Science.gov

Sample records for adjacent continental margins

  1. The speciation of marine particulate iron adjacent to active and passive continental margins

    NASA Astrophysics Data System (ADS)

    Lam, Phoebe J.; Ohnemus, Daniel C.; Marcus, Matthew A.

    2012-03-01

    We use synchrotron-based chemical-species mapping techniques to compare the speciation of suspended (1-51 μm) marine particulate iron collected in two open ocean environments adjacent to active and passive continental margins. Chemical-species mapping provides speciation information for heterogeneous environmental samples, and is especially good for detecting spectroscopically distinct trace minerals and species that could not be detectable by other methods. The average oxidation state of marine particulate iron determined by chemical-species mapping is comparable to that determined by standard bulk X-ray Absorption Near Edge Structure spectroscopy. Using chemical-species mapping, we find that up to 43% of particulate Fe in the Northwest Pacific at the depth of the adjacent active continental margin is in the Fe(II) state, with the balance Fe(III). In contrast, particulate iron in the eastern tropical North Atlantic, which receives the highest dust deposition on Earth and is adjacent to a passive margin, is dominated by weathered and oxidized Fe compounds, with Fe(III) contributing 90% of total iron. The balance is composed primarily of Fe(II)-containing species, but we detected individual pyrite particles in some samples within an oxygen minimum zone in the upper thermocline. Several lines of evidence point to the adjacent Mauritanian continental shelf as the source of pyrite to the water column. The speciation of suspended marine particulate iron reflects the mineralogy of iron from the adjacent continental margins. Since the solubility of particulate iron has been shown to be a function of its speciation, this may have implications for the bioavailability of particulate iron adjacent to passive compared to active continental margins.

  2. Causes of long-term landscape evolution of "passive" margins and adjacent continental segments at the South Atlantic Ocean.

    NASA Astrophysics Data System (ADS)

    Glasmacher, Ulrich Anton; Hackspacher, Peter C.

    2013-04-01

    During the last 10 years research efforts have been devoted to understand the coupling between tectonic and surface processes in the formation of recent topography. Quantification of the rate at which landforms adapt to a changing tectonic, heat flow, and climate environment in the long term has become an important research object and uses intensively data revealed by low-temperature thermochronology, terrigenous cosmogenic nuclides, and geomorphological analyses. The influence of endogenic forces such as mantle processes as one of the causes for "Dynamic Topography Evolution" have been explored in a few studies, recently. In addition, the increased understanding how change in surface topography, and change in the amount of downward moving cold surface water caused by climate change affects warping isotherms in the uppermost crust allows further interpretation of low-temperature thermochronological data. "Passive" continental margins and adjacent continental segments especially at the South Atlantic ocean are perfect locations to quantify exhumation and uplift rates, model the long-term landscape evolution, and provide information on the influence of mantle processes on a longer time scale. This climate-continental margin-mantle process-response system is caused by the interaction between endogenic and exogenic forces that are related to the mantle-process driven rift - drift - "passive" continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Furthermore, the influence of major transform faults (also called: transfer zones, Fracture Zones (FZ)) on the long-term evolution of "passive" continental margins is still very much in debate. The presentation will provide insight in possible causes for the differentiated long-term landscape evolution along the South Atlantic Ocean.

  3. iSIMM (Integrated Seismic Imaging and Modelling of Margins): Seismic Acquisition on the Faroes Shelf, Hatton Bank and adjacent Continental Margins

    NASA Astrophysics Data System (ADS)

    White, B.; Kusznir, N.; Christie, P.; Roberts, A. M.; Lunnon, Z.; Roberts, A. W.; Hurst, N.; Smith, L.; Parkin, C.; Surendra, A.; Davies, A.

    2002-12-01

    The iSIMM project is using state-of-the art seismic techniques with long-offset and wide-angle data, to image the crust formed on volcanic continental margins in parallel with developing and testing new quantitative models of rifted margin formation, incorporating heterogeneous stretching, the effects of melt generation and emplacement and varying thermal anomalies in the mantle. During June-July 2002, we used RRS Discovery to acquire wide angle and normal incidence seismic data on the Faroes Shelf and adjacent continental margin, Hatton-Rockall Basin, Hatton Bank and the adjacent oceanic crust using OBS and MCS. In August 2002, WesternGeco's Topaz used three single-sensor, Q-Marine streamers, 12km plus two 4km, to overshoot the wide-angle profiles on the Faroes Shelf and adjacent continental margin. In the Faroes region we deployed 85 4-component ocean bottom seismometers (OBS) and 5 vertical arrays along a 350km-long profile extending from the Faroes-Shetland Channel across the Faroes Shelf and continental margin into the oceanic crust of the Norwegian Sea. The entire profile was shot twice. First with a 6,300 cubic inch airgun array towed at 20 m depth and tuned to enhance the initial peak output pressure pulse. Second, with the airguns reconfigured to enhance the low-frequency bubble waveform, producing a source rich in low frequency energy (centred on 10-12 Hz), and with a broad bandwidth. Shots were spaced at either 75 m or 100 m, giving shot repetition rates in excess of 60 secs, thus avoiding contaminating with wrap-round energy from the previous shot. The Q-Marine acquisition used a 48-gun, 10,170 cu. in. airgun array, also tuned to enhance the low-frequency bubble signature, shooting at 50m/20s intervals and recorded on individual sensors for optimal grouping. The streamer configuration provides swath coverage at shorter offsets, while the long offsets record diving waves and wide-angle reflections. Shot-by-shot source signature recording will facilitate

  4. The Alegre Lineament and its role over the tectonic evolution of the Campos Basin and adjacent continental margin, Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Calegari, Salomão Silva; Neves, Mirna Aparecida; Guadagnin, Felipe; França, George Sand; Vincentelli, Maria Gabriela Castillo

    2016-08-01

    The structural framework and tectonic evolution of the sedimentary basins along the eastern margin of the South American continent are closely associated with the tectonic framework and crustal heterogeneities inherited from the Precambrian basement. However, the role of NW-SE and NNW-SSE structures observed at the outcropping basement in Southeastern Brazil and its impact over the development of those basins have not been closely investigated. In the continental region adjacent to the Campos Basin, we described a geological feature with NNW-SSE orientation, named in this paper as the Alegre Fracture Zone (AFZ), which is observed in the onshore basement and can be projected to the offshore basin. The main goal of this work was to study this structural lineament and its influence on the tectonic evolution of the central portion of the Campos Basin and adjacent mainland. The onshore area was investigated through remote sensing data joint with field observations, and the offshore area was studied through the interpretation of 2-D seismic data calibrated by geophysical well logs. We concluded that the AFZ occurs in both onshore and offshore as a brittle deformation zone formed by multiple sets of fractures that originated in the Cambrian and were reactivated mainly as normal faults during the rift phase and in the Cenozoic. In the Campos Basin, the AFZ delimitates the western side of the Corvina-Parati Low, composing a complex fault system with the NE-SW faults and the NW-SE transfer faults.

  5. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  6. The northern Egyptian continental margin

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Mohamed, Gad; Omar, Khaled; Farid, Walid

    2015-01-01

    Africa displays a variety of continental margin structures, tectonics and sedimentary records. The northern Egyptian continental margin represents the NE portion of the North African passive continental margin. Economically, this region is of great importance as a very rich and productive hydrocarbon zone in Egypt. Moreover, it is characterized by remarkable tectonic setting accompanied by active tectonic processes from the old Tethys to recent Mediterranean. In this article, seismicity of the northern Egyptian continental margin has been re-evaluated for more than 100-years and the source parameters of three recent earthquakes (October 2012, January 2013 and July 2013) have been estimated. Moment tensor inversions of 19th October 2012 and 17th January 2013 earthquakes reveal normal faulting mechanism with strike-slip component having seismic moment of 3.5E16 N m and 4.3E15 N m respectively. The operation of the Egyptian National Seismic Network (ENSN) since the end of 1997 has significantly enhanced the old picture of earthquake activity across northern Egyptian continental margin whereas; the record-ability (annual rate) has changed from 2-events/year to 54-event/year before and after ENSN respectively. The spatial distribution of earthquakes foci indicated that the activity tends to cluster at three zones: Mediterranean Ridge (MR), Nile Cone (NC) and Eratosthenes Seamount (ERS). However, two seismic gaps are reported along Levant Basin (LEV) and Herodotus Basin (HER).

  7. East Africa continental margins

    SciTech Connect

    Bosellini, A.

    1986-01-01

    New well data from Somalia, together with the history of sea-floor spreading in the Indian Ocean derived from magnetic anomalies, show that the East African margins from latitude 15/sup 0/S into the Gulf of Aden comprise four distinct segments that formed successively by the southward drift of Madagascar from Somalia during the Middle to Late Jurassic and Early Cretaceous, by the northeastward drift of India along the Owen Transform during the Late Cretaceous and Paleocene, and by the opening of the Gulf of Aden during the Neogene.

  8. Continental-Margin Processes Recorded in Shelf and Canyon Sediments. Sediment Deposition, Erosion and Accumulation on a Tidal Flat Adjacent to a River Mouth

    DTIC Science & Technology

    2007-01-01

    Sequence Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 549 pp. (2007). C.A. Nittrouer, J.A. Austin, M.E. Field, J.H. Kravitz, J.P.M...Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 1-48 (2007... Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 157-212 (2007). L.F. Pratson, C.A. Nittrouer, P.L.Wiberg, M.S. Steckler, J.B. Swenson

  9. Crustal structure of the eastern Algerian continental margin and adjacent deep basin: implications for late Cenozoic geodynamic evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, B.; Sage, F.; Abtout, A.; Klingelhoefer, F.; Yelles-Chaouche, K.; Schnürle, P.; Marok, A.; Déverchère, J.; Arab, M.; Galve, A.; Collot, J. Y.

    2015-06-01

    We determine the deep structure of the eastern Algerian basin and its southern margin in the Annaba region (easternmost Algeria), to better constrain the plate kinematic reconstruction in this region. This study is based on new geophysical data collected during the SPIRAL cruise in 2009, which included a wide-angle, 240-km-long, onshore-offshore seismic profile, multichannel seismic reflection lines and gravity and magnetic data, complemented by the available geophysical data for the study area. The analysis and modelling of the wide-angle seismic data including refracted and reflected arrival travel times, and integrated with the multichannel seismic reflection lines, reveal the detailed structure of an ocean-to-continent transition. In the deep basin, there is an ˜5.5-km-thick oceanic crust that is composed of two layers. The upper layer of the crust is defined by a high velocity gradient and P-wave velocities between 4.8 and 6.0 km s-1, from the top to the bottom. The lower crust is defined by a lower velocity gradient and P-wave velocity between 6.0 and 7.1 km s-1. The Poisson ratio in the lower crust deduced from S-wave modelling is 0.28, which indicates that the lower crust is composed mainly of gabbros. Below the continental edge, a typical continental crust with P-wave velocities between 5.2 and 7.0 km s-1, from the top to the bottom, shows a gradual seaward thinning of ˜15 km over an ˜35-km distance. This thinning is regularly distributed between the upper and lower crusts, and it characterizes a rifted margin, which has resulted from backarc extension at the rear of the Kabylian block, here represented by the Edough Massif at the shoreline. Above the continental basement, an ˜2-km-thick, pre-Messinian sediment layer with a complex internal structure is interpreted as allochthonous nappes of flysch backthrusted on the margin during the collision of Kabylia with the African margin. The crustal structure, moreover, provides evidence for Miocene

  10. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  11. Transform continental margins - part 1: Concepts and models

    NASA Astrophysics Data System (ADS)

    Basile, Christophe

    2015-10-01

    of the transform continental margin with the adjacent oceanic lithosphere.

  12. Subduction-Driven Recycling of Continental Margin Lithosphere

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Bezada, Maximiliano; Niu, Fenglin; Palomeras, Imma; Humphreys, Eugene; Carbonell, Ramon; Gallart, Josep; Schmitz, Michael; Miller, Meghan

    2016-04-01

    Subduction recycling of oceanic lithosphere, a central theme of plate tectonics, is relatively well understood. Recycling continental lithosphere is more difficult to recognize, can take a number of different forms, and appears to require an external trigger for initiation. Delamination and localized convective downwelling are two processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. We describe a related process that can lead to the loss of continental lithosphere adjacent to a subduction zone: Subducting oceanic plates can entrain and recycle lithospheric mantle from an adjacent continent and disrupt the continental lithosphere far inland from the subduction zone. Body wave tomograms from dense broadband seismograph arrays in northeastern South America (SA) and the western Mediterranean show larger than expected volumes of positive velocity anomalies which we identify as the subducted Atlantic slab under northeastern SA, and the Alboran slab beneath the Gibraltar arc (GA). The positive anomalies lie under and are aligned with the continental margins at sublithospheric depths. The continental margins along which the subduction zones have traversed, i.e. the northeastern SA plate boundary and east of GA, have significantly thinner lithosphere than expected. The thinner than expected lithosphere extends inland as far as the edges of nearby cratons as determined from receiver function images and surface wave tomography. These observations suggest that subducting oceanic plates viscously entrain and remove continental mantle lithosphere from beneath adjacent continental margins, modulating the surface tectonics and pre-conditioning the margins for further deformation. The latter can include delamination of the entire lithospheric mantle and include the lower crust, as around GA, inferred by results from active and passive seismic experiments. Viscous removal of continental margin lithosphere creates LAB topography leading

  13. The Continental Margins Program in Georgia

    USGS Publications Warehouse

    Cocker, M.D.; Shapiro, E.A.

    1999-01-01

    From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These addtional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These additional

  14. The basins on the Argentine continental margin

    SciTech Connect

    Urien, C.M.

    1996-08-01

    After the stabilization of the central Gondwana Craton, orogenic belts were accreted, as a result of convergence events and an extensive passive margin developed in southwestern Gondwana. Thermal subsidence in Parana, Karoo-Ventania basins and the Late Paleozoic-Early Mesozoic rifts, were modified by the Gondwana breakup and the South Atlantic opening. Early Paleozoic marine transgressions deposited the Table Mountain Group in Ventania. In southwestern Patagonia foreland clastics were deposited. Magmatic arcs and marine units indicate a tectonic trough was formed, alternating with continental sequences, over Late Paleozoic metamorphics and intrusives, resulting from plastered terrains along the Gondwana margin. In Patagonia, Permo-Carboniferous continental and glacio marine clastics infill the basins, while in Ventania, paralic sequences, grade from neritic to continental to the northeast, extending beneath the continental margin. The Triassic-Jurassic rift basins progressed onto regional widespread acid lavas and were infilled by lagoonal organic-rich sequences. Early drift phase built basins transverse to the margin, with fluvio-lacustrine sequences: Salado, Colorado, Valdes-Rawson, San Julian and North Malvinas intracratonic basins, which underwent transtensional faulting. Post-Oxfordian to Neocomian brackish sequences, onlapped the conjugate basins during the margin`s drift, with petroleum systems, as in Austral and Malvinas. In the Valanginian, basic extrusions commenced to form on the continental border, heralding the oceanic phase. Due to thermal subsidence, offlaping sediments prograded onto the remaining half-grabens. Several petroleum systems, proven and hypothetical, are identified in this region.

  15. Gas hydrates of outer continental margins

    SciTech Connect

    Kvenvolden, K.A. )

    1990-05-01

    Gas hydrates are crystalline substances in which a rigid framework of water molecules traps molecules of gas, mainly methane. Gas-hydrate deposits are common in continental margin sediment in all major oceans at water depths greater than about 300 m. Thirty-three localities with evidence for gas-hydrate occurrence have been described worldwide. The presence of these gas hydrates has been inferred mainly from anomalous lacoustic reflectors seen on marine seismic records. Naturally occurring marine gas hydrates have been sampled and analyzed at about tensites in several regions including continental slope and rise sediment of the eastern Pacific Ocean and the Gulf of Mexico. Except for some Gulf of Mexico gas hydrate occurrences, the analyzed gas hydrates are composed almost exclusively of microbial methane. Evidence for the microbial origin of methane in gas hydrates includes (1) the inverse relation between methane occurence and sulfate concentration in the sediment, (2) the subparallel depth trends in carbon isotopic compositions of methane and bicarbonate in the interstitial water, and (3) the general range of {sup 13}C depletion ({delta}{sub PDB}{sup 13}C = {minus}90 to {minus}60 {per thousand}) in the methane. Analyses of gas hydrates from the Peruvian outer continental margin in particular illustrate this evidence for microbially generated methane. The total amount of methane in gas hydrates of continental margins is not known, but estimates of about 10{sup 16} m{sup 3} seem reasonable. Although this amount of methane is large, it is not yet clear whether methane hydrates of outer continental margins will ever be a significant energy resource; however, these gas hydrates will probably constitute a drilling hazard when outer continental margins are explored in the future.

  16. Continental margin tectonics - Forearc processes

    SciTech Connect

    Lundberg, N.; Reed, D.L. )

    1991-01-01

    Recent studies of convergent plate margins and the structural development of forearc terranes are summarized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the geometry of accretionary prisms (Coulomb wedge taper and vertical motion in response to tectonic processes), offscraping vs underplating or subduction, the response to oblique convergence, fluids in forearc settings, the thermal framework and the effects of fluid advection, and serpentinite seamounts. Also included is a comprehensive bibliography for the period.

  17. Dynamics of the continental margins

    SciTech Connect

    Not Available

    1990-11-01

    On 18--20 June 1990, over 70 oceanographers conducting research in the ocean margins of North America attended a workshop in Virginia Beach, Virginia. The purpose of the workshop was to provide the Department of Energy with recommendations for future research on the exchange of energy-related materials between the coastal and interior ocean and the relationship between the ocean margins and global change. The workshop was designed to optimize the interaction of scientists from specific research disciplines (biology, chemistry, physics and geology) as they developed hypotheses, research questions and topics and implementation plans. The participants were given few restraints on the research they proposed other than realistic time and monetary limits. The interdisciplinary structure of the meeting promoted lively discussion and creative research plans. The meeting was divided into four working groups based on lateral, vertical, air/sea and sediment/water processes. Working papers were prepared and distributed before the meeting. During the meeting the groups revised the papers and added recommendations that appear in this report, which was reviewed by an Executive Committee.

  18. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  19. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    USGS Publications Warehouse

    Stewart, John H.

    2009-01-01

    Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily

  20. On the Evolution of Glaciated Continental Margins

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Rydningen, Tom Arne; Safronova, Polina A.; Forwick, Matthias

    2016-04-01

    Glaciated continental margins, continental margins where a grounded ice sheet repeatedly has been at or near the shelf break, are found at both northern and southern high-latitudes. Their evolution are in several aspects different from their low-latitude counterparts where eustatic sea-level variations possess a fundamental control on their evolution and where fluvial systems provide the main sediment input. From studies of the Norwegian - Barents Sea - Svalbard and NE Greenland continental margins we propose the following factors as the main control on the evolution of glaciated continental margins: 1) Pre-glacial relief controlling the accommodation space, 2) Ice sheet glaciology including the location of fast-flowing ice streams where source area morphology exerts a fundamental control, 3) Composition of the glacigenic sediments where the clay content in previous studies have been found to be important, and 4) Sea-level controlled both by eustacy and isostacy. From three case studies, 1) the western Barents Sea, 2) part of the North Norwegian (Troms), and 3) the Mid-Norwegian margin, the influence on these factors for the sea-floor morphology, sedimentary processes of the continental slope - deep sea and continental margin architecture are discussed. The pre-glacial relief of the mid-Norwegian and Troms margins relates to the onset of rifting and plate break-up from the early Cenozoic while for the SW Barents Sea, plate shear was followed by rifting. A wide zone of extended continental crust occurs offshore mid-Norway while this zone is much narrower offshore Troms leading to a more pronounced pre-glacial relief. Regarding sediment delivery and ice sheet glaciology the western Barents Sea exemplifies very high sediment input corresponding to an estimated average erosion of the source area of ~0.4 mm/yr (SW Barents Sea), much of which is related to subglacial erosion of Mesozoic - Cenozoic sedimentary rocks from large paleo-ice streams. The mid-Norwegian margin

  1. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates

    NASA Astrophysics Data System (ADS)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.

    2013-12-01

    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  2. Modeling Sedimentary Deposits on the Continental Margin

    DTIC Science & Technology

    2001-09-30

    sedimentation processes. P. 151-164, in Numerical Experiments in Stratigraphy : Recent Advances in stratigraphic and sedimentologic Computer Simulations. Soc...Niedoroda, A.W., 1996, Modeling the sedimentology and stratigraphy of continental margins, Oceanography, v. 9, p183-188 Swift, D. J. P. B. S. Parsons...hypothesis that on muddy shelves such as the northern California shelf, Holocene event stratigraphy consists of the deposits of high-concentration

  3. Focused fluid flow in passive continental margins.

    PubMed

    Berndt, Christian

    2005-12-15

    Passive continental margins such as the Atlantic seaboard of Europe are important for society as they contain large energy resources, and they sustain ecosystems that are the basis for the commercial fish stock. The margin sediments are very dynamic environments. Fluids are expelled from compacting sediments, bottom water temperature changes cause gas hydrate systems to change their locations and occasionally large magmatic intrusions boil the pore water within the sedimentary basins, which is then expelled to the surface. The fluids that seep through the seabed at the tops of focused fluid flow systems have a crucial role for seabed ecology, and study of such fluid flow systems can also help in predicting the distribution of hydrocarbons in the subsurface and deciphering the climate record. Therefore, the study of focused fluid flow will become one of the most important fields in marine geology in the future.

  4. Investigating Continental Margins: An Activity to Help Students Better Understand the Continental Margins of North America

    ERIC Educational Resources Information Center

    Poli, Maria-Serena; Capodivacca, Marco

    2011-01-01

    Continental margins are an important part of the ocean floor. They separate the land above sea level from the deep ocean basins below and occupy about 11% of Earth's surface. They are also economically important, as they harbor both mineral resources and some of the most valuable fisheries in the world. In this article students investigate North…

  5. Recent acoustic studies of western Canadian continental margin

    SciTech Connect

    Bornhold, B.D.; Brandon, M.T.; Clowes, R.M.; Currie, R.G.; Davis, E.E.; Hussong, D.M.; Hyndman, R.D.; Riddihough, R.P.; Rogers, G.C.; Yorath, C.J.

    1986-07-01

    A regional survey of the western Canadian continental margin from the central Queen Charlotte Island, 52/sup 0/40'N, to the Strait of Juan de Fuca, 47/sup 0/40'N, has been completed with the acoustic imaging system SeaMARC II. These data, combined with single-channel and multichannel seismic reflection data, reveal many new insights concerning the deep structure of the subduction margin off Vancouver Island. Clearly evident in the imagery are the deformation of sediments at the base of the slope, the surface expression of seismically active faults, the mass wasting of sediment frequently observed at the base of the slope, and the erosional canyons and sediment transport channels on the slope and adjacent abyssal plain. The variability in the surficial and deep structures along the length of the margin is great and corresponds well with the postulated variations in the local ocean/continent motion vectors: motion along the southern Queen Charlotte Islands margin is primarily transform (about 55 mm/year) with a small component of convergence (about 10 mm/year); motion south of the triple junction at the Wilson Knolls is convergent but at a very slow rate (about 10 mm/year); and motion along the central and southern Vancouver Island margin is nearly orthogonal to the coast and more rapid (about 40 mm/year).

  6. Understanding Continental Margin Biodiversity: A New Imperative

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Sibuet, Myriam

    2012-01-01

    Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.

  7. Understanding continental margin biodiversity: a new imperative.

    PubMed

    Levin, Lisa A; Sibuet, Myriam

    2012-01-01

    Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.

  8. Gravity and structure of the continental margins of southwestern Mexico and northwestern Guatemala

    NASA Astrophysics Data System (ADS)

    Couch, Richard; Woodcock, Stephen

    1981-03-01

    Geophysical measurements over the eastern end of the Tehuantepec Ridge and adjacent continental margins of southern Mexico and northern Guatemala indicate that the ridge is a fracture zone and that it marks the boundary between two different subduction provinces. A positive free-air gravity anomaly which extends northwestward along the outer continental shelf of Guatemala curves abruptly landward in the Gulf of Tehuantepec. The positive shelf anomaly is on trend with the positive anomaly of the Nicoya Peninsula, Costa Rica, and suggests that rocks genetically related to Cretaceous rocks of the Nicoya Complex extend northwestward along the continental shelf to the Gulf of Tehuantepec. A crustal and subcrustal cross section of the continental margin of Guatemala, constrained by gravity, magnetic, and seismic refraction data, indicates that the rock strata causing the outer shelf gravity high dip landward, consistent with imbricate thrusting of the oceanic crust beneath and into the continental margin. A model crustal cross section of the continental margin of southern Mexico, north of the Tehuantepec Ridge, shows a markedly different margin structure with a relatively small amount of continental accretion and a continental crustal block extending to within approximately 25 km of the trench axis.

  9. Structure of the North American Atlantic Continental Margin.

    ERIC Educational Resources Information Center

    Klitgord, K. K.; Schlee, J. S.

    1986-01-01

    Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)

  10. Reconstruction of the East Africa and Antarctica continental margins

    NASA Astrophysics Data System (ADS)

    Nguyen, L. C.; Hall, S. A.; Ball, P.; Bird, D. E.

    2015-12-01

    The Early Jurassic separation of Antarctica from Africa plays an important role in our understanding of the dispersal of Gondwana. Previously proposed reconstruction models often contain overlaps and gaps in the restored margins that reflect difficulties in accurately delineating the continent-ocean boundary (COB) and determining the amount and distribution of extended continental crust. This study focuses on the evolution of the African margin adjacent to the Mozambique Basin and the conjugate margin of Antarctica near the Riiser Larsen Sea. New satellite-derived gravity data have been used to trace the orientations and landward limits of fracture zones in the study area. A 3-D gravity inversion has produced a crustal thickness model that reliably quantifies the extent and amount of stretched crust. Information on crustal thickness along with the identification of fracture zones reveal the COBs that are located significantly closer to the coasts of Africa and Antarctica than previously recognized. Correlation of both fracture zone azimuths and the identified COBs over the conjugate margins suggest Antarctica began drifting away from Africa at approximately 171 Ma in a roughly SSE direction. Of several scenarios examined, the Beira High is most likely oceanic and may be a conjugate feature of the southern Astrid Ridge. An areal-balancing method that involves restoring the crust to a uniform pre-rift thickness has been used to perform the non-rigid reconstruction for both non-volcanic and volcanic margin with magmatic underplating. Based on the results, Africa underwent extension of 65-105 km while Antarctic crust was stretched by 90-190 km. Both margins reveal a trend of increasing extension from east to west. Various models tested to determine the direction of extension during rifting suggest that Antarctica underwent a counter-clockwise rotation with respect to Africa between 186-171 Ma prior to the onset of seafloor spreading.

  11. Reconstruction of the East Africa and Antarctica continental margins

    NASA Astrophysics Data System (ADS)

    Nguyen, Luan C.; Hall, Stuart A.; Bird, Dale E.; Ball, Philip J.

    2016-06-01

    The Early Jurassic separation of Antarctica from Africa plays an important role in our understanding of the dispersal of Gondwana and Pangea. Previous reconstruction models contain overlaps and gaps in the restored margins that reflect difficulties in accurately delineating the continent-ocean-boundary (COB) and determining the amount and distribution of extended continental crust. This study focuses on the evolution of the African margin adjacent to the Mozambique Basin and the conjugate Antarctic margin near the Riiser-Larsen Sea. Satellite-derived gravity data have been used to trace the orientations and landward limits of fracture zones. A 3-D gravity inversion has produced a crustal thickness model that reliably quantifies the extent and amount of stretched crust. Crustal thicknesses together with fracture zone terminations reveal COBs that are significantly closer to the African and Antarctic coasts than previously recognized. Correlation of fracture zone azimuths and identified COBs suggests Antarctica began drifting away from Africa at approximately 171 Ma in a roughly SSE direction. An areal-balancing method has been used to restore the crust to a uniform prerift thickness so as to perform a nonrigid reconstruction for both nonvolcanic and volcanic margins. Both margins reveal a trend of increasing extension from east to west. Our results suggest Africa underwent extension of 60-120 km, while Antarctic crust was stretched by 105-180 km. Various models tested to determine the direction of extension during rifting suggest that Antarctica moved away from Africa in a WNW-ESE direction during the period between 184 and 171 Ma prior to the onset of seafloor spreading.

  12. Vertical tectonics at an active continental margin

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Stern, T. A.

    2017-01-01

    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  13. Continental margin of Western europe: slope progradation and erosion.

    PubMed

    Curray, J R; Moore, D G; Belderson, R H; Stride, A H

    1966-10-14

    Reflection profiling of the continental margin off western Europe shows seaward-dipping continental-slope deposits that have been dissected by submarine canyons west of the English Channel. These records refute previous interpretation of structural benches of older, nearly horizontal strata outcropping on the slope face.

  14. Transform continental margins - Part 2: A worldwide review

    NASA Astrophysics Data System (ADS)

    Mercier de Lépinay, Marion; Loncke, Lies; Basile, Christophe; Roest, Walter R.; Patriat, Martin; Maillard, Agnès; De Clarens, Philippe

    2016-12-01

    We present a global inventory of transform continental margins, based on both a worldwide comparison of continent-ocean boundary identifications with oceanic fracture zones traces, and a compilation of published regional studies. This inventory increases the number of identified transform margins from 29 to 78. These margins represent 16% of continental margins in cumulative length and 31% of non-convergent margins. We include morphological data, published upper crustal sections, continent to ocean transition locations and published Moho shape data in the new database. This review confirms that continent to ocean transitions are sharper at transform margins than at divergent margins. It also emphasizes the structural diversity of transform margins. Associated with one third of transform margins, we define marginal plateaus as a new type of relief that corresponds to a flat but deep surface inside the continental slope, and that may be inherited from crustal thinning prior to transform faulting. Transform margin initiation appears to be favoured along propagating oceans and within cold and thick lithospheres.

  15. Continental Margins of the Arctic Ocean: Implications for Law of the Sea

    NASA Astrophysics Data System (ADS)

    Mosher, David

    2016-04-01

    A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and

  16. Continental margin sedimentation: from sediment transport to sequence stratigraphy

    USGS Publications Warehouse

    Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P.M.; Wiberg, Patricia L.; Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins. - Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes - Explores timescales ranging from particle transport at one extreme, to deep burial at the other - Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy - Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation - Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  17. Late tertiary structure and stratigraphy of north Sinai continental margin

    SciTech Connect

    Ben-Avraham, Z.; Mart, Y.

    1981-06-01

    New seismic data provide information on the structural development and late Tertiary stratigraphy of the continental slope and rise off northern Sinai. The upper continental slope is characterized by a marginal plateau composed of a series of platforms or steps. The lower continental slope is smooth, except for a low ridge paralleling the western part. Numerous diapiric structures along the continental margin north of the Sinai Peninsula emerge from an evaporitic layer of late Tertiary age. The diapirs usually are aligned along west-northwest-trending faults. A salt ridge 90 km long produces a submarine ridge in the lower continental rise. Two main fault trends have been mapped. In the western part of the continental margin they trend west-northwest and, in the eastern part, northeast. These trends parallel the continental slopes of northern Sinai and southern Israel, respectively. The structural grain of the Sinai margin appears to be controlled by two main tectonic elements: (1) rejuvenated basement faults of the continent-ocean transition zone; and (2) salt diapirism due to loading of Messinian evaporites with Nile-derived upper Tertiary clastics.

  18. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2015-01-01

    The oceans' continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins, (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services. These include primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  19. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    USGS Publications Warehouse

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2014-01-01

    The ocean’s continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services including primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  20. Modelling Sea Floor Spreading Initiation and Depth Dependent Stretching at Rifted Continental Margins

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Tymms, V.

    2003-12-01

    subsidence, water depths and top basement heat-flow. The ocean-ridge fluid-flow models predict advection of continental lithosphere material and depth dependent stretching which is highly sensitive to the ratio of Vz/Vx. Convection modelling of sea-floor spreading initiation at volcanic margins (Nielsen & Hopper 2002) suggests that Vz/Vx > 5 for early sea-floor spreading, reducing to Vz/Vx ~ 1.3 after a few Ma. Application of this Vz/Vx history predicts that lower continental crust and lithospheric mantle adjacent to the site of sea-floor spreading initiation is advected continentward producing a distribution of depth dependent stretching consistent with that observed at volcanic margins. Mantle exhumation is not predicted for Vz/Vx >>1. For non-volcanic margins, Vz/Vx at sea-floor spreading initiation is expected to be ~ 1. Models of sea-floor spreading initiation with Vz/Vx ~ 1 predict that lower continental crust and continental lithospheric mantle adjacent to the site of sea-floor spreading initiation are advected oceanward and result in rifted margin depth dependent stretching and continental mantle exhumation consistent with that observed at non-volcanic margins.

  1. Electromagnetic study of the active continental margin in northern Chile

    NASA Astrophysics Data System (ADS)

    Echternacht, Friedrich; Tauber, Sebastian; Eisel, Markus; Brasse, Heinrich; Schwarz, Gerhard; Haak, Volker

    1997-06-01

    Magnetotelluric and geomagnetic deep sounding measurements were carried out in the magmatic arc and forearc regions of northern Chile between 19.5° and 22°S to study the electrical conductivity structures of this active continental margin. The instruments used covered a very broad period range from 10 -4 s to approx. 2 × 10 4 s and thus enabled a resolution of deep as well as shallow structures. In this paper we focus on the interpretation of data from an east-west profile crossing Chile from the Pacific coast to the Western Cordillera at 20.5°S. A decomposition of the impedance tensors using the Groom-Bailey decomposition scheme shows that a two-dimensional interpretation is possible. The resulting regional strike direction is N9°W. Two-dimensional models were calculated in this coordinate frame and include the significant bathymetry of the trench as well as the topography of the Andes. The final model shows a generally high resistivity in the forearc and a very good conductor below the Precordillera. Unlike earlier models from areas further south, a good conductor is not observed below the magmatic arc itself. This correlates with the so-called Pica gap in the volcanic chain and a higher age of volcanic activity compared with adjacent areas.

  2. Illustrations of the importance of mass wasting in the evolution of continental margins

    SciTech Connect

    Pratson, L.; Ryan, W. ); Twichell, D. )

    1990-05-01

    Side-looking sonar imagery and swath bathymetry from a variety of contemporary continental slopes all display erosional scars and debris aprons, illustrating the importance of mass wasting in the evolution of continental margins. The continental slopes examined include slopes fed directly from the fronts of ice sheets, slopes adjacent to continental shelves that were the sites of glacial outwash, slopes supplied exclusively by fluvial drainage, slopes at carbonate platforms, and slopes on accretionary prisms. Examples are drawn from the Atlantic Ocean, the Gulf of Mexico, and the Mediterranean Sea in both passive and active continental margin settings. The sonar imagery and bathymetry used in this study indicate that continental slopes in different tectonic and climatic environments show similar forms of mass wasting. However, in some cases the dominant mode of erosion and/or the overall degree of mass wasting appears to be distinct to particular sedimentary environments. Timing of both recent and older exhumed erosional surfaces identified in the imagery and in seismic reflection profiles is obtained by ground truth observations using submersibles, towed camera sleds, drilling, and coring. These observations suggest that eustatic fluctuations common to all the margins examined do not explain the range in magnitude and areal density of the observed mass wasting. More localized factors such as lithology, diagenesis, pore fluid conditions, sediment supply rates, and seismic ground motion appear to have a major influence in the evolution of erosional scars and their corresponding unconformities.

  3. Late Cenozoic Underthrusting of the Continental Margin off Northernmost California.

    PubMed

    Silver, E A

    1969-12-05

    The presence of magnetic anomaly 3, age 5 million years, beneath the continental slope off northernmost California, is evidence for underthrusting of the continental margin during the late Cenozoic. Folded and faulted strata near the base of the slope attest to deformation of the eastern edge of the turbidite sedimzents in the Gorda Basin; the deformation observed is exactly that expected from underthrusting. The relative motions of three crustal plates also suggest underthrusting, possibly with a major component of right-lateral slip.

  4. Closing the North American Carbon Budget: Continental Margin Fluxes Matter!

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Benway, H. M.; Siedlecki, S. A.; Boyer, E. W.; Cai, W. J.; Coble, P. G.; Cross, J. N.; Friedrichs, M. A.; Goni, M. A.; Griffith, P. C.; Herrmann, M.; Lohrenz, S. E.; Mathis, J. T.; McKinley, G. A.; Pilskaln, C. H.; Smith, R. A.; Alin, S. R.

    2015-12-01

    Despite their relatively small surface area, continental margins are regions of intense carbon and nutrient processing, export and exchange, and thus have a significant impact on global biogeochemical cycles. In response to recommendations for regional synthesis and carbon budget estimation for North America put forth in the North American Continental Margins workshop report (Hales et al., 2008), the Ocean Carbon and Biogeochemistry (OCB) Program and North American Carbon Program (NACP) began coordinating a series of collaborative, interdisciplinary Coastal CARbon Synthesis (CCARS) research activities in five coastal regions of North America (Atlantic Coast, Pacific Coast, Gulf of Mexico, Arctic, Laurentian Great Lakes) to improve quantitative assessments of the North American carbon budget. CCARS workshops and collaborative research activities have resulted in the development of regional coastal carbon budgets based on recent literature- and model-based estimates of major carbon fluxes with estimated uncertainties. Numerous peer-reviewed papers and presentations by involved researchers have highlighted these findings and provided more in-depth analyses of processes underlying key carbon fluxes in continental margin systems. As a culminating outcome of these synthesis efforts, a comprehensive science plan highlights key knowledge gaps identified during this synthesis and provides explicit guidance on future research and observing priorities in continental margin systems to help inform future agency investments in continental margins research. This presentation will provide an overview of regional and flux-based (terrestrial inputs, biological transformations, sedimentary processes, atmospheric exchanges, lateral carbon transport) synthesis findings and key recommendations in the science plan, as well as a set of overarching priorities and recommendations on observations and modeling approaches for continental margin systems.

  5. Geodynamic settings of microcontinents, non-volcanic islands and submerged continental marginal plateau formation

    NASA Astrophysics Data System (ADS)

    Dubinin, Evgeny; Grokholsky, Andrey; Makushkina, Anna

    2016-04-01

    Complex process of continental lithosphere breakup is often accompanied by full or semi isolation of small continental blocks from the parent continent such as microcontinents or submerged marginal plateaus. We present different types of continental blocks formed in various geodynamic settings. The process depends on thermo-mechanical properties of rifting. 1) The continental blocks fully isolated from the parent continent. This kind of blocks exist in submerged form (Elan Bank, the Jan-Mayen Ridge, Zenith Plateau, Gulden Draak Knoll, Batavia Knoll) and in non-submerged form in case of large block size. Most of listed submerged blocks are formed in proximity of hot-spot or plume. 2) The continental blocks semi-isolated from the parent continent. Exmouth Plateau, Vøring, Agulhas, Naturaliste are submerged continental plateaus of the indicated category; Sri Lanka, Tasmania, Socotra are islands adjacent to continent here. Nowadays illustration of this setting is the Sinai block located between the two continental rifts. 3) The submerged linear continental blocks formed by the continental rifting along margin (the Lomonosov Ridge). Suggested evolution of this paragraph is the rift propagation along existing transtensional (or another type) transform fault. Future example of this type might be the California Peninsula block, detached from the North American plate by the rifting within San-Andreas fault. 4) The submerged continental blocks formed by extensional processes as the result of asthenosphere flow and shear deformations. Examples are submerged blocks in the central and southern Scotia Sea (Terror Bank, Protector Basin, Discovery Bank, Bruce Bank etc.). 5) The continental blocks formed in the transform fault systems originated in setting of contradict rifts propagation in presence of structure barriers, rifts are shifted by several hundreds kilometers from each other. Examples of this geodynamic setting are Equatorial Atlantic at the initial development stage

  6. The dynamics of continental extension and divergent margin formation

    SciTech Connect

    Sawyer, D.S. )

    1990-05-01

    Continental breakup is a highly variable process. Differences occur in the relative timing and extent of volcanism, uplift, and graben formation as well as in the mode and amount of continental extension before breakup. The authors propose a model that reconciles this variability with the previously recognized tendency for breakup to occur along preexisting weak trends. Continental lithosphere is viewed as a composite material composed of two strong layers, one in the upper mantle and one in the middle crust. Finite element simulation indicates that extensional failure at weaknesses in the mantle causes concentrated extension in the mantle and diffuse extension in the crust. This leads to early melt segregation and volcanism, margin uplift during the late stages of the extension process, and relatively narrow symmetrical extended margins. In contrast, failure at weaknesses in the crustal strong zone causes focused extension in the crust and diffuse extension in the mantle. This produces initial graben formation, cooling in the lower crust and upper mantle, and broad asymmetrical extended margins. Volcanism only occurs late in the process. Failure at laterally offset weaknesses within both strong layers, perhaps the most common case, leads to a deformation pattern dominated by simple shear. Thus, differences in the prerift configuration of the continental lithosphere can control the overall style of continental breakup. They find that certain features of the evolution of the US Atlantic margin, particularly the formation of the hinge zone and the distribution and timing of extension may be better explained using these models.

  7. Geomorphic characterization of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.

    2013-01-01

    The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.

  8. On isostasy at Atlantic-type continental margins

    NASA Technical Reports Server (NTRS)

    Karner, G. D.; Watts, A. B.

    1982-01-01

    The concept of isostasy describes the manner in which topographic features on the earth's surface are compensated at depth. The present investigation is concerned with the isostatic mechanism at Atlantic-type continental margins. Particular attention is given to the question whether the flexure model of isostasy, which has successfully been used at other geological features in oceans, is applicable at margins. Cross-spectral techniques are used to analyze the relationship between free air gravity and topography at Atlantic-type continental margins. The relatively old eastern North America is found to be associated with the highest value of the effective elastic thickness in the range 10-20 km, while the relatively young Coral Sea/Lord Howe rise is associated with the lowest value of less than 5 km. The differences in estimates of effective elastic thickness between margins can be explained by a simple model in which the flexural strength of the basement increases with age.

  9. Rifting his­tory and structural development of the continental margin north of Alaska

    USGS Publications Warehouse

    Grantz, Arthur; May, S.D.

    1982-01-01

    Seismic-reflection profiles in the Alaskan Beaufort Sea and onshore geology indicate that the continental margin north of Alaska is of Atlantic type. Rifting appears to have begun in earliest Jurassic time, about 190 to 185 m.y. ago, when crustal extension created a rift-valley system beneath the Beaufort shelf and part of the adjacent coastal plain. Subsequent crustal warming caused rift-margin uplift and erosion, created a breakup unconformity, and initiated breakup and seafloor spreading in the Canada Basin about 125 m.y. ago. Subsequent cooling caused rapid subsidence of the margin, which was followed by vigorous progradation of the present continental terrace of the Beaufort Sea beginning in Albian time.

  10. Upper mantle viscosity and dynamic subsidence of curved continental margins.

    PubMed

    Sacek, Victor; Ussami, Naomi

    2013-01-01

    Continental rifting does not always follow a straight line. Nevertheless, little attention has been given to the influence of rifting curvature in the evolution of extended margins. Here, using a three-dimensional model to simulate mantle dynamics, we demonstrate that the curvature of rifting along a margin also controls post-rift basin subsidence. Our results indicate that a concave-oceanward margin subsides faster than a convex margin does during the post-rift phase. This dynamic subsidence of curved margins is a result of lateral thermal conduction and mantle convection. Furthermore, the differential subsidence is strongly dependent on the viscosity structure. As a natural example, we analyse the post-rift stratigraphic evolution of the Santos Basin, southeastern Brazil. The differential dynamic subsidence of this margin is only possible if the viscosity of the upper mantle is >2-3 × 10(19) Pa s.

  11. Climatic controls on arid continental basin margin systems

    NASA Astrophysics Data System (ADS)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed

  12. Canada basin: age and history of its continental margin

    SciTech Connect

    Sweeney, J.F.

    1985-02-01

    Presently available age controls suggest that the Canada basin formed during the Cretaceous Period between about 131 and 79 Ma. The opening process began with continental breakup that may have involved all parts of the North American polar margin at about the same time. The opening was completed by the formation of oceanic crust during the extended Cretaceous interval of normal geomagnetic polarity. Features characteristics of continental breakup, insofar as they are known, show systematic regional differences. From Brock to Axel Heiberg Island, continental breakup was associated with an extended (100 + Ma) stratigraphic hiatus and, northeastward from Ellef Ringnes Island, with extensive tholeiitic igneous activity. From Banks Island to northeastern Alaska, the breakup interval was abbreviated (20-30 Ma), and sparse igneous activity occurred. These differences can be produced by changes in the rate and/or amount of crustal stretching during margin formation and would imply relatively faster or more stretching northeast of Brock island. A continental margin of fixed age, exhibiting the indicated pattern of crustal stretching, could be produced along the trailing edge of a rotating block (Arctic Alaska terrane AA) with its pivot near the Mackenzie delta. When the rotation is restored, however, geological discrepancies are evident between Devonian and older rocks across the conjugate margins, suggesting an earlier history of drifting for the AA. Early Paleozoic correlations appear improved if the AA is placed, polar margin to polar margin, against northern Ellesmere Island and Greenland, where in the middle Paleozoic, it was sheared sinistrally along the Canadian margin to its pre-rotated position opposite Banks Island.

  13. The Continental Margins of the Western North Atlantic.

    ERIC Educational Resources Information Center

    Schlee, John S.; And Others

    1979-01-01

    Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)

  14. Joint geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin

    NASA Astrophysics Data System (ADS)

    Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek

    2011-01-01

    The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.

  15. Ecological theory and continental margins: where shallow meets deep.

    PubMed

    Levin, Lisa A; Dayton, Paul K

    2009-11-01

    Continental margins, where land becomes ocean and plunges to the deep sea, provide valuable food and energy resources, and perform essential functions such as carbon burial and nutrient cycling. They exhibit remarkably high species and habitat diversity, but this is threatened by our increasing reliance on the resources that margins provide, and by warming, expanding hypoxia and acidification associated with climate change. Continental margin ecosystems, with environments, constituents and processes that differ from those in shallow water, demand a new focus, in which ecological theory and experimental methods are brought to bear on management and conservation practices. Concepts of disturbance, diversity-function relationships, top-down versus bottom-up control, facilitation and meta-dynamics offer a framework for studying fundamental processes and understanding future change.

  16. Lomonosov Ridge as a Natural Component of Continental Margin

    NASA Astrophysics Data System (ADS)

    Poselov, V.; Kaminsky, V. D.; Butsenko, V. V.; Grikurov, G. E.

    2010-12-01

    In geodynamic context, Lomonosov Ridge is interpreted as a rifted passive margin framing the Eurasian oceanic basin. At the same time its near-Siberian segment is intimately associated with the Russian Arctic shelf, as evidenced by morphological data and the results of “Trans-Arctic 1992” and “Arctic-2007” geotransect studies. Coring and ACEX data demonstrated the presence in the uppermost geological section of the ridge of Late Cretaceous through Cenozoic sediments and Jurassic-Cretaceous sedimentary rocks; the latter may belong to deeper levels of sedimentary cover, or may represent the Mesozoic folded basement. Coarse bottom debris contains also the fragments of Riphean-Paleozoic rocks probably derived from the local bedrock source. Structure of sedimentary cover is imaged by continuous seismic observations from the shelf of East Siberian Sea along the length of Lomonosov Ridge to 85 N. In the upper part of the section there are two sedimentary sequences separated by a regional unconformity; their seismic velocities are 2.4-3.1 km/s in the upper sequence and 3.4-4.0 km/s in the lower one, and the total thickness reaches ~ 8 km in the deepest part of New Siberian Basin. Both these sequences and the unconformity are traced from Lomonosov Ridge into Amundsen Basin on seismic reflection sections obtained by drifting ice stations North Pole 2479 and 2480. The low-velocity sediments are underlain by a metasedimetary sequence with velocities decreasing from 4.7-4.9 km/s on the shelf to 4.4-4.9 km/s beneath continental slope and 4.2-4.8 km/s on Lomonosov Ridge. The thickness of metasedimentary sequence is about 7 km on the shelf, up to 3.5 km under continental slope, and strongly variable (1-5 km) on Lomonosov Ridge. The upper layer of consolidated crust is 8-9 km thick on the shelf with velocities 6.1-6.2 km/s; on Lomonosov Ridge both its thickness and velocities increase to 10 km and 6.0-6.4 km/s, respectively. In the lower crust the velocities do not exceed 6

  17. Gravity and magnetic investigations along the Peruvian continental margin

    NASA Astrophysics Data System (ADS)

    Heinbockel, R.; Dehghani, G. A.; Huebscher, Ch.

    2003-04-01

    This work presents the first three-dimensional gravity and magnetic investigation along the convergent Peruvian margin. Three-dimensional magnetic modelling is still a relatively untried and challenging technique. The gravity and magnetic models image nearly the whole margin which has been only partly resolved with geophysical methods up to now. The gravity and magnetic models are constructed for three areas between 7.25°S and 16.75°S and are based on the available wide-angle seismic velocity models (Hampel et al., 2002a; Broser et al., 2002). The continental margin is characterised by positive free-air anomalies of varying amplitudes, indicating that the margin has been shaped by the subduction of different features on the Nazca Plate. A comparison of the shipboard gravity measurements with the satellite data ensures that the data compiled from different marine surveys are compatible. In the Yaquina Area (7.25°S to 11°S) gravity anomalies caused by the Trujillo Trough and the Mendaña Fracture Zone are successfully modelled with remarkable undulations in the layer geometry of the oceanic crust. Along the continental margin, especially in the Lima Area (10.50°S to 14.40°S), strong undulations of the lower continental crust influence the upper sedimentary layers and support the development of basins along the Peruvian margin. The theory stating that the Peruvian margin is uplifted by the subducting Nazca Ridge (Kulm et al., 1988; Hagen &Moberly, 1994) is supported by gravity modelling. Consequently the buoyant Nazca Ridge is, at least partly, responsible for the extended region of flat subduction. The thickened and slightly asymmetrical crust of the Nazca Ridge is envisaged in gravity modelling. In the Nazca Ridge Area (14.25°S to 16.75°S) no accretionary prism is modelled. We conclude that the ridge is eroding the continental margin; furthermore the subduction of eroded sediments is probable. Gravity modelling suggests that the Nazca Ridge has fractured the

  18. Cenozoic evolution of the Antarctic Peninsula continental margin

    SciTech Connect

    Anderson, J.B. )

    1990-05-01

    Cenozoic evolution of the Antarctic Peninsula continental margin has involved a series of ridge (Aluk Ridge)-trench collisions between the Pacific and Antarctic plates. Subduction occurred episodically between segments of the Pacific plate that are bounded by major fracture zones. The age of ridge-trench collisions decreases from south to north along the margin. The very northern part of the margin, between the Hero and Shackleton fracture zones, has the last surviving Aluk-Antarctic spreading ridge segments and the only remaining trench topography. The sedimentary cover on the northern margin is relatively thin generally less than 1.5 km, thus providing a unique setting in which to examine margin evolution using high resolution seismic methods. Over 5,000 km of high resolution (water gun) seismic profiles were acquired from the Antarctic Peninsula margin during four cruises to the region. The margin is divided into discrete fracture-zone-bounded segments; each segment displays different styles of development. Highly tectonized active margin sequences have been buried beneath a seaward-thickening sediment wedge that represents the passive stage of margin development Ice caps, which have existed in the Antarctic Peninsula region since at least the late Oligocene, have advanced onto the continental shelf on numerous occasions, eroding hundreds of meters into the shelf and depositing a thick sequence of deposits characterized by till tongues and glacial troughs. Glacial erosion has been the main factor responsible for overdeepening of the shelf; isostasy is of secondary importance. As the shelf was lowered by glacial erosion, it was able to accommodate thicker and more unstable marine ice sheets. The shelf also became a vast reservoir for cold, saline shelf water, one of the key ingredients of Antarctic bottom water.

  19. The Late Paleozoic Southern Margin of the Siberian paleocontinent: transformation from an active continental margin to intracontinental rifting

    NASA Astrophysics Data System (ADS)

    Kozlovsky, A. M.; Yarmolyuk, V. V.; Sal'Nikova, E. B.

    2009-04-01

    The large volcanoplutonic belt was formed on the southern margin of Siberian paleocontinent in the Early Carboniferous-Early Permian. Now it's stretched through whole Mongolia and the adjacent region of China. In the belt structure there are defined the successive rock complexes: the older one represented by differentiated basalt-andesite-rhyodacite series and younger bimodal complex of basalt-comendite-trachyrhyolite composition. The granodiorite-plagiogranite and diorite-monzonite-granodiorite plutonic massifs are associated with the former, while peralkaline granite massifs are characteristic of the latter. Geochronological results and geological relations between rocks of the bimodal and differentiated complexes showed first that rocks of the differentiated complex originated 350 to 330 Ma ago at the initial stage of forming of the marginal continental belt, linked with development active continental margin. This is evident from geochronological dates obtained for the Adzh-Bogd and Edrengiyn-Nuruu massifs and for volcanic associations of the complex. The dates are consistent with paleontological data. The bimodal association was formed later, 320 to 290 Ma ago. The time span separating formation of two igneous complexes ranges from several to 20-30 m.y. in different areas of the marginal belt. The bimodal magmatism was interrelated with rifting responsible for development of the Gobi-Tien Shan rift zone in the belt axial part and the Main Mongolian lineament along the belt northern boundary. Loci of bimodal rift magmatism likely migrated with time: the respective magmatic activity first initiated on the west of the rift system and then advanced gradually eastward with development of rift structures. Normal granitoids untypical but occurring nevertheless among the products of rift magmatism in addition to peralkaline massifs are assumed to have been formed, when the basic magmatism associated with rifting stimulated crustal anatexis and generation of crustal

  20. A contourite depositional system along the Uruguayan continental margin

    NASA Astrophysics Data System (ADS)

    Hernández Molina, F. J.; Soto, M.; Piola, A. R.; Tomasini, J.; Preu, B.; Thompson, P.; Badalini, G.; Creaser, A.; Violante, R.; Morales, E.; Paterlini, M.; de Santa Ana, H.

    2015-12-01

    For the first time, a multidisciplinary approach for evaluating the influence of bottom currents in the Uruguayan continental margin is presented. Bathymetric data and multichannel 2D and 3D seismic reflection profiles were used to construct a morphosedimentary map to interpret and decode sedimentary and oceanographic processes along the Uruguayan continental margin. Based on these results a significant contourite depositional system on the margin is described, which contains a spectacular array of large erosive, depositional (drifts) and mixed (terrace) features, which have been generated primarily by water masses of Antarctic and subantarctic origin. From the Eocene-Oligocene boundary up to present time, the long-term influence of water masses from higher southern latitudes, in combination with down-slope sedimentary processes have strongly controlled the overall margin morphology. Most of the features described here, were formed during the middle/late Miocene epoch due to paleoceanographic shifts that include the arrival of Antarctic Intermediate Water (AAIW) along the margin, which in combination with deeper Antarctic Bottom Water (AABW) are fundamental in the margin evolution. In combination with Quaternary climatic and eustatic changes in sea level, fluctuations of the Brazil-Malvinas Confluence influenced subsequently glacial and interglacial stages that appear in sedimentary features defined here. These paleoceanographic changes controlled the sedimentary stacking pattern and the locations of high amplitude reflections (HAR) along the contourite terraces, which could be associated to sandier deposits. Fundamental understanding of the above described margin morphologies and the development of associated bedforms in deep marine environments are essential to fully leverage their conceptual implications for hydrocarbon exploration efforts. Futhermore, a more detailed understanding of the margin and its ancient to modern day current dynamics will improve

  1. The Antarctic continental margin: Geology and geophysics of offshore Wilkes land

    SciTech Connect

    Eittreim, S.L.; Hampton, M.A.

    1987-01-01

    This book contains 14 chapters. Some of the chapter titles are: An Interpretation of the Multichannel Seismic Reflection Profiles across the Continental Margin of the Dumont D'Urville Sea, off Wilkes Land, East Antarctica; Hydrocarbon Geochemistry of Sediments Offshore from Antarctica: Wilkes Land Continental margin; and the Conjugate Continental margins of Antarctica and Australia.

  2. The Peruvian Continental Margin: Results from wide angle seismic Data

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Bialas, J.; Kopp, H.; Kukowski, N.; Huebscher, C.

    2003-04-01

    Within the scope of the GEOPECO (Geophysical Experiments at the Peruvian Continental Margin) project, seismic investigations along the Pacific margin of Peru were carried out using ocean bottom hydrophones (OBH) and seismometers (OBS) recording marine airgun shots. The structure and the P- wave velocity of the oblique subducting Nazca and overriding South-American Plates from 8°S to 15°S were determined by forward modeling and tomographic inversion of the wide-angle seismic data combined with the analysis of reflection seismic data. The region south of 12°S has been influenced by the southward migration of the aseismic Nazca Ridge the past 11 Ma. The oceanic Nazca Plate is divided by Mendana Fracture Zone (MFZ) which marks a transition zone of a different crustal age of approximately 28 Ma in the north to 38 Ma in the south at the Peruvian trench. North of MFZ the oceanic crust is influenced by Trujillo Trough trending N15E and the surrounding extensional stresses leading to a crustal thinning as can be seen in the northernmost refraction seismic model. The oceanic crust south of MFZ is overall homogeneous with a thin pelagic sedimentary layer and normal oceanic crustal layers. The P-wave velocity of the mantle is overall 7.9-8.1km/s. The Peruvian Continental Margin is characterized by the continental slope and several basins, Trujillo and Yaquina basin, Lima basin and Pisco basin, which are partly affected by the southward migration of the subducting Nazca Ridge. This caused uplift and subsidence along the margin leading to erosional tectonic features. The basins and continental basement could be mapped with forward modeling and tomographic inversion as well as the continental backstop on each profile. An accretionary prism is set up with a width of 20 to 30 km and 4 to 5 km thickness which does not further increase in size as revealed by the profiles recorded further north of Nazca Ridge. This and a taper of 14- 17 degrees at the collision zone indicates that

  3. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  4. Tectonic evolution of Brazilian equatorial continental margin basins

    SciTech Connect

    Azevedo, R.P. )

    1993-02-01

    The structural style and stratigraphic relationships of sedimentary basins along the Brazilian Equatorial Atlantic Continental Margin were used to construct an empirical tectonic model for the development of ancient transform margins. The model is constrained by detailed structural and subsidence analyses of several basins along the margin. The structural framework of the basins was defined at shallow and deep levels by the integration of many geophysical and geological data sets. The Barreirinhas and Para-Maranhao Basins were divided in three tectonic domains: the Tutoia, Caete, and Tromai subbasins. The Caete area is characterized by northwest-southeast striking and northeast-dipping normal faults. A pure shear mechanism of basin formation is suggested for its development. The structure of the Tutoia and Tromai subbasins are more complex and indicative of a major strike-slip component with dextral sense of displacement, during early stages of basin evolution. These two later subbasins were developed on a lithosphere characterized by an abrupt transition (<50 km wide) from an unstretched continent to an oceanic lithosphere. The subsidence history of these basins do not comply with the classical models developed for passive margins or continental rifting. The thermo-mechanical model proposed for the Brazilian equatorial margin includes heterogeneous stretching combined with shearing at the plate margin. The tectonic history comprises: (1) Triassic-Jurassic limited extension associated with the Central Atlantic evolution; (2) Neocomian intraplate deformation consisting of strike-slip reactivation of preexisting shear zones; (3) Aptian-Cenomanian two-phase period of dextral shearing; and (4) Late Cretaceous-Cenozoic sea-floor spreading.

  5. Tectonic structure and evolution of the Atlantic continental margin

    SciTech Connect

    Klitgord, K.D.; Schouten, H.; Hutchinson, D.R.

    1985-01-01

    The Atlantic continental margin developed across the boundary between continental and oceanic crust as rifting and then sea-floor spreading broke apart and separated the North American and African plates, forming the Atlantic Ocean Basin. Continental rifting began in Late Triassic with reactivation of Paleozoic thrust faults as normal faults and with extension across a broad zone of subparallel rift basins. Extension became localized in Early to Middle Jurassic along the zone that now underlies the large marginal basins, and other rift zones, such as the Newark, Hartford, and Fundy basins, were abandoned. Rifting and crustal stretching between the two continents gave way to sea-floor spreading Middle Jurassic and the formation of oceanic crust. This tectonic evolution resulted in formation of distinctive structural features. The marginal basins are underlain by a thinner crust and contain a variety of fault-controlled structures, including half-grabens, seaward- and landward-tilted blocks, faults that die out within the crust, and faults that penetrate the entire crust. This variable structure probably resulted from the late Triassic-Early Jurassic pattern of normal, listric, and antithetic faults that evolved from the Paleozoic thrust fault geometry. The boundary between marginal basins and oceanic crust is marked approximately by the East Coast Magnetic Anomaly (ECMA). A major basement fault is located in the Baltimore Canyon trough at the landward edge of the ECMA and a zone of seaward dipping reflectors is found just seaward of the ECMA off Georges Bank. The fracture zone pattern in Mesozoic oceanic crust can be traced landward to the ECMA.

  6. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  7. Rifted continental margins: The case for depth-dependent extension

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.; Beaumont, Christopher

    2014-12-01

    Even though many basic properties of non-volcanic rifted margins are predicted by uniform extension of the lithosphere, uniform extension fails to explain other important characteristics. Particularly significant discrepancies are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I), where large tracts of continental mantle lithosphere are exposed at the seafloor, and at 2) ultra-wide central South Atlantic margins (Type II) where continental crust spans wide regions below which it appears that lower crust and mantle lithosphere were removed. Neither corresponds to uniform extension in which crust and mantle thin by the same factor. Instead, either the crust or mantle lithosphere has been preferentially removed during extension. We show that the Type I and II styles are respectively reproduced by dynamical numerical lithospheric stretching models (Models I-A/C and II-A/C) that undergo depth-dependent extension. In this notation A and C imply underplating of the rift zone during rifting by asthenosphere and lower cratonic lithosphere, respectively. We also present results for models with a weak upper crust and strong lower crust, Models III-A/C, to show that lower crust can also be removed from beneath the rift zone by horizontal advection with the mantle lithosphere. From the model results we infer that these Type I, II, and III margin styles are controlled by the strength of the mid/lower crust, which determines the amount of decoupling between upper and lower lithosphere during extension and the excision of crust or mantle. We also predict the styles of sedimentary basins that form on these margins as a test of the concepts presented.

  8. Rifted Continental Margins: The Case for Depth-Dependent Extension

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.; Beaumont, Christopher

    2016-04-01

    Even though many basic properties of non-volcanic rifted margins are predicted by uniform extension of the lithosphere, uniform extension fails to explain other important characteristics. Particularly significant discrepancies are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I), where large tracts of continental mantle lithosphere are exposed at the seafloor, and at; 2) ultra-wide central South Atlantic margins (Type II) where continental crust spans wide regions below which it appears that lower crust and mantle lithosphere were removed. Neither corresponds to uniform extension in which crust and mantle thin by the same factor. Instead, either the crust or mantle lithosphere has been preferentially removed during extension. We show that the Type I and II styles are respectively reproduced by dynamical numerical lithospheric stretching models (Models I-A/C and II-A/C) that undergo depth-dependent extension. In this notation A and C imply underplating of the rift zone during rifting by asthenosphere and lower cratonic lithosphere, respectively. We also present results for models with a weak upper crust and strong lower crust, Models III-A/C, to show that lower crust can also be removed from beneath the rift zone by horizontal advection with the mantle lithosphere. From the model results we infer that these Types I, II, and III margin styles are controlled by the strength of the mid/lower crust, which determines the amount of decoupling between upper and lower lithosphere during extension and the excision of crust or mantle. We also predict the styles of sedimentary basins that form on these margins as a test of the concepts presented

  9. Rifted Continental Margins: The Case for Depth-Dependent Extension

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.; Beaumont, C.

    2015-12-01

    Even though many basic properties of non-volcanic rifted margins are predicted by uniform extension of the lithosphere, uniform extension fails to explain other important characteristics. Particularly significant discrepancies are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I), where large tracts of continental mantle lithosphere are exposed at the seafloor, and at; 2) ultra-wide central South Atlantic margins (Type II) where continental crust spans wide regions below which it appears that lower crust and mantle lithosphere were removed. Neither corresponds to uniform extension in which crust and mantle thin by the same factor. Instead, either the crust or mantle lithosphere has been preferentially removed during extension. We show that the Type I and II styles are respectively reproduced by dynamical numerical lithospheric stretching models (Models I-A/C and II-A/C) that undergo depth-dependent extension. In this notation A and C imply underplating of the rift zone during rifting by asthenosphere and lower cratonic lithosphere, respectively. We also present results for models with a weak upper crust and strong lower crust, Models III-A/C, to show that lower crust can also be removed from beneath the rift zone by horizontal advection with the mantle lithosphere. From the model results we infer that these Types I, II, and III margin styles are controlled by the strength of the mid/lower crust, which determines the amount of decoupling between upper and lower lithosphere during extension and the excision of crust or mantle. We also predict the styles of sedimentary basins that form on these margins as a test of the concepts presented.

  10. Segmentation of the Levant continental margin, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Ben-Avraham, Z.; Schattner, U.; Lazar, M.; Hall, J. K.; Ben-Gai, Y.; Neev, D.; Reshef, M.

    2006-10-01

    The Levant continental margin is divided into two major segments by the Carmel structure, which extends from the Dead Sea fault into the eastern Mediterranean. New seismic reflection data over the unexplored northern segment are used for completing the structural framework of the Levant area, together with existing data south of it. Inclusive depth structural maps of the area were produced for the base Pliocene and base Messinian evaporites. Previous studies indicate that differences between the two segments are well expressed in the deep crustal structure. The present study, which focuses mainly on the shallow section, shows that these differences are maintained throughout the accumulation of young sedimentary units, and even in the bathymetry. This preservation of segmentation, both in the shallow and in the deep structure, insinuates that the two segments were formed through different continental breakup processes, which continue to dictate the style of sediment accumulation.

  11. The Aravalli sequence of Rajasthan, India: A Precambrian continental margin?

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.; Willis, R.; Lugmair, G. W.; Roy, A. B.; Gopalan, K.

    1985-01-01

    The extent to which plate tectonics in its present form operated during the Precambrian is unknown, but is a subject of considerable current interest. A remarkable succession of Precambrian rocks in Rajasthan, Northwestern India, which may help to shed more light on this question are discussed. Data indicates that the Aravalli sequence has a number of characteristics generally ascribed to active continental margins. Although much more work is required to bear this out, the evidence suggests that the processes operating in such an environment in the early Proterozoic or late Archean were not vastly different from today.

  12. Chronobiology of deep-water decapod crustaceans on continental margins.

    PubMed

    Aguzzi, Jacopo; Company, Joan B

    2010-01-01

    Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the

  13. An Assessment of Global Organic Carbon Flux Along Continental Margins

    NASA Technical Reports Server (NTRS)

    Thunell, Robert

    2004-01-01

    This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.

  14. Plume-lithosphere interactions near a passive continental margin: a thermo-mechanical modelling study

    NASA Astrophysics Data System (ADS)

    François, Thomas; Cloetingh, Sierd; Burov, Evgueni; Matenco, Liviu

    2015-04-01

    Plume head-lithosphere (PLI) interactions have important consequences both for tectonic and mineralogical evolution of the lithosphere and are often considered to be an important factor of continental break-up. Nevertheless, the interaction between plume and post break-up tectonics (i.e. evolution of passive margins) remain unclear. The passive margins represent important geometrical, thermal and rheological barriers that interact with the plume head material during its emplacement below the lithosphere. For example on the Scandinavia's North Atlantic passive margin the large Cenozoic uplift comprised uplift of basin margins as well as accelerated subsidence of basin centres adjacent to the uplifted landmasses while the compressional reactivation coincides with the postulated Iceland-plume events associated with massive magma emplacement. The goal of this study is to understand the role of the Iceland plume in the Cenozoic evolution of the Scandinavia's North Atlantic passive margin. To investigate the interactions between the plume and passive margin we use fully coupled thermo-mechanical 2D numerical code (Flamar v12). The model area is 700 km deep and 1500 km wide comprising rheologically realistic lithosphere and the entire upper mantle Our models have free upper surface boundary, surface erosion, account for the rheological stratification (upper crust, lower crust, lithospheric mantle and asthenosphere), brittle-elastic-ductile rheology, metamorphic phase changes (density and physical properties) and for the specific crustal and thermal structure of the Scandinavia's North Atlantic passive margin. We have tested several parameters including the lateral position of the plume, the rate of extension and the thermo-rheological profile of the continental lithosphere.

  15. Carbonate comparison of west Florida continental margin with margins of eastern United States

    SciTech Connect

    Doyle, L.J.

    1986-05-01

    Temperate carbonate margins may have as many similarities to clastic margins as to other carbonate systems. An example is the west Florida continental margin north of Florida Bay, a vast area of more than 150,000 km/sup 2/. The facies of this area differ from those of other Holocene carbonates, such as the Bahama Banks, the Great Barrier Reef, and the Caribbean and Pacific bioherms. The west Florida margin is analogous to the predominantly clastic southeastern US in both physiology and sedimentary processes. The shelf facies is a veneer of carbonate sand, primarily molluscan shell fragments, with low sedimentation rates. It is similar to the southeastern US sand veneer with the clastic component removed. Like the US system, the west Florida shelf has a ridge and swale topography replete with sedimentary structures, such as sand waves, with a series of drainage systems incised into its surface at lower stands of sea level. On the outer edge, it is commonly bounded by outcrops with considerable positive relief. The upper slope of the west Florida margin is a calcilutite, a Holocene chalk deposit accumulating at rates of tens of centimeters/1000 years, comparable to the clastic lutite depositional rates of the eastern US continental slope, and two orders of magnitude higher than deep-sea oozes of similar composition. These relatively high rates are probably caused by fines pumped from and across the coarser shelf-sand sheets in both systems.

  16. On the relationship between sequential faulting, margin asymmetry and highly thinned continental crust

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan

    2014-05-01

    The architecture of magma-poor continental margins is remarkably variable. The width of highly thinned continental crust (with a thickness < 10 km) varies from 70 km off Iberia, and 200 km offshore Angola, to over 300 km in the Antarctic Enderby Basin. The respective conjugate margin, however, is restricted to few tens of kilometres resulting in large scale crustal asymmetry. Growing evidence from rifted continental margins in the North and South Atlantic, as well as from the East Australia/Lord Howe Rise margin pair supports the idea that rifts with a very wide margin and a narrow conjugate are rather the rule than the exception. In this study, we use numerical thermo-mechanical models to investigate the dynamics of rifting. Our simulations apply an elasto-visco-plastic rheology formulation that relies on laboratory-derived flow laws for crustal and mantle rock. The models are constrained by geophysical and geological observations like limited melt generation, cold initial geotherms, and mafic lower crustal rheology. We show that small-scale lateral rift migration simultaneously explains the observed margin asymmetry and the presence of highly thinned continental crust. Rift migration results from two fundamental processes: (1) Strain hardening in the rift centre due to cooling of upwelling mantle material; (2) Formation of a low viscosity exhumation channel adjacent to the rift centre that is generated by heat transfer from the upwelling mantle and enhanced by viscous strain softening. Rift migration takes place in a steady-state manner and is accomplished by oceanward-younging sequential faults within the upper crust and balanced through lower crustal flow. We demonstrate that the rate of extension has paramount control on margin width. Since higher velocities lead to elevated heat flow within the rift and hence to hot and weak lower crust, a larger low-viscosity exhumation channel is generated that facilitates rift migration leading to wider margins. The South

  17. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    SciTech Connect

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plain were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.

  18. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  19. Physical resuspension and vertical mixing of sediments on a high energy continental margin (Sydney, Australia).

    PubMed

    Matthai, C; Birch, G F; Jenkinson, A; Heijnis, H

    2001-01-01

    Four sediment cores from the continental margin adjacent to Sydney were analyzed for 210Pb, 137Cs, trace metals (Ag, Cd, Co, Cu, Mn, Ni, Pb, Zn), iron, dry bulk density, mud and moisture content. The concentrations of trace metals in the total sediment are low at all sites, although slightly elevated concentrations of Ag, Cu, Pb and Zn are present in the fine fraction of sediment (< 62.5 microns) near a major ocean outfall. Concentrations of trace metals in the fine fraction of sediment are similar in the upper 10-15 cm, indicating strong vertical mixing of the sediments, whereas an upward coarsening grain size in the upper 1-3 cm of sediment supports physical resuspension during storms. Sediment accumulation rates on the middle shelf adjacent to Sydney were estimated from downcore profiles of 210Pb and 137Cs and range between 0.2 and 0.4 cm yr-1. Although the mass fluxes of Cu, Pb and Zn within a distance of 2 km from the outfall (up to 36.1, 30.8 and 86.2 micrograms cm-2 yr-1, respectively) are greater than 20 km north of the outfall (< 23.5 micrograms cm-2 yr-1), the low concentrations of trace metals in sediments near the outfall support an efficient dispersal of anthropogenic contaminants on this continental margin.

  20. Stages in evolution of Paleozoic carbonate platform and basin margin types - western United States passive Continental Margin

    SciTech Connect

    Cook, H.E.; Taylor, M.E.

    1987-05-01

    Late Precambrian rifting along the western edge of North America established a passive continental margin that became the site of 5000 m of platform and basin carbonate sediments over a 150-m.y. interval (Cambrian-Devonian). This megaplatform evolved through several stages: (1) Cambrian-Silurian, distally steepened nonrimmed ramp with base-of-slope fan (Hales Limestone) to homoclinal ramp (Hanson Creek Formation); to (2) Silurian-Devonian, rimmed platform (Lone Mountain Dolomite) having low-angle depositional slopes and slope aprons (Roberts Mountains Formation) and basinal debris sheets (Tor Limestone); to (3) Devonian, rimmed platforms having high-angle bypass slopes, slides, and base-of-slope aprons (McColley Canyon Formation and Devils Gate Limestone). The position of the rifted continental margin controlled the overall trend of the platform-slope break. Postrift subsidence with superimposed eustatic sea level changes allowed the platform to accumulate 5000 m of sediment. The stratigraphic progression from nonrimmed ramps in the Cambrian to rimmed platforms with high-angle bypass slopes in the Devonian was a function of both the gradual steepening of the slope, as the platform margin built up and prograded seaward, and the evolution of reef and bank-building organisms through time. Evolution of adjacent basinal carbonates was strongly influenced by slope declivity and relative sea level changes. As slope declivity increased through time, sedimentary processes on the slope changed from small-scale sediment gravity flows that accreted on the slope (ex: Roberts Mountains Formation slope apron) to large-scale sediment gravity flows that deposited debris in base-of-slope settings (ex: Devils Gate Limestone base-of-slope apron).

  1. Some depositional patterns at continental margin of southeastern Mediterranean Sea

    SciTech Connect

    Mart, Y.; Gai, Y.B.

    1982-04-01

    The upper Miocene to Holocene sedimentary strata in the continental margin of the southeastern Mediterranean Sea depict two depositional regimes. The upper Miocene sequence is predominantly evaporitic and forms the southeastern portion of the upper Miocene evaporites present throughout the Mediterranean region. The Pliocene-Quaternary sequence is predominantly detrital and its major source of sediments has been the Nile River. Interpretation of data derived from several multichannel seismic profiles suggested facial variations in the upper Miocene and the Pliocene-Pleistocene formations. Two depositional facies of the upper Miocene evaporites, indicating basinal and shelf depositional environments, were found. Statistical analyses show correlations of the thickness of the evaporites with their interval seismic velocity, their depth, and the present bathymetry, indicating the autochthonous characteristics of the sequence. The basinal and the shelf depositional facies are separated by a transition zone that trends NNE-SSW and is associated with faulting. It is suggested that this zone, commonly known as The Pelusium Line, was the shelf-edge zone during the late Miocene. Facial analysis of the data pertaining to the Pliocene-Pleistocene sequence depicts its allochthonous characteristics. Statistical negative correlation was calculated between the distance from the continental shelf and the thickness of this sequence, indicating its detrital origin. Variations in thicknesses of both formations compared with the bathymetric depths suggest a post-Miocene subsidence of the southeast Mediterranean basin. 6 figures, 4 tables.

  2. Lower-crustal intrusion on the North Atlantic continental margin.

    PubMed

    White, R S; Smith, L K; Roberts, A W; Christie, P A F; Kusznir, N J; Roberts, A M; Healy, D; Spitzer, R; Chappell, A; Eccles, J D; Fletcher, R; Hurst, N; Lunnon, Z; Parkin, C J; Tymms, V J

    2008-03-27

    When continents break apart, the rifting is sometimes accompanied by the production of large volumes of molten rock. The total melt volume, however, is uncertain, because only part of it has erupted at the surface. Furthermore, the cause of the magmatism is still disputed-specifically, whether or not it is due to increased mantle temperatures. We recorded deep-penetration normal-incidence and wide-angle seismic profiles across the Faroe and Hatton Bank volcanic margins in the northeast Atlantic. Here we show that near the Faroe Islands, for every 1 km along strike, 360-400 km(3) of basalt is extruded, while 540-600 km(3) is intruded into the continent-ocean transition. We find that lower-crustal intrusions are focused mainly into a narrow zone approximately 50 km wide on the transition, although extruded basalts flow more than 100 km from the rift. Seismic profiles show that the melt is intruded into the lower crust as sills, which cross-cut the continental fabric, rather than as an 'underplate' of 100 per cent melt, as has often been assumed. Evidence from the measured seismic velocities and from igneous thicknesses are consistent with the dominant control on melt production being increased mantle temperatures, with no requirement for either significant active small-scale mantle convection under the rift or the presence of fertile mantle at the time of continental break-up, as has previously been suggested for the North Atlantic Ocean.

  3. Remineralization of organic carbon in eastern Canadian continental margin sediments

    NASA Astrophysics Data System (ADS)

    Silverberg, Norman; Sundby, Bjørn; Mucci, Alfonso; Zhong, Shaojun; Arakaki, Takeshi; Hall, Per; Landén, Angela; Tengberg, Anders

    2000-04-01

    Undisturbed sediment samples were collected for chemical analyses at six sites during winter and summer cruises to the eastern Canadian continental margin. Micro-electrode oxygen profiles were obtained in freshly collected multicorer samples, and replicate cores were incubated at in situ temperature for 48 h to monitor changes in the concentrations of dissolved oxygen and nitrate. In addition, box cores were subsampled vertically for porewater chemistry, porosity, and particulate carbon. The data obtained are combined with estimates of sedimentation rate based on sediment trap measurements, 210Pb dating and historical data to evaluate the role of benthic processes in the carbon cycle on the eastern Canadian continental margin. With one exception, oxygen uptake rates determined from incubations and calculated from micro-profiles were very similar, indicating that exchange of oxygen across the sediment-water interface was dominated by molecular diffusion. On the basis of this observation, transport by diffusion is assumed for the calculation of the flux rates for other solutes from their respective porewater gradients. The fluxes of oxygen into the sediments were low, but generally comparable to other continental margins at comparable depths. They varied from 1.4 to 1.8 mmol/m 2/d in December 1993 and from 2.8 to 4.5 mmol/m 2/d in June 1994. Uptake of nitrate by the sediment occurred at all sites except for the continental slope off Nova Scotia. Both oxygen and nitrate uptake were higher in summer than in winter, indicative of a lingering response to the input of organic matter associated with the early spring bloom. At one of the sampling sites, Miscou Channel, the measured oxygen uptake rate far exceeded the flux calculated from the oxygen gradient. The difference suggests biologically enhanced exchange with the overlying waters at this site, consistent with the greater abundance of benthic organisms. The rate of organic carbon mineralization at the seafloor (1

  4. Tertiary evolution and petroleum potential of Oregon-Washington continental margin

    SciTech Connect

    Snavely, P.D. Jr.

    1986-07-01

    The Oregon-Washington continental margin was the site of a deep marginal basin in which more than 7000 m of Tertiary sedimentary and volcanic rocks accumulated. Oceanic basalts of Paleocene to early Eocene age form the basin floor and are interpreted to represent eruptions in an elongate trough formed by rifting of the continental margin. Middle Eocene turbidite sandstone overlapped both the oceanic crust and the pre-Tertiary rocks of the Klamath Mountains, thus indicating that suturing of the Coast Range-Olympic terrane to North America was about 50 Ma. Oblique convergence between the Farallon and North American plates occurred during most of the middle Eocene to middle Miocene. Sedimentation, punctuated by episodes of volcanism, was essentially continuous in a forearc basin whose axis lay along the present inner continental shelf. The oblique interaction between the plates was interrupted by two periods of more head-on convergence during the middle late Eocene and late middle Miocene. Thick accretionary melange wedges of Eocene and of late Oligocene to late middle Miocene ages were formed during these strongly compressive episodes. Geochemical analyses indicate that the accretionary melange wedges, which crop out along the west side of the Olympic Peninsula and beneath the adjacent shelf, have the highest potential for oil and gas generation. They are the source rocks for numerous gas seeps and oil and gas shows in exploratory wells, and for the 12,000 bbl of 38.9 /sup 0/ API paraffin-based oil produced from a well drilled on the southwest Washington coast. Potential exploration targets exist where the Eocene and Oligocene-Miocene melanges are underplated to a position beneath the lower Eocene oceanic basalt. Hydrocarbons generated in the melanges could migrate upward into structures in strata that overlie the basalt in the upper plate.

  5. A Geo-traverse at a Passive Continental Margin: the Tagus Abyssal Plain, West Iberia

    NASA Astrophysics Data System (ADS)

    Afilhado, A.; Matias, L.; Mendes-Victor, L.

    2006-12-01

    transitional domain suggests a layered structure for the lithospheric mantle. The location of the main features and trend changes seen on the magnetic anomaly and the Bouguer anomaly maps are compatible to the seismically defined transition to the oceanic domain. Both magnetic and free air profiles modeling are also consistent to a major rock property contrast at this location. Minor features within the oceanic domain indicate some variability of the mass and magnetic dipoles distribution that might be related to different cross cutting of the segment axis and/or non stationary thermo-mechanical conditions of the sea floor spreading process. From 9.4W to the foot of the continental slope, at 10.2W, in a 65km distance, the Bouguer anomaly strongly increases due both to continental crust thinning and Moho shallowing. Magnetic anomalies having peak to peak values of 30 to 90nT and wave length of at least 30km plus the high density blocks modeled at shallow levels, indicate that dense and magnetic rocks should be present at the continental margin. A large body of exhumed continental mantle at the OCT is hardly supported by the data. Even so, the eastern 35km segment of the abyssal plain adjacent to the continental margin is a mass excess segment, bordered by significant magnetic anomalies, in good agreement to an intruded and partly ultramafic lower transitional crust, as suggested by the seismic data.

  6. The development of the continental margin of eastern North America-conjugate continental margin to West Africa

    USGS Publications Warehouse

    Dillon, William P.; Schlee, J.S.; Klitgord, Kim D.

    1988-01-01

    The continental margin of eastern North America was initiated when West Africa and North America were rifted apart in Triassic-Early Jurassic time. Cooling of the crust and its thinning by rifting and extension caused subsidence. Variation in amounts of subsidence led to formation of five basins. These are listed from south to north. (1) The Blake Plateau Basin, the southernmost, is the widest basin and the one in which the rift-stage basement took longest to form. Carbonate platform deposition was active and persisted until the end of Early Cretaceous. In Late Cretaceous, deposition slowed while subsidence persisted, so a deep water platform was formed. Since the Paleocene the region has undergone erosion. (2) The Carolina Trough is narrow and has relatively thin basement, on the basis of gravity modeling. The two basins with thin basement, the Carolina Trough and Scotian Basin, also show many salt diapirs indicating considerable deposition of salt during their early evolution. In the Carolina Trough, subsidence of a large block of strata above the flowing salt has resulted in a major, active normal fault on the landward side of the basin. (3) The Baltimore Canyon Trough has an extremely thick sedimentary section; synrift and postrift sediments exceed 18 km in thickness. A Jurassic reef is well developed on the basin's seaward side, but post-Jurassic deposition was mainly non-carbonate. In general the conversion from carbonate to terrigenous deposition, characteristics of North American Basins, occurred progressively earlier toward the north. (4) The Georges Bank Basin has a complicated deep structure of sub-basins filled with thick synrift deposits. This may have resulted from some shearing that occurred at this offset of the continental margin. Postrift sediments apparently are thin compared to other basins-only about 8 km. (5) The Scotian Basin, off Canada, contains Jurassic carbonate rocks, sandstone, shale and coal covered by deltaic deposits and Upper

  7. Geometries of hyperextended continental crust in northeastern continental brazilian margin: insights from potential field and seismic interpretation

    NASA Astrophysics Data System (ADS)

    Magalhães, José; Barbosa, José; Ribeiro, Vanessa; Oliveira, Jefferson; Filho, Osvaldo; Buarque, Bruno

    2016-04-01

    The study region encompasses a set of three basins located at Northeast Brazilian continental margin: Pernambuco (south sector), Paraíba and Natal platform (north sector). These basins were formed during the last stage of separation between South America and African plates during Cretaceous. The continental breakup in these regions occurred probably during the Middle-Upper Albian (~102 m.y). The adjacent basement rocks belong to Borborema Province (BP), which was formed due a complex superposition between Pre-Cambrian orogenic cycles. The structural framework of BP is dominated by large shear zones that divided this province in three main tectonic domains: South, Central and North. The Pernambuco Basin is located in the South Domain and the Paraíba and Natal platform basins are related to the Central Domain. The tectonic and magmatic evolution of the Pernambuco Basin was influenced by oblique rifting (~ 35° to rift axis) and a thermal anomaly probably caused by the Santa Helena hotspot. The north sector represents a continental shelf characterized by basement high with a narrow platform and an abrupt shelf break on transition to the abyssal plain. The continental platform break of this sector was parallel to the rift axis. In this way, we present a regional structural interpretation of these sectors of Brazilian rifted margin based on interpretation and 2D forward modeling of potential field and 2D seismic data. The magnetic maps (Reduction to magnetic pole and Analytic signal) revealed the influence of an alternating pattern of large narrow magnetic and non-magnetic lineaments, oriented NE-SW, E-W and NW-SE. In the Pernambuco Basin these lineaments (NE-SW and E-W) are related to shear zones in the hyperextended basement which is interpreted as a continuation of the granitic-gneissic and metasedimentary rocks of the South Domain of BP. The Paraíba and Natal platform basins show a slight change in the orientation of structures trending E-W (shear zones in

  8. Sedimentation on continental margins: An integrated program for innovative studies during the 1990s

    NASA Astrophysics Data System (ADS)

    Nittrourer, Charles A.; Coleman, James M.; Rouge, Baton; Flood, Roger D.; Ginsburg, Robert N.; Gorsline, Donn S.; Hine, Albert C.; Sternberg, Richard W.; Swift, Donald J. P.; Wright, L. Donelson

    Continental margins are of great scientific interest, and they represent the focus of human interaction with the ocean. Their deep structure forms the transition from continental to oceanic crust, and their surface expression extends from coastal environments of estuaries and shorelines across the continental shelf and slope to either the base of a continental rise or a marginal trough. Modern continental margins represent natural laboratories for investigation of complex relationships between physical, chemical, and biological phenomena, which are sensitive to environmental conditions both on the land and in the ocean. The history of these conditions is preserved within the sedimentary deposits of continental margins. The deposits form repositories for much of the particulate material transported off the world's land masses and produced from dissolved components in the world ocean. Past deposits of continental margins have been uplifted to form many mountain ranges and sedimentary terrains of the world, which record details of Earth history and contain valuable natural resources, such as petroleum and natural gas. Modern deposits of continental margins record the more recent events that have influenced Earth and also contain natural resources (for instance, minerals, sand, and gravel), as well as anthropogenic pollutants (for example, heavy metals and pesticides). The fates of many materials beneficial and deleterious to humans are dependent on the pathways followed by sedimentary particles on continental margins.

  9. Middle Jurassic to early Cretaceous igneous rocks along eastern North American continental margin

    SciTech Connect

    Jansa, L.F.; Pe-Piper, G.

    1988-03-01

    Late Middle Jurassic and Early Cretaceous mafic dikes, sills, flows, and local volcaniclastic sediments are intercalated within continental shelf sediments from the Baltimore Canyon Trough northward to the Grand Banks of Newfoundland. The igneous rocks on the eastern North American margin are mainly alkali basalts of intraplate affinity. The late Middle Jurassic igneous activity was of short duration, at about 140 Ma, and was restricted to Georges Bank where it led to construction of several volcanic cones. The main period of igneous activity was concentrated at about 120 Ma in the Aptian/Berremian. The activity consists of dike swarms in Baltimore Canyon, occasional dikes on the Scotian Shelf, and the growth of stratovolcanoes on the Scotian Shelf and Grand Banks. Younger dikes (approx. 95 Ma) also are present on the Grand Banks. With regard to oil exploration on the continental margin, care must be taken to properly identify igneous and volcaniclastic rocks on mechanical logs, drill cuttings, and cores. Reflection seismic profiles can be used to map the areal extent of sills, flows, and low-angle dikes, which commonly show distinctive seismic responses. However, steeply dipping dikes generally produce little, if any, seismic response. Isotopic-age determinations of igneous rocks, combined with biostratigraphic-age determinations of adjacent strata, are invaluable for stratigraphic correlation, establishing chronology of seismic sequences, and analysis of basin sedimentation and tectonic history. 9 figures, 2 tables.

  10. The impact of ocean deoxygenation on iron release from continental margin sediments

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; McManus, James; Mix, Alan C.; Hensen, Christian; Schneider, Ralph R.

    2014-06-01

    In the oceans' high-nitrate-low-chlorophyll regions, such as the Peru/Humboldt Current system and the adjacent eastern equatorial Pacific, primary productivity is limited by the micronutrient iron. Within the Peruvian upwelling area, bioavailable iron is released from the reducing continental margin sediments. The magnitude of this seafloor source could change with fluctuations in the extension or intensity of the oxygen minimum zones. Here we show that measurements of molybdenum, uranium and iron concentrations can be used as a proxy for sedimentary iron release, and use this proxy to assess iron release from the sea floor beneath the Peru upwelling system during the past 140,000 years. We observe a coupling between levels of denitrification, as indicated by nitrogen isotopes, trace metal proxies for oxygenation, and sedimentary iron concentrations. Specifically, periods with poor upper ocean oxygenation are characterized by more efficient iron retention in the sediment and a diminished iron supply to the water column. We attribute efficient iron retention under more reducing conditions to widespread sulphidic conditions in the surface sediment and concomitant precipitation of iron sulphides. We argue that iron release from continental margin sediments is most effective in a narrow redox window where neither oxygen nor sulphide is present. We therefore suggest that future deoxygenation in the Peru upwelling area would be unlikely to result in increased iron availability, whereas in weaker oxygen minimum zones partial deoxygenation may enhance the iron supply.

  11. Late Cenozoic evolution of the East China continental margin: Insights from seismic, gravity, and magnetic analyses

    NASA Astrophysics Data System (ADS)

    Shang, Lu-Ning; Zhang, Xun-Hua; Jia, Yong-Gang; Han, Bo; Yang, Chuan-Sheng; Geng, Wei; Pang, Yu-Mao

    2017-02-01

    Seismic reflection profiles reveal the structural characteristics beneath the East China Sea shelf margin and the Okinawa Trough, and provide new constraints on the Late Cenozoic evolution of the East China continental margin. The Frontal Shelf Basin between the Taiwan-Sinzi Uplift and the trough axis occupies the western half of the Northern-Middle Okinawa Trough. In this basin, the Middle-Late Miocene sediments are confined to grabens or half-grabens dominated by listric faults, whereas the overlying Pliocene-Quaternary sequence is characterized by a uniform thickness and dense planar-type faults, suggesting that rifting of the Northern-Middle Okinawa Trough initiated during the Middle Miocene but slowed down during the earliest Pliocene. Since that time, the opening of the Okinawa Trough has been dominated by diffuse rifting. The Southern Okinawa Trough is predominately filled by Quaternary sediments, indicating that its back-arc rifting began during the earliest Pleistocene. Contractional structures identified in the pre-Quaternary sequence beneath the continental slope, along with an erosional Pleistocene-pre-Pleistocene unconformity in the Southern Okinawa Trough, demonstrate the existence of pre-rifting compression and uplifting in this region. We use this evidence and previously published results, to propose an evolutionary model of the East China continental margin during the Late Cenozoic. The Northern-Middle Okinawa Trough began rifting during the Middle Miocene on a paleo-uplift. The Luzon Arc initially impinged upon the Eurasian continental margin during the Late Miocene near the southeastern end of the Miyako Fault Belt and activated the proto-Taiwan Orogeny in today's Southern Okinawa Trough and adjacent regions. During the Late Miocene-Pliocene, the orogeny quickly propagated southwestward along with the west-northwest-moving Philippine Sea Plate. Subsequently, the rifting of the Southern Okinawa Trough was initiated during the earliest Pleistocene

  12. Rapid long-wavelength uplift of the Angolan continental margin

    NASA Astrophysics Data System (ADS)

    Kahle, R. L.; Walker, R. T.; Telfer, M.; Buta-Neto, A.; Dee, M.; Shaw-Kahle, B.; Schwenninger, J. L.; Sloan, A.; Tunguno, C.

    2015-12-01

    Studies of offshore sedimentation have identified hiatuses interpreted as periods of uplift along the coast of Angola, SW Africa. However, these studies do not have sufficient temporal or spatial resolution to determine the rate and extent of these uplift events. The presence of a complicated uplift history on a 'stable' passive continental margin is surprising, and many different mechanisms have been proposed to explain it.We quantify the late Quaternary rate and wavelength of uplift relative to sea-level from suites of coastal terraces along the coastline of Angola. Automated extraction and correlation of terrace remnants from digital topography uncovers a symmetrical uplift, with diameter ~1000 km, and centred near Benguela at latitude 13°S. We perform OSL and radiocarbon dating on sediments overlying a coastal terrace at 30 m at Benguela and show that it formed ~40-45 ka. At this time the sea surface was ~50 m lower than today, implying an uplift rate of ~2.3 mm/yr. This is an order of magnitude higher than previously obtained uplift rates (which are averaged over a longer period).The ~1000 km wavelength and observed rapid uplift rates strongly suggest that the uplift is the surface expression of dynamic mantle processes. This rapid uplift rate cannot have persisted continuously over million year timescales, and we therefore suggest that the topography may be modulated by relatively short-lived pulses of uplift, possibly driven by the pulsing of an underlying plume.

  13. The Wide Bay Canyon system: A case study of canyon morphology on the east Australian continental margin

    NASA Astrophysics Data System (ADS)

    Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.

    2014-12-01

    A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.

  14. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    SciTech Connect

    McCrory, P.A.; Arends, R.G. ); Ingle, J.C. Jr. ); Isaacs, C.M.; Stanley, R.G. ); Thornton, M.L.C. )

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling between adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.

  15. Cenozoic prograding sequences of the Antarctic continental margin - What balance between structural and eustatic control

    SciTech Connect

    Cooper, A.K. ); Barrett, P. ); Hinz, K. ); Stagg, H. ); Traube, V. )

    1990-05-01

    Multichannel seismic reflection profiles across the Antarctic continental margin commonly reveal prograding sedimentary sequences that are bounded by unconformities. These sequences are as much as 5 km thick and, where sampled, are composed entirely of late Eocene( )-early Oligocene and younger glacial rocks. On nonpolar margins, prograding sequences generally are attributed to relative changes in sea level, sediment supply, and tectonism. Around Antarctica, ice sheets have also been important in controlling the geometry and location of prograding sequences. The Antarctic sequences may provide a proximal record of major Cenozoic ice volume changes and related sea level changes not obtainable from low-latitude continental shelves. Presently, the Antarctic record is poorly known because of limited core data. Two categories of prograding (P) and aggrading (A) sigmoidal sequences are observed around Antarctica: (1) P sequences that build principally outward (common) and (2) AP sequences that build largely upward and outward (less common). P sequences may result principally from grounded ice sheets, and AP sequences from open-marine basinal processes. Major rift embayments of Antarctica (e.g., eastern Ross Sea eastern Weddell Sea Lambert graben Wilkes basin) are also pathways for major ice movement. In general, most areas with P sequences lie within or adjacent to Mesozoic or older rift embayment, whereas the primary area with AP sequences (eastern Ross Sea) lies within a likely Cenozoic rift embayment. The Pacific side of the Antarctic Peninsula where Cenozoic ice sheets and Cenozoic tectonism have been active, is also marked by a P sequence. Scientific drilling on the Antarctic continental shelf has recovered openwater glacial deposits (Ross Sea) as well as glacial diamicts that were deposited beneath and in front of grounded glacier ice (Ross Sea and Prydz Bay).

  16. Extension on rifted continental margins: Observations vs. models.

    NASA Astrophysics Data System (ADS)

    Skogseid, Jakob

    2014-05-01

    Mapping the signature of extensional deformation on rifted margins is often hampered by thick sedimentary or volcanic successions, or because salt tectonics makes sub-salt seismic imaging challenging. Over the past 20 years the literature is witnessing that lack of mapable faults have resulted in a variety of numerical models based on the assumption that the upper crust takes little or no extensional thinning, while the observed reduction of crustal thickness is taken up in the middle and lower crust, as well as in the mantle. In this presentation two case studies are used to highlight the difference that 3D seismic data may have on our understanding. The small patches of 3D resolution data allow us to get a glance of the 'real' signature of extensional faulting, which by analogy can be extrapolate from one margin segment to the next. In the South Atlantic salt tectonics represents a major problem for sub-salt imaging. The conjugate margins of Brazil and Angola are, however, characterized by pronounced crustal thinning as documented by crustal scale 2D reflection and refraction data. Off Angola the 3D 'reality' demonstrates that upper crustal extension by faulting is comparable to the full crustal, as well as lithospheric thinning as derived from refraction data and basin subsidence analysis. The mapped faults are listric low angle faults that seem to detach at mid crustal levels. 2D seismic has in the past been interpreted to indicate that almost no extensional faulting can be mapped towards the base of the so-called 'sag basin'. The whole concept of the 'sag basin', often ascribed to as crustal thinning without upper crustal deformation, is in fact related to this 'lack of observation', and furthermore, have caused the making of different types of dynamic models attempting to account for this. In the NE Atlantic significant Paleocene extensional faulting is locally seen adjacent to the 50 to more than 200 km wide volcanic cover on each side of the breakup axis

  17. Geology and petroleum potential of Shumagin continental margin, western Gulf of Alaska

    SciTech Connect

    Bruns, T.R.; Von Huene, R.; Culotta, R.D.; Lewis, S.D.; Ladd, J.W.

    1986-07-01

    Interpretations of multichannel seismic reflection data indicate that the Shumagin continental margin seaward of the Border Ranges fault is underlain by two major seismic sequences, separated by an erosional unconformity beneath the shelf and by the time-correlative conformity seaward. Rocks above the unconformity are late Miocene and younger. Rocks below the unconformity can be as young as middle Miocene beneath the outer shelf and slope, seaward of a paleoshelf break. However, beneath the shelf they are primarily Late Cretaceous turbidites of the Shumagin Formation and Paleocene granodiorite. Late Miocene and younger structures of the Shumagin margin include Shumagin, Sanak, and Unimak basins and Unimak Ridge, a midslope structural high. Strata in Sanak and Unimak basins were deposited on a subsiding outer shelf and slope, and trapped behind Unimak Ridge and its now-buried structural continuation. Sanak and Unimak basins are in part bounded by northwest-trending extensional faults that parallel both the early Tertiary Beringian margin and a transverse tectonic boundary that segments the fore-arc. These faults may have developed during collapse and extension along the southeastward continuation of the old Beringian margin, analogous to the processes that created the Bering Shelf basins. The most promising areas of the Shumagin margin for petroleum potential are Sanak, and Unimak basins, which contain strata 8 and 4.5 km thick, respectively, and beneath the outer shelf and slope. Paleogene source rocks like those on the adjacent Alaska Peninsula may be preserved offshore, seaward of the inferred paleoshelf break. Reservoir rocks might have formed from granitic-rich erosional products derived during Oligocene and Miocene erosion of the shelf plutons.

  18. Crustal structure of the Peruvian continental margin from wide-angle seismic studies

    NASA Astrophysics Data System (ADS)

    Krabbenhöft, A.; Bialas, J.; Kopp, H.; Kukowski, N.; Hübscher, C.

    2004-11-01

    Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0-200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5-6.0 km s-1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure.

  19. The gravity field of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Grow, A.J.; Bowin, C.O.; Hutchinson, D.O.

    1979-01-01

    Approximately 39,000 km of marine gravity data collected during 1975 and 1976 have been integrated with U.S. Navy and other available data over the U.S. Atlantic continental margin between Florida and Maine to obtain a 10 mgal contour free-air gravity anomaly map. A maximum typically ranging from 0 to +70 mgal occurs along the edge of the shelf and Blake Plateau, while a minimum typically ranging from -20 to -80 mgal occurs along the base of the continental slope, except for a -140 mgal minimum at the base of the Blake Escarpment. Although the maximum and minimum free-air gravity values are strongly influenced by continental slope topography and by the abrupt change in crustal thickness across the margin, the peaks and troughs in the anomalies terminate abruptly at discrete transverse zones along the margin. These zones appear to mark major NW-SE fractures in the subsided continental margin and adjacent deep ocean basin, which separate the margin into a series of segmented basins and platforms. Rapid differential subsidence of crustal blocks on either side of these fractures during the early stages after separation of North America and Africa (Jurassic and Early Cretaceous) is inferred to be the cause of most of the gravity transitions along the length of margin. The major transverse zones are southeast of Charleston, east of Cape Hatteras, near Norfolk Canyon, off Delaware Bay, just south of Hudson Canyon and south of Cape Cod. Local Airy isostatic anomaly profiles (two-dimensional, without sediment corrections) were computed along eight multichannel seismic profiles. The isostatic anomaly values over major basins beneath the shelf and rise are generally between -10 and -30 mgal while those over the platform areas are typically 0 to +20 mgal. While a few isostatic anomaly profiles show local 10-20 mgal increases seaward of the East Coast Magnetic Anomaly (ECMA: inferred to mark the ocean-continent boundary), the lack of a consistent correlation indicates that the

  20. Long-term topographic feedbacks along glaciated continental margins

    NASA Astrophysics Data System (ADS)

    Egholm, David L.; Jansen, John; Knudsen, Mads F.; Pedersen, Vivi K.; Brædstrup, Christian F.; Ugelvig, Sofie V.; Andersen, Jane L.; Skov, Daniel

    2016-04-01

    Deep troughs carved by glaciers during Quaternary cold intervals dominate high-latitude mountain ranges in Greenland, Norway, Canada, New Zealand, Chile and Antarctica (Sugden & John, 1976). In addition, areas of relatively low relief are typically found at high elevations between the troughs. These high areas are often draped by block-fields, indicating that slow weathering processes dominated their evolution, at least throughout the most recent series of interglacial periods (Ballantyne, 2010). Ice sheets must have repeatedly covered the high areas during glacial maxima, but the ice did not erode the underlying bedrock; most likely because the ice was predominantly frozen to its bed (Kleman & Stroeven, 1997). The geomorphic contrast between the troughs and the high-elevation, low-relief areas shows that factors controlling glacial erosion can fluctuate dramatically across short distances, and that landscapes in cold regions concurrently support some of the fastest and slowest surface-erosion processes on Earth (Sugden & John, 1976). However, the strong contrast in efficiency of subglacial erosion has likely evolved in response to landscape evolution. The gradual emergence of glacial troughs over time establishes a feedback between ice flux and subglacial erosion, leading to focused ice drainage and accelerating erosion in the troughs and stalling erosion in the high-elevation areas between the troughs (Kessler et al. 2008). This distinct pattern of selective erosion along cold-region continental margins during the Late Quaternary may therefore reflect the product of topographical feedbacks that focus glacial erosion over time. We used computational landscape evolution models to study these topographic feedbacks, with the objective to evaluate landscape evolution in the high areas prior to the development of deep glacial troughs. Our experiments suggest that early overriding ice-sheets most likely eroded the highs and smoothed the regional topography before

  1. The geology and petroleum potential of the Queen Charlotte Basin, Pacific Continental Margin, Canada

    SciTech Connect

    Dietrich, J.R.; Higgs, R.; Rohr, K. )

    1990-05-01

    The Queen Charlotte basin is a 40,000 km{sup 2} late Paleogene-Neogene basin underlying the Queen Charlotte Islands, Hecate Strait, and Queen Charlotte Sound region of the Canadian Pacific continental margin. The basin formed during Eocene to Pliocene extension along and adjacent to a transform segment of the Pacific-North American plate boundary. Oblique subduction along the plate boundary in the late Cenozoic resulted in uplift and folding of portions of the northern half of the basin. In detail, the basin consists of numerous, variably oriented half-grabens and subbasins separated and underlain by complexly structured Mesozoic rocks of the Wranellia terrane. Most of the offshore subbasins contain clastic sediments in excess of 3,000 m thick and strata as thick as 6,000 m are known to occur in the deepest depocenters. The older (pre-Pliocene) portions of the basin locally contain volcanics, often interbedded with clastics. Potential hydrocarbon reservoirs within the basin include alluvial-fan fan-delta and tidal-shelf sandstones. Potential hydrocarbon source rocks include Upper Triassic-Lower Jurassic shales and limestones locally preserved below the basin and Tertiary shales within the deeper portions of the basin fill. Possible hydrocarbon traps include folds, rollover anticlines, basement fault blocks, and a variety of combined structural-stratigraphic traps. The Queen Charlotte basin is considered to be one of the most prospective areas for significant hydrocarbon resources along the northeast Pacific margin.

  2. A review of the geology and petroleum possibilities of the continental margins of India

    SciTech Connect

    Sahay, B.

    1984-05-01

    Continental margins which flank western and eastern limits of India are broadly divided into West and East Coast. The width of the Western Continental Shelf varies from 300 km near Bombay to approximately 80 kms near Porbandar, narrowing further towards south to 60 kms near Cochin. The Eastern Continental Shelf which extends from Cape Comorin to Calcutta, has the width varying from 2.5 km, about 150 kms south of Madras to 210 kms upto Ganges river delta, near Calcutta.

  3. Geoacoustic models of the Donghae-to-Gangneung region in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2016-04-01

    Geoacoustic model is to provide a model of the real seafloor with measured, extrapolated, and predicted values of geoacoustic environmental parameters. It controls acoustic propagation in underwater acoustics. In the Korean continental margin of the East Sea, this study reconstructed geoacoustic models using geoacoustic and marine geologic data of the Donghae-to-Gangneung region (37.4° to 37.8° in latitude). The models were based on the data of the high-resolution subbottom and air-gun seismic profiles with sediment cores. The Donghae region comprised measured P-wave velocities and attenuations of the cores, whereas the Gangneung region comprised regression values using measured values of the adjacent areas. Geoacoustic data of the cores were extrapolated down to a depth of the geoacoustic models. For actual modeling, the P-wave speed of the models was compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of this region probably contribute for geoacoustic and underwater acoustic modelling reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: geoacoustic model, environmental parameter, East Sea, continental margin Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  4. Historic surface faulting in continental United States and adjacent parts of Mexico

    USGS Publications Warehouse

    Bonilla, M.G.

    1967-01-01

    This report summarizes geometric aspects of approximately 35 instances of historic faulting of the ground surface in the continental United States and adjacent parts of Mexico. This information is of immediate importance in the selection and evaluation of sites for vital structures such as nuclear power plants. The data are presented in a table and graphs which show the quantitative relations between various aspects of the faulting. Certain items in the table that are uncertain, poorly known, or not in the published literature are briefly described in the text.

  5. Spatio-temporal evolution of a Tertiary carbonate platform margin and adjacent basinal deposits

    NASA Astrophysics Data System (ADS)

    Wilson, Moyra E. J.; Chambers, John L. C.; Manning, Christina; Nas, Dharma S.

    2012-10-01

    The variability in low to moderate energy carbonate platform margins is poorly known from the geological record. Here, the spatial and temporal evolution of platform margin and adjacent basinal deposits is evaluated from the little known Tertiary Kedango Limestone that developed in a semi-enclosed marine embayment in SE Asia. The hypothesis here is that platform margin development will reflect regional and perhaps global influences, such as tectonics, eustasy or biotic change, rather than windward-leeward effects and storms that typically impact strongly upon open oceanic platforms. The development of the carbonate platform was determined through logging, petrography, facies evaluation, provenance and high-resolution dating studies. Eleven carbonate facies were identified from the 30 km long western margin of the > 600 m thick platform and its adjacent slope and basinal deposits. Larger benthic foraminifera and coralline algal packstones and wackestones dominated in shallow waters. During the Oligo-Miocene, coral patch reef-related floatstones, rudstones and less commonly boundstones were also present on the platform top. Perhaps surprisingly for a low energy platform there was considerable variation along the platform margin and much reworking of material into slope and basinal deposits during the Oligo-Miocene. Reworked material includes shallow water bioclasts, clasts from older siliciclastics, fresh feldspars, lithified slope and platform top carbonate clasts, some of the latter showing evidence for karstification. The western platform margin varied laterally over a few kilometres from a gently sloping unrimmed platform, to a probable bank top, with in places coral-fringed, bypass and erosional faulted escarpment margins. Eustasy may have influenced shallowing and deepening trends on the platform top, but apparently had little impact on mass wasting. Instead platform margin development was strongly impacted by tectonics (including active faulting), terrestrial

  6. Evolution of magma-poor continental margins from rifting to seafloor spreading.

    PubMed

    Whitmarsh, R B; Manatschal, G; Minshull, T A

    2001-09-13

    The rifting of continents involves faulting (tectonism) and magmatism, which reflect the strain-rate and temperature dependent processes of solid-state deformation and decompression melting within the Earth. Most models of this rifting have treated tectonism and magmatism separately, and few numerical simulations have attempted to include continental break-up and melting, let alone describe how continental rifting evolves into seafloor spreading. Models of this evolution conventionally juxtapose continental and oceanic crust. Here we present observations that support the existence of a zone of exhumed continental mantle, several tens of kilometres wide, between oceanic and continental crust on continental margins where magma-poor rifting has taken place. We present geophysical and geological observations from the west Iberia margin, and geological mapping of margins of the former Tethys ocean now exposed in the Alps. We use these complementary findings to propose a conceptual model that focuses on the final stage of continental extension and break-up, and the creation of a zone of exhumed continental mantle that evolves oceanward into seafloor spreading. We conclude that the evolving stress and thermal fields are constrained by a rising and narrowing ridge of asthenospheric mantle, and that magmatism and rates of extension systematically increase oceanward.

  7. Seismic-reflection signature of cretaceous continental breakup on the Wilkes Land margin, Antarctica

    USGS Publications Warehouse

    Eittreim, S.L.; Hampton, M.A.; Childs, J. R.

    1985-01-01

    The passive (rifted) continental margin of Wilkes Land, Antarctica, is characterized on seismic reflection records by (i) in the south, a block-faulted sequence of highly stratified continental beds overlain by two distinct unconformities; (ii) a transitional, greatly thinned continental crust overlain by material interpreted to be flood basalt; and (iii) in the north, oceanic crust with a boundary ridge at its edge. The Mohorovic??ic?? discontinuity can be followed across the continent-ocean boundary and shows a progressive thinning of continental crust to a minimum of 2.5 kilometers at its northern edge.

  8. Seismic-reflection signature of cretaceous continental breakup on the wilkes land margin, antarctica.

    PubMed

    Eittreim, S L; Hampton, M A; Childs, J R

    1985-09-13

    The passive (rifted) continental margin of Wilkes Land, Antarctica, is characterized on seismic reflection records by (i) in the south, a block-faulted sequence of highly stratified continental beds overlain by two distinct unconformities; (ii) a transitional, greatly thinned continental crust overlain by material interpreted to be flood basalt; and (iii) in the north, oceanic crust with a boundary ridge at its edge. The Mohorovicić discontinuity can be followed across the continent-ocean boundary and shows a progressive thinning of continental crust to a minimum of 2.5 kilometers at its northern edge.

  9. Modelling Sea-floor Spreading Initiation and Rifted Continental Margin Formation: Does Depth Dependent Stretching Occur Pre- or Syn-breakup?

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Karner, G. D.

    2004-05-01

    Depth dependent stretching, in which upper continental crustal extension is much less than that of the lower crust and lithospheric mantle, is a characteristic of both non-volcanic and volcanic rifted margins. A key question is whether depth dependent stretching of rifted margin lithosphere occurs during the initiation of sea-floor spreading or during pre-breakup rifting. A kinematic fluid-flow model of sea-floor spreading initiation has been developed to determine the concomitant distribution and amplitude of rifted continental margin lithosphere thinning and thermal evolution. The ocean-ridge initiation model uses an iso-viscous corner-flow stream-function solution (Batchelor 1967) to predict the divergent lithospheric and asthenospheric fluid-flow field of the extending continental margin lithosphere. The thinning of the continental margin lithosphere is calculated by material advection in the newly initiated ocean ridge fluid-flow field. The ocean-ridge initiation model predicts depth dependent stretching of continental lithosphere. Rifted continental margin lithosphere thinning and thermal evolution are dependent on ocean-ridge spreading rate (Vx), the mantle upwelling velocity beneath the ridge axis (Vz), and the pre-breakup lithosphere beta stretching factor. The sea-floor spreading initiation model predicts that the distribution and magnitude of depth dependent stretching of continental margin lithosphere is highly sensitive to the ratio of Vz/Vx. For volcanic margins Vz/Vx may be > 5 during sea-floor spreading initiation, reducing to Vz/Vx ~ 1 after a few Myr (Nielsen & Hopper 2002), while for non-volcanic margins, lower values of Vz/Vx (~ 1) are expected during sea-floor spreading initiation. For Vz/Vx ~ 1 the sea-floor spreading initiation model predicts that lower continental crust and continental lithospheric mantle adjacent to the margin are advected oceanward and result in rifted margin depth dependent stretching and continental mantle exhumation

  10. Modelling of sea floor spreading initiation and rifted continental margin formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. i

  11. Rifted continental margins: geometric control on crustal architecture and melting

    NASA Astrophysics Data System (ADS)

    Lundin, Erik; Redfield, Tim; Peron-Pinvidic, Gwenn

    2014-05-01

    A new model is provided for the distribution of magma-poor and magma-rich rifted margins. The South Atlantic, Central Atlantic, North Atlantic - Arctic (Eurasia Basin), and Red Sea all are magma-rich at their distal ends and magma-poor at their proximal ends (with respect to their poles of rotation). The well-known architectural zonation across fully developed magma-poor margins (limited crustal stretching, hyperextension, exhumed mantle, oceanic crust) is also observed along the lengths of many margins at the super-regional scale. Zones of exhumed mantle, marking magma-poor margin, can be mapped for thousands of kilometers. Likewise can zones of seaward dipping reflectors (SDR) marking magma-rich margins. At this scale, the age of the oceanic crust becomes younger in the direction of the rotation pole, implying that the continents ruptured by rift tip propagation (and rotation pole propagation). Propagation is also manifested by the age of pre-break-up magmatism, break-up unconformity, and margin uplift. Hence, the classic cross-sectional depiction of margin evolution has a third dimension. The degree of melting follows the same pattern. At the distal end of e.g. the South Atlantic, SDR zones are wide and gradually thin toward the rotation pole. Eventually exhumed mantle takes over, marking the transition to the magma-poor margins, which remain to the proximal end of rifting. SDR zones also thin laterally from ca 10-15 km thickness at the continent-ocean boundary (COB) to ca 7 km thick oceanic crust beyond the SDRs. Outcrop data demonstrate that also exhumed mantle contains up to ca 12% melt, infiltrated in the peridotites. Thus, melting is largest at the distal ends near the COB, and decreases both laterally toward the evolving ocean and along strike toward the rift tip. Accepting that continents are rigid to a first order, the linear rate of extension at any given location along an evolving rift and ocean, is governed by the angular rate of opening, the distance

  12. Manganese and copper fluxes from continental margin sediments

    SciTech Connect

    Heggie, D.; Klinkhammer, G.; Cullen, D.

    1987-05-01

    Total dissolvable Cu and Mn have been measured in sea water collected from the continental shelf of the eastern Bering Sea. Copper concentrations of <3 nmole kg/sup -1/ were measured over the shelf break but concentrations increased to >4 nmole kg/sup -1/ inshore of a hydrographic front over the 100 m isobath. Manganese concentrations also were low over the shelf break, <10 nmole kg/sup -1/, and increased systematically to concentrations >10 nmole kg/sup -1/ inshore of the hydrographic front. Depth distributions of Mn at all continental shelf stations showed gradients into the sediments, with concentrations typically >20 nmole kg/sup -1/ in a bottom layer extending about 30 m off the bottom. Benthic Cu and Mn fluxes are indicated by cross-shelf pore water profiles that show interfacial concentrations more than an order of magnitude greater than in bottom water. These data and the results of a model of metal transport across the shelf suggest that Cu and Mn fluxes, estimated at 2 and 18 nmole cm/sup -2/y/sup -1/, respectively, from continental shelf sediments may be one source of these metals to the deep sea.

  13. Geologic development and characteristics of continental margins, Gulf of Mexico

    SciTech Connect

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-09-01

    The continental slope of the Gulf basin covers more than 500,000 km/sup 2/ and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200-m isobath, to the upper limit of the continental rise at a depth of 2800 m. The most complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 km/sup 2/ and in which bottom slopes range from less than 1/sup 0/ to greater than 20/sup 0/ around the knolls and basins. The near-surface geology and topography of the slope is a function of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depocenters throughout the Neogene results in rapid shelf-edge progradation, often exceeding 15-20 km/m.y. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Slope oversteepening, high pore pressures in rapidly deposited soft sediments, and changes in eustatic sea level cause subaqueous slope instabilities such as landslides and debris flows. Large-scale features such as shelf-edge separation scars and landslide-related canyons often result from such processes.

  14. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the

  15. Stratigraphic and isotopic link between the northern Stikine terrane and an ancient continental margin assemblage, Canadian Cordillera

    SciTech Connect

    Jackson, J.L.; Gehrels, G.E.; Patchett, P.J. ); Mihalynuk, M.G. )

    1991-12-01

    Geologic and isotopic data strongly imply a Late Triassic depositional link between a juvenile volcanic arc (northern Stikine terrane) and an outboard ancient continental margin assemblage (Nisling terrane) in the Canadian Cordillera. Two sandstone samples and a schist clast from a conglomerate layer at the base of the Upper Triassic Stuhini Group (northern Stikine terrane) have Nd-depleted mantle model ages of 1400-1430 and 1600 Ma, respectively; other Stuhini Group rocks have model ages of 390,660 and 690 Ma. Three samples of Nisling terrane schist and gneiss yield Nd model ages of 910, 1770, and 2450 Ma and highly radiogenic {sup 87}Sr/{sup 86}Sr ratios. These isotopic data corroborate stratigraphic evidence that detritus at the base of northern Stikine was shed from the Nisling terrane and strengthen interpretations that these terranes became linked by Late Triassic time. Thus, Upper Triassic strata of the northern Stikine terrane may have accumulated on top of or adjacent to an exotic continental fragment, a rifted fragment of the North American margin, or the in situ North American margin.

  16. Flow of material under compression in weak lower continental crust can cause post-rift uplift of passive continental margins

    NASA Astrophysics Data System (ADS)

    Chalmers, James

    2014-05-01

    There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material

  17. Manganese flux from continental margin sediments in a transect through the oxygen minimum

    SciTech Connect

    Johnson, K.S. Monterey Bay Aquarium Research Inst., Pacific Grove, CA ); Berelson, W.M.; Iams, H.D.; Kilgore, T.E. ); Coale, K.H.; Coley, T.L.; Elrod, V.A.; Fairey, W.R.; Nowicki, J.L. )

    1992-08-28

    The flux of manganese from continental margin sediments to the ocean was measured with a free-vehicle, benthic flux chamber in a transect across the continental shelf and upper slope of the California margin. The highest fluxes were observed on the shallow continental shelf. Manganese flux decreased linearly with bottom water oxygen concentration, and the lowest flux occurred in the oxygen minimum zone (at a depth of 600 to 1,000 meters). Although the flux of manganese from continental shelf sediments can account for the elevated concentrations observed in shallow, coastal waters, the flux from sediments that intersect the oxygen minimum cannot produce the subsurface concentration maximum of dissolved manganese that is observed in the Pacific Ocean.

  18. Manganese flux from continental margin sediments in a transect through the oxygen minimum.

    PubMed

    Johnson, K S; Berelson, W M; Coale, K H; Coley, T L; Elrod, V A; Fairey, W R; Iams, H D; Kilgore, T E; Nowicki, J L

    1992-08-28

    The flux of manganese from continental margin sediments to the ocean was measured with a free-vehicle, benthic flux chamber in a transect across the continental shelf and upper slope of the California margin. The highest fluxes were observed on the shallow continental shelf. Manganese flux decreased linearly with bottom water oxygen concentration, and the lowest fluxes occurred in the oxygen minimum zone (at a depth of 600 to 1000 meters). Although the flux of manganese from continental shelf sediments can account for the elevated concentrations observed in shallow, coastal waters, the flux from sediments that intersect the oxygen minimum cannot produce the subsurface concentration maximum of dissolved manganese that is observed in the Pacific Ocean.

  19. Structure and petroleum potential of the Yakutat segment of the northern Gulf of Alaska continental margin

    SciTech Connect

    Bruns, T.R.

    1983-01-01

    This report discusses the structure, geologic history, and petroleum potential of the Yakutat segment, the part of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska. As part of a program of geological and geophysical investigations of the continental margin in the northern Gulf of Alaska, the US Geological Survey collected multichannel seismic reflection data along about 2000 km of tracklines in the study area during 1975, 1977, and 1978. In addition, dredge samples from the continental slope were acquired during the 1977, 1978, and 1979 field seasons. The first part of this paper presents an interpretation of the seismic reflection and refraction data, including structure contour maps, isopach maps, and interpreted seismic sections; the second part is a discussion of the implications for petroleum potential. The primary area of interest is the continental shelf and slope, but some data from strata at the base of the slope are also included.

  20. The Formation of Sedimentary Strata on Continental Margins

    DTIC Science & Technology

    1997-09-30

    provides data needed to understand strata formation and allows specifically for better interpretation of long cores recording the environmental ... history of the Eel margin. Because much of the insight gained about strata formation is generic in nature, this work interfaces at the short and

  1. Preface - 'Biogeochemistry-ecosystem interaction on changing continental margins in the Anthropocene'

    NASA Astrophysics Data System (ADS)

    Liu, K.-K.; Emeis, Kay-Christian; Levin, Lisa A.; Naqvi, Wajih; Roman, Michael

    2015-01-01

    This special issue is a product of Workshop 1 of IMBIZO III held in Goa, India in January 2013 (Bundy et al., 2013). This IMBIZO (a Zulu word for gathering) has been organized by IMBER (Integrated Marine Biogeochemistry and Ecosystem Research) biannually since 2008. It employs a format of three concurrent but interacting workshops designed to synthesize information on topical research areas in marine science. Workshop 1 addressed the issue, "Biogeochemistry-ecosystem interaction in changing continental margins," which belongs to the purview of the Continental Margins Working Group (CMWG), co-sponsored by IMBER and LOICZ (Land-Ocean Interaction in the Coastal Zone). As a way to explore the emerging issues that concern the CMWG, the workshop had attracted 25 talks and 18 posters that explored the following topics: Human impacts on continental margins

  2. Imaging proto-oceanic crust off the Brazilian Continental Margin

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Evain, M.; Afilhado, A.; Rigoti, C.; Loureiro, A.; Alves, D.; Leprêtre, A.; Moulin, M.; Schnurle, P.; Benabdellouahed, M.; Baltzer, A.; Rabineau, M.; Feld, A.; Viana, A.; Aslanian, D.

    2015-01-01

    During the Sanba (Santos basin seismic transect) experiment in 2010-2011, a 380-km-long combined wide-angle and reflection seismic profile has been acquired using 30 ocean-bottom seismometers, a 4.5 km seismic streamer and a 8900 in.3 airgun array. The Sanba 3 profile crosses the southern flank of the Sao Paulo Plateau, the Sao Paulo Ridge and the easternmost Santos Basin in an east-west direction. Its eastern end is located on undisturbed oceanic crust. Tomographic and forward modelling of the wide-angle seismic data reveals that the sedimentary thickness is variable with only 1-2 km on top of the ridge and thickening to 4-5 km in the basin. Crustal thickness at the ridge is about 18 km and the relative layer thickness and velocity gradients indicate a continental origin of this ridge. The eastern Santos Basin is underlain by crust of only 5 km thickness, characterized by high seismic velocities between 6.20 km s-1 in the upper crust and 7.40 km s-1 in the lower crust. Three hypotheses for the nature of the crust in this region are tested here: (i) thinned continental crust, (ii) serpentinized upper mantle material, (iii) thin oceanic crust. As seismic velocity gradients seem to rule out a continental origin of this region, and clear Moho reflections argue against serpentinized upper mantle, we propose that the crust underlying the easternmost Santos Basin is of oceanic origin. Deviations from normal oceanic crustal velocities in the lower crust (6.70-7.00 km s-1) can be explained by accretion at slow spreading rates leading to the inclusion of serpentinite into the lower crust at the onset of organized seafloor spreading.

  3. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  4. Tectonic framework of the Northern California continental margin

    USGS Publications Warehouse

    Clarke, S.H.

    1992-01-01

    The northern coast of California is one of the most seismically active regions in the continental United States. This activity is largely due to tectonic forces resulting from differing relative motions between three extensive lithospheric plates that meet in this region. These crustal plates are bounded by long fault systems-the Cascadia subduction zone, the San Andreas fault system, and the Mendocino fault- that accommodate these differences in plate motion and that are capable of periodically producing damaging earthquakes. Historic earthquake locations are concentrated in the victinity of the tectonically unstable intersection of these tthree plates and their bounding fault systems. 

  5. Water depth-composition trends in ferromanganese crusts adjacent to the California margin compared to those in equatorial Pacific crusts

    NASA Astrophysics Data System (ADS)

    Conrad, T. A.; Hein, J. R.

    2013-12-01

    Ferromanganese (Fe-Mn) crusts have been used as proxies for paleo-seawater chemistry; however, element concentrations and growth rates in crusts can vary depending on the region, latitude, and water depth. Here we will look at 130 Fe-Mn crusts from seven seamounts adjacent to the California (CA) margin to explore trends in composition with water depth and latitude. Crusts were collected by ROV, resulting in a dataset with exact water depth and location coordinates. Water depth ranges from 570 to 3,934 m along a 700-km transect running roughly parallel to the CA margin. Crust samples used for comparison were collected by dredging along transects following the Gilbert Ridge and Tokelau Seamounts in the western equatorial Pacific, with water depths ranging from about 1,500 to 4,800 m. In addition to variations with latitude and water depth, element concentrations in CA margin crusts are influenced by high primary productivity in surface waters, terrestrial input, and upwelling along the continental margin. Elements associated with terrestrial input, including Na, Si, Al, K, Pb, and particularly Th, are enriched in CA margin crusts relative to crusts from the equatorial Pacific transects. Si is also associated with the biogenic phase, as are P, Ba, and Cu but these elements are lower in CA margin crusts. Ba is a proxy for primary productivity. CA margin crusts show Ba increasing with increasing water depth, while equatorial Pacific crusts show the inverse trend. In equatorial Pacific crusts, Ba correlates with decreasing latitude, which reflects increasing proximity to the high productivity zone of equatorial upwelling; additionally, local obstructional upwelling associated with primary productivity around seamounts and islands enhances the productivity signal. Cu, which is associated with the manganese oxide phase, in addition to the biogenic phase, also increases with water depth along the CA margin; this is consistent with the seawater profile for dissolved Cu. In

  6. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  7. Continental margin evolution of the northern Arabian platform in Syria

    SciTech Connect

    Best, J.A.; Barazangi, M. ); Al-Saad, D.; Sawaf, T.; Gebran, A. )

    1993-02-01

    Synthesis of available geological and geophysical data in the Syrian Arab Republic permits a descriptive account of the pre-Cenozoic geologic history of the northern Arabian platform. The northern Arabian platform appears to be a composite plate similar up to that interpreted in the rocks of the Arabian shield. The structural and stratigraphic relationships of the Paleozoic and Mesozoic sedimentary sections in Syria record the transformation of an eastward-facing Gondwana passive margin in the early Paleozoic into a westward-facing Levantine margin in the Mesozoic, at which time the northern platform was closely associated with the creation of the eastern Mediterranean basin. Timing of the margin transformation is inferred from the orientation and thickness variations of Lower Triassic rocks, but the transformation may have initiated as early as the Permian. The diversity and timing of geological features in Syria suggest that the northern Arabian platform did not behave as a rigid plate throughout its geological history. The present-day Palmyride mountain belt, located within the northern Arabian platform in Syria and initiated in the early Mesozoic as a northeast-trending rift nearly perpendicular to the Levantine margin, subsequently was inverted in the Cenozoic by transpression. The location of the rift may be associated with the reactivation of a zone of crustal weakness, i.e., a Proterozoic suture zone previously proposed from modeling of Bouguer gravity data. Thus, the northern and southern parts of the Arabian platform are similar in their respective geologic histories during the Proterozoic and Paleozoic; however, the northern Arabian platform was greatly affected by Mesozoic rifting and the creation of the eastern Mediterranean basin during the Mesozoic. 13 figs.

  8. Convergent tectonics and coastal upwelling: a history of the Peru continental margin ( Pacific).

    USGS Publications Warehouse

    Von Huene, R.; Suess, E.; Emeis, K.C.

    1987-01-01

    Late in 1986, scientists on the ODP drillship JOIDES Resolution confirmed that the upper slope of the Peruvian margin consists of continental crust whereas the lower slope comprises an accretionary complex. An intricate history of horizontal and vertical movements can be detected, and the locations of ancient centers of upwelling appear to have varied, partly due to tectonic movements of the margin. In this review of Leg 112, the 3 scientific leaders on this cruise discuss their results. -from Journal Editor

  9. Organic geochemistry of continental margin and deep ocean sediments

    SciTech Connect

    Whelan, J.K.; Hunt, J.M.; Eglinton, T.; Dickinson, P.; Johnson, C.; Buxton, L.; Tarafa, M.E.

    1990-08-01

    The objective of this research continues to be the understanding of the complex processes of fossil fuel formation and migration. DOE funded research to date has focused on case histories'' of down-hole well profiles of light hydrocarbons, pyrograms, pyrolysis-GC and -GCMS parameters, and biomarker data from wells in the Louisiana and Texas Gulf Coasts the Alaskan North Slope. In the case of the Alaskan North Slope, geological data and one-dimensional maturation modeling have been integrated in order to better constrain possible source rocks, timing, and migration routes for oil and gas generation and expulsion processes.This period, biomarker analyses and organic petrographic analyses were completed for the Ikpikpuk well. In the case of the Gulf Coast, we have obtained a one-dimensional maturation model of the Cost B-1 well in E. Cameron field of the Louisiana Gulf Coast. The completed E. Cameron data set adds to the enigma of the Gulf Coast oils found on the continental shelf of Louisiana. If significant quantities of the oil are coming from relatively organic lean Tertiary rocks, then non-conventional'' expulsion and migration mechanisms, such as gas dissolved in oil must be invoked to explain the Gulf Coast oils reservoired on the Louisiana continental shelf. We are designing and starting to assemble a hydrous pyrolysis apparatus to follow, the laboratory, rates of generation and expulsion of sediment gases. Initiation of some new research to examine {delta}{sup 13}C of individual compounds from pyrolysis is also described. We are beginning to examine both the laboratory and field data from the Gulf Coast in the context of a Global Basin Research Network (GBRN). The purpose is to better understand subsurface fluid flow processes over geologic time in sedimentary basins and their relation to resource accumulation (i.e., petroleum and metal ores). 58 refs.

  10. Survival Of Magnetic Paleoclimatic Signals From Shallow To Deep Water Marine Redoxomorphic Sediments Across The Northwest Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Mohamed Falcon, K. J.; Rey, D.; Rubio, B.

    2013-05-01

    The magnetic properties of marine sediments on the North Atlantic Iberian continental Margin are strongly dependent on the organic matter input to the sediments and the onset of reductive diagenesis. An onshore-offshore gradient in the intensity of early diagenesis was recently described for the Ría de Vigo, matched by similar patterns in the adjacent rias of Pontevedra and Muros. In the ria environments of NW Iberia, early diagenetic dissolution of magnetic minerals can lead to magnetite half-lives of a few decades, and virtually obliterates any paleoenvironmental signal carried by magnetic minerals, rendering magnetic properties especially useful for the study of early diagenesis dynamics. Early diagenesis has also been identified in sediments of the adjacent continental shelf and deeper environments of the Galician Bank and Iberian Abyssal Plain. However, in these settings, slower dissolution of magnetic minerals allows the preservation of paleoclimatic signatures on different temporal scales. For instance, magnetic properties of continental shelf sediments reveal periods of enhanced rainfall and continental sediment input to the shelf, coincident with the Roman Warm Period and Medieval Climatic Optimum. On the contrary, cold periods are associated with less detrital input. Furthermore, levels of intensified diagenesis are also recorded during cold periods, which have been interpreted as periods of intensified coastal upwelling probably related to long-term North Atlantic Oscillation positive state. At the Galician Bank and Iberian Abyssal Plain sediments early diagenesis is also pervasive, although a paleoceanographic record of changes in the concentration of magnetic minerals transported by water masses flowing from the Portuguese Margin can still be identified. In addition to the progressive dissolution of magnetic minerals with depth, bulk magnetic properties in these deep marine settings show strong dependence on the pelagic carbonate sedimentation and low

  11. Salt diapirs bordering the continental margin of northern kenya and southern somalia.

    PubMed

    Rabinowitz, P D; Coffin, M F; Falvey, D

    1982-02-05

    The presence of newly discovered diapirs of presumed salt origin is documented for the continental margin of northeastern Kenya and southeastern Somalia. These structures are probably a manifestation of a significant thickness of Lower Jurassic evaporites deposited during the rift and early-drift stages of the separation of Madagascar from the African continent.

  12. Late Quaternary Paleoenvironmental History of the Peru-Chile Current System and Adjacent Continental Chile

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Hebbeln, D.; Kaiser, J.; Mohtadi, M.; Ninnemann, U.

    2004-12-01

    A combined analysis of terrigenous and biogenic compounds in marine sediments from the Chilean continental margin allows detailed reconstructions of the paleoclimatic and paleoceanographic history of this region during the last ca. 120,000 years. Based on several sediment cores recovered during two German cruises and ODP Leg 202 (Site 1233), we found evidence for changes both in continental rainfall, most likely induced by latitudinal shifts of the Southern Westerlies, and marine productivity as well as sea surface temperature and salinity changes within the Peru-Chile Current system on time scales ranging from Milankovitch to centennial-scale. On Milankovitch time-scales, we found strong evidence for precession-controlled shifts of the Southern Westerlies implying for example generally more humid conditions during the LGM and a trend towards more arid climates during the deglaciation culminating in the early Holocene. These shifts are paralleled by paleoceanographic changes indicating generally higher productivity during the LGM mainly caused by increased advection of nutrients from the south through an enhanced Peru-Chile current. North of 33°S, these general productivity patterns are complicated by additional impacts from the tropics resulting in maximum paleoproductivity during the deglaciation and prior to the LGM. On shorter time-scales, extremely high resolution sediment cores from the southern Chilean margin provide evidence of significant short-term Holocene climate variability with bands of variability centred at ca. 900 and 1500 years, periodicities also well known from Northern Hemisphere records. Recently drilled ODP Site 1233 allowed to prolong these records into the last glacial. The available data show millennial-scale SST changes that closely follow the temperature pattern known from Antarctic ice-cores. Including other records from the Southern Hemisphere mid-latitudes, our data suggest a quasi-hemisphere-wide response that is consistent with the

  13. The continental margin is a key source of iron to the HNLC North Pacific Ocean

    SciTech Connect

    Lam, P.J.; Bishop, J.K.B

    2008-01-15

    Here we show that labile particulate iron and manganese concentrations in the upper 500m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100-200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source of Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.

  14. Thermal history and evolution of the Rio de Janeiro - Barbacena section of the southeastern Brazilian continental margin

    NASA Astrophysics Data System (ADS)

    Neri Gezatt, Julia; Stephenson, Randell; Macdonald, David

    2015-04-01

    formation of the Atlantic Ocean. The preliminary results add to the growing thermochronological data base for the southeastern Brazilian continental margin and to deciphering the complex evolution of the region, as well as to the knowledge about the development and evolution of divergent continental margins in general. In a regional setting, AFT ages from this study, though not broadly variant locally, are distinct from basement rock AFT ages for adjacent areas produced by other authors along the southeastern continental margin. Similar ages are found at the southern Bocaina Plateau, for example, where structural control of age distribution is evident. Such regional thermal age difference has been previously attributed to continental scale structural compartmentalization throughout the continental passive margin, related to Late Cretaceous and Cenozoic reactivation of the E-W fracture zones linked to rifting of the South Atlantic. The present AFT results are compatible with Late Cretaceous reactivation but show no relation with younger events.

  15. ODP Leg 107 results from continental margin east of Sardinia (Mediterranean Sea): a transect across a very young passive margin

    SciTech Connect

    Kastens, K.A.; Mascle, J.; Auroux, C.; Bonatti, E.; Broglia, C.; Channell, J.; Curzi, P.; Emeis, K.; Glacon, G.; Hasegawa, S.; Hieke, W.

    1987-05-01

    A 200-km wide zone east of Sardinia, characterized by thin continental crust with tilted, listric(.)-fault-bounded blocks, has been interpreted as a passive continental margin formed during back-arc opening of the Tyrrhenian Sea. Leg 107 of the Ocean Drilling Project drilled a transect of four sites across this margin plus three sites in the basaltic basin. Site 654, closest to Sardinia, recovered a transgressive sequence attributed to basin subsidence: coarse-grained, iron-oxide rich, subaerial conglomerates underlie oyster-bearing sands followed upsection by open-water Tortonian marine marls. The synrift sequence, as inferred from seismic reflection profiles, correlates with sediments of Tortonian to Messinian age. Farther east the synrift sediments are younger: site 652, near the continental/oceanic transition, recovered an inferred synrift sequence of Messinian to early Pliocene age. The pan-Mediterranean Messinian desiccation event is represented at the western two sites (654 and 653) by a basinal facies including laminated gypsum, whereas at the eastern two sites the Messinian facies are terrestrial (lacustrine at 652 and subaerial at 656). They therefore infer that subsidence was more advanced at the western sites than at the eastern sites as of 5 Ma. Leg 107 results suggest that subsidence and stretching were diachronous across the passive margin, beginning and ending several million years earlier in the west than in the east. This asynchroneity may result from the inherent asymmetry of back-arc basin opening, or it may be a common characteristic of passive margins which has been revealed by the unusually precise time resolution of this data set.

  16. Wintertime pytoplankton bloom in the Subarctic Pacific supportedby continental margin iron

    SciTech Connect

    Lam, Phoebe J.; Bishop, James K.B.; Henning, Cara C.; Marcus,Matthew A.; Waychunas, Glenn A.; Fung, Inez

    2004-06-08

    Heightened biological activity was observed in February 1996in the high-nutrient low-chlorophyll (HNLC) subarctic North PacificOcean, a region that is thought to beiron-limited. Here we provideevidence supporting the hypothesis that Ocean Station Papa (OSP) in thesubarctic Pacific received a lateral supply of particulate iron from thecontinental margin off the Aleutian Islands in the winter, coincidentwith the observed biological bloom. Synchrotron X-ray analysis was usedto describe the physical form, chemistry, and depth distributions of ironin size fractionated particulate matter samples. The analysis revealsthat discrete micron-sized iron-rich hotspots are ubiquitous in the upper200m at OSP, more than 900km from the closest coast. The specifics of thechemistry and depth profiles of the Fe hot spots trace them to thecontinental margins. We thus hypothesize that iron hotspots are a markerfor the delivery of iron from the continental margin. We confirm thedelivery of continental margin iron to the open ocean using an oceangeneral circulation model with an iron-like tracer source at thecontinental margin. We suggest that iron from the continental marginstimulated a wintertime phytoplankton bloom, partially relieving the HNLCcondition.

  17. Molecular diversity of sulfate-reducing bacteria from two different continental margin habitats.

    PubMed

    Liu, Xueduan; Bagwell, Christopher E; Wu, Liyou; Devol, Allan H; Zhou, Jizhong

    2003-10-01

    This study examined the natural diversity and distributions of sulfate-reducing bacteria along a natural carbon gradient extending down the shelf-slope transition zone of the eastern Pacific continental margin. Dissimilatory (bi)sulfite reductase gene sequences (dsrAB) were PCR amplified and cloned from five different sampling sites, each at a discrete depth, from two different margin systems, one off the Pacific coast of Mexico and another off the coast of Washington State. A total of 1,762 clones were recovered and evaluated by restriction fragment length polymorphism (RFLP) analysis. The majority of the gene sequences recovered showed site and depth restricted distributions; however, a limited number of gene sequences were widely distributed within and between the margin systems. Cluster analysis identified 175 unique RFLP patterns, and nucleotide sequences were determined for corresponding clones. Several different continental margin DsrA sequences clustered with those from formally characterized taxa belonging to the delta subdivision of the class Proteobacteria (Desulfobulbus propionicus, Desulfosarcina variabilis) and the Bacillus-Clostridium (Desulfotomaculum putei) divisions, although the majority of the recovered sequences were phylogenetically divergent relative to all of the other DsrA sequences available for comparison. This study revealed extensive new genetic diversity among sulfate-reducing bacteria in continental margin sedimentary habitats, which appears to be tightly coupled to slope depth, specifically carbon bioavailability.

  18. Erosion and tectonics at the margins of continental plateaus

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.; Isacks, Bryan L.; Gubbels, Timothy L.; Fielding, Eric J.

    1994-01-01

    We hypothesize that the steep frontal slope and high peaks of the Beni region and Himalayan front largely reflect the high orographic precipitation and high erosion rates occurring in these regions and that the more gentle topography of the semiarid Pilcomayo region reflects a tectonic landform only slightly modified by erosion. We propose that orographic precipitation impinging on a plateau margin will generally tend to drop moisture low on the slope, eroding back the plateau while enhancing or maintaining the steep long-wavelength slope. A numerical model coupling orographic precipitation, erosion, and tectonic uplift demonstrates the plausibility of this hypothesis. The erosional efflux in both the Beni and Nepal Himalaya have been considerable, and simple mass balance calculations for the Himalaya suggest that during the Neogene, the erosional mass efflux has generally outpaced the tectonic mass influx. This contrasts with the apparent prior domination of tectonic influx and may reflect a decrease in the rate of tectonic addition during the same period, and/or increased late Cenozoic erosion rates.

  19. Sequence stratigraphy and continental margin development of the northwestern shelf of the South China Sea

    SciTech Connect

    Chen, P.P.H. ); Zhi Yuong Chen; Qi Min Zhang )

    1993-05-01

    Based on the sequence stratigraphic analyses of the Tertiary in the northwestern continental margin of the South China Sea, this paper summarizes the regional tectonics and their influences on the basin developments and discusses the systems tract distributions through the continental margin growth. The study area is underlain by two Tertiary basins separated by a major basin boundary fault across which two distinctly different basin structural styles developed. The Qiongdongnan basin shows characteristic rift structures and is closely related to the opening of the South China Sea. The Yinggehai basin is filled with thick Neogene monoclines overlying basement without apparent rift structures. The Yinggehai's genesis has been linked to the tectonism along the Red River suture zone. The margin development is characterized by depositional environments of sediment influx constantly exceeding accommodation space. Under these environments, the highstand deltas frequently developed near shelf edges, where vertically stacked shallow water sands of both highstand deltas and lowstand wedges/deltas could produce favorable exploration targets. High rates of sedimentation in the study area allow the identification of fourth-order cyclicity in the Quaternary. Regional sequence stratigraphic correlations suggest that many sequence boundaries appear to be synchronous, but not all boundaries exist in all basins along the eastern and southern continental margins of mainland China. The margin evolved through the repeated development of lowstand fans, lowstand wedges, transgressive systems tracts, and highstand deltas. Prior to the Pliocene, the shelf was sourced both from Vietnam and Hainan Island and, as a result, two shelf margins developed. The southwestern margin stopped growing in the late Miocene, and the northern margin continued to prograde with possible additional sediment inputs through the Red River system in the Quaternary. 29 refs., 22 figs.

  20. Evolution of continental slope gullies on the northern california margin

    USGS Publications Warehouse

    Spinelli, G.A.; Field, M.E.

    2001-01-01

    A series of subparallel, downslope-trending gullies on the northern California continental slope is revealed on high-resolution seismic reflection profiles imaging the uppermost 50 m of sediment. The gullies are typically 100 m wide and have 1 to 3 m of relief. They extend for 10 to 15 km down the slope and merge into larger channels that feed the Trinity Canyon. In the lower half of the 50 m stratigraphic section, the gullies increase in both relief and number up section, to maxima at a surface 5 to 10 m below the last glacial maximum lowstand surface. Gully relief increased as interfluves aggraded more rapidly than thalwegs. Erosion is not evident in the gully bottoms, therefore gully growth was probably due to reduced sediment deposition within the gullies relative to that on interfluves. As the gullies increased in relief, their heads extended upslope toward the shelfbreak. At all times, a minimum of 10 km of non-gullied upper slope and shelf stretched between the heads of the gullies and the paleo-shoreline; the gullies did not connect with a subaerial drainage network at any time. Gully growth occurred when the gully heads were in relatively shallow water (??? 200 m paleo-water depth) and were closest to potential sediment sources. We suggest that prior to the last glacial maximum, the Mad River, then within 10 km of the gully heads, supplied sediment to the upper slope, which fed downslope-eroding sediment flows. These flows removed sediment from nearly parallel gullies at a rate slightly slower than sediment accumulation from the Eel River, 40 km to the south. The process or processes responsible for gully growth and maintenance prior to the last glacial maximum effectively ceased following the lowstand, when sea level rose and gully heads lay in deeper water (??? 300 m water depth), farther from potential sediment sources. During sea-level highstand, the Mad River is separated from the gully heads by a shelf 30 km wide and no longer feeds sediment flows

  1. Anthropogenic impacts on continental margins: New frontiers and engagement arena for global sustainability research and action

    NASA Astrophysics Data System (ADS)

    Liu, K. K.; Glavovic, B.; Limburg, K.; Emeis, K. C.; Thomas, H.; Kremer, H.; Avril, B.; Zhang, J.; Mulholland, M. R.; Glaser, M.; Swaney, D. P.

    2014-12-01

    There is an urgent need to design and implement transformative governance strategies that safeguard Earth's life-support systems essential for long-term human well-being. From a series of meetings of the Continental Margins Working Group co-sponsored by IMBER and LOICZ of IGBP, we conclude that the greatest urgency exists at the ocean-land interface - the continental margins or the Margin - which extends from coastlands over continental shelves and slopes bordering the deep ocean. The Margin is enduring quadruple squeeze from (i) Population growth and rising demands for resources; (ii) Ecosystem degradation and loss; (iii) Rising CO2, climate change and alteration of marine biogeochemistry and ecosystems; and (iv) Rapid and irreversible changes in social-ecological systems. Some areas of the Margin that are subject to the greatest pressures (e.g. the Arctic) are also those for which knowledge of fundamental processes remains most limited. Aside from improving our basic understanding of the nature and variability of the Margin, priority issues include: (i) investment reform to prevent lethal but profitable activities; (ii) risk reduction; and (iii) jurisdiction, equity and fiscal responsibility. However, governance deficits or mismatches are particularly pronounced at the ocean-edge of the Margin and the prevailing Law of the Sea is incapable of resolving these challenges. The "gold rush" of accelerating demands for space and resources, and variability in how this domain is regulated, move the Margin to the forefront of global sustainability research and action. We outline a research strategy in 3 engagement arenas: (a) knowledge and understanding of dynamic Margin processes; (b) development, innovation and risk at the Margin; and (c) governance for sustainability on the Margin. The goals are (1) to better understand Margin social-ecological systems, including their physical and biogeochemical components; (2) to develop practical guidance for sustainable development

  2. High-pressure amphibolite facies dynamic metamorphism and the Mesozoic tectonic evolution of an ancient continental margin, east- central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.

    1995-01-01

    Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors

  3. ON THE WIND-INDUCED EXCHANGE BETWEEN INDIAN RIVER BAY, DELAWARE AND THE ADJACENT CONTINENTAL SHELF. (R826945)

    EPA Science Inventory

    The structure of the wind-induced exchange between Indian River Bay, Delaware and the adjacent continental shelf is examined based on current measurements made at the Indian River Inlet which represents the only conduit of exchange between the bay and the coastal ocean. Local ...

  4. Seismic structure of the U.S. Mid-Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Holbrook, W. Steven; Purdy, G. M.; Sheridan, R. E.; Glover, L., III; Talwani, M.; Ewing, J.; Hutchinson, D.

    1994-09-01

    Multichannel and wide-angle seismic data collected off Virginia during the 1990 EDGE Mid-Atlantic seismic experiment provide the most detailed image to date of the continent-ocean transition on the U.S. Atlantic margin. Multichannel data were acquired using a 10,800 cu inch (177 L) airgun array and 6-km-long streamer, and coincident wide-angle data were recorded by ten ocean bottom seismic instruments. A velocity model constructed by inversion of wide-angle and vertical-incidence travel times shows strong lateral changes in deep-crustal structure across the margin. Lower-crustal velocities are 6.8 km/s in rifted continental crust, increase to 7.5 km/s beneath the outer continental shelf, and decrease to 7.0 km/s in oceanic crust. Prominent seaward- dipping reflections comprise a 100-km-wide, 25-km-thick ocean- continent transition zone that consists almost entirely of mafic igneous material accreted to the margin during continental breakup. The boundary between rifted continental crust and this thick igneous crust is abrupt, occupying only about 20 km of the margin. Appalachian intracrustal reflectivity largely disappears across this boundary as velocity increases from 5.9 km/s to greater than 7.0 km/s, implying that the reflectivity is disrupted by massive intrusion and that very little continental crust persists seaward of the reflective crust persists seaward of the reflective crust. The thick igneous crust is spatially correlated with the East Coast magnetic anomaly, implying that the basalts and underlying intrusives cause the anomaly. The details of the seismic structure and lack of independent evidence for an appropriately located hotspot in the central Atlantic imply that nonplume processes are responsible for the igneous material.

  5. Paleoceanographic model of neogene phosphorite deposition, u.s. Atlantic continental margin.

    PubMed

    Riggs, S R

    1984-01-13

    The Neogene stratigraphic section of the southeastern U.S. continental shelf-coastal plain system is characterized by (i) a series of major regional phosphogenic episodes; (ii) a strong spatial relationship between the structural or topographic framework and phosphate deposition; and (iii) distinct cyclical and regional patterns of deposition of the terrigenous, carbonate, and phosphate lithofacies. The complex depositional patterns are explained by a paleoceanographic model based upon the interaction of glacial eustatic sea-level fluctuations, associated changes in climate, and the dynamics of the Gulf Stream in response to the bathymetric configurations of the continental margin during the past 20 million years.

  6. Supercritical Submarine Channel Morphodynamics from Integrated Investigation of the Western North American Continental Margin

    NASA Astrophysics Data System (ADS)

    Covault, J. A.; Fildani, A.; Hubbard, S. M.; Hughes Clarke, J. E.; Kostic, S.; Paull, C. K.; Sylvester, Z.

    2015-12-01

    Submarine channels are conduits through which turbidity currents and related mass movements transport sediment into the deep sea, thereby playing important roles in the development of continental margins and biogeochemical cycles. To gain a better understanding of submarine channel morphodynamic evolution we explore a variety of channel systems from the western North American continental margin with varying sinuosity and levee geometry, terraces, channel cut-offs, and sediment waves in incipient channels, along thalwegs of well-developed channels, and on levees. Repeat bathymetric surveys of submarine channels in fjords of British Columbia and the Monterey canyon underscore the transience of fine-scale detail in channelized geomorphology, and multi-phase bed reworking, local deposition, and bypass of turbidity currents. Numerical modeling is combined with interpretations of channel geomorphology and strata in the Monterey and San Mateo canyon-channel systems to demonstrate that some of the sediment waves are likely to be cyclic steps. Submarine cyclic steps are long-wave, upstream-migrating bedforms in which each bedform in the series is bounded by a hydraulic jump in an overriding turbidity current, which is Froude-supercritical over the lee side of the bedform and Froude-subcritical over the stoss side. Submarine turbidity currents are susceptible to supercritical flow because of the reduced gravitational acceleration of dilute suspensions. Higher submarine slopes common to the North American continental margin also promote supercritical flow, which might not be as common across lower slopes of large passive margins such as the Amazon, Indus, and Bengal submarine fans. We posit that cyclic steps are a common morphodynamic expression in many continental margins. Continued integration of high-resolution data, such as repeat geophysical surveys, acoustic doppler current profiler measurements, and turbidite outcrops, which provide insights into the longer

  7. The NORWEGIAN-GREENLAND Sea Continental Margins: Morphology and Late Quaternary Sedimentary Processes and Environment

    NASA Astrophysics Data System (ADS)

    Vorren, Tore O.; Laberg, Jan Sverre; Blaume, Frank; Dowdeswell, Julian A.; Kenyon, Neil H.; Mienert, Jürgen; Rumohr, Jan; Werner, Friedrich

    The continental margins surrounding the Norwegian-Greenland Sea are to a large degree shaped by processes during the late Quaternary. The paper gives an overview of the morphology and the processes responsible for the formation of three main groups of morphological features: slides, trough mouth fans and channels. Several large late Quaternary slides have been identified on the eastern Norwegian-Greenland Sea continental margin. The origin of the slides may be due to high sedimentation rates leading to a build-up of excess pore water pressure, perhaps with additional pressure caused by gas bubbles. Triggering might have been prompted by earthquakes or by decomposition of gas hydrates. Trough mouth fans (TMF) are fans at the mouths of transverse troughs on presently or formerly glaciated continental shelves. In the Norwegian-Greenland Sea, seven TMFs have been identified varying in area from 2700 km 2 to 215 000 km 2. The Trough Mouth Fans are depocentres of sediments which have accumulated in front of ice streams draining the large Northwest European ice sheets. The sediments deposited at the shelf break/upper slope by the ice stream were remobilized and transported downslope, mostly as debris flows. The Trough Mouth Fans hold the potential for giving information about the various ice streams feeding them with regard to velocity and ice discharge. Two large deep-sea channel systems have been observed along the Norwegian continental margin, the Lofoten Basin Channel and the Inbis Channel. Along the East Greenland margin, several channel systems have been identified. The deep-sea channels may have been formed by dense water originating from cooling, sea-ice formation and brine rejection close to the glacier margin or they may originate from small slides on the upper slope transforming into debris flows and turbidity currents.

  8. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  9. Ophiolites and Continental Margins of the Mesozoic Western U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Dilek, Y.

    2001-12-01

    The Mesozoic tectonic history of the western U.S. Cordillera records evidence for multiple episodes of accretionary and collisional orogenic events and orogen-parallel strike-slip faulting. Paleozoic-Jurassic volcanic arc complexes and subduction zone assemblages extending from Mexico to Canada represent an East-Pacific magmatic arc system and an accretionary-type orogen evolved along the North American continental margin. Discontinuous exposures of Paleozoic upper mantle rocks and ophiolitic units structurally beneath this magmatic arc system are remnants of the Panthalassan oceanic lithosphere, which was consumed beneath the North American continent. Pieces of this subducted Panthalassan oceanic lithosphere that underwent high-P metamorphism are locally exposed in the Sierra Nevada foothills (e.g. Feather River Peridotite) indicating that they were subsequently (during the Jurassic) educted in an oblique convergent zone along the continental margin. This west-facing continental margin arc evolved in a broad graben system during much of the Jurassic as a result of extension in the upper plate, keeping pace with slab rollback of the east-dipping subduction zone. Lower to Middle Jurassic volcanoplutonic complexes underlain by an Upper Paleozoic-Lower Mesozoic polygenetic ophiolitic basement currently extend from Baja California-western Mexico through the Sierra-Klamath terranes to Stikinia-Intermontane Superterranes in Canada and represent an archipelago of an east-facing ensimatic arc terrane that developed west and outboard of the North American continental margin arc. The Smartville, Great Valley, and Coast Range ophiolites (S-GV-CR) in northern California are part of this ensimatic terrane and represent the island arc, arc basement, and back-arc tectonic settings, respectively. The oceanic Josephine-Rogue-Chetco-Rattlesnake-Hayfork tectonostratigraphic units in the Klamath Mountains constitute a west-facing island arc system in this ensimatic terrane as a

  10. Paleogeography and evolution of the Ordovician/Silurian (Whiterockian-Llandoverian) continental margin in central Nevada

    SciTech Connect

    Britt, L.W. )

    1991-02-01

    In central Nevada, stratigraphic successions of Whiterockian-Llandoverian lithofacies, transitional with autochthonous platform/shelf carbonates to the east, occur in isolated windows in outer slope to basinal lithotopes of the Roberts Mountains allochthon. Petrologic, chronostratigraphic and lithostratigraphic, and paleontologic comparison of those successions with platform/shelf facies to the east is integral for reconstruction of Ordovician-Silurian platform margin paleogeography and pre-Antler genesis of the western North American continental margin. Numerous facies changes and/or stratigraphic omissions in central Nevada can be related to sea level fluctuation and aggradation/progradation of the carbonate platform to the east, and not to a postulated, offshore geanticline (i.e., the Toiyabe Ridge). Stratigraphic omission of the Eureka Quartzite above Pogonip equivalents in transitional successions of the Toquima Range and the presence of correlative quartzite in outer slope/basinal parautochthonous facies of the Toiyabe Range suggest development of a possible bypass-margin during the Middle Ordovician. Deposition of Late Ordovician platform margin dolostones (Ely Springs Dolostone) and upper ramp limestones (Hanson Creek Formation and Martin Ridge strata) followed Late Ordovician transgression that drowned the margin and reestablished the carbonate factory. Glacioeustatic drawdown of Late Ordovician-earliest Silurian seas due to the Gondwanan glacial fluctuation can be recognized in strata along the platform margin and upper ramp. Rapid, Early Silurian transgression produced dark-gray carbonates and may have induced marginal flexure and regional, massive slope failure in central Nevada, generating stratigraphic hiatuses west of the platform margin.

  11. How widely is the Andean type of continental margin represented in the Archean

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1988-01-01

    Application of the principle of uniformitarianism to the Archean was discussed in a search for evidence of Archean-type continental margins in Archean rocks. The author cautioned that Archean rocks represent only 2 percent of the current exposure of the continents, half of which is in the North American Superior Province. Care must be taken in interpreting the global tectonic significance of relatively small exposures of Archean rocks, such as South India. Andean margins were characterized by their elongate shape, magmatic associations, and isotopic signatures. Although the compositional evidence alone will always be ambiguous, it was suggested that supporting structural evidence may aid in the identification of Archean Andean margins. Andean margin remains have been recognized in the Superior Province of Canada by these criteria, and the author suggested that the Closepet granite of South India may represent another example.

  12. Reproductive biology and recruitment of the deep-sea fish community from the NW Mediterranean continental margin

    NASA Astrophysics Data System (ADS)

    Fernandez-Arcaya, U.; Rotllant, G.; Ramirez-Llodra, E.; Recasens, L.; Aguzzi, J.; Flexas, M. M.; Sanchez-Vidal, A.; López-Fernández, P.; García, J. A.; Company, J. B.

    2013-11-01

    Temporal patterns in deep-sea fish reproduction are presently unknown for the majority of deep continental margins. A series of seasonal trawling surveys between depths of 300 to 1750 m in the Blanes submarine canyon and its adjacent open slope (NW Mediterranean) were conducted. The bathymetric size distributions and reproductive cycles of the most abundant species along the NW Mediterranean margin were analyzed to assess the occurrence of (i) temporal patterns in reproduction (i.e., spawning season) along a bathymetric gradient and (ii) preferential depth strata for recruitment. The fish assemblages were grouped in relation to their bathymetric distribution: upper slope, middle slope and lower slope species. Middle-slope species (i.e., 800-1350 m) showed short (i.e., highly seasonal) reproductive activity compared to the upper (300-800 m) and lower (1350-1750 m) ones. Our results, together with those previously published for megabenthic crustacean decapods in the area, suggest a cross-phyla depth-related trend of seasonality in reproduction. In the middle and lower slope species, the reproductive activity reached a maximum in the autumn-winter months and decreased in the spring. The observed seasonal spawning patterns appear to be ultimately correlated with changes in the downward transport of organic particles and with seasonal changes in the physicochemical characteristics of the surrounding water masses. The distribution of juveniles was associated with the bathymetric stratum where intermediate nepheloid layers interact with the continental margins, indicating that this stratum acts as a deep-sea fish nursery area.

  13. Morphology of late Quaternary submarine landslides along the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Twichell, D.C.; Chaytor, J.D.; ten Brink, U.S.; Buczkowski, B.

    2009-01-01

    The nearly complete coverage of the U.S. Atlantic continental slope and rise by multibeam bathymetry and backscatter imagery provides an opportunity to reevaluate the distribution of submarine landslides along the margin and reassess the controls on their formation. Landslides can be divided into two categories based on their source areas: those sourced in submarine canyons and those sourced on the open continental slope and rise. Landslide distribution is in part controlled by the Quaternary history of the margin. They cover 33% of the continental slope and rise of the glacially influenced New England margin, 16% of the sea floor offshore of the fluvially dominated Middle Atlantic margin, and 13% of the sea floor south of Cape Hatteras. The headwall scarps of open-slope sourced landslides occur mostly on the lower slope and upper rise while they occur mostly on the upper slope in the canyon-sourced ones. The deposits from both landslide categories are generally thin (mostly 20-40??m thick) and comprised primarily of Quaternary material, but the volumes of the open-slope sourced landslide deposits can be larger (1-392??km3) than the canyon-sourced ones (1-10??km3). The largest failures are located seaward of shelf-edge deltas along the southern New England margin and near salt domes that breach the sea floor south of Cape Hatteras. The spatial distribution of landslides indicates that earthquakes associated with rebound of the glaciated part of the margin or earthquakes associated with salt domes were probably the primary triggering mechanism although other processes may have pre-conditioned sediments for failure. The largest failures and those that have the potential to generate the largest tsunamis are the open-slope sourced landslides.

  14. Continuous Mantle Exhumation at the Outer Continental Margin of the Santos, Campos and Espírito Santo Basins, Brazil

    NASA Astrophysics Data System (ADS)

    Zalan, P. V.; Severino, M. G.; Rigoti, C. A.; Magnavita, L. P.; Oliveira, J. B.; Viana, A. R.

    2011-12-01

    continental crust pinches out invariably on the flanks of exhumed mantle. This gives rise to a remarkable long (900 km along a N-S direction and 600 km in E-W direction), relatively narrow (15 to 70 km wide) and continuous belt of exhumed mantle that marks the passage from continental crust to oceanic crust in all three basins. The Santos, Campos and Espírito Santo Basins thus form a typical magma-poor passive margin. These are in sharp contrast with the adjacent basin to the south, the Pelotas Basin, that in turn is a typical volcanic passive margin displaying a long (1000 km in a N-S direction) and wide (100 to 220 km) belt of seaward-dipping reflectors at its outer margin and no exhumation of the mantle at the continent-ocean boundary.

  15. Deep crustal structure and continent-ocean boundary along the Galicia continental margin (NW Iberia)

    NASA Astrophysics Data System (ADS)

    Druet, María; Muñoz-Martín, Alfonso; Carbó, Andrés; Acosta, Juan; Granja Bruña, José Luis; Llanes, Pilar; Vázquez, Juan-Tomás; Ercilla, Gemma

    2016-04-01

    The Galicia continental margin is a magma-poor rifted margin with an extremely complex structure. Its formation involves several rifting episodes during the Mesozoic in the vicinity of a ridge triple junction, which produces a change in the orientation of the main structures. In addition, there is an overimposed Cenozoic partial tectonic inversion along its northern border. Although this continental margin has been widely studied since the 70's, most studies have focused on its western part in the transition to the Iberia Abyssal Plain, and there is a significant lack of information on the north and northwestern flanks of this margin. This fact, along with its great structural complexity, has resulted in the absence of a previous comprehensive regional geodynamic model integrating all the processes observed. In the present study we integrate a large volume of new geophysical data (gravity, swath bathymetry and 2D multichannel reflection seismic). Data come from the systematic mapping of the Spanish EEZ project which provides a dense grid of gravity data and full seafloor coverage with swath bathymetry, and from the ERGAP project which provides serially-arranged 2D seismic reflection profiles across the NW Iberia margin. The combined interpretation and modelling of this new information has arisen significant constraints on the origin, the deep crustal structure and the physiographic complexity of the margin, as well as on the characterization of the along- and across-strike variation of the ocean-continent transition along NW Iberia margin. The analysis of this information leads us to propose a conceptual model for the initiation of the tectonic inversion of a magma-poor rifted margin. Finally, a framework for the geodynamic evolution of the Galicia margin has been constructed, involving three main stages: A) an early stage from the end of rifting and oceanic drift in the Bay of Biscay (Santonian); B) an intermediate stage with the beginning of tectonic inversion in

  16. Surface current patterns suggested by suspended sediment distribution over the outer continental margin, Bering Sea

    USGS Publications Warehouse

    Karl, Herman A.; Carlson, P.R.

    1987-01-01

    Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.

  17. Cenozoic tectonic subsidence in the Southern Continental Margin, South China Sea

    NASA Astrophysics Data System (ADS)

    Fang, Penggao; Ding, Weiwei; Fang, Yinxia; Zhao, Zhongxian; Feng, Zhibing

    2016-10-01

    We analyzed two recently acquired multichannel seismic profiles across the Dangerous Grounds and the Reed Bank area in the South China Sea. Reconstruction of the tectonic subsidence shows that the southern continental margin can be divided into three stages with variable subsidence rate. A delay of tectonic subsidence existed in both areas after a break-up, which was likely related to the major mantle convection during seafloor spreading, that was triggered by the secondary mantle convection below the continental margin, in addition to the variation in lithospheric thickness. Meanwhile, the stage with delayed subsidence rate differed along strikes. In the Reed Bank area, this stage is between 32-23.8 Ma, while in the Dangerous Grounds, it was much later (between 19-15.5 Ma). We believe the propagated rifting in the South China Sea dominated the changes of this delayed subsidence rate stage.

  18. Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin

    SciTech Connect

    England, P. ); Wells, R.E. )

    1991-10-01

    Paleomagnetically determined rotations about vertical axes of 15 to 12 Ma flows of the Miocene Columbia River Basalt Group of Oregon and Washington decrease smoothly with distance from the plate margin, consistent with a simple physical model for continental deformation that assumes the lithosphere behaves as a thin layer of fluid. The average rate of northward translation of the continental margin since 15 Ma calculated from the rotations, using this model, is about 15 mm/year, which suggests that much of the tangential motion between the Juan de Fuca and North American plates since middle Miocene time has been taken up by deformation of North America. The fluid-like character of the large-scale deformation implies that the brittle upper crust follows the motions of the deeper parts of the lithosphere.

  19. The U.S. Atlantic continental margin: the best-known gas hydrate locality: Chapter 13

    USGS Publications Warehouse

    Dillon, William P.; Max, Michael D.; Max, M.D.

    2003-01-01

    One of the few attempts to date to map gas hydrate over a large area has been made on the Atlantic continental margin of the United States (Dillon et al., 1993, 1994, 1995). This work has resulted in the production of an extensive data base of seismic reflection lines including both single and multichannel lines, and complete GLORIA sidescan sonar coverage. This work was part of the assessment of the U.S. EEZ and was carried out by the U.S. Geological Survey. Earlier efforts were made by Tucholke et al. (1977) and Shipley, et al. (1979). Research along the U.S. SE continental margin of the U.S. is continuing.

  20. SEISMIC AND GEOCHEMICAL EVIDENCE FOR SHALLOW GAS IN SEDIMENT ON NAVARIN CONTINENTAL MARGIN, BERING SEA.

    USGS Publications Warehouse

    Carlson, Paul R.; Golan-Bac, Margaret; Karl, Herman A.; Kvenvolden, Keith A.

    1985-01-01

    Marine sesmic studies coupled with geochemical investigations demonstrate tha hydrocarbon gases are ubiquitous in the near-surface sediment of the Navarin continental margin in the northern Bering Sea. Three types of acoustic anomalies appear to be related to the presence of gas in the sediment. These anomalies are most prevalent in the northern half of the Navarin basin. Acoustic anomalies attributed to gas hydrates and to diagenetic boundaries are present on seismic records of the lower slope between Navarinsky and Zhemchug Canyons. Hydrocarbon gases, methane through butanes, are common in the surface sediment of the Navarin continental margin. The source of methane is mainly biogenic, but the hydrocarbon gas compositions in 17 of 141 cores suggest the presence of thermogenic gas. No direct correlation could be found between acoustic anomalies and gas concentrations in the sediment. Refs.

  1. Cenomanian-Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin

    SciTech Connect

    Kuhnt, W.; Herbin, J.P.; Thurow, J.; Wiedmann, J.

    1988-08-01

    Pre-Cenomanian sediments of the western Mediterranean and adjacent Atlantic margin are characterized by low total organic content (TOC) with an important terrestrial component. During the Cenomanian, TOC increased and the marine component became dominant, culminating around the Cenomanian-Turonian boundary with TOC up to 40%. After the Turonian, organic-rich sediments progressively disappeared and were replaced by more oxygenated sediments. Study methods include considering data from outcrops, DSDP/ODP sites, or petroleum wells. Detailed data from onshore locations allowed the development of high-resolution stratigraphy, analysis of depositional environment, and calculation of sedimentation rates. Analysis of these data indicates Cenoamnian-Turonian organic-rich sediments can be observed in a wide range of bathymetric settings. They are widespread in the western Mediterranean and Atlantic and have been especially studied in Italy (Apennines, southern Alps), Tunisia (Bahloul), Algeria, Morocco (Rif Mountains, Atlas Mountains, Tarfaya), Gibraltar arch, Spain (Betics, Bay of Biscay, Galicia margin), Senegal (Cape Verde basin, Casamance), and Nigeria (Benue, Calabar flank).

  2. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    USGS Publications Warehouse

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  3. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  4. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment

    DTIC Science & Technology

    1979-01-01

    Bolt, Chairman; Thomas E Graedel. Rolland L . Hardy, Pearn P. Niiler, Barry E. Parsons, George R Tilton, and William R. Winkler, members. ISBN: 0-87590...Ryan ; , l l l l l4 CONTENTS Preface " Mesozoic-Cerozoic Sedimentary Formations of the North American Basin. Western North Atlantic, L . F. Jansa, P. Enos...Continental Margins: Rifting and Subsidence Processes, L . Montadert, 0. de Charpel, D. Roberts. P. Giuennoc and J. Sibitet 154 Geodynamic, Sedimentary and

  5. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin

    NASA Astrophysics Data System (ADS)

    Bünz, Stefan; Mienert, Jürgen; Berndt, Christian

    2003-04-01

    The geologic setting of the formerly glaciated mid-Norwegian continental margin exerts specific controls on the formation of a bottom-simulating reflector (BSR) and the inferred distribution of gas hydrates. On the continental slope the lithology of glacigenic debris flow deposits and pre-glacial basin deposits of the Kai Formation prevent gas-hydrate formation, because of reduced pore size, reduced water content and fine-grained sediment composition. Towards the continental shelf, the shoaling and pinch-out of the gas-hydrate stability zone terminates the area of gas-hydrate growth. These geological controls confine the occurrence of gas hydrates and ensuing formation of a BSR to a small zone along the northern flank of the Storegga submarine slide and the slide area itself. A BSR inside the slide area indicates a dynamically adjusting gas-hydrate system to post-slide pressure-temperature equilibrium conditions. These observations, together with widespread evidence for fluid flow and deep-seated hydrocarbon reservoirs, suggest that the formation of BSR and gas hydrates on the mid-Norwegian continental margin is dominated by an advection of gas from the strata distinctly beneath the gas-hydrate stability zone. Fluids migrate upward within the Naust Formation and are deflected laterally by hydrated sediments and less permeable layers. Gases continually accumulate at the top of the slope, where overpressure eventually results in the formation of blow-out pipes and consequent pockmark development on the seabed.

  6. Sea level rise and submarine mass failures on open continental margins

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Harrison, S.; Jordan, J. T.

    2013-12-01

    Submarine mass failures (which include submarine slides or submarine landslides) occur widely on open continental margins. Understanding their cause is of great importance in view of the danger that they can pose both to coastal populations through tsunamis and to the exploitation of ocean floor resources through mass movement of the sea floor. Present knowledge of the causes of submarine mass failures is briefly reviewed, focussing on the role of sea level rise, a process which has previously only infrequently been cited as a cause. It is argued that sea level rise could easily have been involved in at least some of these events by contributing to increased overpressure in sediments of the continental margin whilst causing seismic activity. The Holocene Storegga Slide off South West Norway may have been partly caused by the early Holocene sea level rise in the area, accentuated by meltwater flux from the discharges of Lake Agassiz-Ojibway in North America. Relative sea level rise increased water loading on the Norwegian continental margin, increasing overpressure in the sediments and also causing seismic activity, triggering the Holocene Storegga Slide. Given that some forecasts of future sea level rise are not greatly different from rises which obtained during the early Holocene, the implications of rising sea levels for submarine mass failures in a global warming world are considered.

  7. The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.

    2004-12-01

    The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated

  8. The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.

    2007-12-01

    The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated

  9. Constraining lithosphere deformation modes during continental breakup for the Iberia-Newfoundland conjugate rifted margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto; Cowie, Leanne

    2016-06-01

    A kinematic model of lithosphere and asthenosphere deformation has been used to investigate lithosphere stretching and thinning modes during continental rifting leading to breakup and seafloor spreading. The model has been applied to two conjugate profiles across the Iberia-Newfoundland rifted margins and quantitatively calibrated using observed present-day water loaded subsidence and crustal thickness, together with observed mantle exhumation, subsidence and melting generation histories. The kinematic model uses an evolving prescribed flow-field to deform the lithosphere and asthenosphere leading to lithospheric breakup from which continental crustal thinning, lithosphere thermal evolution, decompression melt initiation and subsidence are predicted. We explore the sensitivity of model predictions to extension rate history, deformation migration and buoyancy induced upwelling. The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require; (1) an initial broad region of lithosphere deformation with passive upwelling, (2) lateral migration of deformation, (3) an increase in extension rate with time, (4) focussing of the deformation and (5) buoyancy induced upwelling. The model prediction of exhumed mantle at the Iberia-Newfoundland margins, as observed, requires a critical threshold of melting to be exceeded before melt extraction. The preferred calibrated models predict faster extension rates and earlier continental crustal separation and mantle exhumation for the Iberia Abyssal Plain-Flemish Pass conjugate margin profile than for the Galicia Bank-Flemish Cap profile to the north. The predicted N-S differences in the deformation evolution give insights into the 3D evolution of Iberia-Newfoundland margin crustal separation.

  10. Ice Sheet History from Antarctic Continental Margin Sediments: The ANTOSTRAT Approach

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Camerlenghi, A.; Cooper, A. K.; Davey, F.J.; Domack, E.W.; Escutia, C.; Kristoffersen, Y.; O'Brien, P.E.

    1998-01-01

    The Antarctic Ice Sheet is today an important part of the global climate engine, and probably has been so for most of its long existence. However, the details of its history are poorly known, despite the measurement and use, over two decades, of low-latitude proxies of ice sheet volume. An additional way of determining ice sheet history is now available, based on understanding terrigenous sediment transport and deposition under a glacial regime. It requires direct sampling of the prograded wedge of glacial sediments deposited at the Antarctic continental margin (and of derived sediments on the continental rise) at a small number of key sites, and combines the resulting data using numerical models of ice sheet development. The new phase of sampling is embodied mainly in a suite of proposals to the Ocean Drilling Program, generated by separate regional proponent groups co-ordinated through ANTOSTRAT (the Antarctic Offshore Acoustic Stratigraphy initiative). The first set of margin sites has now been drilled as ODP Leg 178 to the Antarctic Peninsula margin, and a first, short season of inshore drilling at Cape Roberts, Ross Sea, has been completed. Leg 178 and Cape Roberts drilling results are described briefly here, together with an outline of key elements of the overall strategy for determining glacial history, and of the potential contributions of drilling other Antarctic margins investigated by ANTOSTRAT. ODP Leg 178 also recovered continuous ultra-high-resolution Holocene biogenic sections at two sites within a protected, glacially-overdeepened basin (Palmer Deep) on the inner continental shelf of the Antarctic Peninsula. These and similar sites from around the Antarctic margin are a valuable resource when linked with ice cores and equivalent sections at lower latitude sites for studies of decadal and millenial-scale climate variation.

  11. Miocene to Present evolution of the Calabria Tyrrhenian continental margin (Southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Pepe, F.; Sulli, A.; Bertotti, G.; Cella, F.

    2009-04-01

    The Miocene to Present evolution of the Calabria Tyrrhenian Continental Margin (CTCM, Southern Tyrrhenian Sea) are reconstructed using two ENE-WSW oriented, near-vertical seismic profiles (CROP-M27 and SISTER 11 lines). The interpreted profiles were time-to-depth converted, merged and translated in a geological section, which was also extended to the Tyrrhenian bathial plain and the Calabrian arc using wide-angle seismic data [Scarascia et al., 1994], and tested with gravity modelling. Across the CTCM, top of KCU is laterally variable in depth forming basins filled by Oligo-Miocene clastic to terrigenous deposits up to 1500m thick. Basins are separated by major structures with contractional or transcurrent kinematics, where faults are arranged in a positive flower structure fashion, affecting the KCU as well as lower Oligocene to Miocene deposits. The Messinian evaporites display essentially a constant thickness of ~-400m with the exception of the Paola Basin where deep-water Messinian evaporites are up to 1000 m thick. Plio-Quaternary deposits display a remarkable variation in thickness from ~-4.5 km in the Paola Basin to less then 400m in the central sector of the margin. Plio-Quaternary sediments are internally sub-divisible into four sub-units separated by tectonics enhanced angular unconformities. W-ward vergent reverse faults with limited vertical displacement offset the top of KCU as well as the Oligo-Miocene sedimentary and evaporitic units in the eastern side of the Paola basin and in the distal part of the CTCM where a number of closely spaced, W-vergent thrust faults are also observed in the Plio-Pleistocene deposits. Along the CTCM, the only significant normal fault which was identified is located around its central sector, dips to the W and has a displacement of ~-580m. Across the margin, the Moho was inferred at ~-35 km beneath the Calabria Arc and shallows up to 24 km in correspondence with the coastline. Moho deepens again to a depth of ~-28 km in

  12. Anomalous Subsidence of the Ocean Continent Transition at Rifted Continental Margins: Observations from the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.

    2011-12-01

    It has been proposed that some continental rifted margins have anomalous early subsidence histories and that at break-up they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn- or early post-breakup subsidence, of this form, would have important implications for our understanding of the geodynamics of continental breakup and sea-floor spreading initiation and important consequences for syn- and post-breakup depositional systems. Possible explanations for anomalous subsidence during continental breakup could include transient effects as the continental geotherm evolves towards an oceanic form, or small scale convection. Lucazeau et al. (2008) have reported anomalously high heat-flows in the ocean continent transition (OCT) of the young rifted margin of the Eastern Gulf of Aden which would have implications for its subsidence history. In order to verify (or otherwise) the proposition of an anomalous early post-breakup subsidence history in the Eastern Gulf of Aden, we have determined anomalous oceanic subsidence using residual depth anomaly (RDA) analysis and have compared lithosphere thinning across the OCT measured using subsidence analysis with continental crustal basement thinning from gravity inversion. Both 3D regional and localised 2D analyses have been carried out. The localised studies focus on published seismic reflection lines (Autin et al, 2010; D'Acremont et al, 2005; Fournier et al, 2007; Leroy et al, 2004; Leroy et al, 2010; Lucazeau et al 2008; Lucazeau et al 2010). RDAs have been calculated by comparing observed and predicted oceanic bathymetries. Regional 3D RDAs for the Gulf of Aden, without a sediment correction, show positive RDAs between 3km and 4km at the rifted margins decreasing to 0.5km at the ocean ridge axis. Localised 2D sediment corrected RDA profiles determined within and adjacent to the OCT of the Eastern Gulf of Aden are also

  13. Rift migration explains continental margin asymmetry and crustal hyper-extension

    PubMed Central

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.

    2014-01-01

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463

  14. The deep structure of the east Oman continental margin: preliminary results and interpretation

    NASA Astrophysics Data System (ADS)

    Barton, P. J.; Owen, T. R. E.; White, R. S.

    1990-02-01

    We describe preliminary results of a coincident normal incidence and wide-angle Seismic experiment across the east Oman continental margin just north of the Masirah Island ophiolite. This margin is affected by tectonic deformation and may be the site of margin-parallel shear in a zone parallel to the Owen Fracture Zone. The reflection profile is used to define upper crustal structure and shows a deep offshore basin dammed oceanwards by a ridge, interpreted here as a rotated fault block. Wide-angle data were collected using ten digital ocean-bottom Seismometers and 110 explosive shots. Preliminary raytracing of a crustal model based on the gravity model of Whitmarsh (1979) shows rapid changes in crustal thickness across the margin. A steep landward dipping reflector, probably the Moho, lies beneath the continental slope. The orientation of this reflector is exactly opposite to the direction of tectonic fabric predicted by a simple overthrust model of ophiolite emplacement from the ocean basin to the east.

  15. Rift migration explains continental margin asymmetry and crustal hyper-extension.

    PubMed

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V

    2014-06-06

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other.

  16. Geomorphology and Neogene tectonic evolution of the Palomares continental margin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gómez de la Peña, Laura; Gràcia, Eulàlia; Muñoz, Araceli; Acosta, Juan; Gómez-Ballesteros, María; R. Ranero, César; Uchupi, Elazar

    2016-10-01

    The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike-slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw < 5.2) shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero

  17. Structure maps and seismic stratigraphy of the Yakataga segment of the continental margin, northern Gulf of Alaska

    USGS Publications Warehouse

    Bruns, T.R.; Schwab, W.C.

    1983-01-01

    Multichannel seismic-reflection data show the late Cenozoic structure, seismic stratigraphy, and geologic history of the Yakataga segment of the continental margin, between Icy Bay and Kayak Island, northern Gulf of Alaska. The structure of the Yakataga segment consists of broad folds and associated thrust faults beneath the continental shelf and slope, trending generally northeast in the eastern part of the s~gment to east-west in the western part. Anticlines are generally asymmetric and doubly plunging and are commonly bounded on the seaward side by high-angle thrust faults. The degree of deformation is less intense than is observed in adjacent onshore areas. The age of deformation decreases seaward and the deformation shows an overall southeastward migration with time. Structures of similar age define three structural zones; structural growth was roughly contemporaneous in each structural zone, although the local growth pattern is complex in detail. Deformation within each structural zone was followed by subsidence and burial by rapidly deposited marine sediment. Deformation appears to have been continuous during the late Cenozoic, rather than a series of discrete events, because subsidence of a particular structural zone is accompanied by initiation of growth on a younger, more seaward zone. Varying degrees of reactivation of the older structures within recent time have resulted in renewed uplift of these structures. Average sedimentation, uplift, and subsidence rates are all extremely high, and generally range from about 1 to 2 m/1,000 yr; these rates can locally be much higher. The average strike of structures in the Yakataga segment indicates northwest-southeastward compression and is consistent with the current convergence direction between the Pacific and North America plates. Observed shortening within the segment is much less than required by the late Cenozoic convergence rate (about 6 cm/yr), and the major deformation is taken up elsewhere, primarily

  18. Assessing Geotechnical Parameters and Slope Stability on the Architecture of Continental Margins

    NASA Astrophysics Data System (ADS)

    Hutton, E. W.; Syvitski, J. P.

    2001-12-01

    SedFlux integrates process-based event models so as to numerically: 1) spread fluvial bedload across delta flats, 2) erode uplifted marine deposits, 3) disperse sediment from a river through surface (hypopycnal) plumes, or 4) subsurface (hyperpycnal) plumes, 5) disperse/sort shelf deposits by ocean storms, 6) fail seafloor deposits and remove as a turbidity current, or 7) a debris flow, 8) change the basin configuration due to thermal subsidence, or 9) tectonics (faults, uplift), and 10) compact the final deposit. SedFlux processes interact with evolving boundary conditions given: 11) fluctuations in sea level, 12) supply of sediment, and 13) ocean energy. Inevitably such a comprehensive model relies on a wide variety of input parameters that control these processes. They may be domain parameters that are set for a particular modeled region and are thus time-invariant and space-invariant. In contrast, many of the geotechnical parameters (sediment cohesion, sediment yield, Coulomb friction, permeability, plasticity index, porosity, viscosity, and consolidation coefficient) may be calculated using empirical relationships based on the properties of the developing deposit. In that sense the geotechnical parameters within the model domain vary in time and space. A series of numerical experiments were run: i) to determine how domain-invariant geotechnical input parameters affect the development of a continental margin; and ii) to contrast how margins would develop if these geotechnical parameters were allowed to vary based on deposit characteristics. As the coefficient of consolidation decreases, the numerical margins change from ones showing fewer failures, to margins having more failures located near the shelf-slope break, to margins having upper- to mid-slope failures. As sediment cohesion is increased, failure size increases but the number of seafloor failures decreases. As sediment yield increases, debris flows increasingly deposit their load on the continental

  19. Kinematic evolution of the southwestern Arabian continental margin: implications for the origin of the Red Sea

    NASA Astrophysics Data System (ADS)

    Voggenreiter, W.; Hötzl, H.

    The tectonic and magnetic evolution of the Jizan coastal plain (Tihama Asir) in southwest Arabia was dominated by SW-NE lithospheric extension related to the development of the Red Sea Rift. A well-exposed, isotopically-dated succession of magmatic rocks (Jizan Group volcanics, Tihama Asir Magmatic Complex) allows a kinematic analysis for this part of the Arabian Red Sea margin. A mafic dyke swarm and several generations of roughly NW-trending normal faults characterized the continental rift stage from Oligocene to early Miocene time. Major uplift of the Arabian graben shoulder probably began about 14 Ma ago. By this time, extension and magmatism ceased in the Jizan area and were followed by an approximately 10 Ma interval of tectonic and magmatic quiescence. A second phase of extension began in the Pliocene and facilitated a vast outpouring of alkaliolivine basalts on the coastal plain. The geometry of faulting in the Jizan area supports a Wernicke-type simple-shear mechanism of continental rifting for the southern Arabian continental margin of the Red Sea.

  20. Tectonic elements of the continental margin of East Antarctica, 38-164ºE

    USGS Publications Warehouse

    O'Brien, P.E.; Stagg, H.M.J.

    2007-01-01

    The East Antarctic continental margin from 38–164ºE is divided into western and eastern provinces that developed during the separation of India from Australia–Antarctica (Early Cretaceous) and Australia from Antarctica (Late Cretaceous). In the overlap between these provinces the geology is complex and bears the imprint of both extension/spreading episodes, with an overprinting of volcanism. The main rift-bounding faults appear to approximately coincide with the outer edge of the continental shelf. Inboard of these faults, the sedimentary cover thins above shallowing basement towards the coast where crystalline basement generally crops out. The continental slope and the landward flanks of the ocean basins, are blanketed by up to 9–10 km of mainly post-rift sediments in margin-parallel basins, except in the Bruce Rise area. Beneath this blanket, extensive rift basins are identified off Enderby and Wilkes Land/Terre Adélie; however, their extent and detailed structures are difficult to determine.

  1. Macrobenthic community structure over the continental margin of Crete (South Aegean Sea, NE Mediterranean)

    NASA Astrophysics Data System (ADS)

    Tselepides, Anastasios; Papadopoulou, Konstantia-N.; Podaras, Dimitris; Plaiti, Wanda; Koutsoubas, Drosos

    2000-08-01

    Macrobenthic faunal composition, abundance, biomass and diversity together with a suite of sedimentary environmental parameters were investigated on a seasonal basis in order to determine factors regulating faunal distribution over the oligotrophic continental margin of the island of Crete (South Aegean Sea, North Eastern Mediterranean). Macrofaunal species composition was similar to that of the western Mediterranean and the neighboring Atlantic having several common dominant species. Mean benthic biomass, abundance and diversity decreased with depth, with a major transition zone occurring at 540 m, beyond which values declined sharply. At comparable depths biomass and abundance values were considerably lower to those found in the Atlantic, high-lighting the extreme oligotrophy of the area. The continental margin of Crete was characterised by a high diversity upper continental shelf environment (dominated by surface deposit feeding polychaetes) and a very low diversity slope and deep-basin environment (dominated by carnivorous and filter feeding polychaetes). Classification and ordination analyses revealed the existence of four principle clusters divided by a faunal boundary between 200 and 540 m, as well as beyond 940 m depth. Significant correlations between macrofauna and sediment parameters led to the conclusion that besides depth, food availability (as manifested by the concentration of chloroplastic pigments) is the principle regulating factor in the system. Such being the case, the prevailing hydrographic features that structure the pelagic food web and are directly responsible for the propagation of organic matter to the benthos also affect its community structure.

  2. How is continental break-up recorded in magma-poor rifted margins?

    NASA Astrophysics Data System (ADS)

    Peron-Pinvidic, G.; Manatschal, G.; Minshull, T.; Sawyer, D.

    2006-12-01

    In classical models of continental break-up, rifting is immediately followed by seafloor spreading, which implies that break-up can be identified as a specific spatial and temporal boundary. However, this simple concept is not supported by observations at rifted margins. The classical indicators for determining break-up (break-up unconformity, magnetic anomalies, distribution of high-angle faults and sedimentary wedges) may no longer be relied upon to identify unambiguously the location and age of break-up. We studied the spatial and temporal evolution of the deep Iberia-Newfoundland margins, which are the type examples of magma-poor rifted margins. Our study was based on borehole data and on a mapping of the sedimentary and basement architecture in 3D on seismic reflection profiles. Our results allow us to describe the tectono-sedimentary and morpho-tectonic evolution of final rifting and show that continental break-up is complex. In the Iberia-Newfoundland rift system, the tectono-sedimentary evolution of final rifting can be reconstructed back to 145Ma, when the crust was already thinned to less than 10km. Two major deformation phases have been identified: a first, Tithonian to Barremian in age (145-128Ma) and a second, dated as latest Aptian (112Ma). The Tithonian-Barremian phase is characterized by a migration of the tectonic activity oceanwards and a change of the deformation mechanisms from south to north, from zones of mantle exhumed via downward concave faults to classical half-grabens formed by the normal tilting of thinned continental blocks along upward concave faults. This phase terminates with the formation of the first unequivocal magnetic anomaly (M3 128Ma) and the accretion of more than 170km of crust, at rates of about 1cm/yr, that is neither oceanic nor continental, commonly referred to as Zone of Exhumed Continental Mantle (ZECM). The late-Aptian phase is associated with a major tectono-magmatic event and is responsible for the observed basement

  3. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically

  4. Shallow-mantle Recycling and Anomalous, Voluminous Volcanism along the Northern and Northwestern African Continental Margin

    NASA Astrophysics Data System (ADS)

    Bryce, J. G.; Blichert-Toft, J.; Graham, D. W.; Miller, S. A.

    2015-12-01

    Mantle-derived volcanism on Earth's surface is generally associated with magma generation as a consequence of volatile addition to suprasubduction zone mantle or in response to decompression melting at diverging plates or in thermochemical anomalies thought to originate deep in the convecting mantle. Many of the hotspots surrounding the northern and northwestern African margin are thought to originate from decompression melting due to upwellings from deep thermochemical anomalies. Similar compositions of lavas erupted in Sicily in the Hyblean Plateau and Mount Etna, Europe's largest most active volcano, have been attributed to contributions from subduction zone enrichments. Considering high-MgO lavas from the northern to northwestern African-Mediterranean margins in the context of recent petrologic models we find the strong majority of the lavas in this region are predominantly alkaline and bear geochemical signatures consistent with derivation from fusible lithologies (volatilized peridotite and/or pyroxenite) [1]. Such results are consistent with implications from recent experimental results that suggest that the mobilization of hydrous, carbonate-rich melts commonly occurs during subduction zone processing [2]. Accordingly, we argue many products generally considered "hot spot" volcanism in this region largely result from partial melting of easily fusible pyroxene-rich and carbonated mantle domains that are relics of shallow-level recycling of volatile-rich melts and/or lithosphere shed during plate boundary processes along the African margin. Long-lived volcanism near continental margins subsequently develops as a consequence of convective anomalies associated with unique tectonic arrangements (oversteepened slabs or slab windows) [3] or, alternatively, as manifestations of convective tectonic anomalies beneath thin lithosphere juxtaposed next to thicker, more stable continental margins [4]. [1] Herzberg and Asimow, 2008; [2] Poli, 2015; [3] Schellart, 2010; [4

  5. Early Cenozoic tectonic quiescence at the southern Levant continental margin, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Schattner, Uri; Segev, Amit; Lyakhovsky, Vladimir

    2010-05-01

    The geological record of the easternmost Mediterranean shows almost continuous tectonic activity across the Levant continental margin since its formation during the early Mesozoic until the Recent. The margin developed as part of the Gondwana super continent breakup. Since mid Cenozoic onwards Gondwana descendants, the African and Arabian plates, progressively collided with Eurasia. This collision along with the initiation activity of the Afar plume led to the Cenozoic reactivation of the Levant margin. We explore the geodynamic development of the Levant region between its formation and reactivation through one of the poorly understood time periods in its history. Geological evidence shows that tectonomagmatic processes associated with the formation of the Levant margin and later geodynamic events lasted until the Maastrichtian. During the following ~25 Myr exclusively, thick pelagic and deep sea sediments accumulated on the submerged northwestern Arabian plate. We interpret this early-to-middle Paleogene time window as a unique interval of tectonic and magmatic quiescence. During this mature post continental, breakup stage, thermal equilibrium and isostatic compensation were achieved. A three-dimensional layered lithosphere model was constructed to describe this Middle-Late Eocene geodynamic scene of the Levant area before its reactivation. Layers of the model include the Moho, top of the basement interfaces and the top Avedat Group (Upper Eocene) interfaces. The model was established after a 100 km horizontal restoration along the Dead Sea transform and vertical correction by isostatic compensation to achieve the paleo structure which prevailed in the study area at the end of the Eocene. The reconstructed elevation defines a ramp-shaped structure compatible with independent geological evidence. Results show that most parts of the central Levant margin were submerged ~200 m to ~1800 m, while the paleo bathymetric slopes ranged from ~2° (shelf) to ~6° (slope

  6. Basement Tectonics 8: Characterization and comparison of ancient and mesozoic continental margins

    SciTech Connect

    Bartholomew, M.J. . Inst. of Earth Sciences and Resources); Hyndman, D.W. . Dept. of Geology); Mogk, D.W. . Dept. of Earth Sciences); Mason, R. . Dept. of Geological Sciences)

    1988-01-01

    The International Conference on Basement Tectonics was held in Butte, Montana, August 8--12,1988. Historically, basement tectonics conferences have focused on such topics as reactivation of faults, the influence of basement faults on metallogeny and hydrocarbon accumulation, and the use of geophysical and remote sensing techniques to interpret subsurface and surface geology. The 8th Conference diverged from past conferences in that a unifying theme was selected. Because ancient major terrane or cratonic boundaries are often postulated to be fault zones which are subsequently reactivated, the conference was organized to examine all aspects of ancient continental margins and terrane boundaries and to compare younger (Mesozoic) ones, about which more is known, with older (Paleozoic and Precambrian) ones. Moreover, because the 8th Conference was held in the northwestern United States, a greater emphasis was placed on the Mesozoic margin of western North America and the North American shield. The seven oral sessions and four poster sessions all dealt with aspects of the conference theme: characterization and comparison of ancient continental margins. The papers will be indexed individually.

  7. Basement Tectonics 8: Characterization and comparison of ancient and mesozoic continental margins. Proceedings

    SciTech Connect

    Bartholomew, M.J.; Hyndman, D.W.; Mogk, D.W.; Mason, R.

    1988-12-31

    The International Conference on Basement Tectonics was held in Butte, Montana, August 8--12,1988. Historically, basement tectonics conferences have focused on such topics as reactivation of faults, the influence of basement faults on metallogeny and hydrocarbon accumulation, and the use of geophysical and remote sensing techniques to interpret subsurface and surface geology. The 8th Conference diverged from past conferences in that a unifying theme was selected. Because ancient major terrane or cratonic boundaries are often postulated to be fault zones which are subsequently reactivated, the conference was organized to examine all aspects of ancient continental margins and terrane boundaries and to compare younger (Mesozoic) ones, about which more is known, with older (Paleozoic and Precambrian) ones. Moreover, because the 8th Conference was held in the northwestern United States, a greater emphasis was placed on the Mesozoic margin of western North America and the North American shield. The seven oral sessions and four poster sessions all dealt with aspects of the conference theme: characterization and comparison of ancient continental margins. The papers will be indexed individually.

  8. The three scales of submarine groundwater flow and discharge across passive continental margins

    USGS Publications Warehouse

    Bratton, J.F.

    2010-01-01

    Increased study of submarine groundwater systems in recent years has provided a wealth of new data and techniques, but some ambiguity has been introduced by insufficient distinguishing of the relevant spatial scales of the phenomena studied. Submarine groundwater flow and discharge on passive continental margins can be most productively studied and discussed by distinct consideration of the following three spatial scales: (1) the nearshore scale, spanning approximately 0-10 m offshore and including the unconfined surficial aquifer; (2) the embayment scale, spanning approximately 10 m to as much as 10 km offshore and including the first confined submarine aquifer and its terminus; and (3) the shelf scale, spanning the width and thickness of the aquifers of the entire continental shelf, from the base of the first confined aquifer downward to the basement, and including influences of geothermal convection and glacioeustatic change in sea level. ?? 2010 by The University of Chicago. All rights reserved.

  9. The Mid Pleistocene Climate Transition Recorded in a Hemipelagic Sediment Drift (ODP Leg 194): Implications for the Understanding of Continental Margin Sediment Sources and Sinks

    NASA Astrophysics Data System (ADS)

    Obrochta, S. P.; Hine, A. C.; Flower, B. P.; Locker, S. D.; Brooks, G. R.

    2002-12-01

    The Marion Plateau (NE Australia margin) provides an ideal setting to study continental margin paleoceanographic history. It is not significantly current scoured and is located at upper continental slope depths, freeing it from the influence of large sediment gravity flows. Atop the plateau, a hemipelagic sediment drift is perched and was drilled on Ocean Drilling Program Leg 194 (site 1198). The lithologic record and other shipboard-acquired data sets (physical properties, downhole logging), as well as the site-survey seismic data all suggest that cyclicity dominates this sedimentary section, which encompasses the Mid Pleistocene climate transition (0.9 to 0.92 Ma). This period contains the transition from a 41 k.y. cycle (ice volume and temperature) to 100 k.y. (ice volume and temperature) cycle dominated world. Preliminary results indicate that the basic stratigraphic units of this drift record terrestrial climate, continental margin, and pelagic processes. Mass accumulation rates of the siliciclastic, neritic carbonate, and pelagic carbonate components represent orbitally-forced cycles that form a predictable sedimentary architecture, and grain size variations are a proxy for fluctuations in bottom current strength. The terrigenous flux varies as a function of both aridity/humidity variation on the adjacent continent and sea-level fluctuations, while the carbonate flux varies as a function of paleoproductivity of the overlying water column plus lateral input from the developing Great Barrier Reef. Examination of the changing sedimentary architecture of this drift during the Mid Pleistocene climate transition will further the understanding of sedimentary sources and sinks along continental margins, including their sensitivity to sea level, climate, and circulation changes.

  10. Shelf basin exchange along the Siberian continental margin: Modification of Atlantic Water and Lower Halocline Water

    NASA Astrophysics Data System (ADS)

    Bauch, Dorothea; Cherniavskaia, Ekaterina; Timokhov, Leonid

    2016-09-01

    Salinity and stable oxygen isotope (δ18O) evidence shows a modification of Atlantic Water in the Arctic Ocean by a mixture of sea-ice meltwater and meteoric waters along the Barents Sea continental margin. On average no further influence of meteoric waters is detectable within the core of the Atlantic Water east of the Kara Sea as indicated by constant δ18O, while salinity further decreases along the Siberian continental slope. Lower Halocline Waters (LHW) may be divided into different types by Principal Component Analysis. All LHW types show the addition of river water and an influence of sea-ice formation to a varying extent. The geographical distribution of LHW types suggest that the high salinity type of LHW forms in the Barents and Kara seas, while other LHW types are formed either in the northwestern Laptev Sea or from southeastern Kara Sea waters that enter the northwestern Laptev Sea through Vilkitsky Strait. No further modification of LHW is seen in the eastern Laptev Sea but the distribution of LHW-types suggest a bifurcation of LHW at this location, possibly with one branch continuing along the continental margin and a second branch along the Lomonosov Ridge. We see no pronounced distinction between onshore and offshore LHW types, as the LHW components that are found within the halocline over the basin also show a narrow bottom-bound distribution at the continental slope that is consistent with a shelf boundary current as well as a jet of water entering the western Laptev Sea from the Kara Sea through Vilkitsky Strait.

  11. Vestiges of a continental margin ophiolite type in the Novo Oriente region, Borborema Province, NE Brazil

    NASA Astrophysics Data System (ADS)

    Pitombeira, João Paulo Araújo; Amaral, Wagner da Silva; Uchôa Filho, Evilarde Carvalho; Fuck, Reinhardt Adolfo; Dantas, Elton Luiz; Parente, Clóvis Vaz; da Costa, Felipe Grandjean; Veríssimo, César Ulisses Vieira

    2017-01-01

    The Novo Oriente Group is a restricted well-preserved metasedimentary sequence, composed of two tectonic-stratigraphic sequences in the southwestern portion of the Ceará Central Domain, NE Brazil. The Bonsucesso Formation comprises mainly quartzite and metamafic rocks and the Caraúbas Formation is dominantly metapelitic, with chemical sedimentary contribution, metamafic and metaultramafic rocks. New integrated field, geochemical data and Sm-Nd isotopes of the metaultramafic and metamafic rocks of the two formations have been investigated in order to determine their tectonic setting. The metaultramafic rocks are dominantly composed of deformed and undeformed serpentinites, chloritites, actinolitites, talc-chlorite schists, serpentine-talc schists, talc-rich siliceous rocks and subordinated listwänites. Geochemical data indicate that the serpentinites correspond to rocks resulting from the alteration of dunites depleted in HREE, similar to the pattern presented by subduction-zone serpentinites generated from exhumed sub-continental peridotites and hydrated during ocean-continent transition (OCT) rifting. The metamafic rocks, represented by metagabbros, hornblende metagabbros and metabasalts, consist of basic rocks of basaltic and tholeiitic affinity with signatures between E- and N-MORB and variable contamination by crustal components similar to the rocks formed from the interaction between mantle plumes and heavily thinned continental crust. Isotopic analysis indicates crustal assimilation with negative ɛNd and Paleoproterozoic TDM ages. The data suggest that metaultramafic and metamafic rocks correspond, respectively, to continental sub-lithospheric mantle exhumed in an area of ocean-continent transition (OCT), and mafic magmatism associated with the development of a magma-poor passive margin generated by the break-up of the Rodinia Supercontinent, which was later dismembered by the Brasiliano/Pan-African Orogeny collisional phase and preserved as a Continental

  12. Stratigraphic evolution of Mesozoic continental margin and oceanic sequences northwest Australia and north Himalayas

    SciTech Connect

    Gradstein, F.M. ); Von Rad, U. )

    1990-05-01

    The authors are investigating continental margin to ocean sequences of the incipient Indian Ocean as it replaced central Tethys. Objectives of this study are the dynamic relation between sedimentation, tectonics, and paleogeography. Principal basins formation along the northern edge of eastern Gondwana started in the Late Permian to the Triassic. By the Late Triassic-Early Jurassic, platform carbonates with thin, organic-rich lagoonal shales were laid down in a subtropical climate. This unit, which harbors some of the oldest known nannofossils, shows repeated shallowing-upward sequences. Subsequent southward drift of the Gondwana margin during the Middle Jurassic increased siliciclastic input in Nepal, when widespread sediment starvation or erosion during local uplift took place off parts of northwest Australia. A middle Callovian-early Oxfordian hiatus in Nepal is submarine and appears global in extent. The overlying 250-m-thick organic-rich black shales, correlative to the Oxford/Kimmeridge clays of circum-Atlantic petroleum basins, may be traced along the northern Himalayan Range, and probably represent an extensive continental slope deposit formed under an oxygen minimum layer in southern Tethys. The deposit's diverse foraminiferal microfauna was previously only known from boreal Laurasia. The Callovian breakup unconformity, off northwest Australia, precedes onset of sea-floor spreading at least 15-25 Ma. Sea-floor spreading, leading to the present Indian Ocean started in the Argo Abyssal Plain around 140 Ma, at the end of the Jurassic, was about 15 m.y. later than previously postulated. Australia and Greater India separated as early as the Late Valanginian, about 130 Ma. Mafic volcaniclastics in Nepalese deltaic sediments probably testify to concurrent continental margin volcanic activity, which may be a precursor to the slightly younger Rajmahal traps in eastern India.

  13. Decadal changes in carbon fluxes at the East Siberian continental margin: interactions of ice cover, ocean productivity, particle sedimentation and benthic life

    NASA Astrophysics Data System (ADS)

    Boetius, A.; Bienhold, C.; Felden, J.; Fernandez Mendez, M.; Gusky, M.; Rossel, P. E.; Vedenin, A.; Wenzhoefer, F.

    2015-12-01

    The observed and predicted Climate-Carbon-Cryosphere interactions in the Arctic Ocean are likely to alter productivity and carbon fluxes of the Siberian continental margin and adjacent basins. Here, we compare field observations and samples obtained in the nineties, and recently in 2012 during the sea ice minimum, to assess decadal changes in the productivity, export and recycling of organic matter at the outer East Siberian margin. In the 90s, the Laptev Sea margin was still largely ice-covered throughout the year, and the samples and measurements obtained represent an ecological baseline against which current and future ecosystem shifts can be assessed. The POLARSTERN expedition IceArc (ARK-XXVII/3) returned in September 2012 to resample the same transects between 60 and 3400 m water depth as well as stations in the adjacent deep basins. Our results suggest that environmental changes in the past two decades, foremost sea ice thinning and retreat, have led to a substantial increase in phytodetritus sedimentation to the seafloor, especially at the lower margin and adjacent basins. This is reflected in increased benthic microbial activities, leading to higher carbon remineralization rates, especially deeper than 3000 m. Besides a relative increase in typical particle degrading bacterial types in surface sediments, bacterial community composition showed little variation between the two years, suggesting that local microbial communities can cope with changing food input. First assessments of faunal abundances suggest an increase in polychaetes,holothurians and bivalves at depth, which fits the prediction of higher productivity and particle deposition rates upon sea ice retreat. The presentation also discusses the controversial issue whether there is evidence for an Arctic-wide increase in carbon flux, or whether we are looking at a spatial shift of the productive marginal ice zone as the main factor to enhance carbon flux to the deep Siberian margin.

  14. The benthic manganese cycle along the Oregon-California continental margin

    NASA Astrophysics Data System (ADS)

    McManus, J.; Berelson, W.; Severmann, S.; Roy, M.; Chase, Z.; Muratli, J. M.; Hastings, R. H.; Goni, M. A.; Mix, A. C.

    2010-12-01

    High rates of sedimentary organic carbon degradation within continental margin sediments combined with abundant supply of reactive Mn-oxides from continental weathering result in a sedimentary environment where Mn is readily solubilized through microbial or abiotic Mn-oxide reduction. Here we examine the consequences of the interplay among the delivery of terrigenous material, high organic carbon oxidation rates, and Mn reduction within the sediments along the Oregon-California continental margin. In areas of high terrigenous sediment discharge, the benthic Mn efflux is enhanced over typical continental margin rates—even at sites with comparable organic carbon oxidation rates. Our preliminary flux estimates suggest that the highest benthic Mn effluxes may exceed ~50 µmol m-2 day-1 off the Eel River; prior work and our new results show that open margin (i.e., non-shelf) environments typically have Mn efflux rates < 10 µmol m-2 day-1. A survey of surface sediments from the Umpqua River discharge area supports the notion that shallow (~ < 100 m) shelf sediments may be a net source of Mn to the water column. These sediments, which are bathed intermittently by hypoxic waters, have Mn to Al ratios as low as ~ 2 x 10-3 g g-1; for comparison, Umpqua river sediments have Mn to Al values of ~6 - 7 x 10-3 g g-1 for the 20 - 63 micron size fraction (VanLaningham, 2007). Mn to Al ratios of ~ 8 - 11 x 10-3 g g-1 (implying possible Mn enrichment relative to river sediments) occur between ~125 and 150 m water depth. Ratios decrease again at greater depths to values of ~7 x 10-3 g g-1, close to that of river sediment. Collectively our data support the idea of an efflux of Mn from shelf sediments. Although the benthic incubation chamber data all indicate a Mn efflux from the sediments, the sedimentary Mn distributions indicate the possibility of re-deposition at depths of ~125 - 150 m. Further work will need to evaluate diagenetic processes and provenance effects on the sediment

  15. Origins and fates of DOM along the New England continental margin. Techical progress report, Year 1

    SciTech Connect

    Fry, B.; Hopkinson, C.; Altabet, M.

    1993-06-01

    We have focused on methods development and completed an initial survey of Dissolved Organic Matter (DOM) concentration and isotopic composition during the 1994 spring bloom on Georges Bank. The methods development phase assures that high quality measurements will be made in years 2 and 3, and emphasizes developing two independent methods for DON determination. The survey work on Georges Bank will be extended in years 2 and 3 to determine seasonal and spatial changes in DOM concentrations and isotopic compositions along the eastern US continental margin, from Georges Bank to Cape Hatteras.

  16. Origins and fates of DOM along the New England continental margin

    SciTech Connect

    Fry, B.; Hopkinson, C. . Ecosystems Center); Altabet, M. )

    1993-01-01

    We have focused on methods development and completed an initial survey of Dissolved Organic Matter (DOM) concentration and isotopic composition during the 1994 spring bloom on Georges Bank. The methods development phase assures that high quality measurements will be made in years 2 and 3, and emphasizes developing two independent methods for DON determination. The survey work on Georges Bank will be extended in years 2 and 3 to determine seasonal and spatial changes in DOM concentrations and isotopic compositions along the eastern US continental margin, from Georges Bank to Cape Hatteras.

  17. Post-rift influence of small-scale convection on the landscape evolution at divergent continental margins

    NASA Astrophysics Data System (ADS)

    Sacek, Victor

    2017-02-01

    After decades of geological and geophysical data acquisition along with quantitative modeling of the long-term evolution of the landscape at divergent continental margins, the search for an explanation for the formation and evolution of steep escarpments bordering the coast is still a challenging task. One difficult aspect to explain about the evolution of these escarpments is the expressive variability of denudation rate through the post-rift phase observed in many margins. Here I propose that the interaction of small-scale convection in the asthenosphere with the base of the continental lithosphere can create intermittent vertical displacements of the surface with magnitude of a few hundreds of meters at the continental margin. These topographic perturbations are sufficient to produce an expressive variability in the rate of erosion of the landscape through the post-rift phase similar to the exhumation history observed along old divergent margins. I show that the vertical motion of the surface is amplified when a mobile belt is present at the continental margin, with lithospheric mantle less viscous than the cratonic lithosphere and, consequently, more prone to be partially eroded by the convective asthenosphere. I conclude that the influence of small-scale convection is not the primary explanation for the formation of high topographic features at divergent continental margins, but can be an important component contributing to sustain a preexistent escarpment. The present results are based on numerical simulations that combine thermochemical convection in the mantle, flexure of the lithosphere and surface processes of erosion and sedimentation.

  18. Late Mesozoic North African continental margin: Sedimentary sequences and subsidence history

    SciTech Connect

    Kuhnt, W.; Obert, D.

    1988-08-01

    Cretaceous facies types and subsidence history have been studied along two well outcropping and almost complete transversals through the Tellian units of the Mesozoic North African margin, the Western Rif (Morocco), and the Babors (Algeria). Sedimentologic observations and characteristic foraminiferal assemblages enabled estimates for Late Cretaceous paleobathymetries. Both palinspastic reconstruction and sedimentologic and biofacies analyses led to the following results. (1) The morphology and evolution of the Cretaceous North African margin, which in general represents a classic passive continental margin, were complicated by various factors such as Late Cretaceous compressional and lateral movements, the onset of (tectonically controlled ) diapirism, and the existence of intramarginal highs and basins. (2) The Cretaceous subsidence history of both areas can be divided into four stages which are accompanied by characteristic sedimentary formations: (I) distension and subsidence of the margin (Early Cretaceous); (II) a first compressional phase with uplift and slight metamorphism in the Albian/early Cenomanian which affected mainly the northerly paleogeographic zones, accompanied by first diapiric movements and resedimentation of Triassic saliferous material; (III) a Late Cretaceous stage of subsidence (Cenomanian-Santonian); and (IV) a second compressional phase starting with the Campanian and reflected by the formation of sedimentary klippes and olistostromes. (3) As a general trend, sedimentary basins deepened from south to north during Campanian/Maastrichtian time, giving rise to a characteristic succession of bathymetric zones which have been observed on both transversals.

  19. Variability of subseafloor viral abundance at the geographically and geologically distinct continental margins.

    PubMed

    Yanagawa, Katsunori; Morono, Yuki; Yoshida-Takashima, Yukari; Eitoku, Masamitsu; Sunamura, Michinari; Inagaki, Fumio; Imachi, Hiroyuki; Takai, Ken; Nunoura, Takuro

    2014-04-01

    We studied the relationship between viral particle and microbial cell abundances in marine subsurface sediments from three geographically distinct locations in the continental margins (offshore of the Shimokita Peninsula of Japan, the Cascadia Margin off Oregon, and the Gulf of Mexico) and found depth variations in viral abundances among these sites. Viruses in sediments obtained offshore of the Shimokita and in the Cascadia Margin generally decreased with increasing depth, whereas those in sediments from the Gulf of Mexico were relatively constant throughout the investigated depths. In addition, the abundance ratios of viruses to microbial cells notably varied among the sites, ranging between 10(-3) and 10(1) . The subseafloor viral abundance offshore of the Shimokita showed a positive relationship with the microbial cell abundance and the sediment porosity. In contrast, no statistically significant relationship was observed in the Cascadia Margin and the Gulf of Mexico sites, presumably due to the long-term preservation of viruses from enzymatic degradation within the low-porosity sediments. Our observations indicate that viral abundance in the marine subsurface sedimentary environment is regulated not only by in situ production but also by the balance of preservation and decay, which is associated with the regional sedimentation processes in the geological settings.

  20. Fishing down the coast: historical expansion and collapse of oyster fisheries along continental margins.

    PubMed

    Kirby, Michael Xavier

    2004-08-31

    Estuarine ecosystems have changed dramatically from centuries of fishing, habitat disturbance, sedimentation, and nutrient loading. Degradation of oyster reefs by destructive fishing practices in particular has had a profound effect on estuarine ecology, yet the timing and magnitude of oyster-reef degradation in estuaries is poorly quantified. Here, I evaluate the expansion and collapse of oyster fisheries in 28 estuaries along three continental margins through the analysis of historical proxies derived from fishery records to infer when oyster reefs were degraded. Exploitation for oysters did not occur randomly along continental margins but followed a predictable pattern. Oyster fisheries expanded and collapsed in a linear sequence along eastern North America (Crassostrea virginica), western North America (Ostreola conchaphila), and eastern Australia (Saccostrea glomerata). Fishery collapse began in the estuaries that were nearest to a developing urban center before exploitation began to spread down the coast. As each successive fishery collapsed, oysters from more distant estuaries were fished and transported to restock exploited estuaries near the original urban center. This moving wave of exploitation traveled along each coastline until the most distant estuary had been reached and overfished.

  1. High-sensitivity aeromagnetic survey of the US Atlantic continental margin.

    USGS Publications Warehouse

    Behrendt, John C.; Klitgord, Kim D.

    1980-01-01

    The US Geological Survey contracted a high-sensitivity, digital aeromagnetic survey that was flown over the US Atlantic continental margin over a period of 15 months between 1974 and 1976. The 185 000 km of profile data have a relative accuracy approaching a few tenths of a nanotesla, which allowed compilation into maps at a scale of 1:250 000, with a contour interval of 2 nT. Automatic data processing using the Werner method allowed calculations of apparent depth to sources of the magnetic anomalies on all of the profiles, assuming a dike or interface as a source. Comparison of the computed depths to magnetic basement with multichannel seismic profiles across the survey area helped to reduce ambiguities in magnetic depth estimates and enabled interpolation of basement structures between seismic profiles. The resulting map showing depth to basement of the Atlantic continental margin is compatible with available multichannel seismic data, and we consider it a reasonable representation of the base of the sedimentary column. -Authors

  2. First Evidence for the Presence of Iron Oxidizing Zetaproteobacteria at the Levantine Continental Margins

    PubMed Central

    Rubin-Blum, Maxim; Antler, Gilad; Tsadok, Rami; Shemesh, Eli; Austin, James A.; Coleman, Dwight F.; Goodman-Tchernov, Beverly N.; Ben-Avraham, Zvi; Tchernov, Dan

    2014-01-01

    During the 2010–2011 E/V Nautilus exploration of the Levantine basin’s sediments at the depth of 300–1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp. – like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column. PMID:24614177

  3. Biodiversity response to natural gradients of multiple stressors on continental margins.

    PubMed

    Sperling, Erik A; Frieder, Christina A; Levin, Lisa A

    2016-04-27

    Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5-0.15 ml l(-1) (approx. 22-6 µM; approx. 21-5 matm) range, and as temperature increases through the 7-10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds.

  4. Macrofaunal Biodiversity Response to Natural Gradients of Multiple Stressors on Continental Margins

    NASA Astrophysics Data System (ADS)

    Sperling, E. A.; Frieder, C.; Levin, L. A.

    2015-12-01

    Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation. Rates of change are unprecedented, raising questions about whether (and how) communities will adapt and if responses will reflect synergistic interactions among multiple stressors. Changes to benthic biodiversity on continental margins have important implications for carbon cycle processes and other ecosystem services. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of major climate stressors for macrofaunal diversity and evenness along continental margins using variance partitioning techniques. Sharp drops in diversity are seen as O2 levels decline through the 0.5 - 0.15 ml/l (~22 - 6 μM; ~21 - 5 matm) range, and as temperature increases through the 7-10°C range. pCO2 shows a strong effect in the Arabian Sea but very little effect in the Eastern Pacific Ocean. In contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict seafloor areas most at risk to future marine global change, although the existence of clear regional differences cautions against applying global thresholds.

  5. Geophysical exploration in Brazilian continental margin: history and state of the art

    SciTech Connect

    Barbosa, J.C.; Tessis, J.F.; Rosa, A.L.R.

    1984-04-01

    Geophysical exploration by PETROBRAS started in 1954 in the onshore basins and in 1968 in the offshore basins of the Brazilian continental margin. The major problems that these basins share are: short range lateral velocity variations; poor seismic data quality in many areas, especially on land, and small traps with some degree of stratigraphic control. In the search for the solution to these problems, the best techniques available have tried. CDP was introduced in the early 1960's; digital recording and processing in 1968; bright-spot methodology in 1973; trace inversion in 1976; 3-D migration in 1978; and image-ray depth migration in 1981. Facilities for computer-generated displays for geophysical interpretation were made available in the early 1970s. Presently, an interactive interpretation mapping system with graphic stations is in use. Examples of techniques applied to exploration and field development activities include time-to-depth conversion, generation of seismic synthetic logs, and porosity prediction. Geophysics plays an important role in the exploration of the Brazilian continental margin, where recoverable volumes of oil have increased in onshore basins from 86.342 million BOE in 1954 to 2132.81 million BOE in June 1983, and in offshore basins from 0.069 million BOE in 1968 to 1626.73 million BOE in June, 1983. These volumes correspond to 246 bbl onshore and 520 bbl offshore per drilled meter for the same periods.

  6. Preliminary digital geologic map of the Penokean (early Proterozoic) continental margin in northern Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, W.F.; Ottke, Doug

    1999-01-01

    The data on this CD consist of geographic information system (GIS) coverages and tabular data on the geology of Early Proterozoic and Archean rocks in part of the Early Proterozoic Penokean orogeny. The map emphasizes metasedimentary and metavolcanic rocks that were deposited along the southern margin of the Superior craton and were later deformed during continental collision at about 1850 Ma. The area includes the famous iron ranges of the south shore region of the Lake Superior district. Base maps, both as digital raster graphics (DRG) and digital line graphs (DLG) are also provided for the convenience of users. The map has been compiled from many individual studies, mostly by USGS researchers, completed during the past 50 years, including many detailed (1:24,000 scale) geologic maps. Data was compiled at 1:100,000 scale and preserves most of the details of source materials. This product is a preliminary release of the geologic map data bases during ongoing studies of the geology and metallogeny of the Penokean continental margin. Files are provided in three formats: Federal Spatial Data Transfer format (SDTS), Arc export format (.e00) files, and Arc coverages. All files can be accessed directly from the CD-ROM using either ARC/INFO 7.1.2 or later or Arc View 3.0 or later software. ESRI's Arc Explorer, a free GIS data viewer available at the web site: http://www.esri.com/software/arcexplorer/index.html also provides display and querying capability for these files.

  7. Sinking jelly-carbon unveils potential environmental variability along a continental margin.

    PubMed

    Lebrato, Mario; Molinero, Juan-Carlos; Cartes, Joan E; Lloris, Domingo; Mélin, Frédéric; Beni-Casadella, Laia

    2013-01-01

    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m(2) after trawling and integrating between 30,000 and 175,000 m(2) of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems.

  8. Fission track analysis, rift shoulder uplift, and tectonic modeling of the Norwegian Continental Margin

    SciTech Connect

    Andriessen, P.; Van Der Beek, P.; Cloetingh, S.; Rohrman, M. )

    1993-09-01

    Apatite fission track analysis from southern Norway and Sweden, across the Permian Carboniferous Oslo rift, are presented and discussed in relation to different rifting scenarios. Vertical and horizontal apatite fission tack profiles in middle and southern Norway unravel the post-Carboniferous history of the Fennoscandian shield. Fission track apatite ages range from 240 Ma in the south to 160 Ma in the north, and according to spontaneous fission track length measurements, they must be interpreted as mixed ages, indicating minor amounts of Paleozoic-Mesozoic sedimentary cover. Apatite fission track length and age modeling suggest rapid cooling and uplift in the Tertiary for the southernmost part of Norway, suggesting a differential uplift of the basement. the obtained data are important for the reconstruction of burial and thermal histories of Cenozoic sedimentary basins of the Norwegian continental margin in the northern North Sea, where diverse rifting events, intraplate stress regimes, and inversion tectonics are involved. Fission track analysis puts constraints on tectonic modeling of uplift of rift flanks and the Norwegian continental margin and yields information for these assessment of hydrocarbon potentials of the sedimentary basins.

  9. Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin

    PubMed Central

    Lebrato, Mario; Molinero, Juan-Carlos; Cartes, Joan E.; Lloris, Domingo; Mélin, Frédéric; Beni-Casadella, Laia

    2013-01-01

    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems. PMID:24367499

  10. First evidence for the presence of iron oxidizing zetaproteobacteria at the Levantine continental margins.

    PubMed

    Rubin-Blum, Maxim; Antler, Gilad; Tsadok, Rami; Shemesh, Eli; Austin, James A; Coleman, Dwight F; Goodman-Tchernov, Beverly N; Ben-Avraham, Zvi; Tchernov, Dan

    2014-01-01

    During the 2010-2011 E/V Nautilus exploration of the Levantine basin's sediments at the depth of 300-1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp.-like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column.

  11. Evolution of the SW African passive continental margin during the post-rift phase

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Götze, Hans-Jürgen; Reichert, Christian

    2014-05-01

    The tectonic evolution of the SW African margin and the breakup of the South Atlantic Ocean are still under debate. Furthermore, there are economic interests in terms of hydrocarbon resources. In particular, the understanding of the subsidence history at the SW African passive continental margin can help to investigate the evolution of this margin. For this reason, we aim to reconstruct paleotopographies for three time steps during the post-rift phase (112 Ma to present day). These three time steps are: Cretaceous-Tertiary boundary (67 Ma), Cenomanian-Turonian boundary (93 Ma) and start post-rift (112 Ma). We use a recent regional scale 3D structural model (Maystrenko et al., 2013) as base for our subsidence analysis. This model includes the upper mantle, the crystalline crust, four sedimentary units as well as the water column. The sedimentary units comprise sediments of the (1) Cenozoic, (2) base Turonian-base Cenozoic, (3) base Aptian-base Turonian and (4) pre-Aptian sediments. Therefore, our subsidence reconstruction has the particular advantage that we include as much present day information as possible. In order to reconstruct paleotopographies we calculate the subsidence components separately. On the one hand we determine the thermal subsidence due to cooling of the lithosphere. On the other hand, the load induced subsidence exerted by the preserved sedimentary cover is calculated by applying a backstripping method which considers local isostatic rebound and decompaction. Both the amount of thermal subsidence and the amount of load induced subsidence are then subtracted from the total subsidence which is nowadays observed. Subtracting these individual subsidence components leads to the paleotopographies. The paleotopographies provide information about the long-term behavior of the margin area since the beginning of the post-rift phase. Moreover, the paleotopographies provide the opportunity to estimate vertical movements which have occurred during the post

  12. Submarine erosion and karstification on the west Florida Continental margin: disparate environments yield similar features

    SciTech Connect

    Doyle, L.J.; Brooks, G.; Herbert, J.H.

    1985-01-01

    Thousands of kilometers of high resolution seismic profiles from the carbonate West Florida continental margin reveal two large bands of solution features. One band is found on the inner portion of the shelf and includes a variety of buried and filled karst features, the most spectacular of which are large solution valleys, paleodrainage extensions of the extent Tampa Bay and Charlotte Harbor estuaries. These features were probably formed subaerially during lower stands of sea level. This band of karst dies out in a line at mid-shelf between 75 m and 100 m water depth, marking a low stand of sea level. A second band of solution features is found on the upper slope at water depths of between 500 and 800 m. It is partially exposed in outcrop. Although many of the features are similar in appearance to those of the karst inner shelf band, their origin in submarine. They could have formed from dissolution by groundwater percolating down from the Florida mainland, from submarine erosion by the Loop Current which sweeps this portion of the slope or by a combination of the above processes. Although karstification is considered a continental process, extensive solution feature scan also form in the marine environment. Subsequently, these can be raised above sea level and be modified by continental processes, making it difficult to distinguish marine or partially marine solution features form those of traditional subaerial origin.

  13. Shear wave velocity structure of Reed Bank, southern continental margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wei, Xiaodong; Ruan, Aiguo; Zhao, Minghui; Qiu, Xuelin; Wu, Zhenli; Niu, Xiongwei

    2015-03-01

    The shear wave velocity structure of a wide angle seismic profile (OBS973-2) across Reed Bank in the southern continental margin of the South China Sea (SCS) is simulated by 2-D ray-tracing method, based on its previous P-wave model. This profile is 369-km-long and consists of fifteen three-component ocean bottom seismometers (OBS). The main results are as follows.(1) The model consists of seven layers and the shear wave velocity increases from 0.7 km/s at the top of sediment layer to 4.0 km/s in the lower crust. (2) The Moho depth decreases from 20-22 km at the Reed Bank to 9-11 km at the deep oceanic basin with the shear wave velocity of 4.2 km/s below the Moho. (3) The Vp/Vs ratio decreases with depth through the sedimentary layers, attributed to increased compaction and consolidation of the rocks. (4) In the continental upper crust (at model distance 90-170 km), S-wave velocity (2.5-3.2 km/s) is relatively low and Vp/Vs ratio (1.75-1.82) is relatively high compared with the other parts of the crust, corresponding to the lower P-wave velocity in the previous P-wave model and normal faults revealed by MCS data, indicating that a strong regional extensional movement had occurred during the formation process of the SCS at the Reed Bank area. (5) The S-wave structures indicate that Reed Bank crust has different rock compositions from that in the east section of the northern margin, denying the presence of conjugate relationship of Reed Bank with Dongsha islands. According to P-wave models and other data, we inferred that Reed Bank and Macclesfield were separated from the same continental crust during the rifting and break-up process.

  14. Solonker ophiolite in Inner Mongolia, China: A late Permian continental margin-type ophiolite

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-wen; Xu, Bei; Shi, Guan-zhong; Zhao, Pan; Faure, M.; Chen, Yan

    2016-09-01

    The Solonker ophiolite is exposed along the border between Mongolia and China within the Solonker zone, the southeastern Central Asian Orogenic Belt (CAOB), and it is composed dominantly of serpentinized peridotite with subordinate gabbro, basaltic lava, radiolarian-bearing siliceous rocks, and minor plagiogranite. Meanwhile, layered mafic-ultramafic cumulates are not ubiquitous. In this study, zircon grains from two gabbros and a plagiogranite yield 206Pb/238U ages of 259 ± 6 Ma, 257 ± 3 Ma and 263 ± 1 Ma. These data were interpreted to represent the formation age of the Solonker ophiolite. The studied gabbros and basalts have a tholeiitic composition, showing a MORB affinity. They are also characterized by enrichment of Pb and depletion of Nb relative to La and Th. Furthermore, the studied gabbros contain inherited zircon grains and display a large range of zircon Hf isotopes (εHf(t) = - 5.27 to + 10.19). These features imply that crustal contamination played an important role in the generation of these mafic rocks. Major elements derived from the radiolarian-bearing siliceous rocks suggest a continental margin setting. This is confirmed by rock association. Terrigenous rocks (sandstones and siltstones) interstratified with siliceous rocks. U-Pb dating of detrital zircon grains in sandstones from both the northern and southern sides of the Solonker ophiolite belt, along with published data, reveals that the Late Carboniferous-Early Permian strata in fault contact with the Solonker ophiolite was deposited above Early Paleozoic orogens. The lines of petrological, geochemical, geochronological, and isotopic evidence led us to propose that the Solonker ophiolite is a Late Permian continental margin-type body formed during the early stages of opening of an ocean basin, following rifting and break-up of the Early Paleozoic orogens. Accordingly, the Permian Solonker zone is characterized by an intra-continental extensional setting.

  15. The Hamburg klippe: Record of the destruction of the proto-North American continental margin

    SciTech Connect

    Lash, G.G. . Dept. of Geosciences)

    1993-03-01

    The Hamburg klippe, a Taconic allochthon in the central Appalachian orogen of southeastern Pennsylvania, has long been in the focus of debate. Although initially interpreted by some to be either autochthonous or simply a facies of the parautochthonous Martinsburg Formation, essentially all workers now agree that rocks of the Hamburg klippe comprise a far-travelled sequence of deep-marine deposits thrust onto the proto-North American platform in Ordovician time. The klippe is composed of two tectonic slices that contain rocks that formed in very different tectonic environments. The structurally lowest slice, the Greenwich slice, is interpreted to be an ancient subduction complex that formed in Cambrian-Ordovician time. This slice consists chiefly of turbidite sandstone and hemipelagic mudstone of Middle Ordovician age (85%) underlain by relatively thin sequences of red and light-green pelagic mudstone, deep-water limestone and chert of Early to Middle Ordovician age (14%). The vertical stratigraphy of the deposits of the Greenwich slice is interpreted to reflect migration of a site on oceanic lithosphere from an abyssal plain setting toward and ultimately into a trench southeast of the proto-North American continental margin by Middle Ordovician time. The tectonically highest slice, the Richmond slice, is composed predominantly of Middle Ordovician carbonate turbidites and black shale interpreted to have accumulated on the subsiding proto-North American continental margin as it approached the trench to the southeast. Eventually the Richmond slice was thrust to the northwest over the subduction complex which was, by this time, on the continental platform. Similar rock types in other allochthons in the Appalachian orogen may reflect an analogous mode of origin.

  16. Spatiotemporal relationships between earthquakes of the mid-Atlantic Ridge and the Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    Bolarinwa, Oluwaseyi J.

    The seismicity of the mid Atlantic Ridge (MAR) was compared in space and time with the seismicity along the Atlantic continental margins of Europe, Africa, North America, the Carribean and South America in a bid to appraise the level of influence of the ridge push force at the MAR on the Atlantic coastal seismicity. By analyzing the spatial and temporal patterns of many earthquakes (along with the patterns in their stress directions) in diverse places with similar tectonic settings, it is hoped that patterns that might be found indicate some of the average properties of the forces that are causing the earthquakes. The spatial analysis of the dataset set used shows that areas with higher seismic moment release along the north MAR spatially correlate with areas with relatively lower seismic moment release along the north Atlantic continental margins (ACM) and vice versa. This inverse spatial correlation observed between MAR seismicity and ACM seismicity might be due to the time (likely a long time) it takes stress changes from segments of the MAR currently experiencing high seismic activity to propagate to the associated passive margin areas presently experiencing relatively low seismic activity. Furthermore, the number of Atlantic basin and Atlantic coast earthquakes occurring away from the MAR is observed to be independent of the proximity of earthquake's epicenters from the MAR axis. The effect of local stress as noted by Wysession et al. (1995) might have contributed to the independence of Atlantic basin and Atlantic coast earthquake proximity from the MAR. The Latchman (2011) observation of strong earthquakes on a specific section of the MAR being followed by earthquakes on Trinidad and Tobago was tested on other areas of the MAR and ACM. It was found that that the temporal delay observed by Latchman does not exist for the seismicity along other areas along the MAR and ACM. Within the time window used for this study, it appears that seismicity is occurring

  17. Transition from magma dominant to magma poor rifting along the Nova Scotia Continental Margin

    NASA Astrophysics Data System (ADS)

    Lau, K. H.; Louden, K. E.; Nedimović, M. R.; Whitehead, M.; Farkas, A.; Watremez, L.; Dehler, S. A.

    2011-12-01

    Passive margins have been characterized as magma-dominant (volcanic) or magma-poor (non-volcanic). However, the conditions under which margins might switch states are not well understood as they typically have been studied as end member examples in isolation to each other. The Nova Scotia (NS) continental margin, however, offers an opportunity to study the nature of such a transition between the magma-dominant US East Coast margin to the south and the magma-poor Newfoundland margin to the north within a single rift segment. This transition is evidenced by a clear along-strike reduction in features characteristic of syn-rift volcanism from south-to-north along the NS margin, such as the weakening of the East Coast Magnetic Anomaly (ECMA) and the coincident disappearance of seaward dipping reflector sequences (SDRS) on multichannel seismic (MCS) reflection profiles. Results from recent industry MCS profiles along and across the margin suggest a potentially narrow magma-dominant to magma-poor along-strike transition between the southern and the central NS margin. Such a transition is broadly consistent with results of several widely-spaced, across-strike ocean bottom seismometer (OBS) wide-angle profiles. In the southern region, the crustal structure exhibits a narrow (~120-km wide) ocean-continent transition (OCT) with a high velocity (7.2 km/s) lower crust, interpreted as a gabbro-rich underplated melt, beneath the SDRS and the ECMA, similar to crustal models across the US East Coast. In contrast, profiles across the central and northern margin contain a much wider OCT (150-200-km wide) underlain by a low velocity mantle layer (7.3-7.9 km/s), interpreted as partially serpentinized olivine, which is similar to the magma-poor Newfoundland margin to the north. However, the central-to-northern OBS profiles also exhibit significant variations within the OCT and the along-strike continuity of these OCT structures is not yet clear. In November 2010, we acquired, in the

  18. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    Von Huene, R.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is

  19. Transition from rifted continental to oceanic crust at the southeastern Korean margin in the East Sea (Japan Sea)

    NASA Astrophysics Data System (ADS)

    Cho, H.; Kim, H.; Jou, H.; Hong, J.; Baag, C.

    2004-12-01

    The southeastern Korean margin documents the processes of continental rifting and seafloor spreading that eventually led to the opening of the southern part of the East Sea (Japan Sea). In this study, we present the transitional structure of the southeastern Korean margin and its formation process from rifted continental to 10 km thick normal oceanic crust. The two-dimensional P velocity model of the southeastern Korean margin was computed from ocean bottom seismometer data by tomographic inversion and distilled by iterative forward modeling. The crustal structure shows the emplacement of high-velocity (>7 km/s) lower crust under the continental shelf and slope area associated with a rapid transition from rifted continental to oceanic crust. The high-velocity lower crust is interpreted as magmatic underplating formed by voluminous igneous activity during rifting. Magnetic modeling confirms its primary correlation with a prominent magnetic anomaly along the edge of the southeastern Korean Peninsula that is assumed to represent volcanic extrusives and intrusives. The continental margin featuring a rapid transition from continental to oceanic crust exhibits a remarkable decrease in crustal thickness accompanied by shallowing of the Moho over a distance of about 50 km. It thus appears that the Korean margin experienced intense tectonism comprising crustal deformation and volcanism associated with the opening of the East Sea and consequently registered the early history of continental rifting and subsequent sea floor spreading. We suggest that the rifting and subsequent seafloor spreading at the Korean margin was significantly controlled by the supply of magma in a region of hotter than normal mantle temperature.

  20. Deep structure and structural inversion along the central California continental margin from EDGE seismic profile RU-3

    SciTech Connect

    McIntosh, K.D.; Reed, D.L.; Silver, E.A. ); Meltzer, A.S. )

    1991-04-10

    Deep-penetration seismic reflection profile RU-3 reveals a subducted oceanic plate, a modified accretionary prism, and complex structures of the overlying sedimentary basins. This structural framework was established by subduction processes during Paleogene and earlier time and subsequently was modified by Neogene transform motion combined with apparent components of extension and compression. Subducted rocks are indicated by deep, gently dipping reflectors that extend beneath the continental margin for at least 38 km at a depth of about 15 km. The authors interpret the subducted crust as either a part of the Pacific plate or, more likely, a subducted fragment derived from the Farallon plate. A set of more steeply dipping, deep events may indicate faulting within the subducted plate or its boundary with a no-slab zone. The overlying, largely nonreflective layer of accreted material rapidly reaches 10 km in thickness landward of the paleotrench and increases to 15 km in thickness near the coast. The Santa Lucia Basin, landward of the steep continental slope, originated as a slope basin during Paleogene subduction. The lower strata of this basin were deposited onto and partially incorporated into the accretionary complex. The offshore Santa Maria Basin exhibits a variety of compressional structures that formed in the last 3.5 m.y. and whose locations correspond to an earlier framework of extensional faults. Structural inversion has occurred in Miocene depocenters adjacent to the Santa Lucia Bank fault and at the Queenie structure. Miocene and lower Pliocene strata also thicken toward the Hosgri fault zone where subsequent compression is characterized by low-angle thrusts and folding.

  1. Lithoprobe east: marine deep seismic reflection results across the Appalachians and the rifted continental margin northeast of Newfoundland

    SciTech Connect

    Keen, C.E.; Stockmal, G.S.; O'Brien, S.J.; Quinlan, G.

    1985-01-01

    Marine deep seismic reflection data have been collected across the Appalachian Orogen and the rifted continental margin northeast of Newfoundland. Results across the Appalachian Orogen show the extent of the ancient Grenvillian passive margin beneath the terranes to the east, the nature of terrane boundaries at depth, and the relationships between surface geological features and the seismically defined crustal geometry. The results across the rifted margin define a decollement zone below the faulted continental basement. These basement fault blocks do not exhibit a listric geometry. The continental crust thins beneath the sedimentary basins occupying the rifted margin, although there does not appear to be a simple relationship between crustal thickness and basin subsidence. The ocean-continent transition is marked by a landward dip of the oceanic crust which disappears below the thinned continental crust near the transition. The ocean-continent boundary is not a vertical boundary between crustal types, rather there appears to be continuity of oceanic-type crust below the continent, perhaps forming a high velocity lower crustal layer across the continental margin.

  2. A newly discovered Pliocene volcanic field on the western Sardinia continental margin (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Conforti, Alessandro; Budillon, Francesca; Tonielli, Renato; De Falco, Giovanni

    2016-02-01

    A previously unknown submerged volcanic field offshore western Sardinia (western Mediterranean Sea), has been identified based on swath bathymetric data collected in 2009, 2010 and 2013, and high-resolution seismic profiles collected in 2011 and 2013. About 40 conical-shaped volcanic edifices (maximum width of about 1600 m and maximum height of about 180 m) and several lava outcrops (up to 1,200 m wide) were recognized at 20 to 150 m water depth over an area of 800 km2. The volcanic edifices are mainly eruptive monogenic vents, mostly isolated with a rather distinct shape, or grouped to form a coalescent volcanic body in which single elements are often still recognizable. High-resolution seismics enabled identifying relationships between the volcanic bodies and continental margin successions. The edifices overlie a major erosional surface related to the margin exposure following the Messinian salinity crisis, and are overlain by or interbedded with an early Pliocene marine unit. This seismo-stratigraphic pattern dates the volcanic activity to the early Pliocene, in agreement with the radiometric age of the Catalano island lavas (4.7 Ma) reported in earlier studies. The morphometry of the volcanic bodies suggests that cone erosion was higher at shallow water depths. Indeed, most of the shallow edifices are strongly eroded and flattened at 125 to 130 m water depth, plausibly explained by recurrent sub-aerial exposure during Pleistocene sea-level lowstands, whereas cones in deeper water are much better preserved. Volcanic vents and lava deposits, hereafter named the Catalano volcanic field (CVF), are emplaced along lineaments corresponding to the main directions of the normal fault system, which lowered the Sinis Basin and the western Sardinia continental margin. The CVF represents a volumetrically relevant phase of the late Miocene - Quaternary anorogenic volcanic cycle of Sardinia, which is related to the first stage of the extensional tectonics affecting the island

  3. First amphibian magnetotelluric experiment at the passive continental margin in northern Namibia

    NASA Astrophysics Data System (ADS)

    Kapinos, G.; Weckmann, U.; Ritter, O.; Jegen, M. D.

    2012-12-01

    An amphibian magnetotelluric (MT) study across the passive continental margin of northern Namibia was conducted in December/January 2010/2011 and October/November 2011 to image the subsurface electrical conductivity structure. The MT experiment is part of the interdisciplinary SAMPLE project (South Atlantic Margin Processes and Links with onshore Evolution) which focusses on imaging and understanding processes related to rifting and the breakup history of the supercontinent Gondwana, in particular the opening of the South Atlantic and the post breakup evolution of the continental passive margins of Africa and South America. The onshore MT data were acquired in the Kaoko Mobile Belt at 167 sites in a ~140 km wide and ~260 km long EW extending corridor, from the Atlantic Ocean onto the Congo Craton. The Kaoko Mobile Belt is a transpressional strike slip orogen with NNW striking sinistral shear zones, folds and thrusts, which was formed during the Pan-African orogeny and the amalgamation of West Gondwana. This onshore network is extended offshore with MT measurements along 2 transects parallel and perpendicular to the Walvis Ridge - an approximately 3400km long seamount volcanic chain, trending NE-SW, from Africa to the Middle Atlantic Ridge, thought to be formed by the volcanic activity of the Tristan da Cunha Plume since the early Cretaceous. The onshore impedances and vertical magnetic transfer functions are generally of excellent quality but indicate significant three-dimensional structures in the crust and upper mantle, particularly in the Western Kaoko Zone, in the vicinity of the prominent shear zones. 2-D inversion of a sub-section of the entire data set, where two-dimensional modeling is consistent with the MT data revealed spatial correlations of a resistive zone and the Archean Congo Craton as well as of conductive structures and surface expressions of prominent faults.

  4. Variations in sediment transport at the central Argentine continental margin during the Cenozoic

    NASA Astrophysics Data System (ADS)

    Gruetzner, Jens; Uenzelmann-Neben, Gabriele; Franke, Dieter

    2012-10-01

    The construction of the sedimentary cover at most passive continental margins includes gravitational downslope transport and along-slope contourite deposition, which are controlled by tectonics, climate and oceanography. At the eastern continental margin of Argentina the history of deposition and erosion is intimately linked to the evolution of the South Atlantic and its water masses. Here we present a detailed seismic investigation of the mixed depositional system located between 41°S and 45°S. The study provides a northward complement to prior investigations from the southern Argentine margin and together with these may be used as background information for future ocean drilling in the region. Prominent features in our seismic cross sections are submarine canyons, mass wasting deposits, contourite channels, and sediment drifts. Four major seismic units above regional reflector PLe (˜65 Ma) are separated by distinct unconformities of regional extent. Using a dense grid of reflection seismic profiles, we mapped the depocenter geometries of the seismic units and derived a chronology of the depositional processes during the Cenozoic. While the Paleocene/Eocene (˜65-34 Ma) is characterized by hemipelagic sedimentation under relatively sluggish bottom water conditions, strong Antarctic bottom water (AABW) circulation led to widespread erosion on the slope and growth of a detached sediment drift during the Oligocene and early Miocene (˜34-17 Ma). After deposition of an aggradational seismic unit interpreted to represent the Mid-Miocene climatic optimum (˜17-14 Ma), gravitational downslope sediment transport increased during the middle to late Miocene (˜14-6 Ma) possibly related to tectonic uplift in South America. The Pliocene to Holocene unit (<˜6 Ma) is very heterogeneous and formed by interactions of downslope and along-slope sediment transport processes as indicated by the evolution of canyons, slope plastered drifts and channels.

  5. Geology and tectonic development of the continental margin north of Alaska

    USGS Publications Warehouse

    Grantz, A.; Eittreim, S.; Dinter, D.A.

    1979-01-01

    The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.

  6. Cenozoic vertical motions of the western continental margin of Peninsular India

    NASA Astrophysics Data System (ADS)

    Richards, Fred; Hoggard, Mark; White, Nicky

    2016-04-01

    Despite the cessation of rifting at ˜65 Ma and its remoteness from active convergence, the topography of Peninsular India is dominated by a dramatic, high-elevation escarpment along its western margin: the Western Ghats (˜1 - 1.5 km amsl). Inland of the escarpment, South Indian topography exhibits a long-wavelength (>1000 km), low-angle (˜0.1°) eastward tilt down to the Krishna-Godavari and Cauvery deltas on the eastern continental margin. Offshore, oceanic residual depth measurements show an identical long-wavelength asymmetry from highs of +1 km in the Arabian Sea to lows of -1.2 km in the Bay of Bengal. Strong evidence from margin stratigraphy, dated palaeosurfaces, thermochronology, cosmogenic nuclides and marine terraces combine to suggest that, following a period of relative quiescence from 50 Ma - 25 Ma, the present-day topography evolved in response to Neogene uplift and erosion along the western Indian margin. By jointly inverting 530 longitudinal river profiles for uplift rate and calibrating our inversions against these geological constraints, we successfully place this Cenozoic landscape evolution into a more complete spatio-temporal framework. The results demonstrate slow growth of the eastward tilt from 50 Ma - 25 Ma (≤0.02 mm a-1), preceding a phase of increasingly rapid development - initiating in the south - from 25 Ma onwards (≤0.2 mm a-1). The onset of rapid uplift pre-dates the initial intensification of the Indian monsoon by >15 Ma, suggesting that rock uplift and not climate change is primarily responsible for the modern-day relief of the peninsula. Previous studies have aimed to explain this topographic evolution by invoking flexural isostatic mechanisms involving denudation, sediment loading and/or underplating. However, seismological constraints show that South Indian topography deviates significantly from crustal isostatic expectations, while the 9.8-2.2+3.8 km effective elastic thickness of the region generates ˜125 km flexural

  7. Grounding-zone wedges (GZWs) on high-latitude continental margins

    NASA Astrophysics Data System (ADS)

    Batchelor, Christine; Dowdeswell, Julian

    2014-05-01

    The grounding-zone of marine-terminating ice sheets is the area at which the ice-sheet base ceases to be in contact with the underlying substrate. The grounding-zone is a key site at which ice, meltwater and sediment are transferred from ice sheets to the marine environment. GZWs are asymmetric sedimentary depocentres which form through the rapid accumulation of glacigenic debris along a line source at the grounding-zone largely through the delivery of deforming subglacial sediments, together with sediment remobilisation from gravity flows. The presence of GZWs in the geomorphological record indicates an episodic style of ice retreat punctuated by still-stands in the grounding-zone position. GZWs may take decades to centuries to form. Moraine ridges and ice-proximal fans may also build up at the grounding-zone during still-stands or re-advances of the ice margin, but these require either considerable vertical accommodation space or are derived from point-sourced subglacial meltwater streams. We present an inventory of GZWs which is compiled from available studies of bathymetric, shallow acoustic and reflection seismic data from high-latitude continental margins. The objectives are to present locations of and morphological data on GZWs from the Arctic and Antarctic, alongside a synthesis of their key architectural and geomorphic characteristics. We use, for example, newly-available two-dimensional seismic reflection data to show the approximate locations of GZWs off northwest and northeast Greenland. Controls on GZW formation are considered in relation to shelf topography and ice-sheet internal dynamics. A total of 129 GZWs are described from high-latitude continental shelves. GZWs are only observed within cross-shelf troughs and major fjord systems, which are the former locations of ice streams and fast-flowing outlet glaciers. Typical high-latitude GZWs are less than 15 km long and 15 to 100 m thick. A positive correlation between GZW length and thickness is

  8. Inland propagation of erosional escarpments and river profile evolution across the southeast Australian passive continental margin

    NASA Astrophysics Data System (ADS)

    Weissel, Jeffrey K.; Seidl, Michele A.

    Denudation at passive continental margins occurs over time as erosional escarpments propagate inland, cutting through regions of elevated topography flanking ocean basins. Understanding the actual processes and time variability in propagation rates associated with the advance of escarpments across passive margins remains a largely unsolved problem for tectonic geomorphology. Here we report results from new analyses of detailed river longitudinal profiles and surface exposure age measurements using cosmogenic radionuclides from the New England Tableland portion of the southeast Australian passive margin. In that area, many plateau-draining tributaries of the Macleay River cascade into narrow gorges across large-scale river knickpoints that represent the tips of the leading edge of the inland-advancing escarpment. Previous river profile analyses showed most knickpoints to be the same distance, about 200 km, upstream from the mouth of the river, despite order-of-magnitude variations in the areas drained at the gorge heads. The implication is that all knickpoints have migrated upstream at a speed of about 2 km/Myr averaged over the ˜100 Myr history of the margin. The new profile analyses confirm that, in general, distance upstream from the Macleay River mouth of the knickpoints is not related to area drained at the gorge head. We conclude that if sufficient fluvial transport power is available, the rate of upstream knickpoint migration is governed by slope failure mechanisms and the frequency of resulting mass wasting events on the steep rock slopes in the gorge head vicinity. In terms of the stream power model for channel incision, zt ∝ Am' Sn (where A is drainage area and S is channel gradient), the river profile analyses imply that the drainage area exponent m' = 0 (i.e., no dependence on drainage area so long as a threshold is met), and the slope exponent n >1. Average erosion rates calculated from Be and Al radionuclide concentrations in samples collected

  9. Seismicity and Attenuation of the Continental Margin Off New York and Southern/ New England from OBS Data

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Flores, C. H.; McGuire, J. J.; Collins, J. A.

    2014-12-01

    Earthquake data recorded during two ocean-bottom-seismometer (OBS) deployments on the continental slope off New York and Southern New England are used to evaluate micro-seismicity and attenuation of the continental margin. The deployments were partly motivated by the detection by land seismometers of several ML2.5-3.8 continental margin earthquakes in this region during the previous four years. The data come from a five-month-long cluster deployment (1 km radius) of eleven short-period OBS in July 2012 at a water depth of ~835 m and a subsequent nine-month deployment of a network of five short-period OBS spaced 50 km apart at water depths between 900-2400 m. The land-based seismic network did not identify seismic activity on the margin during the two deployments. The OBS network located only one earthquake of ML~1 near the shelf edge, suggesting that seismic activity of the margin is probably successfully monitored by land seismometers. A successful land-based detection of earthquakes on the margin may indicate that low seismic attenuation extends from the Eastern U.S. to the continental shelf and slope. To better quantify the attenuation of the margin we derive the peak spectral attenuation of 6-8 ML2.8-4.1 earthquakes recorded by the OBS during the two deployments. These earthquakes were located on land close to shore and offshore between New Jersey and Nova Scotia, and propagation paths are almost entirely within the continental margin. Onshore earthquakes of ML ≤2.6 were not detected by the OBS. Information about the seismicity and attenuation of the margin will be used to evaluate the probability of earthquake-generated landslides.

  10. Neotectonic evolution of the Brazilian northeastern continental margin based on sedimentary facies and ichnology

    NASA Astrophysics Data System (ADS)

    Gandini, Rosana; Rossetti, Dilce de Fátima; Netto, Renata Guimarães; Bezerra, Francisco Hilário Rego; Góes, Ana Maria

    2014-09-01

    Quaternary post-Barreiras sediments are widespread along Brazil's passive margin. These deposits are well exposed in the onshore Paraíba Basin, which is one of the rift basins formed during the Pangean continental breakup. In this area, the post-Barreiras sediments consist of sandstones with abundant soft-sediment deformation structures related to seismicity contemporaneous with deposition. The trace fossils Thalassinoides and Psilonichnus are found up to 38 m above modern sea level in sandstones dated between 60.0 (± 1.4) and 15.1 (± 1.8) ka. The integration of ichnological and sedimentary facies suggests nearshore paleoenvironments. Such deposits could not be related to eustatic sea-level rise, as this time coincides with the last glaciation. Hence, an uplift of 0.63 mm/yr, or 1.97 mm/yr if sea level was 80 m lower in the last glaciation, would have been required to ascend the post-Barreiras sediments several meters above the present-day sea level during the last 60 ka. This would suggest that the post-rift stage of the South American eastern passive margin may have experienced tectonic reactivation more intense than generally recognized. Although more complete data are still needed, the information presented herein may play an important role in studies aiming to decipher the Quaternary evolution of this passive margin.

  11. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Stöckhert, Bernhard

    2006-04-01

    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5 3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10 20 Myr (after 400 600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc

  12. Sn to Sg Conversion at the U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Gallegos, A. C.; Long, M. D.; Benoit, M. H.; Ni, J.

    2015-12-01

    Isacks and Stephens [1975] observed a secondary phase with high frequency Lg characteristics that arrived soon after the Sn wave on seismograms generated by events in the West Indies. They concluded that an Sn-to-Lg conversion occurred at the continental margin, where the crust suddenly thickens. A later study on conversion along the continental margin was done by Seber et al. [1993] in Morocco. They noted that historically Morocco has experienced more damage from earthquakes occurring at the Azores-Gibraltar seismic zone (e.g. the M 8.7-9.0 Lisbon earthquake) at distances up to 500-1000 km than from those within the country. They conclude in their study that there are two parallel Sn-to-Sg conversion zones along the coast and interior of Morocco, where Sg is equivalent to Lg at shorter distances. We have seen similar Sn-to-Sg conversions for a M 5.2 event occurring ~1400 km off the Atlantic Coast on Dec. 23, 2013 using EarthScope's Transportable Array (TA). We perform a travel time back-projection based on the geometry of the raypaths, similar to Seber et al. [1993], to determine the location of the conversion points for several Atlantic events and compare with seismograms generated by continental events. We also investigate the possibility of a second conversion at the crustal boundary between the Appalachians and the Coastal Plain. The MAGIC Array is used in tandem with TA to closely observe the propagation characteristics of the converted wave as it travels through the continent. With the sizeable increase in station coverage we are in a position to study this conversion in greater detail. Understanding the causes of Sn-to-Sg conversion and the conditions needed to produce it can lead to insight into the geometry and characteristics of the continental shelf and inland crustal boundaries. Learning about this conversion is also needed to determine seismic hazard along coastal areas, where high amplitude converted shear waves can cause unexpected levels of damage.

  13. Pyrophaeophorbide- a as a tracer of suspended particulate organic matter from the NE Pacific continental margin

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Bauer, James E.; Druffel, Ellen R. M.; Lambert, Corey D.

    Pyrophaeophorbide- a, a degradation product of chlorophyll- a, is predominantly formed by grazing processes in sediments as well as in the water column. Water column profiles of pyrophaeophorbide- a/suspended particulate organic carbon (SPOC) concentrations, at an abyssal site in the northeast (NE) Pacific (Sta M, 34°50'N, 123°00'W; 4100 m water depth), show low concentrations (0.01-0.1 ng/μg SPOC) at surface and mesopelagic depths, and increasing concentrations with closer proximity to the sea floor (0.05-0.6 ng/μg SPOC). However, in June 1992, the deep maximum of pyrophaeophorbide- a/SPOC in the water column of Sta M extended higher into the water column, as much as 1600 m above the bottom (mab) (2500 m water depth); in other seasons they only extended up to 650 mab (3450 m water depth). Previous studies have demonstrated lateral transport of particulate matter from the continental shelf to the deep ocean off the coast of northern California. Recent work suggests that the benthic boundary layer (BBL) extends to 50 mab, based on sediment trap and transmissometry measurements (Smith, K.L., Kaukmann, R.S., Baldwin, R.J., 1994. Coupling of near-bottom pelagic and benthic processes at abyssal depths. Limnology and Oceanography 39, 1101-1118.), and that lateral transport is significant only during summer, which is consistent with our observations. A partial vertical profile of pyrophaeophorbide- a/SPOC from the north central (NC) Pacific provides some evidence that the deep maximum may be absent due to the distance of this site from the continental margin. Thus, the observed deep maximum of pyrophaeophorbide- a/SPOC at Sta M is likely due mainly to lateral transport from the continental slope rather than to local vertical resuspension in the BBL exclusively. Pyrophaeophorbide- a concentrations in SPOC at Sta M were negatively correlated with Δ 14C values of SPOC (SPOC samples from Druffel, E.R.M., Bauer, J.E., Williams, P.M., Griffin, S.A. and Wolgast, D., 1996

  14. 7Be as a tracer of flood sedimentation on the northern California continental margin

    USGS Publications Warehouse

    Sommerfield, C. K.; Nittrouer, C. A.; Alexander, C. R.

    1999-01-01

    Sediment inventories of the cosmogenic radionuclide 7Be (t1/2=53 d) were measured on the Eel River shelf and slope (northern California continental margin) to investigate sedimentation processes associated with coastal river flooding. Seabed coring shortly after major riverflow events in 1995 and 1997 documented a shelf-wide flood deposit, and subsequent radionuclide studies determined 7Be to be a powerful tracer of fine-grained river sediment. In addition, distinctive signatures of 234Th and 210Pb were observed in oceanic flood deposits and provided additional information regarding depositional processes. During the 1995–1997 monitoring period, 7Be was present (2–35 dpm cm-2) in shelf and slope sediments only after periods of high rainfall and river runoff during the winter months. It is suggested that fluvial input was the primary source of 7Be in shelf sediments after the floods. 7Be sediment inventories and sediment-trap fluxes determined after the 1997 flood revealed that fine-grained fluvial sediments were rapidly (within one month) broadcast over the continental margin, to the 500 m isobath. Dispersal was apparently facilitated by energetic storm waves, which resuspended and redistributed some fraction of the suspended load residing on the shelf prior to accretion as flood deposits. These observations illustrate that floods are an important sedimentary process for modern environments of the Eel shelf and slope, and perhaps for other fluviomarine sedimentary systems of the northern California continental margin. Ratios of the 210Pb sediment-accumulation rate (100 yr average) to the 7Be deposition rate (1–2 month average) for shelf sites illustrate the episodic nature of shelf sedimentation, and suggest that a minimum of 3–30 depositional events complete the most recent stratigraphic record. This observation is consistent with the magnetude and frequency of fluvial sediment input, as Eel River floods with return periods of 3–33 yr (3% of the time of

  15. Gas-particle partitioning of polycyclic aromatic hydrocarbons in urban, adjacent coastal, and continental background sites of western Greece.

    PubMed

    Terzi, Eleni; Samara, Constantini

    2004-10-01

    Particle- and gas-phase polycyclic aromatic hydrocarbons (PAHs) were collected from an urban, an adjacent coastal, and a continental background site located in Eordea basin, western Greece, to investigate their gas/ particle distributions. Thirteen two- to six-ring PAHs, included in the U.S. EPA priority pollutant list, were determined in 24-h integrated glass fiber filters and polyurethane foam samples. At the prevailing ambient temperature levels, the three-ringed species (phenanthrene, anthracene) and the four-ringed fluoranthene and pyrene were primarily found in the gas phase. Conversely, the five- and six-ring PAHs were mainly associated with the particle phase. Gas/particle partitioning coefficients, Kp, were calculated, and their relationship with the subcooled liquid vapor pressure p degrees L of individual PAHs was investigated. Despite the large variability among samples, a good linear relationship between log Kp and log p degrees L was obtained for all sampling sites following the equation log Kp = m(r) log p degrees L + b(r). In the majority of sampling events, particularly in the adjacent coastal and the continental background sites, slopes (m(r)) were found to be shallower than the value of -1, which has been suggested as reflecting equilibrium partitioning. The deviations from predicted aerosol behavior observed in the present study may be attributed to several reasons, such as the presence of nonexchangeable PAH fraction, nonequilibrium as well as different particle characteristics.

  16. Particle fluxes and their drivers in the Avilés submarine canyon and adjacent slope, central Cantabrian margin, Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Rumín-Caparrós, A.; Sanchez-Vidal, A.; González-Pola, C.; Lastras, G.; Calafat, A.; Canals, M.

    2016-05-01

    The Avilés Canyon in the central Cantabrian margin is one of the largest submarine canyons in Europe, extending from the shelf edge at 130 m depth to 4765 m depth in the Biscay abyssal plain. In this paper we present the results of a year-round (March 2012 to April 2013) study of particle fluxes in this canyon and the adjacent continental slope. Three mooring lines equipped with automated sequential sediment traps, high-accuracy conductivity-temperature recorders and current meters allowed measuring total mass fluxes and their major components (lithogenics, calcium carbonate, opal and organic matter) in the settling material jointly with a set of environmental parameters. The integrated analysis of the data obtained from the moorings together with remote sensing images and meteorological and hydrographical data has shed light on the sources of particles and the across- and along margin mechanisms involved in their transfer to the deep. Our results allow interpreting the dynamics of the sedimentary particles in the study area. Two factors play a critical role: (i) direct delivery of river-sourced material to the narrow continental shelf, and (ii) major resuspension events caused by large waves and near bottom currents developing at the occasion of the rather frequent severe storms that are typical of the Cantabrian Sea. Wind direction and subsequent wind-driven currents largely determine the way sedimentary particles reach the canyon. While westerly winds favour the injection of sediments into the Avilés Canyon mainly by building an offshore transport in the bottom Ekman layer, easterly winds ease the offshore advection of particulate matter towards the Avilés Canyon and its adjacent western slope principally through the surface Ekman layer. Furthermore, repeated cycles of semidiurnal tides add an extra amount of energy to the prevailing bottom currents and actively contribute to keep a permanent background of suspended particles in near-bottom waters. High

  17. Trend and dynamic cause of sediment particle size on the adjacent continental shelf of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Yang, Yun-ping; Zhang, Ming-jin; Li, Yi-tian; Fan, Yong-yang

    2016-12-01

    Based on the measured data in recent 20 years, the variation trends of the median grain size of the surface sediment, the sand-silt boundary and the mud area on the adjacent continental shelf of the Yangtze Estuary were analyzed in depth, and the effects of natural mechanism and human activities were discussed. The results show that: (1) In recent years (2006-2013), the median grain size of sediment and the distribution pattern of grouped sediments in the adjacent continental shelf area to the Yangtze Estuary have presented no obvious change compared with those before 2006; (2) The median diameter of the surface sediment in the continental shelf area displayed a coarsening trend with the decrease of sediment discharge from the basin and the drop in suspended sediment concentration in the shore area; (3) In 2004-2007, the sand-silt boundary in the north part (31°30'N) of the continental shelf area presented no significant changes, while that in the south part (31°30'S) moved inwards; In 2008-2013, both the sand-silt boundaries in the north and south parts of the continental shelf area moved inwards, mainly due to the fact that in the dry season, a relatively enhanced hydrodynamic force of the tides was generated in the Yangtze River, as well as a decreased suspended sediment concentration and a flow along the banks in North Jiangsu; (4) The mud area where the maximum deposition rate is found in the Yangtze Estuary, tends to shrink due to the drop in sediment discharge from the basin, and the decrease in suspended sediment concentration in the shore area and erosion in the delta. Moreover, it tended to shift to the south at the same time because the implement of the training works on the deep-water channel of the North Passage changed the split ratio between the North and South Passages with an increase in the power of the discharged runoff in the South Passage.

  18. Flow of the West Antarctic Ice Sheet on the continental margin of the Bellingshausen Sea at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ó Cofaigh, Colm; Larter, Rob D.; Dowdeswell, Julian A.; Hillenbrand, Claus-Dieter; Pudsey, Carol J.; Evans, Jeffrey; Morris, Peter

    2005-11-01

    Geophysical data show that during the last glaciation the West Antarctic Ice Sheet (WAIS) drained to the continental shelf edge of the Bellingshausen Sea through a cross-shelf bathymetric trough (Belgica Trough) as a grounded, fast flowing, ice stream. The drainage basin feeding this ice stream probably encompassed southwestern Palmer Land, parts of southern Alexander Island, and the Bryan Coast of Ellsworth Land, with an area exceeding 200,000 km2. On the inner continental shelf, streamlined bedrock and drumlins mapped by swath bathymetry show that the ice stream was fed by convergent ice flow draining from Eltanin Bay and bays to the east, as well as by ice draining the southern part of the Antarctic Peninsula Ice Sheet through the Ronne Entrance. The presence of a paleoice stream in Belgica Trough is indicated by megascale glacial lineations formed in soft till and a trough mouth fan on the continental margin. Grounding zone wedges on the inner and midshelf record ice marginal stillstands during deglaciation and imply a staggered pattern of ice sheet retreat. These new data indicate an extensive WAIS at the Last Glacial Maximum (LGM) on the Bellingshausen Sea continental margin, which advanced to the shelf edge. In conjunction with ice sheet reconstructions from the Antarctic Peninsula and Pine Island Bay, this implies a regionally extensive ice sheet configuration during the LGM along the Antarctic Peninsula, Bellingshausen Sea, and Amundsen Sea margins, with fast flowing ice streams draining the WAIS and Antarctic Peninsula Ice Sheet to the continental shelf edge.

  19. A geophysical overview of the southern continental margin of North America in the Late Precambrian/Cambrian

    SciTech Connect

    Keller, G.R. . Dept. of Geological Sciences)

    1993-02-01

    Recent geophysical studies have shed considerable light on the nature and extent of the southern Continental margin of North America which formed during the Late Precambrian/Cambrian. To the east between Arkansas and Alabama, the PASSCAL/Ouachita seismic experiment and older results in Mississippi indicate that this margin is largely preserved beneath allochthonous rocks emplaced during the Ouachita orogeny. Here the margin is fairly abrupt suggesting transtension was important in this origin. The Wiggins and Sabine blocks appear to be continental fragments which may have formed along this margin. In Texas, the margin extends around the Llano uplift in a sinuous fashion. In this area, Mesozoic extension clouds the picture considerably. However, structural complexities along this portion of he margin can be inferred form gravity data. In West Texas, the margin bends westward and then southward. A very deep oil exploration test which was recently drilled in this area provides valuable constraints for geophysical models of this portion of the margin. Recent results in Mexico allows the authors to trace this margin further south into the state of Chihuahua than previously possible.

  20. Zambezi continental margin: compartmentalized sediment transfer routes to the abyssal Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Wiles, E.; Green, A. N.; Watkeys, M. K.; Jokat, W.

    2017-03-01

    Sediment delivery to the abyssal regions of the oceans is an integral process in the source to sink cycle of material derived from adjacent continents and islands. The Zambezi River, the largest in southern Africa, delivers vast amounts of material to the inner continental shelf of central Mozambique. The aim of this contribution is to better constrain sediment transport pathways to the abyssal plains using the latest, regional, high-resolution multibeam bathymetry data available, taking into account the effects of bottom water circulation, antecedent basin morphology and sea-level change. Results show that sediment transport and delivery to the abyssal plains is partitioned into three distinct domains; southern, central and northern. Sediment partitioning is primarily controlled by changes in continental shelf and shelf-break morphology under the influence of a clockwise rotating shelf circulation system. However, changes in sea-level have an overarching control on sediment delivery to particular domains. During highstand conditions, such as today, limited sediment delivery to the submarine Zambezi Valley and Channel is proposed, with increased sediment delivery to the deepwater basin being envisaged during regression and lowstand conditions. However, there is a pronounced along-strike variation in sediment transport during the sea-level cycle due to changes in the width, depth and orientation of the shelf. This combination of features outlines a sequence stratigraphic concept not generally considered in the strike-aligned shelf-slope-abyssal continuum.

  1. Fuerteventura palaeomagnetism and the evolution of the continental margin off Morocco

    NASA Astrophysics Data System (ADS)

    Storetvedt, K. M.

    1980-03-01

    Palaeomagnetic results from Fuerteventura (Canary Islands) suggest that the oldest subaerial lava succession (Series I) originated at around the Cretaceous/Tertiary boundary, implying that the basal, post-Albian, complex of submarine volcanics, sheeted dikes and plutonics was emplaced sometime in the late Cretaceous. This time-range for early Fuerteventura magmatism and related tectonic movements is contemporaneous with the major sedimentary hiatus encountered in IPOD drill sites along the continental margins of northwest Africa and southwest Europe. This extensive late Cretaceous unconformity is probably directly related to tectonic uplift which locally formed the island of Fuerteventura. The close timing of these tectonomagmatic processes with the suggested final break-up between Africa and South America may indicate that both the North and South Atlantic Oceans had an intimately connected initial spreading history.

  2. Chirostylidae of Australia's western continental margin (Crustacea : Decapoda: Anomura), with the description of five new species.

    PubMed

    Mccallum, Anna W; Poore, Gary C B

    2013-01-01

    Five new species from the squat lobster family Chirostylidae are described from the continental margin of western Australia: Uroptychus albus sp. nov., Uroptychus bardi sp. nov., Uroptychus jawi sp. nov., Uroptychus taylorae sp. nov., and Uroptychus worrorra sp. nov. New records of Indo-West Pacific species for Australia are: Gastroptychus brachyterus Baba, 2005, Gastroptychus investigatoris Alcock, 1899, Uroptychodes grandirostris (Yokoya, 1933), Uroptychodes inortenseni (Van Dam, 1939), Uroptychus scandens Benedict, 1902, Uroptychus ciliatus (Van Dam, 1933) and Uroptychus vandamae Baba, 1988. New distributional records are given for species previously recorded from Australia: Uroptychus flindersi Ahyong & Poore, 2004, Uroptychus hesperius Ahyong & Poore, 2004, Uroptychusjoloensis Van Dam, 1939, Uroptychus nigricapillis Alcock, 1901, and Uroptychus spinirostris (Ahyong & Poore, 2004). These new records expand the number of chirostylid species in Australia from 34 to 46. Keys to Australian species of the genera Gastroptychus, Uroptychodes and Uroptychus are provided.

  3. Exploring the Continental Margin of Israel: “Telepresence” at Work

    NASA Astrophysics Data System (ADS)

    Coleman, Dwight F.; Austin, James A., Jr.; Ben-Avraham, Zvi; Ballard, Robert D.

    2011-03-01

    A multidisciplinary team of American and Israeli scientists conducted ocean exploration with a “telepresence” component offshore Israel in September 2010 on board the new E/V Nautilus, which is a reincarnation of the former East German R/V Alexander von Humboldt. This was the first comprehensive geological and biological exploration of the Israel continental margin using deep submergence vehicle systems. Diverse seafloor environments in water depths between 500 and 1300 meters were sampled and imaged using two remotely operated vehicle (ROV) systems, Hercules and Argus. The ROV dives within three areas (Figure 1) investigated high-priority acoustic targets representing geological, biological, or archaeological features as identified by the onboard scientific team. During the dives, biological and geological samples and more than 100 kilometers of high-resolution side-scan sonar data were collected.

  4. Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins.

    PubMed

    Maldonado, Manuel; Navarro, Laura; Grasa, Ana; Gonzalez, Alicia; Vaquerizo, Isabel

    2011-01-01

    About 75% of extant sponge species use dissolved silicon (DSi) to build a siliceous skeleton. We show that silicon (Si) uptake by sublittoral Axinella demosponges follows an enzymatic kinetics. Interestingly, maximum uptake efficiency occurs at experimental DSi concentrations two orders of magnitude higher than those in the sponge habitats, being unachievable in coastal waters of modern oceans. Such uptake performance appears to be rooted in a former condition suitable to operate at the seemingly high DSi values characterizing the pre-Tertiary (>65 mya) habitats where this sponge lineage diversified. Persistence of ancestral uptake systems causes sponges to be outcompeted by the more efficient uptake of diatoms at the low ambient DSi levels characterizing Recent oceans. Yet, we show that sublittoral sponges consume substantial coastal DSi (0.01-0.90 mmol Si m(-2) day(-1)) at the expenses of the primary-production circuit. Neglect of that consumption hampers accurate understanding of Si cycling on continental margins.

  5. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study

    USGS Publications Warehouse

    Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W.; Lorenson, T.D.; Greene, H. Gary

    2007-01-01

    Authigenic carbonates from five continental margin locations, the Eel River Basin, Monterey Bay, Santa Barbara Basin, the Sea of Okhotsk, and the North Sea, exhibit a wide range of mineralogical and stable isotopic compositions. These precipitates include aragonite, low- and high-Mg calcite, and dolomite. The carbon isotopic composition of carbonates varies widely, ranging from -60??? to +26???, indicating complex carbon sources that include 13C-depleted microbial and thermogenic methane and residual, 13C-enriched, bicarbonate. A similarly large variability of ??18O values (-5.5??? to +8.9???) demonstrates the geochemical complexity of these sites, with some samples pointing toward an 18O-enriched oxygen source possibly related to advection of 18O-enriched formation water or to the decomposition of gas hydrate. Samples depleted in 18O are consistent with formation deeper in the sediment or mixing of pore fluids with meteoric water during carbonate precipitation. A wide range of isotopic and mineralogical variation in authigenic carbonate composition within individual study areas but common trends across multiple geographic areas suggest that these parameters alone are not indicative for certain tectonic or geochemical settings. Rather, the observed variations probably reflect local controls on the flux of carbon and other reduced ions, such as faults, fluid conduits, the presence or absence of gas hydrate in the sediment, and the temporal evolution of the local carbon reservoir. Areas with seafloor carbonates that indicate formation at greater depth below the sediment-water interface must have undergone uplift and erosion in the past or are still being uplifted. Consequently, the occurrence of carbonate slabs on the seafloor in areas of active hydrocarbon seepage is commonly an indicator of exhumation following carbonate precipitation in the shallow subsurface. Therefore, careful petrographic and geochemical analyses are critical components necessary for the

  6. Earth-System Scales of Biodiversity Variability in Shallow Continental Margin Seafloor Ecosystems

    NASA Astrophysics Data System (ADS)

    Moffitt, S. E.; White, S. M.; Hill, T. M.; Kennett, J.

    2015-12-01

    High-resolution paleoceanographic sedimentary sequences allow for the description of ecosystem sensitivity to earth-system scales of climate and oceanographic change. Such archives from Santa Barbara Basin, California record the ecological consequences to seafloor ecosystems of climate-forced shifts in the California Current Oxygen Minimum Zone (OMZ). Here we use core MV0508-20JPC dated to 735,000±5,000 years ago (Marine Isotope Stage 18) as a "floating window" of millennial-scale ecological variability. For this investigation, previously published archives of planktonic δ18O (Globigerina bulloides) record stadial and interstadial oscillations in surface ocean temperature. Core MV0508-20JPC is an intermittently laminated archive, strongly influenced by the California Current OMZ, with continuously preserved benthic foraminifera and discontinuously preserved micro-invertebrates, including ophiuroids, echinoderms, ostracods, gastropods, bivalves and scaphopods. Multivariate statistical approaches, such as ordinations and cluster analyses, describe climate-driven changes in both foraminiferal and micro-invertebrate assemblages. Statistical ordinations illustrate that the shallow continental margin seafloor underwent predictable phase-shifts in oxygenation and biodiversity across stadial and interstadial events. A narrow suite of severely hypoxic taxa characterized foraminiferal communities from laminated intervals, including Bolivina tumida, Globobulimina spp., and Nonionella stella. Foraminiferal communities from bioturbated intervals are diverse and >60% similar to each other, and they are associated with echinoderm, ostracod and mollusc fossils. As with climate shifts in the latest Quaternary, there is a sensitive benthic ecosystem response in mid-Pleistocene continental margins to climatically related changes in OMZ strength.

  7. Crustal Structure of the Gulf of Aden Continental Margins, from Afar to Oman, by Ambient Noise Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Korostelev, F.; Weemstra, C.; Boschi, L.; Leroy, S. D.; Ren, Y.; Stuart, G. W.; Keir, D.; Rolandone, F.; Ahmed, A.; Al Ganad, I.; Khanbari, K. M.; Doubre, C.; Hammond, J. O. S.; Kendall, J. M.

    2014-12-01

    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Gulf of Aden presents volcanic margins to the west, where they are influenced by the Afar hotspot, and non volcanic margins east of longitude 46° E. We imaged the crustal structure of the Gulf of Aden continental margins from Afar to Oman to evaluate the role of the Afar plume on the evolution of the passive margin and its extent towards the East. We use Ambient Noise Seismic Tomography to better understand the architecture and processes along the Gulf of Aden. This recent method, developed in the last decade, allows us to study the seismic signal propagating between two seismic stations. Ambient Noise Seismic Tomography is thus free from artifacts related to the distribution of earthquakes. We collected continuous records from about 200 permanent or temporary stations since 1999 to compute Rayleigh phase velocity maps over the Gulf of Aden.

  8. Geological and Sediment Thickness Data Sources From the U.S. Continental Margins

    NASA Astrophysics Data System (ADS)

    Hutchinson, D. R.; Childs, J. R.; Edgar, N. T.; Barth, G.; Hammar-Klose, E.; Dadisman, S. V.; Rowland, R.

    2005-12-01

    Although the United States has not yet ratified the United Nations Convention on the Law of the Sea (UNCLOS), work has begun to assess the geophysical and geological data sources that might be applied to an extended continental shelf submission under Article 76 of the UNCLOS. The U.S. Geological Survey, as a follow-up to the Congressional Report published by the University of New Hampshire on data relevant to a potential U.S. submission (Mayer and others, 2002), has identified existing seismic reflection, seismic refraction, and drill-hole data on the U.S. margins for the areas where an extended continental shelf submission could be considered. This work complements ongoing NOAA efforts to map the foot-of-the-slope. The USGS compilation includes more than 80,000 km of multichannel seismic data, 70,000 km of single-channel seismic reflection data, 25 refraction experiments, and 12 drill holes that penetrate to basement. Data quality varies according to year collected and acquisition system used. Data coverage is generally excellent within the 200-nm EEZ boundary, but new data will be required to adequately assess sediment thickness in the area beyond 200-nm in some of the poorly surveyed regions (e.g., the Arctic). Velocity and drill-hole control for deeper sedimentary units is generally poor; this deficiency will also need to be addressed in new data gathering efforts. Subsea mineral resources that might exist in the region of an extended continental shelf vary by region and include conventional hydrocarbons, gas hydrate, ferro-manganese crusts and nodules, and possibly phosphorite deposits. On-going efforts are directed at interpreting these data with reference to UNCLOS criteria and guidelines, as well as evaluating how recent submissions to the United Nations by other States might affect a possible U.S. submission.

  9. Structural and stratigraphic controls on the origin and tectonic history of a subducted continental margin, Oman

    NASA Astrophysics Data System (ADS)

    Warren, C. J.; Miller, J. McL.

    2007-03-01

    Eclogites and blueschists exposed in Saih Hatat, Oman, record the subduction and exhumation of continental crustal material beneath the Cretaceous Semail Ophiolite during ophiolite obduction. The eclogite-bearing lower plate, originally part of Oman's distal continental margin, is exposed in two tectonic windows through the less metamorphosed upper plate by a previously mapped low angle, high strain, décollement structure. A major tectonic break, currently poorly exposed, records the juxtaposition of the highest pressure eclogites and garnet blueschists against lower pressure epidote-blueschists. The subsequent exhumation of the entire lower plate to mid crustal levels is marked by a pervasive shearing event associated with a regional greenschist facies overprint. The décollement truncates structures and the metamorphic field gradient in the lower plate, but does not significantly truncate structures or stratigraphy in the upper plate. It is not responsible for the exhumation of the high pressure rocks to mid-crustal levels. Most of the displacement across this structure was accommodated during continuing convergence after the subduction system had ceased to be active, and post ophiolite emplacement onto the platform carbonate sequences. A revised tectonic model is presented which accounts for the structural, geochronological and metamorphic observations.

  10. Petroleum geology of the mid-Atlantic continental margin, offshore Virginia

    USGS Publications Warehouse

    Bayer, K.C.; Milici, R.C.

    1989-01-01

    The Baltimore Canyon Trough, a major sedimentary basin on the Atlantic continental shelf, contains up to 18 km of Mesozoic and Cenozoic strata. The basin has been studied extensively by multichannel common depth point (CDP) seismic reflection profiles and has been tested by drilling for hydrocarbon resources in several places. The Mesozoic and Cenozoic strata contained in the basin were deposited in littoral to bathyal depositional settings and contain immature to marginally mature oil-prone and gas-prone kerogen. The more deeply buried strata of Early Mesozoic age are more likely to be thermally mature than are the younger strata with respect to hydrocarbon generation, but contain terrestrially derived coaly organic matter that would be prone to yield gas, rather than oil. An analysis of available CDP seismic reflection data has indicated that there are several potential hydrocarbon plays in the area offshore of Virginia. These include: (1) Lower Mesozoic synrift basins that appear similar to those exposed in the Appalachian Piedmont, (2) a stratigraphic updip pinchout of strata of Early Mesozoic age in the offshore region near the coast, (3) a deeply buried paleoshelf edge, where seismic reflectors dip sharply seaward; and (4) a Cretaceous/Jurassic shelf edge beneath the present continental rise. Of these, the synrift basins and Cretaceous/Jurassic shelf edge are considered to be the best targets for exploration. ?? 1989.

  11. Organic debris on the continental margins: a simulation analysis of source and fate

    NASA Astrophysics Data System (ADS)

    Walsh, John J.; Dieterle, Dwight A.; Pribble, J. Raymond

    1991-07-01

    A fine-mesh (0.5 km, 2.5 m) two-dimensional model of particle transport and decomposition in the aphotic zone (>150 m) is used to analyse time series (April-August) of element fluxes caught by sediment traps, moored in a transect from the upper slope (500 m) to the continental rise (2750 m) of the Mid-Atlantic Bight. Inclusion of a benthic boundary layer within generally quiescent offshore flows of t1 cm s -1 in the model allows replication of the time phasing and amount of organic carbon sampled by the traps at 50 m above bottom. Over the lower 75 m of the water column on the upper slope, the survival of shelf diatom chains (sinking at 10 m day -1), as well as slope picoplankton (1 m day -1) and zooplankton fecal pellets (100 m day -1), provides most of the model's fidelity after the demise of the spring bloom. On the lower slope, however, the slow setting classes of detritus (<10 m day -1) do not survive the descent, with fluxes of shelf macroaggregates (also sinking at 100 m day -1) and fecal pellets required instead to match observations of particle rain. Downslope resuspension, near-bottom transport, and particle disaggregation may introduce more organic matter to sediments of the continental margins than previously estimated with traps.

  12. Late Cretaceous - Cenozoic development of outer continental margin, southwestern Nova Scotia

    SciTech Connect

    Swift, S.A.

    1987-06-01

    The growth pattern for the outer continental margin of Nova Scotia during the Late Cretaceous and Cenozoic was studied using seismic stratigraphy and well data. Sediment accumulation was broadly controlled by temporal changes in relative sea level, but significant spatial and temporal changes in accumulation patterns were caused by changes in sediment supply rate, morphology, erosion by abyssal currents, and salt tectonics. A Jurassic-Early Cretaceous carbonate platform remained exposed until the Late Cretaceous and controlled the location and steepness of the paleoslope until the late Miocene. Local erosion of the outer shelf and slope in the late Paleocene-early Eocene produced chalky fans on the upper rise. The relationship between erosion of the shelf in the late Eocene and early Oligocene, and abyssal current erosion of the upper rise in the Oligocene, is unclear. Seaward extensions of Tertiary shelf-edge canyons are poorly defined except for the Eocene fans. In the Miocene, abyssal currents eroded a bench on the upper continental rise. Subsequently, sediments lapped onto and buried the paleoslope. The lower rise above horizon A/sup u/ (Oligocene) is composed of fans and olistostromes shed from halokinetic uplift of the upper rise. Current eroded unconformities are common in the rise sequence, but the only current deposit is a Pliocene interval (< 300 m) restricted to the lowermost rise. Pleistocene turbidity currents eroded the present canyon morphology. 15 figures, 2 tables.

  13. Uplift along passive continental margins, changes in plate motion and mantle convection

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Chalmers, James A.; Bonow, Johan M.

    2014-05-01

    The origin of the forces that produce elevated, passive continental margins (EPCMs) is a hot topic in geoscience. It is, however, a new aspect in the debate that episodes of uplift coincide with changes in plate motion. This has been revealed, primarily, by studies of the burial, uplift and exhumation history of EPCMs based on integration on stratigraphic landscape analysis, low-temperature thermochronology and evidence from the geological record (Green et al., 2013). In the Campanian, Eocene and Miocene, uplift and erosion affected the margins of Brazil and Africa (Japsen et al., 2012b). The uplift phases in Brazil coincided with main phases of Andean orogeny which were periods of relatively rapid convergence at the Andean margin of South America (Cobbold et al., 2001). Because Campanian uplift in Brazil coincides, not only with rapid convergence at the Andean margin of South America, but also with a decline in Atlantic spreading rate, Japsen et al. (2012b) suggested that all these uplift events have a common cause, which is lateral resistance to plate motion. Because the uplift phases are common to margins of diverging plates, it was also suggested that the driving forces can transmit across the spreading axis; probably at great depth, e.g. in the asthenosphere. Late Eocene, Late Miocene and Pliocene uplift and erosion shaped the elevated margin of southern East Greenland (Bonow et al., in review; Japsen et al., in review). These regional uplift phases are synchronous with phases in West Greenland, overlap in time with similar events in North America and Europe and also correlate with changes in plate motion. The much higher elevation of East Greenland compared to West Greenland suggests dynamic support in the east from the Iceland plume. Japsen et al. (2012a) pointed out that EPCMs are typically located above thick crust/lithosphere that is closely juxtaposed to thinner crust/lithosphere. The presence of mountains along the Atlantic margin of Brazil and in East

  14. Preliminary report on geology along Atlantic Continental Margin of northeastern United States

    USGS Publications Warehouse

    Minard, J.P.; Perry, W.J.; Weed, E.G.A.; Rhodehamel, E.C.; Robbins, E.I.; Mixon, R.B.

    1974-01-01

    The U.S. Geological Survey is conducting a geologic and geophysical study of the northeastern United States outer continental shelf and the adjacent slope from Georges Bank to Cape Hatteras. The study also includes the adjacent coastal plain because it is a more accessible extension of the shelf. The total study area is about 324,000 sq km, of which the shelf and slope constitute about 181,000 sq km and the coastal plain constitutes 143,000 sq km. The shelf width ranges from about 30 km at Cape Hatteras to about 195 km off Raritan Bay and on Georges Bank. Analyses of bottom samples make it possible to construct a preliminary geologic map of the shelf and slope to a water depth of 2,000 m. The oldest beds cropping out in the submarine canyons and on the slope are of early ate Cretaceous age. Beds of Early Cretaceous and Jurassic age are present in deep wells onshore and probably are present beneath the shelf in the area of this study. Such beds are reported beneath the Scotian shelf on the northeast where they include limestone, salt, and anhydrite. Preliminary conclusions suggest a considerably thicker Mesozoic sedimentary sequence than has been described previously. The region is large; the sedimentary wedge is thick; structures seem favorable; and the hydrocarbon potential may be considerable.

  15. Gas hydrate quantification from ocean-bottom seismometer data along the continental margin of Western Svalbard.

    NASA Astrophysics Data System (ADS)

    Chabert, A.; Minshull, T. A.; Westbrook, G. K.; Berndt, C.

    2009-04-01

    The stability of shallow gas hydrate in the Arctic region is expected to be affected by the warming of the bottom-water in the next decades. It is, therefore, important to evaluate how the gas hydrate systems will react to future increases in bottom-water temperature and the impact on climate of the spatial and temporal variability of the release of methane from these reservoirs. As part of the International Polar Year initiative, a multidisciplinary marine expedition was carried out in September 2008 along the continental margin west of Svalbard in the Arctic. One of the objectives was to investigate the extent of the gas hydrate stability zone (GHSZ) along and across the continental slope and to estimate the quantity of methane present using the geophysical properties of methane hydrate- and gas-bearing sediments, which occur in and beneath the GHSZ. Three seismic experiments employing ocean-bottom seismometers (OBS) were carried out across and along the continental margin as part of the project. Seismic data from 13 OBS in closely spaced arrays were acquired from 5 representative sites off west Svalbard, above and below the upper limit of the GHSZ. Two to four OBSs were deployed at each site, with a spacing of 200 m. The high frequency airguns were fired at 5-s intervals, concurrently with the acquisition of multi-channel seismic reflection profiles. The OBSs were equipped with a 3-component 4.5 Hz geophone package and a broadband hydrophone; the data-loggers were operated at 1 kHz sample rate. The OBS experiments were designed to recover P- and S-wave velocities to depths of a few hundreds metres below the seabed in order to estimate the amount of hydrate in the region, hydrate increasing both the P- and S-wave velocities of the sediments in which it is present. The data show clearly recorded P reflections at short offsets, as well as refracted arrivals at larger offsets, from depths of 1 to 2 kilometres below the seabed. S waves, generated by P-S conversion on

  16. Pleistocene marine ice sheets and ice shelves at the East Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Kuk Hong, Jong; Hegewald, Anne; Matthiessen, Jens; Stein, Rüdiger; Kim, Sookwan; Jensen, Laura; Jokat, Wilfried; Nam, Seung Il

    2014-05-01

    RV "Polarstern" cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012) investigated an area in the Arctic Ocean located between the Chukchi Borderland and the East Siberian Sea (between 165°W and 170°E). Based on swath bathymetry, sediment echosounding, seismic profiling and sediment coring we present evidence that the western Arctic Ocean had a glaciated continental margin during several glacial periods of the Pleistocene (Niessen et al. 2013). At the southern end of the Mendeleev Ridge and on the Chukchi and East Siberian continental slopes ice sheets and ice shelves grounded in up to 1200 m present water depth. We found mega-scale glacial lineations (MSGL) associated with deposition of glaciogenic wedges and debris-flow deposits indicative of sub-glacial erosion and deposition close to the former grounding lines. Glacially lineated areas are associated with large-scale erosion, capped with diamicton and draped by, in places, several metres of pelagic sediments. On the Arlis Plateau, a detailed bathymetric map exhibits several generations of MSGL, which we interpret as relicts of different Pleistocene glaciations. Traces of former grounding line positions suggest that an ice shelf of approximately 900 m in thickness has spread across the Southern Mendeleev Ridge in a north-easterly direction. According to our results, ice sheets of more than one km in thickness continued onto, and likely centered over, the East Siberian Shelf. A preliminary age model suggests that the youngest and shallowest grounding event of an ice sheet should be within Marine Isotope Stage (MIS) 3 and clearly predates the Last Glacial Maximum. The oldest and deepest event predates MIS 6. The youngest grounding event on the Arlis Plateau is tentatively dated to have occurred during MIS 4. These results have important implication for the former distribution of thick ice masses in the Arctic Ocean during the Pleistocene. They are relevant for albedo, ocean-atmosphere heat exchange

  17. Subsidence and eustasy at the continental margin of eastern North America

    NASA Technical Reports Server (NTRS)

    Watts, A. B.; Steckler, M. S.

    1979-01-01

    Biostratigraphic data from the COST B-2 well off New York and four deep commercial wells off Nova Scotia have been used to remove the effect of sediment loading at the Atlantic-type continental margin off the East Coast of North America. The resulting subsidence contains terms due to both 'tectonic' and 'eustatic' effects. By assuming the tectonic subsidence is thermal in origin these effects can be separated. The 'eustatic' effects have been isolated by least squares fitting an exponential curve to the subsidence data. The resulting sea-level curve shows a maximum rise in sea level during the Late Cretaceous era which probably does not exceed 150 m. The tectonic subsidence has been interpreted in terms of a simple thermal model for the cooling lithosphere. Based on this model the thermal thickness of the lithosphere and the total amount of crustal thinning are estimated. These estimates which are consistent with surface ship gravity and GEOS-3 altimeter measurements are used to define the structural elements which control the tectonic evolution of the margin.

  18. Physiography of the Monterey Bay National Marine Sanctuary and implications about continental margin development

    USGS Publications Warehouse

    Greene, H.D.; Maher, N.M.; Paull, C.K.

    2002-01-01

    Combined EM-300 multibeam bathymetric data and satellite photography reveal the physiography of the continental margin between 35°50′ and 37°03′N and from the shoreline west of 122°40′ and 122°37′W, which includes Monterey Bay, in a previously unprecedented detail. Patterns in these images clearly reveal the processes that are actively influencing the current geomorphology of the Monterey Bay region, including the Monterey Bay National Marine Sanctuary (MBNMS). Our data indicates that seafloor physiography within the MBNMS results from plate margin tectonic deformation, including uplift and erosion along structural lineaments, and from fluid flow. Mass wasting is the dominant process active within the Ascension–Monterey and Sur–Partington submarine canyon systems and along the lower slopes. Meanders, slump dams, and constricted channels within the submarine canyons, especially within Monterey Canyon, slow and interrupt down-canyon sediment transport. We have identified for the first time thin sediment flows, rotational slumps, rills, depressions that may be associated with pipes, and other fluid-induced features we call ‘scallops’ off the Ascension slope, and suggest that fluid flow has sculptured the seafloor morphologies here. These unusual seafloor morphologies are similar to morphologies found in terrestrial areas modified by ground-water flow.

  19. Cretaceous source rock characterization of the Atlantic Continental margin of Morocco

    SciTech Connect

    Jabour, H. )

    1993-02-01

    Characterization of the petroleum potential for the Atlantic margin of Morocco has been based primarily on limited, antiently acquired organic geochemical data. These indicate the area of drilling behind the paleoshelf edge to be only fair in organic carbon and C15+ extract values with predominantly terrestrial kerogen types. Recently acquired geochemical data obtained from relatively recent drilling both behind and beyond the paleoshelf edge indicate 4 depositional facies containing hydrogen rich amorphous kerogen assemblages. These are: (1) Lower to Mid Jurassic inner shelf facies probably deposited in algal rich lagoon-like, (2) Lower Cretaceous non marine coaly facies probably deposited in algal rich swamplike environments, (3) Middle Cretaceous facies characterized by restrited anoxic environment with sediments rich in marine kerogen types deposited under sluggish wather circulation, (4) Upper Cretaceous to Tertiary outer-shelf to Upper slope facies probably deposited under algal-rich upwelling systems. Of these, the Cretaceous facies is the most widespread and represents the best source rock potential characteristics. Correlation of these facies to recently acquired good quality seismic packages allows for extrapolation of probable organic facies distribution throughout the continental margin. This should enhance the hydrocarbon potential of the Mesozoic and Cenozoic sediments both landward and seaward of the paleoshelf edge and thus permits refinement of strategies for hydrocarbon exploration in the area.

  20. Tracking the influence of a continental margin on growth of a magmatic arc, Fiordland, New Zealand, using thermobarometry, thermochronology, and zircon U-Pb and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Scott, J. M.; Cooper, A. F.; Palin, J. M.; Tulloch, A. J.; Kula, J.; Jongens, R.; Spell, T. L.; Pearson, N. J.

    2009-12-01

    Geothermobarometric, radiogenic isotopic and thermochronologic data are used to track the influence of an ancient continental margin (Western Province) on development of an adjacent Carboniferous-Cretaceous magmatic arc (Outboard Median Batholith) in Fiordland, New Zealand. The data show a record of complicated Mesozoic Gondwana margin growth. Paragneiss within the Outboard Median Batholith is of Carboniferous to Jurassic age and records burial to middle crustal depths in Late Jurassic-Early Cretaceous during subduction-related plutonism and arc thickening. In contrast, Western Province metasedimentary rocks in the area of study immediately west of the Outboard Median Batholith are Late Cambrian-Early Ordovician in age, recrystallized at the amphibolite facies in the Late Devonian-Early Carboniferous and exhibit no evidence for Mesozoic textural or isotopic reequilibration. A phase of deformation, between 128 and 116 Ma deformed, exhumed, and cooled the Outboard Median Batholith to greenschist facies temperatures, while large parts of the Western Province underwent ≥9 kbar metamorphic conditions. Zircon grains from Mesozoic inboard plutons are isotopically more evolved (ɛHf(t) = +2.3 to +4.0) than those in the Outboard Median Batholith (ɛHf(t) = +9.4 to +11.1). The contrasting zircon Hf isotope ratios, absence of S-type plutons or Proterozoic-Early Paleozoic inherited zircon, and the apparent absence of Early Paleozoic metasedimentary rocks indicates that the Outboard Median Batholith is unlikely to be underlain by the Western Province continental lithosphere. The new data are consistent with the Outboard Median Batholith representing an allochthonous (although not necessarily exotic) arc that was juxtaposed onto the Gondwana continental margin along the intervening Grebe Mylonite Zone.

  1. Ten years of studies on Maryland's inner Continental Margin and coastal bays

    USGS Publications Warehouse

    Kerhin, R.T.; Conkwright, R.; Wells, D.

    1999-01-01

    During the past ten years of the Association of American State Geologists-Mineral Management Service Continental Margins Program, the Maryland Geological Survey investigated the sedimentological, paleontological, stratigraphical and geophysical character of Maryland's inner continental shelf. Based on seismic records and sedimentological analyses completed during the first four years, a late Quaternary stratigraphic model was developed. Five distinct stratigraphic units were identified and described on the Maryland inner shelf. These units represent late Pleistocene interglacial deposits, the oldest of which corresponds to pre-Illinoian (oxygen-isotope stages 7 and/or 9) transgressive shelf sands. Overlying the Q1 unit, the Q2 unit is a 6-meter thick mud sequence of oxygen-isotope stage 5 (128-75 ka) age. Units Q3 and Q4 representing fluvial and leading edge estuarine deposits (oxygen-isotope stages 4, 3 and 2) filled numerous paleochannels that were incised into units Q2 and Q1. Modern trailing-edge transgressive shelf shoals (Unit Q5) discontinuously cap the sequence. The 5th and 6th years studies reported on the economic minerals of surficial and cored sediments. Vibracores collected off the Maryland's shelf during previous studies were analyzed for mineral types and abundances, weight percent of general size fractions, and heavy mineral (HM) content. Mineralogic maturity indices were compiled to correlate the THM and economic heavy minerals (EHM) abundances with position offshore, sediment type, and the indices themselves. For the 7th year, the Maryland Geological Survey re-examined geophysical records and lithological data originally collected by the Army Corps of Engineers to locate and assess beach fill borrow areas for the Ocean City Beach Replenishment Project. Data from 163 vibracores and over 300 kilometers of high-resolution seismic profile records collected off Ocean City, Maryland, supported the stratigraphic model developed by MGS during the first

  2. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Archer, D.

    2014-06-01

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbon (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales

  3. Geology of the continental margin beneath Santa Monica Bay, Southern California, from seismic-reflection data

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Bohannon, R.G.; Sliter, R.W.; Calvert, A.J.

    2003-01-01

    We interpret seismic-reflection data, which were collected in Santa Monica Bay using a 70-in3 generator-injector air gun, to show the geologic structure of the continental shelf and slope and of the deep-water, Santa Monica and San Pedro Basins. The goal of this research is to investigate the earthquake hazard posed to urban areas by offshore faults. These data reveal that northwest of the Palos Verdes Peninsula, the Palos Verdes Fault neither offsets the seafloor nor cuts through an undeformed sediment apron that postdates the last sea level rise. Other evidence indicates that this fault extends northwest beneath the shelf in the deep subsurface. However, other major faults in the study area, such as the Dume and San Pedro Basin Faults, were active recently, as indicated by an arched seafloor and offset shallow sediment. Rocks under the lower continental slope are deformed to differing degrees on opposite sides of Santa Monica Canyon. Northwest of this canyon, the continental slope is underlain by a little-deformed sediment apron; the main structures that deform this apron are two lower-slope anticlines that extend toward Point Dume and are cored by faults showing reverse or thrust separation. Southeast of Santa Monica Canyon, lower-slope rocks are deformed by a complex arrangement of strike-slip, normal, and reverse faults. The San Pedro Escarpment rises abruptly along the southeast side of Santa Monica Canyon. Reverse faults and folds underpinning this escarpment steepen progressively southeastward. Locally they form flower structures and cut downward into basement rocks. These faults merge downward with the San Pedro Basin fault zone, which is nearly vertical and strike slip. The escarpment and its attendant structures diverge from this strike-slip fault zone and extend for 60 km along the margin, separating the continental shelf from the deep-water basins. The deep-water Santa Monica Basin has large extent but is filled with only a thin (less than 1.5-km

  4. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time

  5. Nd isotopic variation of Paleozoic-Mesozoic granitoids from the Da Hinggan Mountains and adjacent areas, NE Asia: Implications for the architecture and growth of continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Qidi; Wang, Tao; Guo, Lei; Tong, Ying; Zhang, Lei; Zhang, Jianjun; Hou, Zengqian

    2017-02-01

    There is a long-standing controversy regarding the tectonic division, composition and structure of the continental crust in the Da Hinggan Mountains and adjacent areas, which are mainly part of the southeastern Central Asian Orogenic Belt (CAOB). This paper approaches these issues via neodymium isotopic mapping of Paleozoic-Mesozoic (480 to 100 Ma) granitoids. On the basis of 943 published and 8 new whole-rock Nd isotopic data, the study area can be divided into four Nd isotopic provinces (I, II, III and IV). Province I (the youngest crust, Nd model ages (TDM) = 0.8-0.2 Ga) is a remarkable region of Phanerozoic crustal growth, which may reflect a major zone for closures of the Paleo-Asian Ocean. Province II (slightly juvenile crust, TDM = 1.0-0.8 Ga), the largest Nd isotopic province in the southeastern CAOB, is considered to reflect the recycling of the initial crustal material produced during the early stage (Early Neoproterozoic) evolution of the Paleo-Asian Ocean. Province III (slightly old crust, TDM = 1.6-1.1 Ga) is characterized by ancient crustal blocks, such as the central Mongolian, Erguna, Dariganga and Hutag Uul-Xilinhot blocks, which represent micro-continents and Precambrian basements in the southeastern CAOB. Several parts of Province III are located along the northern margin of the North China Craton (NCC), which is interpreted as a destroyed cratonic margin during the Paleozoic and Mesozoic. Province IV (the oldest crust, TDM = 2.9-1.6 Ga) mainly occurs within the NCC and reflects its typical Precambrian nature. These mapping results indicate that the boundary between Provinces II and III (the northern margin of the NCC) along the Solonker-Xar Moron Fault can be regarded as the lithospheric boundary between the CAOB and NCC. Provinces I and II account for 20% and 44% of the area of the southeastern CAOB, respectively, and therefore the ratio of continental growth is 64% from the Neoproterozoic to the Mesozoic, which is typical for this part of the

  6. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar

  7. Organic matter diagenesis and hydrocarbon generation on outer Continental Margin of northwestern Australia

    SciTech Connect

    Meyers, P.A.; Snowdon, L.R.; Heggie, D.; Bent, A.

    1989-03-01

    Organic geochemical analyses of sediments and rocks obtained from drill sites on the Exmouth and Wombat Plateaus and the Argo Abyssal Plain on the northwestern margin of Australia were done onboard the JOIDES Resolution during Ocean Drilling Program Legs 122 and 123. These analyses provide information about the sources of organic matter to these offshore locations from Triassic to Holocene times and also indicate the degree of postdepositional diagenesis and maturation the organic matter has experienced. Because this margin has interest to petroleum explorationists, these data have practical as well as fundamental significance. Triassic claystones (equivalent to the onshore Mungeroo Formation) from the Wombat Plateau contain up to several percent of land-derived organic carbon. Neocomian siltstones and claystones (equivalent to the Barrow Group and Muderong Shale) from the Exmouth Plateau hold similar organic matter but at lower concentrations. Younger sediments are generally very lean in organic matter. Gas chromatographic analysis of extractable hydrocarbons shows a large and often dominant contribution of continental components, notably n-alkanes with a strong odd/even ratio and tricyclic diterpanes. Both Rock-Eval and hydrocarbon results agree in indicating low to moderate levels of thermal maturity. Locations on the Exmouth Plateau typically contain large amounts of thermogenic gaseous hydrocarbons dominated by methane. Concentrations peak in Senonian chalk sequences. In Neocomian siltstones and claystones, methane-ethane ratios diminish as concentrations decrease. The source of these hydrocarbons is likely to be the Triassic coals and coaly material below the Dingo claystone, which was not drilled during these legs but has been characterized from industry wells on this passive margin.

  8. Subsurface geology of upper Tertiary and Quaternary deposits, coastal Louisiana and adjacent Continental Shelf

    SciTech Connect

    McFarlan, E. Jr.; Leroy, D.O.

    1988-09-01

    Upper Tertiary and Quaternary deposits thicken seaward from a feather edge on the outcrop in the uplands of southern Louisiana to more than 7000 ft (2134 m) beneath the middle continental shelf. Through a study of cores and cuttings from 100 control wells and electric-log pattern correlations from 350 water and petroleum industry wells with seismic corroboration in the offshore area, these deposits have been divided into six major time-stratigraphic units, four of which correlate to outcropping terraces. This investigation presents a regional stratigraphic framework of the major upper Tertiary and Quaternary units from their updip pinch-outs in and beneath the terraced uplands, into the subsurface, across the coastal plain to the Louisiana offshore area.

  9. Heavy metal distribution in surface sediments from the continental shelf adjacent to Nazaré canyon

    NASA Astrophysics Data System (ADS)

    Oliveira, A.; Palma, C.; Valença, M.

    2011-12-01

    The continental shelf surface sediments around the Nazaré canyon have been analyzed for heavy metal contamination. Organic carbon content and grain size were also determined. The shelf area around the Nazaré canyon shows mean concentrations of Cr, Cu, Hg, Ni, Pb and Zn within the limits recommended by OSPAR (2008). Some enrichment and human impact was found for Cr and especially Pb. Local rivers, mainly the Mondego and southern creeks seem to be the major sources of heavy metals for the Nazaré area, showing similar contamination levels. A set of reference values for non-contaminated fine surface sediments (<63 μm) in the North-Eastern Atlantic are proposed for As, Al, Cd, Cr, Cu, Fe, Hg, Li, Mn, Ni, Pb and Zn.

  10. Geoacoustic characteristics at the DH-2 long-core sediments in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2015-04-01

    A long core of 27.2 m was acquired at the DH-2 site (37°34.355'N and 129°19.516'E) in the Korean continental margin of the western East Sea. The core site is located near the Donghae City and the water depth is 316.6 m deep. The long-core sediment was recovered using the Portable Remotely Operated Drill (PROD), a fully contained drilling system, remotely operated at the seafloor. The recovered core sediments were analyzed for physical, sedimentological, and geoacoustic properties mostly at 10~30 cm intervals. Based on the long-core data with subbottom and air-gun profiles at the DH-2 core site, geoacoustic characteristics of the deeper sedimentary successions were firstly investigated in the Korean continental margin of the western East Sea. The geoacoustic measurements comprise 86 P-wave velocities and 76 attenuation values. These geoacoustic characteristics of the DH-2 long core probably contribute for reconstruction of geoacoustic models reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: long core, geoacoustic, East Sea, continental margin, P-wave speed Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025733) and by the Agency of Defense Development (UD140003DD).

  11. Metal elements in the bottom sediments of the Changjiang Estuary and its adjacent continental shelf of the East China Sea.

    PubMed

    Cao, Lu; Hong, Gi Hoon; Liu, Sumei

    2015-06-15

    The metal elements (Al, Fe, Mn, Cr, Co, Ni, Cu, Zn, As, Pb and Ca) in the bottom sediment of the Changjiang Estuary and its adjacent continental shelf of the East China Sea were studied to map their spatial distribution and to assess their potential risk to the marine biota. These metal concentrations except Ca were generally higher in the inner shelf and northeastern part, and were found to decrease from the coast to the offshore of the Changjiang Estuary. Sedimentary Ca was most abundant in the outer shelf sediments and decreased in inner shelf. Arsenic (As) appeared to be contaminated due to economic development from 1980s in the inner shelf overall, but the potential ecological risk from the selected metals was low in the coastal sea off the Changjiang.

  12. Distribution of Pasiphaea japonica larvae in submarine canyons and adjacent continental slope areas in Toyama Bay, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Nanjo, Nobuaki; Katayama, Satoshi

    2014-09-01

    The horizontal and vertical distribution of Pasiphaea japonica larvae, which included larval stages and postlarval or later stages, were investigated in Toyama Bay located in central Japan. The horizontal distributions in the inner part of the bay were investigated by oblique hauls from 10 m above the sea-bottom to the surface using a Remodeled NORPAC net (LNP net) in May, August, November 2005, January, March, April, July, September, December 2006, March-September, November-December 2007, and January-March 2008. The vertical distributions were investigated by concurrent horizontal hauls at the depths of 0, 50, 100, 150, 200, and 250 m using a Motoda net (MTD net) in January, March, April, July, September, and December 2006. Mean density of larvae was higher in submarine canyons which dissect the continental shelf and run to the mouth of river, than adjacent continental slope areas. Larvae densely aggregated in the canyon head. Vertical distribution of the larval stages concentrated in the depth range of 100-150 m in both daytime and nighttime, and larvae in the postlarval or later stages showed diel vertical distribution over a wider depth range than larval stages. Our results indicate the possibility of a larval aggregation in energy-rich habitats, and indicated two important roles of submarine canyons, which were larval retention and high food supply.

  13. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and

  14. Germanium-silicon fractionation in a river-influenced continental margin: The Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Baronas, J. Jotautas; Hammond, Douglas E.; Berelson, William M.; McManus, James; Severmann, Silke

    2016-04-01

    In this study we have sampled the water column and sediments of the Gulf of Mexico to investigate the effects of high riverine terrigenous load and sediment redox conditions on the cycling of Ge and Si. Water column Ge/Si ratios across the Gulf of Mexico continental shelf range from 1.9 to 25 μmol/mol, which is elevated compared to the global ocean value of 0.7 μmol/mol. The Ge enrichment in the Gulf of Mexico seawater is primarily due to anthropogenic contamination of the Mississippi river, which is the main Ge and Si source to the area, and to a smaller extent due to discrimination against Ge during biogenic silica (bSi) production (Ge/Si = 1.2-1.8 μmol/mol), especially by radiolarians and siliceous sponges (Ge/Si = 0.6-1.1 μmol/mol). Most sediment pore waters (Ge/Si = 0.3-4.5 μmol/mol) and sediment incubation experiments (benthic flux Ge/Si = 0.9-1.2 μmol/mol) indicate precipitation of authigenic phases that sequester Ge from pore waters (non-opal sink). This process appears to be independent of oxidation-reduction reactions and suggests that authigenic aluminosilicate formation (reverse weathering) may be the dominant Ge sink in marine sediments. Compilation of previously published data shows that in continental margins, non-opal Ge burial flux is controlled by bSi supply, while in open ocean sediments it is 10-100 times lower and most likely limited by the supply of lithogenic material. We provide a measurement-based estimate of the global non-opal Ge burial flux as 4-32 Mmol yr-1, encompassing the 2-16 Mmol yr-1 needed to keep the global marine Ge cycle at steady state.

  15. Crustal Configuration of the Terrace off Trivandrum, Southwestern Continental Margin of India

    NASA Astrophysics Data System (ADS)

    Kurian, J.; Vadakkeyakath, Y.; Bhattacharya, G. C.; Sivaramakrishnan, R.; Sk221 Scientific Team*

    2010-12-01

    The Terrace off Trivandrum (TOT) is an anomalous bathymetric protrusion in the southwestern continental margin of India. Recent studies based on paleogeographic reconstructions have suggested that the Terrace off Trivandrum and the bathymetric notch in the Northern Madagascar Ridge are conjugate features related to India-Madagascar separation. While the nature of crust underlying the Northern Madagascar Ridge is ambiguous, no information is available on the nature of the crust in the Terrace off Trivandrum. In this context, the present study was carried out to understand the crustal configuration of TOT based on recently acquired bathymetry, multi-channel seismic reflection, gravity and magnetic data. The seismic reflection data clearly brings out the block-faulted nature of the basement and presence of a nearly N-S trending wide basement high in the central part of the TOT. This region is characterized by the presence of several prominent high amplitude magnetic anomalies as well as several positive residual gravity anomalies superimposed over a broad negative free-air gravity anomaly. At places, the prominent gravity and magnetic anomalies coincide with the bathymetric features suggesting their probable genesis as volcanic emplacements. In the central part of the TOT, the prominent gravity anomalies coincide with the wide basement high. However, no distinctive basement features are conspicuous in the seismic section corresponding to the prominent magnetic anomalies observed at places over this basement high. Integrated modelling of gravity and magnetic data constrained by seismic reflection information suggests that the crustal configuration of the TOT region is comparable to a thinned continental crust intermingled with intruded / extruded volcanics. *SK221 Scientific Team: M.M. Subramaniam, A. Tyagi, P. Vohat, A. Bhattacharya, V.S.K. Rao, P. Shetkar, R.D. Singh, U.K. Singh, K.V. Swamy, S. Upadhyaya

  16. Pb and Sr isotopic constraints on lithospheric magma sources during Mesozoic continental margin arc initiation, southern California

    SciTech Connect

    Barth, A.P. . Dept. of Geology); Tosdal, R.M.; Wooden, J.L. )

    1993-04-01

    Initiation of the Mesozoic Cordilleran arc in the southwestern US is marked by plutonism from about 241--213 Ma, exposed in the Granite Mountains in the southwestern Mojave Desert, through the Transverse Ranges to the Colorado River trough in southeastern California and southwestern Arizona. Plutons range in composition from diorite to granite, but quartz monzonite and monzodiorite predominate. Plutons intruded 1,700 to 1,100 Ma rocks of the Mojave crustal province [as defined isotopically by Wooden and Miller (1990) and Bennett and DePaolo (1987)], and episomal plutons locally intruded its deformed cratonal/miogeoclinal cover. Plutons emplaced during arc initiation overlap isotopically with local Proterozoic basement rocks, but typically have less radiogenic [sup 207]Pb/[sup 204]Pb, [sup 208]Pb/[sup 204]Pb and [sup 87]Sr/[sup 86]Sr than adjacent, more voluminous Middle-Late Jurassic and Late Cretaceous arc plutons. Among early arc plutons, an inter-suite trend toward more radiogenic Pb and [sup 87]Sr/[sup 86]Sr at similar silica contents reflects regional basement isotopic variability. Generally high Sr contents, low Rb/Sr and limited REE data suggest this inter-suite variations records heterogeneity in eclogite/garnet amphibolite facies mafic lithospheric magma sources, corresponding to mafic lower crust and/or upper mantle formed during 1,700 Ma orogenesis or rift-related magmatism at 1,100 Ma. Intra-suite trends toward less radiogenic Pb at constant or more radiogenic Sr reflect involvement of a U and Th depleted, silicic intracrustal contaminant. Distinctive magma sources and limited crustal interaction during emplacement probably reflects the relatively cool thermal structure of the nascent Cordilleran continental margin arc.

  17. Methane Derived Authigenic Carbonates from the Upper Continental Margin of the Bay of Biscay (France)

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc-Valleron, M. M.; Dupré, S.

    2014-12-01

    Extensive seafloor carbonate pavements are present at water depth from 140 to 180 meters on the upper continental margin of the Bay of Biscay, 50 to 60 km away from the present-day coastline. They form at the seafloor meter-high sub-circular reliefs with a diameter from 10 m to 100 m that are surrounded by light brown silto-sandy unconsolidated sediments. All these structures are associated with active methane seeps that cover an area of 80km from N to S and up to 8km from W to E. These carbonates were sampled during the two cruises GAZCOGNE 1 (july-august 2013) and GAZCOGNE 2 (september 2013). The carbonate crusts are porous sandstones, dark brown to black by impregnation with Fe-Mn oxides/hydroxides. Subseafloor concretions are homogenous light to medium grey fine-grained sandstones. The bulk carbonate content varies in the range 36-42 weight %. The carbonate mineralogy is dominated by aragonite that cements the detrital grains whereas calcite comes from the biogenic carbonates. Dolomite occurs in significant amount in a few samples. Circular cavities of 5 to 10 µm of diameter in the carbonate cement represent traces of gas bubbles; smaller holes in the aragonite crystals are due to carbonate dissolution by CO2 issued from aerobic oxidation of methane. The oxygen isotopic compositions of the bulk carbonate (+1.7 to +4.5‰) and aragonite cement (-0.2 to +1.4‰) are lower than the values in equilibrium with the present-day temperature and salinity conditions. This indicates that the carbonate precipitated in mixtures of seawater and continental water, i.e. in a context of submarine groundwater discharge. The carbon isotopic compositions of the bulk carbonate (-51.9 to -38.2‰) and aragonite cement (-49.9 to -29.3‰) demonstrate that most carbon derived from methane oxidized as bicarbonate during microbial anaerobic oxidation of methane. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories

  18. Three-Dimensional Numerical Modeling of Crustal Growth at Active Continental Margins

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Gerya, T.; Tackley, P. J.

    2011-12-01

    Active margins are important sites of new continental crust formation by magmatic processes related to the subduction of oceanic plates. We investigate these phenomena using a three-dimensional coupled petrological-geochemical-thermomechanical numerical model, which combines a finite-difference flow solver with a non-diffusive marker-in-cell technique for advection (I3ELVIS code, Gerya and Yuen, PEPI,2007). The model includes mantle flow associated with the subducting plate, water release from the slab, fluid propagation that triggers partial melting at the slab surface, melt extraction and the resulting volcanic crustal growth at the surface. The model also accounts for variations in physical properties (mainly density and viscosity) of both fluids and rocks as a function of local conditions in temperature, pressure, deformation, nature of the rocks, and chemical exchanges. Our results show different patterns of crustal growth and surface topography, which are comparable to nature, during subduction at active continental margins. Often, two trench-parallel lines of magmatic activity, which reflect two maxima of melt production atop the slab, are formed on the surface. The melt extraction rate controls the patterns of new crust at different ages. Moving free water reflects the path of fluids, and the velocity of free water shows the trend of two parallel lines of magmatic activity. The formation of new crust in particular time intervals is distributed in finger-like shapes, corresponding to finger-like and ridge-like cold plumes developed atop the subducting slabs (Zhu et al., G-cubed,2009; PEPI,2011). Most of the new crust is basaltic, formed from peridotitic mantle. Granitic crust extracted from melted sediment and upper crust forms in a line closer to the trench, and its distribution reflects the finger-like cold plumes. Dacitic crust extracted from the melted lower crust forms in a line farther away from the trench, and its distribution is anticorrelated with

  19. Gas emissions at the continental margin west of Svalbard: mapping, sampling, and quantification

    NASA Astrophysics Data System (ADS)

    Sahling, H.; Römer, M.; Pape, T.; Bergès, B.; dos Santos Fereirra, C.; Boelmann, J.; Geprägs, P.; Tomczyk, M.; Nowald, N.; Dimmler, W.; Schroedter, L.; Glockzin, M.; Bohrmann, G.

    2014-11-01

    We mapped, sampled, and quantified gas emissions at the continental margin west of Svalbard during R/V Heincke cruise He-387 in late summer 2012. Hydroacoustic mapping revealed that gas emissions were not limited to a zone just above 396 m water depth. Flares from this depth have gained significant attention in the scientific community in recent years because they may be caused by bottom-water warming-induced hydrate dissolution in the course of global warming and/or by recurring seasonal hydrate formation and decay. We found that gas emissions occurred widespread between about 80 and 415 m water depth, which indicates that hydrate dissolution might only be one of several triggers for active hydrocarbon seepage in that area. Gas emissions were remarkably intensive at the main ridge of the Forlandet moraine complex in 80 to 90 m water depths, and may be related to thawing permafrost. Focused seafloor investigations were performed with the remotely operated vehicle (ROV) "Cherokee". Geochemical analyses of gas bubbles sampled at about 240 m water depth as well as at the 396 m gas emission sites revealed that the vent gas is primarily composed of methane (> 99.70%) of microbial origin (average δ13C = -55.7‰ V-PDB). Estimates of the regional gas bubble flux from the seafloor to the water column in the area of possible hydrate decomposition were achieved by combining flare mapping using multibeam and single-beam echosounder data, bubble stream mapping using a ROV-mounted horizontally looking sonar, and quantification of individual bubble streams using ROV imagery and bubble counting. We estimated that about 53 × 106 mol methane were annually emitted at the two areas and allow for a large range of uncertainty due to our method (9 to 118 × 106 mol yr-1). First, these amounts show that gas emissions at the continental margin west of Svalbard were on the same order of magnitude as bubble emissions at other geological settings; second, they may be used to calibrate

  20. Gas emissions at the continental margin west off Svalbard: mapping, sampling, and quantification

    NASA Astrophysics Data System (ADS)

    Sahling, H.; Römer, M.; Pape, T.; Bergès, B.; dos Santos Fereirra, C.; Boelmann, J.; Geprägs, P.; Tomczyk, M.; Nowald, N.; Dimmler, W.; Schroedter, L.; Glockzin, M.; Bohrmann, G.

    2014-05-01

    We mapped, sampled, and quantified gas emissions at the continental margin west of Svalbard during R/V Heincke cruise He-387 in late summer 2012. Hydroacoustic mapping revealed that gas emissions were not limited to a zone just above 396 m below sea level (m b.s.l.). Flares from this depth gained significant attention in the scientific community in recent years because they may be caused by bottom water-warming induced hydrate dissolution in the course of global warming and/or by recurring seasonal hydrate formation and decay. We found that gas emissions occurred widespread between about 80 and 415 m b.s.l. which indicates that hydrate dissolution might only be one of several triggers for active hydrocarbon seepage in that area. Gas emissions were remarkably intensive at the main ridge of the forlandet moraine complex in 80 to 90 m water depths, and may be related to thawing permafrost. Focused seafloor investigations were performed with the remotely operated vehicle (ROV) "Cherokee". Geochemical analyses of gas bubbles sampled at about 240 m b.s.l. as well as at the 396 m gas emission sites revealed that the vent gas is primarily composed of methane (> 99.70%) of microbial origin (average δ13C = -55.7‰ V-PDB). Estimates of the regional gas bubble flux from the seafloor to the water column in the area of possible hydrate decomposition were achieved by combining flare mapping using multibeam and single beam echosounder data, bubble stream mapping using a ROV-mounted horizontally-looking sonar, and quantification of individual bubble streams using ROV imagery and bubble counting. We estimated that about 53 × 106 mol methane were annually emitted at the two areas and allow a large range of uncertainty due to our method (9 to 118 × 106 mol yr-1). These amounts, first, show that gas emissions at the continental margin west of Svalbard were in the same order of magnitude as bubble emissions at other geological settings, and second, may be used to calibrate models

  1. Key controls of surface carbonate system dynamics around the northwest European continental margin

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Hydes, D. J.; Hartman, S. E.; Hartman, M. C.

    2011-12-01

    Monthly sampling coupled to continuous underway observation from a ship-of-opportunity (Pride of Bilbao) provides new insights into the relative importance of processes controlling the seasonal to inter-annual variability of the carbonate system around the northwest European continental margin. Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, and dissolved oxygen (DO). The northwest European continental margin is temperate latitude system with a strong seasonal cycle in biological productivity determined by light, nutrient supply, and stratification. Here we contrast findings in two areas: the shallow non stratified English Channel (depth ~50 m) and seasonally stratified oligotrophic waters of the central Bay of Biscay (depth >3000 m). In the Bay of Biscay, the seasonal variations of the carbonate system, nutrient, and DO were mainly controlled by the winter mixing and spring phytoplankton bloom. DIC and nutrients in the Bay increased from autumn and reached the annual maxima in later winter, they then decreased significantly during the spring bloom corresponding to the biological uptake. DIC fell during the spring bloom with a near Redfield ratio in relation to the nutrient uptake. In contrast, post bloom in summer, a continued decrease in DIC in the absence of measurable nitrate was possibly related to the nutrient supply from the turbulent mixing. pCO2 and pH showed a double peak in the annual cycles modulated by temperature which counterbalanced the influence of winter mixing and biological production. The inter-annual biogeochemical variability was closely related to the changes in winter mixed layer depth and the phytoplankton biomass. The Bay of Biscay acted as a sink for atmospheric CO2 in all seasons, with higher air-to-sea CO2 fluxes observed in cold winter and the productive spring season. In the more dynamic

  2. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  3. Shaping of the Southern Adriatic Continental Margin Through Widespread Mass Wasting and Bottom Currents

    NASA Astrophysics Data System (ADS)

    Trincardi, F.; Cattaneo, A.; Correggiari, A.; Verdicchio, G.; Tobi, T.

    2003-12-01

    New TOBI seafloor images and VHR Chirp sonar profiles reveal widespread collapsing of the South Adriatic continental slope including: multiple overlapping slide scars affecting more than 100 km of Pleistocene regressive shelf-margin deposits below the shelf edge, extensive blocky slides on the lower slope (block sizes up to 200 x 500 m), and a basin wide acoustically-transparent deposit up to 40 m thick, buried under a late-Pleistocene-Holocene mud section, in water depths greater than 1000 m. Lateral variations in internal geometry and seafloor morphology likely reflects along margin differences in sediment composition and thickness of the mass-transport deposits and variable run outs (up to 40 km). Preliminary correlation to published cores in the area indicates that the main mass transport deposit reached the basin floor during the Last Glacial Maximum, but younger failures of smaller size may have affected the slope in more recent times. The new data show that the entire slope area is swept by bottom currents generating furrowed areas up to several tens of km2 in extent, moats on the downdrift side of seafloor irregularities (slide blocks) and preferential sediment deposition on the inferred updrift side, and growth of upslope-migrating sediment waves. In particular, two fields of sediment waves can be mapped in water depths of 400-600 and 1000 m. The former may reflect the activity of the Levantine Intermediate Waters, while the latter may be linked to the downslope flow of the Northern Adriatic Dense Waters. Future work will focus on the definition of intervals of growth vs quiescence of the sediment waves, their possible relation to paleoceanographic reconfigurations, and their interplay with seafloor irregularities dictated by slope instability. A smaller-scale possibly comparable interaction of seafloor morphology generated by sediment deformation and differential deposition of muddy deposits on the shelf emphasizes the importance of bottom

  4. Shelfal sediment transport by undercurrents forces turbidity current activity during high sea level, Chile continental margin

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Hebbeln, Dierk; Regenberg, Marcus; Lückge, Andreas; Strecker, Manfred. R.

    2016-04-01

    Understanding the links between terrigenous sediment supply and marine transport and depositional processes along tectonically active margins is essential to decipher turbidite successions as potential archives of climatic and seismic forcings and to comprehend timing and quantity of marine clastic deposition. Sequence stratigraphic models predict coarse-grained terrigenous sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine clastic deposition during periods of transgression and highstand has been attributed to the continued geomorphic connectivity between terrestrial sediment sources and marine sinks (e.g., rivers connected to submarine canyons) often facilitated by narrow shelves, high sediment supply causing delta migration to the shelf edge, and/or abrupt increases in sediment supply due to climatic variability or catastrophic events. To decipher the controls on Holocene highstand turbidite deposition, we analyzed twelve sediment cores of spatially disparate, coeval Holocene turbidite systems along the Chile margin (29-40°S) with changing climatic and geomorphic characteristics but uniform changes of sea level. Intraslope basins in north-central Chile (29-33°S) offshore a narrow to absent shelf record a shut-off of turbidite activity during the Holocene. In contrast, core sites in south-central Chile (36-40°S) offshore a wide continental shelf have repeatedly experienced turbidite deposition during sea-level highstand conditions, even though most of the depocenters are not connected via canyons to sediment sources. The interplay of stable high sediment supply related to strong onshore precipitation in combination with a wide shelf, over which undercurrents move sediment towards the shelf edge, appears to control Holocene turbidite sedimentation and sediment export to the deep sea.

  5. New data on the period of existence of the continental margin subduction zone in the Middle Urals

    NASA Astrophysics Data System (ADS)

    Smirnov, V. N.; Ivanov, K. S.; Shokalsky, S. P.

    2016-12-01

    U-Pb (SIMS) dating of zircons from granite of the Petrokamensk gabbro-granitoid complex, marking termination of the Devonian island-arc magmatism in the Verkhisetsk-Tura Zone of the Middle Urals, gave an age of 386 ± 3 Ma. Zircons from the West Verkhisetsk granitoids, the formation of which corresponds to the beginning stage of magmatism of the continental margin in the region, yielded ages of 386.6 ± 4.1 and 381.8 ± 6.0 Ma. This suggests that the change in the regime of the island-arc geodynamic mode to an active continental margin took place at the boundary of the Middle and Late Devonian. The upper boundary of existence of the continental margin subduction zone is determined by the closure of the Ural paleo-ocean and the beginning of continental collision processes, which resulted in accumulation of flysch in the Ural foreland trough from the second half of the Bashkirian Stage.

  6. Natural constraints on exploring Antarctica's continental margin, existing geophysical and geological data basis, and proposed drilling program

    SciTech Connect

    Anderson, J.B.

    1987-05-01

    There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexico shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.

  7. Tectonic development of passive continental margins of the southern and central Red Sea with a comparison to Wilkes Land, Antarctica

    USGS Publications Warehouse

    Bohannon, R.G.; Eittreim, S.L.

    1991-01-01

    The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.

  8. Revisiting submarine mass movements along the U.S. Atlantic Continental Margin: implications for tsunami hazards

    USGS Publications Warehouse

    Chaytor, J.D.; Twichell, D.C.; ten Brink, U.S.; Buczkowski, B.J.; Andrews, B.D.

    2007-01-01

    Interest in the generation of tsunamis by submarine mass movements has warranted a reassessment of their distribution and the nature of submarine landslides offshore of the eastern U.S. The recent acquisition and analysis of multibeam bathymetric data over most of this continental slope and rise provides clearer view into the extent and style of mass movements on this margin. Debris flows appear to be the dominant type of mass movement, although some translational slides have also been identified. Areas affected by mass movements range in size from less than 9 km2 to greater than 15,200 km2 and reach measured thicknesses of up to 70 m. Failures are seen to originate on either the open-slope or in submarine canyons. Slope-sourced failures are larger than canyonsourced failures, suggesting they have a higher potential for tsunami generation although the volume of material displaced during individual failure events still needs to be refined. The slope-sourced failures are most common offshore of the northern, glaciated part of the coast, but others are found downslope of shelf-edge deltas and near salt diapirs, suggesting that several geological conditions control their distribution.

  9. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins

    USGS Publications Warehouse

    Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.

    2003-01-01

    Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.

  10. Marginal continental and within-plate neoproterozoic granites and rhyolites of Wrangel Island, Arctic region

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Moiseev, A. V.; Sokolov, S. D.; Tuchkova, M. I.; Sergeev, S. A.; O'Sullivan, P. B.; Verzhbitskii, V. E.; Malyshev, N. A.

    2017-01-01

    The paper presents new data on the U-Pb zircon age, as well as results of isotopic geochemical analysis, of granites and rhyolites from Wrangel Island. The U-Pb age estimates of granites and rhyolites are grouped into two clusters ( 690-730 and 590-610 Ma), which imply that these rocks crystallized in the Late Neoproterozoic. Granitic rocks dated back to 690-730 Ma are characterized by negative ɛNd( t) values and Paleoproterozoic Sm-Nd model age. The older inherited zircons corroborate the ancient age of their crustal source. The granitic rocks pertain to involved peraluminous granites of type I, which form at a continental margin of the Andean type and can be compared with coeval granites and orthogneisses from the Seward Peninsula in Alaska. Rhyolites and granites 590-610 Ma in age are distinguished by a moderately positive ɛNd( t) and Mesoproterozoic model age. It is suggested that they have a heterogeneous magma source comprising crustal and mantle components. The geochemical features of granites and rhyolites correspond to type A granites. Together with coeval OIB-type basalts, they make up a riftogenic bimodal association of igneous rocks, which are comparable with orthogneisses (565 Ma) and gabbroic rocks (540 Ma) of Seward Peninsula in Alaska.

  11. High-Resolution Holocene Records of Paleoceanographic and Paleoclimatic Variability from the Southern Alaskan Continental Margin

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.

    2004-12-01

    We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.

  12. A mechanism to thin the continental lithosphere at magma-poor margins.

    PubMed

    Lavier, Luc L; Manatschal, Gianreto

    2006-03-16

    Where continental plates break apart, slip along multiple normal faults provides the required space for the Earth's crust to thin and subside. After initial rifting, however, the displacement on normal faults observed at the sea floor seems not to match the inferred extension. Here we show that crustal thinning can be accomplished in such extensional environments by a system of conjugate concave downward faults instead of multiple normal faults. Our model predicts that these concave faults accumulate large amounts of extension and form a very thin crust (< 10 km) by exhumation of mid-crustal and mantle material. This transitional crust is capped by sub-horizontal detachment surfaces over distances exceeding 100 km with little visible deformation. Our rift model is based on numerical experiments constrained by geological and geophysical observations from the Alpine Tethys and Iberia/Newfoundland margins. Furthermore, we suggest that the observed transition from broadly distributed and symmetric extension to localized and asymmetric rifting is directly controlled by the existence of a strong gabbroic lower crust. The presence of such lower crustal gabbros is well constrained for the Alpine Tethys system. Initial decoupling of upper crustal deformation from lower crustal and mantle deformation by progressive weakening of the middle crust is an essential requirement to reproduce the observed rift evolution. This is achieved in our models by the formation of weak ductile shear zones.

  13. Fluid flow during early compartmentalisation of rafts: A North Sea analogue for divergent continental margins

    NASA Astrophysics Data System (ADS)

    Alves, Tiago M.; Elliott, Claire

    2014-11-01

    High-quality 3D seismic data tied to eighteen (18) boreholes are used to investigate the styles of faulting and associated fluid flow features in Triassic-early Jurassic rafts of the Broad Fourteens Basin, Southern North Sea. The study area is presented as an analogue for continental margins experiencing early stage gravitational gliding, i.e. prior to complete separation and downslope translation of individual rafts. In such a setting, and for present-day stress conditions, fault slip data indicate that chasms and faults separating rafts in the Broad Fourteens Basin comprise structures subject to dip slip and strike-slip reactivation. Chasms and faults sub-parallel to these latter chasms comprise the most significant bypass areas for fluid sourced from pre-salt strata. Faults sub-parallel to the main chasms show limited propagation into Early Cretaceous and Cenozoic strata draping the rafts, a character further stressed by the depth of occurrence of fluid pipes and dim spots. This is an important observation, and leads us to postulate that faults formed during early stage rafting control fluid flow in regions where gravitational gliding is limited such as West and Equatorial Africa, Southeast Brazil and parts of the Gulf of Mexico.

  14. Late Mesozoic magmatism and Cenozoic tectonic deformations of the Barents Sea continental margin: Effect on hydrocarbon potential distribution

    NASA Astrophysics Data System (ADS)

    Shipilov, E. V.

    2015-01-01

    The paper is focused on the two tectonic-geodynamic factors that made the most appreciable contribution to the transformation of the lithospheric and hydrocarbon potential distribution at the Barents Sea continental margin: Jurassic-Cretaceous basaltic magmatism and the Cenozoic tectonic deformations. The manifestations of Jurassic-Cretaceous basaltic magmatism in the sedimentary cover of the Barents Sea continental margin have been recorded using geological and geophysical techniques. Anomalous seismic units related to basaltic sills hosted in terrigenous sequences are traced in plan view as a tongue from Franz Josef Land Archipelago far to the south along the East Barents Trough System close to its depocentral zone with the transformed thinned Earth's crust. The Barents Sea igneous province has been contoured. The results of seismic stratigraphy analysis and timing of basaltic rock occurrences indicate with a high probability that the local structures of the hydrocarbon (HC) fields and the Stockman-Lunin Saddle proper were formed and grew almost synchronously with intrusive magmatic activity. The second, no less significant multitectonic stress factor is largely related to the Cenozoic stage of evolution, when the development of oceanic basins was inseparably linked with the Barents Sea margin. The petrophysical properties of rocks from the insular and continental peripheries of the Barents Sea shelf are substantially distinct as evidence for intensification of tectonic processes in the northwestern margin segment. These distinctions are directly reflected in HC potential distribution.

  15. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and

  16. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments

    SciTech Connect

    Paull, C.K.; Buelow, W.J.; Ussler, W. III; Borowski, W.S.

    1996-02-01

    We present {sup 14}C data on sediment samples from cores of the upper 7 m of the sediment column overlying a major continental-rise gas hydrate field on the southern Carolina Rise and inner Blake Ridge offshore the southeastern United States. The data show that glacial-age sediments are underrepresented in the cores. The observation is consistent with a previously predicted association between sea-level lowstands and increased frequency of sea-floor slumping on continental margins containing gas hydrates. 26 refs., 3 figs.

  17. Structural Controls on the Evolution of the Southeastern Brazilian Continental Margin

    NASA Astrophysics Data System (ADS)

    Ashby, David; McCaffrey, Ken; Holdsworth, Bob; Almeida, Julio

    2010-05-01

    The South Atlantic passive margins show considerable variation along strike in terms of both structural style and margin width. Much of this change is thought to be due to variations in basement structure. Previous studies have shown that the influence of pre-existing structures can range from metre-scale local variations in basement fabrics to tens of kilometre-scale lithospheric heterogeneities relating to past deformation events. The Santos basin (offshore Rio de Janeiro, Brazil) is an increasingly important target for hydrocarbon exploration. The basin is thought to be underlain by thinned continental crust, possibly part of the Neoproterozoic Ribeira mobile belt, whose structures onshore lie parallel or sub-parallel to the continental margin. The formation of structures in the Santos basin and onshore southeastern Brazil has previously been thought to have been controlled by reactivation of these basement structures. Recent discoveries such as the giant Tupi oil field and recently drilled dry wells in the basin (Guaraní, Corcovado-2), highlight the importance of understanding the sub-salt structure in the basin. A remote sensing- and field-based study of structures formed during Cretaceous and Tertiary rifting events was carried out. We identify two generations of structures: ~120Ma Cretaceous tholeiitic dykes and associated faults; and ~60Ma Tertiary faults, showing silicified breccias associated with further alkaline magmatism. A strong northeast - southwest structural trend is identified from remote sensed imagery. At outcrop scale, sinistral-oblique and normal faults appear to have formed during the Cretaceous and Tertiary, and Cretaceous dykes show sinistral-oblique emplacement kinematics. These datasets are consistent with sinistral transtension during repeated phases of regional east-west extension. Basement fabrics often show strike parallel to the northeast-southwest trend of the brittle structures, but show a wide variation in dip angle. The

  18. Thermal history and evolution of the South Atlantic passive continental margin in northern Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Karl, Markus; Glasmacher, Ulrich Anton

    2013-04-01

    From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (Coward and Daly 1984, Daly et al. 1991), and the deposition of the Nama Group sediments and the Karoo megasequence. The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks with ages of 534 (7) Ma to 481 (25) Ma (Miller 1983, Haack 1983), as well as Mesozoic sedimentary and igneous rocks. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183 (1) Ma (Duncan et al. 1997). The Early Cretaceous Paraná-Etendeka flood basalts (132 (1) Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (Renne et al. 1992, Milner et al. 1995, Stewart et al. 1996, Turner et al. 1996). The "passive" continental margin in northern Namibia is a perfect location to quantify exhumation and uplift rates, model the long-term landscape evolution and provide information on the influence of mantle processes on a longer time scale. The poster will provide first information on the long-term landscape evolution and thermochronological data. References Coward, M. P. and Daly, M. C., 1984. Crustal lineaments and shear zones in Africa: Their relationships to plate movements, Precambrian Research 24: 27-45. Duncan, R., Hooper, P., Rehacek, J., March, J. and Duncan, A. (1997). The timing and duration of the Karoo igneous event, southern Gondwana, Journal of Geophysical Research 102: 18127-18138. Haack, U., 1983. Reconstruction of the cooling history of the Damara Orogen by correlation of radiometric ages with geography and altitude, in H. Martin and F. W. Eder (eds), Intracontinental fold belts, Springer Verlag, Berlin, pp. 837-884. Miller, R. M., 1983. Evolution of the Damara Orogen, Vol. 11, Geological Society, South Africa Spec. Pub.. Milner, S. C., le Roex, A. P. and O'Connor, J. M., 1995. Age of Mesozoic igneous rocks in

  19. Palaeoceanographic significance of sedimentary features at the Argentine continental margin revealed by multichannel seismic reflection data

    NASA Astrophysics Data System (ADS)

    Gruetzner, Jens; Uenzelmann-Neben, Gabriele; Franke, Dieter

    2010-05-01

    The thermohaline circulation in the Argentine Basin today is characterized by the interaction of northward flowing Antarctic water masses (Antarctic Intermediate Water, AAIW; Circumpolar Deep Water, CDW; Antarctic Bottom Water, AABW) and southward flowing North Atlantic Deep Water (NADW). The transfer of heat and energy via both AABW and NADW constitutes an important component in maintaining the global conveyor belt. We aim at a better understanding of both paths and intensity of this current system in the past by investigating an extensive (> 11000 km) set of high quality seismic reflection profiles from the Argentine continental margin. The profiles show a significant contourite system containing both erosive and depositional features that formed through the evolution of water masses and their modifications (path, physical and chemical properties) due to plate tectonic events such as the opening of the Drake Passage or the extensive emplacement of volcanic flows at the Rio Grande Rise. Overall the depositional features indicate that along slope (contour current) transport dominates over down slope (turbiditic) processes at the southern Argentine margin south of 45° S. Further to the North down slope transport was more extensive as indicated by the presence of submarine canyons crossing the slope down to a depth of ~3500 m. Here we present preliminary results from the southern part of the continental margin (42°-50° S) where we focus on a set of ~50 km wide terraces on the slope and rise separated by contouritic channels. The terraces developed over time in alternating constructional (depositional) and erosive phases. An initial age frame was developed by mapping regional reflectors and seismic units known from previous studies. The sedimentary layer between regional reflectors AR 4 and AR 5 spanning roughly the time interval from the Eocene/Oligocene boundary to the early middle Miocene is thin (0.1 - 0.4 s TWT) below the Valentine Feilberg Terrace but

  20. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal

  1. Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    PubMed Central

    Kelly, Noreen E.; Shea, Elizabeth K.; Metaxas, Anna; Haedrich, Richard L.; Auster, Peter J.

    2010-01-01

    Background In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life

  2. Gulf of Aden: Structure and evolution of a young ocean basin and continental margin

    SciTech Connect

    Cochran, J.R.

    1981-01-10

    New marine geophysical data are used to describe the structure and history of the Gulf of Aden. Magnetic anomaly data shows seafloor spreading magnetic anomalies of Sheba Ridge from the axial anomaly to anomaly 5 (10 m.y. B.P.) between the Owen fracture zone and 45 /sup 0/E and to anomaly 2' (3 m.y. B.P.) or anomaly 3 (4 m.y. B.P.) west of 45 /sup 0/E. The data does not support the two episodes of seafloor spreading recently proposed. Landward of the seafloor spreading magnetic anomalies is a magnetic quiet zone of uncorrelatable anomalies. The magnetic quiet zone boundary is also a structural boundary effectively marking the edge of Sheba Ridge, with deeper basement lacking a significant topographic gradient found on the landward side. A magnetic quiet zone is found not only where Sheba Ridge splits continental lithosphere but also on East Sheba Ridge where the ridge splits the old oceanic lithosphre of the Owen and Somali basins. There the position occupied by the continental margin within the gulf is marked by nonmagnetic ridge complexes that stretch from the continents to the Owen fracture zone. The magnetic quiet zone boundary is not an isochron in either the Gulf of Aden or the Red Sea, suggesting that significant horizontal motions can occur prior to the initiation of seafloor spreading. The offset on the Dead Sea Rift is used to estimate that from 80 to 160 km of opening, amounting to between 65% and 200% extension of the initial rift valley, occurred in the Gulf of Aden and Red Sea prior to the establishment of a mid-ocean ridge. It is suggested that the development of a new ocean basin occurs in two stages. The first involves diffuse extension over an area perhaps 10 km wide in a rift valley environment without an organized spreading center. This is followed by concentration of the extension at a single axis and the beginning of true seafloor spreading.

  3. Late Neogene and Quaternary evolution of the northern Albemarle Embayment (mid-Atlantic continental margin, USA)

    USGS Publications Warehouse

    Mallinson, D.; Riggs, S.; Thieler, E.R.; Culver, S.; Farrell, K.; Foster, D.S.; Corbett, D.R.; Horton, B.; Wehmiller, J. F.

    2005-01-01

    Seismic surveys in the eastern Albemarle Sound, adjacent tributaries and the inner continental shelf define the regional geologic framework and provide insight into the sedimentary evolution of the northern North Carolina coastal system. Litho- and chronostratigraphic data are derived from eight drill sites on the Outer Banks barrier islands, and the Mobil #1 well in eastern Albemarle Sound. Within the study area, parallel-bedded, gently dipping Miocene beds occur at 95 to > 160 m below sea level (m bsl), and are overlain by a southward-thickening Pliocene unit characterized by steeply inclined, southward-prograding beds. The lower Pliocene unit consists of three seismic sequences. The 55-60 m thick Quaternary section unconformably overlies the Pliocene unit, and consists of 18 seismic sequences exhibiting numerous incised channel-fill facies. Shallow stratigraphy (< 40 m bsl) is dominated by complex fill patterns within the incised paleo-Roanoke River valley. Radiocarbon and amino-acid racemization (AAR) ages indicate that the valley-fill is latest Pleistocene to Holocene in age. At least six distinct valley-fill units are identified in the seismic data. Cores in the valley-fill contain a 3-6 m thick basal fluvial channel deposit that is overlain by a 15 m thick unit of interlaminated muds and sands of brackish water origin that exhibit increasing marine influence upwards. Organic materials within the interlaminated deposits have ages of 13-11 cal. ka. The interlaminated deposits within the valley are overlain by several units that comprise shallow marine sediments (bay-mouth and shoreface environments) that consist of silty, fine- to medium-grained sands containing open neritic foraminifera, suggesting that this area lacked a fronting barrier island system and was an open embayment from ???10 ka to ???4.5 ka. Seismic data show that initial infilling of the paleo-Roanoke River valley occurred from the north and west during the late Pleistocene and early Holocene

  4. The Pan-African continental margin in northeastern Africa - Evidence from a geochronological study of granulites at Sabaloka, Sudan

    NASA Astrophysics Data System (ADS)

    Kroener, A.; Stern, R. J.; Dawoud, A. S.; Compston, W.; Reischmann, T.

    1987-09-01

    The evolution of the Pan-African ancient continental margin in northeastern Africa was investigated, using an Nd model age, ion-microprobe data on zircon ages, and Rb-Sr whole-rock dates on the high-grade gneiss terrain at Sabaloka, Sudan, a region which is formally considered to be part of the Archaean/early Proterozoic Nile craton. The analysis of these data indicates that the Sabaloka granulites and gneisses are not Archaen in age. Instead, they reflect Pan-African metamorphic events. The gneisses studied may represent the infrastructure of the ancient African continental margin onto which the juvenile arc assemblage of the Arabian-Nubian shield was accreted during intense horizontal shortening and crustal interstacking of a major collision event.

  5. Disintegration of the continental margin of northwestern Gondwana: Late Devonian of the eastern Anti-Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Wendt, Jobst

    1985-11-01

    The Devonian early Carboniferous sequence in the eastern Anti-Atlas represents a complete record of the last stage of the depositional and tectonic evolution along the northwestern margin of Gondwana. As a consequence of early Variscan block faulting, a platform and basin topography was established during the Middle and Late Devonian. Platforms were covered by condensed cephalopod limestones; sedimentation in the basins was mainly argillaceous with calcareous and turbiditic intercalations. In the latest Famennian/early Tournaisian the whole area was covered by delta deposits in the south passing into turbidites and olistostromes toward a continental slope farther north. This sedimentary and structural evolution reflects the gradual foundering and disintegration of the northwestern continental margin of Gondwana prior to the collisional stage in the late Visean/late Carboniferous.

  6. Sediment accumulation on the Southern California Bight continental margin during the twentieth century

    USGS Publications Warehouse

    Alexander, C.R.; Lee, H.J.

    2009-01-01

    Sediment discharged into the portion of the Southern California Bight extending from Santa Barbara to Dana Point enters a complex system of semi-isolated coastal cells, narrow continental shelves, submarine canyons, and offshore basins. On both the Santa Monica and San Pedro margins, 210Pb accumulation rates decrease in an offshore direction (from ??0.5 g cm-2yr-1 to 0.02 g cm-2yr -1), in concert with a fining in sediment grain size (from 4.5?? to 8.5??), suggesting that offshore transport of wave-resuspended material occurs as relatively dilute nepheloid layers and that hemiplegic sedimentation dominates the supply of sediment to the outer shelf, slope, and basins. Together, these areas are effectively sequestering up to 100% of the annual fluvial input. In contrast to the Santa Monica margin, which does not display evidence of mass wasting as an important process of sediment delivery and redistribution, the San Pedro margin does provide numerous examples of failures and mass wasting, suggesting that intraslope sediment redistribution may play a more important role there. Basin deposits in both areas exhibit evidence of turbidites tentatively associated with both major floods and earthquakes, sourced from either the Redondo Canyon (San Pedro Basin) or Dume Canyon (Santa Monica Basin). On the Palos Verdes shelf, sediment-accumulation rates decrease along and across the shelf away from the White's Point outfall, which has been a major source of contaminants to the shelf deposits. Accumulation rates prior to the construction of the outfall were ??0.2 g cm-2yr-1 and increased 1.5-3.7 times during peak discharges from the outfall in 1971. The distal rate of accumulation has decreased by ??50%, from 0.63 g cm -2yr-1 during the period 1971-1992 to 0.29 g cm -2yr-1 during the period 1992-2003. The proximal rate of accumulation, however, has only decreased ??10%, from 0.83 g cm -2yr-1 during the period 1971-1992 to 0.73 g cm -2yr-1 during the period 1992-2003. Effluent

  7. Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain

    USGS Publications Warehouse

    Nelson, C.H.

    1990-01-01

    Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the

  8. Anaerobic oxidation of methane in the Concepción Methane Seep Area, Chilean continental margin

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Linke, P.; Scholz, F.; Schmidt, M.; Liebetrau, V.; Treude, T.

    2012-04-01

    Within subduction zones of active continental margins, large amounts of methane can be mobilized by dewatering processes and transported to the seafloor along migration pathways. A recently discovered seep area located off Concepción (Chile) at water depth between 600 to 1100 mbsl is characterized by active methane vent sites as well as massive carbonates boulders and plates which probably are related to methane seepage in the past. During the SO210 research expedition "Chiflux" (Sept-Oct 2010), sediment from the Concepción Methane Seep Area (CSMA) at the fore arc of the Chilean margin was sampled to study microbial activity related to methane seepage. We sampled surface sediments (0-30cm) from sulfur bacteria mats, as well as clam, pogonophoran, and tubeworm fields with push cores and a TV-guided multicorer system. Anaerobic oxidation of methane (AOM) and sulfate reduction rates were determined using ex-situ radioisotope tracer techniques. Additionally, porewater chemistry of retrieved cores as well as isotopic composition and age record of surrounding authigenic carbonates were analyzed. The shallowest sulfate-methane-transition zone (SMTZ) was identified at 4 cm sediment depth hinting to locally strong fluid fluxes. However, a lack of Cl- anomalies in porewater profiles indicates a shallow source of these fluids, which is supported by the biogenic origin of the methane (δ13C -70‰ PDB). Sulfide and alkalinity was relatively high (up to 20 mM and 40 mEq, respectively). Rates of AOM and sulfate reduction within this area reached magnitudes typical for seeps with variation between different habitat types, indicating a diverse methane supply, which is affecting the depths of the SMTZ. Rates were highest at sulfur a bacteria mats (20 mmol m-2 d-1) followed by a large field of dead clams, a pogonophoran field, a black sediment spot, and a carbonate rich clam field. Lowest rates (0.2 mmol m-2 d-1) were measured in close vicinity to these hot spots. Abundant massive

  9. High-resolution and Deep Crustal Imaging Across The North Sicily Continental Margin (southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.

    Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefalù basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefalù basin can be subdi- vided into three subunits by

  10. DSDP Site 603: First deep (>1000-m) penetration of the continental rise along the passive margin of eastern North America

    NASA Astrophysics Data System (ADS)

    van Hinte, Jan E.; Wise, Sherwood W., Jr.; Biart, Brian N. M.; Mitchener Covington, J.; Dunn, Dean A.; Haggerty, Janet A.; Johns, Mark W.; Meyers, Philip A.; Moullade, Michel R.; Muza, Jay P.; Ogg, James G.; Okamura, Makoto; Sarti, Massimo; von Rad, Ulrich

    1985-06-01

    Drilling at Deep Sea Drilling Project Site 603 has provided the first deep (>1000-m) penetration of strata beneath the continental rise off the Atlantic margin of North America. Nearly continuously cored through 1585 m of section down to Berriasian pelagic limestones, the site 435 km (270 mi) east of Cape Hatteras intersected an extensive Lower Cretaceous deep-sea fan complex, which provides new information on the petroleum potential of the continental rise. Hauterivian to early Aptian in age, this 208-m interval of interbedded limestones, sand, and black shale turbidites begs the existence of any post-Valanginian reefs along the Baltimore Canyon Trough. Less extensive terrigenous turbidites were encountered higher in the section up to the Cretaceous/Tertiary boundary, which is marked by a current-laminated sand rich in dark spherules. Pelagic early Paleogene clays are disconformably overlain by Miocene pelagic mud. Turbiditic silts and clays began to accumulate rapidly at this site during the middle Miocene, leading to deposition of muddy contourites that formed the Lower Continental Rise Hills of the Hatteras Outer Ridge as sand turbidites were ponded concurrently on its landward side. The section at Site 603 confirms the concept that eustatic and other large-scale events subdivide Earth history into distinct chapters allowing the correlation of deep-sea seismic sequence boundaries with continental shelf and margin unconformities.

  11. Hydrogeological structure of a seafloor hydrothermal system related to backarc rifting in a continental margin setting

    NASA Astrophysics Data System (ADS)

    Ishibashi, Jun-ichiro

    2016-04-01

    Seafloor hydrothermal systems in the Okinawa Trough backarc basin are considered as related to backarc rifting in a continental margin setting. Since the seafloor is dominantly covered with felsic volcaniclastic material and/or terrigenous sediment, hydrothermal circulation is expected to be distributed within sediment layers of significantly high porosity. Deep drilling through an active hydrothermal field at the Iheya North Knoll in the middle Okinawa Trough during IODP Expedition 331 provided a unique opportunity to directly access the subseafloor. While sedimentation along the slopes of the knoll was dominated by volcanic clasts of tubular pumice, intense hydrothermal alteration was recognized in the vicinity of the hydrothermal center even at very shallow depths. Detailed mineralogical and geochemical studies of hydrothermal clay minerals in the altered sediment suggest that the prevalent alteration is attributed to laterally extensive fluid intrusion and occupation within the sediment layer. Onboard measurements of physical properties of the obtained sediment revealed drastic changes of the porosity caused by hydrothermal interactions. While unaltered sediment showed porosity higher than 70%, the porosity drastically decreased in the layer of anhydrite formation. On the other hand, the porosity remained high (~50%) in the layer of only chlorite alteration. Cap rock formation caused by anhydrite precipitation would inhibit the ascent of high temperature fluids to the seafloor. Moreover, an interbedded nature of pelagic mud units and matrix-free pumice deposits may prompt formation of a tightly layered architecture of aquifers and aquicludes. This sediment architecture should be highly conducive to lateral flow pseudo-parallel to the surface topography. Occurrence of sphalerite-rich sulfides was recognized as associated with detrital and altered sediment, suggesting mineralization related to subsurface chemical processes. Moreover, the vertical profiles of

  12. Buried Mesozoic rift basins of the U. S. middle Atlantic continental margin

    SciTech Connect

    Benson, R.N. )

    1991-08-01

    The Atlantic continental margin is one of the frontier areas for oil and gas exploration in the US. Most the activity has been offshore where Upper Jurassic-Lower Cretaceous siliciclastic and carbonate rocks have been the drilling objectives, with only one significant but noncommercial gas discover. Onshore, recent exploration activities have focused on early Mesozoic rift basins buried beneath the postrift sediments of the middle Atlantic coastal plain. Many of the basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness, if not lost through hydrocarbon generation, to be classified as source beds for oil or gas. Locations of inferred rift basins beneath the middle Atlantic coastal plain were determined by analysis of drill-hole data in combination with gravity anomaly and aeromagnetic maps. Two basins in Delaware and the Queen Anne basin of Maryland are imaged on a regional Vibroseis profile. Areas enclosing inferred rift basins in the offshore region were mapped from interpretation of seismic reflection profiles. Assuming that petroleum source beds are present in the basin (synrift) rocks, hydrocarbon-generation models (Lopatin method) indicate that for a basin just offshore Delaware that is buried by 7 km of postrift sediments, only dry gas would be present in reservoir rocks; for the Norfolk basin of the Virginia coast buried by only 3 km of postrift rocks, the upper few hundred meters of synrift rocks are still within the oil-generation window. The less deeply buried basins beneath the coastal plain likely are still within the oil window.

  13. Evolution of the continental margin of southern Spain and the Alboran Sea

    USGS Publications Warehouse

    Dillon, William P.; Robb, James M.; Greene, H. Gary; Lucena, Juan Carlos

    1980-01-01

    Seismic reflection profiles and magnetic intensity measurements were collected across the southern continental margin of Spain and the Alboran basin between Spain and Africa. Correlation of the distinct seismic stratigraphy observed in the profiles to stratigraphic information obtained from cores at Deep Sea Drilling Project site 121 allows effective dating of tectonic events. The Alboran Sea basin occupies a zone of motion between the African and Iberian lithospheric plates that probably began to form by extension in late Miocene time (Tortonian). At the end of Miocene time (end of Messinian) profiles show that an angular unconformity was cut, and then the strata were block faulted before subsequent deposition. The erosion of the unconformity probably resulted from lowering of Mediterranean sea level by evaporation when the previous channel between the Mediterranean and Atlantic was closed. Continued extension probably caused the block faulting and, eventually the opening of the present channel to the Atlantic through the Strait of Gibraltar and the reflooding of the Mediterranean. Minor tectonic movements at the end of Calabrian time (early Pleistocene) apparently resulted in minor faulting, extensive transgression in southeastern Spain, and major changes in the sedimentary environment of the Alboran basin. Active faulting observed at five locations on seismic profiles seems to form a NNE zone of transcurrent movement across the Alboran Sea. This inferred fault trend is coincident with some bathymetric, magnetic and seismicity trends and colinear with active faults that have been mapped on-shore in Morocco and Spain. The faults were probably caused by stresses related to plate movements, and their direction was modified by inherited fractures in the lithosphere that floors the Alboran Sea.

  14. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan)

    NASA Astrophysics Data System (ADS)

    RöMer, Miriam; Sahling, Heiko; Pape, Thomas; Bohrmann, Gerhard; Spieß, Volkhard

    2012-10-01

    Evidence for twelve sites with gas bubble emissions causing hydroacoustic anomalies in 18 kHz echosounder records (`flares') was obtained at the convergent Makran continental margin. The hydroacoustic anomalies originating from hydrocarbon seeps at water depths between 575 and 2870 m disappeared after rising up to 2000 m in the water column. Dives with the remotely operated vehicle `Quest 4000 m' revealed that several individual bubble vents contributed to one hydroacoustic anomaly. Analyzed gas samples suggest that bubbles were mainly composed of methane of microbial origin. Bubble size distributions and rise velocities were determined and the volume flux was estimated by counting the emitted bubbles and using their average volume. We found that a low volume flux (Flare 1 at 575 mbsl: 90 ml/min) caused a weak hydroacoustic signal in echograms whereas high volume fluxes (Flare 2 at 1027 mbsl: 1590 ml/min; Flare 5 C at 2870 mbsl: 760 ml/min) caused strong anomalies. The total methane bubble flux in the study area was estimated by multiplying the average methane flux causing a strong hydroacoustic anomaly in the echosounder record with the total number of equivalent anomalies. An order-of-magnitude estimate further considers the temporal variability of some of the flares, assuming a constant flux over time, and allows a large range of uncertainty inherent to the method. Our results on the fate of bubbles and the order-of-magnitude estimate suggest that all of the ˜40 ± 32 × 106 mol methane emitted per year within the gas hydrate stability zone remain in the deep ocean.

  15. The stoichiometric ratio during biological removal of inorganic carbon and nutrient in the Mississippi River plume and adjacent continental shelf

    NASA Astrophysics Data System (ADS)

    Huang, W.-J.; Cai, W.-J.; Powell, R. T.; Lohrenz, S. E.; Wang, Y.; Jiang, L.-Q.; Hopkinson, C. S.

    2012-02-01

    The stoichiometric ratios of dissolved inorganic carbon (DIC) and nutrients during biological removal have been widely assumed to follow the Redfield ratios (especially the C/N ratio) in large river plume ecosystems. However, this assumption has not been systematically examined and documented because DIC and nutrients are rarely studied simultaneously in a river plume area, a region in which they can be affected by strong river-ocean mixing as well as intense biological activity. We examined stoichiometric ratios of DIC, total alkalinity (TA), and nutrients (NO3, PO43- and Si(OH)4) data during biological removal in the Mississippi River plume and adjacent continental shelf in June 2003 and August 2004 with biological removals defined as the difference between measured values and values predicted on the basis of conservative mixing determined using a multi-endmember mixing model. Despite complex physical and biogeochemical influences, relationships between DIC and nutrients were strongly dependent on salinity range and geographic location, and influenced by biological removal. Lower C/Si and N/Si ratios in one nearshore area were attributed to a potential silicate source induced by water exchange with coastal salt marshes. When net biological uptake was separated from river-ocean mixing and the impact of marshes and bays excluded, stoichiometric ratios of C/N/Si were similar to the Redfield ratios, thus supporting the applicability of the Redfield-type C/N/Si ratios as a principle in river-plume biogeochemical models.

  16. Structural evolution of the accretional continental margin of the Paleoproterozoic Svecofennian orogen in southern Sweden

    NASA Astrophysics Data System (ADS)

    Beunk, F. F.; Page, L. M.

    2001-09-01

    Volcanic and sedimentary rocks of the Västervik and Valdemarsvik groups along the southern margin of the 1.90-1.85 Ga south Svecofennian crustal province in Sweden have been migmatised and intruded by granitoids and gabbros during extension (deformation phase D 1), at a depth of at least 10 km. Peak metamorphic conditions were reached around 1825 Ma. Extension switched to compression before cooling. The partially molten middle crust facilitated shortening and thickening by isoclinal and sheath folds on scales from a decimetre to 10 km (D 2). A pervasive mylonitic S 2 foliation developed. These structures were refolded into eastward plunging crustal scale upright folds with E(SE)-W(NW) trending axial planes (D 3). D 2-D 3 deformation structures are colinear and developed during top-to-the-WNW slip along S 2. Locally, zones of high ductile strain in garnet-bearing migmatite assemblages record considerable vertical displacement (from 850 to 300 MPa), possibly in nappe roots. Some major D 2 sheath folds are embraced by D 3- like, but NNW-trending megafolds (D 4), apparently resulting from shortening around the former. D 2-D 4 deformations are interpreted to be broadly coeval and related to transpressive crustal shortening against the northern Svecofennian continental back-stop. After cooling to high greenschist-facies conditions, early structures underwent renewed transpression in north-south direction, expressed in localized, retrogressive shear zones (phase D 5). Much D 5 strain was accommodated by the 10 km wide, NW-SE striking, right-lateral Loftahammar-Linköping Deformation Zone (LLDZ), operative around 1800-1780 Ma. Regional strain partitioning caused transverse shortening in 15-20 km wide border zones of the LLDZ. Later overprints (D 6) involve narrow, subparallel, NW-SE striking and steeply NE dipping low greenschist-facies mylonite zones, some of which merge into the regional, polyphase Åsbro-Norrköping Deformation Zone. D 6 was transpressive; oblique

  17. Morphosedimentary expression of the Giant Pock Mark structure known as the "Gran Burato" (Transitional Zone, Galicia continental margin)

    NASA Astrophysics Data System (ADS)

    Lopez, Angel Enrique; Rubio, Belén; Rey, Daniel; Mohamed, Kais; Alvarez, Paula; Plaza-Morlote, Maider; Bernabeu, Ana; Druet, Maria; Martins, Virginia

    2016-04-01

    This paper presents the characterization of the sedimentary environment and other sedimentological features of the Transitional Zone of the Galicia continental margin, in the vicinity of the giant pock -mark structure known as the Gran Burato. The area is characterized by marginal platforms and a horst-graben system controlled by NW-SE oriented normal faults. In this zone, three giant pockmark structures, one of them known as the Gran Burato, were reported as associated to large-scale fluid escapes. The study area is located on the Transitional Zone (TZ) of the Galicia passive continental margin, which extends from Cape Finisterre (43o N) in the North to around 40oN in the South. This margin shows a complex structural configuration, which is reflected in the seabed, owing to tectonic movements from Mesozoic rifting phases and Eocene compression (Pyrennean Orogeny). Sedimentological, geochemical and physical properties analysis and 14C AMS-dating of a 4 m piston core extracted in the vicinity of the Gran Burato complemented by multibeam and TOPAS surveys allowed characterizing of the sedimentary environment in the study area. The interpretation of these data showed that the sedimentary and tectonic evolution of the area controlled by the activity of fluid dynamics.

  18. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  19. Crustal rheological strength heterogeneities control the formation of continental plateau margins

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhu, Bojing; Yang, Xiaolin

    2015-08-01

    The margins bordering the Tibetan Plateau show two end-member morphologies in topographic gradient: steep margins and low-gradient margins. To investigate the formation mechanism of convergent intracontinental plateau margins, we conduct 2D numerical experiments to simulate crustal deformation process across plateau margins. Our numerical experiments demonstrate that heterogeneities in crustal rheological strength control significantly the formation of plateau margins when subjected to crustal convergence. A very steep margin is the result of crustal convergence between plateau with weak lower crust and foreland basin with strong lower crust. By contrast, a low-gradient margin could result from crustal convergence between plateau and foreland with less strength contrast. This finding suggests that the diversity in topographic gradient along the Tibetan Plateau borders reflects heterogeneities in crustal rheological strength across the plateau margins. Steep gradient at the margins indicate large crustal rheological strength contrasts between the weak ductile lower crust of the Tibetan Plateau and its strong surrounding foreland basins, like the Sichuan Basin, the Tarim Basin and the Qaidam Basin. Beneath these steep margins the horizontal flow of the Tibetan ductile lower crust is inhibited and forced to extrude to support escarpments. Low-gradient at the margins indicate less crustal strength variations between the plateau and outer forelands, like at the northeastern and southeastern margins, where they might be outlets for the weak ductile Tibetan lower crust to flow away from the plateau.

  20. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America

    USGS Publications Warehouse

    Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.

    2002-01-01

    Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains

  1. Continent-ocean transition at the western Barents Sea/Svalbard continental margin

    SciTech Connect

    Eldholm, O.; Faleide, J.I.; Myhre, A.M.

    1987-12-01

    The change in crustal type at the western Barents Sea/Svalbard margin takes place over a narrow zone related to primary rift and shear structures reflecting the stepwise opening of the Greenland Sea. Regionally, the margin is composed of two large shear zones and a central rifted-margin segment. Local transtension and transpression at the plate boundary caused the early Cenozoic tectonism in Svalbard and the western Barents Sea, and might explain the prominent marginal gravity and velocity anomalies.

  2. The Bay of Bengal and the Statement of Understanding Concerning the Establishment of the Outer Edge of the Continental Margin: Regional Implications for Delimiting the Juridical Continental Shelf

    NASA Astrophysics Data System (ADS)

    Mridha, M.; Varma, H.; Macnab, R.

    2005-12-01

    The Bay of Bengal is the site of massive depositions of sediment from the Ganga-Brahmaputra river systems, which discharge an estimated 2300 million tons of material into the Indian Ocean every year. The accumulated material comprises an enormous fan that extends some 4000 km from the Mouths of the Ganges, a delta system which encompasses the entire coast of Bangladesh and a segment of the coast of India. The major tectonic elements of the Bay of Bengal and surrounding areas are: the passive eastern continental margin of India; the 85E Ridge; the Ninetyeast Ridge; the intervening basin buried beneath deep sediment; and the Sunda Arc system with the associated back-arc Andaman Basin. Except for the Nikitin Seamounts which rise above the seabed just south of the Equator, the 85E Ridge is totally covered by thick sediment. The Ninetyeast Ridge, on the other hand, protrudes above the seabed as far north as 10N, where it plunges beneath the thickening sediment and separates the deposits into the Bengal Fan and the smaller Nicobar Fan. The 85E and Ninetyeast Ridges present the most significant relief in the crystalline basement underlying the Bay of Bengal, and should therefore figure substantially in any analysis of sediment thickness pursuant to the delimitation of the outer continental shelf. In this region, the sediment thickness provision of Article 76 has been modified by a Statement of Understanding in Annex II of the Final Act of the Third UN Conference on the Law of the Sea. To avoid a perceived inequity that might arise from the application of the standard one percent sediment thickness formula of Article 76, the Statement introduced a new formula: a qualified State in this region, even if it has a narrow physiographic continental shelf, may establish the outer edge of its continental margin by a line where the thickness of sedimentary rock is not less than one km. This presentation will describe the development of a joint formula line for the States that

  3. Probable Occurrence of Gas Hydrates Along the Continental Margins of India

    NASA Astrophysics Data System (ADS)

    Ramprasad, T.

    2004-12-01

    The gas hydrates have gained the importance of being potential to be an alternate energy resource and are know to occur world wide in the sediments of the outer continental margins and polar regions associated with permafrost and are stable under certain temperature-pressure conditions. A gas hydrate stability zone (GHSZ) thickness map of Indian offshore has been created from spatial analysis of physical parameters that influence the formation and preservation of gas hydrates by using Arc/Info GIS software. These parameters include bathymetry and heatflow/geothermal gradient data obtained from published literature, digital databases and unpublished sources, and the seabed temperature from extrapolation of the best-fit polynomial of hydrothermal profile. In addition to the measured heatflow/geothermal data, the values were predicted in the regions devoid of data by considering the Indian offshore comprising of three provinces such as: oceanic, stretched continental crust and the crust influenced by the hotspot. Heatflow versus age relationship is used in case of oceanic crust in Arabian Sea, Bay of Bengal, and Andaman Sea in the regions beyond the shelf edge. The stretched crust criterion is applied only in the northern Arabian Sea between shelf and the inferred oceanic crust. A regression line is fitted between the available heatflow data and the corresponding age of the crust to compute heatflow values, in the region where the crust influenced by the Reunion hotspot. Seabed temperature data were also predicted in deficient areas based on the regression analysis of available bathymetry versus seabed temperature relationship. The thickness of gas hydrate stability zone was computed both in TWT (msec) and meters, by solving the gas hydrate phase and pressure-temperature equations at each GIS grid node. The GHSZ thickness map is reliable to the extent it can be used as an important indicator for gas hydrate potential of an area. Large volumes of multi-channel seismic

  4. The Cryogenian intra-continental rifting of Rodinia: Evidence from the Laurentian margin in eastern North America

    NASA Astrophysics Data System (ADS)

    McClellan, Elizabeth; Gazel, Esteban

    2014-10-01

    The geologic history of the eastern North American (Laurentian) margin encompasses two complete Wilson cycles that brought about the assembly and subsequent disaggregation of two supercontinents, Rodinia and Pangea. In the southern and central Appalachian region, basement rocks were affected by two episodes of crustal extension separated by > 100 m.y.; a Cryogenian phase spanning the interval 765-700 Ma and an Ediacaran event at ~ 565 Ma. During the Cryogenian phase, the Mesoproterozoic continental crust was intruded by numerous A-type felsic plutons and extensional mafic dikes. At ~ 760-750 Ma a bimodal volcanic sequence erupted onto the uplifted and eroded basement. This sequence, known as the Mount Rogers Formation (MRF), comprises a bimodal basalt-rhyolite lower section and an upper section of dominantly peralkaline rhyolitic sheets. Here, we provide new geochemical evidence from the well-preserved volcanic rocks of the Cryogenian lower MRF, with the goal of elucidating the process that induced the initial stage of the break-up of Rodinia and how this affected the evolution of the eastern Laurentian margin. The geochemical compositions of the Cryogenian lavas are remarkably similar to modern continental intra-plate settings (e.g., East African Rift, Yellowstone-Snake River Plain). Geochemical, geophysical and tectonic evidence suggests that the common denominator controlling the melting processes in these settings is deep mantle plume activity. Thus, evidence from the MRF suggests that the initial phase of extension of the Laurentian margin at ~ 760-750 Ma was possibly triggered by mantle plume activity. It is possible that lithospheric weakness caused by a mantle plume that impacted Rodinia triggered the regional extension and produced the intra-continental rifting that preceded the breakup of the Laurentian margin.

  5. Sequence stratigraphy and systems tract analysis of the Neogene-Quaternary continental margin off the Zambezi delta, Mozambique

    SciTech Connect

    Kolla, V. ); Macurda, D.B. Jr. ); Nelson, H.R. Jr. )

    1991-03-01

    During the Neogene and Quaternary, the Zambezi River built a broad delta-platform from 75 to over 100 km into the Indian Ocean. A regional seismic grid shows numerous discontinuities in the delta platform, slope, and deeper basinal areas. Based on downward shifts of reflection terminations and onlaps at or below shelf edge, more than 25 sequences have been identified. Within the gross Neogene package, the basal section is characterized by aggradation, followed by rapid and significant (oblique) progradation, which is then followed by numerous aggradational-progradation and progradation packages in the upper, younger sections. From recognition of aggradation-progradation patterns and from well information, it appears that the first, significant, and rapid progradation occurred since mid-Miocene. The earliest of the Neogene sequence appears thicker towards south and thinner towards north, opposite of the younger sequences. The number of sequences, their modes of stacking, and thickness distributions reflect relative sea-level changes and the points of sediment input as the Zambezi River shifted in position from south to north in time. The Zambezi passive continental margin, located in the Indian Ocean basin, is a stable platform as opposed to the unstable continental margins off the Mississippi, McKenzie, and Niger deltas and is far from the stable margins that were the basis of the Haq et al. cycle-chart (1987). Thus the Zambezi continental margin provides an independent test case for verification of eustatic cycles and for the evaluation of allogenic (eustatic) versus autogenic (subsidence and delta switching) effects on depositional systems and systems tracts.

  6. A time-transgressive Holocene onset from Globorotalia menardii records on Brazilian continental margin sediments

    NASA Astrophysics Data System (ADS)

    Iwai, F. S.; Costa, K. B.; Toledo, F. A. D. L.; Santarosa, A. C. A.; Chiessi, C. M.; Camillo, E., Jr.; Quadros, J. P.

    2014-12-01

    The planktic foraminifer Globorotalia menardii presents a cyclic behavior within Pleistocene glacial cycles on Atlantic; it disappears during glacial periods and returns to this ocean after deglaciations. Therefore, G. menardii has been used to identify limits between those cycles and the last limit is recognized as the Holocene onset. The Holocene onset has been reported before as being more than 4 kyrs later than expected at the equatorial Atlantic Ocean based on a G. menardii record (Broecker & Pena, 2014). In this study, we explore the time-transgressive Holocene onset of G. menardii in the Atlantic from 21 piston cores collected along the Brazilian continental margin, between 7 ˚N and 33 ˚S. Radiocarbon dating was conducted on Globigerinoides ruber on samples prior to and after G. menardii reappearance in the cores. Reservoir-age corrected 14C dates vary between 17 and 6.5 cal kyrs; the older ages are found at ~14 ˚S and younger ages at 6 ˚N and 33 ˚S. From these ages and latitudes, we hypothesize that G. menardii's population has spread at higher rates southward. From the scenario observed on Brazilian coast it is possible to conclude that although ocean circulation has an important role on dispersion of planktonic foraminifera, it may be superimposed by ecological constraints of the species. G. menardii absence during glacials is linked to the Agulhas Leakage activity, which is prevented from getting to the Atlantic due the northern position of the Subtropical Convergence Zone during glacials. On interglacials, warm and saline waters carrying G. menardii are transported into the Subtropical Gyre currents, achieving Brazil's coast through the South Equatorial Current and spreading south and northward through Brazil Current and North Brazil Current, respectively. Nonetheless, from velocity and volume registered for this currents, we would expect a higher G. menardii dispersion rate northward. A faster southward dispersal during the deglaciation suggests

  7. Pathways of carbon oxidation in continental margin sediments off central Chile.

    PubMed

    Thamdrup, B; Canfield, D E

    1996-12-01

    Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubations. Pathways of C oxidation were inferred from the depth distributions of the potential oxidants (O2, NO3-, and oxides of Mn and Fe) and from directly determined rates of SO4(2-) reduction. The study area is characterized by intense seasonal upwelling, and during sampling in late summer the bottom water over the shelf was rich in NO3- and depleted of O2. Sediments at the four shelf stations were covered by mats of filamentous bacteria of the genera Thioploca and Beggiatoa. Carbon oxidation rates at these sites were extremely high near the sediment surface (>3 micromol cm-3 d-1) and decreased exponentially with depth. The process was entirely coupled to SO4(2-) reduction. At the two slope stations where bottom-water O2 was > 100 microM, C oxidation rates were 10-fold lower and varied less with depth; C oxidation coupled to the reduction of O2, NO3-, and Mn oxides combined to yield an estimated 15% of the total C oxidation between 0 and 10 cm. Carbon oxidation through Fe reduction contributed a further 12-29% of the depth-integrated rate, while the remainder of C oxidation was through SO4(2-) reduction. The depth distribution of Fe reduction agreed well with the distribution of poorly crystalline Fe oxides, and as this pool decreased with depth, the importance of SO4(2-) reduction increased. The results point to a general importance of Fe reduction in C oxidation in continental margin sediments. At the shelf stations, Fe reduction was mainly coupled to oxidation of reduced S. These sediments were generally H2S-free despite high SO4(2-) reduction rates, and precipitation of Fe sulfides dominated H2S scavenging during the incubations. A large NO3- pool was associated with the

  8. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin

    NASA Astrophysics Data System (ADS)

    Álvarez, Fernanda; Reich, Martin; Pérez-Fodich, Alida; Snyder, Glen; Muramatsu, Yasuyuki; Vargas, Gabriel; Fehn, Udo

    2015-07-01

    reservoirs. Geochemical mixing models reveal that the measured 129I/I ratios in Atacama are in agreement with multiple sources of iodine that include variable contributions from old organic iodine sources (i.e., marine sedimentary rocks) and younger fluids such as pore waters, geothermal fluids and meteoric waters. Our results show that the large variation observed in the iodine isotopic ratios of different reservoirs (129I/I from 150 to 1580 × 10-15) is indicative of significant mixing and circulation of fluids of meteoric, sedimentary and volcanic origin along the Chilean continental margin in the last 30 million years. We conclude that this protracted and large-scale fluid flow was driven by tectonic uplift and highly influenced by the climatic history of the Atacama Desert. The combination of such factors has played an unforeseen role in transporting and accumulating iodine and other soluble components in the Atacama region, and is evidence that elemental remobilization is a key process in the overall crustal cycle of iodine over scales of millions of years.

  9. Processes in the benthic boundary layer at the Iberian continental margin and their implication for carbon mineralization

    NASA Astrophysics Data System (ADS)

    Thomsen, L.; vanWeering, T.; Gust, G.

    This paper evaluates the role of biological processes in the cycling of particulate organic matter within the benthic boundary layer (BBL). It reveals that horizontal, advective fluxes of particulate matter exceed the vertically sinking fluxes through the water column. The data suggest that there is an important additional mechanism of carbon mineralization at hydrodynamically energetic continental margins, and that not the sediment surface but the near-bed fluid layer of the BBL is the major region for organic carbon mineralisation, and the amount of carbon finally buried depends on the time that aggregates are exposed to the BBL. Water and sediment samples were taken during three cruises to the North East Atlantic continental margin. The study site covered the area between 41°N, 9°W and 44°N, 13°W with transects perpendicular to and along the continental margin, resolving velocity and particle features of the benthic boundary layer [BBL] at 5-40 cm height above the sea floor. Particulate organic carbon in the BBL ranged from 29 to 102 mg m -3, total particulate matter from 1.2 to 6.2 g m -3 and Chloroplastic pigments from 0.01 to 0.26 mg m -3. Sediments on the continental margin consisted of an aggregated surface layer, which covered the underlying sediments. At all stations, surface erosion yielded BBL aggregates > 100 μm at critical friction velocities [u ∗c] of 0.4 to 1.2 cms -1. The erosion thresholds of underlying cohesive sediments typically increased from 1.1 to 1.8 cms -1 from shallow to deeper sites. Long-term flow velocity data reveal a tidally modulated flow field with repetitive cycling of particles between sea bed and suspension, representing altogether a situation of prolonged particle resuspension time, moderate residual currents and large variability of flow speed. The currents parallel and cross slope (north-south, on -and offslope) move the BBL aggregates with little net distance in one direction per tidal cycle. Within the ensuing

  10. Geology and physiography of the continental margin north of Alaska and implications for the origin of the Canada Basin

    USGS Publications Warehouse

    Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.

    1979-01-01

    The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends

  11. Metallogeny of the northeastern Pacific Rim: an example of the distribution of ore deposits along a growing continental margin

    USGS Publications Warehouse

    Goldfarb, R.J.; Hart, C.J.; Mortensen, J.K.; Weber, Graeme

    1999-01-01

    The distribution of mineral deposits within northwestern North America (Alaska, Yukon, and northern British Columbia) allows for an in-depth examination of the metallogenic patterns of a growing continental margin. A more complete understanding of the tectonic evolution of this part of the Pacific Rim, achieved over the last 15 to 20 years, now allows for the placement of ore systems into a well-defined plate tectonic framework. Ore deposits older than about 185 Ma represent hydrothermal systems that were active in the platform/shelf environment of ancestral North America's miogeocline or hydrothermal systems developed in oceanic arcs and continental fragments more distal to the craton. These include important SEDEX, VMS, and pre-accretionary porphyry deposits. In contrast, most mineral deposits younger than about 185 Ma were formed within the growing Cordilleran orogen, as terranes were accreted to the continental margin during interactions between the North America and Pacific/Farallon/Kula plates. Such syn- to post-accretionary mineralised systems include many large lode gold and porphyry/skarn systems.

  12. Cenozoic prograding sequences of the Antarctic continental margin: a record of glacio-eustatic and tectonic events

    USGS Publications Warehouse

    Cooper, A. K.; Barrett, P.J.; Hinz, K.; Traube, V.; Letichenkov, G.; Stagg, H.M.J.

    1991-01-01

    Sedimentary sections up to 6-14 km thick lie beneath many areas of the Antarctic continental margin. The upper parts of the sections contain up to 6 km of Cenozoic glacial and possibly non-glacial sequences that have prograded the continental shelf up to 85 km. We describe the Cenozoic sequences using two general categories based on their acoustic geometries. Type IA sequences, which account for most prograding of the Antarctic continental shelf, have complex sigmoidal geometries and some acoustic characteristics atypical of low-latitude margins, such as troughs and mounds lying parallel and normal to the shelf edge and high velocities (2.0-2.6 km/s) for flat layers within 150 m of the seafloor. Type IIA sequences, which principally aggrade the paleoshelf, lie beneath type IA sequences and have mostly simple geometries and gently dipping reflections. The prograding sequences are commonly located near the seaward edges of major Mesozoic and older margin structures. Relatively rapid Cenozoic subsidence has occured due to the probable rifting in the Ross Sea, thermal subsidence in the Antarctic Peninsula, and isostatic crustal flexure in Wilkes Land. In Prydz Bay and the Weddell Sea, prograding sequences cover Mesozoic basins that have undergone little apparent Cenozoic tectonism. Grounded ice sheets are viewed by us, and others, as the principal mechanism for depositing the Antarctic prograding sequences. During the initial advance of grounded ice the continental shelf is flexurally overdeepened, the inner shelf is heavily eroded, and gently dipping glacial strata are deposited on the shelf (i.e type IIA sequences). The overdeepened shelf profile is preserved (a) during glacial times, by grounded ice sheets episodically crossing the shelf, eroding sediments from onshore and inner shelf areas, and depositing sediments at the front of the ice sheet as outer shelf topset-banks and continental slope foreset-aprons (i.e. type IA sequences), and (b) during interglacial

  13. The Eastern Sardinian Margin (Tyrrhenian Sea, Western Mediterranean) : a key area to study the rifting and post-breakup evolution of a back-arc passive continental margin

    NASA Astrophysics Data System (ADS)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Maillard, Agnès; Thinon, Isabelle; Graveleau, Fabien; Lofi, Johanna; Sage, Françoise

    2016-04-01

    The Eastern Sardinian passive continental margin formed during the opening of the Tyrrhenian Sea, which is a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system (middle Miocene to Pliocene). Up to now, rifting in this key area was considered to be pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.32 Ma). We use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantify vertical and horizontal movements. On this young, highly-segmented margin, the Messinian Erosion Surface and the Upper and Mobile Units are systematically associated, respectively, to basement highs and deeper basins, showing that a rifted deep-sea domain already existed by Messinian times, therefore a major pre-MSC rifting episode occurred across the entire domain. Data show that there are no signs of Messinian syn-rift sediments, hence no evidence for rifting after Late Tortonian times. Moreover, because salt tectonics creates fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined to distinguish the effects of crustal tectonics (rifting) and salt tectonics. We also precise that rifting is clearly diachronous from the upper margin (East-Sardinia Basin) to the lower margin (Cornaglia Terrace) with two unconformities, attributed respectively to the necking and to the lithospheric breakup unconformities. The onshore part of the upper margin has been recently investigated in order to characterize the large crustal faults affecting the Mesozoic series (geometry, kinematics and chronology) and to decipher the role of the structural inheritance and of the early rifting. Seaward, we also try to constrain the architecture and timing of the continent-ocean transition, between the hyper-extended continental crust and the first oceanic crust. Widespread

  14. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1990-01-01

    The Ebro continental margin sedimentation system originated with a Messinian fluvial system. This system eroded both a major subaerial canyon cutting the margin southeastward from the present Ebro Delta and an axial valley that drained northeastward down Valencia Trough. Post-Messinian submergence of this topography and the Pliocene regime of high sea levels resulted in a marine hemipelagic drape over the margin. Late Pliocene to Pleistocene glacial climatic cycles, drainagebasin deforestation, and sea-level lowstands combined to increase sediment supply, cause the margin to prograde, and create a regime of lowstand sediment-gravity flows in the deeper margin. The depositional patterns of regressive, transgressive and highstand sea-level regimes suggest that location of the sediment source near the present Ebro Delta throughout the late Cenozoic, southward current advection of sediment, and greater subsidence in the southern margin combined to cause generally asymmetric progradation of the margin to the southeast. Thicker, less stable deposits filling the Messinian subaerial canyon underwent multiple retrograde failures, eroded wide gullied canyons and formed unchanneled base-of-slope sediment aprons in the central margin area; other margin areas to the north and south developed a series of channel-levee complexes. On the basin floor, the formation of Valencia Valley over the Messinian subaerial valley and earlier faults led to draining of about 20% of the Ebro Pleistocene sediment from channel-levee complexes through the valley to prograde Valencia Fan as much as 500 km northeast of the margin. Thus, the Ebro margin has two growth directions, mainly southeastward during higher sea levels, and eastward to northeastward during lower sea levels. The northeastward draining of turbidity currents has produced unusually thin and widely dispersed turbidite systems compared to those on ponded basin floors. During the past few centuries, man's impact has exceeded natural

  15. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea

  16. Deformation of the Continental Lithosphere at the Margins of the North American Craton: Constraints from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Long, M. D.; Benoit, M. H.; Ford, H. A.; Wirth, E. A.; Aragon, J. C.; Abrahams, L.; McNamara, J.; Jackson, K.

    2015-12-01

    Earth's continents exhibit striking properties, including relatively thick and low-density crust and a strong, thick, long-lived mantle lithosphere. Major questions related to the formation, stability, evolution, and dynamics of cratonic lithosphere remain unanswered. One promising avenue for understanding the stability of cratonic lithosphere through geologic time is to understand how their margins are deformed via tectonic processes such as orogenesis and rifting. Here we present results of several recent and ongoing studies which aim to constrain past lithospheric deformation along the eastern margin of the North American craton. Each of these studies focuses on constraining seismic anisotropy, or the directional dependence of seismic wavespeeds, in the lithospheric upper mantle. Because there is a causative link between upper mantle deformation and the resulting seismic anisotropy, studies of anisotropic structure in the upper mantle beneath continental interiors can shed light on the deformation processes associated with past tectonic events. The recent explosion in the availability of seismic data in the eastern United States, largely due to the EarthScope initiative, has enabled detailed studies of lithospheric deformation using anisotropic receiver function (RF) analysis and SKS splitting analysis. A comparison of lithospheric structure inferred from RFs for stations located to the east of the Grenville deformation front with those located within the cratonic interior argues for extensive deformation of the lithosphere during the formation and/or breakup of Rodinia. The pattern of fast SKS splitting directions measured at USArray Transportable Array (TA) stations shows clear evidence for a specific lithospheric anisotropy signature at stations beneath the Appalachian Mountains, indicating strong, coherent lithospheric deformation associated with Appalachian orogenesis. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) experiment, a linear array

  17. Low-Temperature Thermochronology Applied to Constrain the Multi-Episodic Thermotectonic Evolution of the Southeastern Continental Margin of Brazil

    NASA Astrophysics Data System (ADS)

    Mendes, L. D.; Heilbron, M. C. P. L.; Hodges, K. V.; Van Soest, M. C.; Silva, L. G. A. E.

    2015-12-01

    Low-temperature thermochronology was applied to constrain the Mesozoic and Cenozoic tectonic evolution of the continental margin of southeast Brazil. Using apatite (U-Th)/He thermochronology (AHe), we acquired data from 107 crystals of basement samples collected from a NW-SE transect in the Mantiqueira Mountains to the Guanabara Graben, as well as from the NE-SE transverse faults. The data range from 43.5 ± 1.9 Ma to 250.1 ± 8.7 Ma (2 σ) for corrected ages. The Neo-Cretaceous, Eo-Cretaceous, and Paleocene are the main recorded AHe ages, in order of importance. The Eo-Cretaceous ages indicate the occurrence of older thermal events related to a pre-rifting phase (~121 Ma). The Neo-Cretaceous ages signify the importance of tectonic and magmatic events, and regional uplifting for the thermal history of the study area, including ages related to the Serra do Mar Mountains uplift (~86 Ma). Paleocene ages seem to be related to the reactivation (~65 Ma), which was responsible for the continental rifts in the southeastern Brazil. Finally, the Eocene ages (49.7 Ma and 43.5 Ma), which are from samples restricted to the Resende Basin border faults, indicate a continental rift reactivation. Time-temperature (t-T) paths obtained from inverse modeling, performed using HeFTy (Ketcham, 2005) with a Radiation Damage Diffusion and Annealing Model (Flowers et al., 2009), suggests rapid cooling episodes for all samples. The main thermal events show a direct correlation with the timing of regional tectonic events: reactivation phases, continental margin uplift, and the sedimentary record. Apatite (U-Th)/He ages increase with distance from the coast and with elevation. However, these patterns are discontinued by samples of younger ages as a result of the reactivation process of pre-existing structures. The total estimated denudation range from 1.2 to 2.8 km. The erosion rates range from 15.2 to 35.3 m/My. Thus, the multi-episodic thermal events, which led to the formation of important

  18. Modeling the conversion of hydroacoustic to seismic energy at island and continental margins: preliminary analysis of Ascension Island data

    SciTech Connect

    Harben, P.; Rodgers, A.

    1999-07-26

    Seismic stations at islands and continental margins will be an essential component of the International Monitoring System (IMS) for event location and identification in support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. Particularly important will be the detection and analysis of hydroacoustic-to-seismic converted waves (T-phases) at island or continental margins. Acoustic waves generated by sources in or near the ocean propagate for long distances very efficiently due to the ocean sound speed channel (SOFAR) and low attenuation. When ocean propagating acoustic waves strike an island or continental margin they are converted to seismic (elastic) waves. We are using a finite difference code to model the conversion of hydroacoustic T-waves at an island or continental margin. Although ray-based methods are far more efficient for modeling long-range (> 1000 km) high-frequency hydroacoustic propagation, the finite difference method has the advantage of being able to model both acoustic and elastic wave propagation for a broad range of frequencies. The method allows us to perform simulations of T-phases to relatively high frequencies ({>=}10 Hz). Of particular interest is to identify factors that affect the efficiency of T-phase conversion, such as the topographic slope and roughness at the conversion point and elastic velocity structure within the island or continent. Previous studies have shown that efficient T-phase conversion occurs when the topographic slope at the conversion point is steep (Cansi and Bethoux, 1985; Talandier and Okal, 1998). Another factor impacting T-phase conversion may be the near-shore structure of the sound channel. It is well known that the depth to the sound channel axis decreases in shallow waters. This can weaken the channeled hydroacoustic wave. Elastic velocity structure within the island or continent will impact how the converted seismic wave is refracted to recording stations at the surface and thus impact the T

  19. Degrading permafrost and gas hydrate under the Beaufort Shelf and marine gas hydrate on the adjacent continental slope

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Hughes Clarke, J. E.; Blasco, S.; Melling, H.; Lundsten, E.; Vagle, S.; Collett, T. S.

    2011-12-01

    The sub-seafloor under the Arctic Shelf is arguably the part of the Earth that is undergoing the most dramatic warming. In the southern Beaufort Sea, the shelf area was terrestrially exposed during much of the Quaternary period when sea level was ~120m lower than present. As a consequence, many areas are underlain by >600m of ice-bonded permafrost that conditions the geothermal regime such that the base of the methane hydrate stability can be >1000m deep. Marine transgression has imposed a change in mean annual surface temperature from -15°C or lower during periods of terrestrial exposure, to mean annual sea bottom temperatures near 0°C. The thermal disturbance caused by transgression is still influencing the upper km of subsurface sediments. Decomposition of gas hydrate is inferred to be occurring at the base and the top of the gas hydrate stability zone. As gas hydrate and permafrost intervals degrade, a range of processes occur that are somewhat unique to this setting. Decomposition of gas hydrate at depth can cause sediment weakening, generate excess pore water pressure, and form free gas. Similarly, thawing permafrost can cause thaw consolidation, liberate trapped gas bubbles in ice bonded permafrost. Understanding the connection between deep subsurface processes generated by transgression, surficial sediment processes near the seafloor, and gas flux into the ocean and atmosphere is important to assessing geohazard and environmental conditions in this setting. In contrast, conditions for marine gas hydrate formation occur on the adjacent continental slope below ~270m water depths. In this paper, we present field observations of gas venting from three geologically distinct environments in the Canadian Beaufort Sea, two on the shelf and one on the slope. A complimentary paper by Dallimore et al reviews the geothermal changes conditioning this environment. Vigorous methane venting is occurring over Pingo-Like-Features (PLF) on the mid-shelf. Diffuse venting of

  20. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, U.S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  1. Multichannel seismic depth sections and interval velocities over outer continental shelf and upper continental slope between Cape Hatteras and Cape Cod: rifted margins

    USGS Publications Warehouse

    Grow, John A.; Mattick, Robert E.; Schlee, John S.

    1979-01-01

    Six computer-generated seismic depth sections over the outer continental shelf and upper slope reveal that subhorizontal Lower Cretaceous reflectors continue 20 to 30 km seaward of the present shelf edge. Extensive erosion on the continental slope has occurred primarily during the Tertiary, causing major unconformities and retreat of the shelf edge to its present position. The precise age and number of erosional events is not established, but at least one major erosional event is thought to be Oligocene and related to a marine regression in response to a worldwide eustatic lowering of sea level. Velocities derived from the multichannel data reveal distinctive ranges and lateral trends as functions of sediment age, depth of burial, and distance from the coastline. Seismic units beneath the shelf and slope of inferred Tertiary age range from 1.7 to 2.7 km/sec, increasing with age and depth of burial. Units interpreted as Upper Cretaceous rocks beneath the shelf range from 2.3 to 3.6 km/sec and show a distinct lateral increase across the shelf followed by a decrease beneath the present continental slope. Inferred Lower Cretaceous and Upper Jurassic rocks beneath the shelf increase from 3.7 to 4.8 km/sec from nearshore to offshore and indicate a change in facies from clastic units below the inner shelf to carbonate units beneath the outer shelf and upper continental slope. Both reflection and refraction data suggest that thin, high-velocity limestone units (5.0 km/sec) are present within the Lower Cretaceous and Upper Jurassic units beneath the outermost shelf edge, but that these change lithology or pinch out before reaching the middle shelf. Although lateral changes in velocity across the shelf and local velocity inversions appear, the interval velocities along the length of the margin show excellent continuity between Cape Hatteras and Cape Cod. The high-velocity horizons within the Lower Cretaceous and Upper Jurassic shelf-edge complex indicate the presence of a

  2. Glaciogenic bedforms on the Chukchi Borderland, Morris Jesup Rise and Yermak Plateau: three prolongations of the Arctic Ocean continental margin

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Mayer, L.; Scientific Party, H.; Scientific Party, L.

    2008-12-01

    The US Coast Gard Cutter Healy and Swedish icebreaker Oden have collected multibeam bathymetry and subbottom profiles from the Chukchi Borderland, extending out from the continental shelf of northern Alaska, the Morris Jesup Rise north of Greenland and the Yermak Plateau protruding out from the northwestern Svalbard continental margin. The collected data show glaciogenic bedforms in the form of mega scale glacial lineations, flutings, iceberg scours, morainic ridges and conspicuous erosional channels cutting into a glacially striated seabed. These Arctic Ocean glaciogenic seafloor features show similarities to features mapped on the Antarctic continental margin, both regarding their morphology and dimensions. In this presentation, results from geophysical mapping in the Arctic Ocean with icebreaker Oden during the LOMROG 07 expedition and with USCGC Healy during the HOTRAX 05 and HLY0703 expeditions are presented and compared with published results from the Antarctic continental margin. On the Yermak Plateau, multibeam data from the LOMROG 07 expedition show subdued glacial striations, flutes, which are extending in a northwesterly direction towards the central Arctic Ocean. The mapped portion of the Yermak Plateau where the flutes exist is between 500-600 m deep. Chirp sonar profiles collected along with the multibeam bathymetry reveal that these flutes comprise the top of a glacially eroded surface which extends down to a water depth of approximately 830 m below present sea level, although the glacially eroded surface is draped by sediments from a depth of approximately 600 m. This suggests that the Yermak Plateau has been overridden by an ice sheet. Results from the nearby shallow continental margin suggest that the Svalbard ice sheet during the Last Glacial Maximum (LGM), however, never reached the deeper Yermak Plateau and, thus, the flutes must originate from older glaciations. On the Morris Jessup Rise deep iceberg scours are mapped down to a water depth of

  3. The crustal structure of the NW Moroccan continental margin from wide-angle and reflection seismic data

    NASA Astrophysics Data System (ADS)

    Contrucci, I.; Klingelhöfer, F.; Perrot, J.; Bartolome, R.; Gutscher, M.-A.; Sahabi, M.; Malod, J.; Rehault, J.-P.

    2004-10-01

    The Atlantic margin off Morocco with its neighbouring Jurassic oceanic crust is one of the oldest on earth. It is conjugate to the Nova Scotia margin of North America. The SISMAR marine seismic survey acquired deep reflection seismic data as well as wide-angle seismic profiles in order to image the deep structure of the margin, characterize the nature of the crust in the transitional domain and define the geometry of the synrift basins. We present results from the combined interpretation of the reflection seismic, wide-angle seismic and gravity data along a 440-km-long profile perpendicular to the margin at 33-34°N, extending from nearly normal oceanic crust in the vicinity of Coral Patch seamount to the coast at El Jadida and approximately 130 km inland. The shallow structure is well imaged by the reflection seismic data and shows a thick sedimentary cover that is locally perturbed by salt tectonics and reverse faulting. The sedimentary basin thickens from 1.5 km on the normal oceanic crust to a maximum thickness of 6 km at the base of the continental slope. Multichannel seismic (MCS) data image basement structures including a few tilted fault blocks and a transition zone to a thin crust. A strong discontinuous reflection at 12 s two-way travel-time (TWT) is interpreted as the Moho discontinuity. As a result of the good data quality, the deep crustal structure (depth and velocity field) is well constrained through the wide-angle seismic modelling. The crust thins from 35 km underneath the continent to approximately 7 km at the western end of the profile. The transitional region has a width of 150 km. Crustal velocities are lowest at the continental slope, probably as a result of faulting and fracturing of the upper crust. Upper-mantle velocities could be well defined from the ocean bottom seismometer (OBS) and land station data throughout the model.

  4. A large-scale detachment fault system in deep water area of South China Sea under the background of continental passive rifted margin: A case study of Heshan Sag

    NASA Astrophysics Data System (ADS)

    Lin, Zi; Ren, Jianye; Han, Xiaoying; Chen, Lin

    2015-04-01

    Heshan sag locates in the deep-water area of continental passive rifted margin of northern South China Sea, where preserved strong thinning crust of the ocean-continent transition zone. This area owns particular and unique tectonic settings with the geological characteristics of lithospheric ductile deformation and high temperature gradient, which highly differs from the continental shelf area. In this research, we try to determine the detachment faults within Heshan sag and build its tectonic-stratigraphic framework and geological evolution history as well. The research achievements are as followed: (1) According to the interpretation of 2D seismic profiles covering the whole study area, we basically recognized that Heshan sag was a detachment basin which is floored by a large-scale seaward detachment fault with a very low angle of 10 degrees to 20 degrees and overlain by tilted and hyper extended hanging wall block. And the heave of detachment fault has been extended to approximately 20 km. (2) Based on the latest geophysical and geological data, in the northern part of South China Sea, the strike of Moho surface is from NE to SW. The overall Moho depth is between 10 and 29 km from north to south, from shelf to continental slope and abyssal plain, mirroring the topography of the sediment basement, which means the crustal thickness decreases from land to ocean. Our study area exactly exists in the zone that the crust is hyper-extended and has the characters of continental crust and transitional crust. (3) Continental passive rifted margin closely relates to the ocean-continent transition zone (OCT). Guided by the basin dynamic analysis and lithosphere extension and breakup theory, combined with overseas and domestic research status on OCT and the latest information of adjacent areas, we tried to elucidate the geological nature of OCT and construct continental lithosphere configuration in different tectonic units on the northern continental margin in South China

  5. Nutrient distributions, transports, and budgets on the inner margin of a river-dominated continental shelf

    EPA Science Inventory

    Physical and biogeochemical processes determining the distribution and fate of nutrients delivered by the Mississippi and Atchafalaya rivers to the inner (<50 m depth) Louisiana continental shelf (LCS) were examined using a three-dimensional hydrodynamic model of the LCS and obse...

  6. Trace metals and organochlorines in sediments near a major ocean outfall on a high energy continental margin (Sydney, Australia).

    PubMed

    Matthai, C; Birch, G F

    2000-12-01

    Sewage effluent from a large ocean outfall south of Sydney, southeastern Australia, is efficiently dispersed on this high energy continental margin. An enrichment of Ag, Cu, Pb and Zn is only detectable in the fine fraction (<62.5 microm) of sediment. Ag, Co, Cu, Ni, Pb and Zn in the bulk sample correlate strongly with the mud content of surficial sediment, making an identification of the anthropogenic trace metal source difficult using total sediment analyses. The concentrations of HCB and DDE in the total sediment are also slightly elevated near the outfall. In the vicinity of the outfall, the estimated sewage component in the fine fraction of sediment, using Ag, Cu and Zn in a conservative, two-endmember physical mixing model, is <5% and is <0.25% of the total sediment. A greater anthropogenic Pb component in the fine fraction (mean: 24.8%) of surficial sediment compared to Ag, Cu and Zn may suggest a source other than sewage to Sydney continental margin sediments.

  7. Geological history and petroleum resources of the continental margins in the central sector of Tethys

    SciTech Connect

    Geodekyan, A.A.; Zabanbark, A.; Konyukov, A.I.

    1993-01-01

    The history of the closure of Tethys explains the distribution and nature of occurrence of petroleum. The enormous resources known in basins of the former passive Gondwanan margin, including those of the Persian Gulf, are mostly in carbonate reservoirs. In contrast, the resources in basins of the former active Eurasian margin, from Spain to Iran, are very much smaller. 4 refs., 3 figs., 6 tabs.

  8. Origin of Volcanic Seamounts Offshore California Related to Interaction of Abandoned Spreading Centers with the Continental Margin

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.; Cousens, B. L.; Huard, J.

    2007-12-01

    The numerous NE-SW trending volcanic seamounts at the continental margin offshore central to Southern California owe their existence to the complex tectonics that resulted when small spreading ridge segments intersected and partly subducted beneath the continental margin during the Miocene plate reorganization. A limited number of dredged samples had indicated multiple episodes of coeval, alkalic volcanism at geographically widely separated sites (Davis et al., 2002, GSA Bull. 114, 316-333). 450 new samples were collected from 8 seamounts from 37. 5°N to 32.3°N with MBARI's ROV Tiburon. Ar-Ar ages for 50 of these samples extend the ages of volcanism from 18 Ma to 2.8 Ma. The dominant whole rock compositions are differentiated alkalic basalt, hawaiite, and mugearite, but include minor benmoreite, trachyte, and rare tholeiitic basalt. This entire range of compositions is also present in glassy margins or in volcaniclastic breccias, except for the trachyte, which had no glassy margins. Trace element abundances and ratios (e.g. REE, Zr, Nb, Ta, Th, Ba, etc.) are typical for ocean island basalt, whether the seamount is located on the Pacific plate (e.g. Pioneer, Gumdrop, Guide, Davidson, San Juan, San Marcos) or on the continental slope (Rodriguez) or within the Southern Continental Borderland (Northeast Bank). Nine samples, predominantly from Rodriguez Seamount, show a calc-alkaline trend with lower Nb, Ta, and higher Th. These samples may be erratics (Paduan et al., 2007, Marine Geology, in press). Sr, Nd, and Pb isotopic compositions plot within the Pacific N-MORB field for the northern seamounts (Pioneer, Gumdrop, Guide) but suggest progressively more radiogenic sources southward. There is considerable scatter at each site, especially with regard to 87Sr/86Sr, despite severe acid-leaching of the samples. Isotopic and trace element compositions indicate sources that are heterogeneous at a small scale. Chondrite-normalized Ce/Yb suggest smaller degree of melting and

  9. Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, Frauke; Biari, Youssef; Sahabi, Mohamed; Aslanian, Daniel; Schnabel, Michael; Matias, Luis; Benabdellouahed, Massinissa; Funck, Thomas; Gutscher, Marc-André; Reichert, Christian; Austin, James A.

    2016-04-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from four study regions along the margin located in the south offshore DAKHLA, on the central continental margin offshore Safi, in the northern Moroccan salt basin, and in the Gulf of Cadiz. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. Crustal thinning takes place over a region of 150 km in the north and only 70 km in the south. The North Moroccan Basin is underlain by highly thinned continental crust of only 6-8 km thickness. The ocean-continent transition zone shows a variable width between 40 and 70 km and is characterized by seismic velocities in between those of typical oceanic and thinned continental crust. The neighbouring oceanic crust is characterized by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganization. Volcanic activity seems to be mostly confined to the region next to the Canary Islands, and is thus not related to the initial opening of the ocean, which was associated to only weak volcanism. Comparison with the conjugate margin off Nova Scotia shows comparable continental crustal structures, but 2-3 km thinner oceanic crust on the American side than on the African margin.

  10. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron

    2016-01-01

    Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.

  11. Quantifying Continental Margin Deformation North and South of the Opening of the Gulf of California—Evidence for Subduction Erosion?

    NASA Astrophysics Data System (ADS)

    Peterman, E. M.; Grove, M.; Kimbrough, D. L.

    2010-12-01

    A striking contrast exists in the geology of the continental margin north and south of the opening of the Gulf of California. For 1200km north of the Gulf opening, a reasonably well-preserved forearc region is associated with strongly magnetic 130-100 Ma plutonic rocks, volcanics and ophiolitic basement. This package of rocks is also coupled with a weakly magnetic eastern belt of 100-90 Ma tonalite and trondhjemite. In contrast, the southern continental margin bound by the Acapulco Trench lacks both a forearc basin and the 130-100 Ma plutonic belt. Instead, Late Cretaceous and Early to Middle Cenozoic granitoids crop out both along the coast and in the offshore region east of the Acapulco Trench, extending 1300 km south to 16°N. The geologic contrast between the northern and southern segments has been attributed to Cenozoic subduction erosion of the latter. The transition region between these two regimes occurs ~50 km northwest of the Gulf opening at 23°N along the Pacific coast of Baja California. North of Todos Santos, Late Cretaceous and younger strata depositionally overlie the western margin of the 130-100 Ma plutonic belt. The plutonic rocks are well-expressed in aeromagnetic images, even where buried. South of Todos Santos, 100-90 m.y. granitoids crop out along the coast and underlie the offshore Todos Santos basin; the strongly magnetic basement and undeformed forearc rocks are absent. Near Todos Santos, 94 Ma orthogneiss intercalated with upper amphibolite facies (garnet ± andalusite) Late Triassic(?) wallrocks are structurally juxtaposed above epidote amphibolite calc-schist of the mid-Cretaceous accretionary complex, suggesting significant forearc deformation. Previous 40Ar/39Ar data gathered south of Todos Santos reveal 5-10 m.y. of discordance between hornblende and biotite in the 100-90 m.y. granitoids. The age discordance could be related to either transient heating from 83-68 Ma granitoids located to the east or subduction erosion deformation

  12. The ancient continental margins of the North American and South American plates and regularities in the occurrence of oil and gas accumulations in them

    NASA Astrophysics Data System (ADS)

    Zabanbark, A.; Lobkovskii, L. I.

    2012-02-01

    Various stages of the development of sedimentary basins along the ancient margins of the North American and South American plates are considered. It is shown that the potential of the oil-and-gas bearing is related to a certain stage of evolution of the basins. For the margins of the North American plate, it is the first stage of development in the structure of the ancient Paleozoic continental margins that developed under passive tectonic conditions. For the basins along the ancient margins of the South American plate, it is the second stage, which is the stage of the formation and development of foredeeps overlaid on the earlier structures. An interesting regularity is displayed: than younger the folding-mountain structures that originated in the distal parts of the continental margins, than greater the age range of source rocks in the sedimentary basins preserved there.

  13. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Obelcz, Jeffrey; Brothers, Daniel; Chaytor, Jason; Brink, Uri ten; Ross, Steve W.; Brooke, Sandra

    2014-06-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5-10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  14. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  15. Sedimentation and potential venting on the rifted continental margin of Dronning Maud Land

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxia; Jokat, Wilfried

    2016-12-01

    The relief of Dronning Maud Land (DML), formed by Middle and Late Mesozoic tectonic activity, had a strong spatial control on the early fluvial and subsequent glacial erosion and deposition. The sources, processes, and products of sedimentation along the DML margin and in the Lazarev Sea in front of the DML mountains have been barely studied. The onshore mountain belt parallel to the coast of the DML margin acts as a barrier to the transport of terrigenous sediments from the east Antarctic interior to the margin and into the Lazarev Sea. Only the Jutul-Penck Graben system allows a localized ice stream controlled transport of material from the interior of DML across its old mountain belt. Offshore, we attribute repeated large-scale debris flow deposits to instability of sediments deposited locally on the steep gradient of the DML margin by high sediment flux. Two types of canyons are defined based on their axial dimensions and originated from turbidity currents and slope failures during glacial/fluvial transport. For the first time, we report pipe-like seismic structures in this region and suggest that they occurred as consequences of volcanic processes. Sedimentary processes on the DML margin were studied using seismic reflection data and we restricted the seismic interpretation to the identification of major seismic sequences and their basal unconformities.

  16. Geologic development and characteristics of the continental margins, Gulf of Mexico. Research report, 1983-1986

    SciTech Connect

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-01-01

    The continental slope of the Gulf Basin covers more than 500,000 sq km and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200 m isobath, to the upper limit of the continental rise, at a depth of 2800 m. The most-complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 sq km and in which bottom slopes range from < 1 deg to > 20 deg around the knolls and basins. The near-surface geology and topography of the slope are functions of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depo-centers throughout the Neogene results in rapid shelf-edge progradation, often in excess of 15-20 km/my. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Oversteeping, high pore pressures in rapidly deposited soft sediments and changes in eustatic sea level cause subaqueous slope instabilities such as landsliding and debris flows. Large scale features such as shelf edge separation scars and landslide related canyons often results from such processes.

  17. Formation of Australian continental margin highlands driven by plate-mantle interaction

    NASA Astrophysics Data System (ADS)

    Müller, R. Dietmar; Flament, Nicolas; Matthews, Kara J.; Williams, Simon E.; Gurnis, Michael

    2016-05-01

    Passive margin highlands occur on most continents on Earth and play a critical role in the cycle of weathering, erosion, and atmospheric circulation. Yet, in contrast to the well-developed understanding of collisional mountain belts, such as the Alps and Himalayas, the origin of less elevated (1-2 km) passive margin highlands is still unknown. The eastern Australian highlands are a prime example of these plateaus, but compared to others they have a well-documented episodic uplift history spanning 120 million years. We use a series of mantle convection models to show that the time-dependent interaction of plate motion with mantle downwellings and upwellings accounts for the broad pattern of margin uplift phases. Initial dynamic uplift of 400-600 m from 120-80 Ma was driven by the eastward motion of eastern Australia's margin away from the sinking eastern Gondwana slab, followed by tectonic quiescence to about 60 Ma in the south (Snowy Mountains). Renewed uplift of ∼700 m in the Snowy Mountains is propelled by the gradual motion of the margin over the edge of the large Pacific mantle upwelling. In contrast the northernmost portion of the highlands records continuous uplift from 120 Ma to present-day totalling about 800 m. The northern highlands experienced a continuous history of dynamic uplift, first due to the end of subduction to the east of Australia, then due to moving over a large passive mantle upwelling. In contrast, the southern highlands started interacting with the edge of the large Pacific mantle upwelling ∼ 40- 50 million years later, resulting in a two-phase uplift history. Our results are in agreement with published uplift models derived from river profiles and the Cretaceous sediment influx into the Ceduna sub-basin offshore southeast Australia, reflecting the fundamental link between dynamic uplift, fluvial erosion and depositional pulses in basins distal to passive margin highlands.

  18. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles

    NASA Astrophysics Data System (ADS)

    Zhang, Qiao; Wu, Shiguo; Dong, Dongdong

    2016-06-01

    Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene-Mid Miocene) and after cessation of seafloor spreading (Mid Miocene-Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean-continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to

  19. Middle-Late Eocene structure of the southern Levant continental margin — Tectonic motion versus global sea-level change

    NASA Astrophysics Data System (ADS)

    Segev, Amit; Schattner, Uri; Lyakhovsky, Vladimir

    2011-03-01

    During the Paleogene greenhouse episode Earth experienced the warmest period of the Cenozoic while global sea level rose by more than 100 m. However, geological evidence from the Levant margin, northwestern Arabian plate, indicates that throughout this period seabed deepening exceeded 1000 m. Lithology from Israel, Syria, Lebanon and Jordan is mainly pelagic and neritic, interfered by occasional fossil sub-marine slumps. In order to understand this dissimilarity we quantify the vertical tectonic motion of the Levant continental margin through the Paleogene. The margin began to take shape during the Late Permian and it was reactivated during the Oligocene. Based on information from outcrops, drillholes, seismic reflection and refraction, gravity, and previous publications, a multi-layered model of the Levant lithosphere was established. Layers include the Moho, top of the crystalline basement and covering sediments up to the Late Eocene. The model was restored horizontally by 100 km along the younger Dead Sea transform. Assuming local isostatic compensation, vertical restoration yielded the paleo-bathymetry which prevailed across northwestern Arabia during the Middle-Late Eocene. Results show that following the margin subsidence the Cretaceous Levantine platform became ramp shaped during the Eocene. Most parts of the central Levant were submerged under ~ 200 to ~ 1800 m of water, while the paleo-bathymetric gradients ranged from ~ 2° at the shelf to ~ 6° at the slope. The apparent dissimilarity between sea level and our tectonic-based calculations is up to an order of magnitude. These differences may be resolved by accounting for vertical tectonic motions and sediment supply rates. Our results stress the importance of the presented crustal structure. As opposed to the backstripping procedure, the structural map of the top Eocene interface was constructed upwards from the well established top Turonian (Judea Group) interface since only scarce and sporadic outcrops

  20. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    PubMed

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  1. Structure and evolution of the northern Barents-Kara Sea continental margin from integrated analysis of potential fields, bathymetry and sparse seismic data

    NASA Astrophysics Data System (ADS)

    Minakov, A.; Faleide, J. I.; Glebovsky, V. Yu.; Mjelde, R.

    2012-01-01

    The northern Barents-Kara Sea continental margin is a poorly investigated area because of a permanent ice cover hampering seismic exploration. The available geological and geophysical data show that the magma-poor margin developed in response to early Cenozoic break-up and subsequent opening of the Arctic Eurasia Basin. In this study, a series of crustal-scale geotransects illustrating the architecture of the continental margin are constructed using sparse seismic reflection profiles and a gravity inversion method incorporating a thermal model of rifting. The continental side of the northern Barents Sea margin is underlain by Palaeozoic-Early Mesozoic deep sedimentary basins separated from the oceanic side by the marginal uplift. A bathymetry analysis complements low-resolution seismic data to predict the sedimentary depocenters beyond the shelf break. These depocenters are associated with troughs, perpendicular to the shelf edge. The depocenter in front of the St. Anna Trough may contain a sedimentary section more than 4 km thick. The gravity correction for the effect of sedimentary cover was added to the inversion. This correction used an exponential density-depth function. The inversion supports a narrow and steep continent-ocean transition (COT; ca. 100 km). The conjugate Lomonosov Ridge margin is modelled using the same technique. Palaeoreconstructions were made to predict the break-up setting. The northern Barents Sea-Lomonosov Ridge rift system can be described as an initially narrow symmetric rift. A transitional zone of extreme thinning is assumed between the oldest spreading magnetic anomaly and the stretched continental crust. The free-air gravity anomaly in the western part of the margin can be predicted by the upwelling divergent flow model implying the exhumation of the lower crust and the continental upper mantle within the COT. It is suggested that an episode of shear or oblique extension before breakup is required to explain the observed narrow

  2. Gravimetric determination of the continental-oceanic boundary of the Argentine continental margin (from 36°S to 50°S)

    NASA Astrophysics Data System (ADS)

    Arecco, María Alejandra; Ruiz, Francisco; Pizarro, Guillermo; Giménez, Mario; Martínez, Patricia; Ramos, Víctor A.

    2016-01-01

    This paper presents the gravimetric analysis together with seismic data as an integral application in order to identify the continental-oceanic crust boundary (COB) of the Argentine continental margin from 36°S to 50°S in a continuous way. The gravimetric and seismic data are made up of large grids of data obtained from satellite altimetry and marine research. The methodology consists of three distinct methods: (i) the application of enhancement techniques to gravimetric anomalies, (ii) the calculation of crustal thinning from 3-D gravity inversion modelling of the crust-mantle discontinuity and (iii) 2-D gravimetric modelling supported by multichannel reflection and refraction seismic profiles. In the first method, the analytic signal, Theta map, and tilt angle and its horizontal derivative were applied. In the second method, crustal thickness was obtained as the difference in the depths of the crystalline basement and the crust-mantle discontinuity; the latter was obtained via gravimetric inversion. Finally, 2-D modelling was performed from free-air anomalies in two representative sections by considering as restriction surfaces those coming from the interpretation of seismic data. The results of the joint application of enhancement techniques and 2-D and 3-D modelling have enabled continuous interpretation of the COB. In this study, the COB was determined continuously from the integration of 2-D profiles of the enhancement techniques, taking account of crustal thickness and performing 2-D gravimetric modelling. The modelling technique was complemented by regional studies integrated with multichannel seismic reflection and seismic refraction lines, resulting in consistent enhancement techniques.

  3. Cenozoic unconformities and depositional supersequences of North Atlantic continental margins: testing the Vail model

    SciTech Connect

    Poag, C.W.; Ward, L.W.

    1987-02-01

    Integrated outcrop, borehole, and seismic reflection stratigraphy from the US and Irish margins of the North Atlantic basin reveals a framework of Cenozoic depositional supersequences and interregional unconformities that resembles the Vail depositional model. Paleobathymetric and paleoceanographic analyses of associated microfossil assemblages indicate a genetic link between the depositional framework and the relative position of sea level.

  4. Cenozoic unconformities and depositional supersequences of North Atlantic continental margins: Testing the Vail model

    NASA Astrophysics Data System (ADS)

    Poag, C. Wylie; Ward, Lauck W.

    1987-02-01

    Integrated outcrop, borehole, and seismic reflection stratigraphy from the U.S. and Irish margins of the North Atlantic basin reveals a framework of Cenozoic depositional supersequences and interregional unconformities that resembles the Vail depositional model. Paleo-bathymetric and paleoceanographic analyses of associated microfossil assemblages indicate a genetic link between the depositional framework and the relative position of sea level.

  5. Continental Shelf Embayments of the Eastern Margin of the Philippines; Lamon Bay Stratification & Circulation

    DTIC Science & Technology

    2014-09-30

    circulation, stratification and the Shelf-Slope interaction within Lamon Bay of the eastern margin of the Philippines, marking the ’ birth ’ of the...blue ship track) and 24 April - 13 May 2012 (green track). The 2011 CTD stations are shown as blue stars for the 2011 cruise, and as green discs for

  6. Magnetomineralogical approach to distal IRD layers detection and characterization. The case study of the Galician Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Rey, D.; Coimbra, R. L.; Mohamed-Falcon, K. J.; Frederichs, T.; Vilas, F.

    2009-12-01

    Ice Rafted Debris (IRD) layers are widely distributed along the Northern Atlantic, representing the discharge of detrital material transported by icebergs released from the major continental ice caps during the Heinrich events (Heinrich et al. 1988, Bond et al. 1992). They provide key information on climatically forced events and are commonly used as tracers holding some chronostratigraphic value. At latitudes ranging the Rudimann belt (40-55 N) (Ruddiman et al. 1977) IRD layers can be identified by magnetic susceptibility values (κ) up to 400x10-6 SI, emerging from background values lower than 100x10-6 SI. At the Galician Continental Margin, thousands of km away from their Laurentide, Greenland and Fenoscandian source areas, the distance-weakened icecap detrital signal is mixed within the continental shelf inputs and depleted and modified by upwelling related redoxomorphic diagenetic processes making their recognition very difficult, when not impossible, by the standard susceptibility measurements and/or mineralogical counting. IRD layers were first detected at the Galician Continental Margin in turbidite-dominated sequences off the Galician Bank deposited during MIS2 by Rey et al. (2008). We propose a magnetomineralogical method based on systematic measurement of the magnetic susceptibility and Anhysteretic Remanent Magnetization to detect IRD-like horizons that are subsequent measurement of hysteresis properties, and low temperature remanence and susceptibility will unequivocally demonstrate or reject the occurrence distally sourced materials transported during the Heinrich events. Furthermore, coercivity spectra analysis of detected IRD layers is used to characterize each Heinrich event by their distinct magnetic signature. This have important consequences to asses their ages and provenance. Bond et al, 1992. Nature 360, 245-249. Heinrich, 1988. Quaternary Res. 29, 142-152. Kissel, 2005. C. R. Geosciences 337, 908-918. Rey et al, 2008. Mar. Geol. 249, 64

  7. Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops.

    PubMed Central

    Roy, D B; Bohan, D A; Haughton, A J; Hill, M O; Osborne, J L; Clark, S J; Perry, J N; Rothery, P; Scott, R J; Brooks, D R; Champion, G T; Hawes, C; Heard, M S; Firbank, L G

    2003-01-01

    The effects of management of genetically modified herbicide-tolerant (GMHT) crops on adjacent field margins were assessed for 59 maize, 66 beet and 67 spring oilseed rape sites. Fields were split into halves, one being sown with a GMHT crop and the other with the equivalent conventional non-GMHT crop. Margin vegetation was recorded in three components of the field margins. Most differences were in the tilled area, with fewer smaller effects mirroring them in the verge and boundary. In spring oilseed rape fields, the cover, flowering and seeding of plants were 25%, 44% and 39% lower, respectively, in the GMHT uncropped tilled margins. Similarly, for beet, flowering and seeding were 34% and 39% lower, respectively, in the GMHT margins. For maize, the effect was reversed, with plant cover and flowering 28% and 67% greater, respectively, in the GMHT half. Effects on butterflies mirrored these vegetation effects, with 24% fewer butterflies in margins of GMHT spring oilseed rape. The likely cause is the lower nectar supply in GMHT tilled margins and crop edges. Few large treatment differences were found for bees, gastropods or other invertebrates. Scorching of vegetation by herbicide-spray drift was on average 1.6% on verges beside conventional crops and 3.7% beside GMHT crops, the difference being significant for all three crops. PMID:14561320

  8. The role of rifting in the development of the continental margins of the southwest subbasin, South China Sea: Insights from an OBS experiment

    NASA Astrophysics Data System (ADS)

    Lü, Chuanchuan; Hao, Tianyao; Lin, Jian; Qiu, Xuelin

    2016-11-01

    The continental margins of the southwest subbasin in the South China Sea mark a unique transition from multi-stages magma-poor continental rifting to seafloor spreading. We used reflection and refraction profiles across the margins to investigate the rifting process of the crust. Combining with the other seismic profiles acquired earlier, we focused on the comparative geological interpretation from the result of multichannel seismic analysis and wide-angle seismic tomography. Our result provides the evidence of upper crustal layer with abundant fractures below the acoustic basement with a P-wave velocity from 4.0 to 5.5 km s-1. It indicates extensive deformation of the brittle crust during the continental rifting and can make a good explanation for the observed extension discrepancy in the rift margins of the South China Sea. The seismic chronostratigraphic result shows the possibility of the intra-continental extension center stayed focused for quite a long time in Eocene. Additionally, our evidence suggested that continental margin of the southwest subbasin had experienced at least three rifting stages and the existence of the rigid blocks is an appropriate explanation to the asymmetric rifting of the South China Sea.

  9. Epibenthic megacrustaceans from the continental margin and slope of the Southwestern Gulf of Mexico: factors responsible for variability in species composition and diversity

    NASA Astrophysics Data System (ADS)

    Gaytan-Caballero, A.; Escobar, E.; Villalobos-Hiriart, J. L.

    2007-05-01

    Specimens collected from trawls on board UNAM's R/V Justo Sierra along 4 years has allowed us to describe the community structure of megacrustaceans collected on the continental margin (45 to 156 m) and upper slope (251 to 705m) in the Mexican Ridges and the Campeche Bank of the southern Gulf of Mexico. The species composition, species richness, density and diversity varied among geographic regions and in the depth gradient. A total of 76 species were identified and grouped in 2 orders, 5 infraorders, 37 families and 53 genera. This study extends the known geographic ranges of the species Homolodromia monstrosa and the proposal of Munida constricta and Munidopsis polita. The largest number of species was recorded in the Mexican Ridges (9+3.16) and on the upper continental shelf (10+3.5); lower values were found on the continental margin. The largest densities were recorded on the continental margin in the Mexican Ridges. Megacrustaceans show in general low frequencies and low abundances, characterizing them as rare components of benthic assemblages. In spite of the great similarity among continental shelf and upper continental slope, two subgroups were recognized reflecting specific habitat and time variation

  10. Evolution of the Red Sea Continental Margin from Integrated Analyses of Gravity, Magnetic, and Receiver Function Observations

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Mohamed, A. A.; Gao, S. S.; Mickus, K. L.; Liu, K. H.; Yu, Y.; Elsheikh, A. A.

    2014-12-01

    The development of evolutionary models and constraints for the extensional mechanisms which govern continental rifting is of fundamental significance toward understanding the breakup of continents and the role of volcanism in achieving successful rifting. To analyze the transitional nature of the Red Sea rift (RSR) passive margins and to quantify the mechanism through which extension has been accommodated, we examined a total of 3531 high-quality radial receiver functions from multiple temporary deployments in Saudi Arabia and the Levant as well as data recently acquired by the Egyptian National Seismic Network. Egypt is characterized by a relatively constant crustal thickness of approximately 37 km, while the southern Arabian Shield is roughly 35 km on average. The crust beneath the Eastern Desert of Egypt is significantly thinned with an average thickness of about 26 km. Observations of Vp/Vs across the Arabian-Nubian Shield indicate highly similar intermediate to mafic compositions, supporting well-accepted theories for juvenile arc accretion of relatively uniform makeup. Thinned crust as far as 130 km inland on the Egyptian margin indicates a highly asymmetric crustal structure across the Red Sea, supporting a model invoking simple shear extensional mechanisms. Joint modeling using satellite gravity and magnetic data with RF Moho depth constraints reveals the presence of high-density high-magnetic susceptibility mafic complexes which we interpret as volcanic margins in the northern RSR at ~25.5°N and the southern RSR at ~19.5°N. We believe the development of the northern RSR margin is accompanied by isolated volcanism associated with slow spreading rates since the Oligocene.

  11. Analysis of Submarine Landslides and Canyons along the U.S. Atlantic Margin Using Extended Continental Shelf Mapping Data

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Brothers, D. S.; Ten Brink, U. S.; Hoy, S. K.; Baxter, C.; Andrews, B.

    2013-12-01

    U.S. Geological Survey (USGS) studies of the U.S. Atlantic continental slope and rise aim to understand the: 1) the role of submarine landslides in tsunami generation, and 2) the linkages between margin morphology and sedimentary processes, particularly in and around submarine canyon systems. Data from U.S. Extended Continental Shelf (ECS) and numerous subsequent mapping surveys have facilitated the identification and characterization of submarine landslides and related features in fine detail over an unprecedented spatial extent. Ongoing analysis of USGS collected piston cores, sub-bottom and multichannel seismic (MCS) reflection profiles, and an extensive suite of legacy MCS data from two landslides, the Southern New England landslide zone and the Currituck Landslide, suggest that the most recent major landslide events are pre-Holocene, but that failures were complex and most likely multi-phase, at times resulting in extensive overlapping debris deposits. Piston core records plus visual observations of the seafloor from recent TowCam deployments and NOAA Ship Okeanos Explorer ROV dives reveal ongoing development of colluvial wedge-style debris aprons at the base of scarps within these landslides, showing that these regions continue to evolve long after the initial failure events. Multibeam bathymetry data and MCS profiles along the upper slope reveal evidence for vertical fluid migration and possible seabed gas expulsion. These observations underscore the need to reevaluate the sources of pore fluid overpressure in slope sediments and their role in landslide generation. ECS and more recent multibeam mapping have provided the opportunity to investigate the full extent of submarine canyon morphology and evolution from Cape Hatteras up to the US-Canadian EEZ, which has led to better understanding of the important role of antecedent margin physiography on their development. Six submarine canyon systems along the margin (Veatch, Hydrographer, Hudson, Wilmington

  12. 3-D view of erosional scars on U. S. Mid-Atlantic continental margin

    SciTech Connect

    Farre, J.A.; Ryan, W.B.

    1985-06-01

    Deep-towed side-scan and bathymetric data have been merged to present a 3-D view of the lower continental slope and upper continental rise offshore Atlantic City, New Jersey. Carteret Canyon narrows and becomes nearly stranded on the lower slope where it leads into one of two steep-walled, flat-floored erosional chutes. The floors of the chutes, cut into semilithified middle Eocene siliceous limestones, are marked by downslope-trending grooves. The grooves are interpreted to be gouge marks formed during rock and sediment slides. On the uppermost rise, beneath the chutes, is a 40-m deep depression. The origin of the depression is believed to be related to material moving downslope and encountering the change in gradient at the slope/rise boundary. Downslope of the depression are channels, trails, and allochthonous blocks. The lack of significant post-early Miocene deposits implies that the lower slope offshore New Jersey has yet to reach a configuration conducive to sediment accumulation. The age of erosion on the lower slope apparently ranges from late Eocene-early Miocene to the recent geologic past.

  13. The Formation, Alteration and Preservation of Flood Deposits on the Pacific Northwest Continental Margin

    DTIC Science & Technology

    2000-09-30

    rivers . APPROACH Box cores are the primary sampling device used in this research. Cores are taken in two different modes: (1) replicate time-series...sampling of four stations along the 70-m isobath, and (2) broad, large- scale coverage of the Eel and other river -system margins. Subsequent sources of...composition, abundance and biomass. In addition, box cores were collected offshore of several other major rivers in the Pacific Northwest (e.g

  14. Data file, Continental Margin Program, Atlantic Coast of the United States: vol. 2 sample collection and analytical data

    USGS Publications Warehouse

    Hathaway, John C.

    1971-01-01

    The purpose of the data file presented below is twofold: the first purpose is to make available in printed form the basic data relating to the samples collected as part of the joint U.S. Geological Survey - Woods Hole Oceanographic Institution program of study of the Atlantic continental margin of the United States; the second purpose is to maintain these data in a form that is easily retrievable by modern computer methods. With the data in such form, repeate manual transcription for statistical or similar mathematical treatment becomes unnecessary. Manual plotting of information or derivatives from the information may also be eliminated. Not only is handling of data by the computer considerably faster than manual techniques, but a fruitful source of errors, transcription mistakes, is eliminated.

  15. Crustal structure of the Southeast Georgia embayment-Carolina trough: Preliminary results of a composite seismic image of a continental suture ( ) and a volcanic passive margin

    SciTech Connect

    Austin, J.A. Jr.; Stoffa, P.L.; Phillips, J.D. ); Oh, Jinyong ); Sawyer, D.S. ); Purdy, G.M.; Reiter, E. ); Makris, J. )

    1990-10-01

    New deep-penetration multichannel seismic reflection data, combined with refraction results and magnetics modeling, support a hypothesis that the Carolina trough is a Mesozoic volcanic passive margin exhibiting a seaward-dipping wedge and associated underplating. The structure of Carolina platform continental crust is consistent with the late Paleozoic continental collision that produced the Appalachians, but imbrication has had no obvious effect on shallower structures produced by Mesozoic extension and volcanism. The origin of prominent magnetic anomalies crossing the Southeast Georgia embayment can be explained by processes attending Mesozoic separation of Africa and North America, and is not related to a Paleozoic continental suture, as previously postulated.

  16. Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin

    NASA Astrophysics Data System (ADS)

    Klaucke, Ingo; Weinrebe, Wilhelm; Linke, Peter; Kläschen, Dirk; Bialas, Jörg

    2012-12-01

    The central Chilean subduction zone between 35°S and 37°S was investigated in order to identify, document and possibly understand fluid flow and fluid venting within the forearc region. Several areas were mapped using multibeam bathymetry and backscatter, high-resolution sidescan sonar, chirp subbottom profiling and reflection seismic data. On a subsequent cruise ground-truthing observations were made using a video sled. In general, this dataset shows surprisingly little evidence of fluid venting along the mid-slope region, in contrast to other subduction zones such as Central America and New Zealand. There were abundant indications of active and predominantly fossil fluid venting along the upper slope between 36.5°S and 36.8°S at the seaward margin of an intraslope basin. Here, backscatter anomalies suggest widespread authigenic carbonate deposits, likely the result of methane-rich fluid expulsion. There is unpublished evidence that these fluids are of biogenic origin and generated within the slope sediments, similar to other accretionary margins but in contrast to the erosional margin off Central America, where fluids have geochemical signals indicating an origin from the subducting plate.

  17. Using ammonium pore water profiles to assess stoichiometry of deep remineralization processes in methanogenic continental margin sediments

    NASA Astrophysics Data System (ADS)

    Burdige, David J.; Komada, Tomoko

    2013-05-01

    many continental margin sediments, a deep reaction zone exists which is separated from remineralization processes near the sediment surface. Here, methane diffuses upward to a depth where it is oxidized by downwardly diffusing sulfate. However, the methane sources that drive this anaerobic oxidation of methane (AOM) in the sulfate-methane transition zone (SMT) may vary among sites. In particular, these sources can be thought of as either (i) "internal" sources from in situ methanogenesis (regardless of where it occurs in the sediment column) that are ultimately coupled to organic matter deposition and burial, or (ii) "external" sources such as hydrocarbon reservoirs derived from ancient source rocks, or deeply buried gas hydrates, both of which are decoupled from contemporaneous organic carbon deposition at the sediment surface. Using a modeling approach, we examine the relationship between different methane sources and pore water sulfate, methane, dissolved inorganic carbon (DIC), and ammonium profiles. We show that pore water ammonium profiles through the SMT represent an independent "tracer" of remineralization processes occurring in deep sediments that complement information obtained from profiles of solutes directly associated with AOM and carbonate precipitation, i.e., DIC, methane, and sulfate. Pore water DIC profiles also show an inflection point in the SMT based on the type of deep methane source and the presence/absence of accompanying upward DIC fluxes. With these results, we present a conceptual framework which illustrates how shallow pore water profiles from continental margin settings can be used to obtain important information about remineralization processes and methane sources in deep sediments.

  18. Ascension Submarine Canyon, California - Evolution of a multi-head canyon system along a strike-slip continental margin

    USGS Publications Warehouse

    Nagel, D.K.; Mullins, H.T.; Greene, H. Gary

    1986-01-01

    Ascension Submarine Canyon, which lies along the strike-slip (transform) dominated continental margin of central California, consists of two discrete northwestern heads and six less well defined southeastern heads. These eight heads coalesce to form a single submarine canyon near the 2700 m isobath. Detailed seismic stratigraphic data correlated with 19 rock dredge hauls from the walls of the canyon system, suggest that at least one of the two northwestern heads was initially eroded during a Pliocene lowstand of sea level ???3.8 m.y. B.P. Paleogeographic reconstructions indicate that at this time, northwestern Ascension Canyon formed the distal channel of nearby Monterey Canyon and has subsequently been offset by right-lateral, strike-slip faulting along the San Gregorio fault zone. Some of the six southwestern heads of Ascension Canyon may also have been initially eroded as the distal portions of Monterey Canyon during late Pliocene-early Pleistocene sea-level lowstands (???2.8 and 1.75 m.y. B.P.) and subsequently truncated and offset to the northwest. There have also been a minimum of two canyon-cutting episodes within the past 750,000 years, after the entire Ascension Canyon system migrated to the northwest past Monterey Canyon. We attribute these late Pleistocene erosional events to relative lowstands of sea level 750,000 and 18,000 yrs B.P. The late Pleistocene and Holocene evolution of the six southeastern heads also appears to have been controlled by structural uplift of the Ascension-Monterey basement high at the southeastern terminus of the Outer Santa Cruz Basin. We believe that uplift of this basement high sufficiently oversteepened submarine slopes to induce gravitational instability and generate mass movements that resulted in the erosion of the canyon heads. Most significantly, though, our results and interpretations support previous proposals that submarine canyons along strike-slip continental margins can originate by tectonic trunction and lateral

  19. Seismic patterns of the Guerrero-Oaxaca, Mexico region, and its relationship to the continental margin structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Jaime; González-Moran, Tomas; Quintanar, Luis; Zavaleta, Ana B.; Zamora, Araceli; Espindola, Victor H.

    2013-01-01

    The main purpose of this paper is to enhance awareness on the seismic evidences that suggest a possible segmentation of the continental margin at the Guerrero-Oaxaca, Mexico region. Data from a recent 7 months survey of microseismicity carried out from 2008 December to 2009 June at Ometepec, Guerrero area, using a portable broad-band digital seismographs network added with data of a previous survey and the aftershocks distribution of the 1982 and 1995 major earthquakes permit to infer the characteristics of the seismic patterns of the Acapulco-Pinotepa Nacional portion of the southern Mexico subduction region. Two different seismic regimens are apparent, one in the Acapulco-Marquelia and the other in the Marquelia-Pinotepa Nacional areas. In the Acapulco-Marquelia portion, the seismicity is broader and dispersed starting at the coast up to 160 km inland approximately. Seismicity in the Marquelia-Pinotepa portion, on the other hand, is narrower and concentrates near the coast. The two seismic regimens are separated by a narrow band or strip of low seismic activity, nearly perpendicular to the coast and trench axis. The apparent low seismicity strip that separates the seismic regimens may trace the position either of a seismically inactive fracture zone or a seismic gap. Moreover, careful observation of the epicentres distribution of the Marquelia-Pinotepa segment reveals two clusters of events separated by another low seismicity strip. Thus, the two observed low activity strips, located near the northern tip of the Ometepec submarine canyon and Punta Maldonado, respectively, are interpreted in this paper as corresponding to disruptions of the continental margin. Other low seismic activity strips probably exist but these two are the most conspicuous. Supplementary information on fault mechanisms available for this area seems to substantiate additionally this interpretation. The observations reported are important to understand the mechanics of the major earthquakes

  20. Large particle flux of 239+240Pu on the continental margin of the East China Sea.

    PubMed

    Yamada, Masatoshi; Aono, Tatsuo

    2002-03-15

    Settling particles were collected from three locations in the East China Sea continental margin and analyzed for 239+240Pu. Two types of sediment traps were used, cylindrical traps and conical time-series traps. Surface sediment samples collected from five locations were also analyzed for 239+240Pu. Data from cylindrical traps showed there was a clear tendency for total mass fluxes to increase with depth at all three stations, and there was an especially large increase near the bottom. 239+240Pu concentrations in settling particles increased with depth from 1.76 mBq/g at 97-m depth to 3.0 mBq/g at 120-m depth and ranged from approximately 3 to 4 mBq/g at depths greater than 120 m. 239+240Pu concentrations collected in the near-bottom traps were approximately two times higher than those in the underlying surface sediments. Like total mass fluxes there was a clear tendency for 239+240Pu fluxes to increase with depth at every station, and the highest 239+240Pu fluxes were observed near the bottom. 239+240Pu concentrations in the time-series traps had little variation throughout the sampling period, though the total mass fluxes showed a large variation. A high variability of 239+240Pu fluxes occurred in very short period of time (1/2 day). The large fluxes of 239+240Pu might be attributed to episodic lateral transport of particles that flow down the continental slope with the nepheloid layer which was considered to be significant for 239+240Pu transport on the continental slope in the East China Sea.

  1. Distribution of rose bengal stained deep-sea benthic foraminifera from the Nova Scotian continental margin and Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Corliss, Bruce H.; Emerson, Steven

    1990-03-01

    Analysis of Rose Bengal stained benthic foraminifera in six boxcores taken from the Nova Scotian margin and Gulf of Maine reveals that foraminifera are vertically stratified within surficial sediments raised from 200 to 3000 m water depth. The consistent presence of infaunal taxa within the sediments demonstrates that these tolerant of a range of low-oxygen conditions as determined by pore-water manganese profiles. The habitat depth of foraminiferal populations, defined as the depth within which 95% of the fauna is found in a subcore, varies between the stations. A shallow habitat depth of 3 cm exists in shallow water (a 202 m core) in the Gulf of Maine. The habitat depth gradually increases on the continental slope with increasing water depth, reaching 11-13 cm in cores at 2225 and 3000 m, and then shoals to 4 cm in a core taken from 4800 m water depth. We suggest that the habitat pattern is related to the flux of organic carbon to the seafloor. At shallow depths, relatively high organic carbon flux results in a shallow oxic layer. The inferred oxic layer gradually increases on the continental slope and rise with increasing water depth, due to decreased organic carbon flux to the sediment-water interface. Carbon fluxes in the deep ocean are so low that pore waters are oxic and the organic carbon content is low, creating a food-limiting environment best suited to epifaunal taxa and reflected in a shallow habitat depth.

  2. Submarine geo-hazards on the eastern Sardinia-Corsica continental margin based on preliminary pipeline route investigation

    NASA Astrophysics Data System (ADS)

    Cecchini, S.; Taliana, D.; Giacomini, L.; Herisson, C.; Bonnemaire, B.

    2011-03-01

    The understanding of the morphology and the shallow geo-hazards of the seafloor is a major focus for both academic and private industry research. On November and December 2009 a geophysical pipeline survey was carried out by Fugro Oceansismica S.p.A. (FOSPA) and FUGRO France (FFSA) for DORIS Engineering on behalf of GRTgaz (Engineering centre, Transmission Pipe Department; http://www.grtgaz.com) which are currently investigating the possibility of laying a pipeline between Sardinia and Corsica as a spur line from the planned GALSI Project. The Project, "Alimentation de la Corse en gaz naturel", consists of a corridor 100 km long and 1.0 km wide along the Corsica-Sardinia shelf. The integration of the multibeam, sidescan sonar and sparker data provided a high resolution seafloor mapping for geo-hazard assessment. In this article the data acquired along a break of slope section (approximately 20 km × 1.5 km), in the eastern sector of the Strait of Bonifacio are described. The area was abandoned during the survey, because of its unsuitability. Indeed, in this area the continental shelf, approximately 100 m deep and deepening gently eastward, is characterized by an uneven morphology, with different seabed features such as Beach- rocks mainly NNW-SSE oriented. Also, the continuity of the continental margin, identified around -110/-115 m, is interrupted by four canyon heads which incise the slope and are associated with glide deposits.

  3. Provenance and fate of organic carbon in three submarine canyons from the Portuguese Margin: Implications for transport processes of material in continental margins

    NASA Astrophysics Data System (ADS)

    Kiriakoulakis, Kostas; Wolff, George; Blackbird, Sabena

    2010-05-01

    Submarine canyons are key environments on the continental margin that are affected by unique and dynamic but often episodic and complex processes, and are difficult to study. Canyons are considered hotspots of biodiversity and enhancement of primary productivity at canyon heads has often been postulated to support this, although the evidence is sparse. Additionally canyons are considered to be fast-track corridors for material transported from the land to the deep sea and they are considered major pathways for the transportation and burial of organic carbon, acting as buffers for sediment and carbon storage. Organic geochemical and isotopic markers are often used as reliable indicators for the supply, quality and fate of organic matter in marine systems. In this study they have been used to test the above hypotheses in three contrasting submarine canyons (Nazaré, Setubal/Lisbon and Cascais) of the Portuguese Margin. The elemental and lipid biomarker composition of suspended particulate organic matter of surface waters close to the studied canyon heads had a fresh phytoplankton signal, however there was no clear evidence for enhanced primary productivity by comparison to the neighbouring open slope. By contrast, mid-depth waters (700-1600 m), that are dominated by the northward flowing Mediterranean Outflow Water, had high lipid content and abundant mesozooplankton biomarkers, perhaps reflecting zooplankton activity focused at the boundaries of distinct water masses. In the waters close to the floor of the Nazaré Canyon the presence of elemental sulphur (a product of sediment diagenesis) and high molecular weight hydrocarbons (recalcitrant, terrestrial markers) indicated high levels of resuspended material, particularly at the Upper section (

  4. Ivory Coast-Ghana margin: model of a transform margin

    SciTech Connect

    Mascle, J.; Blarez, E.

    1987-05-01

    The authors present a marine study of the eastern Ivory Coast-Ghana continental margins which they consider one of the most spectacular extinct transform margins. This margin has been created during Early-Lower Cretaceous time and has not been submitted to any major geodynamic reactivation since its fabric. Based on this example, they propose to consider during the evolution of the transform margin four main and successive stages. Shearing contact is first active between two probably thick continental crusts and then between progressively thinning continental crusts. This leads to the creation of specific geological structures such as pull-apart graben, elongated fault lineaments, major fault scarps, shear folds, and marginal ridges. After the final continental breakup, a hot center (the mid-oceanic ridge axis) is progressively drifting along the newly created margin. The contact between two lithospheres of different nature should necessarily induce, by thermal exchanges, vertical crustal readjustments. Finally, the transform margin remains directly adjacent to a hot but cooling oceanic lithosphere; its subsidence behavior should then progressively be comparable to the thermal subsidence of classic rifted margins.

  5. Mendeleev rise (arctic ocean) as a geological continuation of the continental margin of Eastern Siberia

    NASA Astrophysics Data System (ADS)

    Poselov, V. A.; Butsenko, V. V.; Kaminsky, V. D.; Sakulina, T. S.

    2012-03-01

    The implemented deep seismic soundings have provided records of refracted and reflected P-waves up to offsets of 200-250 km, whereas the modern technique of ray-tracing and synthetic modelling enabled the wave fields to be decoded and the direct seismic problem about selection of velocity models of the crust to be solved correctly. The data acquired through the multichannel seismic reflection method have allowed us to identify the Late Paleozoic sedimentary unit on the shelf and trace it to the Mendeleev Rise as an intermediate complex. It has been shown that the principal structural elements of the consolidated crust and sedimentary cover of the East Siberian shelf are continued to the Mendeleev Rise, which has obvious tectonic features of an extended continental crust.

  6. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Archer, D.

    2015-05-01

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial-interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. There is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial-interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil

  7. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES

    Archer, D.

    2015-05-21

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression

  8. Phenomena of pulsation tectonics related to the breakup of the eastern north American continental margin

    NASA Astrophysics Data System (ADS)

    Sheridan, Robert E.

    1983-05-01

    New data from the recent IPOD drilling of DSDP Site 534 in the Blake-Bahama Basin give a definite age for the spreading-center shift involved in the breakup of the North American Atlantic margin. A basal Callovian age (~ 155 m.y.) is determined for the Blake Spur magnetic anomaly marking this spreadingcenter shift that signals the birth of the modern North Atlantic Ocean. This is some 20 m.y. younger than previously thought. An implication of this younger age for the Blake Spur event is that very high spreading rates are now required for the Jurassic outer magnetic quiet zone along the North American margin. This association of a relatively high spreading rate with a magnetic quiet zone is similar to that for the mid-Cretaceous and implies a link between the processes controlling plate spreading, which are in the upper mantle, and the processes controlling the magnetic field, which are in the outer core. A theory of pulsation tectonics involving the cyclic eruption of plumes of hot mantle material from the lowermost mantle could explain the correlation. Plumes carry heat away from the core-mantle boundary and later reach the asthenosphere and lithosphere to induce faster spreading. The pulse of fast spreading in the Jurassic apparently followed the breakup of continents bordering the North Atlantic Ocean. Other pulses of fast spreading appear to correlate with major ocean openings on various parts of the globe, implying that this might be a prevalent process. Rifting of passive margins may be controlled by the more fundamental global processes described by the theory of pulsation tectonics.

  9. Morphology of central California continental margin, revealed by long-range side-scan sonar (GLORIA)

    SciTech Connect

    Gardner, J.V.; McCulloch, D.S.; Eittreim, S.L.; Masson, D.G.

    1985-02-01

    Leg 2 of the 4-leg USGS EEZ-SCAN 84 program used GLORIA long-range side-scan sonar to survey the region from Pt. Conception to just south of Pt. Arena, from the shelf break to the 200-nmi coverage. The overlapping digital sonographs were slant-range and anamorphically corrected, and a photomosaic of the sonographs was constructed at a scale of 1:375,000 (1 in. = 11.1 km). The underlying bed rock appears to be an important control in shaping the morphology of this margin. Several faults have sea-floor expression and lie subparallel to the margin. The density of canyons and gullies on the slope varies from south to north, probably because of variations in the characteristics of the bed rock. The slope west of San Francisco is the most dissected segment of the central California slope. Monterey Fan is covered by large-scale bed forms (5-15 m amplitude and 1.5-2.0 km wavelength) over much of its surface. Monterey channel crosses southwestward across the fan, but abruptly turns south along a 40-km long surface fault that coincides with a well-mapped meander loop. The channel loops to the north then turns southward crossing the entire Monterey Fan, at its distal reaches, changes to a broad, braided pattern. Major slumps on the margin have long (> 30 km) scarps, some have slump folds, and one has a debris-flow deposit that can be acoustically traced for more than 75 km. Seventeen new seamounts were mapped. Taney Seamounts are large, rimmed, calderas with diameters of about 15 km each; these appear to be very large explosive or summit-collapse features.

  10. Impact of deep-water derived isoprenoid tetraether lipids on the TEX86 paleothermometry along the portuguese continental margin

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Villanueva, Laura; Zell, Claudia; Sinninghe Damsté, Jaap S.

    2016-04-01

    The TEX86 proxy was developed based on isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) biosynthesized by Thaumarchaeota and afterwards slightly modified to TEX86-H, a logarithmic function for TEX86. However, it remains uncertain how well this proxy reconstructs annual mean SST, especially due to the water depth influence. We investigated the potential effect of deep-water dwelling Thaumarchaeota in the warm and saline Mediterranean Outflow Water (MOW) on the distribution of isoGDGTs by analysing suspended particulate matter (SPM) and surface sediments collected along five land-ocean transects along the southern Portuguese continental margin. To this end, we directly compared for the first time the composition of intact polar lipid (IPL)-derived isoGDGTs of SPM with the diversity, abundance, and activity of Thaumarchaeota based on the genetic analysis of the genes coding for the archaeal ammonia monooxygenase (amoA) and the geranylgeranylglyceryl phosphate (GGGP) synthase involved in the isoGDGT biosynthetic pathway. Our results show that the sedimentary distribution of CL isoGDGTs used in TEX86-H along the Portuguese margin is primarily influenced by water depth due to the increasing contribution of the deep-water population of Thaumarchaeota residing in the MOW.

  11. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left

  12. Rifting of the Tyrrhenian Basin: A Natural Laboratory to Study Extension of Continental Lithosphere and Conjugate Rifted Margin Formation

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Sallares, V.; Grevemeyer, I.; Zitellini, N.; Vendrell, M. G.; Prada, M.; Moeller, S.; Party, M. C.; Medoc Cruise Party

    2011-12-01

    The Tyrrhenian basin has been created by extension of continental lithosphere above a retreating slab during the Neogene. The basin is not currently extending, but its structure preserves information of the time evolution of the rifting process. The basin opened from north to south with different amounts of extension. The northern region stopped opening after relatively low extension. The amount of extension increases southwards to a region where full crustal separation produced mantle exhumation. The final structure displays two conjugate margins with an asymmetric structure. We present results from a two-vessel seismic experiment that took place in spring 2010. The cruise was carried out with the Spanish R/V Sarmiento de Gamboa (SdG) and the Italian R/V Urania in a first leg. The ships collected 5 E-W trending wide-angle seismic (WAS) profiles across the entire basin using 17 Ocean Bottom Seismometers and 25 Ocean Bottom Hydrophones and a 4800 c.i. G-II gun array. During the second leg the R/V SdG collected 16 Multichannel Seismic Reflection (MCS) profiles using a 3.75 km-long streamer and a 3000 c.i. G-II gun array. MCS profiles were acquired coincident with the WAS profiles, and a number of additional lines concentrated in the central region of the basin where mantle exhumation took place. The seismic data covers the region of the basin that experienced different amount of extension from north to south. In this presentation we compare observations from different transects to study the evolution of the processes of continental margin formation by trading space (different areas with different extension factors) for time (evolution of extension). Each transect provides the tectonic structure, the geometry of sedimentary deposits, and seismic velocity distribution. This information allows to interpret the mechanisms of deformation and to study the symmetry-asymmetry structure of the conjugated margins, and thus of the processes involved in their formation. The

  13. Epibenthic megacrustaceans from the continental margin, slope and abyssal plain of the Southwestern Gulf of Mexico: Factors responsible for variability in species composition and diversity

    NASA Astrophysics Data System (ADS)

    Escobar-Briones, Elva G.; Gaytán-Caballero, Adriana; Legendre, Pierre

    2008-12-01

    The community structure of megacrustaceans (orders Lophogastrida, Isopoda, and Decapoda) collected in trawls on the continental margin, upper slope and abyssal plain of the southern Gulf of Mexico was studied to determine to what extent broad-scale variation in community composition and diversity was influenced by geographic regions environmental variability and depth. Trawls were collected in the Mexican Ridges, the Campeche Bank, and the Sigsbee abyssal plain. There was variability in species composition, density and diversity among geographic regions and along the depth gradient. A total of 106 species were identified and grouped in three orders; five infraorders, 40 families, and 70 genera. This study extends the known geographic ranges of the species Homolodromia monstrosa and Ephyrina benedicti. The largest number of species was recorded in the Mexican Ridges and on the upper continental shelf; lower values were found on the continental margin and in the abyssal plain. The largest densities were recorded on the continental margin in the Mexican Ridges. Megacrustaceans show in general low frequencies and low abundances in trawls, characterizing them as rare components of benthic assemblages. Contrary to an accepted paradigm about deep-sea biodiversity, the highest H' diversity values were recorded in the Sigsbee abyssal plain, followed by values from the upper continental slope; diversity values were correlated with evenness. Canonical Redundancy analysis results showed a significant affinity to regions for 18 crustacean species; 33 species showed a significant affinity to both regions and depth zones within regions.

  14. Principles of Geological Mapping of Marine Sediments (with Special Reference to the African Continental Margin). Unesco Reports in Marine Science No. 37.

    ERIC Educational Resources Information Center

    Lisitzin, Alexandre P.

    Designed to serve as a complement to the Unesco Technical Papers in Marine Science, this report concentrates on theoretical and practical problems of geological mapping of the sea floor. An introduction is given to geological mapping procedures at continental margins as well as some practical recommendations taking as an example the African region…

  15. Upper triassic continental margin strata of the central alaska range: Implications for paleogeographic reconstruction

    USGS Publications Warehouse

    Till, A.B.; Harris, A.G.; Wardlaw, B.R.; Mullen, M.

    2007-01-01

    Reexamination of existing conodont collections from the central Alaska Range indicates that Upper Triassic marine slope and basin rocks range in age from at least as old as the late Carnian to the early middle Norian. The conodont assemblages typical of these rocks are generally cosmopolitan and do not define a distinct paleogeographic faunal realm. One collection, however, containsEpigondolella multidentata sensu Orchard 1991c, which appears to be restricted to western North American autochthonous rocks. Although paleogeographic relations cannot be determined with specificity, the present distribution of biofaces within the Upper Triassic sequence could not have been the result of simple accordion-style collapse of the Late Triassic margin.

  16. NOAA Ship Okeanos Explorer 2013 Field Season on the U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Lobecker, E.; Malik, M.; Skarke, A. D.

    2013-12-01

    During the 2013 field season, Okeanos Explorer used its suite of state-of-the-art sonars to systematically map and explore our nation's waters off the Atlantic seaboard, specifically the Atlantic Canyons and New England Seamounts. High resolution three dimensional maps created from the ship's sonars were used to select sites for fine-resolution exploration with the new 6000 meter remotely operated vehicle (ROV) Deep Discoverer. Scientists onboard and onshore around the world were actively engaged in all steps of the exploration process, from the identification of broad-scale mapping targets, to the planning and real-time refining of 300 to 1500 meter long planned ROV dive tracks. Live video feeds were available to the general public through the award winning website www.oceanexplorer.noaa.gov. Important exploration milestones during the Okeanos Explorer 2013 Field Season include: the completion of comprehensive, high-resolution multibeam mapping of the continental shelf break from Cape Hatteras to the northern U.S. Atlantic offshore border, totaling over 100,000 square kilometers of new seafloor data within the U.S. Exclusive Economic Zone; the first successful field season of the ROV Deep Discoverer, which conducted over 40 successful dives; and initial mapping site characterization of eight of the outer seamounts of the New England Seamount Chain. All data collected by Okeanos Explorer are available via the NOAA public archives with metadata records within 60 to 90 days of the end of each cruise.

  17. Methylmercury accumulation in plankton on the continental margin of the northwest Atlantic Ocean.

    PubMed

    Hammerschmidt, Chad R; Finiguerra, Michael B; Weller, Robert L; Fitzgerald, William F

    2013-04-16

    Accumulation of monomethylmercury (MMHg) by plankton is a key process influencing concentrations of this toxic mercury species in marine food webs and seafood. We examined bioaccumulation and biomagnification of MMHg in microseston and four size fractions of zooplankton on the continental shelf, slope, and rise of the northwest Atlantic Ocean. The bioaccumulation factor (BAF, L/kg) for MMHg in microseston averaged 10(4.3±0.3) among 21 locations, and concentrations were unrelated to those in colocated, filtered surface water. Instead, concentrations and the BAF of MMHg in microseston were related inversely with total suspended solids in surface water, a proxy for planktonic biomass at these remote locations. MMHg was biomagnified by a factor of 4 from microseston to zooplankton, and both concentrations of MMHg and the fraction of total mercury as MMHg increased with larger size fractions of zooplankton. These results suggest that the initial magnitude of MMHg uptake into pelagic marine food webs is influenced by the degree of primary production in surface waters and propagated up through large zooplankton. Accordingly, biological productivity, in addition to inputs of MMHg to surface waters, must be considered when predicting how MMHg bioaccumulation will vary spatially and temporally in the ocean.

  18. Evidence of low density sub-crustal underplating beneath western continental region of India and adjacent Arabian Sea: Geodynamical considerations

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Agrawal, P. K.; Negi, J. G.

    1996-07-01

    The known high mobility of the Indian subcontinent during the period from 80 to 53 Ma has evoked considerable interest in recent times. It appears to have played an important role in shaping the subcontinental structures of western India and the adjoining Arabian Sea. During this period, a major catastrophic event took place in the form of Deccan volcanism, which coincides with the biological mass extinction at the K-T boundary, including the death of dinosaurs. The origin of Deccan volcanism is still being debated. Geophysically, western India and its offshore regions exhibit numerous prominent anomalies which testify to the abnormal nature of the underlying crust-lithosphere. In this work, we develop a two-dimensional structural model of these areas along two long profiles extending from the eastern basin of the Arabian Sea to about 1000 km inland. The model, derived from the available gravity data in the oceanic and continental regions, is constrained by seismic and other relevant information in the area, and suggests, for the first time, the presence of an extensive low-density (2.95-3.05 g/cm 3) sub-crustal underplating. Such a layer is found to occur between depths of 11 and 20 km in the eastern basin of the Arabian Sea, and betweeen 45 and 60 km in the continental region where it is sandwiched in the lower lithosphere. The low density may have been caused as a result of serpentinization or fractionation of magma by a process related in some way to the Deccan volcanic event. Substantial depletion of both oceanic and continental lithosphere is indicated. We hypothesize that the present anatomy of the deformed lithosphere of the region at the K-T boundary is the result of substantial melt generated owing to frictional heat possibly giving rise to a hot cell like condition at the base of the lithosphere, resulting from the rapid movement of the Indian subcontinent between 80 and 53 Ma.

  19. Tectonic Inversion of the Algerian Continental Margin off Great Kabylia (North Algeria) - Insights from new MCS data (SPIRAL cruise)

    NASA Astrophysics Data System (ADS)

    Aidi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Karim; Ribodetti, Alessandra; Bracene, Rabah; Schenini, Laure; Djellit, Hamou; Sage, Françoise; Déverchère, Jacques; Medaouri, Mourad; Klingelhoefer, Frauke; Abtout, Abdeslam; Charvis, Philippe; Bounif, Abdallah

    2014-05-01

    Sub-marine active faulting threatens the coastline of Algeria, as shown by the major Mw 6.9 May 21, 2003 earthquake that occurred in Great Kabylia close to Boumerdes. We present here the structures associated to the Plio-Quaternary (P-Q) tectonic inversion of the central part of the Algerian margin offshore Great Kabylia using new deep multichannel seismic (MCS) lines. Five MCS lines were acquired in the study area during the Algerian-French SPIRAL cruise (September 2009, R/V Atalante). Four lines were acquired using a 3040 cu. in. air-gun array and a 4.5 km 360 channel digital streamer and a 8350 cu. in. source favoring deep penetration was used for one coincident WAS profile and the fifth MCS line. All profiles are pre-stack time migrated and additional pre-stack depth migration was performed in key areas. The MCS lines crosscut the margin from the upper slope to the deep Algero-Provençal Basin either in a N-S direction sub-perpendicular to the structural trend of the margin, or in a NW-SE direction parallel to the actual convergence between Africa and Eurasia plates. Tectonic inversion is expressed on all profiles at the deep margin. The eastern line displays a flat-ramp compressive system in the deep sedimentary series, which emerges at the foot of the continental slope and marks the seaward limit of a P-Q basin perched at mid-slope. The south-dipping ramps are neo-formed structures, whereas the flats use inherited lithologic discontinuities (base of the Messinian evaporitic series, top of the acoustic basement). Westward in the Boumerdes area, the compressive deformation is expressed deeper in the acoustic basement where a southward dipping reflector is interpreted as a blind thrust on top of which all the sedimentary series (Miocene to P-Q) are bent in an antiform that uplifts the base of the Messinian series. A second antiform prolongates this uplift 20 km northward although no clear reverse structure is imaged underneath. These antiforms delimit two

  20. Rift Structure along the Eastern Continental Margin of India - new constraints on style of breakup of the Indian landmass from the eastern Gondwanaland

    NASA Astrophysics Data System (ADS)

    Ismaiel, M.; Krishna, K. S.; Karlapati, S.; Mishra, J.; D, S.

    2015-12-01

    The Eastern Continental Margin of India (ECMI), a classical passive margin has evolved after breakup of the Indian landmass from the East Antarctica during the Early Cretaceous. Anomalous thick sediments and lack of cohesive magnetic signatures in the Bay of Bengal hampered delineation of rift-structure and age assignment for the continental breakup between India and East Antarctica. Further, absence of lithological and geochronological information and a few seismic profiles from the margin led to put forward several competing models for the rift initiation and evolution of the ECMI. Here, we analyze long streamer seismic reflection data and deep-water drill well information from the western Bay of Bengal to infer the buried rift structure, crustal architecture and stratigraphy along the ECMI. Following the structural pattern of the margin, the region is divided into four domains as decoupled, coupled, exhumed and oceanic, which in turn helped us to demarcate the variations in rift structure from south to north along the margin. The southern segment in the vicinity of Cauvery Basin consists of steep continental shelf associated with few major normal faults, which indicates that the segment was evolved as mix shear-rifted margin. The central segment off southern part of the Krishna-Godavari Basin is controlled by a series of fault-bounded half-graben structures and presence of thinned continental crust over the exhumed mantle body, revealing that the segment was formed under hyper-rifting process. While the northern segment extends up to Mahanadi Basin shows relatively less gradient continental slope with a few major faults, suggesting that the segment was evolved by hypo-extended process. Variable crustal architecture lying along the ECMI supports each segment of the margin formed in a specific rift process. A breakup unconformity considered as important geological constraint for completion of rift process between India and East Antarctica is clearly mapped on

  1. Modelling of Continental Lithosphere Breakup and Rifted Margin Formation in Response to an Upwelling Divergent Flow Field Incorporating a Temperature Dependent Rheology

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Kusznir, N. J.

    2005-05-01

    We numerically model continental lithosphere deformation leading to breakup and sea floor spreading initiation in response to an imposed upwelling and divergent flow field applied to continental lithosphere and asthenosphere. The model is used to predict rifted continental margin lithosphere thinning and temperature structure. Model predictions are compared with observed rifted margin structure for four diverse case studies. Prior to application of the upwelling divergent flow field the continental lithosphere is undeformed with a uniform temperature gradient. The upwelling divergent flow field is defined kinematically using boundary conditions consisting of the upwelling velocity Vz at the divergence axis and the half divergence rate Vx . The resultant velocity field throughout the continuum is computed using finite element (FE) code incorporating a Newtonian temperature dependent rheology. The flow field is used to advect the continental lithosphere material and lithospheric and asthenospheric temperatures. Viscosity structure is hence modified and the velocities change correspondingly in a feedback loop. We find the kinematic boundary conditions Vz and Vx to be of first order importance. A high Vz/Vx (greater than10), corresponding to buoyancy assisted flow, leads to minimal mantle exhumation and a well defined continent ocean transition consistent with observations at volcanic margins. For Vz/Vx near unity, corresponding to plate boundary driven divergence, mantle exhumation over widths of up to 100 km is predicted which is consistent with observations at non-volcanic margins. The FE method allows the upwelling velocity Vz to be propagated upwards from the top of the asthenosphere to the Earth's surface without the requirement of imposing Vx. When continental breakup is achieved the half divergence velocity Vx can be applied at the lithosphere surface and the upwelling velocity Vz left free. We find this time and space dependent set of boundary conditions is

  2. The Dauki Fault in NE India: A crustal scale thrust-fold reactivating the continental margin

    NASA Astrophysics Data System (ADS)

    Ferguson, E. K.; Seeber, L.; Akhter, S. H.; Steckler, M. S.; Biswas, A.; Mukhopadhyay, B. P.

    2011-12-01

    New structural data along the central part of the Dauki topographic front supports the hypothesis that the Shillong Plateau is a highly asymmetric south-verging Quaternary anticline driven by a north-dipping blind thrust fault that projects into Bangladesh, south of the topographic front. This thrust-fold is tectonically more important than it appears from the relatively modest accumulated deformation, and may represent a reorganization of the eastern Himalayan front. The Dauki Fault is the most likely source of the 1897 Great Indian Earthquake and poses a hazard to densely populated areas on the Ganges-Brahmaputra Delta region. The sharp linear topographic feature often mapped as the Dauki fault is instead a contact between competent Eocene limestone and much less competent younger clastic units. This contact may be depositional or locally a secondary back thrust. While the Sylhet basin has been rapidly subsiding in the Late Quaternary, the topographic front is marked by raised and eroded river fanglomerates, thus still on the hangingwall side of the fault. Samples from these raised terraces will be dated using optically stimulated luminescence. The exposed structural relief is primarily accounted for by folding, very broad at the culmination on the "plateau," but much sharper at the southern front. In the central and steepest Cherrapunji segment of the Dauki front, the fold is marked by the erosion resistant Cretaceous-Paleocene passive-margin sequence overlying the Sylhet Traps with evidence that the Cretaceous rifting was parallel to the Dauki front. The Dauki fault, therefore, could be a passive margin-related normal fault reactivated as a thrust. The part of the forelimb exposed in the ~20 km Cherrapunji segment exhibits two sharp kinks, suggesting blind imbricates above the main blind fault. The Shillong Plateau is characterized by a two-level drainage morphology. The well-preserved Precambrian surface and its Cretaceous cover along the southern edge of the

  3. Satellite-Based Investigations of the Transition from an Oceanic to Continental Transform Margin

    NASA Technical Reports Server (NTRS)

    Miller, M. Meghan

    1998-01-01

    Detailed characterization of neotectonics evolution of the Valle de San Felipe and Arroyo Grande regions in northern Baja California. Reoccupied GEOMEX GPS sites, and occupied a regional GPS (Global Positioning System) network. The Baja California peninsula in Mexico offers a unique setting for studying the kinematic evolution of a complex, active strike-slip/rift plate boundary. We are currently conducting remote sensing, geologic, and geodetic studies of this boundary. The combined data sets will yield instantaneous and time integrated views of its evolution. This proposal solicits renewed funding from NASA to support remote sensing and geologic studies. During the late Cenozoic, Baja California has been the locus of changing fault geometry that has accommodated components of the relative motion between the North America and Pacific plates. Contemporary slip between the two plates occurs in a broad zone that encompasses much of southern California and the Baja California Peninsula. The transfer of slip across this zone in southern California is relatively well understood. South of the border, the geometry and role of specific faults and structural provinces in transferring plate margin deformation across the peninsula is enigmatic. Results We use Landsat Thematic Mapper imagery of the Baja California Peninsula to identify recent and active faults, and then conduct field studies that characterize the temporal and spatial structural evolution of the plate margin. These data address questions concerning the neotectonic development of the Gulf of California, the Baja California Peninsula, and their role in evolution of the post-Miocene Pacific - North American plate boundary. Moreover, these studies provide constraints on the geometry of active faults, allowing more exact understanding of the results of ongoing NASA-supported geodetic experiments. In addition, anticipated publication of the TM scenes will provide a widely available geological data base for relatively

  4. Evolution of the Southwest Indian continental divergent margin: Constraints from 40Ar-39Ar dating of lateritic paleolandsurfaces

    NASA Astrophysics Data System (ADS)

    Bonnet, Nicolas; Beauvais, Anicet; Chardon, Dominique; Arnaud, Nicolas

    2015-04-01

    The western continental passive margin of Peninsular India is marked by the Western Ghats escarpment, which separates a coastal lowland from an East-dipping highland plateau and is carved both into the 63-Ma old Deccan traps and their Archean basement. Previous studies suggested establishment of the escarpment by differential erosion across an elevated rift shoulder, and thermochronologic models predicted escarpment formation from higher denudation in the coastal lowland than on the plateau until ~ 50 Ma. We provided complementary time constraints on the evolution of the passive margin by 40Ar-39Ar dating of supergene K-Mn oxides (cryptomelane) sampled in lateritic formations exposed on paleosurfaces, which are preserved as relicts on both sides of the escarpment. Three main lateritic paleosurfaces were identified in the highland at altitude ranges of 1200-1000 m (S1), 1000-900 m (S2) and 850-600 m (S3), and a lower paleosurface in the lowland at 150-50 m (S4). All the 40Ar-39Ar ages obtained on either side of the escarpment document major weathering periods for each paleosurface: 53 to 45 Ma (S1-S4) synchronously with the bauxitic weathering, 40 to 32 Ma (S2), 30 to 23 Ma (S3), and 24 to 19 Ma (S4). These ages indicate that most of the incision and dissection of plateau landsurfaces S1, S2, and S3 must therefore have taken place after 45, 32 and 23 Ma respectively, while the coastal lowland surface S4 was incised after 19 Ma. Preservation of laterites as old as 47 Ma in the coastal lowland implies that the escarpment already existed in the Mid-Eocene while intense bauxitic weathering was taking place on both sides of the escarpment. The ages obtained in the lowland are also indicative of limited erosion (~ 4 m Ma-1) at the foot of the escarpment since 45 Ma, and particularly low incipient incision of the lowland (~ 5 m Ma-1) since 19 Ma. Ages obtained on the highland plateau indicate further Neogene denudation inland but at less than 15 m Ma-1 since 45 Ma, and

  5. Sea floor cycling of organic matter in the continental margin of the mid-Atlantic Bight. Final report, May 1, 1995--April 30, 1998

    SciTech Connect

    Jahnke, R.A.

    1998-12-31

    The objective of this project was to examine quantitatively the cycling of organic matter at the sea floor of the mid-Atlantic Bight continental margin. This information would be used to better understand sedimentary geochemical processes and, when used in conjunction with other measurements made within the DOE Ocean Margins Program, would be used to constrain the offshore and surface-to-deep water transport of organic carbon in this region. The latter information is critical in assessing the role of continental margins in the sequestration of anthropogenic carbon dioxide, the dominant greenhouse gas, in the deep ocean. Because the build-up of greenhouse gases in the atmosphere may cause significant changes in climate, this project had major societal importance.

  6. ROV study of a giant pockmark on the Gabon continental margin

    NASA Astrophysics Data System (ADS)

    Ondréas, H.; Olu, K.; Fouquet, Y.; Charlou, J. L.; Gay, A.; Dennielou, B.; Donval, J. P.; Fifis, A.; Nadalig, T.; Cochonat, P.; Cauquil, E.; Bourillet, J. F.; Moigne, M. Le; Sibuet, M.

    2005-11-01

    A giant, 800-m wide pockmark, called Regab, was discovered along the Equatorial African margin at 3160-m water depth and was explored by remote operated vehicle (ROV) as part of the Zaiango (1998-2000) and Biozaire (2001-2003) projects carried out conjointly by TOTAL and a number of French research institutes. A microbathymetric map obtained using the ROV sensors shows that the pockmark actually consists of a cluster of smaller pockmarks aligned N70 along a 15-m deep depression. Methane was recorded all over the pockmark, the highest values along the axis of the depression where massive carbonate crusts and dense seep communities were also found. Several faunal species belong to the Vesicomyidae and Mytilidae bivalve families, as well as to Siboglinidae (Vestimentifera) tubeworms. Preliminary analyses confirm their association with symbiotic bacteria, thus documenting their dependence on fluid seeps. The pockmark appears to be related to an infilled channel, visible on the seismic data 300 m below the seafloor, which may act as a reservoir for biogenic fluids supplied to the trap from the surrounding sediments.

  7. Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula

    USGS Publications Warehouse

    Jin, Y.K.; Lee, M.W.; Kim, Y.; Nam, S.H.; Kim, K.J.

    2003-01-01

    Multi-channel seismic data acquired on the South Shetland margin, northern Antarctic Peninsula, show that Bottom Simulating Reflectors (BSRs) are widespread in the area, implying large volumes of gas hydrates. In order to estimate the volume of gas hydrate in the area, interval velocities were determined using a 1-D velocity inversion method and porosities were deduced from their relationship with sub-bottom depth for terrigenous sediments. Because data such as well logs are not available, we made two baseline models for the velocities and porosities of non-gas hydrate-bearing sediments in the area, considering the velocity jump observed at the shallow sub-bottom depth due to joint contributions of gas hydrate and a shallow unconformity. The difference between the results of the two models is not significant. The parameters used to estimate the total volume of gas hydrate in the study area were 145 km of total length of BSRs identified on seismic profiles, 350 m thickness and 15 km width of gas hydrate-bearing sediments, and 6.3% of the average volume gas hydrate concentration (based on the second baseline model). Assuming that gas hydrates exist only where BSRs are observed, the total volume of gas hydrates along the seismic profiles in the area is about 4.8 ?? 1010 m3 (7.7 ?? 1012 m3 volume of methane at standard temperature and pressure).

  8. Low temperature thermochronology and topographic evolution of the South Atlantic passive continental margin in the region in eastern Argentina

    NASA Astrophysics Data System (ADS)

    Pfister, Sabrina; Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    To understand the evolution of the passive continental margin in Argentina low temperature thermochronology is an appropriate method, which will lead to new conclusions in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills Salado basin is located whereas the Claromecó basin is situated south of the mountain range. In contrary to most basins along the southamerican passive continental margin the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography is fairly flat with altitudes of. The igneous-metamorphic basement is pre-proterozoic in age and build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons it is overlain by a series of Neoproterozoic to early Paleozoic sediments (Cingolani, 2010), like siliciclastics, dolostones, shales and limestones (Demoulin et al., 2005). The aim of the study is to quantify the long-term landscape evolution of the passive continental margin in eastern Argentina in terms of thermal history, exhumation and tectonic activities. For that purpose, samples were taken from the Sierra Septentrionales and analyzed with the apatite fission-track method. Further 2-D thermokinematic modeling was conducted with the computer code HeFTy (Ketcham, 2005; Ketcham 2007; Ketcham et al., 2009). The results indicate apatite fission track ages between 101.6 (9.4) to 228.9 (22.3) Ma, what means all measured ages are younger as their formation age. That shows all samples have been reset. Six samples accomplished enough confined tracks and were used to test geological t-T models against the AFT data set. These models give a more detailed insight on the cooling history and tectonic activities in the research area. References: Cingolani C. A. (2010): The Tandilia System of Argentina as a southern extension of the Río de la

  9. The Crustal Structure of Northern Continental Margin of South China Sea: Revealed by Joint Onshore-Offshore Wide-Angle Seismic Survey

    NASA Astrophysics Data System (ADS)

    Cao, J.; Sun, J.; Xia, S.; Xu, H.

    2015-12-01

    The northern margin of South China Sea (SCS) is a rifted margin which located in the jointing area between South China Block and SCS Basin, it not only preserved the information about intensive tectonic deformation and magmatism generated by the west Pacific subducted to Eurasian Plate in late Mesozoic, but also recorded the process from continental margin rifting to seafloor spreading of SCS in Cenozoic for the same mechanical property. To investigate crustal structure of northern margin of SCS, a wide-angle onshore-offshore seismic experiment and a coincident multi-channel seismic (MCS) profile were carried out in the northern margin of SCS, 2010. A total of 14 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure model of Pearl River Estuary (PRE) region was constructed from onshore to offshore. The model reveals that South mainland of China is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The Littoral Fault Zone (LFZ) lies 12 km south of Dangan Island with a width of 18-20 km low-velocity fracture zone from surface to Moho discontinuity. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. All these results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one from late Mesozoic to Cenozoic.

  10. Structure and Development Processes of the Sediment Ridges on the Continental Rise off the Prydz Bay Margin, East Antarctica

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Yang, C.; Gao, J.; Ji, F.

    2015-12-01

    Several sediment ridges (SRs) are located on the continental slope and rise off the Prydz Bay margin, East Antarctica. These SRs contain the history of the regional glacial movements and bottom current activities. Multichannel seismic reflection data and bathymetric data in this region have been interpreted to know the planar distribution, cross-section structures along strike, and the formation and development processes of the SRs. Based on the above work, two different groups of the SRs have been identified. The first one includes two SRs which were asymmetric levees on both sides of the Wild Canyon in the western part of the study area. The second one includes SRs in the eastern part of the study area whose formation and development are closely related to the local, diachronous hiatuses generated by the turbidity flow. The onset time of the turbidity activities in different canyons are not concurrent. For Wild Canyon in the west, the onset time is P1, which is the base of the glaciomarine deposit on the continental rise, while for Wilkins and Murray Canyon in the east, it is a later time P3 (~26.1 Ma), which represents an expansion of the glaciers in Prydz Bay area. All the canyons and the turbidity currents within them both extend seaward with time and so does the consequent SRs. In the areas north of the seaward edge of the SRs, large deep-sea sediment waves consisting of fine-grain sediments supplied mainly by down-slope turbidity currents were generated under westward-flowing bottom currents.

  11. A comparison of geochemical exploration techniques and sample media within accretionary continental margins: an example from the Pacific Border Ranges, Southern Alaska, U.S.A.

    USGS Publications Warehouse

    Sutley, S.J.; Goldfarb, R.J.; O'Leary, R. M.; Tripp, R.B.

    1990-01-01

    The Pacific Border Ranges of the southern Alaskan Cordillera are composed of a number of allochthonous tectonostratigraphic terranes. Within these terranes are widespread volcanogenic, massive sulfide deposits in and adjacent to portions of accreted ophiolite complexes, bands and disseminations of chromite in accreted island-arc ultramafic rocks, and epigenetic, gold-bearing quartz veins in metamorphosed turbidite sequences. A geochemical pilot study was undertaken to determine the most efficient exploration strategy for locating these types of mineral deposits within the Pacific Border Ranges and other typical convergent continental margin environments. High-density sediment sampling was carried out in first- and second-order stream channels surrounding typical gold, chromite and massive sulfide occurrences. At each site, a stream-sediment and a panned-concentrate sample were collected. In the laboratory, the stream sediments were sieved into coarse-sand, fine- to medium-sand, and silt- to clay-size fractions prior to analysis. One split of the panned concentrates was retained for analysis; a second split was further concentrated by gravity separation in heavy liquids and then divided into magnetic, weakly magnetic and nonmagnetic fractions for analysis. A number of different techniques including atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and semi-quantitative emission spectrography were used to analyze the various sample media. Comparison of the various types of sample media shows that in this tectonic environment it is most efficient to include a silt- to clay-size sediment fraction and a panned-concentrate sample. Even with the relatively low detection limits for many elements by plasma spectrometry and atomic absorption spectrometry, anomalies reflecting the presence of gold veins could not be identified in any of the stream-sediment fractions. Unseparated panned-concentrate samples should be analyzed by emission

  12. The biogeochemistry of carbon in continental slope sediments: The North Carolina margin

    SciTech Connect

    Blair, N.; Levin, L.; DeMaster, D.; Plaia, G.; Martin, C.; Fornes, W.; Thomas, C.; Pope, R.

    1999-12-01

    The responses of the continental slope benthos to organic detritus deposition were studied with a multiple trace approach. Study sites were offshore of Cape Fear (I) and Cape Hatteras (III), N.C. (both 850 m water depth) and were characterized by different organic C deposition rates, macrofaunal densities (III>I in both cases) and taxa. Natural abundances of {sup 13}C and {sup 12}C in particulate organic carbon (POC), dissolved inorganic carbon (DIC) and macrofauna indicate that the reactive organic detritus is marine in origin. Natural abundance levels of {sup 14}C and uptake of {sup 13}C-labeled diatoms by benthic animals indicate that they incorporate a relatively young component of carbon into their biomass. {sup 13}C-labeled diatoms (Thalassiorsira pseudonana) tagged with {sup 210}Pb, slope sediment tagged with {sup 113}Sn and {sup 228}Th-labeled glass beads were emplaced in plots on the seafloor at both locations and the plots were sampled after 30 min., 1-1.5 d and 14 mo. At Site I, tracer diatom was intercepted at the surface primarily by protozoans and surface-feeding annelids. Little of the diatom C penetrated below 2 cm even after 14 months. Oxidation of organic carbon appeared to be largely aerobic. At Site III, annelids were primarily responsible for the initial uptake of tracer. On the time scale of days, diatom C was transported to a depth of 12 cm and was found in animals collected between 5-10 cm. The hoeing of tracer from the surface by the maldanid Praxillela sp. may have been responsible for some of the rapid nonlocal transport. Oxidation of the diatom organic carbon was evident to at least 10 cm depth. Anaerobic breakdown of organic matter is more important at Site III. Horizontal transport, which was probably biologically mediated, was an order of magnitude more rapid than vertical displacement over a year time scale. If the horizontal transport was associated with biochemical transformations of the organic matter, it may represent an

  13. Crustal structure variations along the NW-African continental margin: a comparison of new and existing models from wide angle and reflection seismic data

    NASA Astrophysics Data System (ADS)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Philippe, S.; Louden, K. E.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabellouahed, M.; Reichert, C. J.

    2014-12-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from three study regions along the margin located in the North Moroccan salt basin, on the central continental margin offshore Safi and in the south, offshore Dakhla. In each of the study areas several combined wide-angle and reflection seismic profiles perpendicular and parallel to the margin have been acquired and forward modelled using comparable methods. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. In the North Moroccan Basin continental crust thins from originally 36 km to about 8 km in a 150 km wide zone. The basin itself is underlain by highly thinned continental crust. Offshore safi thinning of the continental crust is confined to a 130 km wide zone with no neighboring sedimentary basin underlain by continental crust. In both areas the zone of crustal thinning is characterised by the presence of large blocks and abundant salt diapirs. In the south crustal thinning is more rapid in a zone of 90 km and asymmetric with the upper crust thinning more closely to the continent than the lower crust, probably due to depth-dependent stretching and the presence of the precambrian Reguibat Ridge on land. Oceanic crust is characterised by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganisation. Volcanic activity seems to be confined to the region next to the Canary Islands, and is thus not related to the initial opening of the oceanic, which was related to no

  14. Influence of the Atlantic inflow and Mediterranean outflow currents on late Quaternary sedimentary facies of the Gulf of Cadiz continental margin

    USGS Publications Warehouse

    Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.

    1999-01-01

    The late Quaternary pattern of sedimentary facies on the Spanish Gulf of Cadiz continental shelf results from an interaction between a number of controlling factors that are dominated by the Atlantic inflow currents flowing southeastward across the Cadiz shelf toward the Strait of Gibraltar. An inner shelf shoreface sand facies formed by shoaling waves is modified by the inflow currents to form a belt of sand dunes at 10-20 m that extends deeper and obliquely down paleo-valleys as a result of southward down-valley flow. A mid-shelf Holocene mud facies progrades offshore from river mouth sources, but Atlantic inflow currents cause extensive progradation along shelf toward the southeast. Increased inflow current speeds near the Strait of Gibraltar and the strong Mediterranean outflow currents there result in lack of mud deposition and development of a reworked transgressive sand dune facies across the entire southernmost shelf. At the outer shelf edge and underlying the mid-shelf mud and inner shelf sand facies is a late Pleistocene to Holocene transgressive sand sheet formed by the eustatic shoreline advance. The late Quaternary pattern of contourite deposits on the Spanish Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are oblique to slope contours and the Mediterranean outflow current flowing northwestward parallel to the slope contours and down valleys between the ridges. Coincident with the northwestward decrease in outflow current speeds from the Strait there is the following northwestward gradation of contourite sediment facies: (1) upper slope sand to silt bed facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor

  15. Relationship Between Subduction Erosion, Seamount Subduction, Fluid Venting and Mound Formation on the Slope of the Costa Rican Continental Margin

    NASA Astrophysics Data System (ADS)

    Petersen, C.; Klaucke, I.; Weinrebe, W.

    2006-12-01

    The oceanic crust off central Costa Rica northwest of the Cocos Ridge is dominated by chains of seamounts rising 1-2 km above the seafloor with diameters of up to 20 km. The subduction of these seamounts leads to strong indentations, scars and slides on the continental margin. A smoother segment of about 80 km width is located offshore Nicoya peninsula. The segment ends at a fracture zone which marks the transition of oceanic crust created at the Cocos-Nazca spreading center (CNS) and at the East Pacific Rise (EPR). Offshore Nicaragua the incoming EPR crust is dominated by bending related faults. To investigate the relationship between subduction erosion, fluid venting and mound formation, multibeam bathymetry and high-resolution deep-tow sidescan sonar and sediment echosounder data were acquired during R/V Sonne cruises SO163 and SO173 (2002/2003). The deep-tow system consisted of a dual-frequency 75/410 kHz sidescan sonar and a 2-12 kHz chirp sub-bottom profiler. The connection of the observed seafloor features to deeper subduction related processes is obtained by analysis of multi-channel streamer (MCS) data acquired during cruises SO81 (1992) and BGR99 (1999). Data examples and interpretations for different settings along the margin are presented. Near the Fisher seamount the large Nicoya slump failed over the flank of a huge subducted seamount. The sidescan and echosounder data permit a detailed characterization of fault patterns and fluid escape structures around the headwall of the slump. Where the fracture zone separating CNS and EPR crust subducts, the Hongo mound field was mapped in detail. Several mounds of up to 100 m height are located in line with a scar possibly created by a subducting ridge of the fracture zone. MCS data image a topographic high on the subducting oceanic crust beneath the mound field which lead to uplift and possibly enabled ascent of fluids from the subducting plate. The combined analysis of geoacoustic and seismic MCS data

  16. Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong

    1994-07-01

    A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block

  17. Barite-forming environments along a rifted continental margin, Southern California Borderland

    USGS Publications Warehouse

    Hein, James R.; Zierenberg, Robert A.; Maynard, J. Barry; Hannington, Mark D.

    2007-01-01

    The Southern California Continental Borderland (SCCB) is part of the broad San Andreas transform-fault plate boundary that consists of a series of fault-bounded, petroleum-generating basins. The SCCB has high heat flow and geothermal gradients produced by thinned continental crust and Neogene volcanism. Barite deposits in the SCCB occur along faults. Barite samples from two sea-cliff sites and four offshore sites in the SCCB were analyzed for mineralogy, chemical (54 elements) and isotopic (S, Sr) compositions, and petrography. Barit