of which changes continually in response to environmental perturbations such as weather, climate change, tectonism, earthquakes, volcanism, sea level, and human settlement and land use. Part of the margin is above sea level and the rest is submarine, but these land and seascape components are contiguous, and material transport from source to sink occurs as a seamless cascade. The margin responds to environmental perturbations by changing the nature and magnitude of a variety of important functions, including the distribution of soil formation and erosion; biogeochemical functioning (especially the storage and release of water, limiting nutrients and contaminants); and the form and behavior of geomorphic components from hill slopes and floodplains through the coastal zone to the continental rise. While some areas of the margin are eroding-for example, hill slopes-others accumulate sediment, such as tectonic basins and continental slope and rise. These areas record the history of surface changes. A major goal of the Earth science community is to provide quantitative explanations and predictions of the effects of environmental perturbations on surface changes and preserved sedimentary strata of continental margins. In past decades, margins have been investigated piecemeal by researchers who have tended to focus on a particular segment from one disciplinary perspective while eschewing the broader perspective of the margin as an interconnected whole. Recognizing this shortcoming, the U.S. National Science Foundation (NSF) has initiated the MARGINS Source-to-Sink (S2S) program, which, for the first time, will attempt to understand the functioning of entire margin systems through dedicated observational and community modeling studies. Following input from the Earth science community, the Waipaoa Sedimentary System (WSS) of the North Island, New Zealand, was chosen as one of the focus sites for possible study (see MARGINS Source-to-Sink science plan for selection criteria and rationale: http://www.ldeo.columbia.edu/margins/S2S/S2Ssciplan02.html).

  16. Seismicity and deep structure of the Indo-Burman plate margin

    NASA Astrophysics Data System (ADS)

    Vaněk, J.; Hanuš, V.; Sitaram, M. V. D.

    Two differently inclined segments of the Wadati-Benioff zone beneath the Chin Hills and Naga Hills segments of the Indo-Burman Ranges were verified on the basis of the geometrical analysis of distribution of 566 earthquakes. The Wadati-Benioff zone and young calc-alkaline volcanism point to the existence of a Mio-Pliocene subduction with the trench at the western boundary of the Oligocene Indo-Burman orogenic belt. A system of ten seismically active fracture zones was delineated in the adjacent Indian and Burman plates, the tectonic pattern of which represents the eastern manifestation of the continental collision of the Indian and Eurasian plates. The position of historical disastrous earthquakes confirms the reality of this pattern.

  17. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  18. Source-to-Sink: An implicit and O(n) landscape evolution model and its application to the Ogooue Delta, Gabon

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Braun, J.; Guerit, L.; Simon, B.

    2017-12-01

    Limited attention has been given to linking continental erosion to transport and deposition of sediments in the marine environment in large-scale landscape evolution models. Although both environments have been thoroughly investigated, the details of how erosional or climatic events are recorded in the sedimentary and stratigraphic records have not been studied in a consistent quantitative manner. Here we propose a new numerical model for marine multi-lithology (sand and silt) coupling transport and deposition that is directly coupled to FastScape, a landscape evolution model that solves the continental stream power law and hillslope diffusion equation using implicit and O(n) algorithms. Marine transport and deposition is simulated by a nonlinear 2D diffusion model that incorporates a dual lithology (sand and slit) and where source terms represent the sediment flux from continental river erosion. Sediment compaction effects are also incorporated, taking into account the dual lithology, and are important to properly compute the details of the synthetic stratigraphic record. The algorithm used to represent marine transport and deposition is also implicit and O(n). The main purpose of our work is to invert stratigraphic data from offshore marginal basins to provide constraints on the tectonic, climatic and sea-level conditions that have affected the adjacent continental areas. In order to do so, we have incorporated the new model into a Bayesian inversion and optimisation scheme and tested and validated the approach with synthetic data. This is made possible due to the high efficient of the forward model. We are in the process of applying the inversion scheme to stratigraphic data from the Ogooue Delta (Gabon). By comparing real and synthetic stratigraphic geometries along cross-section of the delta, the shape and slope of seismic/time markers, and the sand to silt fraction in wells, we hope to obtain good constraints, not only of the value of the transport coefficients for sand and silt in the marine environment, but also of the uplift, erosional and climate history of the adjacent continental areas, as well as the amplitude of sea level variations.

  19. Sediments, structural framework, petroleum potential, environmental conditions, and operational considerations of the United States South Atlantic Outer Continental Shelf

    USGS Publications Warehouse

    ,

    1975-01-01

    The area designated for possible oil and gas lease sale in Bureau of Land Management memorandum 3310 #43 (722) and referred to therein as part of the United States South Atlantic Outer Continental Shelf (OCS) contains about 98,000 square kilometres of the continental margin seaward of the 3 mile offshore limit and within the 600 metre isobath. The designated area, offshore of North Carolina, South Carolina, Georgia, and Florida, encompasses parts of three physiographic provinces: the Continental Shelf, the Florida-Hatteras Slope, and the Blake Plateau. The structural framework of the U.3. South Atlantic region is dominated by the Southeast Georgia Embayment --an east-plunging depression recessed into the Atlantic Coastal Plain and shelf between Cape Fear, North Carolina and Jacksonville, Florida. The embayment is bounded to the north by the Cape Fear Arch and to southeast by the Peninsular Arch. Refraction data indicate a minor basement(?) ridge beneath the outer shelf between 30? and 32?N at 80?W. Drill hole data also suggest a gentle fold or accretionary structure (reef?) off the east coast of Florida. Several other structural features have been identified by refraction and reflection techniques and drilling. These are the Yamacraw Uplift, Burton High, Stone Arch, and the Suwannee Channel. Gravity and magnetic anomalies within the area probably result from emplacement of magma bodies along linear features representing fundamental crustal boundaries. Of these anomalies, the most prominent, is a segment of the East Coast Magnetic Anomaly which crosses the coast at Brunswick, Georgia. This anomaly has been interpreted as representing an ancient continental boundary where two formerly separate continental plates collided and were welded together. There may be as much as 5,000 m of sedimentary rocks in the Southeast Georgia Embayment out to the 600 m isobath. Basement rocks beneath the Southeast Georgia Embayment are expected to be similar to those exposed in the Appalachian Piedmont province. Triassic deposits are likely to exist beneath the inner Continental Shelf, and probably consist of nonmarine arkosic sandstones, shales, basalt flows, and diabase intrusions deposited in relatively narrow northeast-trending grabens. Jurassic marine carbonates in the Bahamas grade northward to carbonates, shales, sand, and arkose in North Carolina. Salt may be present in the basal Jurassic section in the Southeast Georgia Embayment. Up to 4,000 m of Jurassic-Lower Cretaceous rocks are expected out to the 600 m water depth. Lower Cretaceous rocks in southern Florida are shallow-water marine limestone and dolomites with beds of anhydrite. In coastal North Carolina the Lower Cretaceous is a marine section made up of shales, sand, and sandy limestone. The Upper Cretaceous is composed almost entirely of marine carbonates in southern Florida grading northward to nonmarine to marginal marine, sandstones and shales with minor amounts of carbonates. In general, Upper Cretaceous rocks will probably maintain a fairly constant thickness (600 m) on the Continental Shelf and grade downdip from terrigeneous sands and shales to more marine chalks, limestones, and dolomites. The Cenozoic rocks are predominantly shallow-water marine carbonates in Florida grading northward into a marginal marine to marine clastic facies composed of sands, marls, and limestones. The offshore Cenozoic section is expected to range in thickness from 600 to 1100 m. A reconstruction of the geologic history suggests that the present continental margin is a result of a collision of the North American and African continental plates during late Paleozoic time and later modification during Late Triassic time when the continental plates separated, forming the present Atlantic Ocean. No commercial production of hydrocarbons has been developed on the Atlantic Coastal Plain immediately adjacent to the studied area even though hydrocarbon shows have been encountered in ons

  20. ON THE WIND-INDUCED EXCHANGE BETWEEN INDIAN RIVER BAY, DELAWARE AND THE ADJACENT CONTINENTAL SHELF. (R826945)

    EPA Science Inventory

    The structure of the wind-induced exchange between Indian River Bay, Delaware and the adjacent continental shelf is examined based on current measurements made at the Indian River Inlet which represents the only conduit of exchange between the bay and the coastal ocean. Local ...

  1. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China

    NASA Astrophysics Data System (ADS)

    Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei

    2017-08-01

    The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the onset of the subduction of the Paleo-Pacific Plate beneath the East Asian continental margin probably took place during the latest Triassic (ca. 215 Ma); (3) changes in the drifting direction of the Paleo-Pacific Plate were responsible for the intermittent magmatic activities; and (4) roll-back of the subducted plate resulted in the oceanwards migration of the magmatic arc and large-scale back-arc extension throughout NE China during the Early Cretaceous.

  2. Geoacoustic models of Coastal Bottom Strata at Jeongdongjin in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Han, Jooyoung

    2017-04-01

    Geoacoustic models provide submarine environmental data to predict sound transmission through submarine bottom layers of sedimentary strata and acoustic basement. This study reconstructed four geoacoustic models for sediments of 50 m thick at the Jeongdongjin area in the western continental margin of the East Sea. Bottom models were based on about 1100 line-km data of the high-resolution air-gun seismic and subbottom profiles (SBP) with sediment cores. The 4 piston cores were analyzed for reconstruction of the bottom and geoacoustic models in the study area, together with 2 long cores in the adjacent area. P-wave speed in the core sediment was measured by the pulse transmission technique, and the resonance frequency of piezoelectric transducers was maintained at 1 MHz. Measurements of 42 P-wave speeds and 41 attenuations were fulfilled in three core sediments. For actual modeling, the P-wave speeds of the models were compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of coastal bottom strata will be used for geoacoustic and underwater acoustic experiments reflecting vertical and lateral variability of geoacoustic properties in the Jeongdongjin area of the East Sea. Keywords: geoacosutic model, bottom model, P-wave speed, Jeongdongjin, East Sea Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  3. Atlantic continental margin of the United States

    USGS Publications Warehouse

    Grow, John A.; Sheridan, Robert E.; Palmer, A.R.

    1982-01-01

    The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.

  4. ENAM: A community seismic experiment targeting rifting processes and post-rift evolution of the Mid Atlantic US margin

    NASA Astrophysics Data System (ADS)

    Van Avendonk, H. J.; Magnani, M. B.; Shillington, D. J.; Gaherty, J. B.; Hornbach, M. J.; Dugan, B.; Long, M. D.; Lizarralde, D.; Becel, A.; Benoit, M. H.; Harder, S. H.; Wagner, L. S.; Christeson, G. L.

    2014-12-01

    The continental margins of the eastern United States formed in the Early Jurassic after the breakup of supercontinent Pangea. The relationship between the timing of this rift episode and the occurrence of offshore magmatism, which is expressed in the East Coast Magnetic Anomaly, is still unknown. The possible influence of magmatism and existing lithospheric structure on the rifting processes along margin of the eastern U.S. was one of the motivations to conduct a large-scale community seismic experiment in the Eastern North America (ENAM) GeoPRISMS focus site. In addition, there is also a clear need for better high-resolution seismic data with shallow penetration on this margin to better understand the geological setting of submarine landslides. The ENAM community seismic experiment is a project in which a team of scientists will gather both active-source and earthquake seismic data in the vicinity of Cape Hatteras on a 500 km wide section of the margin offshore North Carolina and Virginia. The timing of data acquisition in 2014 and 2015 facilitates leveraging of other geophysical data acquisition programs such as Earthscope's Transportable Array and the USGS marine seismic investigation of the continental shelf. In April of 2014, 30 broadband ocean-bottom seismometers were deployed on the shelf, slope and abyssal plain of the study site. These instruments will record earthquakes for one year, which will help future seismic imaging of the deeper lithosphere beneath the margin. In September and October of 2014, regional marine seismic reflection and refraction data will be gathered with the seismic vessel R/V Marcus Langseth, and airgun shots will also be recorded on land to provide data coverage across the shoreline. Last, in the summer of 2015, a land explosion seismic refraction study will provide constraints on the crustal structure in the adjacent coastal plain of North Carolina and Virginia. All seismic data will be distributed to the community through IRIS/DMC and the LDEO/UTIG Seismic data center. Two workshops are planned for 2015, where new users get an opportunity to engage in basic processing and analysis of the new data set.

  5. Multidisciplinary scientific program of investigation of the structure and evolution of the Demerara marginal plateau

    NASA Astrophysics Data System (ADS)

    Loncke, Lies; Basile, Christophe; Roest, Walter; Graindorge, David; Mercier de Lépinay, Marion; Klinghelhoefer, Frauke; Heuret, Arnauld; Pattier, France; Tallobre, Cedric; Lebrun, Jean-Frédéric; Poetisi, Ewald; Loubrieu, Benoît; Iguanes, Dradem, Margats Scientific Parties, Plus

    2017-04-01

    Mercier de Lépinay et al. published in 2016 an updated inventory of transform passive margins in the world. This inventory shows that those margins represent 30% of continental passive margins and a cumulative length of 16% of non-convergent margins. It also highlights the fact that many submarine plateaus prolong transform continental margins, systematically at the junction of oceanic domains of different ages. In the world, we identified twenty of those continental submarine plateaus (Falklands, Voring, Demerara, Tasman, etc). Those marginal plateaus systematically experiment two phases of deformation: a first extensional phase and a second transform phase that allows the individualization of those submarine reliefs appearing on bathymetry as seaward continental-like salients. The understanding of the origin, nature, evolution of those marginal plateaus has many scientific and economic issues. The Demerara marginal plateau located off French Guiana and Surinam belongs to this category of submarine provinces. The French part of this plateau has been the locus of a first investigation in 2003 in the framework of the GUYAPLAC cruise dedicated to support French submissions about extension of the limit of the continental shelf beyond 200 nautical miles. This cruise was the starting point of a scientific program dedicated to geological investigations of the Demerara plateau that was sustained by different cruises and collaborations (1) IGUANES (2013) that completed the mapping of this plateau including off Surinam, allowed to better understand the segmentation of the Northern edge of this plateau, and to evidence the combined importance of contourite and mass-wasting processes in the recent sedimentary evolution of this domain, (2) Collaboration with TOTAL (Mercier de Lépinay's PhD thesis) that allowed to better qualify the two main phases of structural evolution of the plateau respectively during Jurassic times for its Western border, Cretaceous times for its Northern and Eastern border (2) DRADEM (2016) (see poster session) that better mapped the continental slope domain of the transform margin north of the Demerara plateau and was dedicated to the dredging of rocks outcropping on the continental slope, suspected to be Cretaceous in age and older, (3) MARGATS (2016) (see poster session) that was dedicated to the better understanding of the internal structure of the plateau and its different margins using multi-channels seismic and refraction methods. The combination of all those experiments allow us to paint an integrated portrait of the Demerara marginal plateau - that may be very useful in understanding the processes involved (1) in the individualization of such plateaus (volcanism, heritages, kinematics, …) (2) in their evolution (subsidence, mass-wasting processes, domains of deep-sea current acceleration). In the future, those scientific advances may allow to better define the natural resources associated with such marginal domains.

  6. Continental underplating after slab break-off

    NASA Astrophysics Data System (ADS)

    Magni, V.; Allen, M. B.; van Hunen, J.; Bouilhol, P.

    2017-09-01

    We present three-dimensional numerical models to investigate the dynamics of continental collision, and in particular what happens to the subducted continental lithosphere after oceanic slab break-off. We find that in some scenarios the subducting continental lithosphere underthrusts the overriding plate not immediately after it enters the trench, but after oceanic slab break-off. In this case, the continental plate first subducts with a steep angle and then, after the slab breaks off at depth, it rises back towards the surface and flattens below the overriding plate, forming a thick horizontal layer of continental crust that extends for about 200 km beyond the suture. This type of behaviour depends on the width of the oceanic plate marginal to the collision zone: wide oceanic margins promote continental underplating and marginal back-arc basins; narrow margins do not show such underplating unless a far field force is applied. Our models show that, as the subducted continental lithosphere rises, the mantle wedge progressively migrates away from the suture and the continental crust heats up, reaching temperatures >900 °C. This heating might lead to crustal melting, and resultant magmatism. We observe a sharp peak in the overriding plate rock uplift right after the occurrence of slab break-off. Afterwards, during underplating, the maximum rock uplift is smaller, but the affected area is much wider (up to 350 km). These results can be used to explain the dynamics that led to the present-day crustal configuration of the India-Eurasia collision zone and its consequences for the regional tectonic and magmatic evolution.

  7. Margin Architecture and Sediment Flux as Controls on Submarine Fan Development: Tectonic-Climate Interactions in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Gulick, S. P. S.; Montelli, A.; Swartz, J. M.; Morey, S.; Jaeger, J. M.; Mix, A. C.; Reece, R.; Somchat, K.; Wagner, P. F.; Worthington, L. L.

    2015-12-01

    The oblique collision of the Yakutat microplate into southeast Alaska generates the St. Elias Mountains, a coastal orogen with significant moisture from the Gulf of Alaska resulting in large, temperate glacial systems that expand to and eventually cross the continental shelf during glacial maxima. We present an overview of the evolution of sediment routing on this margin from integration of seismic images, updated age models and core-log-seismic correlations from IODP Expedition 341 drilling sites, and mapping efforts from shelf, slope, and fan. We focus on the three dominant glacial systems during the climatically important intensification of Northern Hemisphere glaciation at the Plio-Pleistocene transition and the further intensification of glaciation since the mid-Pleistocene transition. Along strike, sediment delivery to deepwater from the three glacial systems varied according to Pleistocene shelf accommodation space. The Alsek crossed a narrower shelf with a bedrock high near the shelf edge; the Malaspina-Hubbard system crossed an undeformed, ~1 km deep shelf; the Bering-Bagley system crossed a several km deep shelf deforming as an active fold and thrust belt. The Malaspina and Bering catchments exhibit high exhumation rates onshore due to the Yakutat collision and upon reaching the shelf edge these glaciers generate trough mouth fans (TMFs) on the adjacent continental slope but only after first filling the available accommodation with glacigenic sediment and lowering the slope gradient through progradation. The Alsek crosses the shelf earliest but never with sufficient sediment flux to generate a TMF. An east-west transition in adjacent deepwater submarine channels that feed and generate the Surveyor Fan suggests that shelf accommodation and sediment flux are primary controls on sediment routing from orogen to submarine fan. Both of these parameters are in turn a function of initial tectonic architecture and ongoing orogen dynamics.

  8. Geophysical evidence for a transform margin in Northwestern Algeria: possible vestige of a Subduction-Transform Edge Propagator

    NASA Astrophysics Data System (ADS)

    Badji, R.; Charvis, P.; Bracene, R.; Galve, A.; Badsi, M.; Ribodetti, A.; Benaissa, Z.; Klingelhoefer, F.; Medaouri, M.; Beslier, M.

    2013-12-01

    This work is part of the Algerian-French SPIRAL program (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) which provides unprecedented images of the deep structure of the western Algerian Margin based on several wide-angle and multichannel seismic data shot across the Algerian Margin. One of the different hypotheses for the opening of the western Mediterranean Sea, we are testing is that the western part of the Algerian margin was possibly part of the southern edge of the Alboran continental block during its westward migration related to the rollback of the Betic-Rif-Alboran subduction zone. A tomographic inversion of the first arrival traveltimes along a 100-km long wide-angle seismic profile shot over 40 Ocean Bottom Seismometers, across the Margin offshore Mostaganem (Northwestern Algerian Margin) was conducted. The final model reveals striking feature in the deep structure of the margin from north to south: 1- the oceanic crust is as thin as 4-km, with velocities ranging from 5.0 to 7.1 km/s, covered by a 3.3 km thick sedimentary pile (seismic velocities from 1.5 to 5.0 km/s) characterized by an intense diapiric activity of the Messinian salt layer. 2- a sharp transition zone, less than 10 km wide, with seismic velocities intermediate between oceanic seismic velocities (observed northward) and continental seismic velocities (observed southward). This zone coincides with narrow and elongated pull apart basins imaged by multichannel seismic data. No evidence of volcanism nor of exhumed serpentinized upper mantle as described along many extensional continental margins are observed along this segment of the margin. 3- a thinned continental crust coincident with a rapid variation of the Moho depth imaged from 12 to ~20 km with a dip up to 50%. The seafloor bathymetry is showing a steep continental slope (>20%). Either normal or inverse faults are observed along MCS lines shot in the dip direction but they do not present large vertical displacement and could be related primarily to strike slip motion. These results support the hypothesis, that the margin offshore Mostaganem is not an extensional margin but rather a transform margin. There is little evidence of tectonic inversion as described eastward along the Kabylian Margin. Possibly strike slip motion affected the thinned continental crust and the transition zone suggesting that this margin is a vestige of the Subduction-Transform Edge Propagator (STEP) related to the westward migration of the Alboran block.

  9. Flow of material under compression in weak lower continental crust can cause post-rift uplift of passive continental margins

    NASA Astrophysics Data System (ADS)

    Chalmers, James

    2014-05-01

    There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material therefore accumulates in the proximal rift and rift margin, thickening them and lifting them by isostatic response to the thickening. Flow into the rift margin is opposed by uplift and folding of the upper, strong crust, which imposes an additional normal stress, until crust thickens no more. However, flow continues through this thickened crust, thickening and uplifting the area "downstream", so widening the thickened area. Flow and uplift can continue until a reduction in imposed far-field compressive stress causes a consequent large reduction in inflow, thereby 'freezing' the thickened crust in place. Erosion of the uplifted area will lead to further uplift of the uneroded material because of the isostatic response to the erosion. Reference Cloetingh, S. & Burov, E. 2010: Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Research 22, 1365-2117. doi:10.1111/j.1365-2117.2010.00490.x.

  10. Tectonics of the Western Gulf of Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.S.; Ross, D.A.

    1979-07-10

    The Oman line, running northward from the Strait of Hormuz separates a continent-continent plate boundary to the northwest (Persian Gulf region) from an ocean-continent plate boundary to the southeast (Gulf of Oman region). A large basement ridge detected on multichannel seismic reflection and gravity profiles to the west of the Oman line is probably a subsurface continuation of the Musandam peninsula beneath the Strait of Hormuz. Collision and underthrusting beneath Iran of the Arabian plate on which this ridge lies has caused many of the large earthquakes that have occurred in this region. Convergence between the oceanic crust of themore » Arabian plate beneath the Gulf of Oman and the continental Eurasian plate beneath Iran to the north is accommodated by northward dipping subduction. A deformed sediment prism which forms the offshore Makran continental margin and which extends onto land in the Iranian Makran has accumulated above the descending plate. In the western part of the Gulf of Oman, continued convergence has brought the opposing continental margin of Oman into contact with the Makran continental margin. This is an example of the initial stages of a continent-continent type collision. A model of imbricate thrusting is proposed to explain the development of the fold ridges and basins on the Makran continental margin. Sediments from the subducting plate are buckled and incorporated into the edge of the Makran continental margin in deformed wedges and subsequently uplifted along major faults that penetrate the accretionary prism further to the north.« less

  11. Subduction and exhumation of a continental margin in the Scandinavian Caledonides: Insights from ultrahigh pressure metamorphism, late orogenic basins and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Cuthbert, Simon

    2017-04-01

    The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin descends to greater depths than for a simple orthogonal collision and its modelled thermal evolution is consistent with UHP metamorphic assemblages recorded in the southern part of the SC. Furthermore, a tear initiates at the promontary tip along the ocean-continent junction and propagates rapidly along the orogen. The buoyant upthrust of the subducted margin can then lead to reversal of the motion vector of the entire subducting continent, which withdraws the subducted lithospheric margin out of the subduction channel ("eduction"). Because of the diachroneity of slab failure, the continent also rotates, which causes the eduction vector to change azimuth over time. These model behaviours are consistent with the late orogenic structural evolution of the southern SC. However, during the final exhumation stage the crust may not have acted entirely coherently, as some eduction models propose: There is evidence that some inboard Baltica crust experienced late, shallow subduction before detaching as giant "flakes" that carried the orogenic wedge piggyback, forelandwards. Eduction and flake-tectonics could have operated coevally; the model system does not preclude this. Finally, the traction of a large educting (or extruding) mass of continental margin against the overlying orogenic wedge may have stretched and ruptured the wedge, resulting in opening of the late-orogenic Old Red Sandstone molasse basins.

  12. Role of local to regional-scale collisions in the closure history of the Southern Neotethys, exemplified by tectonic development of the Kyrenia Range active margin/collisional lineament, N Cyprus

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Tim; McCay, Gillian; Palamakumbura, Romesh; Chen, Guohui

    2016-04-01

    Active margin processes including subduction, accretion, arc magmatism and back-arc extension play a key role in the diachronous, and still incomplete closure of the S Neotethys. The S Neotethys rifted along the present-day Africa-Eurasia continental margin during the Late Triassic and, after sea-floor spreading, began to close related to northward subduction during the Late Cretaceous. The northern, active continental margin of the S Neotethys was bordered by several of the originally rifted continental fragments (e.g. Taurides). The present-day convergent lineament ranges from subaqueous (e.g. Mediterranean Ridge), to subaerial (e.g. SE Turkey). The active margin development is partially obscured by microcontinent-continent collision and post-collisional strike-slip deformation (e.g. Tauride-Arabian suture). However, the Kyrenia Range, N Cyprus provides an outstanding record of convergent margin to early stage collisional processes. It owes its existence to strong localised uplift during the Pleistocene, which probably resulted from the collision of a continental promontory of N Africa (Eratosthenes Seamount) with the long-lived S Neotethyan active margin to the north. A multi-stage convergence history is revealed, mainly from a combination of field structural, sedimentological and igneous geochemical studies. Initial Late Cretaceous convergence resulted in greenschist facies burial metamorphism that is likely to have been related to the collision, then rapid exhumation, of a continental fragment (stage 1). During the latest Cretaceous-Palaeogene, the Kyrenia lineament was characterised by subduction-influenced magmatism and syn-tectonic sediment deposition. Early to Mid-Eocene, S-directed thrusting and folding (stage 2) is likely to have been influenced by the suturing of the Izmir-Ankara-Erzincan ocean to the north ('N Neotethys'). Convergence continued during the Neogene, dominated by deep-water terrigenous gravity-flow accumulation in a foredeep setting. Further S-directed compression took place during Late Miocene-earliest Pliocene (stage 3) in an oblique left-lateral stress regime, probably influenced by the collision of the Tauride and Arabian continents to the east. Strong uplift of the active margin lineament then took place during the Pleistocene, related to incipient continental collision (stage 4). The uplift is documented by a downward-younging flight of marine and continental terrace deposits on both flanks of the Kyrenia Range. The geological record of the S Neotethyan active continental margin, based on regional to global plate kinematic reconstructions, appears to have been dominated by on-going convergence (with possible temporal changes), punctuated by the effects of relatively local to regional-scale collisional events. Similar processes are likely to have affected other S Neotethyan segments and other convergent margins.

  13. Opening of the Central Atlantic Ocean: Implications for Geometric Rifting and Asymmetric Initial Seafloor Spreading after Continental Breakup

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.

    2017-12-01

    The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the African margin can be explained by the influence of the Canary hotspot between 60 and 30 Ma in the study region. After isochron M25, a large-scale plate reorganization may then have led to an increase in spreading velocity and the production of a more typical but thin magmatic crust on both sides.

  14. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  15. The Role of Rift Obliquity in Formation of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly-constrained ˜50-100 kilometer-wide transtensional belt of focused strike-slip faulting, basin formation, and rotating crustal blocks. This proto-Gulf of California shear zone, embedded within the wider Mexican Basin and Range extensional province and connected to the San Andreas fault in southern California, hosted subsequent localization of the plate boundary and rupture of the continental lithosphere.

  16. Breakup Style and Magmatic Underplating West of the Lofoten Islands, Norway, Based on OBS Data.

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.; Murai, Y.; Flueh, E. R.

    2014-12-01

    The breakup of the Northeast Atlantic in the Early Eocene was magma-rich, forming the major part of the North Atlantic Igneous Province (NAIP). This is seen as extrusive and intrusive magmatism in the continental domain, and as a thicker than normal oceanic crust produced the first few million years after continental breakup. The maximum magma productivity and the duration of excess magmatism varies along the margins of Northwest Europe and East Greenland, to some extent as a function of the distance from the Iceland hotspot. The Vøring Plateau off mid-Norway is the northernmost of the margin segments in northwestern Europe with extensive magmatism. North of the plateau, magmatism dies off towards the Lofoten Margin, marking the northern boundary of the NAIP here. In 2003, as part of the Euromargins Program we collected an Ocean Bottom Seismometer (OBS) profile from mainland Norway, across the Lofoten Islands, and out into the deep ocean. Forward velocity modeling using raytracing reveals a continental margin that shows transitional features between magma-rich and magma-poor rifting. On one hand, we detect an up to 2 km thick and 40-50 km wide magmatic underplate of the outer continent, on the other hand, continental thinning is greater and intrusive magmatism less than farther south. Continental breakup also appears to be somewhat delayed compared to breakup on the Vøring Plateau, consistent with increased extension. This indicates that magmatic diking, believed to quickly lead to continental breakup of volcanic margins and thus to reduce continental thinning, played a much lesser role here than at the plateau. Early post-breakup oceanic crust is up to 8 km thick, less than half of that observed farther south. The most likely interpretation of these observations, is that the source for the excess magmatism of the NAIP was not present at the Lofoten Margin during rifting, and that the excess magmatism actually observed was the result of lateral transport from the south around breakup time.

  17. Crustal Structure in the Southern Rockall Trough from Satellite Gravity Data: Evidence for Sea-floor Spreading

    NASA Astrophysics Data System (ADS)

    Chappell, A.; Kusznir, N. J.

    2005-05-01

    The southern Rockall Trough south of 57 N has previously been interpreted as either an intra-continental rift floored with highly extended continental crust, or a failed oceanic rift formed by Cretaceous sea floor spreading. Satellite gravity, bathymetry data and seismic estimates of sediment thickness are used to derive crustal basement thickness for the southern Rockall Trough and adjacent regions using a gravity inversion method incorporating a correction for the large negative thermal gravity component present in oceanic and stretched continental lithosphere. The marine Bouguer anomaly, derived from satellite free air gravity (Sandwell & Smith 1997) and Gebco 2003 bathymetry data, is inverted using the method of Oldenberg (1974), incorporating an iteratively applied thermal anomaly correction, to give Moho depth. For oceanic crust the thermal anomaly correction is calculated using isochron ages (Muller et al. 1997) and for continental crust from the beta stretching factors resulting from gravity derived crustal basement thickness and an assumed rift age. When sediment thickness and volcanic addition are assumed to be zero, the resulting upper bound of crustal thickness from the gravity inversion is as little as 10 km in the southern Rockall Trough. A segmented axial thickening of the crust at the centre of the Rockall Trough is predicted, between the Barra volcanic ridge and the Anton Dohrn seamount and is interpreted as having a volcanic origin. Inclusion of a sediment thickness correction in the gravity inversion further reduces predicted crustal thickness. A pseudo-sediment-thickness map has been constructed from the available wide-angle data and incorporated in the gravity inversion. The addition of up to 5.5 km of sediment in the gravity inversion reduces the upper bound of crustal thickness to less than 3 km in some locations. The segmented axial thickening and thin crust shown by the gravity inversion, the lack of intra-basinal faulting, and the volcanic origin for the axis shown by normal incidence seismic data, are consistent with a sea-floor spreading origin for the southern Rockall Trough and not formation by intra-continental rifting. We investigate the formation of the southern Rockall Trough using SfMargin, a new model of continental lithosphere thinning leading to continental breakup and sea-floor spreading initiation. Comparisons of the geometry of the southern Rockall Trough predicted by SfMargin with that observed are consistent with a short period (20Ma) of slow Cretaceous sea-floor spreading, followed by thermal subsidence to present day. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.

  18. Carboniferous Proto-type Basin Evolution of Junggar Basin in Northwest China: Implications for the Growth Models of Central Asia Orogenic Belt

    NASA Astrophysics Data System (ADS)

    He, D.

    2016-12-01

    The Junggar Basin locates in the central part of Paleo-Asian Ocean tectonic domain, and records the dynamic processes of the Central Asian Orogenic Belt from subduction-accretion-collision to later intracontinental deformations. Carboniferous is the key period from subduction to closure in the tectonic evolution of Paleo-Asian Ocean. Based on the borehole, outcrop, seismic and gravity and magnetic anomaly data, the paper made analysis of the Carboniferous basin evolution.Geo-chronological results for the borehole volcanic rocks suggest that the Junggar Basin and adjacent area had five periods of volcanic activities, including two periods in the Early Carboniferous (359-347Ma 347-331Ma and 331-324Ma) and three periods in the Late Carboniferous (323-307Ma and 307-300Ma). Regional unconformities divided the Carboniferous into two tectono-stratigraphic sequences: Lower Carboniferous and Upper Carboniferous. The former is characterized by compressional structures and involves massive calc-alkaline basalts, andesites, dacites and rhyolites, whereas the later is mainly controlled by extensional faults and dominated by intermediate-mafic volcanic rocks, with bimodal volcanic rocks in parts. The paper determined four Carboniferous arc-basin belts in the Junggar Basin and adjacent area from north to south: the Saur-Fuhai-Dulate, Heshituoluogai-Wulungu-Yemaquan, Darbut-Luliang-Karamaili, and Zhongguai-Mosuowan-Baijiahai-Qitai, and identified multi-type basins, such as fore-arc basin, retro-arc basin, intra-arc rift basin, foreland basin and passive continental margin basin,etc.. The Carboniferous proto-type basin evolution of the Junggar Basin can be divided into three phases such as, the early to middle Early Carboniferous subduction-related compressional phase, the late Early Carboniferous to middle Late Carboniferous subduction-related extensional phase and the late Late Carboniferous intra-continental fault-sag phase. The study discloses that the Junggar Basin is likely underlain by juvenile continental crust rather than unified Precambrian basement, and also implies that the Junggar Basin and adjacent area, even the entire CAOB, were built by successively northward amalgamation of multiple linear arc-basin systems characterized by southward accretion.

  19. The Continental Margins of the Western North Atlantic.

    ERIC Educational Resources Information Center

    Schlee, John S.; And Others

    1979-01-01

    Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)

  20. Long-term evolution of the western South Atlantic passive continental margin in a key area of SE Brazil revealed by thermokinematic numerical modeling using the software code Pecube

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244. 2. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 3. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 4. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.

  1. Rollback of an intraoceanic subduction system and termination against a continental margin

    NASA Astrophysics Data System (ADS)

    Campbell, S. M.; Simmons, N. A.; Moucha, R.

    2017-12-01

    The Southeast Indian Slab (SEIS) seismic anomaly has been suggested to represent a Tethyan intraoceanic subduction system which operated during the Jurassic until its termination at or near the margin of East Gondwana (Simmons et al., 2015). As plate reconstructions suggest the downgoing plate remained coupled to the continental margin, this long-lived system likely experienced a significant amount of slab rollback and trench migration (up to 6000 km). Using a 2D thermomechanical numerical code that includes the effects of phase transitions, we test this interpretation by modeling the long-term subduction, transition zone stagnation, and rollback of an intraoceanic subduction system in which the downgoing plate remains coupled to a continental margin. In addition, we also investigate the termination style of such a system, with a particular focus on the potential for some continental subduction beneath an overriding oceanic plate. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-735738

  2. Extension of the Narmada — Son lineament on the continental margin off Saurashtra, Western India as obtained from magnetic measurements

    NASA Astrophysics Data System (ADS)

    Bhattacharya, G. C.; Subrahmanyam, V.

    1986-12-01

    Magnetic total intensity values and bathymetric data collected on the continental margin off Saurashtra were, used to prepare magnetic anomalies and bathymetric contour maps. The magnetic anomalies are considered to have been caused by the Deccan Trap flood basalts which underlie the Tertiary sediments. Interpretation of the magnetic data using two-dimensional modelling method suggests that the magnetic basement is block faulted and deepens in steps from less than 1.0 km in the north to about 8.0 km towards the southern portion of the study area. The WNW-ESE trending faults identified in the present study extend across the Saurashtra continental margin between Porbandar and Veraval and appear to represent a major linear tectonic feature. The relationship of these fault lineaments with the regional tectonic framework have been discussed to indicate that they conform better as the northern boundary faults of the Narmada rift graben on the continental margin off Saurashtra.

  3. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.

    1994-12-01

    The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.

  4. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  5. The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves

    NASA Astrophysics Data System (ADS)

    Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.

    2011-07-01

    Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.

  6. On the offshore dispersal of the Amazon's Plume in the North Atlantic: Comments on the paper by A. Longhurst, ``Seasonal cooling and blooming in tropical oceans''

    NASA Astrophysics Data System (ADS)

    Muller-Karger, F. E.; Richardson, P. L.; Mcgillicuddy, D.

    1995-11-01

    Coastal Zone Color Scanner (CZCS) satellite images show extensive plumes of discolored water extending from South America into the western tropical Atlantic. The most conspicuous plumes originate at the mouths of the Amazon and Orinoco Rivers, and plumes originating at smaller rivers can also be seen from space. In a recent paper by Longhurst (1993), the plume associated with the Amazon River was attributed to phytoplankton blooms stimulated by nutrients supplied via eddy upwelling. We revisit the argument that this plume is of riverine origin, and offer evidence that material present near continental margins can be advected offshore and trace circulation patterns in the adjacent ocean.

  7. Style of extensional tectonism during rifting, Red Sea and Gulf of Aden

    USGS Publications Warehouse

    Bohannon, R.G.

    1989-01-01

    Geologic and geophysical studies from the Arabian continental margin in the southern Red Sea and LANDSAT analysis of the northern Somalia margin in the Gulf of Aden suggest that the early continental rifts were long narrow features that formed by extension on closely spaced normal faults above moderate- to shallow-dipping detachments with break-away zones defining one rift flank and root zones under the opposing rift flank. The rift flanks presently form the opposing continental margins across each ocean basin. The detachment on the Arabian margin dips gently to the west, with a breakaway zone now eroded above the deeply dissected terrain of the Arabian escarpment. A model is proposed in which upper crustal breakup occurs on large detachment faults that have a distinct polarity. -from Author

  8. A quantitative analysis of transtensional margin width

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Buiter, Susanne J. H.

    2018-06-01

    Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).

  9. Was the exposed continental shelf a long-distance colonization route in the ice age? The Southeast Asia origin of Hainan and Taiwan partridges.

    PubMed

    Chen, De; Chang, Jiang; Li, Shou-Hsien; Liu, Yang; Liang, Wei; Zhou, Fang; Yao, Cheng-Te; Zhang, Zhengwang

    2015-02-01

    Research on island biotas has greatly contributed to the development of modern evolutionary and biogeographic theories. Until now, most studies have suggested that continental islands received their biotas directly from the adjacent mainland. However, only a few studies have indicated that species on continental islands might originate from other distantly non-adjacent regions. Here, we used the hill partridges (genus Arborophila) that are widely distributed in the southwest and southeast China mainland, Indochina, Hainan and Taiwan islands to test whether species on continental islands might originate from distant regions rather than the adjacent mainland. Based on molecular phylogenies inferred from three mitochondrial fragments and three nuclear introns, together with ancestral area reconstruction, we found that the ancestors of the endemic Hainan and Taiwan partridges (A. ardens and A. crudigularis) likely originated from Indochina, rather than the nearby southeast China mainland. The divergence time estimates demonstrate that their ancestors likely colonized Hainan and Taiwan islands using the long exposed continental shelf between Indochina, Hainan and Taiwan islands during glacial periods, which had not been demonstrated before. Thus, integrating distribution data with phylogenetic information can shed new lights on the historical biogeography of continental islands and surrounding mainland regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Detailed analysis of the Valdes slide: a landward facing slope failure off Chile

    NASA Astrophysics Data System (ADS)

    Anasetti, Andrea; Krastel, Sebastian; Weinrebe, Willy; Klaucke, Ingo; Bialas, Jorge

    2010-05-01

    The Chilean continental margin is a very active area interested by important tectonic movements and characterized by a fast morphological evolution. Geophysical data acquired during cruise JC 23, aboard RV JAMES COOK in March/April 2008 and previous cruises cover most of the active Chilean continental margin between 33° and 37° S. Integrated interpretation of multi-beam bathymetric, sub-bottom profiles, side-scan sonar and seismic data allowed the identification of a number of slope failures. The main topic of this project is the morphological and sedimentological analysis of the Valdes slide, a medium-sized submarine landslide offshore the city of Talcahuano (300 km south of Santiago). In contrast to most other slides along continental margins, the Valdes slide is located on the landward facing eastern slope of a submarine ridge. This setting has important implications for the associated tsunami wave field (first arrival of positive amplitude). We measured geometrical parameters of the failure and adjacent slope. The slide affected an area of 19 km2 between ~1060 m and >1700 m water depths. Its is ~ 6 km long, up to 3 km wide and involved a total sedimentary volume of about 0,8 km3. The failure process was characterized by a multiple-event and we assume its tsunami potential to be high. Using the high resolution bathymetric data and the seismic profiles along the slide deposit it was possible to reconstruct the original morphology of the area in order to understand the relation between the slide event and the structural evolution of the ridge. Through the analysis of the data and bibliographic information about the Chilean margin, we analyzed potential trigger mechanisms for the landslide. The Valdes slide is situated on a steep ridge flank. The ridge follows an elongated fault zone running app. parallel to the margin. This fault zone has a dextral component which in combination with the faults elongation results in a compressional regime that is superimposed on the overall subduction-related compression and ultimately generated this ridge. Over-steepening (slope angle >6° ) of rapidly accumulated sediments (high sedimentation rate) and the huge uplift of the ridge seem to be the most important preconditioning factors of this slide. Seismic data and core analysis suggest that a weak layer acted as sliding surface. The most likely trigger can be assumed one of the frequently occurring strong earthquakes in this area.

  11. Polar continental margins: Studies off East Greenland

    NASA Astrophysics Data System (ADS)

    Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.

    The passive continental margin off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland ice shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental margin. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between ice sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental margin covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and margin (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.

  12. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.

  13. 3-D thermal effect of late Cenozoic erosion and deposition within the Lofoten-Vesterålen segment of the Mid-Norwegian continental margin

    NASA Astrophysics Data System (ADS)

    Maystrenko, Yuriy Petrovich; Gernigon, Laurent; Olesen, Odleiv; Ottesen, Dag; Rise, Leif

    2018-05-01

    A 3-D subsurface temperature distribution within the Lofoten-Vesterålen segment of the Mid-Norwegian continental margin and adjacent areas has been studied to understand the thermal effect of late Cenozoic erosion of old sedimentary and crystalline rocks and subsequent deposition of glacial sediments during the Pleistocene. A lithosphere-scale 3-D structural model of the Lofoten-Vesterålen area has been used as a realistic approximation of the geometries of the sedimentary infill, underlying crystalline crust and lithospheric mantle during the 3-D thermal modelling. The influence of late Cenozoic erosion and sedimentation has been included during the 3-D thermal calculations. In addition, the 3-D thermal modelling has been carried out by taking also into account the influence of early Cenozoic continental breakup. The results of the 3-D thermal modelling demonstrate that the mainland is generally colder than the basin areas within the upper part of the 3-D model. The thermal influence of the early Cenozoic breakup is still clearly recognizable within the western and deep parts of the Lofoten-Vesterålen margin segment in terms of the increased temperatures. The thermal effects of the erosion and deposition within the study area also indicate that a positive thermal anomaly exists within the specific subareas where sedimentary and crystalline rocks were eroded. A negative thermal effect occurs in the subareas affected by subsidence and sedimentation. The erosion-related positive thermal anomaly reaches its maximum of more than +27 °C at depths of 17-22 km beneath the eastern part of the Vestfjorden Basin. The most pronounced deposition-related negative anomaly shows a minimum of around -70 °C at 17-20 km depth beneath the Lofoten Basin. The second negative anomaly is located within the northeastern part of the Vøring Basin and has minimal values of around -48 °C at 12-14 km depth. These prominent thermal anomalies are associated with the subareas where relatively high erosional and depositional rates were observed for late Cenozoic time.

  14. Geological and Tectonic Evidence for the Formation and Extensional Collapse of the West Antarctic Plateau: Implications for the Formation of the West Antarctic Rift System and the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Fitzgerald, P. G.; Studinger, M.; Bialas, R. W.; Buck, W.

    2007-12-01

    The Transantarctic Mountains (TAM), the world's longest and highest non-contractional intracontinental mountain belt, define the western boundary of the West Antarctic rift system (WARS). The WARS is a broad region of extended continental lithosphere, ca. 750-1000 km wide, lying dominantly below sea-level. A new model (Bialas et al., 2007), proposes that a region of thickened continental crust and high-standing topography, the "West Antarctic Plateau", underwent extensional collapse to leave a remnant edge representing the proto-TAM. Tectonic and paleogeographic reconstructions indicate the plateau formed inboard of a continental arc along the paleo- Pacific margin of Antarctica, active throughout the Paleozoic until the late Mesozoic. This high-standing region was responsible for confining sediments (Beacon Supergroup) to elongate basins along the length of the TAM. Much of the present region of the WARS has been correlated with the Lachlan Fold belt of southeastern Australia. This belt formed from the Ordovician to Carboniferous during back-arc basin formation associated with slab roll- back with short periods of compression. Convergence along the paleo-Pacific margin, perhaps enhanced by subduction of more buoyant oceanic lithosphere as the Phoenix-Pacific ridge was obliquely subducted, resulted in crustal thickening and formation of high-standing terrain (the plateau). Extensional collapse of the plateau most likely began in the Jurassic during initial rifting between East and West Antarctica, but was mainly accomplished during distributed rifting in the Cretaceous (ca. 105-85) following subduction of the Phoenix-Pacific ridge and prior to the separation of New Zealand from Marie Byrd Land. Continued formation of the TAM continued in the Cenozoic concomitant with extension in the WARS that was localized along its western margin adjacent to the TAM. Glacial erosion in the Oligocene and early-Miocene enhanced peak height in the TAM. In this presentation we discuss the diverse geological, geophysical, thermochronological and tectonic evidence for the West Antarctic Plateau and the implications for the formation of the Transantarctic Mountains.

  15. Ridge Flank Flux as a Potential Source for the North Pacific Silica Plume

    NASA Astrophysics Data System (ADS)

    Johnson, H. P.; Hautala, S. L.; Bjorklund, T. A.

    2005-12-01

    The North Pacific silica plume is a global scale anomaly, extending from the North American continental margin to west of the Hawaii-Emperor seamount chain. Inventory of the plume at depths between 2000 and 3000 meters indicates that it contains 164 Teramols of dissolved silica, and is maintained by a horizontal flux of approximately 1.5 Tmols/year from the Eastern Pacific. The source region of this silica plume has been previously reported to be Cascadia Basin in the NE Pacific. However, simple box models based both on new hydrostations and compilations of archive data indicate that only a third of the dissolved silica that enters the larger North Pacific plume originates locally within the Cascadia/Gorda Basin. As it encounters the North American continental margin, the eastward-flowing deep Pacific bottom water is forced into `a U-turn' by seafloor topography. A portion of the bottom water is elevated from 4000 to 2300 meter depths by the high geothermal heat flow during rapid passage through Cascadia/Gorda Basin, and subsequently flows westward as the North Pacific mid-water plume. The plume water also absorbs an estimated 0.47 Tmol/year of locally derived silica during its passage adjacent to the continental margin. However, the Pacific bottom water is already relatively enriched in dissolved silica when it passes the Gorda Ridge/Mendocino junction, and the remaining 1 Tmol/year of silica must be acquired during near-bottom transit from the Western Pacific, over the portion of the easternmost Pacific plate where basement is younger than 65 Ma. Global compilations based on heat flow data argue that the upper crustal section of the young, eastern Pacific plate is an enormous aquifer, with active hydrothermal circulation and presumably diffuse venting into the bottom water. The suggestion that the large-scale flux of silica-rich hydrothermal fluid from the young eastern portion of the Pacific plate contributes to the North Pacific silica plume is a consequence of that interpretation, but is only a plausible and still untested hypothesis. If correct, however, it implies that the ridge flanks of the eastern Pacific Ocean are a global-scale source of a critically important nutrient.

  16. Identification of hyper-extended crust east of Davie Ridge in the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Franke, Dieter

    2015-04-01

    Davie Ridge is a ~1200 km wide, N-S trending bathymetrical high in the Mozambique Channel. Today, it is widely accepted that Davie Ridge is located along a fossil transform fault that was active during the Middle Jurassic and Early Cretaceous (~165-120 Ma). This transform fault results from the breakup of Gondwana, when Madagascar (together with India and Antarctica) drifted from its northerly position in the Gondwana Supercontinent (adjacent to the coasts of Tanzania, Somalia and Kenya) to its present position (e.g. Coffin and Rabinowitz, 1987; Rabinowitz et al., 1983; Segoufin and Patriat, 1980). The southward motion of Madagascar relative to Africa is constrained by the interpretation of magnetic anomalies in the Western Somali Basin, located north of Madagascar (e.g. Rabinowitz et al., 1983). According to Bird (2001), sheared margins share typical characteristics and a common evolution: 1. The transition from continental to oceanic crust is relatively abrupt (~ 50-80 km). 2. Along the continental side of the margin, complex rift basins form that display a wide range of faults. 3. Prominent marginal ridges form along the sheared margin that probably originate from the propagation of the oceanic spreading center along the plate boundary (Bird, 2001). In February and March 2014, a dense geophysical dataset (multichannel seismic, magnetics, gravimetry and bathymetry) with a total of 4300 profile km along the sheared margin was acquired with the R/V Sonne by the Federal Institute for Geosciences and Natural Resources (BGR). A special objective of the project, amongst others, is the characterization and interpretation of the continent-ocean transition seaward of Davie Ridge in the Mozambique Channel. Seismic profiles located east of Davie Ridge in the Western Somali Basin reveal a wide sequence of half-grabens bounded by listric normal faults. We tentatively suggest that this crust is of continental origin and results from rifting between Africa and Madagascar during the breakup of Gondwana. This implies that the continent-ocean transition is located at least ~ 150 km east of Davie Ridge. References Bird, D., 2001. Shear margins: Continent-ocean transform and fracture zone boundaries. The Leading Edge, 150-159. Coffin, M. F., und Rabinowitz, P. D., 1987. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research: Solid Earth, vol. 92, no. B9, 9385-9406. Rabinowitz, P.D., Coffin, M.F. and Falvey, D.A., 1983. The separation of Madagascar and Africa. Science 220, 67-69. Segoufin, J., und Patriat, P., 1980. Existence d'anomalies mesozoiques dans le bassin de Somalie. Implications pour les relations Afrique-Antarctique-Madagascar: C.R. Acad. Sci. Paris, v. 291, p. 85-88.

  17. Glacio-isostasy and Glacial Ice Load at Law Dome, Wilkes Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Goodwin, Ian D.; Zweck, Christopher

    2000-05-01

    The Holocene sea-level high stand or "marine limit" in Wilkes Land, East Antarctica, reached ˜30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and, to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°-160° E) suggests that a similar ice load of up to 1000 m existed along the EAIS margin between Wilkes Land and Oates Land.

  18. Study of crustal structure and stretch mechanism of central continental shelf of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.

    2017-12-01

    Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.

  19. Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data

    NASA Astrophysics Data System (ADS)

    d'Acremont, Elia; Leroy, Sylvie; Beslier, Marie-Odile; Bellahsen, Nicolas; Fournier, Marc; Robin, Cécile; Maia, Marcia; Gente, Pascal

    2005-03-01

    The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. Its mean orientation, N75°E, strikes obliquely (50°) to the N25°E opening direction. The western conjugate margins are masked by Oligo-Miocene lavas from the Afar Plume. This paper concerns the eastern margins, where the 19-35 Ma breakup structures are well exposed onshore and within the sediment-starved marine shelf. Those passive margins, about 200 km distant, are non-volcanic. Offshore, during the Encens-Sheba cruise we gathered swath bathymetry, single-channel seismic reflection, gravity and magnetism data, in order to compare the structure of the two conjugate margins and to reconstruct the evolution of the thinned continental crust from rifting to the onset of oceanic spreading. Between the Alula-Fartak and Socotra major fracture zones, two accommodation zones trending N25°E separate the margins into three N110°E-trending segments. The margins are asymmetric: offshore, the northern margin is narrower and steeper than the southern one. Including the onshore domain, the southern rifted margin is about twice the breadth of the northern one. We relate this asymmetry to inherited Jurassic/Cretaceous rifts. The rifting obliquity also influenced the syn-rift structural pattern responsible for the normal faults trending from N70°E to N110°E. The N110°E fault pattern could be explained by the decrease of the influence of rift obliquity towards the central rift, and/or by structural inheritance. The transition between the thinned continental crust and the oceanic crust is characterized by a 40 km wide zone. Our data suggest that its basement is made up of thinned continental crust along the southern margin and of thinned continental crust or exhumed mantle, more or less intruded by magmatic rocks, along the northern margin.

  20. Contrasting cratonal provenances for upper Cretaceous Valle Group quartzite clasts, Baja California

    USGS Publications Warehouse

    Kimbrough, D.L.; Abbott, G.; Smith, D.P.; Mahoney, J.B.; Moore, Thomas E.; Gehrels, G.E.; Girty, G.H.; Cooper, John D.

    2006-01-01

    Late Cretaceous Valle Group forearcbasin deposits on the Vizcaino Peninsula of Baja California Sur are dominated by firstcycle arc-derived volcanic-plutonic detritus derived from the adjacent Peninsular Ranges batholith. Craton-derived quartzite clasts are a minor but ubiquitous component in Valle Group conglomerates. The source of these clasts has implications for tectonic reconstructions and sediment-dispersal paths along the paleo-North American margin. Three strongly contrasting types of quartzite are recognized based on petrology and detrital zircon U-Pb geochronology. The first type is ultramature quartz arenite with well-rounded, highly spherical zircon grains. Detrital zircon ages from this type are nearly all >1.8 Ga with age distributions that closely match the distinctive Middle-Late Ordovician Peace River arch detrital signature of the Cordilleran margin. This type has been previously recognized from prebatholithic rocks in northeast Baja California (San Felipe quartzite). A second quartzite type is subarkosic sandstone with strong affinity to southwestern North America; important features of the age spectra are ~1.0-1.2 Ga, 1.42 and 1.66 Ga peaks representing cratonal basement, 500-300 Ma grains interpreted as recycled Appalachian-derived grains, and 284- 232 Ma zircon potentially derived from the Early Permian-Middle Triassic east Mexico arc. This quartzite type could have been carried to the continental margin during Jurassic time as outboard equivalents of Colorado Plateau eolianites. The third quartzite type is quartz pebble conglomerate with significant ~900- 1400 Ma and ~450-650 Ma zircon components, as well as mid- and late Paleozoic grains. The source of this type of quartzite is more problematic but could match either upper Paleozoic strata in the Oaxaca terrane of southern Mexico or a southwestern North America source. The similarity of detrital 98 zircon spectra in all three Valle Group quartzite types to rocks of the adjacent Cordilleran margin support previous interpretations that Valle Group forearc basin sediments were deposited in proximity to rocks on the mainland of northwest Mexico and southwestern United States.

  1. IODP drilling in the South China Sea in 2017 will address the mechanism of continental breakup

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Larsen, H. C.; Lin, J.; Pang, X.; McIntosh, K. D.; Stock, J. M.; Jian, Z.; Wang, P.; Li, C.

    2016-12-01

    Geophysical exploration and scientific drilling along the North Atlantic rifted continental margins suggested that passive continental margins can be classified into two end members: magma-rich and magma-poor. Bearing seaward-dipping reflector sequences (SDRS) and highly mafic underplated high velocity lower crust (HVLC), the magma-rich margin is thought to be related to large igneous provinces (LIP) or mantle plume activity. Magma-poor margins have been drilled offshore Iberia and Newfoundland, where brittle faults cut through the whole crust and reach the upper mantle. Following seawater infiltration, the mantle was serpentinized and exhumed in the continent-ocean transition zone (COT). Later geophysical exploration and modeling suggested that in magma-poor margins lithosphere may break up in different styles, including uniform breakup, lower crust exhumation, or upper mantle exhumed at the COT, etc. The northern continental margin of the South China Sea (SCS) between longitude 114.5º and 116.5º hosts features that might be similar to both of the two end-members defined in the North Atlantic. Wide-angle seismic studies suggest that below the inner margin, crustal underplating of high velocity material is present, while syn-rift as well as post-rift intrusive features are visible and have in places been verified by industry drilling. However, the profound volcanism and associated SDRS formation are entirely lacking, and thus classification as a volcanic rifted margin can be ruled out. Instead, the COT exhibits a profound thinning of the continental crust towards the ocean crust of the SCS, showing some similarity to the Iberia type margin. The crustal thinning is caused by low-angle faults that have stretched the upper continental crust. There are indications of lower crustal flow toward the SCS. Alternatively, these extensional faults may have reached the lithospheric mantle and generated serpentinized material in a similar fashion as seen off Iberia. It will require deep drilling and sampling of characteristic basement units within the COT to distinguish. Four months of drilling by IODP to address this question is scheduled for February to June in 2017. The IODP drilling has the potential to support a third breakup mechanism theorized by modelling in addition to the two types drilled.

  2. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  3. Early Carboniferous magmatism in Lhasa generated in passive continental margin: constrained by new SIMS dating from Carboniferous arc in Qiantang terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Dan, W.; Wang, Q.; Hao, L. L.; Qi, Y.

    2016-12-01

    In today's oceans, they are rarely undergone subduction on one side and extension on the opposite side. In contrast, there are a few magmatisms in the passive continental margins in the Tethys Ocean. However, because of their long and complex evolution of the northern continental margin of the Gondwana, the geodynamics of the magmatism occurred in this area is speculative or highly depute. One of these examples is the geodynamics of the 360-350 Ma magmatism in southern Lhasa, Tibet. Many authors speculated that it was generated in back-arc setting. Our recent new high-resolution SIMS zircon U-Pb dating reveals that there is a subduction arc with ages of 370-350 Ma in the Qiangtang terrane. The arc rocks compose of andesites, plagiogranites, A-type granites and cumulated gabbros, indicating an initial subduction. This initial subduction arc is located on the north margin of the eastern Paleo-Tethys Ocean, and it was formed slightly earlier than the 360-350 Ma magmatism in southern Lhasa, located on the south margin of the eastern Paleo-Tethys Ocean. Combined with similar aged magmatism generating the back-arc basin in the Sanjiang area, the 360-350 Ma magmatism in southern Lhasa was proposed to be generated in a passive continental margin, and induced by the regional extensional setting related to the subduction in the north margin of the eastern Paleo-Tethys Ocean.

  4. Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele

    2017-04-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which gradients and gradient change is a critical metric.

  5. Rift migration explains continental margin asymmetry and crustal hyper-extension

    PubMed Central

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.

    2014-01-01

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463

  6. Tectonic evolution of west Antarctica and its relation to east Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalziel, I.W.D.

    1987-05-01

    West Antarctica consists of five major blocks of continental crust separated by deep sub-ice basins. Marie Byrd Land appears to have been rifted off the adjacent margin of the East Antarctic craton along the line of the Transantarctic Mountains during the Mesozoic. Ellsworth-Whitmore mountains and Haag Nunataks blocks were also rifted from the margin of the craton. They appear to have moved together with the Antarctic Peninsula and Thurston Island blocks, segments of a Pacific margin Mesozoic-Cenozoic magmatic arc, during the Mesozoic opening of the Weddell Sea basin. Paleomagnetic data suggest that all four of these blocks remained attached tomore » western Gondwanaland (South America-Africa) until approximately 125 m.y. ago, and that the present geographic configuration of the Antarctic continent was essentially complete by the mid-Cretaceous, although important Cenozoic rifting has also occurred. Fragmentation of the Gondwanaland supercontinent was preceded in the Middle to Late Jurassic by an important and widespread thermal event of uncertain origin that resulted in the emplacement of an extensive bimodal igneous suite in South America, Africa, Antarctica, and Australia. This was associated with the development of the composite back-arc basin along the western margin of South America. Inversion of this basin in the mid-Cretaceous initiated Andean orogenesis. The presentation will include new data from the joint US-UK West Antarctic Tectonics Project.« less

  7. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Cao, Licheng; Qiao, Peijun; Zhang, Xiangtao; Li, Qianyu; van Hinsbergen, Douwe J. J.

    2017-11-01

    The plate kinematic history of the South China Sea opening is key to reconstructing how the Mesozoic configuration of Panthalassa and Tethyan subduction systems evolved into today's complex Southeast Asian tectonic collage. The South China Sea is currently flanked by the Palawan Continental Terrane in the south and South China in the north and the two blocks have long been assumed to be conjugate margins. However, the paleogeographic history of the Palawan Continental Terrane remains an issue of uncertainty and controversy, especially regarding the questions of where and when it was separated from South China. Here we employ detrital zircon U-Pb geochronology and heavy mineral analysis on Cretaceous and Eocene strata from the northern South China Sea and Palawan to constrain the Late Mesozoic-Early Cenozoic provenance and paleogeographic evolution of the region testing possible connection between the Palawan Continental Terrane and the northern South China Sea margin. In addition to a revision of the regional stratigraphic framework using the youngest zircon U-Pb ages, these analyses show that while the Upper Cretaceous strata from the Palawan Continental Terrane are characterized by a dominance of zircon with crystallization ages clustering around the Cretaceous, the Eocene strata feature a large range of zircon ages and a new mineral group of rutile, anatase, and monazite. On the one hand, this change of sediment compositions seems to exclude the possibility of a latest Cretaceous drift of the Palawan Continental Terrane in response to the Proto-South China Sea opening as previously inferred. On the other hand, the zircon age signatures of the Cretaceous-Eocene strata from the Palawan Continental Terrane are largely comparable to those of contemporary samples from the northeastern South China Sea region, suggesting a possible conjugate relationship between the Palawan Continental Terrane and the eastern Pearl River Mouth Basin. Thus, the Palawan Continental Terrane is interpreted to have been attached to the South China margin from the Cretaceous until the Oligocene oceanization of the South China Sea. In our preferred paleogeographic scenario, the sediment provenance in the northeastern South China Sea region changed from dominantly nearby Cretaceous continental arcs of the South China margin to more distal southeastern South China in the Eocene.

  8. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration are determined by using a series of numerical experiments, tested and calibrated against observations of crustal thicknesses and water-loaded subsidence. Pure-shear widths exert a strong control on the timing of crustal rupture and melt initiation; to satisfy OCT architecture, subsidence and mantle exhumation, we need to focus the deformation from a broad to a narrow region. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. The numerical models are used to predict margin isostatic response and subsidence history.

  9. Tectonic Evolution of Mozambique Ridge in East African continental margin

    NASA Astrophysics Data System (ADS)

    Tang, Yong

    2017-04-01

    Tectonic Evolution of Mozambique Ridge in East African continental margin Yong Tang He Li ES.Mahanjane Second Institute of Oceanography,SOA,Hangzhou The East Africa passive continental margin is a depression area, with widely distributed sedimentary wedges from southern Mozambique to northern Somali (>6500km in length, and about 6km in thickness). It was resulted from the separation of East Gondwana, and was developed by three stages: (1) rifting in Early-Middle Jurassic; (2) spreading from Late Jurassic to Early Cretaceous; (3) drifting since the Cretaceous period. Tectonic evolution of the Mozambique continental margin is distinguished by two main settings separated by a fossil transform, the Davie Fracture Zone; (i) rifting and transform setting in the northern margin related to opening of the Somali and Rovuma basins, and (ii) rifting and volcanism setting during the opening of the Mozambique basin in the southern margin. 2D reflection seismic investigation of the crustal structure in the Zambezi Delta Depression, provided key piece of evidence for two rifting phases between Africa and Antarctica. The magma-rich Rift I phase evolved from rift-rift-rift style with remarkable emplacement of dyke swarms (between 182 and 170 Ma). Related onshore outcrops are extensively studied, the Karoo volcanics in Mozambique, Zimbabwe and South Africa, all part of the Karoo "triple-junction". These igneous bodies flow and thicken eastwards and are now covered by up to 5 km of Cretaceous and Tertiary sediments and recorded by seismic and oil exploration wells. Geophysical and geological data recorded during oceanographic cruises provide very controversial results regarding the nature of the Mozambique Ridge. Two conflicting opinions remains open, since the early expeditions to the Indian Ocean, postulating that its character is either magmatic (oceanic) or continental origin. We have carried out an China-Mozambique Joint Cruise(CMJC) on southern Mozambique Basin on 1st June to 23rd June,2017. The CMJC used multi-beam bathymetric, sub-bottom profiling, multi-channel reflection seismic, wide-angle refraction and Gravity to collect data. The preliminary new findings include: (1) the thick-layer sediments during Tertiary and Cretaceous; (2) the southern continental margin mainly affected by the rifting and volcanism during the stages of the Mozambique Basin formation; (3) the Cretaceous sediments located along the Mozambique Basin in both marine and continental environment.

  10. The George V Land Continental Margin (East Antarctica): new Insights Into Bottom Water Production and Quaternary Glacial Processes from the WEGA project

    NASA Astrophysics Data System (ADS)

    Caburlotto, A.; de Santis, L.; Lucchi, R. G.; Giorgetti, G.; Damiani, D.; Macri', P.; Tolotti, R.; Presti, M.; Armand, L.; Harris, P.

    2004-12-01

    The George Vth Land represents the ending of one of the largest subglacial basin (Wilkes Basin) of the East Antarctic Ice Sheet (EAIS). Furthermore, its coastal areas are zone of significant production of High Salinity Shelf Water (HSSW). Piston and gravity cores and high resolution echo-sounding (3.5 kHz) and Chirp profiles collected in the frame of the joint Australian and Italian WEGA (WilkEs Basin GlAcial History) project provide new insights into the Quaternary history of the EAIS and the HSSW across this margin: from the sediment record filling and draping valleys and banks along the continental shelf, to the continuous sedimentary section of the mound-channel system on the continental rise. The discovery of a current-lain sediment drift (Mertz Drift, MD) provides clues to understanding the age of the last glacial erosive events, as well as to infer flow-pathways of bottom-water masses changes. The MD shows disrupted, fluted reflectors due to glacial advance during the LGM (Last Glacial Maximum) in shallow water, while undisturbed sediment drift deposited at greater water depth, indicates that during the LGM the ice shelf was floating over the deep sector of the basin. The main sedimentary environment characterising the modern conditions of the continental rise is dominated by the turbiditic processes with a minor contribution of contour currents action. Nevertheless, some areas (WEGA Channel) are currently characterised by transport and settling of sediment through HSSW, originating in the shelf area. This particular environment likely persisted since pre-LGM times. It could indicate a continuous supply of sedimentary material from HSSW during the most recent both glacial and interglacial cycles. This would be consistent with the results obtained in the continental shelf suggesting that the Ice Sheet was not grounding over some parts of the continental shelf. Furthermore, the comparison of the studied area with other Antarctic margins indicate that, contrary to what happens on the Antarctic Peninsula margin, the relation between the Quaternary sedimentation and the glacial - interglacial cycles are less evident in the lithofacies observed on the continental rise area. This characteristic suggests a different glacial dynamic along the Wilkes Land continental margin that is less sensitive to the small climatic changes, with respect to the western (Antarctic Peninsula) margin.

  11. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  12. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration. Particle tracking is used to predict P-T-t histories for both Iberia-Newfoundland and the Alpine Tethys conjugate margin transects. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. Initial continental crust thickness and lithosphere temperature structure are important in controlling initial elevation and subsequent subsidence and depositional histories. Numerical models are used to examine the possible isostatic responses of the present-day and fossil analogue rifted margins.

  13. Anthropogenic impacts on continental margins: New frontiers and engagement arena for global sustainability research and action

    NASA Astrophysics Data System (ADS)

    Liu, K. K.; Glavovic, B.; Limburg, K.; Emeis, K. C.; Thomas, H.; Kremer, H.; Avril, B.; Zhang, J.; Mulholland, M. R.; Glaser, M.; Swaney, D. P.

    2014-12-01

    There is an urgent need to design and implement transformative governance strategies that safeguard Earth's life-support systems essential for long-term human well-being. From a series of meetings of the Continental Margins Working Group co-sponsored by IMBER and LOICZ of IGBP, we conclude that the greatest urgency exists at the ocean-land interface - the continental margins or the Margin - which extends from coastlands over continental shelves and slopes bordering the deep ocean. The Margin is enduring quadruple squeeze from (i) Population growth and rising demands for resources; (ii) Ecosystem degradation and loss; (iii) Rising CO2, climate change and alteration of marine biogeochemistry and ecosystems; and (iv) Rapid and irreversible changes in social-ecological systems. Some areas of the Margin that are subject to the greatest pressures (e.g. the Arctic) are also those for which knowledge of fundamental processes remains most limited. Aside from improving our basic understanding of the nature and variability of the Margin, priority issues include: (i) investment reform to prevent lethal but profitable activities; (ii) risk reduction; and (iii) jurisdiction, equity and fiscal responsibility. However, governance deficits or mismatches are particularly pronounced at the ocean-edge of the Margin and the prevailing Law of the Sea is incapable of resolving these challenges. The "gold rush" of accelerating demands for space and resources, and variability in how this domain is regulated, move the Margin to the forefront of global sustainability research and action. We outline a research strategy in 3 engagement arenas: (a) knowledge and understanding of dynamic Margin processes; (b) development, innovation and risk at the Margin; and (c) governance for sustainability on the Margin. The goals are (1) to better understand Margin social-ecological systems, including their physical and biogeochemical components; (2) to develop practical guidance for sustainable development and use of resources; (3) to design governance regimes to stem unsustainable practices; (4) to investigate how to enable equitable sharing of costs and benefits from sustainable use of resources; and (5) to evaluate alternative research approaches and partnerships that address the challenges faced on the Margin.

  14. Geomorphology of the Eastern North American Continental Margin: the role of deep sea sedimentation processes

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Campbell, C.; Piper, D.; Chaytor, J. D.; Gardner, J. V.; Rebesco, M.

    2016-12-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data in concert with subbottom profiler and seismic reflection data. Most of the continental margin has a steep (>3o) upper slope down to 1500 to 2500 m and then a gradual middle and lower slope with a general concave upward shape There is a constant interplay of deep sea sedimentation processes, but the general morphology is dictated by the dominant one. Erosion by off-shelf sediment transport in turbidity currents creating channels, gullies and canyons creates the steep upper slope. These gullies and canyons amalgamate to form singular channels that are conduits to the abyssal plain. This process results in a general seaward flattening of gradients, producing an exponentially decaying slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a two-segment slope, and/or a significant downslope gradient change where MTDs pinch out. Large sediment bodies deposited by contour-following currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. Along their crests, they form a linear profile from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts tend to form bathymetric steps in profile, where they onlap the margin. Stacked drifts create several steps. Turbidites of the abyssal plain onlap the lowermost drift creating a significant gradient change at this juncture. Understanding the geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping, for example, in which gradient change is a critical metric.

  15. The Flemish Cap - Goban Spur conjugate margins: New evidence of asymmetry

    NASA Astrophysics Data System (ADS)

    Gerlings, J.; Louden, K. E.; Minshull, T. A.; Nedimović, M. R.

    2011-12-01

    The combined results of deep multichannel seismic (MCS) and refraction/wide-angle reflection seismic (R/WAR) profiles across the Flemish Cap-Goban Spur conjugate margin pair will be presented to help constrain rifting and breakup processes. Both profiles cross magnetic anomaly 34 and extend into oceanic crust, which makes it possible to observe the complete extensional history from continental rifting through the formation of initial oceanic crust. Kirchhoff poststack time and prestack time and depth migration images of the Flemish Cap MCS data are produced using a velocity model constructed from the MCS and R/WAR data. These new images show improved continuity of the Moho under the thick continental crust of Flemish Cap. The basement morphology image is sharper and reflections observed in the thin crust of the transition zone are more coherent. A basement high at the seaward-most end of the transition zone now displays clear diapiric features. To compare the two margins, the existing migrated MCS data across Goban Spur has been time-to-depth converted using the R/WAR velocity model of the margin. These reimaged seismic profiles demonstrate asymmetries in continental rifting and breakup with a complex transition to oceanic spreading: (1) During initial phases of rifting, the Flemish Cap margin displays a sharper necking profile than that of the Goban Spur margin. (2) Within the ocean-continent-transition zone, constraints from S-wave velocities on both margins indentifies previously interpreted oceanic crust as thinned continental crust offshore Flemish Cap in contrast with primarily serpentinized mantle offshore Goban Spur. (3) Continental breakup and initial seafloor spreading occur in a complex, asymmetric manner where the initial ~50 km of oceanic crust appears different on the two margins. Offshore Flemish Cap, both R/WAR and MCS results indicate a sharp boundary immediately seaward of a ridge feature, where the basement morphology becomes typical of slow seafloor spreading. There are no significant changes in either reflectivity or velocity seaward toward magnetic anomaly 34. On the Goban Spur margin in marked contrast, the basement morphology landward of magnetic anomaly 34 is shallower and has lower relief, and the velocity model indicates a diffuse change between the transitional crust and seafloor spreading. The results from these two very different conjugate margins emphasize the importance of having both types of seismic data from both conjugate margins when interpreting the geodynamic processes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, J.P.; Karner, G.D.; Driscoll, N.W.

    The tectonic and stratigraphic development of the Congo continental margin reflects the timing, magnitude, and distribution of lithospheric extension responsible for its formation. Details of the lithospheric extension process are recorded in the stratigraphic successions preserved along and across the margin. By using the stratal relationships (e.g., onlap, downlap, and truncation) and lithofacies determined from seismic reflection and exploratory well data as input into our basin-modeling strategy, we have developed an integrated approach to determine the relationship between the timing, magnitude, and distribution of lithospheric extension across the margin. Two hinge zones, an eastern and Atlantic hinge formed along themore » Congo margin in response to discrete extensional events occurring from the Berriasian to the Aptian. The eastern hinge zone demarcates the eastern limit of the broadly distributed Berriasian extension. This extension resulted in the formation of deep anoxic, lacustrine systems. In contrast, the Atlantic hinge, located [approximately]90 km west of the eastern hinge, marks the eastern limit of a second phase of extension, which began in the Hauterivian. Consequent footwall uplift and rotation exposed the earlier synrift and prerift stratigraphy to at least wave base causing varying amounts of erosional truncation across the Atlantic hinge zone along much of the Gabon, Congo, and Angola margins. The absence of the Melania Formation across the Congo margin implies that uplift of the Atlantic hinge was relatively minor compared to that across the Angola and Gabon margins. In addition, material eroded from the adjacent and topographically higher hinge zones may in part account for the thick wedge of sediment deposited seaward of the Congo Atlantic hinge. A third phase of extension reactivated both the eastern and Atlantic hinge zones and was responsible for creating the accommodation space for Marnes Noires source rock deposition.« less

  17. Surface current patterns suggested by suspended sediment distribution over the outer continental margin, Bering Sea

    USGS Publications Warehouse

    Karl, Herman A.; Carlson, P.R.

    1987-01-01

    Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.

  18. The thermal environment of Cascadia Basin

    NASA Astrophysics Data System (ADS)

    Johnson, H. Paul; Hautala, Susan L.; Bjorklund, Tor A.

    2012-07-01

    Located adjacent to the NE Pacific convergent boundary, Cascadia Basin has a global impact well beyond its small geographic size. Composed of young oceanic crust formed at the Juan de Fuca Ridge, igneous rocks underlying the basin are partially insulated from cooling of their initial heat of formation by a thick layer of pelagic and turbidite sediments derived from the adjacent North American margin. The igneous seafloor is eventually consumed at the Cascadia subduction zone, where interactions between the approaching oceanic crust and the North American continental margin are partially controlled by the thermal environment. Within Cascadia Basin, basement topographic relief varies dramatically, and sediments have a wide range of thickness and physical properties. This variation produces regional differences in heat flow and basement temperatures for seafloor even of similar age. Previous studies proposed a north-south thermal gradient within Cascadia Basin, with high geothermal flux and crustal temperatures measured in the heavily sedimented northern portion near Vancouver Island and lower than average heat flux and basement temperatures predicted for the central and southern portions of the basin. If confirmed, this prediction has implications for processes associated with the Cascadia subduction zone, including the location of the "locked zone" of the megathrust fault. Although existing archival geophysical data in the central and southern basin are sparse, nonuniformly distributed, and derived from a wide range of historical sources, a substantial N-S geothermal gradient appears to be confirmed by our present compilation of combined water column and heat flow measurements.

  19. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  20. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  1. Oceanographic Mower Cruise

    NASA Astrophysics Data System (ADS)

    Valencia, J.; Ercilla, G.; Hernández-Molina, F. J.; Casas, D.

    2015-04-01

    The MOWER Cruise has executed a geophysics and geologic expedition in the Gulf of Cádiz (sector adjacent to the Strait of Gibraltar) and west off Portugal, in the framework of the coordinate research project MOWER "Erosive features and associated sandy deposits generated by the Mediterranean Outflow Water (MOW) around Iberia: paleoceanographic, sedimentary & economic implications" (CTM 2012-39599-C03). The main aim of this project is to identify and study the erosional features (terraces and channels) and associated sedimentary deposits (sandy contourites) generated by the Mediterranean Water Masses around the middle continental slope of Iberia (The Mediterranean Outflow Water - MOW - in the Atlantic margins), their Pliocene and Quaternary evolution and their paleoceanographic, sedimentary and economic implications. This objective directly involves the study of alongslope (contourite) processes associated with the MOW and across-slope (turbiditic flows, debris flows, etc.) processes in the sedimentary stacking pattern and evolution of the Iberian margins. The MOWER project and cruise are related to the Integrated Ocean Drilling Program (IODP) Expedition 339 (Mediterranean Outflow). It is also linked and coordinated with CONDRIBER Project "Contourite drifts and associated mass-transport deposits along the SW Iberia margin - implications to slope stability and tsunami hazard assessment" (2013-2015) funded by the Fundação para a Ciência e Tecnologia, Portugal (PTDC/GEO-GEO/4430/2012).

  2. Lithospheric structure of the South China Sea and adjacent regions: Results from potential field modelling

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Fang, Jian; Cui, Ronghua

    2018-02-01

    This work aims to investigate the crustal and lithospheric mantle thickness of the South China Sea (SCS) and adjacent regions. The crust-mantle interface, average crustal density, and lithospheric mantle base are calculated from free-air gravity anomaly and topographic data using an iterative inversion method. We construct a three-dimensional lithospheric model with different hierarchical layers. The satellite-derived gravity is used to invert the average crustal density and Moho (crust-mantle interface) undulations. The average crustal density and LAB (lithosphere-asthenosphere boundary) depths are further adjusted by topographic data under the assumption of local isostasy. The average difference in Moho depths between this study and the seismic measurement results is <1.5 km. The results show that in oceanic regions, the Moho depths are 7.5-30 km and the LAB depths are 65-120 km. The lithospheric thickness of the SCS basin and the adjacent regions increases from the sea basin to the continental margin with a large gradient in the ocean-continent transition zones. The Moho depths of conjugate plots during the opening of SCS, Zhongsha Islands and Reed Bank, reveal the asymmetric spreading pattern of SCS seafloor spreading. The lithospheric thinning pattern indicate two different spreading directions during seafloor spreading, which changed from N-S to NW-SE after the southward transition of the spreading axis. The lithosphere of the SCS basin and adjacent regions indicate that the SCS basin is a young basin with a stable interior lithosphere.

  3. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    USGS Publications Warehouse

    Stewart, John H.

    2009-01-01

    Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily extensional in origin, supports recognition of the Neoproterozoic fragmentation pattern of Rodinia and outlines the major continental masses that, prior to the breakup, formed the supercontinent. Using this pattern, Rodinia can be assembled by fitting the pieces together. Evidence for Neoproterozoic margins is fragmentary. The most apparent margins are marked by miogeoclinal deposits (passive-margin deposits). The margins can also be outlined by the distribution of continental-margin magmatic-arc rocks, by juvenile ocean-floor rocks, or by the presence of continent-ward extending aulacogens. Most of the continental margins described here are Neoproterozoic, and some had an older history suggesting that they were major, long-lived lithospheric flaws. In particular, the western margin of North America appears to have existed for at least 1,470 Ma and to have been reactivated many times in the Neoproterozoic and Phanerozoic. The inheritance of trends from the Mesoproterozoic by the Neoproterozoic is particularly evident along the eastern United States, where a similarity of Mesoproterozoic (Grenville) and Neoproterozoic trends, as well as Paleozoic or Mesozoic trends, is evident. The model of Rodinia presented here is based on both geologic and paleomagnetic information. Geologic evidence is based on the distribution and shape of Neoproterozoic continents and on assembling these continents so as to match the shape, history, and scale of adjoining margins. The proposed model places the Laurasian continents?Baltica, Greenland, and Laurentia?west of the South American continents (Amazonia, Rio de La Plata, and Sa? Francisco). This assembly is indicated by conjugate pairs of Grenville-age rocks on the east side of Laurentia and on the west side of South America. In the model, predominantly late Neoproterozoic magmatic-arc rocks follow the trend of the Grenville rocks. The boundary between South America and Africa is interpreted as the site of a Wilson cycle

  4. Estimating long-wavelength dynamic topographic change of passive continental margins since the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Hassan, Rakib; Gurnis, Michael; Flament, Nicolas; Williams, Simon

    2017-04-01

    The influence of mantle convection on dynamic topographic change along continental margins is difficult to unravel, because their stratigraphic record is dominated by tectonic subsidence caused by rifting. Yet, dynamic topography can potentially introduce significant depth anomalies along passive margins, influencing their water depth, sedimentary environments and geohistory. Here we follow a three-fold approach to estimate changes in dynamic topography along both continental interiors and passive margins based on a set of seven global mantle convection models. These models include different methodologies (forward and hybrid backward-forward methods), different plate reconstructions and alternative mantle rheologies. We demonstrate that a geodynamic forward model that includes adiabatic heating in addition to internal heating from radiogenic sources, and a mantle viscosity profile with a gradual increase in viscosity below the mantle transition zone, provides a greatly improved match to the spectral range of residual topography end-members as compared with previous models at very long wavelengths (spherical degrees 2-3). We combine global sea level estimates with predicted surface dynamic topography to evaluate the match between predicted continental flooding patterns and published paleo-coastlines by comparing predicted versus geologically reconstructed land fractions and spatial overlaps of flooded regions for individual continents since 140 Ma. Modelled versus geologically reconstructed land fractions match within 10% for most models, and the spatial overlaps of inundated regions are mostly between 85% and 100% for the Cenozoic, dropping to about 75-100% in the Cretaceous. We categorise the evolution of modelled dynamic topography in both continental interiors and along passive margins using cluster analysis to investigate how clusters of similar dynamic topography time series are distributed spatially. A subdivision of four clusters is found to best reveal end-members of dynamic topography evolution along passive margins and their hinterlands, differentiating topographic stability, long-term pronounced subsidence, initial stability over a dynamic high followed by moderate subsidence and regions that are relatively proximal to subduction zones with varied dynamic topography histories. Along passive continental margins the most commonly observed process is a gradual move from dynamic highs towards lows during the fragmentation of Pangea, reflecting that many passive margins now overly slabs sinking in the lower mantle. Our best-fit model results in up to 500 ±150 m of total dynamic subsidence of continental interiors while along passive margins the maximum predicted dynamic topographic change over 140 million years is about 350 ±150 m of subsidence. Models with plumes exhibit clusters of transient passive margin uplift of about 200 ±200m. The good overall match between predicted dynamic topography and geologically mapped paleo-coastlines makes a convincing case that mantle-driven topographic change is a critical component of relative sea level change, and one of the main driving forces generating the observed geometries and timings of large-scale shifts in paleo-coastlines.

  5. Volcanic passive margins: another way to break up continents

    PubMed Central

    Geoffroy, L.; Burov, E. B.; Werner, P.

    2015-01-01

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807

  6. Volcanic passive margins: another way to break up continents.

    PubMed

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  7. Tectonic elements of the continental margin of East Antarctica, 38-164ºE

    USGS Publications Warehouse

    O'Brien, P.E.; Stagg, H.M.J.

    2007-01-01

    The East Antarctic continental margin from 38–164ºE is divided into western and eastern provinces that developed during the separation of India from Australia–Antarctica (Early Cretaceous) and Australia from Antarctica (Late Cretaceous). In the overlap between these provinces the geology is complex and bears the imprint of both extension/spreading episodes, with an overprinting of volcanism. The main rift-bounding faults appear to approximately coincide with the outer edge of the continental shelf. Inboard of these faults, the sedimentary cover thins above shallowing basement towards the coast where crystalline basement generally crops out. The continental slope and the landward flanks of the ocean basins, are blanketed by up to 9–10 km of mainly post-rift sediments in margin-parallel basins, except in the Bruce Rise area. Beneath this blanket, extensive rift basins are identified off Enderby and Wilkes Land/Terre Adélie; however, their extent and detailed structures are difficult to determine.

  8. Upper mantle structure at Walvis Ridge from Pn tomography

    NASA Astrophysics Data System (ADS)

    Ryberg, Trond; Braeuer, Benjamin; Weber, Michael

    2017-10-01

    Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.

  9. Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin

    USGS Publications Warehouse

    England, Philip; Wells, Ray E.

    1991-01-01

    Paleomagnetically determined rotations about vertical axes of 15 to 12 Ma flows of the Miocene Columbia River Basalt Group of Oregon and Washington decrease smoothly with distance from the plate margin, consistent with a simple physical model for continental deformation that assumes the lithosphere behaves as a thin layer of fluid. The average rate of northward translation of the continental margin since 15 Ma calculated from the rotations, using this model, is about 15 mm/yr, which suggests that much of the tangential motion between the Juan de Fuca and North American plates since middle Miocene time has been taken up by deformation of North America. The fluid-like character of the large-scale deformation implies that the brittle upper crust follows the motions of the deeper parts of the lithosphere.

  10. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and also resulted in the formation of the overlying Maitai continental margin fore-arc basin (possibly related to rollback or a decrease in dip of the remaining subduction zone).Very coarse clastic material (up to ca. 700 m thick) including detached blocks of basaltic and gabbroic rocks, up to tens or metres in size (or more), was shed down fault scarps from relatively shallow water into a deeper water setting by gravity flow processes, ranging from rock fall, to debris flow, to turbidity currents. In addition, relatively fine-grained volcaniclastic-terrigenous sediment was input from an E Gondwana continental margin arc in the form of distal gravity flows, as indicated by geochemical data (e.g. Rare Earth Element analysis of sandstones and shales). The lowest part of the overlying Maitai fore-arc sequence in some areas is represented by hundreds of metres-thick sequences of mixed carbonate-volcaniclastic-terrigenous gravity flows (Wooded Peak Fm.), which are interpreted to have been derived from the E Gondwana continental margin and which finally accumulated in fault-controlled depocentres. Input of shallow-water carbonate material later waned and the Late Permian-Triassic Maitai fore-arc basin was dominated by gravity flows that were largely derived from a contemporaneous continental margin arc (partially preserved in present SE Australia). Subsequent tectonic deformation included on-going subduction, strike-slip and terrane accretion. The sedimentary covers of comparable accreted ophiolites elsewhere (e.g. Coast Range ophiolite, California) may reveal complementary evidence of fundamental terrane accretion processes. Acknowledgements: Hamish Campbell, Dave Craw, Mike Johnson, Chuck Landis, Nick Mortimer, Dhana Pillai and other members of the South Island geological research community

  11. Numerical models for continental break-up: Implications for the South Atlantic

    NASA Astrophysics Data System (ADS)

    Beniest, A.; Koptev, A.; Burov, E.

    2017-03-01

    We propose a mechanism that explains in one unified framework the presence of continental break-up features such as failed rift arms and high-velocity and high-density bodies that occur along the South Atlantic rifted continental margins. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and break-up processes. 2D experiments show that break-up can be 1) "central", mantle plume-induced and directly located above the centre of the mantle anomaly, 2) "shifted", mantle plume-induced and 50 to 200 km shifted from the initial plume location or 3) "distant", self-induced due to convection and/or slab-subduction/delamination and 300 to 800 km off-set from the original plume location. With a 3D, perfectly symmetrical and laterally homogeneous setup, the location of continental break-up can be shifted hundreds of kilometres from the initial position of the mantle anomaly. We demonstrate that in case of shifted or distant continental break-up with respect to the original plume location, multiple features can be explained. Its deep-seated source can remain below the continent at one or both sides of the newly-formed ocean. This mantle material, glued underneath the margins at lower crustal levels, resembles the geometry and location of high velocity/high density bodies observed along the South Atlantic conjugate margins. Impingement of vertically up-welled plume material on the base of the lithosphere results in pre-break-up topography variations that are located just above this initial anomaly impingement. This can be interpreted as aborted rift features that are also observed along the rifted margins. When extension continues after continental break-up, high strain rates can relocalize. This relocation has been so far attributed to rift jumps. Most importantly, this study shows that there is not one, single rift mode for plume-induced crustal break-up.

  12. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    USGS Publications Warehouse

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  13. Geologic Evolution of North America: Geologic features suggest that the continent has grown and differentiated through geologic time.

    PubMed

    Engel, A E

    1963-04-12

    The oldest decipherable rock complexes within continents (more than 2.5 billion years old) are largely basaltic volcanics and graywacke. Recent and modern analogs are the island arcs formed along and adjacent to the unstable interface of continental and oceanic crusts. The major interfacial reactions (orogenies) incorporate pre-existing sial, oceanic crust, and mantle into crust of a more continental type. Incipient stages of continental evolution, more than 3 billion years ago, remain obscure. They may involve either a cataclysmic granite-forming event or a succession of volcanic-sedimentary and granite-forming cycles. Intermediate and recent stages of continental evolution, as indicated by data for North America, involve accretion of numerous crustal interfaces with fragments of adjacent continental crust and their partial melting, reinjection, elevation, unroofing, and stabilization. Areas of relict provinces defined by ages of granites suggest that continental growth is approximately linear. But the advanced differentiation found in many provinces and the known overlaps permit wide deviation from linearity in the direction of a more explosive early or intermediate growth.

  14. Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong

    1994-07-01

    A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block continental crust. (2) The Nansha Block Uplift Zone. Due to the development of reefs and shoals, there are many channels and valleys. Our long-distance multichannel seismic profiles indicated that there are thick Paleogene sediments and thin Neogene sediments all over the central part of the block. (3) The Nansha Trough, a nappe structure formed by the southeastward drifting of Nansha Block and northwestward overthrusting of Palawan-northwest Borneo. (4) Zengmu Shoal Basin, southwest of the Nansha Block; the maximum thickness of Cenozoic strata is over 9 km in this important petroliferous basin.

  15. Tectonic Processes Along the Southeastern Margin of Alaska - The Neogene Sedimentary Record: Yakataga Formation, St. Elias Mountains

    NASA Astrophysics Data System (ADS)

    Witmer, J. W.; Ridgway, K. D.; Brennan, P. R.; Arnaud, E.; Pavlis, T.

    2008-12-01

    Neogene collision of the Yakutat microplate with the southern Alaskan continental margin is associated with extreme rates of exhumation and erosion of the St. Elias Mountains. The exhumation and the concurrent development of temperate glaciers are recorded in the ~5000 m of sedimentary strata of the Yakataga Formation. We present new data from measured stratigraphic sections that document along-strike and temporal changes within the Yakataga Formation along this collisional margin during Miocene to Pleistocene time. In the eastern part of our study area, the Yakataga Formation consists of lenticular sandstone and conglomerate facies associated with fan-delta depositional environments that are overlain by thick-bedded glaciomarine strata. These strata grade to finer-grained sandstone and convoluted mudstone typical of marine shelf environments in the central part of our study area. Along strike in the westernmost part of our study area the Yakataga Formation is interpreted to be laterally equivalent to Neogene strata of the Redwood Formation. These strata include thick-bedded, macrofossil-rich sandstone, well-rounded conglomerate, and thin-bedded mudstone facies that are characteristic of nearshore and shelf depositional environments. These sediments were likely sourced by fluvial systems along the continental margin that served as the backstop for Neogene collision. Preliminary compositional data also suggest that the Redwood Formation was derived from a different source than the Yakataga Formation. Along-strike changes in structural configuration of the Yakataga Formation are also observed. In the easternmost part of our study area adjacent to the Dangerous River zone (DRZ), a possible remnant strike-slip fault system, unconformities between the Yakataga Formation and underlying strata require erosion of 1000s of meters of missing Eocene-Miocene strata. We interpret this part of the mountain range to have undergone the greatest amount of Neogene exhumation. In the central part of the study area, the Yakataga Formation is exposed in a series of growth folds and megachannels that have been incorporated into a southward-propagating thrust belt as sediment was transported westward away from the exhuming St. Elias Range. To the west, more complete stratigraphic sections and finer-grained lithofacies suggest relatively less syndepositional deformation during the deposition of the Yakataga Formation. From a stratigraphic perspective, the DRZ appears to have focused deformation, exhumation, development of temperate glaciers, and westward transport of sediment during deposition of the Yakataga Formation. The westward changes in lithofacies and deformation within the Yakataga Formation are interpreted as products of progressive oblique collision of the Yakutat microplate to the southeastern Alaskan continental margin. New U-Pb detrital zircon geochronologic data from the Yakataga Formation and older underlying strata demonstrate minimal changes in provenance from Eocene to Pleistocene time. We interpret these data to reflect recycling of sediment within the collisional zone.

  16. Neodymium, strontium, and oxygen isotopic variations in the crust of the western United States: Origin of Proterozoic continental crust and tectonic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, V.C.

    1989-01-01

    Initial Nd isotopic ratios of crystalline rocks from an area of about 1.5 {times} 10{sup 6} km{sup 2} of the western United States have been determined in order to map Precambrian age province boundaries and thus document the growth and modification of the North American continent in the Proterozoic. Three age provinces have been delineated. It is demonstrated that large regions of Early Proterozoic continental crust were formed with anomalous isotopic compositions ({sup 143}Nd/{sup 144}Nd ratios lower than Early Proterozoic depleted-mantle). The variations in the initial {epsilon}{sub Nd} and {delta}{sup 18}O values correlate with each other, and correspond to themore » previously determined Nd isotopic provinces. The Pelona, Rand, Chocolate Mountain and Orocopia Schists are represented by 15 lithologically and structurally similar schist bodies exposed along the San Andreas and Garlock faults in southern California. The grayschists have measured {epsilon}{sub Nd} values from -1.7 to -11.7 with depleted-mantle model ages of 0.9 to 1.7 Ga. The Nd isotopic compositions can be modeled as variable mixtures of Early Proterozoic continental crust with a Mesozoic are component. The measured {sup 87}Sr/{sup 86}Sr ratios are from 0.7087 to 0.7129 and reflect the presence of an old continental source. Independent of age, the high initial {epsilon}{sub Nd} values ({sup +}9 {plus minus} 1.5) are consistent with derivation at an oceanic spreading center, either at a MORB or in a back-arc basin environment. The presence of both Early Proterozoic continental detritus and a younger sedimentary component in the grayschist protolith, and the MORB affinity of the metabasalts are compatible with formation of the protoliths of the Pelona and related schists in a Mesozoic basin adjacent to the southwestern United States continental margin.« less

  17. Trace Metals and Lead Isotopes in modern Sediments Near Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Boyle, E. A.; Lazzari, L.; Wagener, A. L.; Carreira, R.; Godoy, J. M.; Noble, A.; Carrasco, G. G.; Moos, S. B.

    2014-12-01

    This work focuses on the export of trace metals and combustion residues from land to ocean and on the Southeast continental margin of Brazil and its historical variability using stable lead isotopes. Two sediment cores were collected, one in highly impacted Guanabara Bay and the other on the Southeast continental shelf. Continental shelf samples were analyzed for trace element concentrations [Mn (117±50 ppm), Ni (6.5±2.3 ppm), Zn (5.0±1.5), (233±46 ppm), ], Pb (5.4±2.4 ppm), as well as Cu, Ag, Cd, Sr, Ba, Tl, U and Pb isotope ratios & Pb-210. Most of the elements show higher concentrations on the upper part of the core compared to the bottom. Downcore changes of the concentrations of these elements were similar. The sediments of adjacent rivers and bays around the upper section of the southeast continental shelf of Brazil are considered highly enriched with Pb, Zn, Cu and Cr such as Guanabara Bay, Sepetiba Bay and Paraíba do Sul River compared with the natural concentrations and other regions in the world. A [Pb] maximum is seen between samples from 24 to 43 cm (~8 ppm). Utilization of tetraethyl lead (TEL) gasoline in Brazil was phased out beginning in 1983 and was largely completed by 1988. Continental shelf Pb-206/Pb-207 varies between 1.174 near the core top to 1.190 at 100 cm, with a sharp difference between samples at 6 and 8 cm. Higher core top Pb, Zn, and Ni corroborate the recent anthropogenic influence on the southeast continental shelf of Brazil. For Guanabara Bay sediment samples [Pb] varies between 90 ppm near the top to 1 ppm at the bottom. Pb-206/Pb-207 varies between 1.161 near the core top to 1.165 near the bottom. Using triple isotope plots we can discern different sources of lead to the region and how these vary with time.

  18. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data

    NASA Astrophysics Data System (ADS)

    Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.

    2018-01-01

    This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above. To the west, oceanic subduction of the Bay of Biscay under the North Iberian margin is supported by an upper plate thrust wedge, gravity and magnetic anomalies, and 3D inclined sub-crustal reflections. However, discrepancies remain for the location of continent-ocean transitions in the Bay of Biscay and for the extent of oceanic subduction. The plate-kinematic evolution during the Mesozoic, which involves issues as the timing and total amount of opening, as well as the role of strike-slip drift, is also under debate, discrepancies arising from first-order interpretations of the adjacent oceanic magnetic anomaly record.

  19. MARGINS: Toward a novel science plan

    NASA Astrophysics Data System (ADS)

    Mutter, John C.

    A science plan to study continental margins has been in the works for the past 3 years, with almost 200 Earth scientists from a wide variety of disciplines gathering at meetings and workshops. Most geological hazards and resources are found at continental margins, yet our understanding of the processes that shape the margins is meager.In formulating this MARGINS research initiative, fundamental issues concerning our understanding of basic Earth-forming processes have arisen. It is clear that a business-as-usual approach will not solve the class of problems defined by the MARGINS program; the solutions demand approaches different from those used in the past. In many cases, a different class of experiment will be required, one that is well beyond the capability of individual principle investigators to undertake on their own. In most cases, broadly based interdisciplinary studies will be needed.

  20. Numerical modelling of edge-driven convection during rift-to-drift transition: application to the Red Sea

    NASA Astrophysics Data System (ADS)

    Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.

    2017-04-01

    We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.

  1. Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway

    USGS Publications Warehouse

    Paull, C.K.; Ussler, W.; Holbrook, W.S.; Hill, T.M.; Keaten, R.; Mienert, J.; Haflidason, H.; Johnson, J.E.; Winters, W.J.; Lorenson, T.D.

    2008-01-01

    Seafloor pockmarks and subsurface chimney structures are common on the Norwegian continental margin north of the Storegga Slide scar. Such features are generally inferred to be associated with fluid expulsion, and imply overpressures in the subsurface. Six long gravity and piston cores taken from the interior of three pockmarks were compared with four other cores taken from the same area but outside the pockmarks, in order to elucidate the origins and stratigraphy of these features and their possible association with the Storegga Slide event. Sulfate gradients in cores from within pockmarks are less steep than those in cores from outside the pockmarks, which indicates that the flux of methane to the seafloor is presently smaller within the pockmarks than in the adjacent undisturbed sediments. This suggests that these subsurface chimneys are not fluid flow conduits lined with gas hydrate. Methane-derived authigenic carbonates and Bathymodiolus shells obtained from a pockmark at >6.3 m below the seafloor indicate that methane was previously available to support a chemosynthetic community within the pockmark. AMS 14C measurements of planktonic Foraminifera overlying and interlayered with the shell-bearing sediment indicate that methane was present on the seafloor within the pockmark prior to 14 ka 14C years B.P., i.e., well before the last major Storegga Slide event (7.2 ka 14C years B.P., or 8.2 ka calendar years B.P.). These observations provide evidence that overpressured fluids existed within the continental margin sediments off Norway during the last major advance of Pleistocene glaciation. 

  2. Principles of Geological Mapping of Marine Sediments (with Special Reference to the African Continental Margin). Unesco Reports in Marine Science No. 37.

    ERIC Educational Resources Information Center

    Lisitzin, Alexandre P.

    Designed to serve as a complement to the Unesco Technical Papers in Marine Science, this report concentrates on theoretical and practical problems of geological mapping of the sea floor. An introduction is given to geological mapping procedures at continental margins as well as some practical recommendations taking as an example the African region…

  3. Early to Middle Ordovician back-arc basin in the southern Appalachian Blue Ridge: characteristics, extent, and tectonic significance

    USGS Publications Warehouse

    Tull, James; Holm-Denoma, Christopher S.; Barineau, Clinton I.

    2014-01-01

    Fault-dismembered segments of a distinctive, extensive, highly allochthonous, and tectonically significant Ordovician (ca. 480–460 Ma) basin, which contains suites of bimodal metavolcanic rocks, associated base metal deposits, and thick immature deep-water (turbiditic) metasediments, occur in parts of the southern Appalachian Talladega belt, eastern Blue Ridge, and Inner Piedmont of Alabama, Georgia, and North and South Carolina. The basin's predominantly metasedimentary strata display geochemical and isotopic evidence of a mixed provenance, including an adjacent active volcanic arc and a provenance of mica (clay)-rich sedimentary and felsic plutonic rocks consistent with Laurentian (Grenvillian) upper-crustal continental rocks and their passive-margin cover sequences. Geochemical characteristics of the subordinate intercalated bimodal metavolcanic rocks indicate formation in a suprasubduction environment, most likely a back-arc basin, whereas characteristics of metasedimentary units suggest deposition above Neoproterozoic rift and outer-margin lower Paleozoic slope and rise sediments within a marginal basin along Ordovician Laurentia's Iapetus margin. This tectonic setting indicates that southernmost Appalachian Ordovician orogenesis (Taconic orogeny) began as an extensional accretionary orogen along the outer margin of Laurentia, rather than in an exotic (non-Laurentian) arc collisional setting. B-type subduction polarity requires that the associated arc-trench system formed southeast of the palinspastic position of the back-arc basin. This scenario can explain several unique features of the southern Appalachian Taconic orogen, including: the palinspastic geographic ordering of key tectonic elements (i.e., back-arc, arc, etc.), and a lack of (1) an obducted arc sensu stricto on the Laurentian margin, (2) widespread Ordovician regional metamorphism, and (3) Taconic klippen to supply detritus to the Taconic foreland basin.

  4. The continent-ocean transition on the northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Ranero, César R.; Franke, Dieter; Barckhausen, Udo

    2015-04-01

    Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding how rift characteristics vary along strike in the same system and what processes control the final transition to seafloor spreading is the continent-ocean transition (COT). We use four regional multichannel seismic profiles and published magnetic lineations to study the structure and variability of COT on the northwest subbasin (NWSB) of the South China Sea and to discern continental from oceanic domains. The continental domain is characterized by tilted fault blocks overlaid by thick syn-rift sedimentary units and fairly continuous Moho reflections typically at 8-10 s twtt. Thickness of the continental crust changes from ~20-25 km under the uppermost slope to ~9-6 km under the lower slope. The oceanic domain is interpreted where a highly reflective top of basement, little faulting, no syntectonic strata, and fairly constant thickness basement (4-8 km) occur. The COT is imaged as a ~5-10 km wide zone where oceanic-type features abut continental-type structures. The South China margin is deformed by abundant normal faults dissecting the continental crust, whereas the conjugate Macclesfield Bank margin displays comparatively abrupt thinning and little faulting. Seismic profiles show an along-strike variation in the tectonic structure of the continental margin. The NE-most lines display ~20-40 km wide segments of intense faulting under the slope and associated continental-crust thinning. Towards the SW, faulting and thinning of the continental crust occurs across a ~100-110 km wide segment. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading center. We suggest that breakup occurred by spreading center propagation to a larger degree than by lithospheric thinning during continental rifting. Based on the sedimentary successions overlying the oceanic crust, we propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading center propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SW into the east subbasin.

  5. The Cadiz margin study off Spain: An introduction

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1999-01-01

    The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.

  6. Flashy Water and Sediment Delivery to Fluvial Megafan andFan Delta Systems on Opposing Shorelines of an Early Eocene Lake

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2015-12-01

    Flashy delivery of water and sediment had distinct effects on the process of deposition in coeval fluvial megafan and fan delta deposits on opposing shorelines of a paleolake that occupied the Uinta Basin throughout the Eocene. The Tertiary Uinta Basin was an asymmetric continental interior basin with a steep northern margin, adjacent to the block uplift controlling basin subsidence, and a low gradient southern margin. A ~140 km wide fluvial megafan with catchments as far as ~750 km away occupied the southern margin of the lacustrine basin. Within this megafan system, fluvial deposits contain within-channel continental bioturbation and paleosol development on bar accretion surfaces that are evidence of prolonged periods of groundwater flow or channel abandonment. These are punctuated by channel fills exhibiting a suite of both high-deposition rate and upper flow regime sedimentary structures that were deposited by very rapid suspension-fallout during seasonal to episodic river flooding events. A series of small (~8 km wide) and proximally sourced fan deltas fed sediment into the steeper northern margin of the lacustrine basin. 35-50% of the deposits in the delta plain environment of these fan deltas are very sandy debris flows with as low as 5% clay and silt sized material. Detrital zircon geochronology shows that these fan deltas were tapping catchments where mostly unconsolidated Cretaceous sedimentary cover and thick Jurassic eolianites were being eroded. A combination of flashy precipitation, arid climate, catchments mantled by abundant loose sand-sized colluvium, and steep depositional gradients promoted generation of abundant very sandy (5-10% clay and silt sized material) debris flows. In this way, the Wasatch and Green River Formations in the Uinta Basin, Utah, U.S.A. gives us two very different examples of how routing flashy water and sediment delivery (associated with pulses of hyperthermal climate change during the Early Eocene) through different depositional systems produced unique processes of deposition, and also gives us an opportunity to isolate the effects of other variables (e.g. sediment caliber, system gradient, catchment size) that can modulate the flashy precipitation signal in stratigraphy.

  7. New Insight Into The Crustal Structure of The Continental Margin Off NW Sabah/borneo

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere. We found evidence that the continental crust also underlies the continental slope land- ward of the Trough, a fact that raises many questions about the tectonic history and development of this margin. The characteristic pattern of rotated fault blocks and half grabens and the carbon- ates which are observed all over the Dangerous Grounds can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anoma- lies. We suspect that the volcanic activity coincided with the collision of Borneo and the Dangerous Grounds in middle or late Miocene time. The emplacement of an al- lochtonous terrane on top of the extended continental lithosphere could be explained by overthrusting as a result of the collision or it could be related to gravity sliding following a broad uplift of NW Borneo at the same time.

  8. Determining OCT structure and COB Location of the Omani Gulf of Aden Continental Margin from Gravity Inversion, Residual Depth Anomaly and Subsidence Analysis.

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto

    2013-04-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for volcanic addition due to decompression melting based on White & McKenzie (1989). Gravity inversion and the "synthetic" gravity derived RDA both show generally normal thickness oceanic crust, with some localised thin oceanic crust. Continental lithosphere thinning factors determined from gravity inversion and subsidence analysis are in good agreement and have been used to constrain COB location along the profile lines. These techniques show that the OCT in the eastern Gulf of Aden, is relatively narrow, with the distance between the COB and the margin hinge measuring less than 100km.

  9. Climate Variability and Siliciclastic Deposition on a Carbonate Margin - Neogene of the Northwest Shelf of Australia

    NASA Astrophysics Data System (ADS)

    Tagliaro, G.; Fulthorpe, C.; Gallagher, S. J.; McHugh, C.; Kominz, M. A.; Lavier, L.

    2017-12-01

    The Bare Formation represents a unique episode of Neogene siliciclastic deposition on the carbonate-dominated Australian Northwest Shelf (NWS). International Ocean Discovery Program (IODP) Expedition 356 drilling results, coupled with interpretation of 3D seismic data, allow us to constrain the timing of siliciclastic deposition and the associated sedimentary processes. IODP Sites U1462, U1463 and U1464 provide age control that reveals the relationship of the Bare Fm. to the adjacent carbonate sediments. The Bare Fm. is preceded by middle to late Miocene shelf exposure and karstification. Elongate beach barrier deposits with small lobate deltas to the NE developed during the late Miocene. However, fluvial deposition increased markedly in the Zanclean, resulting in development of a large tide-and-wave-influenced delta, with evidence of tidal channels, comprising the thickest component of the Bare Fm. Siliciclastic input decreased in the Piacenzian, leading to margin retreat and final termination near the Plio-Pleistocene boundary. The results correlate with regional climate and sedimentary records derived from Sites U1459, U1463 and U1464, that indicate an arid middle to late Miocene, followed by a humid interval in the Zanclean and a return to arid conditions during the Piacenzian. Therefore, we suggest that fluctuation of surface runoff patterns in the continental hinterlands is the primary control of Bare Fm. evolution. Hence, Neogene siliciclastic distribution is a result of regional climate variability on the NWS. Up to 40 km of shoreline advance is verified in the Late Miocene and Pliocene, an example of climate-driven modification of a continental margin. Additionally, longshore transport intensifies during the Pliocene humid interval, causing NE migration of the deltaic system. Sedimentary and climate transitions are linked to reorganization of Indian Ocean paleoceanography, accompanying northward migration of the Australian continent and progressive restriction of the Indonesian Throughflow.

  10. Intraplate compressional deformation in West-Congo and the Congo basin: related to ridge-puch from the South Atlantic spreading ridge?

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Everaerts, Michel; Kongota Isasi, Elvis; Ganza Bamulezi, Gloire

    2016-04-01

    After the break-up and separation of South America from Africa and the initiation of the South-Atlantic mid-oceanic ridge in the Albian, at about 120 Ma, ridge-push forces started to build-up in the oceanic lithosphere and were transmitted to the adjacent continental plates. This is particularly well expressed in the passive margin and continental interior of Central Africa. According to the relations of Wiens and Stein (1985) between ridge-push forces and basal drag in function of the lithospheric age of oceanic plates, the deviatoric stress reaches a compressional maximum between 50 and 100, Ma after the initiation of the spreading ridge, so broadly corresponding to the Paleocene in this case (~70-20 Ma). Earthquake focal mechanism data show that the West-Congo margin and a large part of the Congo basin are still currently under compressional stresses with an horizontal compression parallel to the direction of the active transform fracture zones. We studied the fracture network along the Congo River in Kinshasa and Brazzaville which affect Cambrian sandstones and probably also the late Cretaceous-Paleocene sediments. Their brittle tectonic evolution is compatible with the buildup of ridge-push forces related to the South-Atlantic opening. Further inland, low-angle reverse faults are found affecting Jurassic to Middle Cretaceous cores from the Samba borehole in the Congo basin and strike-slip movements are recorded as a second brittle phase in the Permian cores of the Dekese well, at the southern margin of the Congo basin. An analysis of the topography and river network of the Congo basin show the development of low-amplitude (50-100 m) long wavelengths (100-300 km) undulations that can be interpreted as lithospheric buckling in response to the compressional intraplate stress field generated by the Mid-Atlantic ridge-push. Wiens, D.A., Stein, S., 1985. Implications of oceanic intraplate seismicity for plate stresses, driving forces and theology. Tectonophysics 1166, 143-162.

  11. The open sea as the main source of methylmercury in the water column of the Gulf of Lions (Northwestern Mediterranean margin)

    NASA Astrophysics Data System (ADS)

    Cossa, Daniel; Durrieu de Madron, Xavier; Schäfer, Jörg; Lanceleur, Laurent; Guédron, Stéphane; Buscail, Roselyne; Thomas, Bastien; Castelle, Sabine; Naudin, Jean-Jacques

    2017-02-01

    Despite the ecologic and economical importance of coastal areas, the neurotoxic bioaccumulable monomethylmercury (MMHg) fluxes within the ocean margins and exchanges with the open sea remain unassessed. The aim of this paper is to address the questions of the abundance, distribution, production and exchanges of methylated mercury species (MeHgT), including MMHg and dimethylmercury (DMHg), in the waters, atmosphere and sediments of the Northwestern Mediterranean margin including the Rhône River delta, the continental shelf and its slope (Gulf of Lions) and the adjacent open sea (North Gyre). Concentrations of MeHgT ranged from <0.02 to 0.48 pmol L-1 with highest values associated with the oxygen-deficient zone of the open sea. The methylated mercury to total mercury proportion (MeHgT/HgT) increased from 2% to 4% in the Rhône River to up to 30% (averaging 18%) in the North Gyre waters, whereas, within the shelf waters, MeHgT/HgT proportions were the lowest (1-3%). We calculate that the open sea is the major source of MeHgT for the shelf waters, with an annual flux estimated at 0.68 ± 0.12 kmol a-1 (i.e., equivalent to 12% of the HgT flux). This MeHgT influx is more than 80 times the direct atmospheric deposition or the in situ net production, more than 40 times the estimated "maximum potential" annual efflux from shelf sediment, and more than 7 times that of the continental sources. In the open sea, ratios of MMHg/DMHg in waters were always <1 and minimum in the oxygen deficient zones of the water column, where MeHg concentrations are maximum. This observation supports the idea that MMHg could be a degradation product of DMHg produced from inorganic divalent Hg.

  12. Crustal structure of the southeastern Brazilian margin, Campos Basin, from aeromagnetic data: New kinematic constraints

    NASA Astrophysics Data System (ADS)

    Stanton, N.; Schmitt, R.; Galdeano, A.; Maia, M.; Mane, M.

    2010-07-01

    The continental and adjacent marginal features along southeast Brazil were investigated, focusing on the basement structural relationships between onshore and offshore provinces. Lateral and vertical variations in the magnetic anomalies provided a good correlation with the regional tectonic features. The sin-rift dykes and faults are associated with the magnetic lineaments and lie sub parallel to the Precambrian N45E-S45W basement structure of the Ribeira Belt, but orthogonally to the Cabo Frio Tectonic Domain (CFTD) basement, implying that: (1) the upper portion of the continental crust was widely affected by Mesozoic extensional deformation; and (2) tectonic features related to the process of break up of the Gondwana at the CFTD were form regardless of the preexisting structural basement orientation being controlled by the stress orientation during the rift phase. The deep crustal structure (5 km depth) is characterized by NE-SW magnetic "provinces" related to the Ribeira Belt tectonic units, while deep suture zones are defined by magnetic lows. The offshore Campos structural framework is N30E-S30W oriented and resulted from a main WNW-ESE direction of extension in Early Cretaceous. Transfer zones are represented by NW-SE and E-W oriented discontinuities. A slight difference in orientation between onshore (N45E) and offshore (N30E) structural systems seems to reflect a re-orientation of stress during rifting. We proposed a kinematical model to explain the structural evolution of this portion of the margin, characterized by polyphase rifting, associated with the rotation of the South American plate. The Campos Magnetic High (CMH), an important tectonic feature of the Campos Basin corresponds to a wide area of high crustal magnetization. The CMH wass interpreted as a magmatic feature, mafic to ultramafic in composition that extends down to 14 km depth and constitutes an evidence of intense crustal extension at 60 km from the coast.

  13. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic

    NASA Astrophysics Data System (ADS)

    Li, Z. X.; Powell, C. McA.

    2001-04-01

    In the last 1000 million years, Australia has been part of two supercontinents: Palaeozoic Gondwanaland and Neoproterozoic Rodinia. Neoproterozoic Australia was covered by shallow epicontinental seas, and, in the late Neoproterozoic, by low-latitude glaciers. The breakup of Rodinia along the Tasman Line occurred at the end of the Sturtian glaciation (760 Ma) giving rise to the Palaeo-Pacific Ocean. Gondwanaland formed in the Early Cambrian, at the same time as the Tarim block broke away from northwestern Australia. Westward subduction of the Palaeo-Pacific Ocean along the eastern margin of Australia-Antarctica commenced during the Early Cambrian in northern Victoria Land and in the Middle Cambrian in South Australia, and culminated to the Late Cambrian-Early Ordovician Ross-Delamerian Mountains. In the Ordovician, the magmatic arc retreated from Australia's then-eastern continental margin, forming a marginal sea and offshore island arc. A shallow seaway across Australia in the Late Cambrian and Ordovician gradually gave way to desert-like conditions in Central Australia and the adjacent Canning Basin by Silurian time. The Silurian to mid-Devonian was an interval of rapidly changing palaeogeography in eastern Australia with deep volcanogenic troughs formed in a dextral transtensional tectonic setting. Widespread deformation in the Tasman orogenic zone in the Middle Devonian to Early Carboniferous, was accompanied by the development of an Andean-style magmatic arc along the Pacific continental margin of Australia. The most widespread Phanerozoic mountain-building stage in Central Australia occurred in the Late Devonian to mid-Carboniferous, as part of a world-wide Variscan orogenic episode associated with the collision of Gondwanaland with Laurussia to form Pangea. In the late Visean, Australia drifted rapidly southward from previous low latitudes to a near-polar position. Glacial conditions dominated the Late Carboniferous and earliest Permian. Transtensional basins associated with dextral oroclinal shear along the Panthalassan eastern margin of Australia developed in the Late Carboniferous and persisted until the Late Permian, when an Andean-style magmatic arc was re-established. Large foreland basins inboard of the Late Permian to Early Triassic magmatic arc accumulated major coal deposits during Late Permian volcanic phases, but drastic climatic changes at the end of the Permian, possibly caused by global greenhouse conditions, led to red-bed deposition in the Early Triassic. Pangea began to rift in the mid-Triassic, and by the Late Triassic, the Cimmerian blocks, which lay off northwestern Australia throughout the Palaeozoic, had departed the northern margin of Gondwanaland. A new Andean-style continental magmatic arc became established along the Pacific Ocean margin of Australia. Breakup between Australia-Antarctica and the northern part of Greater India commenced ca. 130 Ma, and between Australia and Antarctica around 96 Ma. At the beginning of the Palaeogene, Australia commenced its northward drift towards its present position. Seafloor spreading between Australia and Antarctica was at first slow, but increased to ca. 5 cm per year around 45 Ma. By 35 Ma, the circum-Antarctic current became established, thereby triggering glaciation in Antarctica. Northern Australia reached the tropics by the beginning of the Miocene, and Australia has progressively moved northwards at 7 to 8 cm per year since.

  14. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    USGS Publications Warehouse

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.

    1986-01-01

    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  15. Tracing the thermal evolution of continental lithosphere through depth-dependent extension

    NASA Astrophysics Data System (ADS)

    Smye, A.; Lavier, L. L.; Stockli, D. F.; Zack, T.

    2015-12-01

    Rifting of continental lithosphere requires a mechanism to reduce lithospheric thickness from 100-150 kilometers to close to zero kilometers at the point of rupture. At magma-poor continental margins, this has long-thought to be caused by uniform stretching and thinning of the lithosphere accompanied by passive upwelling of the asthenosphere [1]. For the last thirty years depth-dependent thinning has been proposed as an alternative to this model to explain the anomalously shallow environment of deposition along many continental margins [2, 3]. A critical prediction of this modification is that the lower crust and sub-continental lithospheric mantle undergo a phase of increased heat flow, potentially accompanied by heating, during thinning of the lithospheric mantle. Here, we test this prediction by applying recently developed U-Pb age depth profiling techniques [4] to lower crustal accessory minerals from the exhumed Alpine Tethys and Pyrenean margins. Inversion of diffusion-controlled U-Pb age profiles in rutile affords the opportunity to trace the thermal evolution of the lower crust through the rifting process. Resultant thermal histories are used to calculate thinning factors of the crust and lithospheric mantle by 2D thermo-kinematic models of extending lithosphere. Combined, we use the measured and modeled thermal histories to propose a mechanism to explain the initiation and growth of lithospheric instabilities that lead to depth-dependent thinning at magma-poor continental margins. [1] McKenzie, D. (1978) EPSL 40, 25-32; [2] Royden, L. & Keen, C. (1980) EPSL 51, 343-361; [3] Huismans, R. & Beaumont, C. (2014) EPSL, 407, 148-162; [4] Smye, A. and Stockli, D. (2014) EPSL, 408, 171-182.

  16. Tectonic development of passive continental margins of the southern and central Red Sea with a comparison to Wilkes Land, Antarctica

    USGS Publications Warehouse

    Bohannon, R.G.; Eittreim, S.L.

    1991-01-01

    The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.

  17. Natural constraints on exploring Antarctica's continental margin, existing geophysical and geological data basis, and proposed drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.B.

    1987-05-01

    There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexicomore » shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.« less

  18. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and by incipient subduction beneath the Bellingshausen Gravity Anomaly on the western edge of a salient of the Antarctic plate near 94°W. West of 102°W, relative motion was extensional and occurred in a diffuse zone occupied by the Marie Byrd Seamounts that are dated at 65-56 Ma and extend 800 km along the continental margin near the base of the continental rise.

  19. Preface

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster; Talwani, Manik

    In compiling this volume, we have aimed to develop and enhance our current understanding of the structural evolution and sedimentation processes along divergent continental margins. To counteract the unfortunate situation of a lack of modem seismic and potential fields data on circum-Atlantic passive margins in the literature, we have linked new data from oil companies with that of research institutions. To update the data offered in most volumes used as reference works for the study of continental margins, now upwards of 20 years old, and to remedy the dispersal of important, more recent contributions in specialized journals, we present a current synthesis of materials in one volume focused on the deeper geology of the sedimentary basins along continental margins. In the early 1990s, as oil companies and other institutions developed tools to probe deeper into the architecture of passive margin sedimentary basins, a great amount of data based on regional deep seismic profiles evolved rapidly from its specialized niche as geophysical interpretation of the Earth's interior to widespread use by those same companies and institutions. At the same time, these findings demonstrated that some breakthroughs in data acquisition, processing and interpretation initially achieved by research institutions could almost instantaneously be globalized throughout different research groups, thereby influencing the thinking of geoscientists worldwide.

  20. Longitudinal changes in tooth/single-implant relationship and bone topography: an 8-year retrospective analysis.

    PubMed

    Chang, Moontaek; Wennström, Jan L

    2012-06-01

    To evaluate longitudinal changes in tooth/implant relationship and bone topography at single implants with a microthreaded, conical marginal portion (Astra Tech ST® implants, Astra Tech AB, Mölndal, Sweden). Thirty-one subjects with single implant-supported restorations in the esthetic zone were included. Radiographs obtained at crown installation and 1, 5, and 8 years of follow-up were analyzed with regard to changes in (1) bone level at the implant and adjacent teeth and (2) vertical position of adjacent teeth relative to the single implant. The mean marginal bone loss amounted to 0.1 mm at both implants and adjacent teeth during the 8 years of follow-up. Regression analysis failed to identify significant explanatory factors for observed variance in bone level change at the adjacent tooth surfaces. Vertical change in position of the teeth relative to the implants was more frequent and significantly greater in incisor compared with premolar tooth region but not associated with gender or age. The marginal bone level at teeth adjacent to single implants with a microthreaded conical marginal part was not influenced by horizontal and vertical tooth-implant distances. Continuous eruption of adjacent teeth may result in infraocclusal positioning of a single-implant restoration. © 2010 Wiley Periodicals, Inc.

  1. Mantle dynamics following supercontinent formation

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are explored in over 600 2D and over 20 3D numerical simulations to better understand how modelling method affects conclusions on mantle convection studies. The results from this thesis show that the failure to model tectonic plates, a high vigour of convection, and a (pseudo) temperature-dependent viscosity would distort the role of mantle plumes, continent insulation, and subduction in the thermal evolution of mantle dynamics.

  2. Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling

    NASA Astrophysics Data System (ADS)

    Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.

    2017-12-01

    The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.

  3. Kinematic evolution of the southwestern Arabian continental margin: implications for the origin of the Red Sea

    NASA Astrophysics Data System (ADS)

    Voggenreiter, W.; Hötzl, H.

    The tectonic and magnetic evolution of the Jizan coastal plain (Tihama Asir) in southwest Arabia was dominated by SW-NE lithospheric extension related to the development of the Red Sea Rift. A well-exposed, isotopically-dated succession of magmatic rocks (Jizan Group volcanics, Tihama Asir Magmatic Complex) allows a kinematic analysis for this part of the Arabian Red Sea margin. A mafic dyke swarm and several generations of roughly NW-trending normal faults characterized the continental rift stage from Oligocene to early Miocene time. Major uplift of the Arabian graben shoulder probably began about 14 Ma ago. By this time, extension and magmatism ceased in the Jizan area and were followed by an approximately 10 Ma interval of tectonic and magmatic quiescence. A second phase of extension began in the Pliocene and facilitated a vast outpouring of alkaliolivine basalts on the coastal plain. The geometry of faulting in the Jizan area supports a Wernicke-type simple-shear mechanism of continental rifting for the southern Arabian continental margin of the Red Sea.

  4. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.

  5. The Edges of the Ocean: An Introduction.

    ERIC Educational Resources Information Center

    Burke, Kevin

    1979-01-01

    Introduces a series of related articles on the study of ocean/continent boundaries (margins) within the framework of plate tectonics. Topics discussed include: early attempts to interpret ocean/continent boundaries, Atlantic-type margins, Pacific-type margins, the edges of ancient oceans, and future challenges in the study of continental margins.…

  6. A reevaluation of the Munson-Nygren-Retriever submarine landslide complex, Georges bank lower slope, western north Atlantic

    USGS Publications Warehouse

    Chaytor, Jason D.; Twichell, David C.; ten Brink, Uri S.

    2012-01-01

    The Munson-Nygren-Retriever (MNR) landslide complex is a series of distinct submarine landslides located between Nygren and Powell canyons on the Georges Bank lower slope. These landslides were first imaged in 1978 using widely-spaced seismic reflection profiles and were further investigated using continuous coverage GLORIA sidescan imagery collected over the landslide complex in 1987. Recent acquisition of highresolution multibeam bathymetry across these landslides has provided an unprecedented view of their complex morphology and allows for a more detailed investigation of their evacuation and deposit morphologies and sizes, modes of failure, and relationship to the adjacent sections of the margin, including the identification of an additional landslide within the MNR complex, referred to here as the Pickett slide. The evacuation zone of these landslides covers an area of approximately 1,780 km2 . The headwalls of these landslides are at a depth of approximately 1,800 m, with evacuation extending for approximately 60 km downslope to the top of the continental rise. High-relief debris deposits, in the form of blocks and ridges, are present down the length of the majority of the evacuation zones and within the deposition area at the base of the slope. On the continental rise, the deposits from each of the most recent failures of the MNR complex landslides merge with debris from earlier continental slope failures, canyon and alongslope derived deposits, and prominent upper-rise failures.

  7. 2D Geodynamic models of Microcontinent Formation

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya; Buiter, Susanne

    2013-04-01

    Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.

  8. Historic surface faulting in continental United States and adjacent parts of Mexico

    USGS Publications Warehouse

    Bonilla, M.G.

    1967-01-01

    This report summarizes geometric aspects of approximately 35 instances of historic faulting of the ground surface in the continental United States and adjacent parts of Mexico. This information is of immediate importance in the selection and evaluation of sites for vital structures such as nuclear power plants. The data are presented in a table and graphs which show the quantitative relations between various aspects of the faulting. Certain items in the table that are uncertain, poorly known, or not in the published literature are briefly described in the text.

  9. Linking the tectonic evolution with fluid history in magma-poor rifted margins: tracking mantle- and continental crust-related fluids

    NASA Astrophysics Data System (ADS)

    Pinto, V. H. G.; Manatschal, G.; Karpoff, A. M.

    2014-12-01

    The thinning of the crust and the exhumation of subcontinental mantle is accompanied by a series of extensional detachment faults. Exhumation of mantle and crustal rocks is intimately related to percolation of fluids along detachment faults leading to changes in mineralogy and chemistry of the mantle, crustal and sedimentary rocks. Field observation, analytical methods, refraction/reflection and well-core data, allowed us to investigate the role of fluids in the Iberian margin and former Alpine Tethys distal margins and the Pyrenees rifted system. In the continental crust, fluid-rock interaction leads to saussuritization that produces Si and Ca enriched fluids found in forms of veins along the fault zone. In the zone of exhumed mantle, large amounts of water are absorbed in the first 5-6 km of serpentinized mantle, which has the counter-effect of depleting the mantle of elements (e.g., Si, Ca, Mg, Fe, Mn, Ni and Cr) forming mantle-related fluids. Using Cr-Ni-V and Fe-Mn as tracers, we show that in the distal margin, mantle-related fluids used detachment faults as pathways and interacted with the overlying crust, the sedimentary basin and the seawater, while further inward parts of the margin, continental crust-related fluids enriched in Si and Ca impregnated the fault zone and may have affected the sedimentary basin. The overall observations and results enable us to show when, where and how these interactions occurred during the formation of the rifted margin. In a first stage, continental crust-related fluids dominated the rifted systems. During the second stage, mantle-related fluids affected the overlying syn-tectonic sediments through direct migration along detachment faults at the future distal margin. In a third stage, these fluids reached the seafloor, "polluted" the seawater and were absorbed by post-tectonic sediments. We conclude that a significant amount of serpentinization occurred underneath the thinned continental crust, that the mantle-related fluids might have modified the chemical composition of the sediments and seawater. We propose that the chemical signature of serpentinization that occurs during the mantle exhumation is recorded in the sediments and may serve as a proxy to date serpentinization and mantle exhumation in present day magma-poor rifted margins.

  10. Cenozoic tectonic subsidence in the Southern Continental Margin, South China Sea

    NASA Astrophysics Data System (ADS)

    Fang, Penggao; Ding, Weiwei; Fang, Yinxia; Zhao, Zhongxian; Feng, Zhibing

    2017-06-01

    We analyzed two recently acquired multichannel seismic profiles across the Dangerous Grounds and the Reed Bank area in the South China Sea. Reconstruction of the tectonic subsidence shows that the southern continental margin can be divided into three stages with variable subsidence rate. A delay of tectonic subsidence existed in both areas after a break-up, which was likely related to the major mantle convection during seafloor spreading, that was triggered by the secondary mantle convection below the continental margin, in addition to the variation in lithospheric thickness. Meanwhile, the stage with delayed subsidence rate differed along strikes. In the Reed Bank area, this stage is between 32-23.8 Ma, while in the Dangerous Grounds, it was much later (between 19-15.5 Ma). We believe the propagated rifting in the South China Sea dominated the changes of this delayed subsidence rate stage.

  11. Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines

    NASA Astrophysics Data System (ADS)

    Marchadier, Yves; Rangin, Claude

    1990-11-01

    The southern termination of the Manila trench within the South China Sea continental margin in Mindoro is marked by a complex polyphase tectonic fabric in the arc-trench gap area. Onshore Southern Mindoro the active deformation front of the Manila trench is marked by parallel folds and thrusts, grading southward to N50° W-trending left-lateral strike-slip faults. This transpressive tectonic regime, active at least since the Late Pliocene, has overprinted the collision of an Early Miocene volcanic arc with the South China Sea continental margin (San Jose platform). The collision is postdated by deposition of the Late Miocene-Early Pliocene elastics of the East Mindoro basin. The tectonic and geological framework of this arc, which overlies a metamorphic basement and Eocene elastics, suggests that it was built on a drifted block of the South China Sea continental margin.

  12. Ice Sheet History from Antarctic Continental Margin Sediments: The ANTOSTRAT Approach

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Camerlenghi, A.; Cooper, A. K.; Davey, F.J.; Domack, E.W.; Escutia, C.; Kristoffersen, Y.; O'Brien, P.E.

    1998-01-01

    The Antarctic Ice Sheet is today an important part of the global climate engine, and probably has been so for most of its long existence. However, the details of its history are poorly known, despite the measurement and use, over two decades, of low-latitude proxies of ice sheet volume. An additional way of determining ice sheet history is now available, based on understanding terrigenous sediment transport and deposition under a glacial regime. It requires direct sampling of the prograded wedge of glacial sediments deposited at the Antarctic continental margin (and of derived sediments on the continental rise) at a small number of key sites, and combines the resulting data using numerical models of ice sheet development. The new phase of sampling is embodied mainly in a suite of proposals to the Ocean Drilling Program, generated by separate regional proponent groups co-ordinated through ANTOSTRAT (the Antarctic Offshore Acoustic Stratigraphy initiative). The first set of margin sites has now been drilled as ODP Leg 178 to the Antarctic Peninsula margin, and a first, short season of inshore drilling at Cape Roberts, Ross Sea, has been completed. Leg 178 and Cape Roberts drilling results are described briefly here, together with an outline of key elements of the overall strategy for determining glacial history, and of the potential contributions of drilling other Antarctic margins investigated by ANTOSTRAT. ODP Leg 178 also recovered continuous ultra-high-resolution Holocene biogenic sections at two sites within a protected, glacially-overdeepened basin (Palmer Deep) on the inner continental shelf of the Antarctic Peninsula. These and similar sites from around the Antarctic margin are a valuable resource when linked with ice cores and equivalent sections at lower latitude sites for studies of decadal and millenial-scale climate variation.

  13. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Schmid, D. W.; Perez-Gussinye, M.; Hartz, E. H.

    2013-12-01

    We explore the conditions under which mantle serpentinization may take place during continental rifting with 2D thermotectonostratigraphic basin models. The basic concept follows the idea that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The new model tracks the rheological evolution of the continental crust and allows for kinetically controlled mantle serpentinization processes. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Sedimentation shifts this critical stretching factor to higher values as both deeper burial and the low thermal conductivity of sediments lead to higher crustal temperatures. Serpentinization reactions are therefore only likely in settings with low sedimentation rates and high stretching factors. In addition, we find that the rate of sediment supply has first order controls on the rheology of the lower crust, which may control the overall margin geometry. We further test these concepts in ideas in a case study for the Norwegian margin. In particular, we evaluate whether the inner lower crustal bodies (LCB) imaged beneath the More and Voring margin could be serpentinized mantle. For this purpose we reconstruct multiple 2D transects through a 3D data set. This reconstruction of the Norwegian margin shows that serpentinization reactions are indeed possible and likely during the Jurassic rift phase. Predicted present-day thicknesses and locations of partially serpentinized mantle rocks fit well to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may, in fact, be partially serpentinized mantle.

  14. The Lamu Basin deepwater fold-and-thrust belt: An example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa

    NASA Astrophysics Data System (ADS)

    Cruciani, Francesco; Barchi, Massimiliano R.

    2016-03-01

    In recent decades, advances in seismic processing and acquisition of new data sets have revealed the presence of many deepwater fold-and-thrust belts (DW-FTBs), often developing along continental passive margins. These kinds of tectonic features have been intensively studied, due to their substantial interest. This work presents a regional-scale study of the poorly explored Lamu Basin DW-FTB, a margin-scale, gravity-driven system extending for more than 450 km along the continental passive margin of Kenya and southern Somalia (East Africa). A 2-D seismic data set was analyzed, consisting of both recently acquired high-quality data and old reprocessed seismic profiles, for the first detailed structural and stratigraphic interpretation of this DW-FTB. The system originated over an Early to mid-Cretaceous shale detachment due to a mainly gravity-spreading mechanism. Analysis of synkinematic strata indicates that the DW-FTB was active from the Late Cretaceous to the Early Miocene, but almost all of the deformation occurred before the Late Paleocene. The fold-and-thrust system displays a marked N-S variation in width, the northern portion being more than 150 km wide and the southern portion only a few dozen kilometers wide; this along-strike variation is thought to be related to the complex tectonosedimentary evolution of the continental margin at the Somalia-Kenya boundary, also reflected in the present-day bathymetry. Locally, a series of volcanic edifices stopped the basinward propagation of the DW-FTB. A landward change in the dominant structural style, from asymmetric imbricate thrust sheets to pseudo-symmetric detachment folds, is generally observed, related to the landward thickening of the detached shales.

  15. Crustal Thickness Mapping of the Rifted Margin Ocean-Continent Transition using Satellite Gravity Inversion Incorporating a Lithosphere Thermal Correction

    NASA Astrophysics Data System (ADS)

    Hurst, N. W.; Kusznir, N. J.

    2005-05-01

    A new method of inverting satellite gravity at rifted continental margins to give crustal thickness, incorporating a lithosphere thermal correction, has been developed which does not use a priori information about the location of the ocean-continent transition (OCT) and provides an independent prediction of OCT location. Satellite derived gravity anomaly data (Sandwell and Smith 1997) and bathymetry data (Gebco 2003) are used to derive the mantle residual gravity anomaly which is inverted in 3D in the spectral domain to give Moho depth. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mgal), which must be corrected for in order to determine Moho depth. This thermal gravity correction may be determined for oceanic lithosphere using oceanic isochron data, and for the thinned continental margin lithosphere using margin rift age and beta stretching estimates iteratively derived from crustal basement thickness determined from the gravity inversion. The gravity inversion using the thermal gravity correction predicts oceanic crustal thicknesses consistent with seismic observations, while that without the thermal correction predicts much too great oceanic crustal thicknesses. Predicted Moho depth and crustal thinning across the Hatton and Faroes rifted margins, using the gravity inversion with embedded thermal correction, compare well with those produced by wide-angle seismology. A new gravity inversion method has been developed in which no isochrons are used to define the thermal gravity correction. The new method assumes all lithosphere to be initially continental and a uniform lithosphere stretching age is used corresponding to the time of continental breakup. The thinning factor produced by the gravity inversion is used to predict the thickness of oceanic crust. This new modified form of gravity inversion with embedded thermal correction provides an improved estimate of rifted continental margin crustal thinning and an improved (and isochron independent) prediction of OCT location. The new method uses an empirical relationship to predict the thickness of oceanic crust as a function of lithosphere thinning factor controlled by two input parameters: a critical thinning factor for the start of ocean crust production and the maximum oceanic crustal thickness produced when the thinning factor = 1, corresponding to infinite lithosphere stretching. The disadvantage of using a uniform stretching age corresponding to the age of continental breakup is that the inversion fails to predict increasing thermal gravity correction towards the ocean ridge and incorrectly predicts thickening of oceanic crust with decreasing oceanic age. The new gravity inversion method has been applied to N. Atlantic rifted margins. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.

  16. Along-strike supply of volcanic rifted margins: Implications for plume-influenced rifting and sudden along-strike transitions between volcanic and non-volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Phipps Morgan, J.

    2006-12-01

    The existence of sudden along-strike transitions between volcanic and non-volcanic rifted margins is an important constraint for conceptual models of rifting and continental breakup. We think there is a promising indirect approach to infer the maximum width of the region of upwelling that exists beneath a rifted margin during the transition from rifting to seafloor-spreading. We infer this width of ~30km from the minimum length of the ridge-offsets that mark the limits of the `region of influence' of on-ridge plumes on the axial relief, axial morphology, and crustal thickness along the ridge and at the terminations of fossil volcanic rifted margins. We adopt Vogt's [1972] hypothesis for along-ridge asthenospheric flow in a narrow vertical slot beneath the axis of plume-influenced `macro-segments' and volcanic rifted margins. We find that: (1) There is a threshold distance to the lateral offsets that bound plume-influenced macrosegments; all such `barrier offsets' are greater than ~30km, while smaller offsets do not appear to be a barrier to along-axis flow. This pattern is seen in the often abrupt transitions between volcanic and non-volcanic rifted margins; these transitions coincide with >30km ridge offsets that mark the boundary between the smooth seafloor morphology and thick crust of a plume- influenced volcanic margin and a neighboring non-volcanic margin, as recorded in 180Ma rifting of the early N. Atlantic, the 42Ma rifting of the Kerguelen-Broken Ridge, and the 66Ma Seychelles-Indian rifting in the Indian Ocean. (2) A similar pattern is seen in the often abrupt transitions between `normal' and plume-influenced mid- ocean ridge segments, which is discussed in a companion presentation by Phipps Morgan and Ranero (this meeting). (3) The coexistance of adjacent volcanic and non-volcanic rifted margin segments is readily explained in this conceptual framework. If the volcanic margin macrosegment is plume-fed by hot asthenosphere along an axial ridge slot, while adjacent non-volcanic margin segments stretch and upwell ambient cooler subcontinental mantle, then there will be a sudden transition from volcanic to non-volcanic margins across a transform offset. (4) A 30km width for the region of ridge upwelling and melting offers a simple conceptual explanation for the apparent 30km threshold length for the existence of strike-slip transform faults and the occurrence of non-transform offsets at smaller ridge offset-distances. (5) The conceptual model leads to the interpretation of the observed characteristic ~1000km-2000km-width of plume-influenced macro- segments as a measure of the maximum potential plume supply into a subaxial slot of 5-10 cubic km per yr. (6) If asthenosphere consumption by plate-spreading is less than plume-supply into a macro-segment, then the shallow seafloor and excess gravitational spreading stresses associated with a plume-influenced ridge can lead to growth of the axial slot by ridge propagation. We think this is a promising conceptual framework with which to understand the differences between volcanic and non-volcanic rifted margins.

  17. Extensional fault geometry and its flexural isostatic response during the formation of the Iberia - Newfoundland conjugate rifted margins

    NASA Astrophysics Data System (ADS)

    Gómez-Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan

    2017-04-01

    Despite magma-poor rifted margins having been extensively studied for the last 20 years, the evolution of extensional fault geometry and the flexural isostatic response to faulting remain still debated topics. We investigate how the flexural isostatic response to faulting controls the structural development of the distal part of rifted margins in the hyper-extended domain and the resulting sedimentary record. In particular we address an important question concerning the geometry and evolution of extensional faults within distal hyper-extended continental crust; are the seismically observed extensional fault blocks in this region allochthons from the upper plate or are they autochthons of the lower plate? In order to achieve our aim we focus on the west Iberian rifted continental margin along the TGS and LG12 seismic profiles. Our strategy is to use a kinematic forward model (RIFTER) to model the tectonic and stratigraphic development of the west Iberia margin along TGS-LG12 and quantitatively test and calibrate the model against breakup paleo-bathymetry, crustal basement thickness and well data. RIFTER incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. The model predicts the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. The target data used to constrain model predictions consists of two components: (i) gravity anomaly inversion is used to determine Moho depth, crustal basement thickness and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling consisting of flexural backstripping, decompaction and reverse post-rift thermal subsidence modelling is used to give paleo-bathymetry at breakup time. We show that successful modelling of the structural and stratigraphic development of the TGS-LG12 Iberian margin transect also requires the simultaneous modelling of the Newfoundland conjugate margin, which we constrain using target data from the SCREECH 2 seismic profile. We also show that for the successful modelling and quantitative validation of the lithosphere hyper-extension stage it is necessary to first have a good calibrated model of the necking phase. Not surprisingly the evolution of a rifted continental margin cannot be modelled without modelling and calibration of its conjugate margin.

  18. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin

    NASA Technical Reports Server (NTRS)

    Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  19. Influence of the Atlantic inflow and Mediterranean outflow currents on late Quaternary sedimentary facies of the Gulf of Cadiz continental margin

    USGS Publications Warehouse

    Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.

    1999-01-01

    The late Quaternary pattern of sedimentary facies on the Spanish Gulf of Cadiz continental shelf results from an interaction between a number of controlling factors that are dominated by the Atlantic inflow currents flowing southeastward across the Cadiz shelf toward the Strait of Gibraltar. An inner shelf shoreface sand facies formed by shoaling waves is modified by the inflow currents to form a belt of sand dunes at 10-20 m that extends deeper and obliquely down paleo-valleys as a result of southward down-valley flow. A mid-shelf Holocene mud facies progrades offshore from river mouth sources, but Atlantic inflow currents cause extensive progradation along shelf toward the southeast. Increased inflow current speeds near the Strait of Gibraltar and the strong Mediterranean outflow currents there result in lack of mud deposition and development of a reworked transgressive sand dune facies across the entire southernmost shelf. At the outer shelf edge and underlying the mid-shelf mud and inner shelf sand facies is a late Pleistocene to Holocene transgressive sand sheet formed by the eustatic shoreline advance. The late Quaternary pattern of contourite deposits on the Spanish Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are oblique to slope contours and the Mediterranean outflow current flowing northwestward parallel to the slope contours and down valleys between the ridges. Coincident with the northwestward decrease in outflow current speeds from the Strait there is the following northwestward gradation of contourite sediment facies: (1) upper slope sand to silt bed facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. By comparison, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean outflow current, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. Radiocarbon ages verify that the inner shelf shoreface sand facies (sedimentation rate 7.1 cm/kyr), mid-shelf mud facies (maximum rate 234 cm/kyr) and surface sandy contourite layer of 0.2-1.2 m thickness on the Cadiz slope (1-12 cm/kyr) have deposited during Holocene time when high sea level results in maximum water depth over the Gibraltar sill and full development of the Atlantic inflow and Mediterranean outflow currents. The transgressive sand sheet of the shelf, and the mud layer underlying the surface contourite sand sheet of the slope, correlate, respectively, with the late Pleistocene sea level lowstand and apparent weak Mediterranean outflow current.

  20. Is the Gop rift oceanic? A reevaluation of the Seychelles-India conjugate margins

    NASA Astrophysics Data System (ADS)

    Guan, Huixin; Werner, Philippe; Geoffroy, Laurent

    2016-04-01

    Recent studies reevaluated the timing and evolution of the breakup process between the Seychelles continental ridge and India, and the relationship between this evolution and mantle melting associated with the Deccan Igneous Province1,2,3. Those studies, mainly based on gravity and seismic refraction surveys, point that the oceanic domain located between the Seychelles and the Laxmi Ridge (here designed as the Carlsberg Basin) is the youngest oceanic domain between India and the Seychelles. To the East of the Laxmi Ridge, the aborted Gop Rift is considered as an older highly magmatic extensional continental system with magmatism, breakup and oceanic spreading being coeval with or even predating the emplacement of the major pulse of the Deccan trapps. This interpretation on the oceanic nature of the Gop Rift conflicts with other extensive surveys based on magnetic and seismic reflection data4 which suggest that the Gop Rift is an extended syn-magmatic continental domain. In our work based (a) on the existing data, (b) on new deep-seismic reflection surveys (already published by Misra5) down to the Moho and underlying mantle and (c) on new concepts on the geometry of volcanic passive margins, we propose a distinct interpretation of the Seychelles-India system. As proposed by former authors6,7, the Indian margin suffered some continental stretching and thinning before the onset of the Deccan traps during the Mesozoic. Thus continental crust thickness cannot be used easily as a proxy of syn-magmatic stretching-thinning processes or even to infer the presence or not of oceanic-type crust based, solely, on crustal thickness. However, some remarkable features appear on some of the deep penetration seismic lines we studied. We illustrate that the whole Seychelles/India system, before the opening of the present-day "Carlsberg Basin" may simply be regarded as a pair of sub-symmetric conjugate volcanic passive margins (VPMs) with inner and outer SDR wedges dipping towards the Gop Rift axis. We propose that the conspicuous buoyant central part of the Gop Rift is likely associated with a continental C-Block as described in a recent paper on conjugated VPMs8, at least in the southern part of the Gop Rift. The crust below the Laxmi basin is probably transitional continental i.e. strongly intruded. West of India and west of the Laxmi Ridge, the transition to the Carlsberg Basin occurs along a clearly-expressed transform fault, not through an extended and thinned continental margin. We reinterpret the whole system based on those observations and propositions, giving some explanations on controversial magnetic anomalies based on similar observations from the southern Atlantic Ocean. 1: Collier et al., 2008. Age of the Seychelles-India break-up. Earth and Planetary Science Letters. 2: Minshull et al., 2008. The relationship between riftingand magmatism in the northeastern Arabian Sea. Nature Geoscience. 3 : Armitage et al., 2010. The importance of rift history for volcanic margin. Nature. 4 : Krishna et al., 2006. Nature of the crust in the Laxmi Basin (14 degrees-20 degrees N), western continental margin of India. Tectonics. 5 : Misra et al., 2015. Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine and Petroleum Geology. 6 : Biswas, 1982. Rift basins in the western margin of India and their hydrocarbon prospects. Bull. Am. Assoc. Pet. Geol. 7 : Chatterjee et al., 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research. 8 : Geoffroy et al., 2015. Volcanic passive margins: anotherway to break up continents. Scientific Reports.

  1. Paleomagnetic tests for tectonic reconstructions of the Late Jurassic-Early Cretaceous Woyla Group, Sumatra

    NASA Astrophysics Data System (ADS)

    Advokaat, Eldert; Bongers, Mayke; van Hinsbergen, Douwe; Rudyawan, Alfend; Marshal, Edo

    2017-04-01

    SE Asia consists of multiple continental blocks, volcanic arcs and suture zones representing remnants of closing ocean basins. The core of this mainland is called Sundaland, and was formed by accretion of continental and arc fragments during the Paleozoic and Mesozoic. The former positions of these blocks are still uncertain but reconstructions based on tectonostratigraphic, palaeobiogeographic, geological and palaeomagnetic studies indicate the continental terranes separated from the eastern margin of Gondwana. During the mid-Cretaceous, more continental and arc fragments accreted to Sundaland, including the intra-oceanic Woyla Arc now exposed on Sumatra. These continental fragments were derived from Australia, but the former position of the Woyla Arc is unconstrained. Interpretations on the former position of the Woyla Arc fall in two end-member groups. The first group interprets the Woyla Arc to be separated from West Sumatra by a small back-arc basin. This back arc basin opened in the Late Jurassic, and closed mid-Cretaceous, when the Woyla Arc collided with West Sumatra. The other group interprets the Woyla Arc to be derived from Gondwana, at a position close to the northern margin of Greater India in the Late Jurassic. Subsequently the Woyla Arc moved northwards and collided with West Sumatra in the mid-Cretaceous. Since these scenarios predict very different plate kinematic evolutions for the Neotethyan realm, we here aim to place paleomagnetic constraints on paleolatitudinal evolution of the Woyla Arc. The Woyla Arc consists mainly of basaltic to andesitic volcanics and dykes, and volcaniclastic shales and sandstones. Associated limestones with volcanic debris are interpreted as fringing reefs. This assemblage is interpreted as remnants of an Early Cretaceous intra-oceanic arc. West Sumatra exposes granites, surrounded by quartz sandstones, shales and volcanic tuffs. These sediments are in part metamorphosed. This assemblage is interpreted as a Jurassic-Early Cretaceous Andean margin above a NE dipping subduction zone. We sampled limestones of the Woyla Group, and sediments of the West Sumatra margin for paleomagnetic analyses. Here we present new paleomagnetic data from Upper Jurassic-Lower Cretaceous limestones of the Woyla Arc. Preliminary results suggest that the Woyla Arc was formed near equatorial latitudes. This precludes interpretations that the Woyla arc was derived from Gondwana, near the northern Indian margin. To account for (1) synchronous magmatism at the Woyla Arc and the West Sumatra continental margin, and (2) the juxtaposition of unmetamorphosed units of the Woyla Arc to highly metamorphosed units of the West Sumatra margin, we interpret the Woyla Group to be intra-oceanic arc formed above a SW dipping subduction zone in the Early Cretaceous, which was subsequently thrusted over the West Sumatra margin during the mid-Cretaceous.

  2. Distribution of oceanic and continental leads in the Arabian-Nubian Shield

    USGS Publications Warehouse

    Stacey, J.S.; Stoeser, D.B.

    1983-01-01

    New common lead data for feldspar, whole-rock, and galena samples from the Arabian-Nubian Shield, together with data from previous work, can be divided into two main groups. Group I leads have oceanic (mantle) characteristics, whereas group II leads have incorporated a continental-crustal component of at least early Proterozoic age. The group I leads are found in rocks from the Red Sea Hills of Egypt and the western and southern parts of the Arabian Shield. Group II leads are found in rocks from the northeastern and eastern parts of the Arabian Shield, as well as from the southeastern Shield near Najran. They are also found in rocks to the south in Yemen, to the east in Oman, and to the west at Aswan, Egypt. This distribution of data suggests that the Arabian-Nubian Shield has an oceanic core flanked by rocks that have developed, at least in part, from older continental material. Two mechanisms are suggested by which this older lead component could have been incorporated into the late Proterozoic rocks, and each may have operated in different parts of the Shield. The older lead component either was derived directly from an underlying early Proterozoic basement or was incorporated from subducted pelagic sediments or sediments derived from an adjacent continent. New U-Pb zircon data indicate the presence of an early Proterozoic basement southeast of Jabal Dahul in the eastern Arabian Shield. These data, together with 2,000-Ma-old zircons from the Al Amar fault zone, verify the implication of the common lead data that at least a part of the eastern Arabian Shield has an older continental basement. Because continental margins are particularly favorable locations for development of ore deposits, these findings may have important economic implications, particularly for tin, tungsten, and molybdenum exploration. ?? 1983 Springer-Verlag.

  3. Lower crustal strength controls on melting and type of oceanization at magma-poor margins

    NASA Astrophysics Data System (ADS)

    Ros, E.; Perez-Gussinye, M.; Araujo, M. N.; Thoaldo Romeiro, M.; Andres-Martinez, M.; Morgan, J. P.

    2017-12-01

    Geodynamical models have been widely used to explain the variability in the architectonical style of conjugate rifted margins as a combination of lithospheric deformation modes, which are strongly influenced by lower crustal strength. We use 2D numerical models to show that the lower crustal strength also plays a key role on the onset and amount of melting and serpentinization during continental rifting. The relative timing between melting and serpentinization onsets controls whether the continent-ocean transition (COT) of margins will be predominantly magmatic or will mainly consist of exhumed and serpentinized mantle. Based on our results for magma-poor continental rifting, we propose a genetic link between margin architecture and COT styles that can be used as an additional tool to help interpret and understand the processes leading to margin formation. Our results show that strong lower crusts and very slow extension velocities (<5 mm/yr) lead to either symmetric or asymmetric margins with large oceanward dipping faults, strong syn-rift subsidence and abrupt crustal tapering beneath the continental shelf. These margins are characterized by a COT consisting of exhumed and serpentinized mantle and some magmatic products. Weak lower crusts at ultra-slow velocities lead also to either symmetric or asymmetric margins with small faults dipping both ocean- and landward, small syn-rift subsidence and gentle crustal tapering, and present a predominantly magmatic COT, perhaps underlain by some serpentinized mantle. When conjugate margins are asymmetric, if the rheology is relatively strong, serpentinite predominantly underlays the wide margin, whereas if the lower crustal strength is weak, melt preferentially migrates towards the wide margin. Based on the onshore lithospheric structure, extension velocity and margin architecture of the magma-poor section of the South Atlantic, we suggest that the COT of the northern sector, Camamu-Gabon basins, is more likely to consist of exhumed mantle with intruded magmatism, while to the South, the Camamu-Kwanza and North Santos-South Kwanza conjugates, may be better characterized by a predominantly magmatic COT.

  4. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study area includes three stages,that is Eogene,middle stage of lately Oligocene to early Miocene and middle Miocene to Present.Result shows that there are a good association of petroleum source rocks,reservoir rocks and seal rocks and structural traps in the Cenozoic and Mesozoic strata,as well as good conditions for the generation-migration-accumulation-preservation of petroleum in the lower continatal slope of Southern Chaoshan Sag.So the region has good petroleum prospect. Key words:Northern South China Sea;Chaoshan Sag; lower continental slope; deposition.

  5. Integrated Geophysical Models Extending From The Craton Across The Gulf Coast Region Of The USA

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Mickus, K. L.; Thomas, W. A.

    2017-12-01

    In spite of decades of industry geophysical studies in the US Gulf Coast region, its crustal and uppermost mantle structure remain poorly understood. To understand the structure of this region and its variations from the southern Appalachians to northernmost Mexico, we have complied and integrated multiple data sets to produce a set of lithospheric scale transects crossing this region. These transects are presented as gravity models, but they are constrained by the available seismic reflection/refraction, passive seismic, magnetic, drilling, and geological data. The key transect is based on the PASSCAL wide-angle reflection/refraction experiment that extended from the Ouachita Mountains in Arkansas across the Sabine uplift in Louisiana and into the northernmost Gulf of Mexico. This experiment imaged the Iapetan rifted margin and showed that it was not strongly deformed. This model and one across Alabama delineated crustal blocks south of the rifted margin of Laurentia whose origin is unknown. In central Texas, the models show a crust that thins gradually from the Ouachita orogenic belt southward across the coastline to the edge of the continental margin in the Gulf of Mexico. In western Texas and adjacent northern Mexico, another crustal block has been proposed. Thus, our integrated models and geologic constraints show that the Appalachian and Ouachita orogenic belts were formed during assembly of Pangea (by 270 Ma), and were driven onto the Iapetan rifted margin by collisions with arcs, exotic terranes, and other continents. They also show that the sinuous curves of the Appalachian-Ouachita orogen mimic the shape of the Iapetan rifted margin and subsequent passive-margin shelf edge. Our results indicate that the Ouachita orogeny appears to be the result of soft collisions that have left the pre-orogenic rifted margins largely intact and reflect the complex interactions of compressional and strike-slip deformation.

  6. Sources and mass inventory of sedimentary polycyclic aromatic hydrocarbons in the Gulf of Thailand: Implications for pathways and energy structure in SE Asia.

    PubMed

    Hu, Limin; Shi, Xuefa; Qiao, Shuqing; Lin, Tian; Li, Yuanyuan; Bai, Yazhi; Wu, Bin; Liu, Shengfa; Kornkanitnan, Narumol; Khokiattiwong, Somkiat

    2017-01-01

    Surface sediments obtained from a matrix of 92 sample sites in the Gulf of Thailand (GOT) were analyzed for a comprehensive study of the distribution, sources, and mass inventory of polycyclic aromatic hydrocarbons (PAHs) to assess their input pathways and impacts of the regional land-based energy structure on the deposition of PAHs on the adjacent continental margins. The concentration of 16 PAHs in the GOT ranged from 2.6 to 78.1ng/g (dry weight), and the mean concentration was 19.4±15.1ng/g. The spatial distribution pattern of 16 PAH was generally consistent with that of sediment grain size, suggesting the influence of regional hydrodynamic conditions. Correlation and principal component analysis of the PAHs indicated that direct land-based inputs were dominantly responsible for the occurrence of PAHs in the upper GOT and the low molecular weight (LMW) PAHs in the coastal region could be from petrogenic sources. A positive matrix factorization (PMF) model apportioned five contributors: petroleum residues (~44%), biomass burning (~13%), vehicular emissions (~11%), coal combustion (~6%), and air-water exchange (~25%). Gas absorption may be a significant external input pathway for the volatile PAHs in the open GOT, which further implies that atmospheric loading could be important for the sink of PAHs in the open sea of the Southeast Asia (SE Asia). The different PAH source patterns obtained and a significant disparity of PAH mass inventory in the sediments along the East and Southeast Asia continental margins can be ascribed mainly to different land-based PAH emission features under the varied regional energy structure in addition to the depositional environment and climatic conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Helical flow couplets in submarine gravity underflows

    NASA Astrophysics Data System (ADS)

    Imran, Jasim; Ashraful Islam, Mohammad; Huang, Heqing; Kassem, Ahmed; Dickerson, John; Pirmez, Carlos; Parker, Gary

    2007-07-01

    Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. The tie between channel curvature and its effects on these gravity flows has been an enigma. This paper records the results of both large-scale laboratory measurements and a numerical simulation that captures the three-dimensional flow field of a gravity underflow at a channel bend. These findings reveal that channel curvature drives two helical flow cells, one stacked upon the other. The lower cell forms near the channel bed surface and has a circulation pattern similar to that observed in fluvial channels, i.e., with a near-bed flow directed inward. The other circulation cell forms in the upper part of the gravity flow and has a streamwise vorticity with the opposite sense of the lower cell.

  8. Elastic thickness estimates at northeast passive margin of North America and its implications

    NASA Astrophysics Data System (ADS)

    Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.

    2011-06-01

    Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.

  9. Automatic detection of Floating Ice at Antarctic Continental Margin from Remotely Sensed Image with Object-oriented Matching

    NASA Astrophysics Data System (ADS)

    Zhao, Z.

    2011-12-01

    Changes in ice sheet and floating ices around that have great significance for global change research. In the context of global warming, rapidly changing of Antarctic continental margin, caving of ice shelves, movement of iceberg are all closely related to climate change and ocean circulation. Using automatic change detection technology to rapid positioning the melting Region of Polar ice sheet and the location of ice drift would not only strong support for Global Change Research but also lay the foundation for establishing early warning mechanism for melting of the polar ice and Ice displacement. This paper proposed an automatic change detection method using object-based segmentation technology. The process includes three parts: ice extraction using image segmentation, object-baed ice tracking, change detection based on similarity matching. An approach based on similarity matching of eigenvector is proposed in this paper, which used area, perimeter, Hausdorff distance, contour, shape and other information of each ice-object. Different time of LANDSAT ETM+ data, Chinese environment disaster satellite HJ1B date, MODIS 1B date are used to detect changes of Floating ice at Antarctic continental margin respectively. We select different time of ETM+ data(January 7, 2003 and January 16, 2003) with the area around Antarctic continental margin near the Lazarev Bay, which is from 70.27454853 degrees south latitude, longitude 12.38573410 degrees to 71.44474167 degrees south latitude, longitude 10.39252222 degrees,included 11628 sq km of Antarctic continental margin area, as a sample. Then we can obtain the area of floating ices reduced 371km2, and the number of them reduced 402 during the time. In addition, the changes of all the floating ices around the margin region of Antarctic within 1200 km are detected using MODIS 1B data. During the time from January 1, 2008 to January 7, 2008, the floating ice area decreased by 21644732 km2, and the number of them reduced by 83080. The results show that the object-based information extraction algorithm can obtain more precise details of a single object, while the change detection method based on similarity matching can effectively tracking the change of floating ice.

  10. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  11. Velocity Model for CO2 Sequestration in the Southeastern United States Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Ollmann, J.; Knapp, C. C.; Almutairi, K.; Almayahi, D.; Knapp, J. H.

    2017-12-01

    The sequestration of carbon dioxide (CO2) is emerging as a major player in offsetting anthropogenic greenhouse gas emissions. With 40% of the United States' anthropogenic CO2 emissions originating in the southeast, characterizing potential CO2 sequestration sites is vital to reducing the United States' emissions. The goal of this research project, funded by the Department of Energy (DOE), is to estimate the CO2 storage potential for the Southeastern United States Atlantic Continental Margin. Previous studies find storage potential in the Atlantic continental margin. Up to 16 Gt and 175 Gt of storage potential are estimated for the Upper Cretaceous and Lower Cretaceous formations, respectively. Considering 2.12 Mt of CO2 are emitted per year by the United States, substantial storage potential is present in the Southeastern United States Atlantic Continental Margin. In order to produce a time-depth relationship, a velocity model must be constructed. This velocity model is created using previously collected seismic reflection, refraction, and well data in the study area. Seismic reflection horizons were extrapolated using well log data from the COST GE-1 well. An interpolated seismic section was created using these seismic horizons. A velocity model will be made using P-wave velocities from seismic reflection data. Once the time-depth conversion is complete, the depths of stratigraphic units in the seismic refraction data will be compared to the newly assigned depths of the seismic horizons. With a lack of well control in the study area, the addition of stratigraphic unit depths from 171 seismic refraction recording stations provides adequate data to tie to the depths of picked seismic horizons. Using this velocity model, the seismic reflection data can be presented in depth in order to estimate the thickness and storage potential of CO2 reservoirs in the Southeastern United States Atlantic Continental Margin.

  12. Oceanic-type accretion may begin before complete continental break-up

    NASA Astrophysics Data System (ADS)

    Geoffroy, L.; Zalan, P. V.; Viana, A. R.

    2011-12-01

    Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.

  13. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  14. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India

    NASA Astrophysics Data System (ADS)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.

    2018-05-01

    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  15. Nutrient Distributions, Transports, and Budgets on the Inner Margin of a River-Dominated Continental Shelf

    DTIC Science & Technology

    2013-10-02

    and budgets on the inner margin of a river-dominated continental shelf, J. Geophys. Res. Oceans , 118, 4822–4838, doi:10.1002/jgrc.20362. 1...13/10.1002/jgrc.20362 4822 JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS , VOL. 118, 4822–4838, doi:10.1002/jgrc.20362, 2013 Report Documentation Page Form...shelf, and current velocities obtained from a three-dimensional (3-D) hydro- dynamic model (the Navy Coastal Ocean Model). The budget terms were used to

  16. The crustal structure of the continental margin east of the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Schimschal, Claudia Monika; Jokat, Wilfried

    2018-01-01

    The 1500 km long Falkland Plateau is the most prominent morphological structure in the southern South Atlantic Ocean, which crustal composition and development is mainly unknown. At the westernmost boundary of the plateau, the Falkland Islands' Precambrian geology provides the only insight into basement structure and age. The question of whether continental basement of a similar age and origin underlies the Falkland Plateau further east is strongly disputed. We present new high quality constraints on the crustal fabric of the plateau east of the Falkland Islands, based on wide-angle seismic and potential field data acquired in 2013. The P-wave velocity model, supported by amplitude and density modelling, shows that the Falkland Plateau Basin is filled with 8 km of sediments. Continental crust of 34 km thickness underlies the Falkland Islands. The eastern continental margin of the Falkland Islands can be classified as a volcanic rifted margin. The Falkland Plateau Basin is floored by up to 20 km thick oceanic crust. The exceptionally thick igneous crust and its high lower crustal velocities (up to 7.4 km/s) indicate the influence of a regional thermal mantle anomaly during its formation, which provided extra melt material. The wide-angle model revises published crustal models, which predicted thin oceanic or thick extended continental crust below the Falkland Plateau Basin. Our results provide a sound basis for future tectonic interpretations of the area.

  17. The wide-angle seismic image of a complex rifted margin, offshore North Namibia: Implications for the tectonics of continental breakup

    NASA Astrophysics Data System (ADS)

    Planert, Lars; Behrmann, Jan; Jokat, Wilfried; Fromm, Tanja; Ryberg, Trond; Weber, Michael; Haberland, Christian

    2017-10-01

    Voluminous magmatism during the South Atlantic opening has been considered as a classical example for plume related continental breakup. We present a study of the crustal structure around Walvis Ridge, near the intersection with the African margin. Two wide-angle seismic profiles were acquired. One is oriented NNW-SSE, following the continent-ocean transition and crossing Walvis Ridge. A second amphibious profile runs NW-SE from the Angola Basin into continental Namibia. At the continent-ocean boundary (COB) the mafic crust beneath Walvis Ridge is up to 33 km thick, with a pronounced high-velocity lower crustal body. Towards the south there is a smooth transition to 20-25 km thick crust underlying the COB in the Walvis Basin, with a similar velocity structure, indicating a gabbroic lower crust with associated cumulates at the base. The northern boundary of Walvis Ridge towards the Angola Basin shows a sudden change to oceanic crust only 4-6 km thick, coincident with the projection of the Florianopolis Fracture Zone, one of the most prominent tectonic features of the South Atlantic ocean basin. In the amphibious profile the COB is defined by a sharp transition from oceanic to rifted continental crust, with a magmatic overprint landward of the intersection of Walvis Ridge with the Namibian margin. The continental crust beneath the Congo Craton is 40 km thick, shoaling to 35 km further SE. The velocity models show that massive high-velocity gabbroic intrusives are restricted to a narrow zone directly underneath Walvis Ridge and the COB in the south. This distribution of rift-related magmatism is not easily reconciled with models of continental breakup following the establishment of a large, axially symmetric plume in the Earth's mantle. Rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magma-dominated southern and an essentially amagmatic northern segment.

  18. Quantitative calculation and numerical modeling of the conjugate margins of the South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, D.; Pérez-Gussinyé, M.; Wang, W.; Bai, Y.

    2017-12-01

    South China margin rifted on the tectonic setting of the early active continental margin since Cenozoic. The present South China Sea (SCS) opened at 32 Ma and showed propagation from east to west, with different crustal and sedimentary structures at the conjugate continental margins. Based on the latest high-quality multi-channel seismic data, bathymetric data, and other obtained seismic profiles, the asymmetric characteristics between the conjugate margins of the SCS are revealed. Spatial variation of morphology, basement structure and marginal faults are discovered among the SCS margin profiles. We calculate the lithospheric stretching factors and analyze the anomalous post-rift subsidence from two typical seismic profiles in the conjugate margins of the SCS, with integrated method of 2D forward and inversion based on flexural-cantilever model. We propose a differential extension model to explain the spatial differences in the SCS margins and emphasize the role of detachment fault in evolutionary process. Numerical modeling has a great advantage in studying the rifted margin formation mechanism. Dynamic modeling for the formation of asymmetric conjugate margins of the SCS is carried out by solving the thermal-mechanical equation, based on the viscoelastic-plastic model. The results show that the width and symmetry of the margin are controlled by the crustal rheological structure and sedimentation rate. Crust with lower strength is prone to distributed and persistent faulting instead of strain localization, which results in the wider margin. On the contrary, the stronger crust would generate large faults and lead to strain localization in a small amount of them, easier to form narrow continental margin. Large sediment loading is favorable for the development of large faults, meanwhile, the subsequent thermal effect reduces the crustal viscosity. A sudden transition zone of sedimentation rate is prone to strain localization and accelerates the crust rift, which may affect the future break-up. The numerical modeling with full dynamics in SCS needs a further investigation. Acknowledge: This study was supported by the National Natural Science Foundation of China (No. 41476042, 41506055 )

  19. Geology and physiography of the continental margin north of Alaska and implications for the origin of the Canada Basin

    USGS Publications Warehouse

    Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.

    1979-01-01

    The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends northwest from Cape Lisburne. Hope basin, an extensional intracontinental sedimentary basin of Tertiary age, underlies the Chukchi Sea south of Herald arch.

  20. Towards Biogeochemical Modeling of Anaerobic Oxidation of Methane: Characterization of Microbial Communities in Methane-bearing North American Continental Margin Sediments

    NASA Astrophysics Data System (ADS)

    Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.

    2015-12-01

    Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.

  1. Biogeochemical and Microbial Survey of Gravity Cores from the Guaymas Basin and Sonora Margin

    NASA Astrophysics Data System (ADS)

    Buckley, A.; Mckay, L. J.; Chanton, J.; Hensen, C.; Turner, T.; Aiello, I. W.; Ravelo, A. C.; Mortera, C.; Teske, A.

    2015-12-01

    During the cruise "Guaymas14" with RV El Puma (Oct. 14-25, 2014), 15 sediment cores were obtained from the Guaymas Basin Ridge flanks and the Sonora Margin, to contrast the shallow subsurface sediments of the seafloor set at this spreading center and its adjacent continental margin. Here we present biogeochemical profiles of porewater dissolved gases and stable ions, along with high-throughout 16S rRNA gene sequencing of selected samples. Cores from the NW and SE ends of the Guaymas Basin ridge flanks were not sulfidic, and showed neither sulfate depletion nor methane accumulation. In contrast, samples of compression-impacted Sonora Margin on the NE edge of Guaymas Basin and from the upper Sonora Margin beneath the oxygen minimum zone showed an abundance of sulfide, DIC with sulfate depletion, and accumulation of biogenic methane (δ13C-CH4 ca. -85 to -88 ‰) at supersaturated concentrations below sulfate-replete sediment. Samples from an attenuated off-axis seep site on the NW flank of Guaymas Basin differed from both Sonora Margin and Guaymas Basin. The off-axis seep sediments contained 1 to 1.5 mM methane, with distinct δ13C -isotopic content (δ13C-CH4 near -60 ‰); intermediate to the biogenic methane of the Sonora Margin and the hydrothermally produced methane at Guaymas Basin. Unaltered sulfate and low sulfide concentrations indicate insufficiently reduced conditions, suggesting the methane was not produced in situ. Porewater DIC concentrations in the old seep site and the control site were similar to each other (3-5 mM), and lower than in the Sonora Margin sites (ca. 20-40 mM), indicating low bioremineralization in the old seep site and control sediments. Diverse seafloor habitats are expected to result in distinct microbiota that range from strictly anaerobic seep specialists and methane-cycling archaea in the Sonora Margin to diversified heterotrophic communities in the off-axis ridge flank sediments of Guaymas Basin; high-throughput sequencing should also address potential hydrothermal microbial signature in the attenuated off-axis seep site.

  2. High-sensitivity aeromagnetic survey of the US Atlantic continental margin.

    USGS Publications Warehouse

    Behrendt, John C.; Klitgord, Kim D.

    1980-01-01

    The US Geological Survey contracted a high-sensitivity, digital aeromagnetic survey that was flown over the US Atlantic continental margin over a period of 15 months between 1974 and 1976. The 185 000 km of profile data have a relative accuracy approaching a few tenths of a nanotesla, which allowed compilation into maps at a scale of 1:250 000, with a contour interval of 2 nT. Automatic data processing using the Werner method allowed calculations of apparent depth to sources of the magnetic anomalies on all of the profiles, assuming a dike or interface as a source. Comparison of the computed depths to magnetic basement with multichannel seismic profiles across the survey area helped to reduce ambiguities in magnetic depth estimates and enabled interpolation of basement structures between seismic profiles. The resulting map showing depth to basement of the Atlantic continental margin is compatible with available multichannel seismic data, and we consider it a reasonable representation of the base of the sedimentary column. -Authors

  3. First Evidence for the Presence of Iron Oxidizing Zetaproteobacteria at the Levantine Continental Margins

    PubMed Central

    Rubin-Blum, Maxim; Antler, Gilad; Tsadok, Rami; Shemesh, Eli; Austin, James A.; Coleman, Dwight F.; Goodman-Tchernov, Beverly N.; Ben-Avraham, Zvi; Tchernov, Dan

    2014-01-01

    During the 2010–2011 E/V Nautilus exploration of the Levantine basin’s sediments at the depth of 300–1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp. – like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column. PMID:24614177

  4. International year of planet earth 7. Oceans, submarine land-slides and consequent tsunamis in Canada

    USGS Publications Warehouse

    Mosher, D.C.

    2009-01-01

    Canada has the longest coastline and largest continental margin of any nation in the World. As a result, it is more likely than other nations to experience marine geohazards such as submarine landslides and consequent tsunamis. Coastal landslides represent a specific threat because of their possible proximity to societal infrastructure and high tsunami potential; they occur without warning and with little time lag between failure and tsunami impact. Continental margin landslides are common in the geologic record but rare on human timescales. Some ancient submarine landslides are massive but more recent events indicate that even relatively small slides on continental margins can generate devastating tsunamis. Tsunami impact can occur hundreds of km away from the source event, and with less than 2 hours warning. Identification of high-potential submarine landslide regions, combined with an understanding of landslide and tsunami processes and sophisticated tsunami propagation models, are required to identify areas at high risk of impact.

  5. Observations of seismicity and ground motion in the northeast U.S. Atlantic margin from ocean bottom seismometer data

    USGS Publications Warehouse

    Flores, Claudia; ten Brink, Uri S.; McGuire, Jeffrey J.; Collins, John A.

    2017-01-01

    Earthquake data from two short-period ocean-bottom seismometer (OBS) networks deployed for over a year on the continental slope off New York and southern New England were used to evaluate seismicity and ground motions along the continental margin. Our OBS networks located only one earthquake of Mc∼1.5 near the shelf edge during six months of recording, suggesting that seismic activity (MLg>3.0) of the margin as far as 150–200 km offshore is probably successfully monitored by land stations without the need for OBS deployments. The spectral acceleration from two local earthquakes recorded by the OBS was found to be generally similar to the acceleration from these earthquakes recorded at several seismic stations on land and to hybrid empirical acceleration relationships for eastern North America. Therefore, the seismic attenuation used for eastern North America can be extended in this region at least to the continental slope. However, additional offshore studies are needed to verify these preliminary conclusions.

  6. Lithospheric strength variations as a control on new plate boundaries: examples from the northern Red Sea region

    NASA Astrophysics Data System (ADS)

    Steckler, Michael S.; ten Brink, Uri S.

    1986-08-01

    The complex plate boundary between Arabia and Africa at the northern end of the Red Sea includes the Gulf of Suez rift and the Gulf of Aqaba—Dead Sea transform. Geologic evidence indicates that during the earliest phase of rifting the Red Sea propagated NNW towards the Mediterranean Sea creating the Gulf of Suez. Subsequently, the majority of the relative movement between the plates shifted eastward to the Dead Sea transform. We propose that an increase in the strength of the lithosphere across the Mediterranean continental margin acted as a barrier to the propagation of the rift. A new plate boundary, the Dead Sea transform formed along a zone of minimum strength. We present an analysis of lithospheric strength variations across the Mediterranean continental margin. The main factors controlling these variations are the geotherm, crustal thickness and composition, and sediment thickness. The analysis predicts a characteristic strength profile at continental margins which consists of a marked increase in strength seaward of the hinge zone and a strength minimum landward of the hinge zone. This strength profile also favors the creation of thin continental slivers such as the Levant west of the Dead Sea transform and the continental promontory containing Socotra Island at the mouth of the Gulf of Aden. Calculations of strength variations based on changes of crustal thickness, geotherm and sediment thickness can be extended to other geologic settings as well. They can explain the location of rerifting events at intracratonic basins, of backarc basins and of major continental strike-slip zones.

  7. Structure and petroleum potential of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska

    USGS Publications Warehouse

    Bruns, T.R.

    1982-01-01

    Major structural features of the Yakutat segment, the segment of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska, are delineated by multichannel seismic reflection data. A large structural high is centered on Fairweather Ground and lies generally at the edge of the shelf from Cross Sound to west of the Alsek Valley. A basement uplift, the Dangerous River zone, along which the seismic acoustic basement shallows by up to two kilometers, extends north from the western edge of Fairweather Ground towards the mouth of the Dangerous River. The Dangerous River zone separates the Yakutat segment into two distinct subbasins. The eastern subbasin has a maximum sediment thickness of about 4 km, and the axis of the basin is near and parallel to the coast. Strata in this basin are largely of late Cenozoic age (Neogene and Quaternary) and approximately correlate with the onshore Yakataga Formation. The western subbasin has a maximum of at least 9 km of sediment, comprised of a thick (greater than 4.5 km) Paleogene section overlain by late Cenozoic strata. The Paleogene section is truncated along the Dangerous River zone by a combination of erosion, faulting, and onlap onto the acoustic basement. Within the western subbasin, the late Cenozoic basin axis is near and parallel to the coast, but the Paleogene basin axis appears to trend in a northwest direction diagonally across the shelf. Sedimentary strata throughout the Yakutat shelf show regional subsidence and only minor deformation except in the vicinity of the Fairweather Ground structural high, near and along the Dangerous River zone, and at the shoreline near Lituya Bay. Seismic data across the continental slope and adjacent deep ocean show truncation at the continental slope of Paleogene strata, the presence of a thick (to 6 km) undeformed or mildly deformed abyssal sedimentary section at the base of the slope that in part onlaps the slope, and a relatively narrow zone along the slope or at the base of the slope where faulting may have occurred. Observed deformation at the base of the slope is primarily related to the late Cenozoic uplift of Fairweather Ground, and to Quaternary folding perpendicular to the Pacific-North America relative convergence vector. No accretionary section or major deformation is observed along the continental slope. The absence of these features suggests that no major subduction of the Pacific plate beneath the Yakutat margin has occurred during the late Cenozoic. However, transform faulting along the base of the slope has occurred, because probable Oligocene oceanic basement is juxtaposed against Mesozoic and Paleogene sedimentary strata of the Yakutat slope. This juxtaposition most likely occurred during late Oligocene and Miocene time. During much of the late Cenozoic, and especially during Pliocene-Pleistocene time, the Yakutat segment has apparently been moving northward with the Pacific plate. Dredge samples from the continental slope recovered potential hydrocarbon source and reservoir rocks from the Paleogene sedimentary sequence. Most of the organic matter from these samples is immature to marginally mature. Lopatin calculations suggest that rocks beneath the shelf are likely to be thermally mature at a depth of 4 to 5 km and deeper. In general, the strata at these depths are largely of Paleogene age. Thus, the Paleogene strata may have significant resource potential if source and reservoir rocks similar to those dredged at the slope are present below the shelf. The Paleogene strata are contained primarily within the western subbasin; strata in the east subbasin appear to have little resource potential. Structural traps are apparently present in parts of the basin near and along the Dangerous River zone. These traps are in an updip position from potentially mature strata of the western subbasin, and may hold commercial accumulations of hydrocarbons, if sufficient hydrocarbon generation and migration has occurred

  8. Geochemistry of continental subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Hermann, Joerg

    2014-12-01

    The composition of continental subduction-zone fluids varies dramatically from dilute aqueous solutions at subsolidus conditions to hydrous silicate melts at supersolidus conditions, with variable concentrations of fluid-mobile incompatible trace elements. At ultrahigh-pressure (UHP) metamorphic conditions, supercritical fluids may occur with variable compositions. The water component of these fluids primarily derives from structural hydroxyl and molecular water in hydrous and nominally anhydrous minerals at UHP conditions. While the breakdown of hydrous minerals is the predominant water source for fluid activity in the subduction factory, water released from nominally anhydrous minerals provides an additional water source. These different sources of water may accumulate to induce partial melting of UHP metamorphic rocks on and above their wet solidii. Silica is the dominant solute in the deep fluids, followed by aluminum and alkalis. Trace element abundances are low in metamorphic fluids at subsolidus conditions, but become significantly elevated in anatectic melts at supersolidus conditions. The compositions of dissolved and residual minerals are a function of pressure-temperature and whole-rock composition, which exert a strong control on the trace element signature of liberated fluids. The trace element patterns of migmatic leucosomes in UHP rocks and multiphase solid inclusions in UHP minerals exhibit strong enrichment of large ion lithophile elements (LILE) and moderate enrichment of light rare earth elements (LREE) but depletion of high field strength elements (HFSE) and heavy rare earth elements (HREE), demonstrating their crystallization from anatectic melts of crustal protoliths. Interaction of the anatectic melts with the mantle wedge peridotite leads to modal metasomatism with the generation of new mineral phases as well as cryptic metasomatism that is only manifested by the enrichment of fluid-mobile incompatible trace elements in orogenic peridotites. Partial melting of the metasomatic mantle domains gives rise to a variety of mafic igneous rocks in collisional orogens and their adjacent active continental margins. The study of such metasomatic processes and products is of great importance to understanding of the mass transfer at the slab-mantle interface in subduction channels. Therefore, the property and behavior of subduction-zone fluids are a key for understanding of the crust-mantle interaction at convergent plate margins.

  9. Late Palaeozoic-Cenozoic assembly of the Tethyan orogen in the light of evidence from Greece and Albania

    NASA Astrophysics Data System (ADS)

    Robertson, A. H. F.

    2012-04-01

    The objective here is to use the geology and tectonics of a critical part of the Tethyan orogen, represented by Greece and Albania, to shed light on the tectonic development of Tethys on a regional, to global scale, particularly the history of convergence during Late Palaeozoic to Cenozoic time. For Carboniferous time much evidence suggests that the Korabi-Pelagonian crustal unit as exposed in Albania and Greece formed above a northward-dipping subduction zone along the Eurasia continental margin, with Palaeotethys to the south. However, there is also some evidence of southward subduction beneath Gondwana especially from southern Greece and central southern Turkey. Palaeotethys is inferred to have closed in Europe as far to the east as the longitude of Libya, while remaining open beyond this. There is still uncertainty about the Pangea A-type reconstruction that would restore all of the present units in the area to within the E Mediterranean region, versus the Pangea B-type reconstruction that would require right-lateral displacement of exotic terranes, by up to 3,500 km eastwards. In either reconstruction, fragments of the Variscan collisional orogen are likely to have been displaced eastwards (variable distances) in the Balkan region prior to Late Permian-Early Triassic time. From ~Late Permian, the Greece-Albania crustal units were located in their present relative position within Tethys as a whole. From the mid-Permian, onwards the northern margin of Gondwana was affected by crustal extension. A Mesozoic ocean (Pindos-Mirdita ocean) then rifted during Early-Middle Triassic time, culminating in final continental break-up and seafloor spreading during the Late Triassic (Carnian-Norian). Subduction-influenced volcanics of mainly Early-Middle Triassic age probably reflect the extraction of magma from sub-continental lithosphere that was enriched in subduction-related fluids and volatiles during an earlier, ?Variscan subduction event. The existence of Upper Triassic mid-ocean ridge-type igneous rocks, known locally in Albania and Greece, points to rifting of a Red Sea-type oceanic basin rather than a back-arc basin related to contemporaneous subduction. After initial, inferred slow spreading at an Upper Triassic, rifted ocean ridge and spreading during the Early Jurassic, the ocean basin underwent regional convergence. Subduction was initiated at, or near, a spreading axis perhaps adjacent to an oceanic fracture zone. The Jurassic supra-subduction zone-type ophiolites of both Greece and Albania largely relate to melting of rising asthenosphere in the presence of volatiles (water) that originated from subducting oceanic lithosphere. High-magnesian boninite-type magmas that are present in both the Albanian and Greece ophiolites and some underlying melanges reflect remelting of previously depleted oceanic upper mantle. Localised MOR-type ophiolites of Late Middle Jurassic age, mainly exposed in NE Albania, were created at a rifted spreading axis. The amphibolite-facies metamorphic sole of the ophiolites was mainly derived from oceanic crust (including within-plate type seamounts), whereas the underlying lower-grade, greenschist facies sole was mainly sourced from the rifted continental margin. The melange, dismembered thrust sheets and polymict debris flows ("olistostromes") beneath the ophiolites formed by accretion and gravity reworking of continental margin units. The in situ radiolarian chert cover of the ophiolites in northern Albania is overlain by polymict debris flows ("olistostromes"). Pelagic carbonate deposition followed during Tithonian-Berriasian time and then restoration of a regional carbonate platform during the Cretaceous. Exhumation of deeply buried parts of the over-ridden continental margin probably took place during the Early Cretaceous. Structural evidence, mainly from northern Greece (Vourinos, Pindos and Othris areas), indicates that the ophiolites, the metamorphic sole, the accretionary melange, and the underlying continental margin units were all deformed by top-to-the-northeast thrusting during Late Middle-Early Late Jurassic time. However, such kinematic evidence is not obviously replicated in Albania, where there are reports of ~southwest-directed (or variable) emplacement. Remaining Pindos-Mirdita oceanic crust subducted ~southwestwards during Late Cretaceous-Eocene time, while oceanic crust continued to form in the south-Aegean region at least locally during Late Cretaceous time. During Early Cenozoic time the Pindos-Mirdita ocean closed progressively southwards, triggering mainly southward progradation of turbidites derived from the over-riding Korabi-Pelagonian microcontinent. Smaller volumes of sediment were also derived from the Apulia (Adria) continent. The Mesohellenic Trough of Greece and its counterpart in Albania evolved from an Eocene fore-arc-type basin above subducting oceanic lithosphere to a thrust-top basin as continental crust continued to underthrust during the Oligocene after final closure of the Pindos-Mirdita ocean. Miocene and Plio-Quaternary successor flexural foredeeps developed in response to continuing regional plate convergence. The preferred tectonic alternatives are assembled into a new overall tectonic model, which in turn needs to be tested and developed in the light of future studies. Reference: Robertson, A.H.F. Tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region during Late Palaeozoic-Cenozoic time. International Geological Review, in press.

  10. Coincidence or not? Interconnected gas/fluid migration and ocean-atmosphere oscillations in the Levant Basin

    NASA Astrophysics Data System (ADS)

    Lazar, Michael; Lang, Guy; Schattner, Uri

    2016-08-01

    A growing number of studies on shallow marine gas/fluid systems from across the globe indicate their abundance throughout geological epochs. However, these episodic events have not been fully integrated into the fundamental concepts of continental margin development, which are thought to be dictated by three elements: tectonics, sedimentation and eustasy. The current study focuses on the passive sector of the Levant Basin on the eastern Mediterranean continental margin where these elements are well constrained, in order to isolate the contribution of gas/fluid systems. Single-channel, multichannel and 3D seismic reflection data are interpreted in terms of variance, chaos, envelope and sweetness attributes. Correlation with the Romi-1 borehole and sequence boundaries constrains interpretation of seismic stratigraphy. Results show a variety of fluid- or gas-related features such as seafloor and subsurface pockmarks, volumes of acoustic blanking, bright spots, conic pinnacle mounds, gas chimneys and high sweetness zones that represent possible secondary reservoirs. It is suggested that gas/fluid migrate upwards along lithological conduits such as falling-stage systems tracts and sequence boundaries during both highstands and lowstands. In all, 13 mid-late Pleistocene sequence boundaries are accompanied by independent evidence of 13 eustatic sea-level drops. Whether this connection is coincidental or not requires further research. These findings fill gaps between previously reported sporadic appearances throughout the Levant Basin and margin and throughout geological time from the Messinian until the present day, and create a unified framework for understanding the system as a whole. Repetitive appearance of these features suggests that their role in the morphodynamics of continental margins is more important than previously thought and thus may constitute one of the key elements of continental margin development.

  11. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  12. New Insights into Passive Margin Development from a Global Deep Seismic Reflection Dataset

    NASA Astrophysics Data System (ADS)

    Bellingham, Paul; Pindell, James; Graham, Rod; Horn, Brian

    2014-05-01

    The kinematic and dynamic evolution of the world's passive margins is still poorly understood. Yet the need to replace reserves, a high oil price and advances in drilling technology have pushed the international oil and gas industry to explore in the deep and ultra-deep waters of the continental margins. To support this exploration and help understand these margins, ION-GXT has acquired, processed and interpreted BasinSPAN surveys across many of the world's passive margins. Observations from these data lead us to consider the modes of subsidence and uplift at both volcanic and non-volcanic margins. At non-volcanic margins, it appears that frequently much of the subsidence post-dates major rifting and is not thermal in origin. Rather the subsidence is associated with extensional displacement on a major fault or shear zone running at least as deep as the continental Moho. We believe that the subsidence is structural and is probably associated with the pinching out (boudinage) of the Lower Crust so that the Upper crust effectively collapses onto the mantle. Eventually this will lead to the exhumation of the sub-continental mantle at the sea bed. Volcanic margins present more complex challenges both in terms of imaging and interpretation. The addition of volcanic and plutonic material into the system and dynamic effects all impact subsidence and uplift. However, we will show some fundamental observations regarding the kinematic development of volcanic margins and especially SDRs which demonstate that the process of collapse and the development of shear zones within and below the crust are also in existence at this type of margin. A model is presented of 'magma welds' whereby packages of SDRs collapse onto an emerging sub-crustal shear zone and it is this collapse which creates the commonly observed SDR geometry. Examples will be shown from East India, Newfoundland, Brazil, Argentina and the Gulf of Mexico.

  13. Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism

    NASA Astrophysics Data System (ADS)

    Owen-Smith, T. M.; Ashwal, L. D.; Torsvik, T. H.; Ganerød, M.; Nebel, O.; Webb, S. J.; Werner, S. C.

    2013-12-01

    Silhouette and North Islands in the Seychelles represent an alkaline plutonic-volcanic complex, dated at 63 to 63.5 Ma by U-Pb zircon and 40Ar/39Ar methods. This magmatism coincides with the final stages of the cataclysmic Deccan Traps continental flood volcanism in India (67 to 63 Ma), and thus a causal link has been suggested. Recent reconstructions have placed the Seychelles islands adjacent to the Laxmi Ridge and at the western margin of the Réunion mantle plume at the time of formation of the complex. Here we present geochemical evidence in support of the notion that the Seychelles alkaline magmatism was initiated by the peripheral activity of the Réunion mantle plume and is thus part of the Deccan magmatic event. Positive εNd (0.59 to 3.76) and εHf (0.82 to 6.79) and initial Sr of 0.703507 to 0.705643 at 65 Ma indicate derivation of the Seychelles alkaline magmas from a Réunion-like mantle source with an additional minor enriched component, suggesting entrainment of sub-continental lithospheric mantle. The similarity in trace element composition between the Seychelles suite and Deccan alkaline felsic and mafic rocks provides additional evidence for a common mantle source for the Seychelles and Deccan magmatism. Furthermore, we demonstrate the role of fractional crystallisation in the evolution of the alkaline suite. Modelling using major elements suggests that fractional crystallisation and varying degrees of accumulation of olivine, plagioclase, ilmenite, clinopyroxene, alkali feldspar and apatite can describe the spectrum of rock types, from gabbro, through syenite, to granite.

  14. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling

    NASA Astrophysics Data System (ADS)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley

    2017-09-01

    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented subsidiary faults serve as magma pathways, particularly where they are close to the intersection with a master fault. Also, the slip of a fault segment is enhanced when an adjacent fault kinematics is superimposed on the regional tectonic loading. Hence, finite element models help to understand coupled tectonics and volcanic processes, demonstrating that geological and geophysical observations can be accounted for by a small number of key first order boundary conditions.

  15. Climatic controls on arid continental basin margin systems

    NASA Astrophysics Data System (ADS)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed models suggest that the deposits of the Brockram alluvial fans have the potential to contain numerous preferential flow zones. Where these flow zones are adjacent to the unique deposits of the zone of interaction it affects basin-scale fluid flow by: 1) interconnecting decent reservoirs in the distal extent of the basin; 2) creating flow pathways away from these reservoirs; 3) introducing secondary baffles into the system; and, 4) creating a bypass to charge these distal reservoirs.

  16. Linking Observations of Dynamic Topography from Oceanic and Continental Realms around Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, K.; Hoggard, M. J.; White, N.; Winterbourne, J.

    2012-04-01

    In the last decade, there has been growing interest in predicting the spatial and temporal evolution of dynamic topography (i.e. the surface manifestation of mantle convection). By directly measuring Neogene and Quaternary dynamic topography around Australia's passive margins we assess the veracity of these predictions and the interplay between mantle convection and plate motion. We mapped the present dynamic topography by carefully measuring residual topography of oceanic lithosphere adjacent to passive margins. This map provides a reference with respect to which the relative record of vertical motions, preserved within the stratigraphic architecture of the margins, can be interpreted. We carefully constrained the temporal record of vertical motions along Australia's Northwest Shelf by backstripping Neogene carbonate clinoform rollover trajectories in order to minimise paleobathymetric errors. Elsewhere, we compile temporal constraints from published literature. Three principal insights emerge from our analysis. First, the present-day drawn-down residual topography of Australia, cannot be approximated by a regional tilt down towards the northeast, as previously hypothesised. The south-western and south-eastern corners of Australia are at negligible to slightly positive residual topography which slopes down towards Australia's northern margin and the Great Australian Bight. Secondly, the record of passive margin subsidence suggests drawdown across northern Australia commenced synchronously at 8±2 Ma. The amplitude of this synchronous drawdown corresponds to the amplitude of oceanic residual topography, indicating northern Australia was at an unperturbed dynamic elevation until drawdown commenced. The synchronicity of this subsidence suggests that the Australian plate has not been affected by a southward propagating wave of drawdown, despite Australia's rapid northward motion towards the subduction realm in south-east Asia. In contrast, it appears the mantle anomaly responsible for this drawdown is a relatively young, long-wavelength feature. Thirdly, there is an apparent mismatch between the current drawdown of oceanic lithosphere observed along Australia's southern margin and the onshore record of Cenozoic uplift. This disparity we attribute to the region undergoing recent uplift from a position of dynamic drawdown.

  17. Do Continental Shelves Act as an Atmospheric CO2 Sink?

    NASA Astrophysics Data System (ADS)

    Cai, W.

    2003-12-01

    Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.

  18. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  19. Wilson study cycles: Research relative to ocean geodynamic cycles

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.

    1985-01-01

    The effects of conversion of Atlantic (rifted) margins to convergent plate boundaries; oceanic plateaus at subduction zones; continental collision and tectonic escape; southern Africa rifts; and global hot spot distribution on long term development of the continental lithosphere were studied.

  20. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.

  1. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    NASA Astrophysics Data System (ADS)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry exists between these conjugate margins. The main implications from this work are that different processes may have operated during and after rifting on these conjugate margins. This concept should be carried forward when conducting conjugate margin studies elsewhere, particularly when exploring for hydrocarbons as prospectivity on one margin may not be predictive for its conjugate as different thermal and structural regimes may have been in operation during conjugate basin evolution.

  2. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa). Consequences for sedimentation and southeast Atlantic upwelling

    NASA Astrophysics Data System (ADS)

    Séranne, Michel; Nzé Abeigne, César-Rostand

    1999-10-01

    Seismic reflection profiles on the slope of the south Gabon continental margin display furrows 2 km wide and some 200 m deep, that develop normal to the margin in 500-1500 m water depth. Furrows are characterised by an aggradation/progradation pattern which leads to margin-parallel, northwestward migration of their axes through time. These structures, previously interpreted as turbidity current channels, display the distinctive seismic image and internal organisation of sediment drifts, constructed by the activity of bottom currents. Sediment drifts were initiated above a major Oligocene unconformity, and they developed within a Oligocene to Present megasequence of general progradation of the margin, whilst they are markedly absent from the underlying Late Cretaceous-Eocene aggradation megasequence. The presence of upslope migrating sediment waves, and the northwest migration of the sediment drifts indicate deposition by bottom current flowing upslope, under the influence of the Coriolis force. Such landwards-directed bottom currents on the slope probably represent coastal upwelling, which has been active along the west Africa margin throughout the Neogene.

  3. An Assessment of Global Organic Carbon Flux Along Continental Margins

    NASA Technical Reports Server (NTRS)

    Thunell, Robert

    2004-01-01

    This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.

  4. Sediment deposition rates on the continental margins of the eastern Arabian Sea using 210Pb, 137Cs and 14C.

    PubMed

    Somayajulu, B L; Bhushan, R; Sarkar, A; Burr, G S; Jull, A J

    1999-09-30

    Eight gravity cores from the active eastern continental margins of the Arabian Sea were dated using 210Pbxs, 137Cs and 14C. The short-term (< or = 100 years) sedimentation rates range from 0.06 to 0.66 cm/year where as the long-term (> or = 1000 years) ones using AMS 14C on planktonic foraminifera varied from 0.004 to 0.13 cm/year. For long-term chronology (< or = 50,000 years) AMS dating of well-cleaned planktonic foraminifera is most suited.

  5. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin are increasingly dominated by shallow decompressional melting of the ambient asthenosphere, the composition of which may in part be controlled by preferential channeling of plume material along the developing neo-oceanic axes of extension.

  6. Continental Scientific Drilling Program.

    DTIC Science & Technology

    1979-01-01

    Institute of Technology ALBERT W. BALLY, Shell Oil Company, Houston HUBERT L. BARNES, Pennsylvania State University ARTHUR L. BOETTCHER, University of...San Marcos arch near Victoria, Texas. Information from a hole would answer fundamental questions about ancient continental margins and would complement...did the uplift begin in this area? Is the crust continental or oceanic? Area 3 (Figure A-7), positioned upon the San Marcos arch to avoid the thick

  7. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.

    2007-01-01

    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former continental margin. The mafic cumulates and restites, owing to their high densities, eventually foundered into the mantle, leaving behind a more felsic crust. Our grid-based sampling allows us to estimate an unbiased average upper crustal composition for the Peninsular Ranges Batholith. Major and trace-element compositions are very similar to global continental crust averaged over space and time, but in detail, the Peninsular Ranges are slightly lower in compatible to mildly incompatible elements, MgO, Mg#, V, Sc, Co, and Cr. The compositional similarities suggest a strong arc component in global continental crust, but the slight discrepancies suggest that additional crust formation processes are also important in continent formation as a whole. Finally, the delaminated Sierran garnet pyroxenites have some of the lowest U/Pb ratios ever measured for silicate rocks. Such material, if recycled and stored in the deep mantle, would generate a reservoir with very unradiogenic Pb, providing one solution to the global Pb isotope paradox. ?? 2007 Elsevier B.V. All rights reserved.

  8. Rheology and strength of the Eurasian continental lithosphere in the foreland of the Taiwan collision belt: Constraints from seismicity, flexure, and structural styles

    NASA Astrophysics Data System (ADS)

    Mouthereau, FréDéRic; Petit, Carole

    2003-11-01

    Deformation in western Taiwan is characterized by variable depth-frequency distribution of crustal earthquakes which are closely connected with along-strike variations of tectonic styles (thin or thick skinned) around the Peikang High, a major inherited feature of the Chinese margin. To fit the calculated high crustal geotherm and the observed distribution of the crustal seismic activity, a Qz-diorite and granulite composition for the upper and the lower crust is proposed. We then model the plate flexure, through Te estimates, using brittle-elastic-ductile plate rheology. Flexure modeling shows that the best fit combination of Te-boundary condition is for thrust loads acting at the belt front. The calculated Te vary in the range of ˜15-20 km. These values are primarily a reflection of the thermal state of the rifted Chinese margin inherited from the Oligocene spreading in the South China Sea. However, other mechanical properties such as the degree of crust/mantle coupling and the thickness of the mechanically competent crust and mantle are considered. South of the Peikang High, flexure modeling reveals lower Te associated with thinner mechanically strong layers. Variable stress/strain distribution associated with a higher degree of crust/mantle decoupling is examined to explain plate weakening. We first show that plate curvature cannot easily explain strength reduction and observed seismic activity. Additional plate-boundary forces arising from the strong coupling induced by more frontal subduction of a buoyant crustal asperity, i.e., the Peikang High, with the overriding plate are required. Favorably oriented inherited features in the adjacent Tainan basin produce acceleration of strain rates in the upper crust and hence facilitate the crust/mantle decoupling as attested by high seismic activity and thick-skinned deformation. The relative weakening of the lower crust and mantle then leads to weaken the lithosphere. By contrast, to the north, more oblique collision and the lack of inherited features keep the lithosphere stronger. This study suggests that when the Eurasian plate enters the Taiwan collision, tectonic inheritance of the continental margin exerts a strong control on the plate deformation by modifying its strength.

  9. Chapter 32: Geology and petroleum potential of the Arctic Alaska petroleum province

    USGS Publications Warehouse

    Bird, K.J.; Houseknecht, D.W.

    2011-01-01

    The Arctic Alaska petroleum province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald Arch orogenic belt and south of the northern (outboard) margin of the Beaufort Rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America with total known resources (cumulative production plus proved reserves) of c. 28 BBOE. The province constitutes a significant part of a displaced continental fragment, the Arctic Alaska microplate, that was probably rifted from the Canadian Arctic margin during formation of the Canada Basin. Petroleum prospective rocks in the province, mostly Mississippian and younger, record a sequential geological evolution through passive margin, rift and foreland basin tectonic stages. Significant petroleum source and reservoir rocks were formed during each tectonic stage but it was the foreland basin stage that provided the necessary burial heating to generate petroleum from the source rocks. The lion's share of known petroleum resources in the province occur in combination structural-stratigraphic traps formed as a consequence of rifting and located along the rift shoulder. Since the discovery of the super-giant Prudhoe Bay accumulation in one of these traps in the late 1960s, exploration activity preferentially focused on these types of traps. More recent activity, however, has emphasized the potential for stratigraphic traps and the prospect of a natural gas pipeline in this region has spurred renewed interest in structural traps. For assessment purposes, the province is divided into a Platform assessment unit (AU), comprising the Beaufort Rift shoulder and its relatively undeformed flanks, and a Fold-and-Thrust Belt AU, comprising the deformed area north of the Brooks Range and Herald Arch tectonic belt. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil (BBO) and 122 trillion cubic feet (TCF) of nonassociated gas in the Platform AU and 2 BBO and 59 TCF of nonassociated gas in the Fold-and-Thrust Belt AU. ?? 2011 The Geological Society of London.

  10. Hydrothermal Exploration at the Chile Triple Junction - ABE's last adventure?

    NASA Astrophysics Data System (ADS)

    German, C. R.; Shank, T. M.; Lilley, M. D.; Lupton, J. E.; Blackman, D. K.; Brown, K. M.; Baumberger, T.; Früh-Green, G.; Greene, R.; Saito, M. A.; Sylva, S.; Nakamura, K.; Stanway, J.; Yoerger, D. R.; Levin, L. A.; Thurber, A. R.; Sellanes, J.; Mella, M.; Muñoz, J.; Diaz-Naveas, J. L.; Inspire Science Team

    2010-12-01

    In February and March 2010 we conducted preliminary exploration for hydrothermal plume signals along the East Chile Rise where it intersects the continental margin at the Chile Triple Junction (CTJ). This work was conducted as one component of our larger NOAA-OE funded INSPIRE project (Investigation of South Pacific Reducing Environments) aboard RV Melville cruise MV 1003 (PI: Andrew Thurber, Scripps) with all shiptime funded through an award of the State of California to Andrew Thurber and his co-PI's. Additional support came from the Census of Marine Life (ChEss and CoMarge projects). At sea, we conducted a series of CTD-rosette and ABE autonomous underwater vehicle operations to prospect for and determine the nature of any seafloor venting at, or adjacent to, the point where the the East Chile Rise subducts beneath the continental margin. Evidence from in situ sensing (optical backscatter, Eh) and water column analyses of dissolved CH4, δ3He and TDFe/TDMn concentrations document the presence of two discrete sites of venting, one right at the triple junction and the other a further 10km along axis, north of the Triple Junction, but still within the southernmost segment of the East Chile Rise. From an intercomparison of the abundance of different chemical signals we can intercompare likely characteristics of these differet source sites and also differentiate between them and the high methane concentrations released from cold seep sites further north along the Chile Margin, both with the CTJ region and also at the Concepcion Methane Seep Area (CMSA). This multi-disciplinary and international collaboration - involving scientists from Chile, the USA, Europe and Japan - can serve as an excellent and exciting launchpoint for wide-ranging future investigations of the Chile Triple Junction area - the only place on Earth where an oceanic spreading center is being actively subducted beneath a continent and also the only place on Earth where all known forms of deep-sea chemically-reducing ecosystem (hydrothermal vents, cold seeps, oxygen minimum zones and large organic falls) have the potential to co-exist.

  11. Intracontinental Deformation in the NW Iranian Plateau and Comparisons with the Northern Margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, L.; Jiang, M.; Talebian, M.; Wan, B.; Ai, Y.; Ghods, A.; Sobouti, F.; Xiao, W.; Zhu, R.

    2017-12-01

    This study investigates the intracontinental deformation and its relationship with the structure of the crust and uppermost mantle in the NW Iranian plateau by combining new seismic and geological observations, to understand how this part of the plateau deformed to accommodate the Arabia-Eurasia plate collision and how the property of the lithosphere controls the deformation pattern. In contrast to the adjacent Anatolian block that exhibits westward large-scale extrusion, the northwesternmost part of the Iranian plateau shows dispersed intracontinental deformations with the development of numerous small-scale and discontinuous right-lateral strike-slip faults. The dispersed surface structures and deformation pattern correspond well to the active volcanism and seismically slow crust and uppermost mantle, and hence a weak lithosphere of the area. Further to the southeast are the western part of the Alborz Mountains and the southern Caspian Sea, both of which are characterized by stronger and more rigid lithosphere with relatively fast crust and uppermost mantle and absence of Quaternary volcanoes. A sharp Moho offset of 18 km has been imaged at the border of the Alborz and southern Caspian Sea using teleseismic receiver function data from a dense seismic array deployed under a collaborative project named "China-Iran Geological and Geophysical Survey in the Iranian Plateau (CIGSIP)". The sharp Moho offset and the minor undulations of the Moho on both sides indicate insignificant intracrustal deformation but mainly relative crustal movements between the Alborz Mountains and southern Caspian Sea, a behavior consistent with the relatively rigid nature of the lithosphere. Similar Moho offsets and lithospheric structures have been reported at the borders between the Kunlun Mountains and Qaidam or Tarim Basins in the northern margin of the Tibetan plateau, suggesting the occurrence of relative crustal movements with the effects of rigid continental lithosphere in the region. The new observations in the NW Iranian plateau combined with those in the Tibetan plateau thus provide solid evidence that intracontinental deformation is primarily controlled by the structure and properties of the continental lithosphere that may or may not have been severely altered by the collisional processes at plate margins.

  12. The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.

    2007-12-01

    The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated temperature and excess flux, and magmatism dies off as this rift-restricted material is spent. The buoyancy of the plume-material also elevates the plate boundaries and enhances plate spreading forces initially. The rapid drop in magma productivity to the north correlates with the northern boundary of the wide and deep Cretaceous Vøring Basin, thus less plume material was accommodated off Lofoten. This model predicts that the magma segmentation will show little variation in the geochemical signature.

  13. Flexural bending of southern Tibet in a retro foreland setting

    PubMed Central

    Wang, Erchie; Kamp, Peter J. J.; Xu, Ganqing; Hodges, Kip V.; Meng, Kai; Chen, Lin; Wang, Gang; Luo, Hui

    2015-01-01

    The highest elevation of the Tibetan Plateau, lying 5,700 m above sea level, occurs within the part of the Lhasa block immediately north of the India-Tibet suture zone (Yarlung Zangbo suture zone, YZSZ), being 700 m higher than the maximum elevation of more northern parts of the plateau. Various mechanisms have been proposed to explain this differentially higher topography and the rock uplift that led to it, invoking crustal compression or extension. Here we present the results of structural investigations along the length of the high elevation belt and suture zone, which rather indicate flexural bending of the southern margin of the Lhasa block (Gangdese magmatic belt) and occurrence of an adjacent foreland basin (Kailas Basin), both elements resulting from supra-crustal loading of the Lhasa block by the Zangbo Complex (Indian plate rocks) via the Great Counter Thrust. Hence we interpret the differential elevation of the southern margin of the plateau as due originally to uplift of a forebulge in a retro foreland setting modified by subsequent processes. Identification of this flexural deformation has implications for early evolution of the India-Tibet continental collision zone, implying an initial (Late Oligocene) symmetrical architecture that subsequently transitioned into the present asymmetrical wedge architecture. PMID:26174578

  14. Resource potential of the western North Atlantic Basin

    USGS Publications Warehouse

    Dillon, William P.; Manheim, Frank T.; Jansa, L.F.; Palmason, Gudmundur; Tucholke, Brian E.; Landrum, Richard S.

    1986-01-01

    We here consider the petroleum resources only of the off shelf portion of the western North Atlantic Ocean. Very little information is available for this region; off the eastern United States, only four petroleum exploration holes have been drilled in one restricted area seaward of the shelf, off the Baltimore Canyon trough. However, by interpreting seismic reflection profiles and Stratigraphie data from the Deep Sea Drilling Project (DSDP) and other wells on the adjacent slope and shelf, we can evaluate the geologic conditions that existed during development of the basin and that might lead to petroleum accumulations.The wellknown factors that lead to oil and gas accumulations are availability of source beds, adequate maturation, and the presence of reservoir beds and seals configured to create a trap. The western boundary of the area considered in this paper, the present sloperise break, is one that has developed from the interplay of sedimentation and erosion at the continental margin; these processes are affected by variations in margin subsidence, sedi-ment input, oceanic circulation, sea level, and other factors. Thus the sloperise break has migrated over time and is locally underlain by slope and shelf deposits, as well as deepbasin facies. These changes in depositional environments may well have caused juxtaposition of source and reservoir beds with effective seals.

  15. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    USGS Publications Warehouse

    Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  16. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or associated with a continental terrane.This two volcano-sedimentary domains were finally juxtaposed due to the collision with an allochthonous oceanic arc that collide with the Continental margin in the Late Cretaceous marking the initiation of the Andean Orogeny.

  17. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.

  18. A Laurentian margin back-arc: the Ordovician Wedowee-Emuckfaw-Dahlonega basin

    USGS Publications Warehouse

    Barineau, Clinton I.; Tull, James F.; Holm-Denoma, Christopher S.

    2015-01-01

    Independent researchers working in the Talladega belt, Ashland-Wedowee-Emuckfaw belt, and Opelika Complex of Alabama, as well as the Dahlonega gold belt and western Inner Piedmont of Alabama, Georgia, and the Carolinas, have mapped stratigraphic sequences unique to each region. Although historically considered distinct terranes of disparate origin, a synthesis of data suggests that each includes lithologic units that formed in an Ordovician back-arc basin (Wedowee-Emuckfaw-Dahlonega basin—WEDB). Rocks in these terranes include varying proportions of metamorphosed mafic and bimodal volcanic rock suites interlayered with deep-water metasedimentary rock sequences. Metavolcanic rocks yield ages that are Early–Middle Ordovician (480–460 Ma) and interlayered metasedimentary units are populated with both Grenville and Early–Middle Ordovician detrital zircons. Metamafic rocks display geochemical trends ranging from mid-oceanic-ridge basalt to arc affinity, similar to modern back-arc basalts. The collective data set limits formation of the WEDB to a suprasubduction system built on and adjacent to upper Neoproterozoic–lower Paleozoic rocks of the passive Laurentian margin at the trailing edge of Iapetus, specifically in a continental margin back-arc setting. Overwhelmingly, the geologic history of the southern Appalachians, including rocks of the WEDB described here, indicates that the Ordovician Taconic orogeny in the southern Appalachians developed in an accretionary orogenic setting instead of the traditional collisional orogenic setting attributed to subduction of the Laurentian margin beneath an exotic or peri-Laurentian arc. Well-studied Cenozoic accretionary orogens provide excellent analogs for Taconic orogenesis, and an accretionary orogenic model for the southern Appalachian Taconic orogeny can account for aspects of Ordovician tectonics not easily explained through collisional orogenesis.

  19. Evolution of Northeast Atlantic Magmatic Continental Margins from an Ethiopian-Afar Perspective

    NASA Astrophysics Data System (ADS)

    England, R. W.; Cornwell, D. G.; Ramsden, A. M.

    2014-12-01

    One of the major problems interpreting the evolution of magmatic continental margins is that the structure which should record the pre-magmatic evolution of the rift and which potentially influences the character of the rifting process is partially or completely obscured by thick basalt lava flows and sills. A limited number of deep reflection seismic profiles acquired with tuned seismic sources have penetrated the basalts and provide an image of the pre-magmatic structure, otherwise the principle data are lower resolution wide-angle/refraction profiles and potential field models which have greater uncertainties associated with them. In order to sidestep the imaging constraints we have examined the Ethiopian - Afar rift system to try to understand the rifting process. The Main Ethiopian rift contains an embryonic magmatic passive margin dominated by faulting at the margins of the rift and en-echelon magmatic zones at the centre. Further north toward Afar the rift becomes in-filled with extensive lava flows fed from fissure systems in the widening rift zone. This rift system provides, along its length, a series of 'snapshots' into the possible tectonic evolution of a magmatic continental margin. Deep seismic profiles crossing the NE Atlantic margins reveal ocean dipping reflector sequences (ODRS) overlying extended crust and lower crustal sill complexes of intruded igneous rock, which extend back beneath the continental margin. The ODRS frequently occur in fault bounded rift structures along the margins. We suggest, by analogy to the observations that can be made in the Ethiopia-Afar rift that these fault bounded basins largely form at the embryonic rift stage and are then partially or completely filled with lavas fed from fissures which are now observed as the ODRS. Also in the seismic profiles we identify volcanic constructs on the ODRS which we interpret as the equivalent of the present day fissure eruptions seen in Afar. The ocean ward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition.

  20. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    USGS Publications Warehouse

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  1. Geophysical evidence for the intersection of the St Paul, Cape Palmas and Grand Cess fracture zones with the continental margin of Liberia, West Africa

    USGS Publications Warehouse

    Behrendt, John C.; Schlee, J.; Robb, James M.

    1974-01-01

    PUBLISHED reconstructions of Gondwana continent1 (Fig. la) show a gap in fit near the junction of the Americas and Africa. To study this critical area, the Unitedgeo I made geophysical measurements and collected rock samples across the continental margin of Liberia (USGS-IDOE cruise leg 5) in November 1971. Figure Ib indicates the location of the 5,400 km of ship track on a generalised bathymetric map2. We shall discuss the data in detail elsewhere. Here we present the evidence for the existence of three fracture zones, two of which have not been reported previously, intersecting the continental margin at the north end of the South Atlantic, which remained closed probably until Cretaceous time. We suggest that Precambrian structures on the African continent controlled the location of these fracture zones. Figure Ic compares gravity and magnetic profiles and interpretations of the seismic profiles for three selected lines (27, 30 and 34) crossing the Grand Cess, Cape Palmas and St Paul fracture zones, respectively. ?? 1974 Nature Publishing Group.

  2. 30 CFR 282.6 - Disclosure of data and information to an adjacent State.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Disclosure of data and information to an adjacent State. 282.6 Section 282.6 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER CONTINENTAL SHELF FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR...

  3. The Lithospheric Geoid as a Constraint on Plate Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2015-12-01

    100 years after Wegener's pioneering work there is still considerable debate about the dynamics of present-day plate motions. A better understanding of present-day dynamics is key to a better understanding of the supercontinent cycle. The Earth's gravity field is one of the primary data sets to help constrain horizontal density contrasts, and hence plate dynamic forces. Previous work has shown that the global average for the geoid step up from old oceanic lithosphere across passive continental margins to stable continental lithosphere is about 6-9m, and the global average for the geoid anomaly associated with cooling oceanic lithosphere (the so-called "ridge push") is 10-12m. The ridge geoid anomaly corresponds to a net force of ~3x1012N/m (averaged over the thickness of the lithosphere) due to 'ridge push.' However, for individual continental margins and mid-ocean ridge systems, there is considerable variation in the geoid step and geoid anomaly and consequently the associated forces contributing to the stress field. We explore the variation in geoid step across passive continental margins looking for correlations with age of continental breakup (and hence place within the supercontinent cycle), hot spot tracks, continental plate velocities, long-wavelength geoid energy (that may be masking signal), and small scale convection. For mid-ocean ridges, we explore variations in geoid anomaly looking for correlations with plate spreading rates, hot spot tracks, long-wavelength geoid energy (that may be masking signal), and small scale convection. We use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. The evaluation of the role of spatial variations in the geoid gradient for cooling oceanic lithosphere and across the continental margin in the dynamics of the intraplate stress field requires high spatial resolution modeling. We perform a high resolution finite element analysis (~35,000 elements for a spatial resolution of approximately 50 km) for the North American plate, where previous lower resolution modeling has shown the importance of the lithospheric cooling (ridge push) force to model the broad scale stress patterns observed from the middle of the continent to the Mid-Atlantic ridge.

  4. Geologic evolution and sequence stratigraphy of the offshore Pelotas Basin, southeast Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, V.S.

    1996-01-01

    The Brazilian marginal basins have been studied since the beginning of the 70s. At least nine large basins are distributed along the entire Eastern continental margin. The sedimentary infill of these basins consists of lower Cretaceous (continental/lacustrine) rift section underlying marine upper Cretaceous (carbonate platforms) and marine upper Cretaceous/Tertiary sections, corresponding to the drift phase. The sedimentary deposits are a direct result of the Jurassic to lower Cretaceous break-up of the Pangea. This study will focus on the geologic evolution and sequence stratigraphic analysis of the Pelotas basin (offshore), located in the Southeast portion of the Brazilian continental margin betweenmore » 28[degrees] and 34[degrees] S, covering approximately 50,000 Km[sup 2]. During the early Cretaceous, when the break-up of the continent began in the south, thick basaltic layers were deposited in the Pelotas basin. These basalts form a thick and broad wedge of dipping seaward reflections interpreted as a transitional crust. During Albian to Turonian times, due to thermal subsidence, an extensive clastic/carbonate platform was developed, in an early drift stage. The sedimentation from the upper Cretaceous to Tertiary was characterized by a predominance of siliciclastics in the southeast margin, marking an accentuate deepening of the basin, showing several cycles related to eustatic fluctuations. Studies have addressed the problems of hydrocarbon exploration in deep water setting within a sequence stratigraphic framework. Thus Pelotas basin can provide a useful analogue for exploration efforts worldwide in offshore passive margins.« less

  5. Geologic evolution and sequence stratigraphy of the offshore Pelotas Basin, southeast Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, V.S.

    1996-12-31

    The Brazilian marginal basins have been studied since the beginning of the 70s. At least nine large basins are distributed along the entire Eastern continental margin. The sedimentary infill of these basins consists of lower Cretaceous (continental/lacustrine) rift section underlying marine upper Cretaceous (carbonate platforms) and marine upper Cretaceous/Tertiary sections, corresponding to the drift phase. The sedimentary deposits are a direct result of the Jurassic to lower Cretaceous break-up of the Pangea. This study will focus on the geologic evolution and sequence stratigraphic analysis of the Pelotas basin (offshore), located in the Southeast portion of the Brazilian continental margin betweenmore » 28{degrees} and 34{degrees} S, covering approximately 50,000 Km{sup 2}. During the early Cretaceous, when the break-up of the continent began in the south, thick basaltic layers were deposited in the Pelotas basin. These basalts form a thick and broad wedge of dipping seaward reflections interpreted as a transitional crust. During Albian to Turonian times, due to thermal subsidence, an extensive clastic/carbonate platform was developed, in an early drift stage. The sedimentation from the upper Cretaceous to Tertiary was characterized by a predominance of siliciclastics in the southeast margin, marking an accentuate deepening of the basin, showing several cycles related to eustatic fluctuations. Studies have addressed the problems of hydrocarbon exploration in deep water setting within a sequence stratigraphic framework. Thus Pelotas basin can provide a useful analogue for exploration efforts worldwide in offshore passive margins.« less

  6. Evolution of Northeastern Mexico during the early Mesozoic: potential areas for research and exploration José Rafael Barboza-Gudiño

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, R.

    2013-05-01

    The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and Huayacocotla formations). The Middle to Upper Jurassic La Joya Formation overlies unconformable all continental and marine-marginal successions and older rocks, and records the transgressive basal deposits of the Gulf series, changing upsection to the evaporites and limestone of the Oxfordian Zuloaga Group. Successive intraoceanic subduction zones to the West sparked magmatic arcs whose accretion in the continental margin produced the consolidation of much of the Mexican territory up to the current Pacific margin. Scattered isolated outcrops from the Early Mesozoic succession in central- and northeastern Mexico allow interpretation of tectonic setting and paleogeography associated to each stratigraphic unit, revealing a strongly different geologic evolution than the previously established models, opening a range of new possibilities and areas of opportunity for mining and fossil fuels exploration. However, most of the Triassic-Jurassic rocks or stratigraphic units in northern Mexico lie under many hundreds of meters of a Cretaceous-Cenozoic cover. Their recognition and preliminary evaluation implies the use of indirect techniques like geophysical methods, before drilling or subsurface mining.

  7. Global Mapping of Oceanic and Continental Shelf Crustal Thickness and Ocean-Continent Transition Structure

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy; Roberts, Alan

    2017-04-01

    The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.

  8. The Blake Plateau Basin and Carolina Trough

    USGS Publications Warehouse

    Dillon, William P.; Popenoe, Peter; Sheridan, R.E.; Grow, John A.

    1988-01-01

    Presently, the continental margin of the southeastern United States (Fig. 1) forms a zone of transition between the actively building, steep-fronted carbonate platform of the Bahamas and the typical eastern North American terrigenous clastic-dominated, drowned, shelf-slope-rise configuration. This region of the continental margin is underlain by two major sedimentary basins—the Blake Plateau Basin and the Carolina Trough (Fig. 2)—which are different in shape, basement structure, and history. Indeed, the two southern basins show some of the greatest contrasts of any basins of eastern North America, especially in their early response to rifting and in the change from rifting to drifting. The region has experienced abrupt major changes in geological conditions, most notably the onset of Gulf Stream flow in the early Tertiary.Morphologically, the area is dominated by the broad, flat Blake Plateau at about 800-1,000 m water depth (Fig. 1). The plateau is bounded to the east by the extremely steep Blake Escarpment, descending to 5,000 m water depths. To the west, a short continental slope rises to a continental shelf. This Blake Plateau morphology characterizes the margin east of Florida and north of the Bahamas. North of Florida the margin merges into the typical shelf-slope-rise morphology. Just north of the Blake Escarpment and its northern projection, the Blake Spur, the Blake Ridge extends away from the continental slope at water depths exceeding 2,000 m (Fig. 1). This broad ridge is a Cenozoic, sedimentary drift deposit controlled by bottom currents. (For the reader who is beginning to wonder why half of the features of this region seem to be named "Blake", the Blake was a Coast Survey steamer from which investigations off the southeastern U.S. were carried out in 1877 to 1880. Ferromanganese nodules were discovered on the Blake Plateau at that time [Murray, 1885].)

  9. Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes

    USGS Publications Warehouse

    ten Brink, Uri S.; Lee, H.J.; Geist, E.L.; Twichell, D.

    2009-01-01

    Submarine landslides along the continental slope of the U.S. Atlantic margin are potential sources for tsunamis along the U.S. East coast. The magnitude of potential tsunamis depends on the volume and location of the landslides, and tsunami frequency depends on their recurrence interval. However, the size and recurrence interval of submarine landslides along the U.S. Atlantic margin is poorly known. Well-studied landslide-generated tsunamis in other parts of the world have been shown to be associated with earthquakes. Because the size distribution and recurrence interval of earthquakes is generally better known than those for submarine landslides, we propose here to estimate the size and recurrence interval of submarine landslides from the size and recurrence interval of earthquakes in the near vicinity of the said landslides. To do so, we calculate maximum expected landslide size for a given earthquake magnitude, use recurrence interval of earthquakes to estimate recurrence interval of landslide, and assume a threshold landslide size that can generate a destructive tsunami. The maximum expected landslide size for a given earthquake magnitude is calculated in 3 ways: by slope stability analysis for catastrophic slope failure on the Atlantic continental margin, by using land-based compilation of maximum observed distance from earthquake to liquefaction, and by using land-based compilation of maximum observed area of earthquake-induced landslides. We find that the calculated distances and failure areas from the slope stability analysis is similar or slightly smaller than the maximum triggering distances and failure areas in subaerial observations. The results from all three methods compare well with the slope failure observations of the Mw = 7.2, 1929 Grand Banks earthquake, the only historical tsunamigenic earthquake along the North American Atlantic margin. The results further suggest that a Mw = 7.5 earthquake (the largest expected earthquake in the eastern U.S.) must be located offshore and within 100??km of the continental slope to induce a catastrophic slope failure. Thus, a repeat of the 1755 Cape Anne and 1881 Charleston earthquakes are not expected to cause landslides on the continental slope. The observed rate of seismicity offshore the U.S. Atlantic coast is very low with the exception of New England, where some microseismicity is observed. An extrapolation of annual strain rates from the Canadian Atlantic continental margin suggests that the New England margin may experience the equivalent of a magnitude 7 earthquake on average every 600-3000??yr. A minimum triggering earthquake magnitude of 5.5 is suggested for a sufficiently large submarine failure to generate a devastating tsunami and only if the epicenter is located within the continental slope.

  10. Regional magnetic anomaly constraints on continental breakup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Frese, R.R.B.; Hinze, W.J.; Olivier, R.

    1986-01-01

    Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.

  11. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'.

    PubMed

    Dewey, John F

    2015-04-13

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  12. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’

    PubMed Central

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  13. Deep structure of the continental margin and basin off Greater Kabylia, Algeria - New insights from wide-angle seismic data modeling and multichannel seismic interpretation

    NASA Astrophysics Data System (ADS)

    Aïdi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Abdel Karim; Klingelhoefer, Frauke; Bracene, Rabah; Galve, Audrey; Bounif, Abdallah; Schenini, Laure; Hamai, Lamine; Schnurle, Philippe; Djellit, Hamou; Sage, Françoise; Charvis, Philippe; Déverchère, Jacques

    2018-03-01

    During the Algerian-French SPIRAL survey aimed at investigating the deep structure of the Algerian margin and basin, two coincident wide-angle and reflection seismic profiles were acquired in central Algeria, offshore Greater Kabylia, together with gravimetric, bathymetric and magnetic data. This 260 km-long offshore-onshore profile spans the Balearic basin, the central Algerian margin and the Greater Kabylia block up to the southward limit of the internal zones onshore. Results are obtained from modeling and interpretation of the combined data sets. The Algerian basin offshore Greater Kabylia is floored by a thin oceanic crust ( 4 km) with P-wave velocities ranging between 5.2 and 6.8 km/s. In the northern Hannibal High region, the atypical 3-layer crustal structure is interpreted as volcanic products stacked over a thin crust similar to that bordering the margin and related to Miocene post-accretion volcanism. These results support a two-step back-arc opening of the west-Algerian basin, comprising oceanic crust accretion during the first southward stage, and a magmatic and probably tectonic reworking of this young oceanic basement during the second, westward, opening phase. The structure of the central Algerian margin is that of a narrow ( 70 km), magma-poor rifted margin, with a wider zone of distal thinned continental crust than on the other margin segments. There is no evidence for mantle exhumation in the sharp ocean-continent transition, but transcurrent movements during the second opening phase may have changed its initial geometry. The Plio-Quaternary inversion of the margin related to ongoing convergence between Africa and Eurasia is expressed by a blind thrust system under the margin rising toward the surface at the slope toe, and by an isostatic disequilibrium resulting from opposite flexures of two plates decoupled at the continental slope. This disequilibrium is likely responsible for the peculiar asymmetrical shape of the crustal neck that may thus be a characteristic feature of inverted rifted margins.

  14. Geologic controls on submarine slope failure along the central U.S. Atlantic margin: Insights from the Currituck Slide Complex

    USGS Publications Warehouse

    Hill, Jenna C.; Brothers, Daniel S.; Craig, Bradley K.; ten Brink, Uri S.; Chaytor, Jason D.; Flores, Claudia

    2017-01-01

    Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with high-resolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide Complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (> 8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (< 6°). Thick (> 800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation, thus providing a mechanism for compaction–induced overpressure that preconditioned the Currituck region for failure. Detailed examination of the regional geological framework illustrates the importance of both sediment supply and antecedent slope physiography in the development of large, potentially unstable depocenters along passive margins.

  15. Breakup magmatism on the Vøring Margin, mid-Norway: New insight from interpretation of high-quality 2D and 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Planke, S.; Millett, J.; Jerram, D. A.; Maharjan, D.; Zastrozhnov, D.; Schmid, D. W.; Faleide, J. I.; Svensen, H.; Myklebust, R.

    2017-12-01

    The Vøring Margin offshore mid-Norway is a classic volcanic rifted margin, characterized by voluminous Paleogene igneous rocks present on both sides of the continent-ocean boundary. The margin displays (1) thickened transitional crust with a well-defined lower crustal high-velocity body and prominent deep crustal reflections, the so-called T-Reflection, (2) seaward dipping reflector (SDR) wedges and a prominent northeast-trending escarpment on the Vøring Marginal High, and (3) extensive sill complexes in the adjacent Cretaceous Vøring Basin. During the last decade, new 2D and 3D industry seismic data along with improved processing techniques, such as broadband processing and noise reduction processing sequences, have made it possible to image and map the breakup igneous complex in much greater detail than previously possible. Our interpretation includes a combination of (1) seismic horizon picking, (2) integrated seismic-gravity-magnetic (SGM) interpretation, (3) seismic volcanostratigraphy, and (4) igneous seismic geomorphology. The results are integrated with published wide-angle seismic data, re-analyzed borehole data including new geochronology, and new geodynamic modeling of the effects of magmatism on the thermal history and subsidence of the margin. The extensive sill complexes and associated hydrothermal vent complexes in the Vøring Basin have a Paleocene-Eocene boundary age based on high-precision U/Pb dating combined with seismic mapping constraints. On the marginal high, our results show a highly variable crustal structure, with a pre-breakup configuration consisting of large-scale structural highs and sedimentary basins. These structures were in-filled and covered by basalt flows and volcanogenic sediments during the early stages of continental breakup in the earliest Eocene. Subsequently, rift basins developed along the continent-ocean boundary and where infilled by up to ca. 6 km thick basalt sequences, currently imaged as SDRs fed by a dike swarm imaged on seismic data. The addition of magma within the crust had a prominent effect on the thermal history and hydrocarbon maturation of the sedimentary basin, causing uplift, delayed subsidence, and possibly contributing to the triggering of global warming during the Paleocene-Eocene Thermal Maximum (PETM).

  16. Submarine mass wasting on the Ionian Calabrian margin

    NASA Astrophysics Data System (ADS)

    Ceramicola, S.; Forlin, E.; Coste, M.; Cova, A.; Praeg, D.; Fanucci, F.; Critelli, S.

    2010-12-01

    Mass wasting processes on continental margins have strong relevance both for geohazards of coastal areas and for the emplacement and monitoring of offshore infrastructures. The seabed dynamics of the Ionian Calabrian Margin (ICM) are currently being examined in the context of the project MAGIC (Marine Geohazard along the Italian Coasts). The objective of this project is the definition of elements that may constitute geological risk for coastal areas. The ICM is a tectonically-active margin, the structures of which reflect two main processes: frontal compression and fore-arc extension during the SE advance of the Calabrian accretionary prism since the late Miocene; and a rapid uplift (up to 1mm/yr) of onshore and shallow shelf areas since the mid-Pleistocene. These processes are reflected in different tectonic settings at seabed, which is characterized by a narrow continental shelf above a slope of irregular morphology in water depths of 150-2000 m. In the north, a broad slope is dominated by ridges and intervening basins that are the morphological expression of the southern Apennine fold-and-thrust belt; in the south, the continental slope descends steeply towards the deep-water Crotone and Spartivento fore-arc basins. The overall objective of this study is to map major features of mass wasting on the slopes of the ICM, investigate possible triggering mechanisms and consider the geohazards these features may represent for coastal areas. The study is based on an integrated analysis of multibeam morpho-bathymetric data and subbottom profiles, which together allow the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins - these are identified in the northern area, within the piggy-back basins: seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, while Chirp profiles show the adjacent basins to contain unstratified bodies indicative of debris flows buried beneath stratified sediments; multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) slope slide scars - these are identified in two locations along the relatively steep southern Calabrian slope; the slide scars record several episodes of failure, linked to deposits within the deep-water basins that are yet to be identified. 3) possible gravity sliding - in one area of the southern Calabrian slope, elongate seabed features oriented subparallel to contours are observed, associated with diapiric structures that have been linked to Messinian salt observed on seismic profiles (Rossi & Sartori 1981); we suggest that the elongate seabed features may record a form of downslope sediment sliding above salt, resulting in features analogous to the cobblestone topography of the outer Calabrian Arc; 4) canyon headwalls - in the upper parts of all canyons, numerous headwall scarps are consistent with retrogressive activity of the canyons.

  17. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In the east, affected by the later volcanic activities, Xingning-Jinghai sag deformed complicatedly and developed a series of landward dipping faults, showing the compound graben structure. Combined with the fault activity quantitative calculation, basin subsidence history and other advanced technology, the basin tectonic evolution has been divided into rift stage and post-rift stage. Considering the extension development evolution of Xingning-Jinghai sag and the extension and thinning of lithosphere under the background of spreading of the South China Sea, we argue that the northern margin of the South China lithosphere experienced an intense stretching and thinning stage. At this period, the subsidence of the Xingning-Jinghai sag was controlled by the detachment faults, indicating a rifting stage. With the development of the detachment faults, the thickness of crust was extremely thinned. After the spreading of the South China Sea the whole sag entered into the depression period which was characterized by thermal subsidence.

  18. Phanerozoic continental growth and gold metallogeny of Asia

    USGS Publications Warehouse

    Goldfarb, Richard J.; Taylor, Ryan D.; Collins, Gregory S.; Goryachev, Nicolay A.; Orlandini, Omero Felipe

    2014-01-01

    The Asian continent formed during the past 800 m.y. during late Neoproterozoic through Jurassic closure of the Tethyan ocean basins, followed by late Mesozoic circum-Pacific and Cenozoic Himalayan orogenies. The oldest gold deposits in Asia reflect accretionary events along the margins of the Siberia, Kazakhstan, North China, Tarim–Karakum, South China, and Indochina Precambrian blocks while they were isolated within the Paleotethys and surrounding Panthalassa Oceans. Orogenic gold deposits are associated with large-scale, terrane-bounding fault systems and broad areas of deformation that existed along many of the active margins of the Precambrian blocks. Deposits typically formed during regional transpressional to transtensional events immediately after to as much as 100 m.y. subsequent to the onset of accretion or collision. Major orogenic gold provinces associated with this growth of the Asian continental mass include: (1) the ca. 750 Ma Yenisei Ridge, ca. 500 Ma East Sayan, and ca. 450–350 Ma Patom provinces along the southern margins of the Siberia craton; (2) the 450 Ma Charsk belt of north-central Kazakhstan; (3) the 310–280 Ma Kalba belt of NE Kazakhstan, extending into adjacent NW Xinjiang, along the Siberia–Kazakhstan suture; (4) the ca. 300–280 Ma deposits within the Central Asian southern and middle Tien Shan (e.g., Kumtor, Zarmitan, Muruntau), marking the closure of the Turkestan Ocean between Kazakhstan and the Tarim–Karakum block; (5) the ca. 190–125 Ma Transbaikal deposits along the site of Permian to Late Jurassic diachronous closure of the Mongol–Okhotsk Ocean between Siberia and Mongolia/North China; (6) the probable Late Silurian–Early Devonian Jiagnan belt formed along the margin of Gondwana at the site of collision between the Yangtze and Cathaysia blocks; (7) Triassic deposits of the Paleozoic Qilian Shan and West Qinling orogens along the SW margin of the North China block developed during collision of South China; and (8) Jurassic(?) ores on the margins of the Subumusu block in Myanmar and Malaysia. Circum-Pacific tectonism led to major orogenic gold province formation along the length of the eastern side of Asia between ca. 135 and 120 Ma, although such deposits are slightly older in South Korea and slightly younger in the Amur region of the Russian Southeast. Deformation related to collision of the Kolyma–Omolon microcontinent with the Pacific margin of the Siberia craton led to formation of 136–125 Ma ores of the Yana–Kolyma belt (Natalka, Sarylakh) and 125–119 Ma ores of the South Verkhoyansk synclinorium (Nezhdaninskoe). Giant ca. 125 Ma gold provinces developed in the Late Archean uplifted basement of the decratonized North China block, within its NE edge and into adjacent North Korea, in the Jiaodong Peninsula, and in the Qinling Mountains. The oldest gold-bearing magmatic–hydrothermal deposits of Asia include the ca. 485 Ma Duobaoshan porphyry within a part of the Tuva–Mongol arc, ca. 355 Ma low-sulfidation epithermal deposits (Kubaka) of the Omolon terrane accreted to eastern Russia, and porphyries (Bozshakol, Taldy Bulak) within Ordovican to Early Devonian oceanic arcs formed off the Kazakhstan microcontinent. The Late Devonian to Carboniferous was marked by widespread gold-rich porphyry development along the margins of the closing Ob–Zaisan, Junggar–Balkhash, and Turkestan basins (Amalyk, Oyu Tolgoi); most were formed in continental arcs, although the giant Oyu Tolgoi porphyry was part of a near-shore oceanic arc. Permian subduction-related deformation along the east side of the Indochina block led to ca. 300 Ma gold-bearing skarn and disseminated gold ore formation in the Truong Son fold belt of Laos, and along the west side to ca. 250 Ma gold-bearing skarns and epithermal deposits in the Loei fold belt of Laos and Thailand. In the Mesozoic Transbaikal region, extension along the basin margins subsequent to Mongol–Okhotsk closure was associated with ca. 150–125 Ma formation of important auriferous epithermal (Balei), skarn (Bystray), and porphyry (Kultuminskoe) deposits. In northeastern Russia, Early Cretaceous Pacific margin subduction and Late Cretaceous extension were associated with epithermal gold-deposit formation in the Uda–Murgal (Julietta) and Okhotsk–Chukotka (Dukat, Kupol) volcanic belts, respectively. In southeastern Russia, latest Cretaceous to Oligocene extension correlates with other low-sulfidation epithermal ores that formed in the East Sikhote–Alin volcanic belt. Other extensional events, likely related to changing plate dynamics along the Pacific margin of Asia, relate to epithermal–skarn–porphyry districts that formed at ca. 125–85 Ma in northeastmost China and ca. 105–90 Ma in the Coast Volcanic belt of SE China. The onset of strike slip along a part of the southeastern Pacific margin appears to correlate with the giant 148–135 Ma gold-rich porphyry–skarn province of the lower and middle Yangtze River. It is still controversial as to whether true Carlin-like gold deposits exist in Asia. Those deposits that most closely resemble the Nevada (USA) ores are those in the Permo-Triassic Youjiang basin of SW China and NE Vietnam, and are probably Late Triassic in age, although this is not certain. Other Carlin-like deposits have been suggested to exist in the Sepon basin of Laos and in the Mongol–Okhotsk region (Kuranakh) of Transbaikal.

  19. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    USGS Publications Warehouse

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the presence of the ancient rifts themselves. The St. Lawrence depression, Canada, besides being an ancient rift, is also the site of a major collisional suture. Thus only at the Reelfoot rift (New Madrid seismic zone, NMSZ, USA), is the presence of features associated with rifting itself the sole candidate for causing seismicity. Our results suggest that on a global scale, the correlation of seismicity within SCRs and ancient rifts has been overestimated in the past. Because the majority of models used to explain intraplate seismicity have focused on seismicity within rifts, we conclude that a shift in attention more towards non-rifted as well as rifted crust is in order. ?? 2005 RAS.

  20. Submarine slope failures along the convergent continental margin of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but well-defined horst and graben topography. Off El Salvador slope failure is least developed and mainly occurs in the uppermost continental slope at canyon walls. Off Guatemala mass wasting is abundant and possibly related to normal faulting across the slope. Collapse in the wake of subducting ocean plate topography is a likely failure trigger of slumps. Rapid oversteepening above subducting relief may trigger translational slides in the middle Nicaraguan upper Costa Rican slope. Earthquake shaking may be a trigger, but we interpret that slope failure rate is lower than recurrence time of large earthquakes in the region. Generally, our analysis indicates that the importance of mass wasting processes in the evolution of margins dominated by subduction erosion and its role in sediment dynamics may have been previously underestimated.

  1. East African and Kuunga Orogenies in Tanzania - South Kenya

    NASA Astrophysics Data System (ADS)

    Fritz, H.; Hauzenberger, C. A.; Tenczer, V.

    2012-04-01

    Tanzania and southern Kenya hold a key position for reconstructing Gondwana consolidation because here different orogen belts with different tectonic styles interfere. The older, ca. 650-620 Ma East African Orogeny resulted from the amalgamation of arc terranes in the northern Arabian-Nubian Shield (ANS) and continental collision between East African pieces and parts of the Azania terrane in the south (Collins and Pisarevsky, 2005). The change form arc suturing to continental collision settings is found in southern Kenya where southernmost arcs of the ANS conjoin with thickened continental margin suites of the Eastern Granulite Belt. The younger ca. 570-530 Ma Kuunga orogeny heads from the Damara - Zambesi - Irumide Belts (De Waele et al., 2006) over Tanzania - Mozambique to southern India and clashes with the East African orogen in southern-central Tanzania. Two transitional orogen settings may be defined, (1) that between island arcs and inverted passive continental margin within the East African Orogen and, (2) that between N-S trending East African and W-E trending Kuungan orogenies. The Neoproterozoic island arc suites of SE-Kenya are exposed as a narrow stripe between western Azania and the Eastern Granulite belt. This suture is a steep, NNW stretched belt that aligns roughly with the prominent southern ANS shear zones that converge at the southern tip of the ANS (Athi and Aswa shear zones). Oblique convergence resulted in low-vorticity sinstral shear during early phases of deformation. Syn-magmatic and syn-tectonic textures are compatible with deformation at granulite metamorphic conditions and rocks exhumed quickly during ongoing transcurrent motion. The belt is typified as wrench tectonic belt with horizontal northwards flow of rocks within deeper portions of an island arc. The adjacent Eastern Granulite Nappe experienced westward directed, subhorizontal, low-vorticity, high temperature flow at partly extreme metamorphic conditions (900°C, 1.2 to 1.4 GPa) (Fritz et al., 2009). Majority of data suggest an anticlockwise P-T loop and prolonged, slow cooling at deep crustal levels without significant exhumation. Isobaric cooling is explained by horizontal flow with rates faster than thermal equilibration of the lower crust. Those settings are found in domains of previously thinned lithosphere such as extended passive margins. Such rheolgically weak plate boundaries do not produce self-sustaining one-sided subduction but large areas of magmatic underplating that enable melt enhanced lateral flow of the lower crust. Western Granulites deformed by high-vorticity westwards thrusting at c. 550 Ma (Kuunga orogeny). Rocks exhibit clockwise P-T paths and experienced significant exhumation during isothermal decompression. Overprint between Kuungan structures and 620 Ma East African fabrics resulted in complex interference pattern within the Eastern Granulites. The three orogen portions that converge in Tanzania / Southern Kenya have different orogen styles. The southern ANS formed by transcurrent deformation of an island arc root; the Eastern Granulites by lower crustal channelized flow of a hot inverted passive margin; the Western Granulites by lower to mid crustal stacking of old and cold crustal fragments. Collins, A.S., Pisarevsky, S.A. (2005). Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71, 229-270. De Waele, B., Kampunzu, A.B., Mapani, B.S.E., Tembo, F. (2006). The Mesoproterozoic Irumide belt of Zambia. Journal of African Earth Sciences, 46, 36-70 Fritz, H., Tenczer, V., Hauzenberger, C., Wallbrecher, E., Muhongo, S. (2009). Hot granulite nappes — Tectonic styles and thermal evolution of the Proterozoic granulite belts in East Africa. Tectonophysics, 477, 160-173.

  2. Peralkaline- and calc-alkaline-hosted volcanogenic massive sulfide deposits of the Bonnifield District, East-Central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Foley, Nora K.; Slack, John E.; Koenig, Alan E.; Oscarson, Robert L.

    2012-01-01

    Volcanogenic massive sulfide (VMS) Zn-Pb-Cu-Ag-Au deposits of the Bonnifield mining district formed during Late Devonian-Early Mississippian magmatism along the western edge of Laurentia. The largest deposits, Dry Creek and WTF, have a combined resource of 5.7 million tonnes at 10% Zn, 4% Pb, 0.3% Cu, 300 grams per tonne (g/t) Ag, and 1.6 g/t Au. These polymetallic deposits are hosted in high field strength element (HFSE)- and rare-earth element (REE)-rich peralkaline (pantelleritic) metarhyolite, and interlayered pyritic argillite and mudstone of the Mystic Creek Member of the Totatlanika Schist Formation. Mystic Creek metarhyolite and alkali basalt (Chute Creek Member) constitute a bimodal pair that formed in an extensional environment. A synvolcanic peralkaline quartz porphyry containing veins of fluorite, sphalerite, pyrite, and quartz intrudes the central footwall at Dry Creek. The Anderson Mountain deposit, located ~32 km to the southwest, occurs within calc-alkaline felsic to intermediate-composition metavolcanic rocks and associated graphitic argillite of the Wood River assemblage. Felsic metavolcanic rocks there have only slightly elevated HFSEs and REEs. The association of abundant graphitic and siliceous argillite with the felsic volcanic rocks together with low Cu contents in the Bonnifield deposits suggests classification as a siliciclastic-felsic type of VMS deposit. Bonnifield massive sulfides and host rocks were metamorphosed and deformed under greenschist-facies conditions in the Mesozoic. Primary depositional textures, generally uncommon, consist of framboids, framboidal aggregates, and spongy masses of pyrite. Sphalerite, the predominant base metal sulfide, encloses early pyrite framboids. Galena and chalcopyrite accompanied early pyrite formation but primarily formed late in the paragenetic sequence. Silver-rich tetrahedrite is a minor late phase at the Dry Creek deposit. Gold and Ag are present in low to moderate amounts in pyrite from all of the deposits; electrum inclusions occur in Dry Creek sphalerite. Contents and ratios of trace elements in graphitic argillite that serve as proxies for the redox state of the bottom waters in the basin indicate that Dry Creek mineralization took place in suboxic to periodically anoxic bottom waters. Trace element data show higher contents of Tl-Mn-As in pyrite from the Anderson Mountain deposit compared to the Dry Creek or WTF deposits and thus suggest that Anderson Mountain may have formed at lower temperatures or under slightly more oxidizing conditions. No exact modern analogue for the tectonic setting of the Bonnifield VMS deposits is known, although the back-arc regions of the Okinawa Trough and Woodlark Basin satisfy the requirement for a submarine, extensional setting adjacent to a continental margin. Limited occurrences of peralkaline volcanic rocks occur in these two potential analogues, but the peralkalinity of those rocks is much less than that of the Mystic Creek Member metarhyolites in the Bonnifield district. The highly elevated trace element (e.g., Zr, Nb) contents of Mystic Creek metarhyolites suggest that a better analogue may be a submarine rifted continental margin. The calc-alkaline composition of the host rocks to the Anderson Mountain deposit suggests that mineralization there formed in a continental margin arc, outboard of the extended continental margin setting of the peralkaline-hosted Dry Creek and WTF deposits.

  3. Nutrient distributions, transports, and budgets on the inner margin of a river-dominated continental shelf

    EPA Science Inventory

    Physical and biogeochemical processes determining the distribution and fate of nutrients delivered by the Mississippi and Atchafalaya rivers to the inner (<50 m depth) Louisiana continental shelf (LCS) were examined using a three-dimensional hydrodynamic model of the LCS and obse...

  4. Pre-existing oblique transfer zones and transfer/transform relationships in continental margins: New insights from the southeastern Gulf of Aden, Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.

    2013-11-01

    Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.

  5. Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?

    USGS Publications Warehouse

    Churkin, M.; McKee, E.H.

    1974-01-01

    The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.

    Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less

  7. Comparative Riftology: Insights into the Evolution of Passive Continental Margins and Continental Rifts from the Failed Midcontinent Rift (MCR)

    NASA Astrophysics Data System (ADS)

    Elling, R. P.; Stein, C. A.; Stein, S.; Kley, J.; Keller, G. R.; Wysession, M. E.

    2017-12-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these evolutionary paths. Of particular interest is the evolution of volcanic passive margins, which are characterized by seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and are underlain by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), which began to form during the 1.1 Ga rifting of Amazonia from Laurentia, but failed when seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick and highly magnetized volcanic section during rifting. Surface exposures and reflection seismic data near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins would have naturally occurred had it gone to completion. Hence the MCR implies that many passive margin features form prior to seafloor spreading. Massive inversion of the MCR long after it failed has provided a much clearer picture of its structure compared to failed rifts with lesser degrees of inversion. Seismic imaging as well as gravity and magnetic modeling provide important insight into the effects of inversion on failed rifts. The MCR provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, to failed and inverted rifts without upwelling mantle and positive gravity anomalies.

  8. Last deglaciation of the Svalbard/Barents Sea Ice Sheet - a swath bathymetric and sub-bottom seismic study from the Kveithola Trough

    NASA Astrophysics Data System (ADS)

    Rebesco, Michele; Liu, Yanguang; Camerlenghi, Angelo; Winsborrow, Monica; Sverre Laberg, Jan; Caburlotto, Andrea; Diviacco, Paolo; Accettella, Daniela; Sauli, Chiara; Wardell, Nigel

    2010-05-01

    Kveithola Trough, an E-W trending cross-shelf glacial trough in the NW Barents Sea, was surveyed for the first time during the EGLACOM cruise between 8th July and 4th August 2008 on board R/V OGS-Explora. EGLACOM (Evolution of a GLacial Arctic COntinental Margin: the southern Svalbard ice stream-dominated sedimentary system) project is the Italian contribution to the International Polar Year (IPY) Activity 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). Such IPY activity included as well the Spanish SVAIS 2008 cruise on board BIO Hesperides. EGLACOM data acquisition, focused on the Storfjorden Fan and Kveithola Trough, included a multi-channel seismic (MCS) reflection survey and the simultaneous collection of swath bathymetry and sub-bottom CHIRP profiles. Swath bathymetry in the Kveithola Trough shows that the seafloor is characterized by E-W trending mega-scale glacial lineations (MSGL). These include large-scale ridges about 2 km wide and 15 m high as well as smaller grooves about 100 m wide and a few metres deep. Such MSGL record the fast flow of an ice stream draining the Svalbard/Barents Sea Ice Sheet (SBSIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase long profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that the morphology is controlled by stacked sets of lensoidal transparent units (tills) overlain by a draping glaciomarine unit up to over 15 m thick. Formed during temporary stillstands in grounding-zone position before complete deglaciation, GZW ridges are diagnostic of episodic retreat. Our data allow the reconstruction of deglaciation in the Spitsbergen Bank area, with each stage during deglaciation recorded by deposition of a GZW. Three independent lines of reasoning suggest that an ice cap persisted on Spitsbergen Bank for some thousand years and lasted much longer than those that fed the adjacent glacial troughs: 1) the freshness of the morphology in Kveithola Trough compared to that of adjacent Storfjorden and Bear Island troughs; 2) the volume of sediment in the GZW ridges compared to the small catchment area; 3) preliminary assessment of the stratigraphic position of debris flow deposits on the continental slope. The 15 m of sedimentary drape deposited on top of GZW ridges contains a high-resolution palaeoclimatic record of the last thousand years, which accumulated at a very high average sedimentation rate. Sampling (through drilling) of the thin glaciomarine sediments between the till lenses of the successive GZW ridges may allow the dating of deglaciation phases in the Barents Sea.

  9. Transport processes near coastal ocean outfalls

    USGS Publications Warehouse

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  10. Structure of the lower crust beneath the Carolina Trough, U.S. Atlantic continental margin

    USGS Publications Warehouse

    Tréhu, Anne M.; Ballard, A.; Dorman, L.M.; Gettrust, J.F.; Klitgord, Kim D.; Schreiner, A.

    1989-01-01

    Data from three large-offset seismic profiles provide information on the crustal structure beneath the Carolina trough. The profiles, obtained by the U.S. Geological Survey, the Naval Oceanographic Research Development Agency, and the Scripps Institution of Oceanography in 1985, were oriented parallel to the trough and were located (1) seaward of the East Coast Magnetic Anomaly (ECMA), which is generally thought to represent the boundary between oceanic and continental crust; (2) along the axis of the trough between the ECMA and the hinge zone, which is thought to reflect the landward limit of highly stretched and altered transitional crust; and (3) along the Carolina platform landward of the basement hinge zone on crust thought to have been thinned only slightly during rifting. These data constrain the velocity structure of the lower crust and provide evidence for a thick lens of high-velocity (>7.1 km/s) lower crustal material that extends beneath the Carolina trough and the adjacent ocean basin. This lens reaches a maximum thickness of about 13 km beneath the deepest part of the trough, thins to about 5 km seaward of the ECMA, and is either very thin or absent landward of the hinge zone. It is interpreted to represent material that was underplated beneath and/or intruded into the crust during the late stage of continental rifting and that led to an anomalously thick plutonic layer during the early seafloor spreading phase. These data thus support the recent conclusions of White et al. (1987b) and Mutter et al. (1988) that the initiation of seafloor spreading is attended in many, if not most, cases by the generation of an anomalously large volume of melt.

  11. Two-dimensional seismic velocity models of southern Taiwan from TAIGER transects

    NASA Astrophysics Data System (ADS)

    McIntosh, K. D.; Kuochen, H.; Van Avendonk, H. J.; Lavier, L. L.; Wu, F. T.; Okaya, D. A.

    2013-12-01

    We use a broad combination of wide-angle seismic data sets to develop high-resolution crustal-scale, two-dimensional, velocity models across southern Taiwan and the adjacent Huatung Basin. The data were recorded primarily during the TAIGER project and include records of thousands of marine airgun shots, several land explosive sources, and ~90 Earthquakes. Both airgun sources and earthquake data were recorded by dense land arrays, and ocean bottom seismographs (OBS) recorded airgun sources east of Taiwan. This combination of data sets enables us to develop a high-resolution upper- to mid-crustal model defined by marine and explosive sources, while also constraining the full crustal structure - with depths approaching 50 km - by using the earthquake and explosive sources. These data and the resulting models are particularly important for understanding the development of arc-continent collision in Taiwan. McIntosh et al. (2013) have shown that highly extended continental crust of the northeastern South China Sea rifted margin is underthrust at the Manila trench southwest of Taiwan but then is structurally underplated to the accretionary prism. This process of basement accretion is confirmed in the southern Central Range of Taiwan where basement outcrops can be directly linked to high seismic velocities measured in the accretionary prism well south of the continental shelf, even south of Taiwan. These observations indicate that the southern Central Range begins to grow well before there is any direct interaction between the North Luzon arc and the Eurasian continent. Our transects provide information on how the accreted mass behaves as it approaches the continental shelf and on deformation of the arc and forearc as this occurs. We suggest that arc-continent collision in Taiwan actually develops as arc-prism-continent collision.

  12. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.

  13. Glacimarine Sedimentary Processes and Facies on the Polar North Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.; Elverhfi, A.; Spielhagen, R.

    Major contrasts in the glaciological, oceanic and atmospheric parameters affecting the Polar North Atlantic, both over space between its eastern and western margins, and through time from full glacial to interglacial conditions, have lead to the deposition of a wide variety of sedimentary facies in these ice-influenced seas. The dynamics of the glaciers and ice sheets on the hinterlands surrounding the Polar North Atlantic have exterted a major influence on the processes, rates and patterns of sedimentation on the continental margins of the Norwegian and Greenland seas over the Late Cenozoic. The western margin is influenced by the cold East Greenland Current and the Svalbard margin by the northernmost extent of the warm North Atlantic Drift and the passage of relatively warm cyclonic air masses. In the fjords of Spitsbergen and the northwestern Barents Sea, glacial meltwater is dominant in delivering sediments. In the fjords of East Greenland the large numbers of icebergs produced from fast-flowing outlets of the Greenland Ice Sheet play a more significant role in sedimentation. During full glacials, sediments are delivered to the shelf break from fast-flowing ice streams, which drain huge basins within the parent ice sheet. Large prograding fans located on the continental slope offshore of these ice streams are made up of stacked debris flows. Large-scale mass failures, turbidity currents, and gas-escape structures also rework debris in continental slope and shelf settings. Even during interglacials, both the margins and the deep ocean basins beyond them retain a glacimarine overprint derived from debris in far-travelled icebergs and sea ice. Under full glacial conditions, the glacier influence is correspondingly stronger, and this is reflected in the glacial and glacimarine facies deposited at these times.

  14. Cretaceous plate interaction during the formation of the Colombian plateau, Northandean margin

    NASA Astrophysics Data System (ADS)

    Kammer, Andreas; Piraquive, Alejandro; Díaz, Sebastián

    2015-04-01

    The Cretaceous subduction cycle at the Northandean margin ends with an accretionary event that welds the plateau rocks of the present Western Cordillera to the continental margin. A suture between plateau and rock associations of the continental margin is well exposed at the western border of the Central Cordillera, but overprinted by intense block tectonics. Analyzed in detail, its evolution tracks an increased coupling between lower and upper plate, as may be accounted for by the following stages: 1) The Cretaceous plateau suite records at its onset passive margin conditions, as it encroaches on the continental margin and accounts for an extensional event that triggered the emplacement of ultramafic and mafic igneous rock suites along major faults. 2) An early subduction stage of a still moderate plate coupling is documented by the formation of a magmatic arc in an extensional setting that may have been prompted by slab retreat. Convergence direction was oblique, as attested the transfer of strike-slip displacements to the forearc region. 3) A phase of strong plate interaction entailed the delamination of narrow crustal flakes and their entrainment to depths below the petrologic Moho, as evidenced by their present association to serpentinites in a setting that bears characteristics of a subduction channel. 4) During the final collisional stage deformation is transferred to the lower plate, where the stacking of imbricate sheets, combined with their erosional unloading, led to the formation of an antiformal bulge that fed a foreland basin. - The life time of this Cretaceous subduction cycle was strictly synchronous to the construction of the Colombian plateau. With the final collisional stage magmatic activity vanished. This coincidence incites to explore a relationship between plume activity and subduction.

  15. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    USGS Publications Warehouse

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  16. Assessment of undiscovered petroleum resources of the Arctic Alaska Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Arctic Alaska Petroleum Province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald arch tectonic belts and south of the northern (outboard) margin of the Alaska rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America, with total known resources (cumulative production plus proved reserves) of about 28 billion barrels of oil equivalent. For assessment purposes, the province is divided into a platform assessment unit, comprising the Alaska rift shoulder and its relatively undeformed flanks, and a fold-and-thrust belt assessment unit, comprising the deformed area north of the Brooks Range and Herald arch tectonic belts. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil and 122 trillion cubic feet of nonassociated gas in the platform assessment unit and 2 billion barrels of oil and 59 trillion cubic feet of nonassociated gas in the fold-and-thrust belt assessment unit.

  17. Geologic implications of topographic, gravity, and aeromagnetic data in the northern Yukon-Koyukuk province and its borderlands, Alaska

    USGS Publications Warehouse

    Cady, J.W.

    1989-01-01

    The northern Yukon-Koyukuk province is characterized by low elevation and high Bouguer gravity and aeromagnetic anomalies in contrast to the adjacent Brooks Range and Ruby geanticline. Using newly compiled digital topographic, gravity, and aeromagnetic maps, the province is divided into three geophysical domains. The Koyukuk domain, which is nearly equivalent to the Koyukuk lithotectonic terrane, is a horseshoe-shaped area, open to the south, of low topography, high gravity, and high-amplitude magnetic anomalies caused by an intraoceanic magmatic arc. The Angayucham and Kanuti domains are geophysical subdivisions of the Angayucham lithotectonic terrane that occur along the northern and southeastern margins of the Yukon-Koyukuk province, where oceanic rocks have been thrust over continental rocks of the Brooks Range and Ruby geanticline. The modeling supports, but does not prove, the hypothesis that the crust of the Kobuk-Koyukuk basin is 32-35 km thick, consisting of a tectonically thickened section of Cretaceous volcanic and sedimentary rocks and older oceanic crust. -from Author

  18. Paleogeographic setting of Pennsylvanian Tyler formation and relation to underlying Mississippian rocks in Montana and North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maughan, E.K.

    Pennsylvanian sedimentary rocks in the northern Rocky Mountains and in the northern Great Plains of the United States were deposited primarily on a broad marine shelf between the North American craton and the late Paleozoic continental margin in Idaho and adjacent states. The Lower Pennsylvanian (Morrowan) Tyler Formation comprises detrital sediments and some limestone beds in Montana and North Dakota that were deposited along an eastward-transgressing marine shoreline after regional uplift, warping, and faulting had resulted in an erosional unconformity on top of Mississippian strata. The Lower Pennsylvanian shoreline finally extended onto the cratonic interior in eastern North Dakota. Initialmore » Tyler sediments were deposited as a deltaic and fluviolacustrine complex succeeded by littoral deposits as the Early Pennsylvanian shoreline transgressed eastward across the shelf. The Tyler Formation is subdivided into the Stonehouse Canyon Member at the base, the Bear Gulch Member, and the Cameron Creek Member at the top.« less

  19. Quantification of the effects of eustasy, subsidence, and sediment supply on Miocene sequences, mid-Atlantic margin of the United States

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Kominz, M.A.; Sugarman, P.J.; Monteverde, D.; Feigenson, M.D.; Hernandez, J.C.

    2006-01-01

    We use backstripping to quantify the roles of variations in global sea level (eustasy), subsidence, and sediment supply on the development of the Miocene stratigraphic record of the mid-Atlantic continental margin of the United States (New Jersey, Delaware, and Maryland). Eustasy is a primary influence on sequence patterns, determining the global template of sequences (i.e., times when sequences can be preserved) and explaining similarities in Miocene sequence architecture on margins throughout the world. Sequences can be correlated throughout the mid-Atlantic region with Sr-isotopic chronology (??0.6 m.y. to ??1.2 m.y.). Eight Miocene sequences correlate regionally and can be correlated to global ??18O increases, indicating glacioeustatic control. This margin is dominated by passive subsidence with little evidence for active tectonic overprints, except possibly in Maryland during the early Miocene. However, early Miocene sequences in New Jersey and Delaware display a patchwork distribution that is attributable to minor (tens of meters) intervals of excess subsidence. Backstripping quantifies that excess subsidence began in Delaware at ca. 21 Ma and continued until 12 Ma, with maximum rates from ca. 21-16 Ma. We attribute this enhanced subsidence to local flexural response to the progradation of thick sequences offshore and adjacent to this area. Removing this excess subsidence in Delaware yields a record that is remarkably similar to New Jersey eustatic estimates. We conclude that sea-level rise and fall is a first-order control on accommodation providing similar timing on all margins to the sequence record. Tectonic changes due to movement of the crust can overprint the record, resulting in large gaps in the stratigraphic record. Smaller differences in sequences can be attributed to local flexural loading effects, particularly in regions experiencing large-scale progradation. ?? 2006 Geological Society of America.

  20. Macrobenthic assemblages of the Changjiang River estuary (Yangtze River, China) and adjacent continental shelf relative to mild summer hypoxia

    NASA Astrophysics Data System (ADS)

    Liao, Yibo; Shou, Lu; Tang, Yanbin; Zeng, Jiangning; Gao, Aigen; Chen, Quanzhen; Yan, Xiaojun

    2017-05-01

    To assess the effects of hypoxia, macrobenthic communities along an estuarine gradient of the Changjiang estuary and adjacent continental shelf were analyzed. This revealed spatial variations in the communities and relationships with environmental variables during periods of reduced dissolved oxygen (DO) concentration in summer. Statistical analyses revealed significant differences in macrobenthic community composition among the three zones: estuarine zone (EZ), mildly hypoxic zone (MHZ) in the continental shelf, and normoxic zone (NZ) in the continental shelf (Global R =0.206, P =0.002). Pairwise tests showed that the macrobenthic community composition of the EZ was significantly different from the MHZ (pairwise test R =0.305, P =0.001) and the NZ (pairwise test R =0.259, P =0.001). There was no significant difference in macrobenthic communities between the MHZ and the NZ (pairwise test R =0.062, P =0.114). The taxa included small and typically opportunistic polychaetes, which made the greatest contribution to the dissimilarity between the zones. The effects of mild hypoxia on the macrobenthic communities are a result not only of reduced DO concentration but also of differences in environmental variables such as temperature, salinity, and nutrient concentrations caused by stratification.

  1. Geology of the Cape Mendocino, Eureka, Garberville, and Southwestern Part of the Hayfork 30 x 60 Minute Quadrangles and Adjacent Offshore Area, Northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Ellen, S.D.; Blake, M.C.; Jayko, Angela S.; Irwin, W.P.; Aalto, K.R.; Carver, G.A.; Clarke, S.H.; Barnes, J.B.; Cecil, J.D.; Cyr, K.A.

    2000-01-01

    Introduction These geologic maps and accompanying structure sections depict the geology and structure of much of northwestern California and the adjacent continental margin. The map area includes the Mendocino triple junction, which is the juncture of the North American continental plate with two plates of the Pacific ocean basin. The map area also encompasses major geographic and geologic provinces of northwestern California. The maps incorporate much previously unpublished geologic mapping done between 1980 and 1995, as well as published mapping done between about 1950 and 1978. To construct structure sections to mid-crustal depths, we integrate the surface geology with interpretations of crustal structure based on seismicity, gravity and aeromagnetic data, offshore structure, and seismic reflection and refraction data. In addition to describing major geologic and structural features of northwestern California, the geologic maps have the potential to address a number of societally relevant issues, including hazards from earthquakes, landslides, and floods and problems related to timber harvest, wildlife habitat, and changing land use. All of these topics will continue to be of interest in the region, as changing land uses and population density interact with natural conditions. In these interactions, it is critical that the policies and practices affecting man and the environment integrate an adequate understanding of the geology. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (ceghmf.ps, ceghmf.pdf, ceghmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.

  2. Allostratigraphy of the U.S. middle Atlantic continental margin; characteristics, distribution, and depositional history of principal unconformity-bounded upper Cretaceous and Cenozoic sedimentary units

    USGS Publications Warehouse

    Poag, C. Wylie; Ward, Lauck W.

    1993-01-01

    Publication of Volumes 93 and 95 ('The New Jersey Transect') of the Deep Sea Drilling Project's Initial Reports completed a major phase of geological and geophysical research along the middle segment of the U. S. Atlantic continental margin. Relying heavily on data from these and related published records, we have integrated outcrop, borehole, and seismic-reflection data from this large area (500,000 km^2 ) to define the regional allostratigraphic framework for Upper Cretaceous and Cenozoic sedimentary rocks. The framework consists of 12 alloformations, which record the Late Cretaceous and Cenozoic depositional history of the contiguous Baltimore Canyon trough (including its onshore margin) and Hatteras basin (northern part). We propose stratotype sections for each alloformation and present a regional allostratigraphic reference section, which crosses these basins from the inner edge of the coastal plain to the inner edge of the abyssal plain. Selected supplementary reference sections on the coastal plain allow observation of the alloformations and their bounding unconformities in outcrop. Our analyses show that sediment supply and its initial dispersal on the middle segment of the U. S. Atlantic margin have been governed, in large part, by hinterland tectonism and subsequently have been modified by paleoclimate, sea-level changes, and oceanic current systems. Notable events in the Late Cretaceous to Holocene sedimentary evolution of this margin include (1) development of continental-rise depocenters in the northern part of the Hatteras basin during the Late Cretaceous; (2) the appear ance of a dual shelf-edge system, a marked decline in siliciclastic sediment accumulation rates, and widespread acceleration of carbonate production during high sea levels of the Paleogene; (3) rapid deposition and progradation of thick terrigenous delta complexes and development of abyssal depocenters during the middle Miocene to Quaternary interval; and (4) deep incision of the shelf edge by submarine canyons, especially during the Pleistocene. Massive downslope gravity flows have dominated both the depositional and erosional history of the middle segment of the U. S. Atlantic Continental Slope and Rise during most of the last 84 million years. The importance of periodic widespread erosion is recorded by well-documented unconformities, many of which can be traced from coastal-plain outcrops to coreholes on the continental slope and lower continental rise. These unconformities form the boundaries of the 12 allostratigraphic units we formally propose herein. Seven of the unconformities correlate with supercycle boundaries (sequence boundaries) that characterize the Exxon sequence-stratigraphy model.

  3. Sedimentation patterns in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia: Evidence for Archean rifted continental margins

    NASA Astrophysics Data System (ADS)

    Eriksson, Kenneth A.

    1982-01-01

    Archean supracrustal sequences in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia, consist of lower volcanic and upper dominantly terrigenous clastic intervals. As evidenced by the paleoenvironments of intercalated sedimentary horizons, volcanism occurred mainly in shallow waters. The overlying ca 3.3 Ga sedimentary intervals contain various common as well as unique paleoenvironments, the understanding of which places significant constraints on Archean crustal models. Lateral and vertical associations of inferred paleoenvironments are used to interpret the geotectonic history of the Archean depositories. The early sedimentary history of the greenstone belts is characterized by terrestrial and subaqueous graben-fill associations of facies related to the initial rift stage of basin development. Continued rifting and initial spreading produced submarine grabens within which ironformations accumulated in response to waning volcanism. Source area uplift resulted in progradation of submarine fans across the basinal chemical sediments. The turbidites are gradational directly into braided alluvial sediments, in part of fan delta origin, suggesting that the continental to marine transition occurred along a narrow continental shelf. In the Barberton Mountain Land the steep-rift margin was succeeded by the development of a stable continental shelf or shelf rise margin through progradation of the turbidite wedge possibly in association with a eustatic rise in sea-level related to continued spreading. On this shelf extensive tidal, deltaic and barrier beach sediments accumulated. Sedimentation was terminated by closure of the passive margin oceans. The late-Archean Pongola Supergroup in South Africa is considered to be the late-orogenic molasse response to this closure and represents the completion of the Wilson cycle.

  4. Variability of interleaving structure of Atlantic Water during its propagation along the Eurasian basin (Arctic Ocean) continental margin

    NASA Astrophysics Data System (ADS)

    Zhurbas, Nataliya; Kuzmina, Natalia; Lyzhkov, Dmitry; Ostapchuk, Alexey

    2017-04-01

    In order to give detailed description of the interleaving structure in the Eurasian basin results of observations carried out during NABOS 2008 and Polarstern cruise in 1996 were analyzed. The study was focused on interleaving parameters (structure and vertical scale of intrusions) variability in the upper (150-300 meters) and intermediate (300-700 meters) layers of the ocean. Based on θ,S/θ,σ-diagrams (θ, S and σ are the potential temperature, salinity and potential density, correspondingly) analysis two main results were obtained. First of all it was shown that intrusive layers carried by the mean current along the Eurasian Basin continental margin become deeper relatively isopycnals and thus stimulate ventilation of pycnocline. Second, the area in Eurasian Basin thermocline was found where intrusive layers of large and small scale were absent. This distinctive feature can be explained by intensive mixing between two branches of Atlantic Water, one of which propagates along Eurasian basin continental margin and the other spreads across the basin due to large scale interleaving processes. Among others, one of the possible methods of integral estimation of Atlantic water masses heat and salt contents variations during their expansion along basin continental margin was proposed. Thus it is reasonable to assess variation of square under the θ(S)-diagrams, which illustrate the data obtained from two CTD-stations located on diametrically opposite sides of Eurasian Basin, taking 0.5°C isotherm as a reference value. For verification of the introduced approach the estimates of heat and salt contents variations were made by different methods. Detailed discussion of the results is presented. Work was supported by the Russian Foundation for Basic Research (Grant No 15-05-01479-a).

  5. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  6. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.

  7. The role of ocean circulation on methane hydrate stability and margin evolution

    NASA Astrophysics Data System (ADS)

    Hornbach, M. J.; Phrampus, B. J.; Ruppel, C. D.; Hart, P. E.

    2012-12-01

    For more than three decades, researchers have suggested a link between submarine gas hydrates and large (km-scale) continental margin slope failures (e.g. Carpenter 1980). Although several large submarine slope failures are co-located with methane hydrate deposits, a clear link between hydrates and slumping remains tenuous today (e.g. Maslin et al., 2003). Some studies suggest slope failures on continental margins are triggered by eustatic sea level lowering that destabilizes methane hydrates (e.g. Kayen and Lee, 1991; Paull et al, 1996). More recent studies by Dickens et al. (1995; 2001) postulate that a ~5 degree C increase in deep or intermediate ocean water temperature can, in theory, provide enough seafloor warming at continental margins to dissociate thousands of gigatons of methane hydrate into methane gas and water. This process, by elevating pore-fluid pressure, can lead to faulting, hydrofracture, and widespread slope failure (Dickens et al., 1995; Flemings et al., 2003; Hornbach et al., 2004). Similar ocean warming theories suggest methane hydrate dissociation as a probable cause of past and perhaps future ocean acidification events (Biastoch et al., 2011; Archer et al., 2004; Zachos et al., 1995). Here, using recently reprocessed 2D seismic data and 2D heat flow models, we suggest that recent (Holocene) shifts in ocean current flow directions along the edge of the Atlantic and Arctic margins are increasing ocean bottom temperatures by as much 8 degrees C, and in the process, destabilizing huge quantities (gigatons) of methane hydrate. Importantly, this mechanism for destabilizing methane hydrate requires no significant change in sea-level or average ocean temperature. We suggest the areas of active hydrate destabilization cover more than 10,000 km ^2, and occur, perhaps not coincidentally, in regions where some of the largest submarine slope failures exist. Forward models indicate we may be observing only the onset of large-scale contemporary methane hydrate destabilization at these sites and that this destabilization could continue for centuries. The results have significant implications for the global carbon budget, ocean acidification, ocean circulation, and the evolution of continental margins. The analysis presented here also provides a new method for constraining Holocene changes in intermediate ocean temperatures and demonstrates that only slight shifts in ocean current flow direction have a profound impact on both margin stability and the ocean carbon budget.

  8. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea, and West Africa Margin) world-wide by using the substantial archive of satellite synthetic aperture radar (SAR) images. An automated system for satellite image interpretation will make it possible to process hundreds of SAR images to increase the geographic and temporal coverage. Field programs will quantify the flux and fate of hydrate methane in sediments and the water column.

  9. Multi-scale characterization of an upcurrent turbiditic pinch-out

    NASA Astrophysics Data System (ADS)

    Daghdevirenian, L. J. P.; Migeon, S.; Rubino, J. L., Sr.; Raisson, F.

    2017-12-01

    Continental margins with a steep topographic profile between their continental shelf and the basin exhibit a sudden slope break at the base of their continental slope. This slope break favors strong erosion or a by-pass and a fast accumulation of sediments on the base of the continental slope due to the hydraulic jump phenomena. Such a process is responsible for the construction of thick accumulations of limited extension and generally disconnected from the feeding tributaries. These accumulations usually onlap against the continental slope but their modality of pinch out is still questioned and it is the subject of this work. The Tabernas basin is located in South East of Spain, in the continuity of the Sorbas basin. Recent field works allowed identifying a "sedimentary" onlap associated with a small-scale sandy turbidite system that we discovered near the so-called El Buho area. The superb quality of the outcrops revealed, the presence of three successive onlap structures consisting in each case of a direct contact between fluvial conglomerates / marines conglomerates / marine marls / turbidite sands. Reconstruction of paleo-current direction gives a flow direction around N00, from north to south, suggesting the outcrops are cutting the pinch out of the sandy system in a longitudinal direction. A longitudinal and vertical transition of facies can be thus observed from marines' conglomerates to turbidite sands, respectively over distances of 500 m and 70 m. The complete evolution of facies along the pinch out consists of thick conglomerates in the proximal part to sandy turbidite channels then lobes in the distal part. The three successive onlap structures are located inside the channelize part of the system, just above a slope break structure. The basal units of the pinch out consist of an alternation of conglomerates and sandy bed, while the overlying units exhibits more sandy dominated beds. In order to reconstruct the architecture of the pinch out and to understand its process of formation, a complete photogrammetry acquisition was performed at the scale of the whole area This new dataset together with sedimentological logs and outcrop analysis allowed to model the multiple scale pinch out of a turbidite system against its adjacent continental slope, from the beds and the outcrops to regional scale given by the photogrammetry

  10. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  11. The Rome trough and evolution of the Iapetean margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.; Hamilton-Smith, T.; Drahovzal, J.A.

    1991-08-01

    Recent structural mapping of the Rome trough suggests a complex structure very different from the symmetrical and laterally continuous graben commonly depicted. Early and Middle Cambrian extension in the Rome trough of eastern Kentucky and adjacent areas resulted in a series of alternately facing half-grabens with variable displacement. These half-grabens are bounded by southwest-northeast-trending normal faults (e.g., Kentucky River and Warfield faults), which are laterally continuous only on the order to tens of kilometers. The Rome trough is laterally segmented by north-south-trending faults (e.g., Lexington fault) commonly expressed as flexures in younger rocks (e.g., Burning Springs anticline and Floyd Countymore » channel). Many of these north-south-trending faults have significant left-lateral displacement, and probably represent reactivated thrust faults of the Grenville tectonic front. The Rome trough and the associated Mississippi Valley, Rough Creek, and Birmingham fault systems were initiated during an Early Cambrian shift in sea-floor spreading from the Blue Ridge-Pine Mountain rift to the Ouachita rift along the Alabama-Oklahoma transform fault. These fault systems have been proposed as having originated from extensional stress propagated northward from the Ouachita rift across the transform fault. In the alternate model proposed here, faulting was brittle, extensional failure resulting form subsidence and flexure of the continental margin to the east. Following initiation of sea-floor spreading at the Blue Ridge-Pine Mountain rift in the latest Proterozoic, margin subsidence in the presence of the Alabama-Oklahoma transform boundary and the inherited Grenville tectonic front resulted in this interior cratonic fault system.« less

  12. Magmatism evolution on the last Neoproterozoic development stage of the western Siberian active continental margin

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.; Kadilnikov, Pavel I.; Romanova, Irina V.

    2017-04-01

    Rocks from active continental margin complexes are characterized by a wide variety of chemical compositions from depleted in alkali to alkali differentiates. When addressing issues of geodynamic settings in which such rocks form, it is important to understand the evolution of the host tectonic structure, as well as the chemical affiliation of the various rocks composing it. The Yenisey Ridge orogen located in the south-western framing of Siberia is one of the more studied regions with a long history of Neoproterozoic magmatic events. This orogen was formed during the collision of the Central Angara terrane with Siberia, which took place 761-718 Ma. Subsequent subduction-related events in the orogen have been recorded in the coeval magmatism (711-629 Ma) of two complexes: one is the active continental margin complex (Nb enriched igneous rocks - gabbroids, trachybasalts, A-type granites and carbonatites, including contact metasomatites zones with Nb mineralization), and the other one is an island arc complex (differentiated series volcanics, gabbroids and plagiogranites). The rocks of these complexes are respectively located in two suture zones: the Tatarka-Ishimba zone that formed due to the collision mentioned above, and the Yenisei suture marking the subduction zone [Vernikovsky et al., 2003; 2008]. The final Neoproterozoic stage in the evolution of the active margin of Siberia is manifested as adakite-gabbro-anorthosite magmatism in the 576-546 Ma interval. Our results indicate a genetic relationship between the adakites and their host NEB-type metabasites of the Zimovey massif. These Neoproterozoic adakites could have formed in a setting of transform-strike-slip drift of lithospheric plates after the subduction stopped, both from a crustal and mantle-crustal source, similarly to the Cenozoic magmatic complexes of the transform margin in the eastern framing of Eurasia [Khanchuk et al., 2016]. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal'nikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics, 2003, V. 375, P. 147-168. Vernikovsky V.A., Vernikovskaya A.E., Sal'nikova E.B., Berezhnaya N.G., Larionov A.N., Kotov A.B., Kovach V.P., Vernikovskaya I.V., Matushkin N.Yu., Yasenev A.M. Late Riphean alkaline magmatism in the western margin of the Siberian Craton: A result of continental rifting or accretionary events? // Doklady Earth Sciences, 2008, V. 419, Iss. 1, P. 226-230. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic Data // Journal of Asian Earth Sciences, 2016, V. 120, P. 117-138.

  13. Structure, mechanical properties and evolution of the lithosphere below the northwest continental margin of India

    NASA Astrophysics Data System (ADS)

    Rao, G. Srinivasa; Kumar, Manish; Radhakrishna, M.

    2018-02-01

    The continental breakup history at the northwest continental margin of India remained conjectural due to lack of clearly discernable magnetic anomaly identifications and the presence of several enigmatic structural/basement features whose structure was partly obscured by the Late Cretaceous Deccan magmatic event. In this study, a detailed analysis of the existing seismic and seismological data covering both onshore and offshore areas of the northwest Indian margin along with 3-D/2-D constrained potential field (gravity, magnetic and geoid) modeling has been carried out. The crustal structure and lithosphere-asthenosphere boundary (LAB) delineated across the margin provided valuable insights on the mechanism of continental extension. An analysis of the residual geoid anomaly (degree-10) map and the modeled LAB below Deccan volcanic province (DVP) revealed significant variation in upper mantle characteristics between the northwest (NW) and south central (SC) parts of DVP having thinner lithosphere in the NW part. The depth to LAB ranges 80-130 km at the margin with gradual thinning towards the western offshore having sharp gradient in the south (SC part of DVP) and gentle gradient in the north (NW part of DVP). The Moho configuration obtained from seismically constrained 3-D gravity inversion reveals that Moho depths vary 34-42 km below DVP and gradually thins to 16-20 km in the western offshore. The effective elastic thickness (Te) map computed through 3-D flexural modeling indicates that the Te values are in general lower in the region and range 12-25 km. Such lower Te values could be ascribed to the combined effect of the lithosphere stretching during Gondwana fragmentation in the Mesozoic and subsequent thermal influence of the Reunion plume. Based on the crustal stretching factors (β), Te estimates and the modeled lithosphere geometry at the margin in this study, we propose that the lithosphere below Laxmi-Gop basin region (β > 3.0) had undergone continuous stretching since India-Madagascar rifting ( 88 Ma) /much prior to this event. However, this continuous stretching did not lead to breakup. Due to syn-rift cooling, the developed necking zone (brittle-ductile deformation) got ceased and led to the development of a new necking zone between Seychelles and Laxmi Ridge. Subsequent stretching between Seychelles and the Laxmi Ridge contemporaneous with the Deccan flood basalts eruption led to the seafloor spreading in the Western Basin (anomaly C28n). Thus, the Laxmi Ridge became a continental sliver.

  14. U-Pb isotopic evidence for the accretion of a continental microplate in the Zalm region of the Saudi Arabian Shield.

    USGS Publications Warehouse

    Stacey, J.S.; Agar, R.A.

    1985-01-01

    This area includes three of the main tectonic units of the Arabian Shield: the Afif continental terrain, the Nabitah suture with its associated mobile belt, and the Asir ensimatic arc terrain. U/Pb zircon data from a pelitic garnet-sillimanite gneiss show that the Kabib formation in the S of the Afif terrain may be as old as 1770 m.y. Pb and Rb/Sr isotopic data in the Zalm region reveal a change in the nature of the underlying crust, from continental basement in the NE to less radiogenic marginal arc rocks in the SW. Miogeosynclinal continental shelf facies of the Siham group lie unconformably over the Kabid formation. U/Pb zircon age determinations show that this 'Andean' continental margin developed before approx 720 m.y. and the emplacement of calc-alkaline plutonic rocks continued until approx 690 m.y. During the period 685-640 m.y. the continental Afif microplate collided with the Asir terrain as part of the Nabitah orogeny. At approx 640 m.y. age the Najd strike-slip faulting commenced, with a dextral phase that controlled emplacement of granite plutons as well as the development of large pull-apart grabens. Some of the latter were floored by new oceanic crust and filled with volcanosedimentary rocks of the Bani Ghayy group.-R.A.H.

  15. Reactivation versus reworking of the active continental margin during the Zagros collision: Mahallat-Muteh-Laybid complexes, Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Aflaki, Mahtab; Shabanian, Esmaeil; Davoodi, Zeinab; Mohajjel, Mohammad

    2017-06-01

    Reactivation of long-lived basement faults has significant influences on further deformation of collision zones. Three major inherited pre-collisional NW-, N- and NE-trending basement discontinuities have played important roles on the structural and tectono-sedimentary evolution of the Iranian micro-continent in the northeastern part of the Gondwana super-continent. Sanandaj-Sirjan zone (SSZ), known as the metamorphic belt of the Zagros orogeny, marks the SW margin of the Central Iran. SSZ is formed as a result of the Arabia-Eurasia collision and its general trend of deformation coincides with the NW structural trend of the collision. The NE-trending Mahallat, Muteh and Laybid complexes in the middle part of the NW-trending SSZ are the exception and have a trend almost normal to the NW-trending Zagros. A combined methodology of remote sensing, geometric and kinematics analyses complemented by field work was used to reconstruct the history of deformation in the Zagros hinterland since the earlier stages of collision to the present-day. Our results reveal the key role of the preexisting discontinuities of the Iranian basement in both the kinematics and structural pattern of the middle part of the SSZ. These basement faults have acted as main boundary conditions changing the collisional fabric perpendicular to its overall trend. Progressive deformation and the related changes during collision have caused drastic changes in the kinematics of the boundary faults. The establishment of dextral transtension in the SSZ has had secondary influences on the pattern of deformation by local clockwise rotation and localized dextral shear in the southern parts of the area of interest. This study highlights the significance of long-lived pre-existing structures in the deformation of collision zones. Such basement faults are capable to change both the pattern and kinematics of deformation of the adjacent areas involved in a continental collision.

  16. Long-term controls on the composition of particulate organic carbon buried offshore from the Waipaoa River, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Leithold, E. L.; Blair, N. E.; Childress, L. B.; Brulet, B.

    2009-12-01

    In the Waipaoa watershed on the North Island of New Zealand, as in many small mountainous watersheds around the world, high sediment yields are accommodated by the weathering and mass wasting of bedrock as well as of its mantle of soil and vegetation. Investigation of both the contemporary Waipaoa system and the sedimentary record preserved in adjacent marine depocenters reveals that these three sources of sediment have also been the primary sources of riverine POC throughout the watershed’s Holocene history, but that their relative roles have varied as a function of environmental perturbations. Mass balance calculations using stable and radiogenic carbon isotopic ratios of organic matter associated with both bulk sediments and clay-sized isolates point to a large and persistent contribution of kerogen to POC in the Waipaoa system. This material has accumulated on the continental margin along with terrestrial plant-derived OC, much of which apparently had a short residence time in the watershed. The accelerated contribution of OC-poor volcanic tephra to the Waipaoa sediment load beginning about 4000 years ago led to dilution of both the kerogen and plant fraction, and ultimately to enhanced marine OC burial on the shelf via production of new mineral surface area and sorption from porewaters. Beginning around 700 years BP, anthropogenic influences have left their mark on the watershed and offshore record, including the introduction of a pulse of fine-grained charcoal from biomass burning. Deforestation of the headwaters has led to more widespread shallow landsliding and to the development of large gully complexes incised into tectonically crushed mudstones. The increased kerogen flux due to chronic gully erosion is apparent in the offshore record, but its impact on the composition and age of OC buried on the continental shelf is muted compared to the increase in riverine sediment discharge and sediment accumulation observed on the margin.

  17. Amphibious Local Seismic Observations by SFB 574 in Costa Rica

    NASA Astrophysics Data System (ADS)

    Gossler, J.; Arroyo, I.; Flueh, E. F.; Goltz, C.; Wagner, G.; Boschini, I.; Mora, M.

    2004-12-01

    The goal of the SFB 574 ''Volatiles and Fluids in Subduction Zones'' subproject A2 is to study the seismogenic zone of Costa Rica and Nicaragua as examples of an erosive margin and to better understand its local variability. In 2002/2003 we studied the seismogenic zone in two adjacent areas of Costa Rica. One of the areas is characterised by the subduction of a seamount, the other one contains a megalens structure, which had been inferred from reflection seismic data before and which is interpreted to indicate a possible mechanism for mass transfer from the upper to the lower plate. 23 ocean bottom sensors from IFM-GEOMAR and 15 landstations from the GFZ Potsdam were deployed in the coastal Pacific region of central Costa Rica near Jaco in April 2002. The network was moved south-east towards Quepos in October 2002 and operated until spring 2003. 1,968 earthquakes between April and October 2002 could be located by the Jaco network. Most of the earthquakes took place offshore beneath the continental margin close to or beneath the network. The hypocenter determination of these events using the on- and offshore parts of the network delivers very precise earthquake locations, because the network covers the source region very well. Another region of high seismic activity is located southeast of the network, where a magnitude 6.3 earthquake took place on June 16, 2002, followed by several hundred aftershocks. Ongoing studies focus especially on the updip limit of these events. From the Quepos network 1,241 earthquakes between October and December 2002 have been located, so far. In a pilot study focal mechanism of 13 earthquakes with clear polarities had been determined using the Jaco onshore network only. Except for two earthquakes these events were shallow and took place in the continental wedge. The orientations of their focal planes coincides well with the geological fault system of the Jaco area. Ongoing work focuses on slab related earthquakes.

  18. A comparison of geochemical exploration techniques and sample media within accretionary continental margins: an example from the Pacific Border Ranges, Southern Alaska, U.S.A.

    USGS Publications Warehouse

    Sutley, S.J.; Goldfarb, R.J.; O'Leary, R. M.; Tripp, R.B.

    1990-01-01

    The Pacific Border Ranges of the southern Alaskan Cordillera are composed of a number of allochthonous tectonostratigraphic terranes. Within these terranes are widespread volcanogenic, massive sulfide deposits in and adjacent to portions of accreted ophiolite complexes, bands and disseminations of chromite in accreted island-arc ultramafic rocks, and epigenetic, gold-bearing quartz veins in metamorphosed turbidite sequences. A geochemical pilot study was undertaken to determine the most efficient exploration strategy for locating these types of mineral deposits within the Pacific Border Ranges and other typical convergent continental margin environments. High-density sediment sampling was carried out in first- and second-order stream channels surrounding typical gold, chromite and massive sulfide occurrences. At each site, a stream-sediment and a panned-concentrate sample were collected. In the laboratory, the stream sediments were sieved into coarse-sand, fine- to medium-sand, and silt- to clay-size fractions prior to analysis. One split of the panned concentrates was retained for analysis; a second split was further concentrated by gravity separation in heavy liquids and then divided into magnetic, weakly magnetic and nonmagnetic fractions for analysis. A number of different techniques including atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and semi-quantitative emission spectrography were used to analyze the various sample media. Comparison of the various types of sample media shows that in this tectonic environment it is most efficient to include a silt- to clay-size sediment fraction and a panned-concentrate sample. Even with the relatively low detection limits for many elements by plasma spectrometry and atomic absorption spectrometry, anomalies reflecting the presence of gold veins could not be identified in any of the stream-sediment fractions. Unseparated panned-concentrate samples should be analyzed by emission spectroscopy and atomic absorption spectrometry for Ag and Au. If, however, magnetic and nonmagnetic concentrate fractions are used in a reconnaissance program, semiquantitative emission spectrography is adequate for all analytical work. ?? 1990.

  19. The extent of ocean acidification on aragonite saturation state along the Washington-Oregon continental shelf margin in late summer 2012

    NASA Astrophysics Data System (ADS)

    Feely, R. A.; Alin, S. R.; Hales, B. R.; Juranek, L.; Greeley, D.

    2012-12-01

    The Washington-Oregon continental shelf region is exposed to conditions of low aragonite saturation state during the late spring/early summer upwelling season. However, the extent of its evolution in late summer/early fall has been largely unknown. Along this continental margin, ocean acidification, upwelling, biological productivity, and respiration processes in subsurface waters are major contributors to the variability in dissolved inorganic carbon (DIC), pH and aragonite saturation state. The persistence of water with aragonite saturation state <1 on the continental shelf off Washington and Oregon has been previously identified and could have profound ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods. In the late summer of 2012 we studied the extent of acidification conditions employing shipboard cruises and profiling gliders. We conducted several large-scale chemical and hydrographic surveys of the region in order to better understand the interrelationships between these natural and human-induced processes and their effects on aragonite saturation. We will compare the results of these new surveys with our previous work in 2011 and 2007.

  20. The three scales of submarine groundwater flow and discharge across passive continental margins

    USGS Publications Warehouse

    Bratton, John F.

    2010-01-01

    Increased study of submarine groundwater systems in recent years has provided a wealth of new data and techniques, but some ambiguity has been introduced by insufficient distinguishing of the relevant spatial scales of the phenomena studied. Submarine groundwater flow and discharge on passive continental margins can be most productively studied and discussed by distinct consideration of the following three spatial scales: (1) the nearshore scale, spanning approximately 0–10 m offshore and including the unconfined surficial aquifer; (2) the embayment scale, spanning approximately 10 m to as much as 10 km offshore and including the first confined submarine aquifer and its terminus; and (3) the shelf scale, spanning the width and thickness of the aquifers of the entire continental shelf, from the base of the first confined aquifer downward to the basement, and including influences of geothermal convection and glacio-eustatic change in sea level.

  1. Moroccan crustal response to continental drift.

    PubMed

    Kanes, W H; Saadi, M; Ehrlich, E; Alem, A

    1973-06-01

    The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.

  2. The North Sakhalin Neogene total petroleum system of eastern Russia

    USGS Publications Warehouse

    Lindquist, S.J.

    2000-01-01

    The North Sakhalin Basin Province of eastern Russia contains one Total Petroleum System (TPS) ? North Sakhalin Neogene ? with more than 6 BBOE known, ultimately recoverable petroleum (61% gas, 36% oil, 3% condensate). Tertiary rocks in the basin were deposited by the prograding paleo-Amur River system. Marine to continental, Middle to Upper Miocene shale to coaly shale source rocks charged marine to continental Middle Miocene to Pliocene sandstone reservoir rocks in Late Miocene to Pliocene time. Fractured, self-sourced, Upper Oligocene to Lower Miocene siliceous shales also produce hydrocarbons. Geologic history is that of a Mesozoic Asian passive continental margin that was transformed into an active accretionary Tertiary margin and Cenozoic fold belt by the collision of India with Eurasia and by the subduction of Pacific Ocean crustal plates under the Asian continent. The area is characterized by extensional, compressional and wrench structural features that comprise most known traps.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.J.; Bishop, J.K.B

    Here we show that labile particulate iron and manganese concentrations in the upper 500m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100-200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source ofmore » Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.« less

  4. Widespread Anthropogenic Nitrogen in Northwestern Pacific Ocean Sediment.

    PubMed

    Kim, Haryun; Lee, Kitack; Lim, Dhong-Il; Nam, Seung-Il; Kim, Tae-Wook; Yang, Jin-Yu T; Ko, Young Ho; Shin, Kyung-Hoon; Lee, Eunil

    2017-06-06

    Sediment samples from the East China and Yellow seas collected adjacent to continental China were found to have lower δ 15 N values (expressed as δ 15 N = [ 15 N: 14 N sample / 15 N: 14 N air - 1] × 1000‰; the sediment 15 N: 14 N ratio relative to the air nitrogen 15 N: 14 N ratio). In contrast, the Arctic sediments from the Chukchi Sea, the sampling region furthest from China, showed higher δ 15 N values (2-3‰ higher than those representing the East China and the Yellow sea sediments). Across the sites sampled, the levels of sediment δ 15 N increased with increasing distance from China, which is broadly consistent with the decreasing influence of anthropogenic nitrogen (N ANTH ) resulting from fossil fuel combustion and fertilizer use. We concluded that, of several processes, the input of N ANTH appears to be emerging as a new driver of change in the sediment δ 15 N value in marginal seas adjacent to China. The present results indicate that the effect of N ANTH has extended beyond the ocean water column into the deep sedimentary environment, presumably via biological assimilation of N ANTH followed by deposition. Further, the findings indicate that N ANTH is taking over from the conventional paradigm of nitrate flux from nitrate-rich deep water as the primary driver of biological export production in this region of the Pacific Ocean.

  5. Seabeam and seismic reflection imaging of the tectonic regime of the Andean continental margin off Peru (4°S to 10°S)

    USGS Publications Warehouse

    Bourgois, J.; Pautot, G.; Bandy, W.; Boinet, T.; Chotin, P.; Huchon, P.; Mercier de Lepinay, B.; Monge, F.; Monlau, J.; Pelletier, B.; Sosson, M.; von Huene, Roland E.

    1988-01-01

    The Andean margin off Peru is an “extensional active margin” or a “collapsing active margin” developing a subordinated accretionary complex induced by massive collapse of the middle slope area.

  6. Geomorphic response of a continental margin to tectonic and eustatic variations, the Levant margin during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Ben Moshe, Liran; Ben-Avraham, Zvi; Enzel, Yehouda; Uri, Schattner

    2017-04-01

    During the Messinian Salinity Crisis (MSC, 5.97±0.01-5.33 Ma) the Mediterranean Levant margin experienced major eustatic and sedimentary cycles as well as tectonic motion along the nearby Dead Sea fault plate boundary. New structures formed along this margin with morphology responding to these changes. Our study focuses on changes in this morphology across the margin. It is based on interpretation of three 3D seismic reflection volumes from offshore Israel. Multi-attribute analysis aided the extraction of key reflectors. Morphologic analysis of these data quantified interacting eustasy, sedimentation, and tectonics. Late Messinian morphologic domains include: (a) continental shelf; (b) 'Delta' anticline, forming a ridge diagonal to the strike of the margin; (c) southward dipping 'Hadera' valley, separating between (a) and (b); (d) 'Delta Gap' - a water gap crossing perpendicular to the anticline axis, exhibiting a sinuous thalweg; (e) continental slope. Drainage across the margin developed in several stages. Remains of turbidite flows crossing the margin down-slope were spotted across the 'Delta' anticline. These flows accumulated with the MSC evaporate sequence and prior to the anticline folding. Rising of the anticline, above the then bathymetry, either blocked or diverted the turbidites. That rising also defined the Hadera valley. In-situ evaporates, covering the valley floor, are, in turn covered by a fan-delta at the distal end of the valley. The fan-delta complex contains eroded evaporites and Lago-Mare fauna. Its top is truncated by dendritic fluvial channels that drained towards the Delta Gap. The Delta Gap was carved through the Delta ridge in a morphological and structural transition zone. We propose that during the first stages of the MSC (5.97±0.01-5.59 ma) destabilization of the continental slope due to oscillating sea level produced gravity currents that flowed through the pre-existing Delta anticline. Subsequent folding of the Delta anticline diverted several flows towards the Delta Gap during peak MSC desiccation phase (5.59-5.5 ma). This resulted in sub-aerial incision of a canyon across the gap that outpaced the tectonic uplift of the anticline. During the Lago-Mare regression (5.5-5.33 ma) a fluvio-marine sequence was deposited in the already formed Hadera valley. Another regression before the Zanclean flood (5.33 ma) eroded the top of this sequence and rejuvenated the Delta Gap canyon.

  7. Potential role of gas hydrate decomposition in generating submarine slope failures: Chapter 12

    USGS Publications Warehouse

    Pauli, Charles K.; Ussler, William III; Dillon, William P.; Max, Michael D.

    2003-01-01

    Gas hydrate decomposition is hypothesized to be a factor in generating weakness in continental margin sediments that may help explain some of the observed patterns of continental margin sediment instability. The processes associated with formation and decomposition of gas hydrate can cause the strengthening of sediments in which gas hydrate grow and the weakening of sediments in which gas hydrate decomposes. The weakened sediments may form horizons along which the potential for sediment failure is increased. While a causal relationship between slope failures and gas hydrate decomposition has not been proven, a number of empirical observations support their potential connection.

  8. Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, L. Santschi, P.H.

    2000-02-01

    Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in themore » water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.« less

  9. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plainmore » were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.« less

  10. Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Taylor, S. R.; McCulloch, M. T.; Maynard, J. B.

    1990-07-01

    Petrographic, geochemical, and isotopic data for turbidites from a variety of tectonic settings exhibit considerable variability that is related to tectonic association. Passive margin turbidites (Trailing Edge, Continental Collision) display high framework quartz (Q) content in sands, evolved major element compositions (high Si/Al, K/Na), incompatible element enrichments (high Th/Sc, La/Sc, La/Yb), negative Eu-anomalies and variable Th/U ratios. They have low 143Nd /144Nd and high 87Sr /86Sr ( ɛNd = -26 to -10; 87Sr /86Sr = 0.709 to 0.734 ), indicating a dominance of old upper crustal sources. Active margin settings (Fore Arc, Continental Arc, Back Arc, Strike Slip) commonly exhibit quite different compositions. Th/Sc varies from <0.01 to 1.8, and ɛNd varies from -13.8 to +8.3. Eu-anomalies range from no anomaly ( Eu/Eu ∗ = 1.0 ) to Eu-depletions typical of post-Archean shales ( Eu/Eu ∗ = 0.65 ). Active margin data are explained by mixtures of young arc-derived material, with variable composition and old upper crustal sources. Major element data indicate that passive margin turbidites have experienced more severe weathering histories than those from active settings. Most trace elements are enriched in muds relative to associated sands because of dilution effects from quartz and calcite and concentration of trace elements in clays. Exceptions include Zr, Hf (heavy mineral influence) and Tl (enriched in feldspar) which display enrichments in sands. Active margin sands commonly exhibit higher Eu/Eu ∗ than associated muds, resulting from concentration of plagioclase during sorting. Some associated sands and muds, especially from active settings, have systematic differences in Th/Sc ratios and Nd-isotopic composition, indicating that various provenance components may separate into different grain-size fractions during sedimentary sorting processes. Trace element abundances of modern turbidites, from both active and passive settings, differ from Archean turbidites in several important ways. Modern turbidites have less uniformity, for example, in Th/Sc ratios. On average, modern turbidites have greater depletions in Eu (lower Eu/Eu ∗) than do Archean turbidites, suggesting that the processes of intracrustal differentiation (involving plagioclase fractionation) are of greater importance for crustal evolution at modern continental margins than they were during the Archean. Modern turbidites do not display HREE depletion, a feature commonly seen in Archean data. HREE depletion ( Gd N/Yb N > 2.0 ) in Archean sediments results from incorporation of felsic igneous rocks that were in equilibrium (or their sources were in equilibrium) with garnet sometime in their history. Absence of HREE depletion at modern continental margins suggests that processes of crust formation (or mantle source compositions) may have differed. Differences in trace element abundances for Archean and modern turbidites add support to suggestions that upper continental crust compositions and major processes responsible for continental crust differentiation differed during the Archean. Neodymium model ages, thought to approximate average provenance age, are highly variable ( TDMND = 0-2.6 Ga) in modern turbidites, in contrast with studies that indicate Nd-model ages of lithified Phanerozoic sediment are fairly constant at about 1.5-2.0 Ga. This variability indicates that continental margin sediments incorporate new mantle-derived components, as well as continental crust of widely varying age, during recycling. The apparent dearth of ancient sediments with Nd-model age similar to stratigraphic age supports the suggestion that preservation potential of sediments is related to tectonic setting. Many samples from active settings have isotopic compositions similar to or only slightly evolved from mantle-derived igneous rocks. Subduction of active margin turbidites should be considered in models of crust-mantle recycling. For short-term recycling, such as that postulated for island arc petrogenesis, arc-derived turbidites cannot be easily recognized as a source component because of the lack of time available for isotopic evolution. If turbidites were incorporated into the sources of ocean island volcanics, the isotopic signatures would be considerably more evolved since most models call for long mantle storage times (1.0-2.0 Ga), prior to incorporation. Four provenance components are recognized on the basis of geochemistry and Nd-isotopic composition: (1) Old Upper Continental Crust (old igneous/metamorphic terranes, recycled sediment); (2) Young Undifferentiated Arc (young volcanic/plutonic source that has not experienced plagioclase fractionation); (3) Young Differentiated Arc (young volcanic/plutonic source that has experienced plagioclase fractionation); (4) MORB (minor). Relative proportions of these components are influenced by the plate tectonic association of the provenance and are typically (but not necessarily) reflected in the depositional basin. Provenance of quartzose (mainly passive settings) and non-quartzose (mainly active settings) turbidites can be characterized by bulk composition (e.g., Th/Sc) and Nd-isotopic composition (reflecting age).

  11. Trend and dynamic cause of sediment particle size on the adjacent continental shelf of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Yang, Yun-ping; Zhang, Ming-jin; Li, Yi-tian; Fan, Yong-yang

    2016-12-01

    Based on the measured data in recent 20 years, the variation trends of the median grain size of the surface sediment, the sand-silt boundary and the mud area on the adjacent continental shelf of the Yangtze Estuary were analyzed in depth, and the effects of natural mechanism and human activities were discussed. The results show that: (1) In recent years (2006-2013), the median grain size of sediment and the distribution pattern of grouped sediments in the adjacent continental shelf area to the Yangtze Estuary have presented no obvious change compared with those before 2006; (2) The median diameter of the surface sediment in the continental shelf area displayed a coarsening trend with the decrease of sediment discharge from the basin and the drop in suspended sediment concentration in the shore area; (3) In 2004-2007, the sand-silt boundary in the north part (31°30'N) of the continental shelf area presented no significant changes, while that in the south part (31°30'S) moved inwards; In 2008-2013, both the sand-silt boundaries in the north and south parts of the continental shelf area moved inwards, mainly due to the fact that in the dry season, a relatively enhanced hydrodynamic force of the tides was generated in the Yangtze River, as well as a decreased suspended sediment concentration and a flow along the banks in North Jiangsu; (4) The mud area where the maximum deposition rate is found in the Yangtze Estuary, tends to shrink due to the drop in sediment discharge from the basin, and the decrease in suspended sediment concentration in the shore area and erosion in the delta. Moreover, it tended to shift to the south at the same time because the implement of the training works on the deep-water channel of the North Passage changed the split ratio between the North and South Passages with an increase in the power of the discharged runoff in the South Passage.

  12. Quantitative dating of Pleistocene terrace deposits of the Kyrenia Range, northern Cyprus: implications for timing, rates of uplift and driving mechanisms in an incipient collision zone

    NASA Astrophysics Data System (ADS)

    Palamakumbura, Romesh; Robertson, Alastair; Kinnaird, Tim; van Calsteren, Peter; Kroon, Dick; Tait, Jenny

    2016-04-01

    The Kyrenia Range is a narrow E-W trending mountain range up to c. 180 km long by up to ca. 20 km wide, which is located <100 km south of the Anatolian orogenic plateau within the easternmost Mediterranean Sea. The Kyrenia Range structural lineament underwent tectonically driven uplift mainly during the Pleistocene in a setting dominated by incipient continental collision. The likely driver of the uplift was the collision of the Eratosthenes Seamount, an inferred promontory of north Africa, with a subduction zone located to the south of Cyprus. To help understand the tectonic processes driving the uplift of the Kyrenia Range several quantitative techniques have been used to date uplift-related terrace deposits exposed on the northern flank of the range. Uranium-series disequilibrium (U-series) dating provides ages of 127, 131 and 242 ka from solitary coral in shallow-marine deposits of the lowest terraces, whereas optically stimulated luminescence (OSL) dating gives ages of 53 and 76 ka from coastal aeolianite deposits. Prior to major tectonic uplift a shallow-marine carbonate-depositing sea existed in the vicinity of the Kyrenia Range. Some of the youngest pre-uplift marine carbonates yielded a reversed magnetic polarity, which constrains them as older than the last palaeomagnetic reversal (0.78 Ma). The combined evidence suggests that marine environments persisted into the Early Pleistocene, prior to major surface uplift of the Kyrenia Range lineament, which appears to have climaxed in the Mid-Pleistocene. The inferred uplift rates of the Kyrenia Range lineament range from >1.2 mm/yr during the Mid-Pleistocene to <0.2 mm/yr during the Late Pleistocene. The uplift rates of the Kyrenia Range appear to be, on average, significantly faster than those inferred for some adjacent regions of the Eastern Mediterranean during the Pleistocene (e.g. Lebanon coast; Anatolian plateau southern margin). The new data also suggest that the Kyrenia Range was uplifted contemporaneously with the ophiolitic Troodos Massif in southern Cyprus, which is in keeping with the model of regional-scale collision of the Eratosthenes Seamount with the Cyprus trench. The uplift of the Kyrenia Range lineament took place directly adjacent to the southern margin of the much larger Anatolian orogenic plateau, which was also mainly uplifted during the Pleistocene. The timing and processes involved in the uplift of the Kyrenia Range lineament are relevant to long-term processes of continental accretion and plateau uplift. On a longer timescale, the uplift of the Kyrenia Range in an incipient collisional setting can be seen as a step towards final accretion into a larger Anatolian orogenic plateau as collision intensifies. Terranes similar to the Kyrenia Range lineament may therefore exist embedded within the uplifted margins of orogenic plateaus in other areas of the world (e.g. southern Tibet).

  13. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are the consequence. Its geometrical configuration and timing is different from submarine slides on other glaciated continental margins. Thus, it raises the question whether slope stability within the Arctic Ocean is governed by processes specific to this environment. The extraordinary thick slabs (up to 1600 m) that were moved translationally during sliding rise the question on the nature of the weak layers associated with this process. Especially theories involving higher pore pressure are being challenged by this observation, because either extreme pore pressures or alternative explanations (e.g. mineralogical and/or textural) can be considered. To assess the actual submarine slope stability and failure potential in the Arctic Ocean, we propose to drill and recover weak layer material of the HYM from the adjacent intact strata by deep drilling under the framework of Integrated Ocean Drilling Program. This is the only method to recover weak layer material from the HYM, because the strata are too thick. We further propose to drill into the adjacent deforming slope to identify material properties of the layers acting as detachment and monitor the deformation.

  14. Western Continental Margin of India - Re-look using potential field data

    NASA Astrophysics Data System (ADS)

    Rajaram, M.; S P, A.

    2008-05-01

    The Western Continental Margin of India (WCMI) evolved as a result of rifting between India and Madagascar that took place during mid Cretaceous (~88Ma).The WCMI is equally important in terms of natural resources as well as research point of view. The major tectonic elements in the western offshore includes the Laxmi and Chagos- Laccadive ridge dividing the WCMI and the adjoining Arabian sea into two basins, Pratap Ridge, Alleppey platform etc. Different theories have been proposed for the evolution of each of these tectonic elements. In the current paper we look at geopotential data on the west coast of India and the western off-shore. The data sets utilized include Satellite derived High Resolution Free Air Gravity data over the off-shore, Bouguer data onland, Champ Satellite Magnetic data, published Marine Magnetic data collected by ONGC, NIO, ground magnetic data over west cost collected by IIG and available aeromagnetic data. From the free air gravity anomaly the structural details of the western offshore can be delineated. The Euler depths of FAG depict deep solutions associated with Pratap Ridge, Comorin Ridge, the west coast fault and the Laxmi Ridge. These may be associated with continental margin and continental fragments. From the aeromagnetic and marine magnetic data it is evident that the West Coast Fault is dissected at several places. The shallow circular feature associated with Bombay High is evident both on the FAG and the analytic signal derived from satellite Magnetic data. The crustal magnetic thickness from MF5 lithospheric model of the Champ appears to suggest that the continental crust extends up to the Chagos- Laccadive ridge. Based on the analysis of these geopotential data sets the various theories for the evolution of the WCMI will be evaluated and these results will be presented.

  15. Methane Metabolizing Microbial Communities in the Cold Seep Areas in the Northern Continental Shelf of South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, F.; Liang, Q.

    2016-12-01

    Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the mechanisms of methane biotransformation.

  16. Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.

    2018-01-01

    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.

  17. Microseismicity in Southern South Island, New Zealand: Implications for the Mechanism of Crustal Deformation Adjacent to a Major Continental Transform

    NASA Astrophysics Data System (ADS)

    Warren-Smith, Emily; Lamb, Simon; Stern, Tim A.; Smith, Euan

    2017-11-01

    Shallow (<25 km), diffuse crustal seismicity occurs in a zone up to 150 km wide adjacent to the southern Alpine Fault, New Zealand, as a consequence of distributed shear and thickening in the obliquely convergent Australian-Pacific plate boundary zone. It has recently been proposed that continental convergence here is accommodated by oblique slip on a low-angle detachment that underlies the region, and as such, forms a previously unrecognized mode of oblique continental convergence. We test this model using microseismicity, presenting a new, 15 month high-resolution microearthquake catalog for the Southern Lakes and northern Fiordland regions adjacent to the Alpine Fault. We determine the spatial distribution, moment release, and style of microearthquakes and show that seismicity in the continental lithosphere is predominantly shallower than 20 km, in a zone up to 150 km wide, but less frequent deeper microseismicity extending into the mantle, at depths of up to 100 km is also observed. The geometry of the subducted oceanic Australian plate is well imaged, with a well-defined Benioff zone to depths of 150 km. In detail, the depth of continental microseismicity shows considerable variation, with no clear link with major active surface faults, but rather represents diffuse cracking in response to the ambient stress release. The moment release rate is 0.1% of that required to accommodate relative plate convergence, and the azimuth of the principal horizontal axis of contraction accommodated by microseismicity is 120°, 15-20° clockwise of the horizontal axis of contractional strain rate observed geodetically. Thus, short-term microseismicity, independent of knowledge of intermittent large-magnitude earthquakes, may not be a good guide to the rate and orientation of long-term deformation but is an indicator of the instantaneous state of stress and potential distribution of finite deformation. We show that both the horizontal and vertical spatial distribution of microseismicity can be explained in terms of a low-angle detachment model.

  18. Andean analogue for Late Carboniferous volcanic arc and arc flank environments of the western New England Orogen, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    McPhei, J.

    1987-07-01

    Late Carboniferous continental conglomerates interbedded with silicic ignimbrite sheets outcrop along more than 400 km of the western margin of the southern portion of the New England Orogen. Farther east, the coeval sedimentary facies are volcanogenic shallow marine and turbidite deposits. The volcanic source terrain, no longer exposed, was located to the west of the existing conglomerate-ignimbrite sequences and was underlain by continental crust which is, in part, represented by the northern Lachlan Fold Belt. The regional Late Carboniferous palaeogeography was similar to that of the present-day western continental margin of South America. The geology of the oceanward-flank of the Andean arc in northern Chile and a section of the Late Carboniferous continental sequence near Currabubula are comparable in detail. The Andean stratovolcanoes and ignimbrite centres thus provide the means of reconstruction of the Late Carboniferous volcanic source terrain. The geological record of both of these continental margin volcanic arcs, preserved in deposits of the arc flanks, is shaped by volcanism, especially the eruption of voluminous ignimbrites, and by uplift, deformation and glaciation centered on the arc. For the arc sections considered, diversity in the flank sequences arises because these controls vary in importance spatially and during the life of the arc (20-30 Ma). For the entire Andean arc, arc-parallel variations in the sites of active volcanism and its character appear to be related to differences in the continental crust thickness and the circumstances of subduction of oceanic crust, particularly the dip of the Benioff Zone. By analogy, variation in the age, duration and style of volcanic activity along the late Palaeozoic magmatic arc of the western New England Orogen perhaps reflects the former existence of significant differences in crust thickness and in the angle of subduction.

  19. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin, and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.

    1998-01-01

    Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the basis of the stratigraphy of Northwind Ridge and sea-floor magnetic anomalies in the Canada basin accounts in a general way for the major crustal elements of the Americasia basin, including the highstanding ridges of the Chukchi borderland, and supports S.W. Carye's hypothesis that the Amerasia basin is the product of anticlockwise rotational rifting of Arctic Alaska from North America.

  20. Reconciling drainage and receiving basin signatures of the Godavari River system

    NASA Astrophysics Data System (ADS)

    Ojoshogu Usman, Muhammed; Kirkels, Frédérique Marie Sophie Anne; Zwart, Huub Michel; Basu, Sayak; Ponton, Camilo; Blattmann, Thomas Michael; Ploetze, Michael; Haghipour, Negar; McIntyre, Cameron; Peterse, Francien; Lupker, Maarten; Giosan, Liviu; Eglinton, Timothy Ian

    2018-06-01

    The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of old or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of the offshore sedimentary record. While changes in water flow and sediment transport resulting from recent dam construction have drastically impacted the flux, loci, and composition of OC exported from the modern Godavari basin, complicating reconciliation of modern-day river basin geochemistry with that recorded in continental margin sediments, such investigations provide important insights into climatic and anthropogenic controls on OC cycling and burial.

  1. Sensitivity analysis of a variability in rock thermal conductivity concerning implications on the thermal evolution of the Brazilian South Atlantic passive continental margin

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich Anton; Hackspacher, Peter Christian

    2017-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. The research integrates published (Karl et al., 2013) and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones (Karl et al., 2013) are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. Following up on our latest publication (Braun et al., 2016) regarding the effect of variability in rock thermal conductivity on exhumation rate estimates we performed a sensitivity analysis to quantify the effect of a differentiated lithospheric crust on the thermal evolution of the Florianópolis block versus exhumation rates estimated from modelling a lithospheric uniform crustal block. The long-term landscape evolution models with process rates were computed with the software code PECUBE (Braun, 2003; Braun et al., 2012). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameters, values, and rates can be constrained. References Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. Braun, J., Stippich, C., Glasmacher, U. A., 2016. The effect of variability in rock thermal conductivity on exhumation rate estimates from thermochronological data. Tectonophysics, v.690, pp.288-297 Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244.

  2. Origin of Volcanic Seamounts Offshore California Related to Interaction of Abandoned Spreading Centers with the Continental Margin

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.; Cousens, B. L.; Huard, J.

    2007-12-01

    The numerous NE-SW trending volcanic seamounts at the continental margin offshore central to Southern California owe their existence to the complex tectonics that resulted when small spreading ridge segments intersected and partly subducted beneath the continental margin during the Miocene plate reorganization. A limited number of dredged samples had indicated multiple episodes of coeval, alkalic volcanism at geographically widely separated sites (Davis et al., 2002, GSA Bull. 114, 316-333). 450 new samples were collected from 8 seamounts from 37. 5°N to 32.3°N with MBARI's ROV Tiburon. Ar-Ar ages for 50 of these samples extend the ages of volcanism from 18 Ma to 2.8 Ma. The dominant whole rock compositions are differentiated alkalic basalt, hawaiite, and mugearite, but include minor benmoreite, trachyte, and rare tholeiitic basalt. This entire range of compositions is also present in glassy margins or in volcaniclastic breccias, except for the trachyte, which had no glassy margins. Trace element abundances and ratios (e.g. REE, Zr, Nb, Ta, Th, Ba, etc.) are typical for ocean island basalt, whether the seamount is located on the Pacific plate (e.g. Pioneer, Gumdrop, Guide, Davidson, San Juan, San Marcos) or on the continental slope (Rodriguez) or within the Southern Continental Borderland (Northeast Bank). Nine samples, predominantly from Rodriguez Seamount, show a calc-alkaline trend with lower Nb, Ta, and higher Th. These samples may be erratics (Paduan et al., 2007, Marine Geology, in press). Sr, Nd, and Pb isotopic compositions plot within the Pacific N-MORB field for the northern seamounts (Pioneer, Gumdrop, Guide) but suggest progressively more radiogenic sources southward. There is considerable scatter at each site, especially with regard to 87Sr/86Sr, despite severe acid-leaching of the samples. Isotopic and trace element compositions indicate sources that are heterogeneous at a small scale. Chondrite-normalized Ce/Yb suggest smaller degree of melting and more alkalic compositions with decreasing age, although there is again considerable scatter. Chondrite-normalized La/Sm versus Zr/Nb form a continuum from the seamount lavas to depleted N-MORB and E-MORB suggesting a common origin by decompression melting of a mantle source with randomly distributed enriched heterogeneities, which are incorporated to a greater degree with decreasing degree of melting. Based on symmetric magnetic anomalies, only Davidson Seamount has been identified as straddling a fossil spreading center (Lonsdale, 1991, AAPG Mem. 47, 87-125). However, the other seamounts along the continental margin with the same NE-SW orientation and similar geochemical characteristics probably originated in a similar setting, erupting lavas along zones of weakness in the ocean floor fabric related to past seafloor spreading. Small volumes of magma can apparently rise long after spreading ceases if there is enough enriched source component to facilitate melting combined with zones of weakness in the underlying ocean crust fabric and/or extensional tectonics.

  3. Textures of water-rich mud sediments from the continental margin offshore Costa Rica (IODP expeditions 334 and 344)

    NASA Astrophysics Data System (ADS)

    Kuehn, Rebecca; Stipp, Michael; Leiss, Bernd

    2017-04-01

    During sedimentation and burial at continental margins, clay-rich sediments develop crystallographic preferred orientations (textures) depending on the ongoing compaction as well as size distribution and shape fabrics of the grains. Such textures can control the deformational properties of these sediments and hence the strain distribution in active continental margins and also the frictional behavior along and around the plate boundary. Strain-hardening and discontinuous deformation may lead to earthquake nucleation at or below the updip limit of the seismogenic zone. We want to investigate the active continental margin offshore Costa Rica where the oceanic Cocos plate is subducted below the Caribbean plate at a rate of approximately 9 cm per year. The Costa Rica trench is well-known for shallow seismogenesis and tsunami generation. As it is an erosive continental margin, both the incoming sediments from the Nazca plate as well as the slope sediments of the continental margin can be important for earthquake nucleation and faulting causing sea-floor breakage. To investigate texture and composition of the sediments and hence their deformational properties we collected samples from varying depth of 7 different drilling locations across the trench retrieved during IODP expeditions 334 and 344 as part of the Costa Rica Seismogenesis Project (CRISP). Texture analysis was carried out by means of synchrotron diffraction, as only this method is suitable for water-bearing samples. As knowledge on the sediment composition is required as input parameter for the texture data analysis, additional X-ray powder diffraction analysis on the sample material has been carried out. Samples for texture measurements were prepared from the original drill cores using an internally developed cutter which allows to produce cylindrical samples with a diameter of about 1.5 cm. The samples are oriented with respect to the drill core axis. Synchrotron texture measurements were conducted at the ESRF (European Synchrotron Radiation Facility) in Grenoble and the DESY (German Electron Synchrotron) in Hamburg. Samples were measured in transmission mode perpendicular to their cylinder axis with a beam diameter of 500 µm. Measurements were taken from 0 to 175° in 5° steps resulting in 36 images from a 2D image plate detector. Measurement time was in a range from 1 to 3 seconds. Due to the different, low symmetric mineral phases a large number of mostly overlapping reflections results. Such data can only be analyzed by the Rietveld method, in our case implemented in the software package MAUD (Materials Analysis Using Diffraction). Preliminary results show distinct textures depending on the composition and the origin of the samples, i.e. on drilling location and depth, which may be critical for strain localization and faulting of these samples. The results are also important for the analysis of experimentally deformed samples from the same drill cores which showed structurally weak and structurally strong deformation behavior during triaxial compression.

  4. Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic

    NASA Astrophysics Data System (ADS)

    Ros, Elena; Pérez-Gussinyé, Marta; Araújo, Mario; Thoaldo Romeiro, Marco; Andrés-Martínez, Miguel; Morgan, Jason P.

    2017-12-01

    Rifted continental margins may present a predominantly magmatic continent-ocean transition (COT), or one characterized by large exposures of serpentinized mantle. In this study we use numerical modeling to show the importance of the lower crustal strength in controlling the amount and onset of melting and serpentinization during rifting. We propose that the relative timing between both events controls the nature of the COT. Numerical experiments for half-extension velocities <=10 mm/yr suggest there is a genetic link between margin tectonic style and COT nature that strongly depends on the lower crustal strength. Our results imply that very slow extension velocities (< 5 mm/yr) and a strong lower crust lead to margins characterized by large oceanward dipping faults, strong syn-rift subsidence and abrupt crustal tapering beneath the continental shelf. These margins can be either narrow symmetric or asymmetric and present a COT with exhumed serpentinized mantle underlain by some magmatic products. In contrast, a weak lower crust promotes margins with a gentle crustal tapering, small faults dipping both ocean- and landward and small syn-rift subsidence. Their COT is predominantly magmatic at any ultra-slow extension velocity and perhaps underlain by some serpentinized mantle. These margins can also be either symmetric or asymmetric. Our models predict that magmatic underplating mostly underlies the wide margin at weak asymmetric conjugates, whereas the wide margin is mainly underlain by serpentinized mantle at strong asymmetric margins. Based on this conceptual template, we propose different natures for the COTs in the South Atlantic.

  5. Neoproterozoic magmatic flare-up along the N. margin of Gondwana: The Taknar complex, NE Iran

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Santos, Jose F.; Stern, Robert J.; Griffin, William L.; Ghorbani, Ghasem; Sarebani, Nazila

    2017-09-01

    Magmatic ;flare-ups; are common in continental arcs. The best-studied examples of such flare-ups are from Cretaceous and younger continental arcs, but a more ancient example is preserved in Late Ediacaran-Cambrian or Cadomian arcs that formed along the northern margin of Gondwana. In this paper, we report new trace-element, isotopic and geochronological data on ∼550 Ma magmatic rocks from the Taknar complex, NE Iran, and use this information to better understand episodes of flare-up, crustal thickening and magmatic periodicity in the Cadomian arcs of Iran and Anatolia. Igneous rocks in the Taknar complex include gabbros, diorites, and granitoids, which grade upward into a sequence of metamorphosed volcano-sedimentary rocks with interlayered rhyolites. Granodioritic dikes crosscut the Taknar gabbros and diorites. Gabbros are the oldest units and have zircon U-Pb ages of ca 556 Ma. Granites are younger and have U-Pb zircon ages of ca 552-547 Ma. Rhyolites are coeval with the granites, with U-Pb zircon ages of ∼551 Ma. Granodioritic dikes show two U-Pb zircon ages; ca 531 and 548 Ma. Geochemically, the Taknar igneous rocks have calc-alkaline signatures typical of continental arcs. Whole-rock Nd and zircon O-Hf isotopic data show that from Taknar igneous rocks were generated via mixing of juvenile magmas with older continental crust components at an active continental margin. Compiled geochronological and geochemical data from Iran and Anatolia allow identification of a Cadomian flare-up along northern Gondwana. The compiled U-Pb results from both magmatic and detrital zircons indicate the flare-up started ∼572 Ma and ended ∼528 Ma. The Cadomian flare-up was linked to strong crustal extension above a S-dipping subduction zone beneath northern Gondwana. The Iran-Anatolian Cadomian arc represents a site of crustal differentiation and stratification and involved older (Archean?) continental lower-middle crust, which has yet to be identified in situ, to form the continental nuclei of Anatolia and Iran. The Cadomian crust of Anatolia and Iran formed a single block ;Cimmeria; that rifted away from northern Gondwana and was accreted to southern Eurasia in late Paleozoic time.

  6. Mapping Antarctic Crustal Thickness using Gravity Inversion and Comparison with Seismic Estimates

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Ferraccioli, Fausto; Jordan, Tom

    2017-04-01

    Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Crustal thicknesses derived from gravity inversion are consistent with seismic estimates. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Ocean isochrons are used to define the cooling age of oceanic lithosphere. Crustal thicknesses from gravity inversion are compared with independent seismic estimates, which are still relatively sparse over Antarctica. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. Offshore an extensive region of either thick oceanic crust or highly thinned continental crust lies adjacent to Oates Land and north Victoria Land, and also off West Antarctica around the Amundsen Ridges. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new maps produced by this study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts and Peter I Island in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region. Crustal thickness and lithosphere thinning derived from gravity inversion also allows the determination of circum-Antarctic ocean-continent transition structure and the mapping of continent-ocean boundary location. Superposition of illuminated satellite gravity data onto crustal thickness maps from gravity inversion provides improved determination of Southern Ocean rift orientation, pre-breakup rifted margin conjugacy and continental breakup trajectory. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation, is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information.

  7. Vertical tectonics at an active continental margin

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Stern, T. A.

    2017-01-01

    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  8. Geology of the Sierra de Fiambala, northwestern Argentina: implications for Early Palaeozoic Andean tectonics

    USGS Publications Warehouse

    Grissom, G.C.; DeBari, S.M.; Snee, L.W.

    1998-01-01

    This paper is included in the Special Publication entitled 'The proto- Andean margin of Gondwana', edited by R.J. Pankhurst and C.W. Rapela. Field mapping in conjunction with structural, metamorphic, and geochronological data document the tectono-thermal history of exhumed deep crustal rocks in the Sierra de Fiambala, NW Argentina. The range consists of two structural blocks distinguished by different metasedimentary sequences and different grades of metamorphism. Orthogneiss and paragneiss in the northern structural block may have a Precambrian history. Greenschist- to amphibolite-facies metamorphism, intrusion, and injection magmatization affected all rocks at 540-550 Ma. A subsequent event in the Late Cambrian to Ordovician (c.515 to 470 Ma) involved amphibolite- to granulite-facies metamorphism, mafic intrusion, and deformation, followed by cooling through mid-Palaeozoic time. The emplacement of Carboniferous (325-350 Ma) post-tectonic granites caused reheating and retrogression that was strongest toward the northeast part of the range. The Cambrian, Ordovician, and Carboniferous events in the Sierra de Fiambala were of regional extent as indicated by temporal correlations with events reported for other deep crustal rocks of the northern Sierras Pampeanas. Correlations between periods of intrusion and high-grade metamorphism in the northern Sierras Pampeanas and volcanic-sedimentary events in the adjacent supracrustal exposures confirm that rocks in the northern Sierras Pampeanas formed at deep (10-25 km) structural levels in the early Palaeozoic continental margin of Gondwana.

  9. Characteristics and features of the submarine landslides in passive and active margin southwestern offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Y. C.

    2016-12-01

    In the past decade, numerous multi-channel seismic surveys as well as near seafloor high resolution geophysical investigations were conducted in order to explore and estimate the reserves of gas hydrate southwestern offshore Taiwan. The previous object was focused on searching substitute energy (i.e. gas hydrate) rather than geo-hazards. However, it is suggested that most of the gas hydrate is generally distributed at slope area southwestern offshore Taiwan, which indicates the slope may be failed when steady state was disturbed by some factors, such as sea level or climate change. In addition, once gas hydrate was dissociated, this may induce submarine landslide that further cause devastated tsunami. Thus, it is of great urgency to investigate potential landslide area, particularly, the hydrate-rich continental slope (active and passive margins) in adjacent to populous city like Kaohsiung. In this study, we collected several high resolution multi-channel seismic data with ten seconds shooting rate and 3.125 meters group interval streamer by using R/V ORI and R/V ORV. The seismic data were processed in conventional data processing strategy: bad trace clean, geometry settings, band-pass filter, de-convolution, surface-related multiple rejection, radon filter, stacking,kirchhoff migration and time to depth conversion. Combine the results obtained from the MCS data and subbottom profiles, two major results could be raised in the active margin as followed: (1) Most of the surface creeping and landslide was occurred shallower than 500 meters in water depth, which should be related to the inter-bedded fluid activities. (2) The landslide distribution is lagly affected by the presence of diaper, suggesting the subsequent mud diapirism may destruct slope stability; (3) The submarine landslide deeper than 800 meters in water depth distributes in the thrust fold area, that is probably referred to active thrusting. In the passive margin, large volume mass transportation deposits (MTDs) were identified in deeper stratigraphic section below BSR. This indicated several big former submarine landslide events occurred. In summary, the passive margin often show typical submarine landslide features than active margin, which driven by gravity force.

  10. The Afar-Red Sea-Gulf of Aden volcanic margins system : early syn-rift segmentation and tectono-magmatic evolution

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled

    2017-04-01

    The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.

  11. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    USGS Publications Warehouse

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  12. Thermo-mechanical models of obduction applied to the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Thibault, Duretz; Philippe, Agard; Philippe, Yamato; Céline, Ducassou; Taras, Gerya; Evguenii, Burov

    2015-04-01

    During obduction regional-scale fragments of oceanic lithosphere (ophiolites) are emplaced somewhat enigmatically on top of lighter continental lithosphere. We herein use two-dimensional thermo-mechanical models to investigate the feasibility and controlling parameters of obduction. The models are designed using available geological data from the Oman (Semail) ophiolite. Initial and boundary conditions are constrained by plate kinematic and geochronological data and modeling results are validated against petrological and structural observations. The reference model consists of three distinct stages: (1) initiation of oceanic subduction initiation away from Arabian margin, (2) emplacement of the Oman Ophiolite atop the Arabian margin, (2) dome-like exhumation of the subducted Arabian margin beneath the overlying ophiolite. A parametric study suggests that 350-400 km of shortening allows to best fit both the peak P-T conditions of the subducted margin (1.5-2.5 GPa / 450-600°C) and the dimensions of the ophiolite (~170 km width), in agreement with previous estimations. Our results further confirm that the locus of obduction initiation is close to the eastern edge of the Arabian margin (~100 km) and indicate that obduction is facilitated by a strong continental basement rheology.

  13. Tectonic evolution and extension at the Møre Margin - Offshore mid-Norway

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, S.; Zastrozhnov, D.; Abdelmalak, M. M.; Schmid, D. W.; Faleide, J. I.; Gernigon, L.

    2017-11-01

    Lithospheric stretching is the key process in forming extensional sedimentary basins at passive rifted margins. This study explores the stretching factors, resulting extension, and structural evolution of the Møre segment on the Mid-Norwegian continental margin. Based on the interpretation of new and reprocessed high-quality seismic, we present updated structural maps of the Møre margin that show very thick post-rift sediments in the central Møre Basin and extensive sill intrusion into the Cretaceous sediments. A major shift in subsidence and deposition occurred during mid-Cretaceous. One transect across the Møre continental margin from the Slørebotn Subbasin to the continent-ocean boundary is reconstructed using the basin modelling software TecMod. We test different initial crustal configurations and rifting events and compare our structural reconstruction results to stretching factors derived both from crustal thinning and the classical backstripping/decompaction approach. Seismic interpretation in combination with structural reconstruction modelling does not support the lower crustal bodies as exhumed and serpentinised mantle. Our extension estimate along this transect is 188 ± 28 km for initial crustal thickness varying between 30 and 40 km.

  14. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  15. E-4 Central Kentucky to the Carolina Trough

    USGS Publications Warehouse

    Rankin, Douglas W.; Dillon, William P.; Black, D.F.B.; Boyer, S.E.; Daniels, David L.; Goldsmith, R.; Grow, J.A.; Horton, J. Wright; Hutchinson, Deborah R.; Klitgord, Kim D.; McDowell, R.C.; Milton, D.J.; Owens, J.P.; Phillips, Jeffrey D.; Bayer, K.C.; Butler, John R.; Elliott, D.W.; Milici, Robert C.

    1991-01-01

    E-4 is one of eight Geodynamics transects that cross the Atlantic margin of North America between Georgia and Newfoundland. Five of the transects are in the United States and three are in Canada. Transect E-4, which is 110 km wide and more than 1,100 km long, extends from the stable North American craton just west of the Grenville front near Lexington, Kentucky southeastward across Cape Fear, North Carolina, on the Atlantic coast to oceanic crust east of the Blake Spur magnetic anomaly. Like all of the other U.S. Atlantic coast transects, it crosses Cambrian and Jurassic continental margins of North America as well as the Appalachian orogen. The display, based upon published information, portrays the geology, tectonic style and geophysical expression of this segment of the eastern North American continental margin and interprets its Phanerozoic history. The Decade of North American Geology 1983 geologic time scale (Palmer, 1983) is used throughout the display and text.

  16. Analog modelling of obduction processes

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2012-04-01

    Obduction corresponds to one of plate tectonics oddities, whereby dense, oceanic rocks (ophiolites) are presumably 'thrust' on top of light, continental ones, as for the short-lived, almost synchronous Peri-Arabic obduction (which took place along thousands of km from Turkey to Oman in c. 5-10 Ma). Analog modelling experiments were performed to study the mechanisms of obduction initiation and test various triggering hypotheses (i.e., plate acceleration, slab hitting the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises (1) an upper mantle, modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and (2) high-viscosity silicone plates (Rhodrosil Gomme with PDMS iron fillers to reproduce densities of continental or oceanic plates), located at the centre of the tank above the syrup to simulate the subducting and the overriding plates - and avoid friction on the sides of the tank. Convergence is simulated by pushing on a piston at one end of the model with velocities comparable to those of plate tectonics (i.e., in the range 1-10 cm/yr). The reference set-up includes, from one end to the other (~60 cm): (i) the piston, (ii) a continental margin containing a transition zone to the adjacent oceanic plate, (iii) a weakness zone with variable resistance and dip (W), (iv) an oceanic plate - with or without a spreading ridge, (v) a subduction zone (S) dipping away from the piston and (vi) an upper, active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as is known to have been the case in Oman). Several configurations were tested and over thirty different parametric tests were performed. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Displacements, together with along-strike and across-strike internal deformation in all plates were systematically measured, allowing for a very precise and reproducible tracking of deformation. Experiments demonstrate that obduction chiefly depends on how the overall shortening (or convergence) is partitionned between the weakness zone (W) and the preexisting subduction zone (S). Conditions favorable to obduction are shown to correspond to a specific range of coupling across (S) and resistance across (W). Our results thereby (1) constrain the range of physical conditions required for obduction to develop/nucleate and (2) underline the key role of acceleration for triggering obduction (rather than ridge subduction or slab resistance to penetration at the 660 km discontinuity). They also demonstrate that the emplacement of dense, oceanic material on continental lithosphere is not a mysterious process but results from some large scale, normal subduction process that do not require exotic boundary conditions. Agard P., Jolivet L., Vrielynck B., Burov E. & Monié P., 2007. Plate acceleration : the obduction trigger? Earth and Planetary Science Letters, 258, 428-441.

  17. The crustal structure and tectonic development of the continental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data

    NASA Astrophysics Data System (ADS)

    Kalberg, Thomas; Gohl, Karsten

    2014-07-01

    The Amundsen Sea Embayment of West Antarctica represents a key component in the tectonic history of Antarctic-New Zealand continental breakup. The region played a major role in the plate-kinematic development of the southern Pacific from the inferred collision of the Hikurangi Plateau with the Gondwana subduction margin at approximately 110-100 Ma to the evolution of the West Antarctic Rift System. However, little is known about the crustal architecture and the tectonic processes creating the embayment. During two `RV Polarstern' expeditions in 2006 and 2010 a large geophysical data set was collected consisting of seismic-refraction and reflection data, ship-borne gravity and helicopter-borne magnetic measurements. Two P-wave velocity-depth models based on forward traveltime modelling of nine ocean bottom hydrophone recordings provide an insight into the lithospheric structure beneath the Amundsen Sea Embayment. Seismic-reflection data image the sedimentary architecture and the top-of-basement. The seismic data provide constraints for 2-D gravity modelling, which supports and complements P-wave modelling. Our final model shows 10-14-km-thick stretched continental crust at the continental rise that thickens to as much as 28 km beneath the inner shelf. The homogenous crustal architecture of the continental rise, including horst and graben structures are interpreted as indicating that wide-mode rifting affected the entire region. We observe a high-velocity layer of variable thickness beneath the margin and related it, contrary to other `normal volcanic type margins', to a proposed magma flow along the base of the crust from beneath eastern Marie Byrd Land-West Antarctica to the Marie Byrd Seamount province. Furthermore, we discuss the possibility of upper mantle serpentinization by seawater penetration at the Marie Byrd Seamount province. Hints of seaward-dipping reflectors indicate some degree of volcanism in the area after break-up. A set of gravity anomaly data indicate several phases of fully developed and failed rift systems, including a possible branch of the West Antarctic Rift System in the Amundsen Sea Embayment.

  18. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often observed seismically or exposed at the sea floor of passive margins, was formed prior to rifting in addition to syn-rift, fault-driven hydrothermal processes. Whether lower crustal and serpentinite bodies are produced previously or during rifting is of relevance for the estimation of thinning-factors of the pre-existing crust.

  19. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically stratified diamictites interbedded with massive and graded sandstones and mudstones. The sedimentary record and seismic stratigraphy is consistent with deposition on a continental slope from debris flows and turbidity currents released from a glacial source. Data from Sites 1097 and 1103 suggest the importance of aggradation of the Antarctic Peninsula continental shelf by tilt deposition and progradation of the slope by mass flow. This may provide a model for the interpretation of Palaeozoic and Proterozoic glacial successions that accumulated on glacially influenced continental margins.

  20. GLORIA mosaic of west coast U. S. Exclusive Economic Zone, southern sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, J.V.; Edwards, B.D.; Field, M.E.

    1986-05-01

    The long-range side-scan sonar system GLORIA was used to produce digitally enhanced mosaics of the sea floor of the entire US Exclusive Economic Zone. The data resolution, about 50 x 50 m, provides a mesoscale reconnaissance that reveals the continuity and extent of bottom features, some of which were previously unrecognized. The transform continental margin from the Mendocino Escarpment to the US-Mexican border is cut by numerous submarine canyons and gullies of varied size and complexity. The number, size, and extent of gullies appear directly related to the underlying bed-rock geology. Surprisingly, relatively few slumps and slump scarps are apparent.more » Submarine fans characterize the basins adjacent to the margin in this sector. The fans vary in size and complexity: relatively small, immature fans of the borderland basins, such as Redondo and Hueneme; fans intermediate in size and age, such as Arguello and Farallon; and large, relatively mature fans, such as Monterey and Delgada. Most fans have well-defined depositional lobes at the distal reach of a single channel. Distributary channels are not apparent on all fans, and on some (e.g., Monterey Fan), the single channel can be seen in seismic reflection profiles to have originated on or close to the basement, directly below its present position. The older depositional lobes that have been identified on the fan systems are adjacent to the present main channel, which implies that channel avulsion is not always a process that accompanies fan growth. Seamounts are prominent features in the region, ranging in number from hundreds in the Baja Seamount province to tens in the region west of San Francisco. The gradient of increasing numbers of exposed seamounts and volcanic ridges from north to south is a direct result of decreasing sediment supply from the continent to the south.« less

  1. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.

    2012-12-01

    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.

  2. Seismogenic structures of the 2006 ML4.0 Dangan Island earthquake offshore Hong Kong

    NASA Astrophysics Data System (ADS)

    Xia, Shaohong; Cao, Jinghe; Sun, Jinlong; Lv, Jinshui; Xu, Huilong; Zhang, Xiang; Wan, Kuiyuan; Fan, Chaoyan; Zhou, Pengxiang

    2018-02-01

    The northern margin of the South China Sea, as a typical extensional continental margin, has relatively strong intraplate seismicity. Compared with the active zones of Nanao Island, Yangjiang, and Heyuan, seismicity in the Pearl River Estuary is relatively low. However, a ML4.0 earthquake in 2006 occurred near Dangan Island (DI) offshore Hong Kong, and this site was adjacent to the source of the historical M5.8 earthquake in 1874. To reveal the seismogenic mechanism of intraplate earthquakes in DI, we systematically analyzed the structural characteristics in the source area of the 2006 DI earthquake using integrated 24-channel seismic profiles, onshore-offshore wide-angle seismic tomography, and natural earthquake parameters. We ascertained the locations of NW- and NE-trending faults in the DI sea and found that the NE-trending DI fault mainly dipped southeast at a high angle and cut through the crust with an obvious low-velocity anomaly. The NW-trending fault dipped southwest with a similar high angle. The 2006 DI earthquake was adjacent to the intersection of the NE- and NW-trending faults, which suggested that the intersection of the two faults with different strikes could provide a favorable condition for the generation and triggering of intraplate earthquakes. Crustal velocity model showed that the high-velocity anomaly was imaged in the west of DI, but a distinct entity with low-velocity anomaly in the upper crust and high-velocity anomaly in the lower crust was found in the south of DI. Both the 1874 and 2006 DI earthquakes occurred along the edge of the distinct entity. Two vertical cross-sections nearly perpendicular to the strikes of the intersecting faults revealed good spatial correlations between the 2006 DI earthquake and the low to high speed transition in the distinct entity. This result indicated that the transitional zone might be a weakly structural body that can store strain energy and release it as a brittle failure, resulting in an earthquake-prone area.

  3. Plate motion changes drive Eastern Indian Ocean microcontinent formation

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Williams, S.; Halpin, J.; Wild, T.; Stilwell, J.; Jourdan, F.; Daczko, N. R.

    2016-12-01

    The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margin - several well-studied microcontinent calving events coincide in space and time with mantle plume activity, but the significance of plumes in driving microcontinent formation remains controversial, and a role for plate-driven processes has also been suggested. In 2011, our team discovered two new microcontinents in the eastern Indian Ocean, the Batavia and Gulden Draak microcontinents. These microcontinents are unique as they are the only surviving remnants of the now-destroyed or highly deformed Greater Indian margin and provide us with an opportunity to test existing models of microcontinent formation against new observations. Here, we explore models for microcontinent formation using our new data from the Eastern Indian Ocean in a plate tectonic reconstruction framework. We use Argon dating and paleontology results to constrain calving from greater India at 101-104 Ma. This region had been proximal to the active Kerguelen plume for 30 Myrs but we demonstrate that calving did not correspond with a burst of volcanic activity. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces. Changes in the relative motions between Indian and Australia led to increasing compressive forces along the long-offset Wallaby-Zenith Fracture Zone, which was eventually abandoned during the jump of the spreading ridge into the Indian continental margin.

  4. Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations.

    PubMed

    Nielsen, Søren B; Stephenson, Randell; Thomsen, Erik

    2007-12-13

    The process of continental break-up provides a large-scale experiment that can be used to test causal relations between plate tectonics and the dynamics of the Earth's deep mantle. Detailed diagnostic information on the timing and dynamics of such events, which are not resolved by plate kinematic reconstructions, can be obtained from the response of the interior of adjacent continental plates to stress changes generated by plate boundary processes. Here we demonstrate a causal relationship between North Atlantic continental rifting at approximately 62 Myr ago and an abrupt change of the intra-plate deformation style in the adjacent European continent. The rifting involved a left-lateral displacement between the North American-Greenland plate and Eurasia, which initiated the observed pause in the relative convergence of Europe and Africa. The associated stress change in the European continent was significant and explains the sudden termination of a approximately 20-Myr-long contractional intra-plate deformation within Europe, during the late Cretaceous period to the earliest Palaeocene epoch, which was replaced by low-amplitude intra-plate stress-relaxation features. The pre-rupture tectonic stress was large enough to have been responsible for precipitating continental break-up, so there is no need to invoke a thermal mantle plume as a driving mechanism. The model explains the simultaneous timing of several diverse geological events, and shows how the intra-continental stratigraphic record can reveal the timing and dynamics of stress changes, which cannot be resolved by reconstructions based only on plate kinematics.

  5. Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy

    2014-05-01

    The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins consistent with these basins being oceanic. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Crustal basement thicknesses of 10-15 km are predicted under the Laptev Sea which is interpreted as highly thinned continental crust formed at the eastward continuation of Eurasia Basin sea-floor spreading. Thin continental or oceanic crust of thickness 7 km or less is predicted under the North Chukchi Basin and has major implications for understanding the Mesozoic and Cenozoic plate tectonic history of the Siberian and Chukchi Amerasia Basin margins. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test and refine plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic and N Atlantic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. We interpret gravity inversion crustal thicknesses underneath Morris Jessop Rise & Yermak Plateau as continental crust which provided a barrier to the tectonic and palaeo-oceanic linkage between the Arctic & North Atlantic until the Oligocene. Before this time, we link the seafloor spreading within the Eurasia Basin to that in Baffin Bay.

  6. Formation of Continental Fragments: The Tamayo Bank, Gulf of California

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Abera, R.; Axen, G. J.

    2015-12-01

    Potential field data are used to construct a two-dimensional crustal model along a profile through the Tamayo Trough and Bank in the Gulf of California. The model is constrained by seismic reflection and refraction data, and field observations. The potential field data do not fit a model where the crust of the Tamayo trough is continental, but they fit well with a model where the Tamayo trough crust is oceanic. This implies that the Tamayo Bank is entirely bounded by oceanic crust and is a microcontinent. The oceanic crust of the Tamayo trough that separates the Tamayo Bank from the mainland of Mexico is thin (~4 km), so oceanic spreading was probably magma-starved before it ceased. This led us to come up with a model that explains the formation of microcontinents that are smaller in size and are not found in the proximity of hotspots. At first, seafloor spreading commences following continental breakup. When the magma supply to the ridge slows down, the plate boundary strengthens. Hence, the ridge may be abandoned while tectonic extension begins elsewhere, or slow spreading may continue while a new ridge starts to develop. The old spreading ridge becomes extinct. An asymmetric ocean basin forms if the ridge jumps within oceanic lithosphere; a microcontinent forms if the ridge jumps into a continental margin. This model for formation of continental fragments is applicable to other regions as well, eliminating the need of mantle plume impingement to facilitate rifting of a young continental margin and microcontinent formation.

  7. Summary report on the regional geology, environmental considerations for development, petroleum potential, and estimates of undiscovered recoverable oil and gas resources of the United States southeastern Atlantic continental margin in the area of proposed oil and gas lease sale No. 78

    USGS Publications Warehouse

    Dillon, William P.

    1981-01-01

    This report summarizes our general knowledge of the geology and petroleum potential, as well as potential problems and hazards associated with development of petroleum resources, of the area proposed for nominations for lease sale number 78. This area includes the U.S. eastern continental margin from the mouth of Chesapeake Bay to approximately Cape Canaveral, Florida, including the upper Continental Slope and inner Blake Plateau. The area for possible sales and the previous areas leased are shown in figure 1; physiographic features of the region are shown in figure 2. Six exploration wells have been drilled within the proposed lease area (figs. 3 and 4) but no commercial discoveries have been made. All six wells were drilled on the Continental Shelf in the Southeast Georgia Embayment. No commercial production has been obtained onshore in the region. The areas already drilled have thin sedimentary sections, and the deeper rocks are dominantly continental facies. Petroleum formation may have been hindered by a lack of organic material and sufficient burial for thermal maturation. Analysis of drill and seismic profiling data presented here, however, indicates that a much thicker sedimentary rock section containing a much higher proportion of marine deposits exists seaward of the exploratory wells on the Continental Shelf. These geologic conditions imply that the offshore basins may be more favorable environments for generating petroleum.

  8. Geology report for proposed oil and gas lease sale No. 90; continental margin off the southeastern United States

    USGS Publications Warehouse

    Dillon, William P.

    1983-01-01

    This report summarizes our general knowledge of the geology and petroleum potential, as well as potential problems and hazards associated with development of petroleum resources, within the area proposed for nominations for lease sale number 90. This area includes the U.S. eastern continental margin from Raleigh Bay, just south of Cape Hatteras, to southern Florida, including the upper Continental Slope and inner Blake Plateau. The area for possible sales for lease sale number 90, as well as the area for lease sale number 78 and the previous areas leased are shown in figure 1; physiographic features of the region are shown in figure 2. Six exploration wells have been drilled within the proposed lease area (figs. 3 and 4), but no commercial discoveries have been made. All six wells were drilled on the Continental Shelf. No commercial production has been obtained onshore in the region. The areas already drilled have thin sedimentary rock sections, and the deeper strata are dominantly of continental facies. Petroleum formation may have been hindered by a lack of organic material and lack of sufficient burial for thermal maturation. However, analyses of drilling and seismic profiling data presented here indicate that a much thicker section of sedimentary rocks containing a much higher proportion of marine deposits, exists seaward of the Continental Shelf. These geologic conditions imply that the basins farther offshore may be more favorable environments for generating petroleum.

  9. Petrography and geochemistry of clastic rocks within the Inthanon zone, northern Thailand: Implications for Paleo-Tethys subduction and convergence

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kunii, Miyuki; Hisada, Ken-ichiro; Ueno, Katsumi; Kamata, Yoshihito; Srichan, Weerapan; Charusiri, Punya; Charoentitirat, Thasinee; Watarai, Megumi; Adachi, Yoshiko; Kurihara, Toshiyuki

    2012-11-01

    The provenance, source rock compositions, and sediment supply system for a convergence zone of the Paleo-Tethys were reconstructed based on the petrography and geochemistry of clastic rocks of the Inthanon Zone, northern Thailand. The clastic rocks are classified into two types based on field and microscopic observations, the modal composition of sandstone, and mineral compositions: (1) lithic sandstone and shale within mélange in a Permo-Triassic accretionary complex; and (2) Carboniferous quartzose sandstone and mudstone within the Sibumasu Block. Geochemical data indicate that the clastic rocks of the mélange were derived from continental island arc and continental margin settings, which correspond to felsic volcanic rocks within the Sukhothai Zone and quartz-rich fragments within the Indochina Block, respectively. The results of a mixing model indicate the source rocks were approximately 35% volcanic rocks of the Sukhothai Zone and 65% craton sandstone and upper continental crust of the Indochina Block. In contrast, Carboniferous quartzose sedimentary rocks within the Sibumasu Block originated from a continental margin, without a contribution from volcanic rocks. In terms of Paleo-Tethys subduction, a continental island arc in the Sukhothai Zone evolved in tandem with Late Permian-Triassic forearc basins and volcanic activity during the Middle-early Late Triassic. The accretionary complex formed contemporaneously with the evolution of continental island arc during the Permo-Triassic, supplied with sediment from the Sukhothai Zone and the Indochina Block.

  10. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi

    2018-05-01

    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  11. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  12. Amagmatic Accretionary Segments, Ultraslow Spreading and Non-Volcanic Rifted Margins (Invited)

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Snow, J. E.

    2009-12-01

    The evolution of non-volcanic rifted margins is key to understanding continental breakup and the early evolution of some of the world’s most productive hydrocarbon basins. However, the early stages of such rifting are constrained by limited observations on ancient heavily sedimented margins such as Newfoundland and Iberia. Ultraslow spreading ridges, however, provide a modern analogue for early continental rifting. Ultraslow spreading ridges (<20 mm/yr) comprise ~30% of the global ridge system (e.g. Gakkel, Southwest Indian, Terceira, and Knipovitch Ridges). They have unique tectonics with widely spaced volcanic segments and amagmatic accretionary ridge segments. The volcanic segments, though far from hot spots, include some of the largest axial volcanoes on the global ridge system, and have, unusual magma chemistry, often showing local isotopic and incompatible element enrichment unrelated to mantle hot spots. The transition from slow to ultraslow tectonics and spreading is not uniquely defined by spreading rate, and may also be moderated by magma supply and mantle temperature. Amagmatic accretionary segments are the 4th class of plate boundary structure, and, we believe, the defining tectonic feature of early continental breakup. They form at effective spreading rates <12 mm/yr, assume any orientation to spreading, and replace transform faults and magmatic segments. At amagmatic segments the earth splits apart with the mantle emplaced directly to the seafloor, and great slabs of peridotite are uplifted to form the rift mountains. A thick conductive lid suppresses mantle melting, and magmatic segments form only at widely spaced intervals, with only scattered volcanics in between. Amagmatic segments link with the magmatic segments forming curvilinear plate boundaries, rather than the step-like morphology found at faster spreading ridges. These are all key features of non-volcanic rifted margins; explaining, for example, the presence of mantle peridotites emplaced simultaneously on both the Newfoundland and Iberian Margins in the Jurassic and Cretaceous. Miocene Lena Trough is a new mid-ocean rift plate boundary and the final event in the separation of the North American and Eurasian continents. Mapping and sampling of Lena Trough confirms that it is both oblique and amagmatic, showing that initiation of seafloor spreading at a non-volcanic rifted continental margin follows the same pattern as ultraslow spreading ridges.

  13. Palaeozoic and Mesozoic tectonic implications of Central Afghanistan

    NASA Astrophysics Data System (ADS)

    Sliaupa, Saulius; Motuza, Gediminas

    2017-04-01

    The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying low tectonic regime. There was a break in sedimentation during the upper Cretaceous that is likely related to the Alpine orogenic event. It associated with some Upper Cretaceous magmatic activity (Debon et al., 1987). This event is reflected in the sedimentation pattern in the adjacent Band-e-Bayan zone and Tadjick block. The lower part of the Upper Cretaceous succession is composed of reddish terrigenic sediments. They are overlain by uppermost Cretaceous (and Danian) shallow marine sediments implying establishment of quiet tectonic conditions.

  14. Deglaciation of the Western Margin of the Barents Sea Ice Sheet - a Swath Bathymetric and Sub-Bottom Seismic Study from Eglacom Nice-Streams Data in the Kveithola Trough

    NASA Astrophysics Data System (ADS)

    Rebesco, M.; Liu, Y.; Camerlenghi, A.; Winsborrow, M. C.; Laberg, J.; Caburlotto, A.; Diviacco, P.; Accettella, D.; Sauli, C.; Wardell, N.

    2010-12-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. We describe here the EGLACOM data collected within the Kveithola Trough, an E-W trending glacial trough in the NW Barents Sea, NW of the Bear Island. Swath bathymetry shows that the seafloor is characterised by E-W trending mega-scale glacial lineations (MSGL) that record a fast flowing ice stream draining the Svalbard/Barents Sea Ice Sheet (SBIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase axial profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during episodic ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that present-day morphology is largely inherited from the palaeo-seafloor topography at the time of deposition of the transverse ridges, overlain by a draping glaciomarine unit up to over 15 m thick. Our data allow the reconstruction of depositional processes that accompanied the deglaciation of the Spitsbergen Bank area. The sedimentary drape deposited on top of the GZWs which accumulated at a very high rate in the order of 1-1.5 m ka-1 has a potential to preserve a high resolution palaeoclimatic record of the deglaciation and post-glacial condition in this sector of the Barents Sea.

  15. On the formation of granulites

    USGS Publications Warehouse

    Bohlen, S.R.

    1991-01-01

    The tectonic settings for the formation and evolution of regional granulite terranes and the lowermost continental crust can be deduced from pressure-temperature-time (P-T-time) paths and constrained by petrological and geophysical considerations. P-T conditions deduced for regional granulites require transient, average geothermal gradients of greater than 35??C km-1, implying minimum heat flow in excess of 100 mW m-2. Such high heat flow is probably caused by magmatic heating. Tectonic settings wherein such conditions are found include convergent plate margins, continental rifts, hot spots and at the margins of large, deep-seated batholiths. Cooling paths can be constrained by solid-solid and devolatilization equilibria and geophysical modelling. -from Author

  16. 77 FR 71448 - States' Decisions on Participating in Accounting and Auditing Relief for Federal Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...' Decisions on Participating in Accounting and Auditing Relief for Federal Oil and Gas Marginal Properties... types of accounting and auditing relief for Federal onshore or Outer Continental Shelf lease production... allows States to relieve the lessees of marginal properties from certain reporting, accounting, and...

  17. Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM

    NASA Astrophysics Data System (ADS)

    Reynolds, P.; Planke, S.; Millett, J. M.; Jerram, D. A.; Trulsvik, M.; Schofield, N.; Myklebust, R.

    2017-06-01

    Continental rifting is often associated with voluminous magmatism and perturbations in the Earth's climate. In this study, we use 2D seismic data from the northeast Greenland margin to document two Paleogene-aged sill complexes ≥ 18 000 and ≥ 10 000 km2 in size. Intrusion of the sills resulted in the contact metamorphism of carbon-rich shales, producing thermogenic methane which was released via 52 newly discovered hydrothermal vent complexes, some of which reach up to 11 km in diameter. Mass balance calculations indicate that the volume of methane produced by these intrusive complexes is comparable to that required to have caused the negative δ13 C isotope excursion associated with the PETM. Combined with data from the conjugate Norwegian margin, our study provides evidence for margin-scale, volcanically-induced greenhouse gas release during the late Paleocene/early Eocene. Given the abundance of similar-aged sill complexes in Upper Paleozoic-Mesozoic and Cretaceous-Tertiary basins elsewhere along the northeast Atlantic continental margin, our findings support a major role for volcanism in driving global climate change.

  18. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence

    2013-06-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  19. Post-rift deformation of the Red Sea Arabian margin

    NASA Astrophysics Data System (ADS)

    Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb

    2017-04-01

    Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent systems that locally are associated with metre-thick reverse fault zones. Along the analysed faults there is evidence of tectonic reworking. Relict kinematic indicators or the sense of asymmetry of sigmoidal Miocene dykes may suggest that a former sinistral movement was locally accommodated by these faults. This evidence of inversion of strike-slip movement associated with reverse structures, mostly found at the inland endings of these lineaments, suggests an inversion tectonics that could be related to the progressive and recent oceanisation of rift segments. Schettino A., Macchiavelli C., Pierantoni P.P., Zanoni D. & Rasul N. 2016. Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophysical Journal International, 207, 457-480. Schlische R.W., Withjack M.O. & Olsen P.E., 2003. Relative timing of CAMP, rifting, continental breakup, and basin inversion: tectonic significance, in The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, eds Hames W., Mchone J.G., Renne P. & Ruppel C., American Geophysical Union, 33-59.

  20. Pacific-North America plate boundary reorganization in response to a change in relative plate motion: Offshore Canada

    NASA Astrophysics Data System (ADS)

    Rohr, K. M. M.; Tryon, A. J.

    2010-06-01

    The transition from subduction in Cascadia to the transform Queen Charlotte fault along western Canada is often drawn as a subduction zone, yet recent studies of GPS and earthquake data from northern Vancouver Island are not consistent with that model. In this paper we synthesize seismic reflection and gravity interpretations with microseismicity data in order to test models of (1) microplate subduction and (2) reorganization of the preexisting strike-slip plate boundary. We focus on the critical region of outer Queen Charlotte Sound and the adjacent offshore. On much of the continental shelf, several million years of subsidence above thin crust are a counterindicator for subduction. An undated episode of compression uplifted the southernmost shelf, but subsidence patterns offshore show that recent subduction is unlikely to be responsible. Previously unremarked near-vertical faults and a mix of extensional and compressional faults offshore indicate that strike-slip faulting has been a significant mode of deformation. Seismicity in the last 18 years is dominantly strike-slip and shows large amounts of moment release on the Revere-Dellwood fault and its overlap with the Queen Charlotte fault. The relative plate motion between the Pacific and North American plates rotated clockwise ˜6 Ma and appears to have triggered formation of an evolving array of structures. We suggest that the paleo-Queen Charlotte fault which had defined this continental margin retreated northward as offshore distributed shear and the newly formed Revere Dellwood fault propagated to the northwest.

  1. Continental Margins and the Law of the Sea - an `Arranged Marriage' with Huge Research Potential

    NASA Astrophysics Data System (ADS)

    Parson, L.

    2005-12-01

    The United Nations Convention on the Law of the Sea (UNCLOS) requires coastal states intending to secure sovereignty over continental shelf territory extending beyond 200 nautical miles to submit geological/geophysical data, along with their analysis and synthesis of the relevant continental margin in support of their claim. These submissions are scrutinised and assessed by a UN Commission of experts who decide if the claim is justified, and thereby ultimately allowing the exploitation of non-living resources into this extended maritime space. The amount of data required to support the case will vary from margin to margin, depending on the local geological evolution, but typically will involve the running of new, dedicated marine surveys, mostly bathymetric and seismic. Key geological/geophysical issues revolve around proof of `naturalness' of the prolongation of land mass (cue - wide-angle seismics, deep drilling and sampling programmes) and shelf and slope morphology and sediment section thickness (cue - swath bathymetry and multichannel seismics programmes). These surveys, probably primarily funded by government agencies anxious not to lose out on the `land grab', will generate datasets which will inevitably boost not only the research effort leading to increased understanding of margin evolution in academic terms, but also contribute to wider applied aspects of the work such as those leading to refinement of deepwater hydrocarbon resource potential. It is conservatively estimated that in the region of fifty coastal states world-wide have a significant potential for claiming continental shelf beyond 200 nautical miles, and that the total area available as extended shelf could easily exceed 7 million square kilometres. However, while for the vast majority of these states a UNCLOS deadline of 2009 exists for submitting a claim - to date only four have done so (Russia, Brazil, Australia and Ireland). It is therefore predictable, if not inevitable, that within the next four years an unprecedented phase of surveying and analysis on margins will take place in order to prepare for the deadline. The international scientific community as a whole must recognise the potential for research in this work and ensure the data is made available as soon as practically possible for the scientific community. In conclusion, by way of a reality check, this presentation highlights the likely areas of most intense UNCLOS-driven research activity up to 2009, the type of data acquisition anticipated and their likely location, and speculates on the areas of understanding of margin evolution which will be most advanced by this process.

  2. Crustal growth in subduction zones

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Castro, Antonio; Gerya, Taras

    2015-04-01

    There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other crustal units may collide with continental margins to form collisional orogens and accreted terranes in places where oceanic lithosphere is recycled back into the mantle. We use thermomechanical-petrological models of an oceanic-continental subduction zone to analyse the dynamics of terrane accretion and its implications to arc magmatisim. It is shown that terrane accretion may result in the rapid growth of continental crust, which is in accordance with geological data on some major segments of the continental crust. Direct consequences of terrane accretion may include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes and partial melting (Vogt and Gerya., 2014), forming complex suture zones of accreted and partially molten units. Castro, A., Vogt, K., Gerya, T., 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 23, 1554-1566. Vogt, K., Castro, A., Gerya, T., 2013. Numerical modeling of geochemical variations caused by crustal relamination. Geochemistry, Geophysics, Geosystems, 14, 470-487. Vogt, K., Gerya, T., 2014. From oceanic plateaus to allochthonous terranes: Numerical Modelling. Gondwana Research, 25, 494-508

  3. Structural-tectonic zoning of the Arctic

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Sobolev, Nikolay; Morozov, Andrey; Shokalsky, Sergey; Kashubin, Sergey; Grikurov, Garrik; Tolmacheva, Tatiana; Rekant, Pavel; Petrov, Evgeny

    2017-04-01

    Structural-tectonic zoning of the Arctic is based on the processing of geological and geophysical data and bottom sampling materials produced within the project "Atlas of Geological Maps of the Circumpolar Arctic." Zoning of the Arctic territories has been conducted taking into account the Earth's crust types, age of consolidated basement, and features of geological structure of the sedimentary cover. Developed legend for the zoning scheme incorporates five main groups of elements: continental and oceanic crust, folded platform covers, accretion-collision systems, and provinces of continental cover basalts. An important feature of the structural-tectonic zoning scheme is designation of continental crust in the central regions of the Arctic Ocean, the existence of which is assumed on the basis of numerous geological data. It has been found that most of the Arctic region has continental crust with the exception of the Eurasian Basin and the central part of the Canada Basin, which are characterized by oceanic crust type. Thickness of continental crust from seismic data varies widely: from 30-32 km on the Mendeleev Rise to 18-20 km on the Lomonosov Ridge, decreasing to 8-10 km in rift structures of the Podvodnikov-Makarov Basin at the expense of reduction of the upper granite layer. New data confirm similar basement structure on the western and eastern continental margins of the Eurasian oceanic basin. South to north, areas of Neoproterozoic (Baikalian) and Paleozoic (Ellesmerian) folding are successively distinguished. Neoproterozoic foldbelt is observed in Central Taimyr (Byrranga Mountains). Continuation of this belt in the eastern part of the Arctic is Novosibirsk-Chukchi fold system. Ellesmerian orogen incorporates the northernmost areas of Taimyr and Severnaya Zemlya, wherefrom it can be traced to the Geofizikov Spur of the Lomonosov Ridge and further across the De Long Archipelago and North Chukchi Basin to the north of Alaska Peninsula and in the Beaufort Sea. From the north, Ellesmerides are limited by the Precambrian continental blocks - North Kara and Mendeleev Rise, the sedimentary cover within which is represented by undisturbed Paleozoic and Mesozoic deposits. Analysis of the geological and tectonic maps and the map of the Arctic basement structure indicates that the heterogeneous crustal structure of the Arctic Ocean and its continental framing were formed as a result of simultaneous development and interaction of three large paleo-oceans in the Neoproterozoic and Phanerozoic - Paleo-Asian, Proto-Atlantic and Paleo-Pacific oceans. A conceptual model that represents our understanding of structural relationships and crustal types of the main Arctic Basin structures is quite simple. The Arctic Basin is bounded by continental margins with continental crust: relatively elevated Barents-Kara - in the west, and generally submerged Amerasia margin - in the east. The latter represents a continental "bridge" formed by thinned and stretched continental crust. It connects two opposite continents - Laurentia and Eurasia, and is essentially a fragmented, tectonically mobile structure.

  4. The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Watremez, L.; Leroy, S.; Rouzo, S.; D'Acremont, E.; Unternehr, P.; Ebinger, C.; Lucazeau, F.; Al-Lazki, A.

    2011-02-01

    The wide-angle seismic (WAS) and gravity data of the Encens survey allow us to determine the deep crustal structure of the north-eastern Gulf of Aden non-volcanic passive margin. The Gulf of Aden is a young oceanic basin that began to open at least 17.6 Ma ago. Its current geometry shows first- and second-order segmentation: our study focusses on the Ashawq-Salalah second-order segment, between Alula-Fartak and Socotra-Hadbeen fracture zones. Modelling of the WAS and gravity data (three profiles across and three along the margin) gives insights into the first- and second-order structures. (1) Continental thinning is abrupt (15-20 km thinning across 50-100 km distance). It is accommodated by several tilted blocks. (2) The ocean-continent transition (OCT) is narrow (15 km wide). The velocity modelling provides indications on its geometry: oceanic-type upper-crust (4.5 km s-1) and continental-type lower crust (>6.5 km s-1). (3) The thickness of the oceanic crust decreases from West (10 km) to the East (5.5 km). This pattern is probably linked to a variation of magma supply along the nascent slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6 to 7.8 km s-1) exists at the crust-mantle interface below the thinned margin, the OCT and the oceanic crust. We interpret it as an underplated mafic body, or partly intruded mafic material emplaced during a `post-rift' event, according to the presence of a young volcano evidenced by heat-flow measurement (Encens-Flux survey) and multichannel seismic reflection (Encens survey). We propose that the non-volcanic passive margin is affected by post-rift volcanism suggesting that post-rift melting anomalies may influence the late evolution of non-volcanic passive margins.

  5. Compressional reactivation of hyperextended domains on a rifted margin: a requirement for a reappraisal of traditional restoration procedures?

    NASA Astrophysics Data System (ADS)

    Cadenas Martínez, P.; Fernandez Viejo, G.; Pulgar, J. A.

    2017-12-01

    The North Iberian margin is an inverted hyperextended rifted margin that preserves the initial stages of compressional reactivation. Rift inheritance conditioned in a determinant way the contractional reactivation. The underthrusting of the hyperextended distal domains beneath the platform and the formation of an accretionary wedge at the toe of the slope focused most of the compression. The underthrusting gave place to the formation of a crustal root and the uplifting of the Cantabrian Mountains onshore. Meanwhile, the main rift basins within the continental platform were slightly inverted. Plate kinematic reconstructions and palinspatic restorations have provided different shortening values. Thereby, the amount of shortening linked with the Cenozoic compression is still unclear and a matter of debate on this area.In this work, we present a full cross-section at the central part of the North Iberian margin developed from the restoration of a high quality depth migrated seismic profile running from the continental platform to the Biscay abyssal plain. A shortening calculation gives an estimate of about 1 km within the Asturian Basin, in the continental platform, while in the accretionary wedge at the bottom of the slope, shortening values ranges between 12 km and 15 km. The limited values estimated within the Asturian Basin support the mild inversion observed within this basin, which preserves most of the extensional imprint. Within the abyssal plain, shortening values differ from previous estimations and cannot account for a high amount of compression in the upper crust. Deformation of the hyperextended crust and the exhumed mantle domains inherited from the rifting processes would have accommodated most of the compression. Restoration of these domains seems to be the key to decipher the structure and the tectonic evolution of the reactivated rifted margin but cannot be solved accurately using traditional restoration methods. This leads to a reappraisal of the traditional way of restoring compressional belt transects and particularly, when previous hyperextended domains within the rifted margins are involved.

  6. Mesozoic architecture of a tract of the European-Iberian continental margin: Insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Santantonio, Massimo; Fabbi, Simone; Aldega, Luca

    2016-01-01

    The sedimentary successions exposed in northeast Calabria document the Jurassic-Early Cretaceous tectonic-sedimentary evolution of a former segment of the European-Iberian continental margin. They are juxtaposed today to units representing the deformation of the African and Adriatic plates margins as a product of Apenninic crustal shortening. A complex pattern of unconformities reveals a multi-stage tectonic evolution during the Early Jurassic, which affected the facies and geometries of siliciclastic and carbonate successions deposited in syn- and post-rift environments ranging from fluvial to deep marine. Late Sinemurian/Early Pliensbachian normal faulting resulted in exposure of the Hercynian basement at the sea-floor, which was onlapped by marine basin-fill units. Shallow-water carbonate aprons and reefs developed in response to the production of new accommodation space, fringing the newborn islands which represent structural highs made of Paleozoic crystalline and metamorphic rock. Their drowning and fragmentation in the Toarcian led to the development of thin caps of Rosso Ammonitico facies. Coeval to these deposits, a thick (> 1 km) hemipelagic/siliciclastic succession was sedimented in neighboring hanging wall basins, which would ultimately merge with the structural high successions. Footwall blocks of the Early Jurassic rift, made of Paleozoic basement and basin-margin border faults with their onlapping basin-fill formations, are found today at the hanging wall of Miocene thrusts, overlying younger (Middle/Late Jurassic to Late Paleogene) folded basinal sediments. This paper makes use of selected case examples to describe the richly diverse set of features, ranging from paleontology to sedimentology, to structural geology, which are associated with the field identification of basin-margin unconformities. Our data provide key constraints for restoring the pre-orogenic architecture of a continental margin facing a branch of the Liguria-Piedmont ocean in the Western Tethys, and for estimating displacements and slip rates along synsedimentary faults.

  7. Burial, Uplift and Exhumation History of the Atlantic Margin of NE Brazil

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Bonow, Johan M.; Green, Paul F.; Cobbold, Peter R.; Chiossi, Dario; Lilletveit, Ragnhild

    2010-05-01

    We have undertaken a regional study of landscape development and thermo-tectonic evo-lution of NE Brazil. Our results reveal a long history of post-Devonian burial and exhuma-tion across NE Brazil. Uplift movements just prior to and during Early Cretaceous rifting led to further regional denudation, to filling of rift basins and finally to formation of the Atlantic margin. The rifted margin was buried by a km-thick post-rift section, but exhumation began in the Late Cretaceous as a result of plate-scale forces. The Cretaceous cover probably extended over much of NE Brazil where it is still preserved over extensive areas. The Late Cretaceous exhumation event was followed by events in the Paleogene and Neogene. The results of these events of uplift and exhumation are two regional peneplains that form steps in the landscape. The plateaux in the interior highlands are defined by the Higher Surface at c. 1 km above sea level. This surface formed by fluvial erosion after the Late Cretaceous event - and most likely after the Paleogene event - and thus formed as a Paleogene pene-plain near sea level. This surface was reburied prior to the Neogene event, in the interior by continental deposits and along the Atlantic margin by marine and coastal deposits. Neo-gene uplift led to reexposure of the Palaeogene peneplain and to formation of the Lower Surface by incision along rivers below the uplifted Higher Surface that characterise the pre-sent landscape. Our results show that the elevated landscapes along the Brazilian margin formed during the Neogene, c. 100 Myr after break-up. Studies in West Greenland have demonstrated that similar landscapes formed during the late Neogene, c. 50 Myr after break-up. Many passive continental margins around the world are characterised by such elevated plateaus and it thus seems possible, even likely, that they may also post-date rifting and continental separation by many Myr.

  8. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    NASA Astrophysics Data System (ADS)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of low temperature thermochronology are improving our understanding of onshore passive margin development.

  9. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  10. Phanerozoic geological evolution of the Equatorial Atlantic domain

    NASA Astrophysics Data System (ADS)

    Basile, Christophe; Mascle, Jean; Guiraud, René

    2005-10-01

    The Phanerozoic geological evolution of the Equatorial Atlantic domain has been controlled since the end of Early Cretaceous by the Romanche and Saint Paul transform faults. These faults did not follow the PanAfrican shear zones, but were surimposed on Palæozoic basins. From Neocomian to Barremian, the Central Atlantic rift propagated southward in Cassiporé and Marajó basins, and the South Atlantic rift propagated northward in Potiguar and Benue basins. During Aptian times, the Equatorial Atlantic transform domain appeared as a transfer zone between the northward propagating tip of South Atlantic and the Central Atlantic. Between the transform faults, oceanic accretion started during Late Aptian in small divergent segments, from south to north: Benin-Mundaú, deep Ivorian basin-Barreirinhas, Liberia-Cassiporé. From Late Aptian to Late Albian, the Togo-Ghana-Ceará basins appeared along the Romanche transform fault, and Côte d'Ivoire-Parà-Maranhão basins along Saint Paul transform fault. They were rapidly subsiding in intra-continental settings. During Late Cretaceous, these basins became active transform continental margins, and passive margins since Santonian times. In the same time, the continental edge uplifted leading either to important erosion on the shelf or to marginal ridges parallel to the transform faults in deeper settings.

  11. Global distribution of naturally occurring marine hypoxia on continental margins

    NASA Astrophysics Data System (ADS)

    Helly, John J.; Levin, Lisa A.

    2004-09-01

    Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km 2 of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5 ml l -1; over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions.

  12. Coral forests diversity in the outer shelf of the south Sardinian continental margin

    NASA Astrophysics Data System (ADS)

    Cau, Alessandro; Moccia, Davide; Follesa, Maria Cristina; Alvito, Andrea; Canese, Simonepietro; Angiolillo, Michela; Cuccu, Danila; Bo, Marzia; Cannas, Rita

    2017-04-01

    Ecological theory predicts that heterogeneous habitats allow more species to co-exist in a given area, but to date, knowledge on relationships between habitat heterogeneity and biodiversity of coral forests in the outer shelf and upper slope along continental margins is rather limited. We investigated biodiversity of coral forests from 8 sites spread over two different geomorphological settings (namely, pinnacles vs. canyons) in the outer shelf along Sardinian continental margin. Using a combination of multivariate statistical analyses, we show here that differences in the composition of coral assemblages among contrasting geomorphological settings were not statistically significant, whereas significant differences emerged among sites within similar geomorphologies (i.e. among pinnacles and among canyons). Our results reveal that environmental and bathymetric factors such as sediment coverage, slope of the substrate, terrain ruggedness, bathymetric positioning index and aspect were important drivers of the observed patterns of coral biodiversity, in both settings. Spatial variability of coral forests' biodiversity is affected by environmental factors that act at the scale of each geomorphological setting (i.e. within each pinnacle and canyon) rather than by the contrasting geomorphological settings themselves. This result allows us to suggest that simple categorization of benthic communities according topographically defined habitat is unlikely to be sufficient for addressing conservation purposes.

  13. Meso-Cenozoic tectonic evolution of the SE Brazilian continental margin: Petrographic, kinematic and dynamic analysis of the onshore Araruama Lagoon Fault System

    NASA Astrophysics Data System (ADS)

    Souza, Pricilla Camões Martins de; Schmitt, Renata da Silva; Stanton, Natasha

    2017-09-01

    The Ararauama Lagoon Fault System composes one of the most prominent set of lineaments of the SE Brazilian continental margin. It is located onshore in a key tectonic domain, where the basement inheritance rule is not followed. This fault system is characterized by ENE-WSW silicified tectonic breccias and cataclasites showing evidences of recurrent tectonic reactivations. Based on field work, microtectonic, kinematic and dynamic analysis, we reconstructed the paleostresses in the region and propose a sequence of three brittle deformational phases accountable for these reactivations: 1) NE-SW dextral transcurrence; 2) NNW-SSE dextral oblique extension that evolved to NNW-SSE "pure" extension; 3) ENE-WSW dextral oblique extension. These phases are reasonably correlated with the tectonic events responsible for the onset and evolution of the SE onshore rift basins, between the Neocretaceous and Holocene. However, based on petrographic studies and supported by regional geological correlations, we assume that the origin of this fault system is older, related to the Early Cretaceous South Atlantic rifting. This study provides significant information about one of the main structural trends of the SE Brazilian continental margin and the tectonic events that controlled its segmentation, since the Gondwana rifting, and compartmentalization of its onshore sedimentary deposits during the Cenozoic.

  14. Polyphase Rifting and Breakup of the Central Mozambique Margin

    NASA Astrophysics Data System (ADS)

    Senkans, Andrew; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi

    2017-04-01

    The breakup of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. The identification of magnetic anomalies in the Mozambique Basin and Riiser Larsen Sea means that post-oceanisation plate kinematics are well-constrained. Unresolved questions remain, however, regarding the initial fit, continental breakup process, and the first relative movements of Africa and Antarctica. This study uses high quality multi-channel seismic reflection profiles in an effort to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. This work is part of the integrated pluri-disciplinary PAMELA project*. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDR) in the Angoche region, as well as magmatic sills and volcanoclastic material which mark the Beira High. The Angoche region is defined by a faulted upper-continental crust, with the possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The profiles studied across the Beira high reveal an offshore continental fragment, which is overlain by a pre-rift sedimentary unit likely to belong to the Karoo Group. Faulting of the crust and overlying sedimentary unit reveals that the Beira High has recorded several phases of deformation. The combination of our seismic interpretation with existing geophysical and geological results have allowed us to propose a breakup model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The analysis of both along-dip and along-strike profiles shows that the Beira High initially experienced extension in a direction approximately parallel to the Mozambique coastline onshore of the Beira High. Our results suggest that the Beira High results from strike-slip deformation localised along a proposed crustal weakness, represented by the Lurio-Pebane shear zone. A more north-south oriented extension is recorded by the continental breakup and oceanisation. A failed rift is initially formed between the Beira High and the African continent followed by the successful rifting of its southern margin. This study proposes a segmentation of the Central Mozambique margin, with oceanisation first occurring in the Angoche segment. The formation of the first oceanic crust in the Beira segment followed, likely delayed by the formation and failure of the northern Beira High rift. *The PAMELA project (PAssive Margin Exploration Laboratories) is a scientific project led by Ifremer and TOTAL in collaboration with Université Rennes 1, Université Pierre and Marie Curie, Université de Bretagne Occidentale, CNRS and IFPEN.

  15. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Plafker, George; Nokleberg, W. J.; Lull, J. S.

    1989-04-01

    The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.

  16. Geology of the offshore Southeast Georgia Embayment, U.S. Atlantic continental margin, based on multichannel seismic reflection profiles

    USGS Publications Warehouse

    Buffler, Richard T.; Watkins, Joel S.; Dillon, William P.

    1979-01-01

    The sedimentary section is divided into three major seismic intervals. The intervals are separated by unconformities and can be mapped regionally. The oldest interval ranges in age from Early Cretaceous through middle Late Cretaceous, although it may contain Jurassic rocks where it thickens beneath the Blake Plateau. It probably consists of continental to nearshore clastic rocks where it onlaps basement and grades seaward to a restricted carbonate platform facies (dolomite-evaporite). The middle interval (Upper Cretaceous) is characterized by prograding clinoforms interpreted as open marine slope deposits. This interval represents a Late Cretaceous shift of the carbonate shelf margin from the Blake Escarpment shoreward to about its present location, probably due to a combination of co tinued subsidence, an overall Late Cretaceous rise in sea level, and strong currents across the Blake Plateau. The youngest (Cenozoic) interval represents a continued seaward progradation of the continental shelf and slope. Cenozoic sedimentation on the Blake Plateau was much abbreviated owing mainly to strong currents.

  17. Geochronology, geochemistry, and tectonic environment of porphyry mineralization in the central Alaska Peninsula

    USGS Publications Warehouse

    Wilson, Frederic H.; Cox, Dennis P.

    1983-01-01

    Porphyry type sulfide systems on the central Alaska Peninsula occupy a transition zone between the Aleutian island magmatic arc and the continental magmatic arc of southern Alaska. Mineralization occurs associated with early and late Tertiary magmatic centers emplaced through a thick section of Mesozoic continental margin clastic sedimentary rocks. The systems are of the molybdenum-rich as opposed to gold-rich type and have anomalous tungsten, bismuth, and tin, attributes of continental-margin deposits, yet gravity data suggest that at least part of the study area is underlain by oceanic or transitional crust. Potassium-argon age determinations indicate a variable time span of up to 2 million years between emplacement and mineralization in a sulfide system with mineralization usually followed by postmineral intrusive events. Finally, mineralization in the study area occurred at many times during the time span of igneous activity and should be an expected stage in the history of a subduction related magmatic center.

  18. Heat flow in eastern Egypt - The thermal signature of a continental breakup

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.

    1985-01-01

    It is noted that the Red Sea is a modern example of continental fragmentation and incipient ocean formation. A consistent pattern of high heat flow in the Red Sea margins and coastal zone, including Precambrian terrane up to at least 30 km from the Red Sea, has emerged from the existing data. It is noted that this pattern has important implications for the mode and mechanism of Red Sea opening. High heat flow in the Red Sea shelf requires either a high extension of the crust in this zone (probably with major basic magmatic activity) or young oceanic crust beneath this zone. High heat flow in the coastal thermal anomaly zone may be caused by lateral conduction from the offshore lithosphere and/or from high mantle heat flow. It is suggested that new oceanic crust and highly extended continental crust would be essentially indistinguishable with the available data in the Red Sea margins, and are for many purposes essentially identical.

  19. The development of the continental margin of eastern North America-conjugate continental margin to West Africa

    USGS Publications Warehouse

    Dillon, William P.; Schlee, J.S.; Klitgord, Kim D.

    1988-01-01

    The continental margin of eastern North America was initiated when West Africa and North America were rifted apart in Triassic-Early Jurassic time. Cooling of the crust and its thinning by rifting and extension caused subsidence. Variation in amounts of subsidence led to formation of five basins. These are listed from south to north. (1) The Blake Plateau Basin, the southernmost, is the widest basin and the one in which the rift-stage basement took longest to form. Carbonate platform deposition was active and persisted until the end of Early Cretaceous. In Late Cretaceous, deposition slowed while subsidence persisted, so a deep water platform was formed. Since the Paleocene the region has undergone erosion. (2) The Carolina Trough is narrow and has relatively thin basement, on the basis of gravity modeling. The two basins with thin basement, the Carolina Trough and Scotian Basin, also show many salt diapirs indicating considerable deposition of salt during their early evolution. In the Carolina Trough, subsidence of a large block of strata above the flowing salt has resulted in a major, active normal fault on the landward side of the basin. (3) The Baltimore Canyon Trough has an extremely thick sedimentary section; synrift and postrift sediments exceed 18 km in thickness. A Jurassic reef is well developed on the basin's seaward side, but post-Jurassic deposition was mainly non-carbonate. In general the conversion from carbonate to terrigenous deposition, characteristics of North American Basins, occurred progressively earlier toward the north. (4) The Georges Bank Basin has a complicated deep structure of sub-basins filled with thick synrift deposits. This may have resulted from some shearing that occurred at this offset of the continental margin. Postrift sediments apparently are thin compared to other basins-only about 8 km. (5) The Scotian Basin, off Canada, contains Jurassic carbonate rocks, sandstone, shale and coal covered by deltaic deposits and Upper Cretaceous deeper water chalk and shale. ?? 1988.

  20. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  1. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea

    NASA Astrophysics Data System (ADS)

    Eisenbarth, Simone; Zettler, Michael L.

    2016-03-01

    In late summer 2011, shortly after an upwelling event, 17 stations ranging from 30 to 2513 m water depth have been sampled at 20° south in the northern part of the Benguela Current Large Marine Ecosystem (BCLME) for the investigation of the benthic macrofauna. Sediments of this area are dominated by silt. At the time of sampling, oxygen conditions on the shelf were poor (between 0.42 and 0.68 ml l- 1) but not hypoxic. Below 400 m, however, concentrations rose steadily up to 5.28 ml l- 1. Macrozoobenthic communities along this depth gradient are described, revealing among others the community structure for the continental margin area and the deep sea off northern Namibia for the first time. Cluster analysis revealed 5 different communities along the depth gradient with three shelf communities, one continental margin community and one deep-sea community. All in all, 314 different taxa were found with polychaetes being the most abundant group. Diversity index (Shannon) was lowest for the shallow water community with 2.21 and highest for the deep-sea community with 4.79, showing a clear trend with increasing water depth. Species richness, however, reached its maximum with 187 taxa along the continental margin between 400 and 1300 m water depth. Dominant species for each community are named with the two Cumacea, Iphinoeafricana and Upselaspis caparti, being characteristic for the shallow water community. On the shelf, we found surprisingly high biomass values (23-123 g m- 2), mainly caused by polychaetes, the bivalve Sinupharus galatheae and the gastropod Nassarius vinctus. In terms of composition, the remaining communities were dominated by polychaetes with members of the Paraonidae dominating along the continental margin where we also found surprisingly high abundances of the bivalves Pecten sp. and Dosinia sp. Spionid polychaetes and some representatives of the genus Paraonis were the most common organisms for the deep-sea community.

  2. Thermochronological constraints on the Cambrian to recent geological evolution of the Argentina passive continental margin

    NASA Astrophysics Data System (ADS)

    Kollenz, Sebastian; Glasmacher, Ulrich A.; Rossello, Eduardo A.; Stockli, Daniel F.; Schad, Sabrina; Pereyra, Ricardo E.

    2017-10-01

    Passive continental margins are geo-archives that store information from the interplay of endogenous and exogenous forces related to continental rifting, post-breakup history, and climate changes. The recent South Atlantic passive continental margins (SAPCMs) in Brazil, Namibia, and South Africa are partly high-elevated margins ( 2000 m a.s.l.), and the recent N-S-trending SAPCM in Argentina and Uruguay is of low elevation. In Argentina, an exception in elevation is arising from the higher topography (> 1000 m a.s.l.) of the two NW-SE-trending mountain ranges Sierras Septentrionales and Sierras Australes. Precambrian metamorphic and intrusive rocks, and siliciclastic rocks of Ordovician to Permian age represent the geological evolution of both areas. The Sierras Australes have been deformed and metamorphosed (incipient - greenschist) during the Gondwanides Orogeny. The low-temperature thermochronological (LTT) data (< 240 °C) indicated that the Upper Jurassic to Lower Cretaceous opening of the South Atlantic has not completely thermally reset the surface rocks. The LTT archives apatite and zircon still revealed information on the pre- to post-orogenic history of the Gondwanides and the Mesozoic and Cenozoic South Atlantic geological evolution. Upper Carboniferous zircon (U-Th/He)-ages (ZHe) indicate the earliest cooling below 180 °C/1 Ma. Most of the ZHe-ages are of Upper Triassic to Jurassic age. The apatite fission-track ages (AFT) of Sierras Septentrionales and the eastern part of Sierras Australes indicate the South Atlantic rifting and, thereafter. AFT-ages of Middle to Upper Triassic on the western side of the Sierras Australes are in contrast, indicating a Triassic exhumation caused by the eastward thrusting along the Sauce Grande wrench. The corresponding t-T models report a complex subsidence and exhumation history with variable rates since the Ordovician. Based on the LTT-data and the numerical modelling we assume that the NW-SE-trending mountain ranges received their geographic NW-SE orientation during the syn- to post-orogenic history of the Gondwanides.

  3. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part I: Introducing Seismic Interpretation and Isostasy Principles Using Gulf of California Examples

    NASA Astrophysics Data System (ADS)

    Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.

  4. Trace-element geochemistry of metabasaltic rocks from the Yukon-Tanana Upland and implications for the origin of tectonic assemblages in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Cooper, K.M.

    1999-01-01

    We present major- and trace- element geochemical data for 27 amphibolites and six greenstones from three structural packages in the Yukon-Tanana Upland of east-central Alaska: the Lake George assemblage (LG) of Devono-Mississippian augen gneiss, quartz-mica schist, quartzite, and amphibolite; the Taylor Mountain assemblage (TM) of mafic schist and gneiss, marble, quartzite, and metachert; and the Seventymile terrane of greenstone, serpentinized peridotite, and Mississippian to Late Triassic metasedimentary rocks. Most LG amphibolites have relatively high Nb, TiO2, Zr, and light rare earth element contents, indicative of an alkalic to tholeiitic, within-plate basalt origin. The within-plate affinities of the LG amphibolites suggest that their basaltic parent magmas developed in an extensional setting and support a correlation of these metamorphosed continental-margin rocks with less metamorphosed counterparts across the Tintina fault in the Selwyn Basin of the Canadian Cordillera. TM amphibolites have a tholeiitic or calc-alkalic composition, low normalized abundances of Nb and Ta relative to Th and La, and Ti/V values of <20, all indicative of a volcanic-arc origin. Limited results from Seventymile greenstones indicate a tholeiitic or calc-alkalic composition and intermediate to high Ti/V values (27-48), consistent with either a within-plate or an ocean-floor basalt origin. Y-La-Nb proportions in both TM and Seventymile metabasalts indicate the proximity of the arc and marginal basin to continental crust. The arc geochemistry of TM amphibolites is consistent with a model in which the TM assemblage includes arc rocks generated above a west-dipping subduction zone outboard of the North American continental margin in mid-Paleozoic through Triassic time. The ocean-floor or within-plate basalt geochemistry of the Seventymile greenstones supports the correlation of the Seventymile terrane with the Slide Mountain terrane in Canada and the hypothesis that these oceanic rocks originated in a basin between the continental margin and an arc to the west.

  5. A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Beauval, Céline; Aguilar, Jorge; Font, Yvonne; Cotton, Fabrice

    2016-05-01

    A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.

  6. The São Vicente earthquake of 2008 April and seismicity in the continental shelf off SE Brazil: further evidence for flexural stresses

    NASA Astrophysics Data System (ADS)

    Assumpção, M.; Dourado, J. C.; Ribotta, L. C.; Mohriak, W. U.; Dias, Fábio L.; Barbosa, J. R.

    2011-12-01

    The continental margin and shelf of most stable intraplate regions tend to be relatively more seismically active than the continental interior. In the southeast continental margin of Brazil, a seismic zone extends from Rio Grande do Sul to Espírito Santo, with seismic activity occurring mainly along the continental slope and suggesting a close relationship with flexural stresses caused by the weight of the sediments. In this region, earthquakes with magnitudes larger than 5 mb occur every 20-25 yr, on average. The focal mechanism solutions of previous earthquakes in this zone indicated reverse faulting on planes dipping approximately 45° with horizontal P-axes. The recent 5.2 mb earthquake of 2008 April 23 occurred 125 km south of São Vicente and was well recorded by many stations in SE Brazil, as well as at teleseismic distances in North America and Africa. Its focal depth was 17 km, locating the hypocentre in the lower crust. A well-determined focal mechanism solution shows one vertical nodal plane and one subhorizontal nodal plane. The P- and T-axes exhibit large dips, which were confirmed by a regional moment tensor inversion. This unusual orientation of the fault mechanism can be attributed to a rotation of the principal stress directions in the lower crust caused by flexural effects due to the load of recent sedimentation.

  7. Where does subduction initiate and die? Insights from global convection models with continental drift

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul

    2017-04-01

    Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.

  8. Functional anatomy controls ion distribution in banana leaves: significance of Na+ seclusion at the leaf margins.

    PubMed

    Shapira, Or; Khadka, Sudha; Israeli, Yair; Shani, Uri; Schwartz, Amnon

    2009-05-01

    Typical salt stress symptoms appear in banana (Musa sp., cv. 'Grand Nain' AAA) only along the leaf margins. Mineral analysis of the dry matter of plants treated with increasing concentrations of KCl or NaCl revealed significant accumulation of Na+, but not of K+ or Cl(-), in the affected leaf margins. The differential distribution of the three ions suggests that water and ion movement out of the xylem is mostly symplastic and, in contrast to K+ and Cl(-), there exists considerable resistance to the flow of Na+ from the xylem to the adjacent mesophyll and epidermis. The parallel veins of the lamina are enclosed by several layers of bundle sheath parenchyma; in contrast, the large vascular bundle that encircles the entire lamina, and into which the parallel veins merge, lacks a complete bundle sheath. Xylem sap containing a high concentration of Na+ is 'pulled' by water tension from the marginal vein back into the adjacent mesophyll without having to cross a layer of parenchyma tissue. When the marginal vein was dissected from the lamina, the pattern of Na+ distribution in the margins changed markedly. The distinct anatomy of the marginal vein plays a major role in the accumulation of Na+ in the margins, with the latter serving as a 'dumping site' for toxic molecules.

  9. Structural and kinematic evolution of the Yukon-Tanana upland tectonites, east-central Alaska: A record of late Paleozoic to Mesozoic crustal assembly

    USGS Publications Warehouse

    Hansen, V.L.; Dusel-Bacon, C.

    1998-01-01

    The Yukon-Tanana terrane, the largest tectonostratigraphic terrane in the northern North American Cordillera, is polygenetic and not a single terrane. Lineated and foliated (L-S) tectonites, which characterize the Yukon-Tanana terrane, record multiple deformations and formed at different times. We document the polyphase history recorded by L-S tectonites within the Yukon-Tanana upland, east-central Alaska. These upland tectonites compose a heterogeneous assemblage of deformed igneous and metamorphic rocks that form the Alaskan part of what has been called the Yukon-Tanana composite terrane. We build on previous kinematic data and establish the three-dimensional architecture of the upland tectonites through kinematic and structural analysis of more than 250 oriented samples, including quartz c-axis fabric analysis of 39 samples. Through this study we distinguish allochthonous tectonites from parautochthonous tectonites within the Yukon-Tanana upland. The upland tectonites define a regionally coherent stacking order: from bottom to top, they are lower plate North American parautochthonous attenuated continental margin; continentally derived marginal-basin strata; and upper plate ocean-basin and island-arc rocks, including some continental basement rocks. We delineate three major deformation events in time, space, and structural level across the upland from the United States-Canada border to Fairbanks, Alaska: (1) pre-Early Jurassic (>212 Ma) northeast-directed, apparent margin-normal contraction that affected oceanic rocks; (2) late Early to early Middle Jurassic (>188-185 Ma) northwest-directed, apparent margin-parallel contraction and imbrication that resulted in juxtaposition of the allochthonous tectonites with parautochthonous continental rocks; and (3) Early Cretaceous (135-110 Ma) southeast-directed crustal extension that resulted in exposure of the structurally deepest, parautochthonous continental rocks. The oldest event represents deformation within a west-dipping (present coordinates) Permian-Triassic subduction zone. The second event records Early to Middle Jurassic collision of the arc and subduction complex with North American crust, and the third event reflects mid-Cretaceous southeast-directed crustal extension. Events one and two can be recognized and correlated through southern Yukon, even though this region was affected by mid-Cretaceous dextral shear along steep northwest-striking faults. Our data support a model of crustal assembly originally proposed by D. Tempelman-Kluit in which previously deformed allochthonous rocks were thrust over parautochthonous rocks of the attenuated North American margin in Middle Jurassic time. Approximately 50 m.y. after tectonic accretion, east-central Alaska was dissected by crustal extension, exposing overthrust parautochthonous strata.

  10. Chronobiology of deep-water decapod crustaceans on continental margins.

    PubMed

    Aguzzi, Jacopo; Company, Joan B

    2010-01-01

    Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the diel rhythm of behaviour. Species evolved in a photically variable environment where intra- and inter-specific interactions change along with the community structure over 24 h. Accordingly, the regulation of their biology through a biological clock may be the major evolutionary constraint that is responsible for their reported bathymetric distributions. In this review, our aim is to propose a series of innovative guidelines for a discussion of the modulation of behavioural rhythms of adult decapod crustaceans, focusing on the deep waters of the continental margin areas of the Mediterranean as a paradigm for other marine zones of the world. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Sea-level and climate forcing of the Sr isotope composition of marginal basins in the late Miocene Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Cosentino, D.; Frijia, G.; Castorina, F.; Dudas, F. O.; Iadanza, A.; Cipollari, P.; Caruso, A.; Bowring, S. A.; Strecker, M. R.

    2013-12-01

    Sr isotope records from marginal marine basins track the mixing between sea water and local continental runoff. Because changes in sea level determine the amount of mixing between global marine and continental water, and climate affects the amount of continental runoff, both sea-level and climate changes can potentially be recorded in marine fossil Sr isotope composition. Our 128 new 87Sr/86Sr analyses on 73 oyster, foraminifera, and coral samples from eight late Miocene stratigraphic sections in southern Turkey, Crete, and Sicily show that 87Sr/86Sr in Mediterranean marginal basins started to depart from global ocean values several million years before the Messinian Salinity Crisis (MSC), with sub-basin 87Sr/86Sr commonly dropping 0.000100 below contemporaneous global ocean values. The marked departure coincided with tectonic uplift and basin shallowing along the margins of the Mediterranean Basin. In contrast, centrally-located basins within the Mediterranean (e.g., Cyprus, Sicily, Crete) only record departures during the MSC. Besides this general trend, our 57 new 87Sr/86Sr analyses from the astronomically tuned Lower Evaporite unit deposited during the MSC in the central Apennines (Italy) allow us to explore in detail the effect of sea-level and humidity changes on 87Sr/86Sr . Most of the variation in 87Sr/86Sr that we observe can be explained by changes in eustatic sea level, with greatest departures from global ocean values (with differences up to 0.000150) occurring during sea-level lowstands, which were characterized by relatively arid conditions in the Mediterranean. However, in a few cases, the greatest 87Sr/86Sr departures (up to 0.000300) occur during sea-level highstands, which are marked by more humid conditions. Because the correlations between peaks in Sr departures and highstands (humid conditions) occur only after episodes of prolonged aridity, variations of residence time of continental water (particularly groundwater) could have affected its Sr concentration, and hence the degree to which continental water could perturb 87Sr/86Sr in marine sub-basins. Although our results demonstrate that the forcing behind variations in Sr isotope composition in marginal marine basins is more complex than what is typically included in Sr isotope box models, they also imply that high-resolution records, particularly when combined with independent information on sea-level or climate changes, could offer unique insights into local tectonic, climatic, and sea-level variations.

  12. Mass wasting on the Orange Cone of the Atlantic Margin, South Africa

    NASA Astrophysics Data System (ADS)

    Fielies, Anthony; Murphy, Alain; Johnson, Sean; Thovhogi, Tshifhiwa

    2017-04-01

    The South African Atlantic Margin represents the rift-drift passive volcanic margin sequence which records the break-up of Gondwana around 155 Ma and the subsequent opening of the South Atlantic Ocean. The Orange Cone - the morphological expression of the sediment buildout and modification of the continental margin along the southwest African continental margin - has undergone extensive mass failure and slope modification over a protracted period. This failure extends all the way to the present-day toe of the Orange Cone. This paper outlines the data and analysis by South Arica in support of its Submission to the Commission on the Limits of the Continental Shelf. South Africa has, in its submission, identified and mapped a considerable number of gravity-driven failure features and deposits as evidence of the Orange Cone being classified as a slope in the sense of Article 76 of UNCLOS. Sediment mass failure, which includes slumping, sliding, mass transport deposits, etc., are known to be continental slope phenomena because they are gravity-driven and thus require a free slope upon which gravitational forces can cause kinetic action. Upper slope failure is ubiquitous on the Orange Cone and has been well documented. The most striking example of slope modification and downslope movement in the upper slope of the Orange Cone/Basin is the paired, gravity-driven deformation system, over 100 km across, with extension high on the submarine slope and contraction toward the toe of slope. The lower slope of the Orange Cone has experienced multiple episodes of failure in the form of glides, slides and debris flows. Failure on the lower slope is highly relevant for the purposes of delineating the foot of the continental slope as the deposition location represents the terminus of the slope processes. These gravity-driven failures are inherently linked to upper slope failure processes although their expression is markedly different. The change in gradients between the upper and lower slope corresponds to a change in the style of mass wasting where the failure regime changes from one of faulting and mass wasting to one of detachment and debris flows. Much of the material that is redeposited at the base of the upper slope is in turn remobilised and transported downslope on the lower slope. Some MTDs are likely disaggregated extensions of more coherent slides that have their origin in the upper slope. The lower slope is characterised by bathymetric scarps and translation of material along distinct glide planes. Seismic interpretation suggests that these relatively coherent units disaggregate further downslope resulting in debrites.

  13. Towards an integrated magmatic, structural and metamorphic model for the 1.1-0.9 Ga Sveconorwegian orogeny

    NASA Astrophysics Data System (ADS)

    Slagstad, Trond; Roberts, Nick M. W.; Røhr, Torkil S.; Marker, Mogens K.

    2013-04-01

    Orogeny involves magmatic, metamorphic, deformational and erosional processes that are caused by or lead to crustal thickening and the development of high topography. In general, these processes operate along the margins of continental plates, either as a result of subduction of oceanic crust (accretionary) or collision between two or more continental plates (collisional). Many of these processes are common to accretionary and collisional orogeny, and do not uniquely discriminate between the two. With only a fragmented geological record, unravelling the style of orogenesis in ancient orogens may, therefore, be far from straightforward. Adding to the complexity, modern continental margins, e.g., the southern Asian margin, display significant variation in orogenic style along strike, rendering along-strike comparisons and correlations unreliable. The late Mesoproterozoic Sveconorwegian province in SW Baltica is traditionally interpreted as the eastward continuation of the Grenville province in Canada, resulting from collision with Amazonia and forming a central part in the assembly of the Rodinia supercontinent. We recently proposed that the Sveconorwegian segment of this orogen formed as a result of accretionary processes rather than collision. This hypothesis was based mainly on considerations of the Sveconorwegian magmatic evolution. Here, we show how the metamorphic/structural record supports (or at least may be integrated in) our model as well. The key elements in our accretionary model are: 1) formation of the Sirdal Magmatic Belt (SMB) between 1070 and 1020 Ma, most likely representing a continental arc batholith. Coeval deformation and high-grade metamorphism farther east in the orogen could represent deformation in the retroarc. 2) cessation of SMB magmatism at 1020 Ma followed by UHT conditions at 1010-1005 Ma, with temperatures in excess of 1000°C at 7.5 kbar. Subduction of a spreading ridge at ca. 1020 Ma would result in an end to arc magmatism and juxtaposition of hot asthenosphere and lower crust. This is a plausible explanation for the UTH event, in contrast to simple crustal thickening and radiogenic self-heating that are generally considered unable to produce such PT conditions. 3) long-lived (990-920 Ma) ferroan magmatism, temporally associated with high-grade metamorphism and large-scale deformation, probably reflecting formation inboard of an alternating compressional/extensional continental margin. We have no known record of events after ca. 920 Ma, but it is conceivable that the active margin persisted well into the Neoproterozoic, possibly indicated by metamorphic and magmatic activity recorded in Grenville/Sveconorwegian orogen-derived sedimentary rocks.

  14. 3D Crustal Structure of the North-Ligurian Margin from Refraction Tomography S. Simon (1), J.-X. Dessa (1), M.-O. Beslier (1), A. Deschamps (1), N. Béthoux (1), S. Solarino (2), E. Eva (2), F. Sage (1), G. Ferretti (3), C. Eva (3), M. Lelièvre (1), and the GROSMarin Team (1)UNS/UPMC/OCA/INSU-CNRS/IRD, Villefranche-sur-Mer, France (ssimon@geoazur.obs-vlfr.fr), (2)INGV/Dip.Te.Ris, Genova, Italia (3) Univ. Genova/Dip.Te.Ris, Genova, Italia

    NASA Astrophysics Data System (ADS)

    Simon, S.; Dessa, J.; Beslier, M.; Deschamps, A.; Béthoux, N.; Solarino, S.; Eva, E.; Ferretti, G.; Eva, C.; Lelievre, M.

    2010-12-01

    The GROSMarin experiment, held in 2008, investigates the structures of the seismically active North Ligurian rifted margin. An array of 21 Ocean Bottom Seismometers was deployed offshore a region spanning from Nice to Imperia and recorded seismic refraction shots as well as microseismicity for a duration of more than 5 months. It was extended onland by both the regional French and Italian seismic networks and 13 mobile stations that provided an even density of acquisition on- and offshore. With this programme, we aim at characterizing the main structures of this singular margin and adjacent atypical oceanic crust and thick Alpine foreland. We also seek to detect and locate microseismic events that occur regularly, mostly offshore, and that herald rare large events such as the destructive 1887 Imperia earthquake (Mw 6.5) which is the greatest seismic event in the area since at least four hundred years, and whose source and associated tectonics remain poorly understood. We present and discuss some results of our active first arrival travel time tomography that covers the margin and coastal zone and includes a total of ~185,000 picks. The transition from oceanic to continental domains is clearly evidenced as well as an intermediate zone wherein anomalously high velocities are found at the base of the crust. Velocity structures are not found to evidence significant variations along strike and locally fit some published results of 1D logs.

  15. Crustal Deformation In the Northwestern Margin of the South China Sea: Results From Wide-angle Seismic Modeling

    NASA Astrophysics Data System (ADS)

    Huang, H.; Klingelhoefer, F.

    2017-12-01

    The South China Sea (SCS) has undergone episodic spreading during the Cenozoic Era. The long-term extension has shaped the continental margins of the SCS, leading to a progressive breakup of the lithosphere. Separated blocks and rift troughs, as controlled by tectonic stretching, contains key information about the deforming mechanism of the crust. In this work, we present a P-wave velocity model of a wide-angle seismic profile OBS2013-1 which passes through the NW margin of the SCS. Modeling of 25 ocean bottom seismometers (OBS) data revealed a detailed crustal structure and shallow complexities along the profile (Figure 1). The crust thins symmetrically across the Xisha Trough, from more than 20 km on flanks to 10 km in the central valley where the sediments thickens over 5 km; A volcano is situated on top of the centre basement high where the Moho drops slightly. At the distal margin around the Zhongsha Trough, the upper crust was detached and accordingly made the middle crust exhumed in a narrow area ( 20 km wide). Meanwhile, materials from the lower crust rises asymmetrically, increasing the crustal velocity by 0.3 km/s and may also giving rise to volcanisms along the hanging side. A 40 km wide hyper-stretched crust (with thickness of 5 km) was identified next to the Zhongsha Trough and covered by overflowing magma and post-rift sediments on the top. These observations argue for a depth-related and asymmetrically extension of the crust, including (1) detachment fault controls the deformation of the upper crust, leading to exhumation of the middle crust and asymmetrically rising of the lower crust, (2) The region adjacent to the exhumation region and with highly thinned crust can be considered as extinct OCT due to magma-starved supplying.

  16. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  17. One Dimensional Backstripping Results from IODP Expedition 318, Site U1356: Tectonic Implications for the Wilkes Land Margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Hayden, T. G.; Kominz, M. A.; González, J. J.; Escutia, C.; Brinkhuis, H.; Scientific Party of IODP Expedition 318

    2011-12-01

    The Wilkes Land margin of Antarctica is the conjugate margin of the Great Australian Bight, which underwent extension, thinning and rifting from ~160 Ma until breakup at ~83 Ma. Both Wilkes Land and the Great Australian Bight are considered passive margins, and were thought to be tectonically inactive since breakup at 83 Ma. We have backstripped the U1356 Core recovered from the continental rise off Wilkes Land, Antarctica by IODP Expedition 318. Backstripping input included lithological and sedimentary analysis, paleo-environmental indicators, combined paleomagnetic and biostratigraphic chronologies, and physical properties measurements. Tectonic subsidence shows a major event between 50 and 33.6 Ma, a time represented by a hiatus in the U1356 core. The magnitude of subsidence requires it to be tectonic in origin, and the timing matches with a reorganization of plate motions that represents the transition from slow spreading to fast spreading between Antarctica and Australia, which occurred at approximately 43 Ma. Coupled with a regional seismic framework, and using other Expedition 318 site analyses, the Wilkes Land margin is shown to be far more complex then the simple passive margin currently assumed. We explore several possible mechanisms for the subsidence and erosion observed; including thermal uplift due to continental insulation of the asthenosphere and it's interaction with a recently rifted margin, asthenospheric convection, transtensional or transpressional basin development and loading, and edge-driven asthenospheric convection.

  18. The Southern Cone: A critical element in North American geology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalziel, I.W.D.

    1993-02-01

    The Pacific and Atlantic-Gulf of Mexico continental margins converge towards southern Mexico, delimiting the Southern Cone of North American. The margins are controlled by late Precambrian to early Paleozoic rift systems. The Neoproterozoic rifts along the Pacific margin truncate the 1.3--1.0 Ga Grenville-Llano front and still older structural boundaries within the craton, such as the Snowbird line. The Atlantic margin originated by separation from another continent within the Grenville orogen near the time of the Precambrian-Cambrian boundary. The Gulf of Mexico margin was initiated with rifting at that time, but appears to truncate the Ordovician Taconian orogen in Georgia. Themore » continental margins of the Southern Cone may prove critical in understanding the origin of North America as a discrete continent. A possible continuation of the Grenville-Llano front has now been identified along the Pacific margin of the East Antarctic craton; the opposite side of the Grenville orogen may be present in South America and East Antarctic; a southern continuation of the Taconic Appalachians may have been identified in southern South American and Antarctica (L. Dalla Salda et al., Geology, 1992 a;b: I. Dalziel, Geology, 1991, and GSA Today, 1992; P. Hoffman, Science, 1991; E. Moores, Geology, 1991). Thus the geology of the Southern Cone of North America provides opportunities for critical testing of these globally important hypotheses, notably through geochronometry, isotope geochemistry, stratigraphy, and paleobiogeography. Conversely, East Antarctica, southern Africa, and the proto-Andean margin of South America may offer exciting opportunities to further understanding of pre-Pangea geology across southern North America.« less

  19. Physical analogs that help to better understand the modern concepts on continental stretching, hyperextension and rupturing

    NASA Astrophysics Data System (ADS)

    Zalan, Pedro

    2014-05-01

    Three facts helped to establish a revolution in the understanding of how mega-continents stretch, rupture and breakup to form new continents and related passive margins: (1) the penetration of the distal portions of the Iberia-Newfoundland conjugate margins by several ODP wells (late 70's/early 80's), with the discovery of hyperextended crust and exhumation of lower crust and mantle between typical continental and oceanic domains, (2) field works in the Alps and in the Pyrenees that re-interpreted sedimentary successions and associated "ophiolites" as remnants of old Tethyan passive margins that recorded structural domains similar to those found in Iberia-Newfoundland, and (3) the acquisition of long and ultra-deep reflection seismic sections that could image for the first time sub-crustal levels (25-40 km) in several passive margins around the world. The interpretation of such sections showed that the concepts developed in the Iberia-Newfoundland margins and in the Alps could be applied to a great extent to most passive margins, especially those surrounding the North and South Atlantic Oceans. The new concepts of (i) decoupled deformation (upper brittle X lower ductile) within the proximal domain of the continental crust, (ii) of coupled deformation (hyperextension) in the distal crust and, (iii) of exhumation of deeper levels in the outer domain, with the consequent change in the physical properties of the rising rocks, defined an end-member in the new classification of passive margins, the magma-poor type (as opposed to volcanic passive margins). These concepts, together with the new reflection seismic views of the entire crustal structure of passive margins, forced the re-interpretation of older refraction and potential field data and the re-drawing of long established models. Passive margins are prime targets for petroleum exploration, thus, the great interest raised by this subject in both the academy and in the industry. Interestingly enough, the deformation modes envisaged by Manatschal and Peron-Pinvidic in several works published in the last ten years, dealing with the development of conjugate rifted margins (stretching, thinning, hyperextension/exhumation, oceanization/breakup), can be found in physical analogs of geological nature and of mundane phenomena, in a much smaller scale than that of a continental rupture. Rocks strained and cut by normal faults, especially the brittle sedimentary rocks, display geometries and structural domains, which in turn were formed by the particular deformation modes, very similar to those published for the Norwegian, Angolan and Southeastern Brazilian margins. A non-geological and non-conventional physical analog is the everyday breakup of a chocolate bar. Given it is stuffed by a thick ductile filling and covered by a thin, brittle chocolate layer; it is incredible how such a common phenomenon can replicate the rupture and breakup of a mega-continent. Such physical analogs can be compared to ultra-deep seismic sections and raise a cloud of incertitude on the definition of hyperextension. Instead of representing the coupling of the deformation of the upper and lower crusts into a brittle mode, rather, hyperextension could correspond to their coupling into a plastic or, at least, into a semi-brittle mode, but not into an entirely brittle mode.

  20. Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco

    NASA Astrophysics Data System (ADS)

    Leprêtre, Rémi; Missenard, Yves; Barbarand, Jocelyn; Gautheron, Cécile; Saddiqi, Omar; Pinna-Jamme, Rosella

    2015-06-01

    The passive margin of South Morocco is a low-elevated passive margin. It constitutes one of the oldest margins of the Atlantic Ocean, with an Early Jurassic breakup, and little geological data are available concerning its postrift reactivation so far. We investigated the postrift thermal history of the onshore part of the margin with low-temperature thermochronology on apatite crystals. Fission track and (U-Th-Sm)/He ages we obtained are significantly younger than the breakup ( 190 Ma). Fission track ages range from 107 ± 8 to 175 ± 16 Ma, with mean track lengths from 10.7 ± 0.3 to 12.5 ± 0.2 µm. (U-Th-Sm)/He ages range from 14 ± 1 to 185 ± 15 Ma. Using inverse modeling of low-temperature thermochronological data, we demonstrate that the South Moroccan continental margin underwent a complex postrift history with at least two burial and exhumation phases. The first exhumation event occurred during Late Jurassic/Early Cretaceous, and we attribute this to mantle dynamics rather than to intrinsic rifting-related processes such as flexural rebound. The second event, from Late Cretaceous to early Paleogene, might record the onset of Africa/Europe convergence. We show a remarkably common behavior of the whole Moroccan passive margin during its early postrift evolution. The present-day differences result from a segmentation of the margin domains due to the Africa/Europe convergence. Finally we propose that varying retained strengths during rifting and also the specific crustal/lithospheric geometry of stretching explain the difference between the topographical expressions on the continental African margin compared to its American counterpart.

  1. Seismicity During Continental Breakup in the Red Sea Rift of Northern Afar

    NASA Astrophysics Data System (ADS)

    Illsley-Kemp, Finnigan; Keir, Derek; Bull, Jonathan M.; Gernon, Thomas M.; Ebinger, Cynthia; Ayele, Atalay; Hammond, James O. S.; Kendall, J.-Michael; Goitom, Berhe; Belachew, Manahloh

    2018-03-01

    Continental rifting is a fundamental component of plate tectonics. Recent studies have highlighted the importance of magmatic activity in accommodating extension during late-stage rifting, yet the mechanisms by which crustal thinning occurs are less clear. The Red Sea rift in Northern Afar presents an opportunity to study the final stages of continental rifting as these active processes are exposed subaerially. Between February 2011 and February 2013 two seismic networks were installed in Ethiopia and Eritrea. We locate 4,951 earthquakes, classify them by frequency content, and calculate 31 focal mechanisms. Results show that seismicity is focused at the rift axis and the western marginal graben. Rift axis seismicity accounts for ˜64% of the seismic moment release and exhibits a swarm-like behavior. In contrast, seismicity at the marginal graben is characterized by high-frequency earthquakes that occur at a constant rate. Results suggest that the rift axis remains the primary locus of seismicity. Low-frequency earthquakes, indicative of magmatic activity, highlight the presence of a magma complex ˜12 km beneath Alu-Dalafilla at the rift axis. Seismicity at the marginal graben predominantly occurs on westward dipping, antithetic faults. Focal mechanisms show that this seismicity is accommodating E-W extension. We suggest that the seismic activity at the marginal graben is either caused by upper crustal faulting accommodating enhanced crustal thinning beneath Northern Afar or as a result of flexural faulting between the rift and plateau. This seismicity is occurring in conjunction with magmatic extension at the rift axis, which accommodates the majority of long-term extension.

  2. Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-06-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by pressure-temperature variations during the thermo-mechanical evolution of the conjugate passive margin system. Effects of melting included in the model account for thermal effects, causing viscosity reduction due to host rock heating, and mechanical effects, due to cohesion loss. Our study provides better understanding on how presence of melts can influence the evolution of rifting. Here we focus particularly on the role of melting for the temporal and spatial evolution of passive margin geometry and rift migration. Depending on the lithospheric structure, melt presence may have a significant impact on the characteristics of areas affected by lithospheric extension. Pre-existing lithosphere heterogeneities determine the location of initial breakup, but in presence of plumes the subsequent evolution is more difficult to predict. For small distances between plume and area of initial rifting, the development of symmetric passive margins is favored, whereas increasing the distance promotes asymmetry. For a plume-rifting distance large enough to prevent interaction, the effect of plumes on the overlying lithosphere is negligible and the rift persists at the location of the initial lithospheric weakness. When the melt effect is included, the development of asymmetric passive continental margins is fostered. In this case, melt-induced lithospheric weakening may be strong enough to cause rift jumps toward the plume location.

  3. Evolution of the Upper Lithosphere in the ENAM Area from 3-D Wide-Angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Shuck, B.; Van Avendonk, H. J.

    2016-12-01

    Located offshore North Carolina, the ENAM study area contains the geologic record of the transition from continental rifting to seafloor spreading. In this study we analyze 2-D and 3-D marine wide-angle seismic data from the ENAM experiment with the goal of understanding the interaction between mantle melts and extension in the lithosphere during continental breakup. It is often assumed that magnetic anomalies are associated with continental breakup magmatism. These magnetic anomalies are formed when mantle melts penetrate thinned continental lithosphere leaving basalt flows on the surface. The typical magnetic anomalies of this system are the East Coast Magnetic Anomaly (ECMA) and the West African Coastal Magnetic Anomaly (WACMA). However, there also exists the Blake Spur Magnetic Anomaly (BSMA) which lies 200 km eastward of the ECMA. The BSMA has no mirror counterpart on the African side if rifting was symmetric in nature. This leads us to formulate two alternative hypotheses: 1) Oceanic crust exists between the ECMA and BSMA, or 2) The ECMA and BSMA form a wide volcanic margin. The first hypothesis would suggest the BSMA represents a sliver of West-African crust that was later transferred to the Atlantic plate by a mid-ocean ridge jump eastward. The second hypothesis would suggest asymmetric rifting accompanied by magmatism off North Carolina. Analysis of ENAM seismic refraction data will give insight into how the ECMA and BSMA are related to structure of the crust and mantle. We construct seismic velocity models (P and S-wave) along ENAM lines parallel and perpendicular to the margin to help determine the seismic anisotropy of the study area. Based on a preliminary analysis of the data, the seismic compressional velocity is 8% higher parallel to the margin and suggests the BSMA represents rifted continental lithosphere formed from mantle melt percolation which created a shape-preferred orientation of crystals in the upper mantle.

  4. The extent and timing of the last British-Irish Ice Sheet offshore of west Ireland-preliminary findings

    NASA Astrophysics Data System (ADS)

    Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.

    2014-05-01

    Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.

  5. OCT structure, COB location and magmatic type of the SE Brazilian & S Angolan margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.; Horn, B.

    2013-12-01

    Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.

  6. Sea-level-induced seismicity and submarine landslide occurrence

    USGS Publications Warehouse

    Brothers, Daniel S.; Luttrell, Karen M.; Chaytor, Jason D.

    2013-01-01

    The temporal coincidence between rapid late Pleistocene sea-level rise and large-scale slope failures is widely documented. Nevertheless, the physical mechanisms that link these phenomena are poorly understood, particularly along nonglaciated margins. Here we investigate the causal relationships between rapid sea-level rise, flexural stress loading, and increased seismicity rates along passive margins. We find that Coulomb failure stress across fault systems of passive continental margins may have increased more than 1 MPa during rapid late Pleistocene–early Holocene sea-level rise, an amount sufficient to trigger fault reactivation and rupture. These results suggest that sea-level–modulated seismicity may have contributed to a number of poorly understood but widely observed phenomena, including (1) increased frequency of large-scale submarine landslides during rapid, late Pleistocene sea-level rise; (2) emplacement of coarse-grained mass transport deposits on deep-sea fans during the early stages of marine transgression; and (3) the unroofing and release of methane gas sequestered in continental slope sediments.

  7. The Cosmonaut Sea Wedge

    USGS Publications Warehouse

    Solli, K.; Kuvaas, B.; Kristoffersen, Y.; Leitchenkov, G.; Guseva, J.; Gandyukhin, V.

    2007-01-01

    A set of multi-channel seismic profiles (~15000 km) acquired by Russia, Norway and Australia has been used to investigate the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge below the upper part of the continental rise. The wedge, herein termed the Cosmonaut Sea Wedge, is positioned stratigraphically underneath the inferred glaciomarine section and extends for at least 1200 km along the continental margin and from 80 to about 250 km seaward or to the north. Lateral variations in the growth pattern of the wedge indicate several overlapping depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits suggests that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems.

  8. Reply to Comment on ``Emergence of Complex Societies After Sea Level Stabilized''

    NASA Astrophysics Data System (ADS)

    Day, John W.; Gunn, Joel D.; Folan, William J.; Yáñez-Arancibia, Alejandro; Horton, Benjamin P.

    2007-10-01

    Washington [this issue] raised a number of interesting points that serve to clarify the origins of civilizations on continental margins. We linked the initial development of civilizations to coastal margin productivity [Day et al., 2007]. Washington argues that a number of early civilizations were not related to marine productivity, but rather were centered around the exploitation and cultivation of riparian grains. However, we defined coastal margins to include upwellings, estuaries, and lower floodplains affected by coastal water levels. Thus, the Nile, Mesopotamia, Indus, Mississippi, and Yellow societies were influenced by coastal margin productivity.

  9. The Pennsylvanian-early permian bird spring carbonate shelf, Southeastern California: Fusulinid biostratigraphy, paleogeographic evolution, and tectonic implications

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2007-01-01

    The Bird Spring Shelf in southeastern California, along with coeval turbidite basins to the west, records a complex history of late Paleozoic sedimentation, sea-level changes, and deformation along the western North American continental margin. We herein establish detailed correlations between deposits of the shelf and the flanking basins, which we then use to reconstruct the depositional history, paleogeography, and deformational history, including Early Permian emplacement of the regionally significant Last Chance allochthon. These correlations are based on fusulinid faunas, which are numerous both on the shelf and in the adjoining basins. Study of 69 fusulinid species representing all major fusulinid-bearing Pennsylvanian and Lower Permian limestone outcrops of the Bird Spring Shelf in southeastern California, including ten new species of the genera Triticites, Leptotriticites, Stewartina, Pseudochusenella, and Cuniculinella, forms the basis for our correlations. We group these species into six fusulinid zones that we correlate with fusulinid-bearing strata in east-central and southern Nevada, Kansas, and West Texas, and we propose some regional correlations not previously suggested. In addition, we utilize recent conodont data from these areas to correlate our Early Permian fusulinid zones with the standard Global Permian Stages, strengthening their chronostratigraphic value. Our detailed correlations between the fusulinid-bearing rocks of the Bird Spring Shelf and deep-water deposits to the northwest reveal relationships between the history of shelf sedimentation and evolution of basins closer to the continental margin. In Virgilian to early Asselian (early Wolfcampian) time (Fusulinid Zones 1 and 2), the Bird Spring Shelf was flanked on the west by the deep-water Keeler Basin in which calcareous turbidites derived from the shelf were deposited. In early Sakmarian (early middle Wolfcampian) time (Fusulinid Zone 3), the Keeler Basin deposits were uplifted and transported eastward on the Last Chance thrust. By middle Sakmarian (middle middle Wolfcampian) time (within Fusulinid Zone 4), emplacement of the Last Chance allochthon was complete, and subsidence caused by thrust loading had resulted in development of a new turbidite basin (Darwin Basin) along the former western part of the Bird Spring Shelf. At the same time, farther east into the craton, paralic facies began prograding westward, so that the youngest fusulinid-bearing limestones on the shelf in this area become progressively younger to the west. Eventually, in Artinskian to Kungurian (late Wolfcampian to Leonardian) time (Fusulinid Zones 5 and 6), deposition of fusulinid-bearing limestone on the shelf was restricted to a marginal belt between the prograding paralic facies to the east and the Darwin Basin to the west. Development of the Keeler Basin in Pennsylvanian to earliest Permian time was approximately coeval with collision between South America-Africa (Gondwana) and North America (Laurentia) on the Ouachita-Marathon orogenic belt. This basin developed inboard of a northwest-trending, sinistral fault zone that truncated the continental margin. Later, in the Early Permian, the Last Chance allochthon, which was part of a northeast-trending belt of deformation that extended into northeastern Nevada, was emplaced. This orogenic belt probably was driven by convergence at the continental margin to the northwest. This work adds significant detail to existing interpretations of the late Paleozoic as a time of major tectonic instability on the continental margin of southeastern California as it changed from a relatively passive margin that had characterized most of the Paleozoic to an active convergent margin that would characterize the Mesozoic. ?? 2007 The Geological Society of America. All rights reserved.

  10. Deep structure of the Algerian continental margin in the region of the Great Kabylies - Insights from wide-angle seismic data modelling

    NASA Astrophysics Data System (ADS)

    Aidi, Chafik; Klingelhoefer, F.; Yelles-Chaouche, A.; Beslier, M.; Bracene, R.; Philippe, S.; Djellit, H.; Galve, A.; Bounif, A.; Schenini, L.; Sage, F.; Charvis, P.

    2013-12-01

    During the Algerian-French SPIRAL cruise (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) conducted onboard R/V Atalante (September-October 2009), one deep reflection and wide-angle seismic profile with total length of 140 km was acquired on the Algerian margin, offshore Greater Kabylia. 40 ocean bottom seismometers (OBS) were deployed on the profile, located perpendicular to the margin and it was additionally extended on land using 26 seismological stations. A 8350 in3 tuned air-gun array consisting of 10 Bolt air-guns was used to generate deep frequency shots to allow for a good penetration. A coincident multi-channel seismic profile was acquired using a 3040 in3 seismic source and a 4.5 km 360 channel digital seismic streamer. Underway geophysical measurements included gravimetric and magnetic data. The combined profile with a total length of about 260 km, crosses from north to south the Algero-Provençal basin, the central Algerian margin and onshore the crystalline basement of the Kabylides bloc up to the southward limit of the internal zones. We present results concerning the sedimentary and crustal structures in the study area using tomographic inversion, forward and gravimetric modelling. Modelling of the wide-angle and multi-channel seismic data reveals that the thickness of the sedimentary cover along the profile varies from several hundreds of metres onland in Tiziouzou basin (R. Bracéne 2001), to ~4 km at the foot of the margin and then decreasing northward to less than 3 km. The Messinian evaporitic units have been modelled by a high velocity layer, representing a velocity inversion with underlying pre-Messinian Miocene sedimentary layers. Progressive thinning of the continental crust towards the North is observed, with thicknesses decreasing from ~20 km at the foot of the margin to 4-5 km in the deep basin. Seismic velocities range between 6.2 and 6.6 km/s in the continental domain and 5.2 - 6.8 km/s in the deep basin. The uppermost crust of the deep margin is characterised by low velocities of only 4.5-5.0 km/s probably due to fracturing during the thinning of the crust. The transition between continental crust and crust of oceanic origin is located about 60 km from the coast. Its extension is very narrow (< 20 km) with a possibility of it being absent in this region. The crust underlying the basin at the foot of the continental slope is characterised by a thickness of only 3-5 km which is about 2 km thinner than normal oceanic crust. Seismic velocities however indicate that the crust is of oceanic origin and does not represent exhumed and partly serpentinised mantle material, although the presence of small amounts of mantle material in an otherwise igneous crust cannot be ruled out. Similar thin oceanic crust has been imaged in other Mediterranean Basins, such as the Liguro-Provençal basin (Gailler et al., 2009).

  11. Anomalous Subsidence at Rifted Continental Margins: Distinguishing Mantle Dynamic Topography from Anomalous Oceanic Crustal Thickness

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.

    2012-12-01

    It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.

  12. Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.

    2017-12-01

    The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina peninsular and the South China is occurring. Moreover, a low-velocity layer on the top of the lower-crust was also modeled, and its intersection with the fractured zone formed a weak zone where stresses concentrated, and led to those abovementioned earthquakes along the LFZ.

  13. Thickening the outer margins of the Tibetan Plateau: The role of crustal shortening

    NASA Astrophysics Data System (ADS)

    Lease, R. O.; Burbank, D. W.

    2012-12-01

    One of the most direct consequences of the collision of two buoyant continents is large-scale crustal thickening that results in the upward and outward growth of high terrain. As the stronger Indian continent has collided with weaker Asia over at least the past 50 Myr, widespread crustal thickening has occurred over an area that is approximately 2.5 million km^2 at present. The resultant Tibetan crust is the thickest observed on Earth today with an average thickness of 65 km and a maximum that may reach 90 km in places. The mechanisms by which Tibetan crust has thickened, however, as well as the timing and distribution of these mechanisms across the plateau, remain debatable. Two of the most popular mechanisms for thickening the crust beneath the margins of the Tibetan Plateau are: 1) pure shear with faulting and folding in the upper crust and horizontal shortening below; and 2) flow and inflation of lower or middle crust without significant shortening of the upper crust. To help discriminate between the relative contributions of these two mechanisms, well-constrained estimates of upper crustal shortening are needed. Here we document the Cenozoic shortening budget across the northeastern Tibetan Plateau margin near 36°N 102.5°E with several 100- to 145-km-long balanced cross sections. Thermochronological and magnetostratigraphic data indicate that modest NNE-SSW shortening began in middle Eocene time, shortly after initial India-Asia collision. Accelerated east-west shortening, however, did not commence until ~35 Myr later. A five-fold acceleration in shortening rates in middle Miocene-to-Recent time accounts for more than half of the total Cenozoic crustal shortening and thickening in this region. Overall, the balanced cross sections indicate 11 ± 2 % east-west shortening since middle Miocene time, and ~9 ± 2 % NNE-SSW shortening between middle Eocene and middle Miocene times. Given the present-day crustal thickness of 56 ± 4 km in northeastern Tibet, crustal restorations that remove Cenozoic shortening suggest that the northeastern Tibetan crust was 45 ± 5 km thick prior to India-Asia continental collision. This pre-collision thickness estimate is equivalent to average continental crustal thicknesses both adjacent to the Tibetan plateau (44 ± 4 km) and globally (41 ± 6 km) and suggests that pure shear alone may account for Cenozoic crustal thickening in northeastern Tibet, obviating the need for lower crustal flow. Furthermore, a growing number of balanced cross sections across the margins of the Tibetan Plateau document Cenozoic shortening sufficient to generate modern crustal thicknesses: in northern Tibet [Yin et al., 2007; 2008a; 2008b], eastern Tibet [Hubbard et al., 2009; 2010], and northeastern Tibet [this work]. Collectively, these similar findings suggest that lower crustal flow is either unnecessary to account for Cenozoic crustal thickening beneath the outer margins of the Tibetan Plateau or, alternatively, has a more restricted role than originally proposed.

  14. A numerical investigation of continental collision styles

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2013-06-01

    Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues after slab break-off by reverse motion of the subducting plate (`eduction') caused by the reduced slab pull. We illustrate how a simple force balance of slab pull, slab push, slab bending, viscous resistance and buoyancy can explain the different collision styles caused by variations in velocity, temperature, rheology, density differences and the interaction with adjacent plates.

  15. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume.

  16. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  17. Crustal structure of Baffin Bay from constrained 3-D gravity inversion and deformable plate tectonic models

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Peace, Alexander L.; Geng, Meixia; Dehler, Sonya A.; Dickie, Kate

    2018-05-01

    Mesozoic to Cenozoic continental rifting, breakup, and spreading between North America and Greenland led to the opening, from south to north, of the Labrador Sea and eventually Baffin Bay between Baffin Island, northeast Canada, and northwest Greenland. Baffin Bay lies at the northern limit of this extinct rift, transform, and spreading system and remains largely underexplored. With the sparsity of existing crustal-scale geophysical investigations of Baffin Bay, regional potential field methods and quantitative deformation assessments based on plate reconstructions provide two means of examining Baffin Bay at the regional scale and drawing conclusions about its crustal structure, its rifting history, and the role of pre-existing structures in its evolution. Despite the identification of extinct spreading axes and fracture zones based on gravity data, insights into the nature and structure of the underlying crust have only been gleaned from limited deep seismic experiments, mostly concentrated in the north and east where the continental shelf is shallower and wider. Baffin Bay is partially underlain by oceanic crust with zones of variable width of extended continental crust along its margins. 3-D gravity inversions, constrained by bathymetric and depth to basement constraints, have generated a range of 3-D crustal density models that collectively reveal an asymmetric distribution of extended continental crust, approximately 25-30 km thick, along the margins of Baffin Bay, with a wider zone on the Greenland margin. A zone of 5 to 13 km thick crust lies at the centre of Baffin Bay, with the thinnest crust (5 km thick) clearly aligning with Eocene spreading centres. The resolved crustal thicknesses are generally in agreement with available seismic constraints, with discrepancies mostly corresponding to zones of higher density lower crust along the Greenland margin and Nares Strait. Deformation modelling from independent plate reconstructions using GPlates of the rifted margins of Baffin Bay was performed to gauge the influence of original crustal thickness and the width of the deformation zone on the crustal thicknesses obtained from the gravity inversions. These results show the best match with the results from the gravity inversions for an original unstretched crustal thickness of 34-36 km, consistent with present-day crustal thicknesses derived from teleseismic studies beyond the likely continentward limits of rifting around the margins of Baffin Bay. The width of the deformation zone has only a minimal influence on the modelled crustal thicknesses if the zone is of sufficient width that edge effects do not interfere with the main modelled domain.

  18. Penokean tectonics along a promontory-embayment margin in east-central Minnesota

    USGS Publications Warehouse

    Chandler, V.W.; Boerboom, Terrence; Jirsa, M.A.

    2007-01-01

    Recent geologic investigations in east-central Minnesota have utilized geophysical data, test drilling, and high-resolution geochronologic dating to produce a significantly improved map of a poorly exposed part of the 1880-1830 Ma Penokean orogen. These investigations have elucidated major changes in the structure of the orogen, as compared to its counterparts in northern Michigan and northwestern Wisconsin. Foreland basin, fold and thrust belt, and magmatic terrane components that are recognized to the east extend into east-central Minnesota, but they appear to be deflected southwards and truncated in proximity to Archean rocks of the Minnesota River Valley (MRV) subprovince. In contrast, the interior of the MRV subprovince to the southwest shows little sign of Penokean tectonism. In addition, the magmatic and metamorphic rocks of the internal zone of the orogen in east-central Minnesota are extensively invaded by ca. 1785-1770 Ma granitic rocks (the East-Central Minnesota Batholith), whereas, post-orogenic granites of this age occur sparingly to the east. These differences in orogenic structure may be related to their location near the juncture of an embayment (Becker embayment) and a promontory (MRV promontory) that formed the pre-Penokean continental margin. In this scenario, the MRV promontory, which at the surface consists chiefly of high-metamorphic-grade Mesoarchean gneisses, would have formed competent, high-standing crust that resisted deformation and did not host significantly thick continental margin sequences. In contrast, the part of the Becker Embayment adjoining the promontory would have involved relatively weak, low-standing crust that favored deposition of continental margin sequences and, during Penokean collision, would have accommodated tectonic loading of the cratonic margin through thin-skinned deformation. Thrusting of thick embayment sequences and possibly a block of Archean crust (Marshfield terrane) onto the embayment margin may have produced a greatly thickened crust that subsequently promoted crustal melting and generation of the geon 17 granites. Preliminary gravity and magnetic model studies of the present-day crust imply that rocks of the fold and thrust belt may sole out at 5-8 km depth; whereas, magmatic and high-metamorphic-grade rocks associated with the internal zone of the orogen could extend to mid-crustal depths. The tectonic model proposed here, implies that a collision between an embayment and an impinging continental mass may enhance tectonic thickening and subsequent generation of post-orogenic magmas. This and other hypotheses regarding the Penokean orogen need to be investigated further in the third dimension of depth, which will require a comprehensive suite of geophysical studies. ?? 2007 Elsevier B.V. All rights reserved.

  19. Morphology and sedimentology of glacigenic submarine fans on the west Greenland continental margin

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Hogan, Kelly A.; Dowdeswell, Julian A.; Jennings, Anne E.; Noormets, Riko; Evans, Jeffrey

    2014-05-01

    Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross-shelf troughs. Two of these fans, the Uummannaq Fan and the Disko Fan are trough-mouth fans built largely of debris delivered from ice sheet outlets of the Greenland Ice Sheet during past glacial maxima. On the Uummannaq Fan glacigenic debris flow deposits occur on the upper slope and extend to at least 1800 m water depth in front of the trough-mouth. The debris flow deposits are related to the remobilisation of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterised by hemipelagic and ice-rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Further south along the Greenland continental margin the surface of the Disko Fan is prominently channelised and associated sediments are acoustically stratified. Although glacigenic debris flow deposits do occur on the upper Disko Fan, sediments recovered in cores from elsewhere on the fan record the influence of turbidity current and meltwater sedimentation. The channelised form of the Disko fan contrasts markedly with that of the Uummannaq Fan and, more widely, with trough mouth fans from the Polar North Atlantic. Collectively these data highlight the variability of glacimarine depositional processes operating on trough-mouth fans on high-latitude continental slopes and show that glacigenic debris flows are but one of a number of mechanisms by which such large glacially-influenced depocentres form.

  20. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

Top